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Abstract: Human gait is a significant indicator of overall health and well-being due to its dependence
on metabolic requirements. Abnormalities in gait can indicate the presence of metabolic dysfunction,
such as diabetes or obesity. However, detecting these can be challenging using classical methods,
which often involve subjective clinical assessments or invasive procedures. In this work, a novel
methodology known as Criticality Analysis (CA) was applied to the monitoring of the gait of
teenagers with varying amounts of metabolic stress who are taking part in an clinical intervention
to increase their activity and reduce overall weight. The CA approach analysed gait using inertial
measurement units (IMU) by mapping the dynamic gait pattern into a nonlinear representation
space. The resulting dynamic paths were then classified using a Support Vector Machine (SVM)
algorithm, which is well-suited for this task due to its ability to handle nonlinear and dynamic
data. The combination of the CA approach and the SVM algorithm demonstrated high accuracy
and non-invasive detection of metabolic stress. It resulted in an average accuracy within the range
of 78.2% to 90%. Additionally, at the group level, it was observed to improve fitness and health
during the period of the intervention. Therefore, this methodology showed a great potential to be a
valuable tool for healthcare professionals in detecting and monitoring metabolic stress, as well as
other associated disorders.

Keywords: human gait; criticality analysis; support vector machine

1. Introduction

Human gait, the intricate orchestration of biomechanical movements during ambula-
tion, stands as a pivotal aspect of human motor function with far-reaching implications
for an individual’s health and overall wellbeing [1–3]. This intricate phenomenon, how-
ever, is not a static entity. It is subject to perturbations stemming from a diverse array
of factors, encompassing injuries, diseases, disorders, and external conditions, thereby
engendering deviations from established norms and the emergence of irregular or aberrant
gait patterns [4–6].

The traditional methodologies employed in gait analysis, predominantly reliant upon
observational techniques, possess inherent limitations marked by subjectivity and inter-
observer variability [7]. These methodologies, furthermore, confront difficulties in ad-
equately encapsulating the nuanced, multifaceted, and quantitative attributes inherent

Appl. Sci. 2023, 13, 13225. https://doi.org/10.3390/app132413225 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132413225
https://doi.org/10.3390/app132413225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8987-6591
https://orcid.org/0000-0003-1441-1444
https://orcid.org/0000-0001-8116-3378
https://orcid.org/0000-0002-2933-5213
https://doi.org/10.3390/app132413225
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132413225?type=check_update&version=1


Appl. Sci. 2023, 13, 13225 2 of 19

in gait, particularly when confronted with intricate patterns stemming from underlying
pathologies [8].

In the contemporary landscape of medical diagnostics, artificial intelligence (AI) has
emerged as a promising frontier, bearing the capacity to substantially enhance gait analysis
and expedite the detection of gait-related disorders [9,10]. Its proficiency in the processing
of extensive datasets, identification of latent patterns, and facilitation of early diagnoses
offers substantial promise [11]. Nonetheless, AI grapples with intricate challenges in the
realm of gait analysis, stemming from the dynamic nature of gait itself and the intricate
interplay of a multitude of contributory factors [11].

In response to these exigencies, this paper introduces Criticality Analysis (CA) as an
innovative and robust AI tool primed for precise identification of abnormal or irregular
gait patterns, thereby indicating the presence of latent disorders or ailments. Beyond
its diagnostic prowess, CA serves as a dynamic tool for the continuous monitoring of
disorder progression and the systematic tracking of treatment efficacy over temporal
trajectories. This innovative paradigm promises to empower medical practitioners in their
clinical decision making in relation to gait-related disorders, ultimately effecting substantial
enhancements in patient outcomes and the broader landscape of healthcare.

The paper is structured as follows: Section 2 outlines a methodology employing
mathematical models to assess critical aspects of human gait, emphasising the integration of
mathematical modeling and criticality analysis in the context of gait study. In Section 3, the
methodology applied to the Criticality Analysis of Diabetic Gait in Children (CARDIGAN)
dataset is detailed, covering data collection, feature extraction, criticality analysis data
representation, and spatiotemporal analysis. Section 4 explores the experimental results
of the CARDIGAN dataset, including the analysis of Receiver Operating Characteristic
(ROC) Curves, the calculation of Area Under the Curve (AUC), and the determination of
the decision boundary of the support vector method. Section 5 provides a concise summary
of the overarching results, while Section 6 concludes by highlighting the key findings of
the research.

2. Mathematical Model-Driven Criticality Analysis for Human Gait Assessment

The complexities of human locomotion have long intrigued researchers who strive to
decode the dynamic, self-organised patterns underlying gait. With each step, the intricately
choreographed motions blur the boundary between conscious control and automated
processes. Gait is governed by nonlinear phenomena, including emergent oscillations,
traveling waves, and spiraling coordination, which evolve across spatiotemporal scales. To
decipher the chaotic fluctuations disrupting normal walking, mathematical models become
indispensable, capturing nuanced biomechanics within the motor control system [12].
Particularly intriguing is the analysis of disruptions propelling gait into criticality, marked
by surges in kinetic energy and resulting in near power-law and exponential dynamics. The
human locomotive system, while captivating, lacks comprehensive models characterising
its dynamics across both temporal and spatial dimensions. Simplified models often cannot
fully capture the complex control mechanisms translating network behavior into stable,
coordinated movement patterns across space. Therefore, developing sophisticated models
is crucial for decoding the inherent complexities of human gait and locomotion.

