
ChainsFormer: A Chain Latency-aware Resource
Provisioning Approach for Microservices Cluster

Chenghao Song1 , Minxian Xu1(�) , Kejiang Ye1 , Huaming Wu2 , Sukhpal
Singh Gill3 , Rajkumar Buyya4 , and Chengzhong Xu5

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
{ch.song, mx.xu, kj.ye}@siat.ac.cn

2 Tianjin University, Tianjin, China whming@tju.edu.cn
3 Queen Mary University of London, London, UK s.s.gill@qmul.ac.uk

4 Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing
and Information Systems, The University of Melbourne, Australia

rbuyya@unimelb.edu.au
5 State Key Lab of IoTSC, University of Macau, Macau, China czxu@um.edu.mo

Abstract. The trend towards transitioning from monolithic applica-
tions to microservices has been widely embraced in modern distributed
systems and applications. This shift has resulted in the creation of
lightweight, fine-grained, and self-contained microservices. Multiple mi-
croservices can be linked together via calls and inter-dependencies to
form complex functions. One of the challenges in managing microservices
is provisioning the optimal amount of resources for microservices in the
chain to ensure application performance while improving resource usage
efficiency. This paper presents ChainsFormer, a framework that analyzes
microservice inter-dependencies to identify critical chains and nodes, and
provision resources based on reinforcement learning. To analyze chains,
ChainsFormer utilizes light-weight machine learning techniques to ad-
dress the dynamic nature of microservice chains and workloads. For re-
source provisioning, a reinforcement learning approach is used that com-
bines vertical and horizontal scaling to determine the amount of allocated
resources and the number of replicates. We evaluate the effectiveness of
ChainsFormer using realistic applications and traces on a real testbed
based on Kubernetes. Our experimental results demonstrate that Chains-
Former can reduce response time by up to 26% and improve processed
requests per second by 8% compared with state-of-the-art techniques.

Keywords: Microservice · Chain · Reinforcement learning · Kubernetes
· Scaling.

1 Introduction

Microservice architecture is a popular approach for designing and developing
modern applications. It involves breaking down monolithic applications into
smaller, fine-grained components that can work together to provide services for

ar
X

iv
:2

30
9.

12
59

2v
3

 [
cs

.D
C

]
 8

 O
ct

 2
02

3

https://orcid.org/0000-0002-4570-2722
https://orcid.org/0000-0002-0046-5153
https://orcid.org/0000-0001-8985-2792
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9480-0356

2 C. Song et al.

users [15]. This approach allows development teams to focus on implementing dif-
ferent microservices, thereby speeding up the development process. Additionally,
microservices can be updated or upgraded independently, making maintenance
efforts more manageable. To ensure reliability and performance, microservices
can be scaled and operated individually, depending on workload fluctuations and
environmental variance.

Despite their independence, microservices are not entirely self-contained.
Communication-based dependencies, such as remote procedure calls, exist be-
tween different microservices [7]. These dependencies can represent how requests
are processed among different microservices. Based on these dependencies, mi-
croservices can be combined into chains to fulfill complex services. The length
of a chain can vary from several nodes to tens of nodes. A single microservice,
such as a database-related service, can also be shared by multiple chains to sup-
port the formation of different services. Additionally, microservice chains can be
dynamic, scaling in or out as needed to accommodate new microservices. Given
these features of microservices and the resource usage fluctuations, it is chal-
lenging to precisely pre-configure the amount of resources, provision and scale
resources when deploying microservices in clusters.

Traditional approaches for improving application performance often rely on
over-provisioning and autoscaling, which involve allocating more CPU and mem-
ory resources to microservices. These approaches typically use performance mod-
els, simple heuristics, static thresholds, or machine learning algorithms. However,
these approaches have several limitations. Firstly, accurate performance models
and efficient heuristic-based scheduling policies require significant manual ef-
forts and training, which are infeasible for large-scale microservices with a large
number of configurable parameters. Secondly, machine learning (ML) based ap-
proaches, such as support vector machines, rely on centralized graph databases,
which can lead to scalability issues and inefficient scheduling when microservice
chains are updated. Therefore, alternative approaches are needed to address
these limitations and enable effective management of microservices.

