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Abstract

This is a thesis about tipping points and early warning signals. The tipping points investigated
are related to various components of the climate-carbon system. In contrast, the work on
early warning signals has more generic applications, however in this thesis they are analysed
in the context of the climate-carbon system. The thesis begins with an introduction to the
climate-carbon system as well as a discussion of tipping points in the Earth system. Then a more
mathematical summary of tipping points and early warning signals is given. An investigation
into the ‘compost bomb’ is undertaken, in which the spatial structure of soils is accounted
for. It is found that a hot summer could cause a compost bomb. The effect of biogeochemical
heating on the stability of the global carbon cycle is investigated and it is found to play only
a small role. The potential for instabilities in the climate-carbon cycle is further investigated
when the dynamic behaviour of the ocean carbon cycle is accounted for. It is found that some
CMIP6 models may be close to having an unstable carbon cycle. Spatial early warning signals
are investigated in the context of more rapidly forced systems. It is found that spatial early
warning signals perform better when the system is rapidly forced compared with time series
based early warning signals. The typical assumptions about white noise made when using
early warning signals are also studied. It is found that time correlated noise may mask the early
warning signal. It is shown that a spectral analysis can avoid this problem.
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He understood for the first time that the
world is not dumb at all, but merely
waiting for someone to speak to it in a
language it understands.

Jonathan Strange & Mr Norrell
Susanna Clarke
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Preface

I arrived in Exeter to start work on my PhD in September 2019, intending to learn
something about tipping points. I began by looking at the compost bomb instability —
a somewhat esoteric rate-induced tipping point. Just six months later, the government

declared a national lockdown and I spent the next year or so working from home. It was then
that I became interested in early warning signals, at least in part because they are easy to research
from a home office. As a result, my research has two main strands: one that investigates the
compost bomb and climate-carbon system instability more broadly and another that looks at
early warning signals.

Chapters 1 and 2 serve as an introduction to the thesis. In chapter 1 I outline the climate-
carbon system and discuss some potential tipping points in the Earth system. In chapter 2 I
develop some of the theory about tipping points and early warning signals. Much of this is
quite general but I draw on examples from the Earth system.

Chapter 3 is an investigation into the compost bomb. I did some of that work during the
summer of 2020, when Siberia was experiencing a spate of wildfires and stories of ‘zombie
fires’ circulated. This is why the potential for a hot summer to trigger compost bombs was a
focus of the chapter.

In chapter 4 I considered the compost bomb feedback at the global scale and its effect on
the carbon cycle. The fact that there was the potential for instability combined with the need
to update some older research motivated a more thorough investigation of the stability of the
climate-carbon system. This was done in chapter 5.

Chapters 6 and 7 contain the work on early warning signals. My desire to draw out the
analogies between Earth system tipping points and the established physics of phase transitions
led to work on spatial early warning signals, which can be found in chapter 6. I became
concerned that many applications of early warning signals were really detecting changes in
what drives variability in the system, rather than the stability of the system itself. I investigated
this in chapter 7.

In the final chapter, chapter 8 I summarise my work and suggest some future research
directions.

So far two of these chapters, chapters 3 and 7, have been published as papers. They appear
in this thesis mostly unchanged aside from a few typographical alterations and the inclusion of
supplementary material into the main text. The code used in these papers can be found online.
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For chapter 3 it is located at www.github.com/josephjclarke/ContinuumCompostBomb and
for chapter 7 at www.github.com/josephjclarke/BeyondWhiteNoiseEWS.

For historical reasons Exeter climate scientists are mostly based in the department of
mathematics. This has generally been an edifying experience and has influenced the direction
of my PhD in all sorts of ways. One of these ways is that I use log to mean the natural logarithm,
unless otherwise stated. I am however a physicist at heart and the rest of my notational choices
reflect that.

Joe Clarke
Exeter

August 2023
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Chapter 1

Tipping Points and the
Climate-Carbon System

1.1 Tipping Points

Take a pan of water and heat it up. As its temperature rises, some of the water’s
properties may change. For example, its thermal conductivity increases. However,
the water still remains liquid and these changes will vary continuously with the water

temperature. However, if the water is heated beyond a critical temperature of 100 ◦C something
more dramatic happens and the water boils away. The properties of the resulting steam are
quite different to the original water — a qualitative change has occurred.

It is this type of qualitative transition that this thesis is concerned with. Whilst the boiling
of water is a phase transition (Goldenfeld 2018), I shall use the broader terminology of tipping
points (Lenton et al. 2008) or critical transitions (Rahmstorf 1995) or abrupt changes (Alley
et al. 2003) to describe these phenomena.