In this paper, we employ a nonlinear biochemical enzyme control model to conduct
a comprehensive analysis of human gait dynamics, shedding new light on the intricate
biomechanical processes underlying locomotion [13]. In this paper, the investigation is
centered on elucidating the specific role of biochemical reactions in shaping gait patterns.
This meticulous exploration of biochemical intricacies allows for discerning their profound
influence on the overall coordination and characteristics of human gait. This modeling
approach gains particular relevance when examining scenarios where particular biochem-
ical pathways are suspected to be pivotal factors contributing to gait abnormalities or
adaptations, as often observed in various pathological conditions.
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The model utilises a control mechanism to stabilise external perturbations to the motor
system by precisely calibrating the quantity of enzyme in relation to the concentration
of one of the variables, f . The model also represents the control process of two enzymes
that govern the formation of the extracellular matrix, m, from soluble filaments, f . The
proteinase, p, deconstructs the matrix into filaments, while transglutaminase, g, reassembles
the filaments into the matrix. The extracellular matrix, m, is continually generated by
adjacent cells, rim, at a constant rate, with each protein undergoing catalytic processes
proportional to p. The bifurcation parameter, rim, acts as an external turbulent input to
the control model. The dynamics governing the rate of enzyme production, specifically
enzymes p and g, are influenced by the Rate Control of Chaos (RCC). This approach
employs a series of nonlinear rate equations, as illustrated in Equations (4)–(7), to describe
the temporal evolution of system variables. A key control term in these rate equations
contains variable f , which has a strong nonlinear influence on the dynamics. The RCC
confines this control term using a rate control function, as depicted in Equation (1), that
restricts its divergence rate, thereby stabilising the overall system behavior. The adjustable
parameters in the rate control function allow tuning the intensity of control applied to
the chaotic dynamics. Meanwhile, the criticality analysis involves examining the phase
space representation of outputs f and m, which correspond to concentrations of soluble
filaments and extracellular matrix, respectively. The phase space plot with f on the x-
axis and m on the y-axis illustrates the time-dependent evolution of nonlinear dynamics.
As parameters are varied, the system exhibits complex phenomena, including bistability,
limit cycles, spiralling trajectories, and chaos, particularly near critical transition points.
Analysing the geometric patterns within the phase portrait provides valuable insights into
the mechanisms underpinning self-organised criticality. Characteristics such as the number
and stability of fixed points, oscillations, excitability, and susceptibility to perturbations
can be deduced from phase space topology. Additionally, the fractal-like features within
the phase portrait unveil the self-similar, scale-invariant nature of critical fluctuations.
Moreover, this representation facilitates the quantification of nonlinear correlations that
capture the intricacies of coupled dynamics. Therefore, phase space-based criticality
analysis unveils the system’s rich nonlinear behavior, phase transitions, and emergent
complexity resulting from self-organised criticality.

q f =
f

f + µ f
, (1)

σp(q f ) = fpe(xpq f ), (2)

σg(q f ) = fge(xgq f ), (3)

dm
dt

= kg
f g

KG + f
− mp

1 + m
+ rim, (4)

d f
dt

= −kg
f g

KG + f
+

mp
1 + m

− f p
1 + f

, (5)

dp
dt

= σp(q f )γ
f n

Kn
R + f n − ka p2, (6)

dg
dt

= σg(q f )β
f l

Kl
S + f l

− kdeg
gp

Kdeg + g
. (7)



Appl. Sci. 2023, 13, 13225 4 of 19

Mathematically speaking, the CA model has several parameters, including γ = 0.026,

β = 0.00075, KR = 4.5, KS = 1, KG = 0.1, Kdeg = 1.1, kg = kdeg = 0.05, and ka =
kdeg
Kdeg

=

0.0455. Hill numbers n and l are also set to four. Bifurcation parameter rim exhibits a wide
range of dynamic behaviors, including stable periodic cycles, bistability, and chaos. This
parameter remains constant for all oscillators within the chaotic domain. Additionally, an
external input is applied as a perturbation to the rim parameter as described in Equation (8).
This parameter links different oscillators together by using a relative scale contribution from
all other oscillators. RCC control parameters presented in Equations (1)–(3) ( fp = fg = 1,
xp = xg = −1, and µ f = 2) are kept constant throughout the experiment simulations in
this paper, but can have different values that allow the local oscillator possibility to change
its oscillatory orbits.

rim
i =

n

∑
j=1,j 6=i

wjmj + ε. (8)

The connectivity strength between various oscillators, represented by wj, can range
from 0.00011, 0.00012, to 0.00025. External perturbations, represented by ε, are uniformly
distributed according to a Gaussian distribution and scaled within the domain of [−1, 1].
These perturbations are observed over a range of evolution steps to explore the varying
oscillatory cycles they produce. In this paper, a connectivity strength of wj = 0.0002 was
selected from the chaotic domain of the underlying oscillators to assess its effect on the
dynamics while maintaining overall stability.