This paper presents a solution to the limitations of traditional approaches
with ChainsFormer, a chain latency-aware resource provisioning framework for
microservices cluster based on chain feature analysis. ChainsFormer dynamically
scales CPU and memory resources to microservices to ensure high-quality service.
This framework utilizes online telemetry data, including requests information,
application running data, and hardware resource usage, to capture the system
state. By leveraging ML and reinforcement learning (RL) models, ChainsFormer
can adapt to variances in the system and reduce the need for manual efforts.
Overall, ChainsFormer provides an effective solution for managing microservices
with a high degree of automation and accuracy.

To efficiently manage the dynamic nature of microservice chains and adapt
to changes quickly, ChainsFormer employs various techniques. It first identifies
the critical chain using the calling graph and utilizes a decision tree to find the
critical node that has a significant influence on microservice performance. This
approach avoids the limitations of heavy machine learning techniques and cen-

Latency-aware Resource Provisioning for Microservices Cluster 3

Table 1: Comparison of related work

Approach Autoscaling Workloads
Prediction

Machine Learning
based Resource
Provisioning

Chain
Analysis

Quick Adaption
to Dynamic Chains SLO-awareness

Sage [2] ✓ ✓ Partial ✓
Firm [9] ✓ ✓ ✓ ✓
Parslo [8] ✓ ✓ ✓
PEMA [4] ✓ ✓

Autopilot [10] ✓ ✓ ✓ ✓
Sinan [14] ✓ ✓ ✓ ✓
Seer [3] ✓ ✓ ✓ ✓

CoScal [12] ✓ ✓ ✓ ✓
ChainsFormer (ours) ✓ ✓ ✓ ✓ ✓ ✓

tralized graph databases, which struggle with dynamic changes. Additionally,
ChainsFormer utilizes RL to make efficient and optimized decisions regarding
vertical and horizontal scaling. These decisions include when to conduct scal-
ing actions, which microservice should be scaled with resources, and how many
resources of each type should be scaled. Furthermore, these decisions can be
further optimized through RL with updated decisions, resulting in even more
efficient resource provisioning.

To evaluate the effectiveness of ChainsFormer, we deployed representative
microservice applications on Kubernetes, which is the state-of-the-art container
orchestration platform. We compared ChainsFormer with three state-of-the-art
baselines and used realistic traces from Alibaba to measure application perfor-
mance and response time. Our results show that ChainsFormer outperforms the
baselines in terms of application performance and response time. These findings
demonstrate the effectiveness of ChainsFormer in providing efficient resource
provisioning and management for microservice chains.

In summary, we make the following key contributions:

– We present the design of a framework that aims to handle the dynamic
changes in microservice applications by identifying critical chains and nodes.

– We propose an RL-based approach for combining vertical and horizontal
scaling to make decisions on efficient resource provisioning, which uses his-
torical data for offline training and makes online decisions based on system
states.

– We develop the designed framework on top of Kubernetes platform. Using
realistic workload traces and real-world microservice, we demonstrate the
efficiency of ChainsFormer compared to the state-of-the-art baselines.

2 Related Work

In this section, we will discuss the current state-of-the-art techniques that are
designed to address the challenges of resource provisioning and autoscaling in
microservices, in order to meet the desired quality of service levels.

Resource Provisioning for Microservices. Sage [2] aims to perform root
cause analysis in microservice-based systems by utilizing causal Bayesian net-

4 C. Song et al.

works to identify the underlying reason for service level objective (SLO) viola-
tions. After identifying the root cause, Sage initiates autoscaling actions to mit-
igate the issue. One of the advantages of Sage is that it only requires lightweight
tracking and is suitable for large-scale deployments. However, a major limita-
tion of Sage is its heavy reliance on pre-trained machine learning models. Seer [3]
employs deep learning models to predict quality of service (QoS) violations and
dynamically adjusts allocated resources to each microservice to prevent such vio-
lations. It is particularly suitable for scenarios with frequent service updates and
requires a large amount of tracking data. However, the accuracy of detection can
be affected by significant application changes. Parslo [8] is a gradient descent-
based approach that assigns partial SLOs to nodes in a microservice to provide
resource configuration solutions quickly. One of Parslo’s main advantages is its
ability to achieve a globally optimal solution for large-scale services that have
already been deployed. However, Parslo is limited in its support for only certain
types of Directed Acyclic Graphs, and its performance may not be guaranteed
in all circumstances. PEMA [4] uses iterative feedback-based tuning to optimize
resource allocation to meet SLO requirements. Compared to other approaches,
PEMA is lightweight and does not require any offline experiments or pre-training.
However, PEMA’s performance may be poor during resource update intervals,
and its inability to capture the dependencies between microservices due to the
lack of pre-training may limit its effectiveness. The fundamental limitation of
this line of work is that they do not consider features of microservice chain,
which can lead to inefficient actions and performance degradation.