1.1.1 Definitions
Although it can be a vague term, the concept of a small perturbation leading to a large change
generally forms a part of most formal definitions of tipping points. For example, Lenton et al.
2008 and Armstrong McKay et al. 2022 define the occurrence of a tipping point as when there
is a control parameter, ρ, with a critical value ρcrit, above which any significant variation, δρ > 0,
leads to a qualitative change F̂ of a system feature F , after some observation time T > 0. They
write this mathematically as

|F ( ρ ≥ ρcrit + δρ|T )− F ( ρcrit|T )|≥ F̂ > 0, (1.1)

where F ( ρ|T ) gives the state of F with control parameter ρ at time T . The inclusion of an
observation time allows for the fact that changes in the system may not be apparent until
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1.1. Tipping Points

after the critical value has been exceeded. The IPCC (IPCC 2021) defines a tipping point as
‘A critical threshold beyond which a system reorganizes, often abruptly and/or irreversibly’.
Others, such as Wang et al. 2023 and Kopp et al. 2016, insist that tipping points should occur
on fast time scales.

Each of these definitions are deficient in their own way. The IPCC definition views tipping
in terms of thresholds which excludes certain types of tipping (see section 2.1). The definition
in Lenton et al. 2008 may be too mathematical for widespread understanding and that of Wang
et al. 2023 suffers from the problem that many timescales in the Earth system are slow.

The multiple different definitions in the literature reflect the vagueness of the notion of
tipping points. In a sense, this is an advantage as it encourages research across a wide variety of
phenomena. With this in mind, I will define a tipping point in a way that is closest in style to
the IPCC as something that a system undergoes when it experiences a qualitative change in its
properties.

1.1.2 Examples of Tipping

Nonlinear changes have long fascinated scientists. Physicists have investigated phase changes
not just in terms of the boiling and freezing of substances but also in magnetic materials (Ising
1925; Onsager 1944), superconductivity (Ginzburg and Landau 1965) and percolation theory
(Flory 1941). Each of these are different processes, but it is a remarkable fact that near the
phase transition different systems can be dynamically very similar, a phenomenon known as
universality (Wilson 1983). This idea — that different examples of tipping points across totally
different systems can share features — will be a theme commonly returned to.

Tipping points are also important in biology. In medicine, tipping point theory has been
used to help understand asthma attacks (Donovan and Brand 2022) and sleeping dynamics
(Skeldon, Dijk and Derks 2014). In an influential article, (May 1976), the ecologist Robert
May noted that even very simple nonlinear models have rich dynamics and are capable of
experiencing tipping points (although he did not use that term). Holling 1973 introduced the
idea of resilience which is related to the ability of a system to resist tipping. Tipping points
have been found in a range of ecosystems (Scheffer et al. 2001; Dakos et al. 2019). The transition
to turbid state in lakes (Scheffer et al. 1993) and the collapse of plant-pollinator communities
(Lever et al. 2014) are both examples of ecological tipping points. However other studies
(Hillebrand et al. 2020) have challenged how widespread tipping effects are.

Notions of multiple equilibria and the ability to transition between them has been used to
explain patterns seen in nature. This was introduced by Turing 1952 to explain patterns found
in certain plants and animals. Since then, it has been used to explain patterns in ecosystems
(Rietkerk and Koppel 2008).
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Chapter 1. Tipping Points and the Climate-Carbon System

1.2 The Climate-Carbon System
Whilst some of this thesis is applicable to many systems, the focus of this work has been on
applications to the Earth system. Therefore in this section I will give an outline of how the
climate-carbon system operates.

The fundamental idea in climate science is that of energy balance (North, Cahalan and
Coakley 1981). The Earth receives radiation from the Sun and then re-radiates it to space.
In order to reach a steady state, the energy absorbed from the Sun must equal the radiation
emitted from the Earth (Peixoto and Oort 1992). It is the need for energy balance, combined
with the latitudinally dependent absorption and emission of radiation, that ultimately drives
all weather and climate (Lorenz 1967).

The solar constant, S0 ≈ 1360 W m−2 (Johnson 1954) is the amount of radiation received
by the Earth per unit area. A fraction of this, called the albedo, α ≈ 0.3, is reflected back
to space (Goode et al. 2021). The rest is absorbed, mostly by the Earth’s surface (Trenberth,
Fasullo and Kiehl 2009).

Let the amount of radiation the Earth emits per unit area be F . The Earth, with radius R,
absorbs energy over a disk, and re-radiates over its entire surface. By energy balance this leads to

πR2S0(1− α) = 4πR2F (1.2)

or
F =

1
4
S0 (1− α) . (1.3)

Assuming the Earth radiates as a black body with temperature T , then F = σT 4 where σ is the
Stefan-Boltzmann constant so that T = 255 K. This is not far from the true temperature of
about 287 K (Jones et al. 1999). This black body temperature is however the effective emission
temperature the Earth has to radiate at to maintain energy balance. Due to the presence of
atmospheric greenhouse gases, which absorb infrared radiation, principally CO2 and H2O,
the radiation that escapes to space is emitted from higher in the atmosphere that it would be in
their absence. An effective emission height can be defined which radiates with the effective
emission temperature and then because the atmospheric temperature increases towards the
Earth’s surface in the troposphere this makes the surface warmer than it would otherwise be.
This is known as the Greenhouse Effect (Pierrehumbert 2010).