The network of nonlinear models in this paper consists of 16 oscillators, each of which
can adjust their local dynamics to adapt to external perturbations from their neighboring
oscillators. The simulation of the entire model was carried out using EuNeurone soft-
ware (v2.3, 2013) and the Fehlberg-RK method as a fixed step integration for Ordinary
Differential equations (ODEs). The total unweighted dynamics, represented by M and
F in Equations (9) and (10), were measured as the net sum of the individual oscillators,
allowing for observation by a remote observer who would otherwise be unable to detect
the individual oscillators.

M =
n

∑
i=1

mi, (9)

F =
n

∑
i=1

fi. (10)

The CA method described in this paper has previously been applied in research, lever-
aging its capabilities to generate dynamic and scale-free nonlinear data representations,
which in turn facilitate the precise detection of disturbances associated with human gait [14].
Subsequently, CA combined these encoded representations with the SVM algorithm, en-
hancing superior detection accuracy. This synergy surpasses traditional methods that lack
the CA approach in terms of performance and robustness. Hence, this innovative CA
approach allows for the generation of nonlinear data representations that are well suited
for training conventional classifiers [15].

3. Methodology

The proposed CA method for classifying human gait disorders includes a framework
consisting of several key components, including data collection, data processing, feature
extraction, and the use of the SVM technique. This methodology is illustrated in Figure 1.
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Figure 1. The flowchart of the proposed CARDIGAN methodology is presented.

3.1. Data Collection

The study assembled a heterogeneous cohort of 50 adolescent subjects, comprising
individuals diagnosed with obesity, those with diabetes, and a cohort of healthy controls, all
of whom were thoroughly recruited from Mexico Children’s Hospital. Among the healthy
control group, 19 were males, and there was one female participant, with ages ranging
from 10 to 15 years, weights spanning from 40 to 83 kg, heights from 133 to 172.9 cm, and
BMIs from 21.16 to 34. The participants with obesity included 16 males and 4 females, aged
between 10 and 17 years, with weights ranging from 36 to 106.4 kg, heights spanning from
129 to 179 cm, and BMIs from 17.64 to 35.5. Meanwhile, diabetic participants consisted of
10 females aged 12 to 13 years, with weights ranging from 74.5 to 76.2 kg, heights from 159
to 159.7 cm, and BMIs from 29.5 to 30.4. It is crucial to underscore that due to an inadequate
volume of available diabetic data points, the analysis was restricted to data from 20 healthy
controls and 20 participants diagnosed with obesity, ensuring the robustness of the findings
while acknowledging data limitations. The participants underwent a 6-week intervention
program aimed at improving fitness and reducing weight. Gait analysis was conducted
at baseline, immediately after the intervention, and at 3- and 6-month follow-ups. Gait
analysis involved participants walking back and forth over a 30 m track for 6 min while
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wearing an inertial measurement unit sensor on their lower back. The gait data were
anonymised, and approval was obtained before analysis.

Assessment was based on the use of an inertial measurement movement sensor (IMU),
placed on the fourth lumbar vertebra located on the top left of the anatomical position of
the lumber spine, known as the body Centre of Mass (CoM). The sensor was designed to
be incredibly flexible, providing for mobility in many different planes including flexion,
extension, side bending, and rotation. Gait analysis was conducted for participants using a
standardised 6 m test, wherein an IMU was attached to the lower back to capture triaxial
accelerometer and gyroscope data at a frequency of 100 Hz. For individuals with DPN
(Diabetic Peripheral Neuropathy), the assessment took place at OCDEM (Oxford Centre
for Diabetes, Endocrinology, and Metabolism) in a dedicated obstacle-free corridor. The
methodology employed for deriving gait parameters has been comprehensively described
in previous studies. The spatiotemporal parameters obtained from the 6 min walking
test encompassed step time (measured in milliseconds), cadence (expressed in steps per
minute), stride length (in meters), and walking speed (in meters per second). Furthermore,
gait control parameters, which encompass measures of dynamic stability and gait variabil-
ity, were evaluated utilising various instruments such as accelerometers, force plates, or
motion capture technology. These assessments aimed to quantify fluctuations in temporal
aspects (e.g., stride time), spatial aspects (e.g., step length), and comprehensive whole-body
kinematics (e.g., segment angles). The parameters assessed included Beta (expressed in
degrees), SDa (measured in arbitrary units), SDb (also in arbitrary units), ratio (in a dimen-
sionless unit), and walk ratio (in millimeters per steps per minute). These parameters have
been identified as indicators of neuro motor control [16,17]. The dynamics of their walking
activity were monitored using the Polar Team tracking system [18].