Micoservice Autoscaling. Autopilot [10] utilizes ML algorithms to analyze
historical data on prior executions and performs a set of finely-tuned heuristics
to adjust a job’s resource requirements while it is running. The benefit of Au-
topilot is its ability to modify resource requirements on-the-fly, allowing it to
adapt to changing workload demands. However, Autopilot’s conservative ap-
proach can lead to overprovisioning and resource wastage. Sinan [3] leverages
a set of machine learning models to determine the performance impacts of mi-
croservice dependencies and allocate appropriate resources for each tier. Sinan
is an explainable approach and can be used for complex microservices, while
it only monitors CPU resources and does not provide auto-tuning capabilities.
CoScal [12] leverages data-driven decisions and enables multi-faceted scaling
based on reinforcement learning. CoScal utilizes gradient recurrent units to ac-
curately predict workloads, which assists in achieving efficient scaling. However,
one limitation is that the model re-training required for adapting to new applica-
tions can be costly. FIRM [9] is a system that utilizes online telemetry data and
machine learning methods to adaptively detect and locate microservices that
lead to SLO violations. It can make decisions based on reinforcement learning
to mitigate SLO violations via fine-grained and dynamic resource provisioning.
FIRM proposes a two-level ML framework to locate critical microservice paths
and nodes. However, FIRM has certain limitations. The scalability of centralized
graph databases is limited, and it cannot handle transient SLO violations that

Latency-aware Resource Provisioning for Microservices Cluster 5

(a) (b)

Fig. 1: (a) Microservice graph structure of Sock Shop application. (b) CPU uti-
lization of each microservice from top tier to bottom tier. When workloads in-
crease, the CPU utilization of all microservices increases.

occur within an interval shorter than the minimum interval due to the heavy
ML techniques.

The comparisons between ChainsFormer and other relevant work are pre-
sented in Table 1. Our work is most similar to CoScal and FIRM. However,
there are notable differences between them. Firstly, CoScal is deployed on Docker
Swarm, while ChainsFormer is designed specifically for Kubernetes. Secondly,
CoScal does not incorporate chain analysis for resource management, whereas
ChainsFormer leverages chain analysis techniques to optimize resource alloca-
tion within microservice chains. Thirdly, both CoScal and ChainsFormer employ
reinforcement learning, but ChainsFormer utilizes the SARSA algorithm, which
allows for faster convergence by updating Q-values based on the current policy.
In comparison to FIRM, ChainsFormer employs lightweight ML techniques to
handle transient SLO violations in microservice chains, a task that FIRM does
not address due to its heavy ML models and the associated high costs of model
re-training. Additionally, ChainsFormer does not require a centralized graph
database like FIRM, which enhances its scalability by avoiding a central bottle-
neck caused by large amounts of data. In ChainsFormer, runtime data is stored
on worker nodes and only fetched by the central node when model training or
retraining is required, significantly reducing the overhead on the central node.

3 The ChainsFormer Framework

To motivate our design, we deployed the Sock Shop application1 to observe how
different microservices react to changes in workloads by monitoring utilization
usage. As shown in Fig. 1a, a request sent to the Sock Shop application can
be distributed to different microservices from front-end to back-end tiers. The
processing of a request can form different calling chains, for example, a request
can go through different chains to complete different functionalities, e.g. checking
1 Sock Shop: A Microservices Demo Application. https://microservices-

demo.github.io/

6 C. Song et al.

items under a user account (front-end → carts → users), or paying for an item
(front-end → catalog → payment). As shown in Fig. 1b, workloads increase
from 0-110 requests per second during 0-11 minutes (requests per second is
increased with 10 after each minute), and the CPU utilization also increases
for all microservices, while the resource usage propagation among the nodes
in a chain is not consistent. Thus, to achieve efficient resource provisioning of
microservices, the scheduler should consider the features of the microservice
chain properly.

To address the above observations, we propose the overview architecture
design of ChainsFormer as shown in Fig. 2 and the key designs are as below:

– ChainsFormer first processes the incoming requests from users via Workload
Generator by recording the number of requests and extracting the tracing
data and performance counters.

– To make the resource provisioning more efficient, ChainsFormer applies the
neural network-based prediction algorithm to estimate future workloads.