1.2.1 Climate Response to Radiative Forcing
When greenhouse gases are emitted into the atmosphere they raise the effective emission height
to colder regions of the atmosphere which decreases the amount of outgoing radiation. As less
radiation is now emitted to space the Earth’s climate responds. It does this by increasing the
Earth’s surface temperature until it reaches a new equilibrium (Manabe and Wetherald 1967;
Pierrehumbert 2010).
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1.2. The Climate-Carbon System

The amount that a greenhouse gas decreases the outgoing radiation to space by is known
as its radiative forcing. Let T be the global mean temperature and assume that N , the net
radiation received by the Earth, depends on T . After emitting a greenhouse gas the change in
the top of atmosphere energy flux can be split (Gregory 2004) into a forcing term, ∆Q, and
feedback term, λ∆T

∆N = ∆Q − λ∆T. (1.4)

The climate responds to the forcing by changing its temperature so that ∆N is zero at
equilibrium. Hence the change in global mean temperatures is

∆T =
∆Q
λ
. (1.5)

The quantity

λ = −∂N
∂T

(1.6)

known as the climate feedback determines the amount of warming experienced for a given
radiative forcing. This quantity is measured in units of W m−2 K−1 but it has become common
to discuss λ in terms of a given radiative forcing, Q2×, the radiative forcing due to doubling
the concentration of CO2 in the atmosphere, giving rise to

ECS =
Q2×

λ
(1.7)

known as Equilibrium Climate Sensitivity which is measured in units of temperature (Charney
et al. 1979).

Implicit in this definition is the idea thatQ2× is well defined. It is an empirical fact that over
a range of concentrations the radiative forcing of CO2 varies to a good approximation with the
logarithm of its concentration (Pierrehumbert 2010), and so the notion of a radiative forcing
due to doubling is well defined. It is also usually assumed that ECS is a constant independent
of background climate state. Whilst this appears to be a good approximation, some scientists
have investigated its state dependence (Caballero and Huber 2013; Ashwin and Heydt 2019;
Bloch-Johnson et al. 2021).

The value of ECS is uncertain. State of the art climate models (CMIP6) do not agree on
its value, and give a range of 1.8 K to 5.6 K (Zelinka et al. 2020), which represents an increase
in uncertainty from CMIP5, although some researchers have suggested that ECS could be
even larger (Stainforth et al. 2005). However, these estimates should be combined with other
observational estimates, such as Cox, Huntingford and Williamson 2018, as well as paleoclimate
records, like Hargreaves et al. 2012, as done by Sherwood et al. 2020. This analysis of multiple
lines of evidence lead the IPCC to conclude that the best estimate of ECS is 3.0 K with a likely
range of 2.5 K to 4.0 K (IPCC 2021).
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1.2.2 Carbon Cycle

Of all the CO2 emitted by humans by burning fossil fuels, only around half remains in the
atmosphere (Friedlingstein et al. 2022). This is because of the terrestrial and oceanic sinks
of carbon. The response of the carbon cycle can be partitioned into a carbon-concentration
feedback and a carbon-climate feedback (Friedlingstein et al. 2006). The carbon-concentration
feedback gives the change in the carbon cycle due to increases in CO2 before temperature
changes are accounted for. The carbon-climate feedback gives the changes in carbon stores
due to increases in temperature. In CMIP6 (Arora et al. 2020) the carbon-concentration
feedback is 0.97± 0.40 Pg C ppm−1 for the land and 0.79± 0.07 Pg C ppm−1 for the ocean.
The carbon-climate feedback is−45.1±50.6 Pg C K−1 for the land and−17.2±5.0 Pg C K−1

for the ocean. This means that increases in CO2 tend to increase carbon on the land and in
the ocean. However increases in global temperature, for example due to elevated CO2, tend to
liberate carbon from the land and oceans. It should be noted that the uncertainties are much
higher over land, which reflects the different processes contributing to the land and ocean
carbon cycles.

Terrestrial Carbon Cycle

The terrestrial part of the carbon cycle is controlled by the biosphere (IPCC 2021). Carbon
enters the biosphere through photosynthesis, the amount of which is known as gross primary
productivity or GPP, and leaves via respiration (Jenkinson, Adams and Wild 1991). Respiration
can be subdivided into autotrophic and heterotrophic. These relate to respiration performed by
plants (which produce their own food, hence the name autotroph) and non-plant organisms
respectively. Heterotrophic respiration is primarily performed by soil microbial communities
which decompose the organic matter deposited into the soil from plants (Singh and Gupta
1977).

This means that the net carbon flux into the biosphere due to plants called Net Primary
Productivity (NPP) is given by the difference between photosynthesis and autotrophic res-
piration. In the absence of other carbon removals, the overall carbon flux between the land
and the atmosphere is therefore the difference between NPP and heterotrophic respiration,
known as Net Ecosystem Production (NEP). Accounting for these removals such as fire and
deforestation leads to Net Biome Productivity (NBP) which is the total flux of carbon into
the land (Lovett, Cole and Pace 2006; Fernández-Martínez et al. 2023).