3.2. Feature Extraction Method for Analysing Gait Data

The CARDIGAN dataset, which was collected utilising a 3-dimensional accelerometer,
gyroscope, and magnetometer IMU sensor, was analysed utilising DataGait Analysis
Software (DGAS) (v11.1, 2019). Developed as a standalone software analysis package by
the Movement Science Group at Oxford Brookes University using LabVIEW2011 (National
Instruments, Ireland), DGAS employs quaternion rotation matrices and double integration
to transpose the accelerations frame of the z-axis from the object to the global system,
thereby allowing for the measurement of translatory vertical CoM accelerations during
walking and the achievement of a relative change in position. As referenced in [18], upward
CoM measurements determine the global quality of human gait parameters. DGAS extracts
critical features of individuals’ gait for the purpose of classification. In this context, it
becomes feasible to differentiate between biologically distinct masculine and feminine gait
patterns, taking into account not only the spatiotemporal parameters that capture gait
dynamics at specific time points but also the potential impact of their respective body
shapes or dimensions on these distinctions. In gait analysis, a multitude of parameters
are employed to comprehensively understand the complexities of human locomotion.
Temporal parameters encompass fundamental measurements such as Step Time, which
quantifies the duration from the initial contact of one foot to the subsequent contact of the
opposite foot, and Stride Time, which denotes the time interval between successive initial
contacts of the same foot. Cadence adds another layer of insight, representing the number
of steps taken per unit of time. Meanwhile, spatial parameters offer dimensions to gait
assessment; Step Length measures the distance between successive initial contacts of the
same foot, and Stride Length extends this to cover the span from one foot’s initial contact
to the following foot’s contact. The rate of position change during gait, known as Velocity,
is calculated by the ratio of stride length to stride time. In addition, multi-dimensional
parameters introduce complexity: Duty Factor gauges the percentage of the gait cycle
during which each foot remains on the ground, while the Froude Number serves as a
dimensionless speed parameter reflecting the interplay of centripetal and gravitational
forces during walking. Finally, the Walk Ratio denotes the relationship between cadence
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and mean step length, offering insights into the neuromotor control of gait. Within the realm
of Phase Plot Analysis, distinctive parameters emerge: Beta Angle, a measure of stability,
is the angle of the primary gait phase plot axis relative to the vertical axis; SDa and SDb
represent standard deviations describing the distribution of phase plot points, with SDa
reflecting stability and SDb pertaining to rhythm; and Ratio (SDa/SDb) serves as a relative
rhythm stability indicator. The raw data from the accelerometer are processed using DGAS
software, which is founded on the inverted pendulum approach. This conversion results in
17 parameters that are used to assess the physical characteristics of each individual. These
17 gait features serve as inputs for perturbing the criticality analysis model, as represented
by Equations (4) and (7), respectively. Table 1 displays the list of the 17 gait parameters.

Table 1. Extracted Gait Features.

Gait Parameter Measurement Unit

Temporal

Step Time (ms)
Step Time (Left) (ms)

Step Time (Right) (ms)
Stride Time (ms)

Cadence (steps/min)

Spatial

Step Length (Left) (m)
Step Length (Right) (m)

Stride Length (m)
Velocity (m/s)

Multi-dimensional

Duty Factor Double Stance (%)
Duty Factor Single Stance (%)

Froude Number (au)
Walk Ratio (mm/steps/min)

Phase Plot Analysis

Beta Angle (Degree (◦))
SDa (au)
SDb (au)

Ratio = SDa/SDb (Dimensionless)

3.3. Gait Data Representation and Spatiotemporal Analysis Using Criticality Analysis

Criticality Analysis is a method used to represent complex multivariate data patterns
in a simplified form, typically in the form of a phase plot portrait or manifold. This method
involves analysing the data in multiple dimensions and identifying patterns or structures
that are most critical to understanding the underlying dynamics of the system. The ex-
tracted features by DGAS were used as perturbation inputs to the CA model represented
by Equations (4) and (7), respectively. This aided in gaining a deeper understanding of
the underlying mechanisms and dynamics of the system under study. The visual repre-
sentations of gait regulation and coordination between spatial and temporal domains are
depicted in Figures 2–7 through phase plot orbits. Well-regulated gait was characterised by
smooth and narrow orbits, whereas dysfunctional gait control was evident in irregular and
variable orbits. These phase plots served as a means to distinguish between healthy and
pathological gaits by evaluating the dynamics of spatiotemporal coordination. These phase
plots demonstrated clear differences between the gait patterns of the healthy control and
obesity groups over the 6-week period. Specifically, in the healthy control group, the phase
plots exhibited a consistent pattern characterised by smooth and regular oscillations with
steady amplitudes and frequencies. These findings were indicative of a well-maintained,
rhythmic gait pattern that demonstrated excellent coordination and balance. Notably,
the orbits in this group remained relatively narrow, which underscored the efficiency of
their biomechanics and the minimal occurrence of side-to-side body motion. In contrast,
the obesity group displayed phase plots that deviated from the healthy control group’s
pattern. These plots appeared more irregular and distorted, with variable amplitudes and
wider orbits, suggesting a compromised sense of balance and increased lateral swaying