– ChainsFormer detects SLO violations and utilizes real-time data to dynam-
ically identify critical chains and locate critical nodes that result in SLO
violations. To support the quick adaption to the dynamic changes in chains,
ChainsFormer includes an auto-adaptor that can quickly detect the changes.

– ChainsFormer analyzes the telemetry data collected by Workload Genera-
tor and node information identified by Chains Analyzer, and makes scaling
decisions to provision resources for critical nodes. The decision is made au-
tomatically on the Kubernetes cluster by an RL-based resource scaler, which
considers resource utilization, performance metrics, and future workloads.

3.1 Workload Generator

Workload Generator module in ChainsFormer is responsible for processing the
raw workload trace to make fit with other modules, e.g. extracting the key in-
formation of workloads (e.g. timestamp and user id) and providing initial anal-
yses for the workloads. Based on the required functionalities, workloads are dis-
tributed to different microservices that are deployed on different work nodes in
the microservices cluster. For example, we have observed that the workloads of
the Sock Shop application are distributed to Front-end (45.5%), Order (22.7%),
Carts (22.7%), Catalog (5.7%) and Random item (3.4%) with different percent-
ages. The processed workloads are also regularly stored in log files for workloads
prediction, and the performance counters that indicate system performance are
provided to resource scalers for autoscaling microservices.

To reduce the state space of our RL model, we process the workloads by
dividing the workloads into a number of levels, e.g. using CPU utilization levels to
represent the number of workloads, where the same scaling actions can be applied
to the same level to reduce action space. For example, Fig. 3 shows the original
continuous Alibaba’s workloads converted to 10 discrete CPU utilization levels
at per-day and per-minute intervals, and each level represents 10% utilization,
e.g. level 0 represents utilization ranges from 0% to 10%.

Latency-aware Resource Provisioning for Microservices Cluster 7

Fig. 2: Framework of ChainsFormer

(a) (b) (c) (d)

Fig. 3: (a) Original Alibaba per-day workloads. (b) Original Alibaba per-minute
workloads. (c) Converted Alibaba per-day workloads. (d) Converted Alibaba
per-minute workloads.

3.2 Neural Network-based Workload Predictor

The Workload Predictor aims to accurately forecast the future workloads in
system, and provides information for the RL-based Resource Scaler module to
dynamically scale the number of pod replicates. The Workload Predictor module
can be realized via different prediction approaches, such as ML-based prediction
algorithms. ChainsFormer considers the workloads prediction as a category of
multi-variate time series forecast problem, where the workloads are time-relevant
and multiple variables (e.g. CPU usage, memory usage, network throughput, and
hard disk read/write) can influence the final prediction results.

ChainsFormer utilizes a GRU-based neural network validated in [13], named
esDNN, to predict future workloads, which can overcome the limitations of gra-
dient explosion and disappearance when conducting long-term prediction. The
esDNN can extract the key features of workloads, and convert multivariate time

8 C. Song et al.

series forecasting into supervised learning to keep as much information as possi-
ble. The performance of esDNN has been validated to achieve good accuracy in
predicting workloads.

3.3 Chains Analyzer

One of the main goals of ChainsFormer is to identify the critical chain effi-
ciently and accurately based on tracing data and inter-dependencies, along with
identifying the critical nodes that impact the latency of the critical chain. We
define the critical chain as the one with the longest end-to-end latency, which
represents the total time taken by a request to traverse the entire microservice
chain, starting from the moment it enters the system until the user receives the
response. Furthermore, the critical nodes (highlighted in Fig. 4a for Train-Ticket
application) are defined as the nodes that have a substantial impact on the la-
tency of the critical chain, and any performance degradation in these nodes can
severely affect the performance of the microservices.

To identify the critical chain, ChainsFormer uses tracing data to construct
an execution graph that shows the processing sequence of a user request. The
graph includes all the microservices involved in processing the request. We then
apply a weighted longest path algorithm [5] to find the critical chain, which is
the chain with the longest end-to-end latency. The weight of each edge is the
processing time between different nodes. This algorithm is lightweight and can
adapt to changes in chains quickly. For example, if the blue chain in Fig. 4a has
the highest latency, it can be identified as the critical chain. The critical chain
will be changed to the red chain when its latency becomes to be the longest. We
also identify critical nodes in the critical chain, which are the nodes that have a
significant impact on latency. These critical nodes can significantly degrade the
performance of microservices.