This carbon is stored in vegetation and in soils. There is around 1500 Pg C in the soil, with
about 560 Pg C in vegetation (Crowther et al. 2019). There are uncertainties associated with
these numbers, with typical estimates for the soil carbon ranging from 1400 Pg C to 1600 Pg C
(Batjes 2016) and estimates of vegetation carbon ranging from 450 Pg C to 650 Pg C (Ciais
et al. 2014).

The significant stores of vegetation carbon are the tropical rainforests (Malhi et al. 2006),
whereas much of the soil carbon can be found at high latitudes (Varney et al. 2020). Permafrost,
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soil which is below 0 ◦C all year round, represents a major store of this carbon (Hugelius et al.
2014). As it is frozen, little decomposition occurs there. However as the Earth warms and the
permafrost thaws it could represent a carbon flux of some concern (Schuur et al. 2015).

There are important feedbacks on the land carbon cycle. Increasing the amount of CO2 in
the atmosphere increases the amount of carbon that diffuses through a plant’s stomata where
it can be used in photosynthesis (Farquhar, Caemmerer and Berry 1980). Furthermore, plants
will partially close their stomata at higher CO2 levels (De Kauwe et al. 2013) which reduces the
water lost through transpiration. This can be quantified in terms of the water use efficiency
(the ratio of carbon gained to water lost) (Drake, Gonzàlez-Meler and Long 1997). This can
increase the growing season in drier ecosystems (Frank et al. 2015). These effects mean that at
higher CO2 levels NPP is expected to increase.

This CO2 fertilisation effect has been detected in models (Friedlingstein et al. 2006; Wenzel
et al. 2016; Arora et al. 2020) and observationally (Ainsworth and Alistair Rogers 2007; Kolby
Smith et al. 2016). It acts as a negative feedback on global warming as it tends to decrease
the amount of CO2 in the atmosphere by increasing photosynthesis. This feedback is expec-
ted to weaken with increased CO2 as fewer plants become limited by CO2. There is some
observational evidence of this occurring (Wang et al. 2020).

The decomposition of organic matter through heterotrophic respiration is a biochemical
process that depends on temperature. In particular, increasing the temperature of the decom-
position reaction will increase the rate of this reaction. Hence as CO2 has a warming effect
the amount of respiration will increase (Jenkinson, Adams and Wild 1991). This means there
will be a larger flux of carbon to the atmosphere and so this is a positive feedback, which has
been termed the Jenkinson effect (Luke and Cox 2010). Many biological reactions are assumed
to depend exponentially on temperature, increasing in rate by a factor Q10 for every 10 K of
warming. It is generally thought that Q10 ≈ 2 (Jones 2001).

Ocean Carbon Cycle

The ocean carbon cycle operates by different mechanisms to the terrestrial carbon cycle. Some
carbon enters through run-off from the land but most of the carbon flux to the ocean comes
from diffusion from the atmosphere to the ocean (DeVries 2022). This diffusion depends
on the solubility of CO2 in water and the difference in partial pressure of CO2 between the
atmosphere and the ocean (Wanninkhof 1992). The CO2 reacts with seawater to form two
other species of dissolved inorganic carbon, or DIC: HCO3 – and CO32 – (Dickson and
Millero 1987).

The reaction between CO2 and seawater is

CO2 + H2O −−→←−− H2CO3 −−→←−− H+ + HCO3− −−→←−− 2 H+ + CO32−, (1.8)

hence adding CO2 to the ocean will increase the concentration of hydrogen ions, decreasing
the pH. This is known as ocean acidification (Doney et al. 2009).
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Strong vertical gradients exist in DIC in the ocean, with more DIC at depth due to increased
solubility at depth and the biological pump (Volk and Hoffert 2013). Organisms convert DIC
into biomass through photosynthesis near the surface where there is enough light. Most of
this is respired near the surface but due to sinking, mixing and the migration of organisms
some biomass will make its way to the deeper ocean where it is released as DIC into the deep
ocean. This transport of DIC away from the surface increases the capacity of the ocean to
absorb carbon (Sarmiento and Toggweiler 1984).

The ocean carbon cycle will be affected by climate change. Most of these changes are
related to the physical and chemical components of the ocean carbon cycle rather than the
biological components (IPCC 2021). As a result there is much less uncertainty about future
changes in the ocean carbon cycle relative to the terrestrial carbon cycle (Arora et al. 2020).

The reactions in equation (1.8) can be combined to give

CO2 + H2O + CO32− −−→←−− 2 HCO3−. (1.9)

Therefore as more CO2 is added to the ocean, the amount of CO32 – will decrease which
leads to more CO2 remaining in its dissolved form which reduces the uptake of carbon (Archer
2010; Egleston, Sabine and Morel 2010). Furthermore the solubility of CO2 decreases with
temperature so warming thus reduces the strength of the ocean sink (Weiss 1974). Additionally
the ocean is expected to become more stratified due to climate change which decreases vertical
mixing which again reduces the uptake of CO2 (DeVries, Holzer and Primeau 2017).