Appl. Sci. 2023, 13, 13225 8 of 19

during gait. Furthermore, these phase plots exhibited more abrupt changes in direction,
indicating the need for sudden adjustments to maintain stability. These observations were
reflective of a slower and more effortful gait, likely resulting from the additional weight
burdening the joints and muscles in individuals with obesity. Moreover, both groups
exhibited a common trend of declining gait consistency over the 6-week observation period,
potentially attributable to the onset of fatigue effects. The healthy control group, despite
its initial robust gait pattern, displayed a gradual decrease in consistency, reflecting the
possibility of accumulating fatigue from repeated gait assessments. The obesity group,
already experiencing challenges in maintaining gait regularity, showed a similar decline in
consistency, accentuating the toll that prolonged observation sessions might take on their
gait patterns. This convergence in declining gait consistency underscores the importance
of considering potential fatigue factors in the interpretation of gait analysis results across
different population groups.

Examining the gait patterns across the 6-week period, in Figure 2 (Week 1), the healthy
group displayed a tight circular cluster, indicating consistent gait cycles. In contrast,
the obesity group showed more elongated, scattered orbits, reflecting a higher degree of
variability in gait. As we progressed to data depicted in Figure 3 (Week 2), the healthy group
continued to maintain a tight cluster, while the obesity group’s orbits, though still dispersed,
appeared somewhat more rounded, suggesting some improvement in gait coordination
compared to that of Week 1. Figure 4 (Week 3) portrayed the healthy group with a very
tight cluster, indicative of highly consistent gait, while the obesity group exhibited more
elongated orbits with flatter tops, indicating instability in their gait pattern. In Figure 5
(Week 4), the healthy control cluster became somewhat looser, possibly due to accumulating
fatigue. The obesity group’s orbits remained uneven but showed a slightly improved level
of coordination compared to Week 3. Figure 6 (Week 5) demonstrates the healthy control
group’s cluster becoming more dispersed, reflecting increasing gait variability. On the other
hand, the obesity group’s plots were highly scattered with jagged trajectories, suggesting a
worsening of gait control. Finally, in Figure 7 (Week 6), both groups display more dispersed
orbits than in previous weeks, indicating the potential impact of fatigue on gait consistency
in both groups. The obesity group’s orbits appeared slightly more rounded than in Week 5,
hinting at some recovery in coordination, although the overall trend indicated challenges
in maintaining consistent gait patterns.

Figure 2. Comparison of phase space plots of walk patterns for healthy control and obesity groups in
the clinical gait experiment conducted in w1 is presented. Healthy control walk patterns are shown
on the left while obesity walk patterns are shown on the right.

In this paper, we utilised a kernel SVM classifier to distinguish between the obesity
and healthy groups based on phase plot data. The choice of kernel SVM is particularly
well suited for this analysis due to the inherently nonlinear and complex nature of the data.
Phase plot data, representing dynamic patterns of physiological processes, often exhibit
intricate and nonlinear relationships. Traditional linear classifiers may struggle to capture
the patterns present in such data. However, the kernel SVM is designed to address this
challenge by mapping the data into a higher-dimensional space, where complex patterns
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become more separable. It leverages a diverse set of kernel functions, including radial
basis function (RBF), to effectively transform the data into a format where it can distinguish
between the obese and healthy groups. This approach enables the identification of hidden
patterns, making it an ideal choice for this study, and ensures that the classification approach
is capable of handling the inherent nonlinearity in the phase plot data, facilitating the
reliable and accurate differentiation of the two groups. Figures 16–18 demonstrate the
decision boundary generated by kernel SVM, highlighting its effectiveness in distinguishing
between obese and healthy control groups using phase plot data.

Figure 3. Comparison of phase space plots of walk patterns for healthy control and obesity groups in
the clinical gait experiment conducted in w2 is presented. Healthy control walk patterns are shown
on the left while obesity walk patterns are shown on the right.

Figure 4. Comparison of phase space plots of walk patterns for healthy control and obesity groups in
the clinical gait experiment conducted in w3 is presented. Healthy control walk patterns are shown
on the left while obesity walk patterns are shown on the right.

Figure 5. Comparison of phase space plots of walk patterns for healthy control and obesity groups in
the clinical gait experiment conducted in w4 is presented. Healthy control walk patterns are shown
on the left while obesity walk patterns are shown on the right.
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Figure 6. Comparison of phase space plots of walk patterns for healthy control and obesity groups in
the clinical gait experiment conducted in w5 is presented. Healthy control walk patterns are shown
on the left while obesity walk patterns are shown on the right.

Figure 7. Comparison of phase space plots of walk patterns for healthy control and obesity groups in
the clinical gait experiment conducted in w6 is presented. Healthy control walk patterns are shown
on the left while obesity walk patterns are shown on the right.