The critical nodes are identified based on a decision tree, as shown in Fig. 4b.
This tree classifies the nodes into critical and non-critical based on real-time data
from the selected critical microservice chain and a trained model using historical
running data. To reduce the overhead on the central node, the runtime data is
stored on worker nodes and only fetched by the central node when model training
or retraining is required. Nodes with high latency, CPU, and memory usage are
more likely to be classified as critical nodes. In case the identification has a high
error rate (e.g. 5%), a model updating mechanism is triggered to update the
decision tree.

3.4 RL-based Resource Scaling

The resource scaler uses RL techniques to determine the optimal scaling ac-
tions. Compared to static and meta-heuristic approaches, the RL-based approach
can effectively explore a larger solution space and respond to dynamic status
changes.The RL-based resource scaler employs a hybrid scaling approach that
2 https://github.com/FudanSELab/train-ticket

Latency-aware Resource Provisioning for Microservices Cluster 9

(a) (b)

Fig. 4: (a) Train-Ticket application with critical chain2. (b) Decision tree model
for critical node identification

includes both vertical scaling and horizontal scaling. Vertical scaling is used to
quickly adjust resources such as CPU, memory, and network on the local ma-
chine, while horizontal scaling adds or removes active nodes in the system.

In ChainsFormer, the problem of RL-based resource scaling is modeled as
a Markov Decision Process [11]. At each time interval t, the system state is
represented by st ∈ S, and an action at ∈ A can be taken to transition the
state to st+1, yielding a reward of Rt+1 based on the policy πθ, which has
configurable parameters θ. The state space S is associated with an action space
A, and a transition matrix captures the probability of taking different actions
during state transitions. The goal of RL is to optimize the policy to maximize
the expected cumulative reward.

To achieve this, ChainsFormer employs the SARSA algorithm [6] to learn
the policy for the Markov decision process and estimate the expected cumulative
reward of state-action pairs using the action-value function Qt(s, a). When action
at is taken at time interval t, the value of Qt+1 is updated using the reward Rt+1

and propagated to the next time interval as:

Qt+1(st, at) = Qt(st, at) + α[Rt+1 + γmaxa′Qt(st+1, a
′)−Qt(st, at)], (1)

where α ∈ (0, 1] is the learning rate and γ ∈ [0, 1] is the discount factor. To
address the curse of dimensionality associated with updating the Q Table with
a large solution space, we train the model offline to minimize the loss function
and reduce training time. Online training is used to make decisions and update
actions with rewards. We also employed the divided load levels to reduce the state
space, as discussed in Section 3.1. In addition, we use the SARSA algorithm
to further reduce computational costs by using Rt+1 + γmaxa′Qt(st+1, a

′) as
the update target to guide the estimate of the true action-value function. This
approach considers only the sampling of successive st+1, at+1, and immediate
reward Rt+1. The estimation of the action-value function at the time interval
t+ 1 is given by:

Qt+1(st, at) = Qt(st, at) + α[Rt+1 + γQt(st+1, at+1)−Qt(st, at)], (2)

where the Qt(st+1, aa+1) and each update can be obtained via one-step transition
(st, at, Rt+1, st+1, at+1) of the state–action–reward–state–action pair.

10 C. Song et al.

To implement the RL-based resource scaler module, we utilize various param-
eters of the current pod as inputs to the RL model. These parameters include
the load state, the position of the pod in the chain, and the latency of the mi-
croservice. The RL model considers the state st ∈ S to represent the current
status of the microservice chain, and action at ∈ A comprises scaling operations
that adjust the chain status and provisioned resources by a specific amount. We
also assume the presence of a set of physical machines P = (M1,M2, . . . ,MK)
in the system that provides resources. Each physical machine Mk is represented
by a tuple Uk = (u1

k, u
2
k, . . . , u

I
k), where ui

k represents the resource utilization
of type i out of a total of I resource types on physical machine Mk. For each
Mk, we denote the set of possible actions as aik = {hk, v

i
k}, where hk ∈ [−n, n]

represents the number of horizontal replicates that can be added or removed,
vik ∈ [−m,m] represents the amount of vertical scaling that can be applied to
resource type i. A positive value of hk or vik indicates that more resources are
added, whereas negative values indicate resource removal. Given K as the to-
tal number of physical machines, the final set of actions is represented as the
Cartesian product of the sub-action sets: A =

∏K
k=1

∏I
i=1 a

i
k.

The main objective of the ChainsFormer system is to enhance resource uti-
lization while ensuring QoS requirements are met. Therefore, the reward function
is designed to consider two key metrics: resource utilization and response time.
The reward for resource utilization is formulated in Eq. (3).