1.3 Tipping Points in the Earth System
In this section I will give some background on Earth system tipping points, including outlining
some mechanisms. I will focus on a few key sub subsystems. I will then discuss some of the
evidence for tipping behaviour in the Earth’s past.

The most recent IPCC report (IPCC 2021) finds it ‘unequivocal that human influence
has warmed the atmosphere, ocean and land’. Humans have done this through the release of
greenhouse gases, most importantly carbon dioxide (CO2), and also through land use change.
This has led to observable changes in the Earth’s climate. Most obvious is the changes in global
mean surface temperature, with a most likely temperature increase of 1.07 K relative to the
period 1850 to 1900 (IPCC 2021) in the global mean but with clear regional differences (Morice
et al. 2021) such as Arctic amplification as well as more warming over land than over ocean.
Other effects include rise of around 0.2 m in sea levels (Frederikse et al. 2020) and increase in
heavy precipitation events (Fischer and Knutti 2016).

1.3.1 Tipping at the global scale
This global warming is unprecedented in at least the last 2000 years and has caused global
temperature levels not seen in the last 125,000 years (IPCC 2021). This naturally leads to
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speculation about the nature of the change the Earth system is experiencing. It could be a
smooth function of increasing CO2 or tipping dynamics could be possible (Broecker 1987).

A controversial paper, Steffen et al. 2018, considered the possibility that ongoing global
warming could make the Earth transition from its current current glacial-interglacial limit
cycle state into a new ‘hothouse’ state. This state would be defined by high temperatures and
sea levels, posing challenges both to humanity and the wider biosphere. This state would
be reached through biogeochemical feedbacks leading to a cascade of tipping points. They
advocate humanity operating within certain ‘planetary boundaries’ (Rockström et al. 2009) to
avoid this possibility.

Part of the reason Steffen et al. 2018 proved so controversial is that there is little evidence of
this nonlinear response at the global scale. Global temperature rise is approximately linear in
emitted carbon dioxide (Allen et al. 2009; Rogelj et al. 2019) and not expected to continue after
emissions cease (MacDougall et al. 2020), which is related to decreasing atmospheric CO2
levels offsetting the thermal inertia of the climate system. However certain cloud resolving
models report that at sufficiently high levels of global warming stratocumulus cloud decks can
break up causing 8 K of warming globally (Schneider, Kaul and Pressel 2019).

1.3.2 Tipping Elements
Nevertheless there is still the possibility of more regional tipping point behaviour. Lenton et al.
2008, introduced the notion of tipping elements which are components of the Earth system
that are ‘at least subcontinental in scale’ (O(1000 km)) which can undergo tipping behaviour
as a result of anthropogenic influence. Lenton led an expert elicitation of potential tipping
elements in the Earth system to estimate how much warming would be needed to trigger the
tipping element and what the key uncertainties were. More recently, Armstrong McKay et al.
2022 updated this study by reviewing the literature published since. Following this, I will
discuss some key tipping elements.

AtlanticMeridional Overturning Circulation

The Atlantic Meridional Overturning Circulation, known as the AMOC, is a large-scale
current in the ocean. The AMOC transports warm water polewards. This heat transport plays
an important role in the climate of, for example, northern Europe where it keeps temperatures
warmer than they would be otherwise. The AMOC is driven by the salt-advection feedback,
whereby warm saline water is transported northwards where it cools and becomes more dense.
It then sinks and can make the return journey to the equator completing the circulation
(Dijkstra 2011). If the water freshens, then its density decreases and the sinking decreases, which
leads to a weaker flow and therefore less polewards salt transport.

The potential for the AMOC to exhibit bistability was postulated by Stommel in a pion-
eering paper (Stommel 1961). He showed in a simple two box model that if the North Atlantic
was freshened then the salt-advection feedback means that meridional transport could shift to
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a different state. Later work (Bryan 1986; Manabe and Stouffer 1988; Rahmstorf 1995; Hawkins
et al. 2011) found multistability in complex ocean models, when the north Atlantic was subject
to a ‘hosing’ experiment in which fresh water was added to the oceans. Other research has
shown the AMOC is sensitive to the rate of hosing (Alkhayuon et al. 2019) in a complex way
(Lohmann and Ditlevsen 2021). By this it is meant that there is no well defined critical hosing
rate but that increasing the rate will switch the rate from a dangerous to a safe one and back
again. Should the AMOC tip, this would have serious impacts on British agriculture (Ritchie
et al. 2020), global climate (Jackson et al. 2015) and the carbon cycle (Bozbiyik et al. 2011).