Figures 8 and 9 serve as invaluable tools for assessing the dynamic nature of gait
progression throughout the 6-week study period. These graphical representations offered a
comprehensive view of the data by plotting the peak values extracted from each phase plot
orbit as discrete data points for every week. Consequently, these visualisations effectively
generated trajectories that unveiled nuanced alterations in gait patterns over time. Fun-
damentally, each data point within these trajectories captured the maximum step length
achieved during a specific gait cycle, encapsulating the essence of gait performance. By
plotting these peak values across the 6-week observation window, an intuitive visual per-
spective emerged on how maximal step length evolved across multiple visits. Furthermore,
these peak values functioned as numerical metrics that concisely represented the range of
variability, which is an informative measure quantifying the degree of variation in maximal
step length from one week to the next. To provide a rigorous statistical summary of this
variation over time, standard deviation (SD) of the peak values for each participant was cal-
culated. This SD became a pivotal indicator, with a higher value signifying a greater degree
of inconsistency in the maximal step length achieved across different weeks. Consequently,
comparing SD values before and after the intervention yielded a quantitative assessment of
whether gait improved (resulting in a lower SD) or deteriorated (resulting in a higher SD).
This analytical approach enabled the precise quantification of the impact of the intervention
on gait stability and consistency, offering valuable insights into the effectiveness of the
intervention. In Figure 8, which pertains to healthy controls, the majority of trajectories
exhibited minimal fluctuation, remaining relatively level throughout the study duration.
This observation signified consistent gait patterns from week to week, characterised by
limited variation in peak values. Conversely, in Figure 9, representing the obesity group, the
trajectories displayed greater irregularity, featuring discernible peaks and troughs across
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the weeks. This pattern indicated increased instability in gait parameters, with significant
variations in the peak values across the different visits. As an illustrative example, partici-
pant P14 was considered. In Figure 8, P14’s trajectory remained consistently around 0.55,
demonstrating a steady gait with little variation over time. However, in Figure 9, P14’s
trajectory exhibited a drop from approximately 0.7 to 0.4 by Week 3 before subsequently
rebounding. This trajectory pattern suggested that P14’s gait became more irregular during
the course of the study but later exhibited improvement. Complementing these trajectories,
the standard deviation bars visually represented the extent of variability across the 6 weeks.
In Figure 8, P14’s standard deviation bars were notably small, confirming minimal fluctua-
tion and consistent gait during the pre-intervention period. In contrast, Figure 9 portrayed
larger standard deviation bars, indicating increased inconsistency in gait patterns when
P14 was in an obese state. Overall, these quantitative comparisons between Figures 8 and 9
provided valuable insights into the differences in gait stability and variability between
individuals with obesity and healthy controls. These trajectories, coupled with the standard
deviation bars, facilitated the rigorous tracking and assessment of gait changes for each
participant throughout the 6-week study period.

Figure 8. The advancement of normal walking patterns for each person over a 6-week period
is shown.

Figure 9. Tracking the improvement in gait for managing obesity for each person over a 6-week
period is shown.

4. Experiment Results

In this section, we present the findings of our experimental investigation, which
encompasses the performance of the SVM classifier in identifying gait patterns for both
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healthy control and obese groups. Additionally, we examine the impact of various Kernel
SVM model parameters on classification performance. A comprehensive analysis of the
generalisation performance of the SVM classifier is also presented, including the Receiver
Operating Characteristic (ROC) curve, the area under the ROC curve, and the SVM decision
classification boundary. The results demonstrate the potential of using SVM in combination
with a controlled CA model for accurate detection of gait patterns associated with healthy
controls and individuals with obesity.

4.1. Receiver Operating Characteristic (ROC) Curve

The Receiver Operating Characteristic (ROC) curve is a graphical representation of
the performance of a binary classifier system as the discrimination threshold is varied [19].
In the context of SVM, the ROC curve is used to evaluate the performance of the SVM
classifier in classifying data samples into two different classes. The ROC curve plots the
true positive rate (TPR) (sensitivity) against the false positive rate (FPR) (≈1 − TNR) at
various threshold settings. Figures 10–12 illustrate the ROC curves for the best pair of σ
and C values that satisfy the highest accuracy during the entire trial period.

Figure 10. The relationship between True Positive Rate (Sensitivity) and False Positive Rate
(1-Specificity) at various threshold levels, as determined by the kernel function of the SVM, is
displayed through the ROC curves of w1 and w2.

Figure 11. The relationship between True Positive Rate (Sensitivity) and False Positive Rate
(1-Specificity) at various threshold levels, as determined by the kernel function of the SVM, is
displayed through the ROC curves of w3 and w4.
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Figure 12. The relationship between True Positive Rate (Sensitivity) and False Positive Rate
(1-Specificity) at various threshold levels, as determined by the kernel function of the SVM, is
displayed through the ROC curves of w5 and w6.