Ru(uk) =

{∑K
k=1 Umax

k −uk

K + 1, uk ≤ Umax
k ,∑K

k=1 uk−Umax
k

K + 1, uk > Umax
k ,

(3)

where Umax
k represents the highest utilization threshold of all resource types

for physical machine Mk, and uk is the current utilization of Mk. The system
receives a positive reward when the utilization is below the threshold, and the
reward decreases when the utilization is higher or significantly lower than the
predefined threshold.

The reward for response time, denoted as Rq(rt), is modeled based on the
maximum acceptable response time RTmax.

Rq(rt) =

{
e−(rt−RTmax

RTmax
)2, rt > RTmax,

1, rt ≤ RTmax,
(4)

which shows that when the system is operating normally, the reward is 1. How-
ever, as the system’s performance degrades and violates the RTmax, the reward
gradually decreases and converges to 0.

The final reward value is based on the resource utilization Ru and response
time Rq at time interval t, which is formulated as follows:

r(st, at) =
Rt

q

Rt
u

, (5)

where higher values of Rt
q and lower values of Rt

u can increase the total reward.

Latency-aware Resource Provisioning for Microservices Cluster 11

Algorithm 1: ChainsFormer : Overall Procedure
Input : Table Q(s, a) contains all state/action pairs from experience pool by

offline training, time intervals T , probability of random action ϵ,
learning rate α, discount factor γ

1 Initialize system status, and monitoring model;
2 for t from 1 to T do
3 Uk

t ← Resource utilization of Mk at time interval t;
4 Wt−1 ← Workloads level at time interval t− 1;
5 Ŵt ← Predicted workload level;
6 if Ŵt ̸= Wt−1 then
7 Choose a action from action set A with ϵ probability, or select an

action with the max(Qt(st, at));
8 Conduct at ={hk(t), v

i
k(t)} with horizontal scaling and vertical scaling

9 if online training is triggered then
10 st+1 ← system state at time interval t+ 1;
11 Rt+1 ← reward calculation by Equation (5);
12 Update Q value:

Qt+1(st, at) = Qt(st, at) + α[Rt+1 + γQt(st+1, at+1)−Qt(st, at)];
13 end
14 Store transition (st, at, Rt+1, st+1, at+1)in experience pool;
15 end
16 end

Algorithm 1 outlines the overall procedure of ChainsFormer. Initially, the
algorithm collects the system status to enable the RL process (line 1), which in-
cludes monitoring the workloads level, resource utilization, and metrics at each
time interval to construct the complete system states (lines 3-5). Upon a change
in workload level (line 6), resources are dynamically scaled to optimize resource
usage while maintaining the required QoS. The SARSA algorithm commences
by selecting actions randomly with a probability of ϵ from the experience pool
and transitions to another state (line 7). The chosen actions entail vertical and
horizontal scaling to allocate resources effectively (line 8). ChainsFormer facil-
itates online training by storing the transition (st, at, Rt+1, st+1, at+1) in the
experience pool and subsequently updating the decisions based on rewards with
better outcomes (lines 9-14).

4 Performance Evaluations

4.1 Experimental Settings

We use the workload dataset provided by Alibaba3 as demonstrated in Section
3.1, which includes 8-day data traces from homogeneous 4,034 servers. We utilize
the Locust toolkit to generate resource usage based on profiled data of machines.
3 Alibaba Cluster Trace Program: https://github.com/alibaba/clusterdata/tree/v2018

12 C. Song et al.

We evaluate the performance of the Train-Ticket application (a larger applica-
tion than the Sock Shop used for motivation in Section 3) and use the Jaeger
monitoring toolkit to track the distribution of requests. The application is de-
ployed on a Kubernetes-based cluster consisting of five nodes, each with an Intel
Xeon E5-2660 processor and 64 GB of RAM. One physical machine serves as
the master of the cluster, while the others serve as workers.

4.2 Baselines and Metrics

We have compared ChainsFormer (CF) with 3 state-of-the-art baselines imple-
mented by us.

KS [1]: it is employed by native Kubernetes and mainly relies on horizontal
scaling, which involves dynamically adding or removing the number of replicas.
It follows a threshold-based approach based on resource usage metrics such as
CPU and memory, where more replicas are added when the pre-defined resource
threshold is exceeded (e.g. CPU utilization > 0.7) and vice versa.

AUTO [10]: it is derived from Google Autopilot and uses a hybrid approach
to scale resources based on workloads. The approach combines horizontal scaling
and vertical scaling to dynamically adjust the allocated resources to tasks based
on historical data.