Increased Arctic precipitation, melting of the Greenland ice sheet and increases in surface
temperatures all act to weaken the AMOC (Armstrong McKay et al. 2022). Over the past half
century, there is evidence that the AMOC has weakened by around 15% (Caesar et al. 2018)
and might be the weakest in a millennium (Caesar et al. 2021). There is observational evidence
of decreasing AMOC stability (Boers 2021; Michel et al. 2022; Ditlevsen and Ditlevsen 2023).
Some CMIP5 models show AMOC tipping at low levels of global warming (Drijfhout et al.
2015), although most models show only a gradual decline in the AMOC, which helps explain
why the IPCC view AMOC shut-down as being unlikely, although they view the modelled
AMOCs as being unrealistically stable (IPCC 2021). Armstrong McKay et al. 2022 estimate
the AMOC’s threshold to be at 4 ◦C, with a range of 1.4 ◦C to 8 ◦C.

Ice Sheets

Ice sheets, found in Greenland and Antarctica are believed to be able to tip due to many
feedback processes. The melt elevation feedback, which is when an ice sheet melts and therefore
loses height, exposing its surface to warmer air, increasing the melt rate, is an important
feedback (Levermann and Winkelmann 2016). Another relevant feedback is the marine ice
sheet instability, which occurs when the grounding line of an ice sheet meets a reverse slope
(Schoof 2007).

Complex ice sheet models of Antarctica (Garbe et al. 2020) show hysteresis when global
temperatures are reduced. Tipping behaviour has also been observed in complex models of
Greenland (Robinson, Calov and Ganopolski 2012; Van Breedam, Goelzer and Huybrechts
2020; Noël et al. 2021). There is evidence of destabilisation in Greenland (Boers and Rypdal
2021) and Armstrong McKay et al. 2022 estimate the critical threshold to be between 0.8 K
and 3.0 K with a best estimate of 1.5 K. For Antarctica they estimate a similar threshold for
the West Antarctic Ice Sheet but a higher threshold of around 8.5 ◦C for the East Antarctic Ice
Sheet. In all these cases, the tipping dynamics are very slow, takingO(1000 yr) to materialise.

Amazon Rainforest

The Amazon Rainforest is a significant store of carbon, containing around 123 Pg C (Malhi
et al. 2006), and has for many years been a sink, albeit a weakening one, of anthropogenic
carbon (Brienen et al. 2015). The forest affects climate by changing the albedo and aerodynamic
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roughness of the surface, and through evapotranspiration, influencing both the global climate
and its own conditions (Baker and Spracklen 2019). Furthermore, the forest recycles its own
rainfall, which acts to increase the precipitation it experiences (Spracklen, Arnold and Taylor
2012). It is these feedback processes that give the potential for tipping.

Early coupled climate-carbon models (Cox et al. 2000) showed strong decreases in carbon
stored in the Amazon. This dieback (Cox et al. 2004) from a forested to a savannah state was
caused by drying in the Amazon, where 25% of precipitation reductions over the Amazon
under elevated CO2 was caused by forest feedbacks (Betts et al. 2004). However, Amazon
dieback was found to be sensitive to the parametrisation of land surface interactions and the
control climate (Huntingford et al. 2004). Since then, some CMIP5 models (Drijfhout et al.
2015) showed signs of Amazon dieback and CMIP6 models show examples of regional Amazon
dieback (Parry, Ritchie and Cox 2022).

Other anthropogenic factors can cause abrupt shifts in the Amazon. An example is shifting
fire regimes. Fire in the Amazon is driven by humans (Cochrane 2002). Furthermore, fires
occur generally below a tree cover threshold (Wuyts, Champneys and House 2017) and fires
tend to decrease the tree cover so that as fires become more common in the Amazon due
to global warming (Cochchrane and Barber 2009) there could be a shift to a low tree cover
and high fire frequency regime (Wuyts and Sieber 2022), behaviour which has been seen
in Dynamic Global Vegetation Models (DGVMs) (Lasslop et al. 2016). This result can be
understood as resulting from a percolation process (Schertzer, Staver and Levin 2015; Cardoso
et al. 2022), in which if the probability of a location having low tree cover is above a critical
threshold then large (formally infinite) clusters of fire prone regions will appear.

Percolation theory (Stauffer and Aharony 1994) has also been used to understand the
increasing fragmentation of tropical forests (Taubert et al. 2018). It has been argued that as
deforestation reduces forest area, this causes an increase in the number of forest fragments.
Based on results from percolation theory they found tropical forests were near to the critical
point. Other work (Boers et al. 2017) has also found that deforestation in the Amazon can
cause tipping as reduced transpiration of water weakens the feedbacks on the South American
Monsoon system.

There is observational evidence to believe that the Amazon is bistable, and that it is heading
towards a tipping point. There exists a range of mean annual precipitation such that Amazon
tree cover can either be high or low, which is evidence of bistability (Hirota et al. 2011; Staver,
Archibald and Levin 2011). Furthermore, states with lower mean annual precipitation appear
to be less stable (Ciemer et al. 2019). There is evidence of drying in Amazonia (Ritchie et al.
2022), which is a driver of dieback. There is now reason to believe the Amazon is a source of
carbon to the atmosphere (Gatti et al. 2021). There are also indications of a loss of resilience
in the Amazon (Boulton, Lenton and Boers 2022) which is consistent with an approaching
tipping point.