The ROC plots (Figures 10–12) show that, in the context of SVM, parameter C controls
the trade-off between maximising the margin and minimising the misclassification error.
When the value of C is smaller, such as C = 0.1, the margin becomes wider, but there are
more instances of misclassifications. Conversely, a larger value of C, such as C = 10, leads
to a narrower margin, but with a reduced number of misclassifications. Parameter σ is used
to control the width of the Kernel Gaussian function that is used to map the input data
into a higher-dimensional space, where a linear boundary can be found. A larger value of
σ results in a wider Gaussian function, which leads to a softer decision boundary and a
higher bias, while a smaller value of σ results in a narrower Gaussian function, which leads
to a harder decision boundary and a higher variance.

When σ is small, the decision boundary is more sensitive to input data, which can lead
to overfitting. On the other hand, when σ is large, the decision boundary is less sensitive
to input data, which can lead to underfitting. Therefore, the value of σ has an impact on
generalisation performance of the SVM.

A good value for C and σ is the one that balances the trade-off of bias and variance,
that is, a good balance between overfitting and underfitting.

The ROC curves shown in Figures 10–12 perform well with σ = 0.1 and 1 for various
values of C of the SVM, which is likely because the classifier is able to find a good balance
between overfitting and underfitting by adjusting the value of C and σ which in turn results
in good performance.

4.2. The Area under the Curve (AUC)

The area under the ROC curve is a measure of the performance of a binary classi-
fier [20]. In the context of SVM, the AUC represents the ability of the classifier to distinguish
between positive and negative classes. A higher AUC value indicates that the classifier is
able to correctly classify more instances of the positive class as positive, while also correctly
classifying more instances of the negative class as negative. An AUC of 1.0 represents a
perfect classifier, while an AUC of 0.5 represents a classifier that performs no better than
random guessing.

Figures 13–15 show how the performance of the SVM model changes as the regulari-
sation parameter strength C is varied. Regularisation parameter C controls the trade-off
between maximising the margin (the distance between the decision boundary and the clos-
est training instances) and minimising the classification error. When C is small, the model
focuses more on maximising the margin, which can lead to a simpler decision boundary but
also a higher classification error. As C is increased, the model focuses more on minimising
the classification error, which can lead to a more complex decision boundary but also lower
classification error. From Figures 13–15, if the AUC increases as C increases, it means that
the model’s performance is improving as regularisation strength C increases. This may
suggest that the model is underfitting the data when C is small and that increasing the
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regularisation strength helps to improve the model’s performance. On the other hand, if
the AUC decreases as C increases, it means that the model’s performance worsens as the
regularisation strength increases. This may suggest that the model is overfitting the data
when C is small and that increasing regularisation strength C causes the model to become
too simplistic and lose important information from the data.

The optimal value of C is where the AUC is the highest; this is the sweet spot where
the model is able to balance the trade-off between maximising the margin and minimising
the classification error in a way that leads to the best classification performance.

Figure 13. The relationship between the AROC and regularisation parameter C for w1 and w2

is presented.

Figure 14. The relationship between the AROC and regularisation parameter C for w3 and w4

is presented.

Figure 15. The relationship between the AROC and regularisation parameter C for w5 and w6

is presented.
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4.3. The Classification Decision Boundary of SVM

The decision boundary of an SVM classifier is determined by the support vectors,
which are the data points closest to the boundary. Parameters C and σ, also known as
regularisation and kernel parameters, respectively, control the width of the margin and
the shape of the decision boundary. For instance, when σ is set to 0.1 and C is set to 1, the
decision boundary becomes complex and more influenced by the individual data points.
The width of the margin becomes relatively small and the classifier more sensitive to the
presence of outliers, as the algorithm tries to minimise misclassification errors. Moreover,
when σ is set to 0.1 and C is set to 10, the decision boundary is even more complex as C has
a greater influence on the decision boundary. The width of the margin is even smaller and
the classifier is even more sensitive to outliers. Furthermore, when σ is set to 0.1 and C is
set to 0.1, the decision boundary is relatively simple as C has a much smaller influence on
the decision boundary. The width of the margin is relatively large and the classifier is less
sensitive to outliers.

The classification boundaries of the SVM model are depicted in Figures 16–18 using
the best classification parameters, enabling the model to accurately categorise participants
into the appropriate group.

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Figure 16. The boundary that separates the healthy control walk patterns from the obesity patterns in
an SVM model, with RCC control parameters fp = 1, fg = 1, xp =−1, xg =−1, µ f = 2, and σ = 0.1
and C = 0.1 for w1 and σ = 0.1 and C = 1 for w2, is shown.

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Figure 17. The boundary that separates the healthy control walk patterns from the obesity patterns in
an SVM model, with RCC control parameters fp = 1, fg = 1, xp =−1, xg =−1, µ f = 2, and σ = 0.1
and C = 1 for w3 and w4, is shown.