FIRM [9]: it utilizes machine learning techniques, specifically support vec-
tor machine and reinforcement learning, to identify and mitigate microservices
responsible for SLO violations.

We have adopted three widely used metrics to evaluate the performance: 1)
Requests per second (RPS) represents the system’s ability to process requests
within a specific time period, and a higher value shows better performance. 2)
Number of failures indicates the number of requests that were not processed
or did not receive a response due to an overloaded situation. A lower value for
this metric represents a more reliable system. 3) Average response time: is a
dominant metric to measure performance, and a good autoscaling algorithm
should aim to reduce it.

4.3 Experiment Analyses

Due to page limitations, we present key results. Fig. 5a compares the average
requests per second over different time periods. To highlight differences among
periods, we analyze results over 5 periods (e.g. 1,000 minutes, 2,000 minutes, and
5,000 minutes), covering short-term and long-term comparisons. It is noteworthy
that the loads significantly vary during different time periods. For instance, the
highest loads were observed during the first 2,000 minutes, and the average
load during the 5,000 minutes period was much lower. It is observed that the
KS approach performs the worst in terms of RPS compared to other baselines.
This could be due to the limited capability of the threshold-based approach.
The AUTO approach, which leverages ML-based techniques, can process larger
RPS compared to KS. The FIRM approach can obtain better RPS during the
first 3,000 minutes, but during the 4,000-5,000 minutes, it performs worse than

Latency-aware Resource Provisioning for Microservices Cluster 13

(a) (b) (c)

Fig. 5: Comparison of (a) requests per second, (b) number of failures, and (c)
average response time.

AUTO. Our proposed approach, ChainsFormer, can achieve the best RPS in
the long-term, i.e., when the time period is larger than 3,000 minutes. This
optimization comes from our more accurate identification of critical chains and
nodes. At the early stage of request processing, FIRM performs well when the
critical path is identified. However, after load changes, the identified critical path
may not be critical anymore. Additionally, it is reasonable to note that FIRM
with a static critical path does not fit workloads with high variances well. In
conclusion, CF optimized the requests per second up to 8.1% compared to the
baselines.

Fig. 5b illustrates the comparison of the number of failures, presenting the
average results in five different time periods. It is observed that KS has the high-
est number of failures compared to other baselines due to its static policy, which
shows that it struggles to handle high-variant workloads. AUTO significantly re-
duces the number of failures. For instance, during the first 1,000 minutes, AUTO
reduces the failures from 350 to 80 by leveraging historical data. FIRM and CF
further optimize the failures by utilizing critical chains and nodes, where the
results are quite close. Overall, CF can reduce the number of failures by 8.3%
compared to FIRM.

Fig. 5c depicts the comparison of average response time. Among all five
time periods, the average response time of KS is at the highest value, which
we consider as a benchmark test to analyze the performance of the other three
algorithms. AUTO is optimized compared to KS and maintains the second-
highest response time. It optimizes around 10% of response time, for example,
decreasing from 110 ms to 100 ms during the first 1,000 minutes. The results of
CF and FIRM are consistent with the analyses of RPS. In the early stage, FIRM
slightly outperforms CF, while in the long run (e.g. 3,000 to 5,000 minutes), CF
achieves a lower response time than FIRM. Overall, ChainsFormer optimizes
response time by 1.4% to 26.6% compared to the baselines.

To evaluate the scalability of ChainsFormer, we conducted experiments com-
paring it with FIRM under different numbers of requests as shown in Fig. 6. We
gradually increased the number of requests (from 400 to 1200 per second) and
monitored the system’s performance. The number of failures in ChainsFormer
exhibited a slower rate of increase compared to FIRM as the number of re-

14 C. Song et al.

(a) (b)

Fig. 6: Scalability comparison of (a) number of failures, and (b) average response
time when the number of requests increase.

quests grew. Similarly, the average response time in ChainsFormer remained
relatively stable as the number of requests grew. In contrast, FIRM experienced
a more pronounced increase in average response time under the same conditions.
These findings validate the scalability of ChainsFormer and its ability to handle
larger workloads while maintaining good performance. The results suggest that
ChainsFormer is a promising solution for scaling microservice-based systems in
scenarios with dynamic and growing request loads.