Armstrong McKay et al. 2022 estimate Amazon dieback to occur at global warming levels of
2 K to 6 K with a best estimate of 3.5 K but could be lower when the impact of deforestation is
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included. Furthermore, timescales involved in this tipping point (O(100 yr)) are the timescales
of a human life, and so make understanding this tipping point important for environmental
policy.

Other Tipping Elements

The Atlantic Meridional Overturning Circulation, ice sheets in Greenland and Antarctica and
the Amazon Rainforest are three of the most important tipping elements in the Earth system.
However there are other proposed tipping elements. For example, high latitude permafrost
may be at risk (Lenton 2012), however there is debate about whether this is a true threshold
or a more continuous change (Armstrong McKay et al. 2022). Climate model simulations
have suggested the possibility of hydrological tipping points (Teufel and Sushama 2019) which
could imply an increased risk of fire.

Coral reefs can have tipping behaviour, as coral death occurs at certain temperature
thresholds (Frieler et al. 2013). The tipping point occurs at around 1.5 ± 0.5 K of global
warming (Armstrong McKay et al. 2022). As a result coral reefs are at high risk of tipping.

1.3.3 Tipping Cascades
In recent years, a number of scientists have investigated the possibility of tipping cascades
(Kriegler et al. 2009; Lenton and Williams 2013; Rocha et al. 2018; Steffen et al. 2018; Klose
et al. 2021; Wunderling et al. 2021, 2023). A tipping cascade refers to situation where one
tipping element tips, causing another tipping element to tip. For example, loss of Greenland
ice sheets could increase the probability of the AMOC tipping (Rahmstorf et al. 2015; Caesar
et al. 2018). However, other interactions between tipping elements might have a stabilising
effect, For example, loss of the west Antarctic ice sheet could stabilise the AMOC (Sinet, Heydt
and Dijkstra 2023) due an increased melt water flux.

Whilst many of the findings about tipping points are uncertain, this is particularly acute
in the case of research into tipping cascades where much of the research involves the use of
conceptual models with highly stylised interactions between elements. However, although
many researchers would regard these tipping elements and tipping cascades as unlikely to be
triggered, they are often considered ‘too risky to bet against’ (Lenton et al. 2019). The concept
of being too risky to bet against relates to the fact that high impact-low likelihood (HILL)
events (Wood et al. 2023) dominate the costs in a cost benefit analysis (Weitzman 2009) as long
as they have a non-negligible probability of occurring. To demonstrate that these events can
occur, I will give some examples of abrupt shifts from the Earth’s past.

1.3.4 Evidence of Tipping Points from Paleoclimate
The Earth is about four and a half billion years old (Dalrymple 2001), and over that time the
Earth has experienced many different climates (Alley et al. 2003). Evidence about these past

41



1.3. Tipping Points in the Earth System

climates can be obtained through reconstructions based on proxy data. For example, CO2
concentrations found in Antarctic ice cores can be used to estimate atmospheric CO2 levels
for the last 800, 000 years (Bereiter et al. 2015). Other methods, for example using isotopic
data, can be used to reconstruct even older climates (Tierney et al. 2020).

When examining the time series these reconstructions generate, some abrupt shifts can be
seen (Brovkin et al. 2021; Boers, Ghil and Stocker 2022). Although it is challenging to work
out if these shifts represent tipping points or continuous change (Brovkin and Claussen 2008),
there is evidence that some of these shifts are examples of tipping (Dakos et al. 2008). Three
example abrupt shifts are considered here. The Snowball Earth is considered as an example of
a global shift, Dansgaard-Oeschger events as an example of a rapid abrupt shift and the Green
Sahara as an example of an abrupt shift in the biosphere.

Snowball Earth

Budyko and Sellers (Budyko 1969; Sellers 1969) both investigated the role albedo feedbacks
on the Earth’s energy balance. This feedback is caused when the Earth cools leading to more
ice formation which increases the albedo of the Earth, reflecting more energy to space leading
to more cooling. This means that the Earth could potentially exist in two states, its current
warmer state, and a much colder state known as ‘Snowball Earth’ where much of the Earth is
covered in ice (Held and Suarez 1974; Ghil 1976).

Equation (1.3) is specialised to have a temperature dependent albedo and F = εσT 4 giving

1
4
S0 (1− α (T )) = εσT 4, (1.10)

where T is the Earth’s mean temperature and ε is the Earth’s emissivity. Suppose that the
albedo has the following temperature dependence

α(T ) =





α−, T < 273 K
α+ + α+−α−

T0−273 (T − T0) 273 K ≤ T ≤ T0

α+, T > T0

(1.11)

This form means that the Earth’s albedo transitions between the values of α− to α+ as the tem-
perature increases and the parameterT0 controls this location of this transition. Equation (1.10)
can be solved, revealing two possible stable states as shown in figure 1.1.