The overall performance of the proposed SVM model is evaluated in Figure 19, where
the best classification parameters (σ = 0.1 and C = 0.1) result in the optimal generalisation
performance. The 6-week evaluation of the SVM shows fluctuating accuracy in classifying
participants into the healthy control and obesity groups. A high accuracy reflects consistent
participant characteristics, facilitating accurate classification by the SVM, whereas a low
accuracy indicates high variability in participant characteristics, making classification
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challenging. In individuals with obesity, the influence of various factors, including walk
speed, affects the results depicted in Figure 19. The figure demonstrates that the highest
accuracy is observed during the initial week, but experiences a significant decline in the
third week. Subsequently, there is a slight improvement in the fourth week, followed
by further declines in the fifth and sixth weeks. The fluctuation in the accuracy of the
SVM model during the 6-week period, despite the uniform diet and exercise regimen
followed by the participants, could be attributed to various reasons such as variations in
compliance levels, where some participants may have been more diligent in adhering to
the regimen than others, leading to different classifications into healthy control or obesity
groups. Other factors include individual differences such as genetics, medical history, and
personal habits, measurement inaccuracies, and changes in any of the systems (metabolic,
neuromuscular, cardiovascular) altering participant characteristics over time, even when
following the prescribed diet and exercise regimen. Participants’ stress levels or health
status could impact their classification as it could alter variables affecting their gait and
hence classification into healthy control or obesity groups.

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Healthy Control Group

Obesity Group

Misclassified from Healthy Control Group

Misclassified from Obesity Group

Figure 18. The SVM decision boundary that separates the healthy control walk patterns from the
obesity patterns in an SVM model, with RCC control parameters fp = 1, fg = 1, xp =−1, xg =−1,
µ f = 2, and σ = 0.1 and C = 10 for w5 and σ = 0.1 and C = 1 for w6, is shown.

Figure 19. The classification performance of SVM over a 6-week (w1–w6) period is presented.

5. Discussion

The primary aim of the comprehensive study was to assess the effectiveness of obesity
treatment interventions through the application of a unique CA approach. Simultaneously,
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the investigation delved into the intricate dynamics of gait patterns, particularly within the
context of obesity. This multifaceted exploration sought to provide a deeper understanding
of gait patterns and evaluate the potential of the CA methodology combined with SVM
classification in gait analysis within the context of obesity treatment assessment. This
multidimensional exploration sought to not only quantify gait variability, but also ascertain
the robustness of our CA-SVM methodology for gait classification. Throughout the 6-week
study period, SVM classification accuracy exhibited significant fluctuations, with the
highest accuracy recorded in the initial week, followed by substantial declines in Weeks
3 through 6. These fluctuations highlight the dynamic nature of SVM model’s ability to
categorise gait patterns over time. Notably, these variations are not arbitrary but reflect
shifts in participant characteristics that significantly impact classification outcomes.

All participants adhered to a uniform diet and exercise regimen during the study,
making it evident that individual factors beyond the protocol influenced gait patterns
and SVM classifications each week. Factors such as compliance, genetics, medical history,
stress levels, or changes in metabolic/neuromuscular systems likely played a role. The
SVM accuracy metric robustly quantifies the influence of these individual characteristics
on classification performance. ROC curves and AUC values provide insights into the
model’s proficiency in distinguishing between healthy and obese gait patterns. Optimal
model performance occurred under specific parameter settings, σ = 0.1 and C = 1 or 10,
where AUC values were maximised. These results confirm the exceptional generalisation
capabilities of the SVM model when applied to unseen data and underscore the effectiveness
of our CA-SVM methodology in extracting relevant features from gait data.

Visual representations, in the form of phase plots, vividly illustrate the distinctions
between healthy and obese gait patterns achieved through the CA method. The phase plots
reveal that obese gait patterns are characterised by slower and more labored movements,
while healthy gait patterns are smoother and more fluid. These differences align with ex-
pectations, given the increased joint stress and stiffness associated with obesity. Phase plots
affirm that CA effectively distinguishes between the two groups by revealing interpretable
spatio-temporal gait characteristics.

The spatio-temporal analysis quantifying variability in gait progression over a
6-week period offers valuable insights. Notably, wider variability is observed among
obese participants compared to their healthy counterparts. This underscores CA’s capacity
to elucidate subtle yet evolving patterns through phase plot analysis and its competence in
quantifying gait variability. Lastly, classification accuracy results, ranging from 78.2% to
90%, strongly validate the efficacy of the CA method in dimensionality reduction and data
representation, enhancing classification performance. CA successfully transforms complex
gait patterns into lower-dimensional trajectories discernible by the SVM algorithm, leading
to high accuracy. This demonstrates CA’s proficiency in extracting essential features and
capturing nonlinear relationships, enabling precise classification and establishing it as an
effective data representation strategy.

6. Conclusions

The Criticality Analysis method for nonlinear data representation can be effectively
used to represent gait data and highlight medical conditions. The variability and detection
of changes over time highlight the ability of the method to determine changes in gait
in response to clinical intervention. The potential to assess clinical disorders using only
gait is an exciting development especially for long-term or complex disorders associated
with metabolic stress. The combination of nonlinear data representation with supervised
machine learning methods can significantly improve the assessment of a patient’s sta-
tus and improve the likelihood of positive outcomes by enabling objective assessment
during treatment.
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