5 Conclusions

In this paper, we propose ChainsFormer, a microservice scaling approach that
combines deep learning and reinforcement learning techniques to dynamically
adjust resource allocation based on workload predictions and critical chain iden-
tification. By leveraging decision trees for rapid identification of critical chains
and nodes, and using reinforcement learning to make real-time scaling decisions,
ChainsFormer optimizes resource usage while maintaining high-quality of ser-
vice in terms of response time, number of failures, and requests per second. Our
experiments, conducted on a representative microservices application, show that
ChainsFormer outperforms state-of-the-art algorithms from research and indus-
try in terms of QoS optimization. Our approach has the potential to significantly
improve the efficiency and reliability of microservices-based applications in cloud
computing environments.
Acknowledgments. This work is supported by National Key R & D Pro-

gram of China (No.2021YFB3300200), the National Natural Science Foun-
dation of China (No. 62072451, 62102408), Shenzhen Industrial Application
Projects of undertaking the National key R & D Program of China (No.
CJGJZD20210408091600002), Shenzhen Science and Technology Program (No.
RCBS20210609104609044), and Alibaba Group through Alibaba Innovative Re-
search Program.

Latency-aware Resource Provisioning for Microservices Cluster 15

References

1. Burns, B., Beda, J., Hightower, K.: Kubernetes: up and running: dive into the
future of infrastructure. O’Reilly Media (2019)

2. Gan, Y., Liang, M., Dev, S., et al.: Sage: Practical and scalable ml-driven perfor-
mance debugging in microservices. In: Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. p. 135–151. ASPLOS ’21 (2021)

3. Gan, Y., Zhang, Y., Hu, K., et al.: Seer: Leveraging big data to navigate the com-
plexity of performance debugging in cloud microservices. In: Proceedings of the
24th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. pp. 19–33. ASPLOS ’19 (2019)

4. Hossen, M.R., Islam, M.A., Ahmed, K.: Practical efficient microservice autoscaling
with qos assurance. In: Proceedings of the 31st International Symposium on High-
Performance Parallel and Distributed Computing. p. 240–252. HPDC ’22 (2022)

5. Ioannidou, K., Nikolopoulos, S.D.: The longest path problem is polynomial on
cocomparability graphs. Algorithmica 65, 177–205 (2013)

6. Kardani-Moghaddam, S., Buyya, R., Ramamohanarao, K.: Adrl: A hybrid
anomaly-aware deep reinforcement learning-based resource scaling in clouds. IEEE
Transactions on Parallel and Distributed Systems 32(3), 514–526 (2021)

7. Luo, S., Xu, H., Lu, C., et al.: An in-depth study of microservice call graph and run-
time performance. IEEE Transactions on Parallel and Distributed Systems 33(12),
3901–3914 (2022)

8. Mirhosseini, A., Elnikety, S., Wenisch, T.F.: Parslo: A gradient descent-based ap-
proach for near-optimal partial slo allotment in microservices. In: Proceedings of
the ACM Symposium on Cloud Computing. p. 442–457. SoCC ’21 (2021)

9. Qiu, H., Banerjee, S.S., Jha, S., et al.: {FIRM}: An intelligent fine-grained resource
management framework for {SLO-Oriented} microservices. In: 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20). pp. 805–825
(2020)

10. Rzadca, K., Findeisen, P., Swiderski, J., et al.: Autopilot: Workload autoscaling
at google. In: Proceedings of the Fifteenth European Conference on Computer
Systems. EuroSys ’20 (2020)

11. Wang, S., Guo, Y., Zhang, N., et al.: Delay-aware microservice coordination in
mobile edge computing: A reinforcement learning approach. IEEE Transactions on
Mobile Computing 20(3), 939–951 (2021)

12. Xu, M., Song, C., Ilager, S., et al.: Coscal: Multifaceted scaling of microservices
with reinforcement learning. IEEE Transactions on Network and Service Manage-
ment 19(4), 3995–4009 (2022)

13. Xu, M., Song, C., Wu, H., et al.: Esdnn: Deep neural network based multivari-
ate workload prediction in cloud computing environments. ACM Trans. Internet
Technol. 22(3) (2022)

14. Zhang, Y., Hua, W., Zhou, Z., et al.: Sinan: Ml-based and qos-aware resource man-
agement for cloud microservices. In: Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. p. 167–181. ASPLOS ’21 (2021)

15. Zhong, Z., Xu, M., Rodriguez, M., et al.: Machine learning-based orchestration of
containers: A taxonomy and future directions. ACM Computing Surveys 54(10s)
(2022)

	ChainsFormer: A Chain Latency-aware Resource Provisioning Approach for Microservices Cluster