This snowball state was predicted without empirical evidence, however decades after it was
postulated evidence arose for its existence (Kirschvink 1992; Hoffman and Schrag 2002). This
state appears to have existed in the Neoproterozoic around 650 Myr BP. There is evidence
for glaciers near the equator during this time. It is not clear if the Earth was totally covered in
ice, or if there was a thin equatorial ocean, leading to a ‘slushball’ Earth, rather than a ‘Hard
Snowball’ (Pierrehumbert 2005; Pierrehumbert et al. 2011).
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Figure 1.1: The solutions to equations (1.10) and (1.11) are given by the intersections of these curves.
The solution at T ≈ 210 K is the snowball state and the solution at T ≈ 290 K is the present day
state. The intermediate state can be shown to be unstable and as such is not physically observable.
The parameters were chosen somewhat arbitrarily, but give a good approximation to the present
day state. The parameters are α+ = 0.8, α− = 0.2, ε = 0.65, T0 = 280 K, S0 = 1300 W m−2 and
σ = 5.67× 10−8 W m−2 K−4.
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Figure 1.2: A record of δ18O from the NGRIP ice core from Greenland (North Greenland Ice
Core Project members 2004) over the last 100,000 years. Higher values correspond to warmer
temperatures. The clear spikes in this record are Dansgaard-Oeschger events. Note the rapid
warming and slower cooling.

Dansgaard-Oeschger Events

Less dramatic warm/cold transitions exist within the Earth system. During the Quaternary
period, which is the current geological period, the Earth has existed in interglacial and gla-
cial states (Lisiecki and Raymo 2005). Within the last glacial period, around 100 kyr BP to
10 kyr BP, there were rapid transitions between cool stadial and warmer interstadial states
(Oeschger et al. 1984; Dansgaard et al. 1993). These transitions were discovered in ice cores from
Greenland, and represent rapid (on the timescale of 10 years) warming, some of which are up
to 16.5 K (Kindler et al. 2014). However the relaxation period back to the stadial state is longer,
occurring on centennial timescales. A record of the Dansgaard-Oeschger events is plotted in
figure 1.2. There is evidence that these Dansgaard-Oeschger events had a global impact as ice
core records show synchronous changes in Antarctica (Buizert et al. 2015).

There is no consensus on the mechanisms of the Dansgaard-Oeschger events, but they
are generally believed to be caused by the subtle interplay of atmospheric, sea ice and AMOC
dynamics (Boers, Ghil and Rousseau 2018; Vettoretti et al. 2022; Riechers, Gottwald and Boers
2023). There is ongoing debate about the nature of the transition observed in Dansgaard
Oeschger events, with different researchers arguing that Dansgaard Oeschger events are driven
stochastically (Ditlevsen 1999; Ditlevsen and Johnsen 2010) or deterministically (Boers 2018).

Green Sahara

In the more recent past, a different sort of abrupt shift happened involving the biosphere.
During the early part of the Holocene there was a northward expansion of shrub and savannah
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ecosystems into what was the Sahara desert, as revealed in the pollen record (Hoelzmann et al.
1998; Hély, Lézine and Contributors 2014). This is therefore a ‘greening’ of the Sahara. It was
a time of enhanced rainfall (Tierney, Pausata and DeMenocal 2017) and is termed the African
Humid Period.

The African Humid Period came to an end between 6000 yr BP to 4000 yr BP. Differ-
ent reconstructions (Kröpelin et al. 2008; Shanahan et al. 2015) disagree on how abrupt the
transition was, which may relate to the different regions involved in the reconstruction. An
explanation for this involves a biogeophysical feedback proposed by Jule Charney (Charney
1975; Charney, Stone and Quirk 1975). The mechanism is that vegetated ground has a lower
albedo than non-vegetated ground, so decreasing the vegetation increases the albedo, leading
to decrease in net incoming radiation and a radiative cooling of the atmosphere, and so the air
sinks by adiabatic compression which inhibits convection and thus rainfall. This decrease in
rainfall would then cause a further vegetation decrease.

Some climate models (Renssen et al. 2006) found that the transition was not abrupt.
However, more recent work (Hopcroft and Valdes 2021) using a model that was tuned with
mid-Holocene data was able to simulate an abrupt transition.

1.4 Summary
This chapter has given an introduction to climate tipping points as well as the coupled climate-
carbon system. I have described some of the main processes at work which govern the climate-
carbon system and examined some climate tipping points. In the next chapter, the mathem-
atical theory that underlies tipping points will be explored. In addition, I will provide an
introduction to early warning signals for tipping points.
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Chapter 2

Mathematical Theory of Tipping
Points and EarlyWarning Signals

Having explained, in chapter 1, the relevance of tipping elements to the Earth system,
I will now review the theory behind tipping points in this chapter. To do this I
will categorise the ways in which a system can tip. I will also give an example of a

system undergoing each of these types of tipping. In part due to the difficulties in accurately
representing tipping points in Earth System Models (ESMs), it has become popular to look for
generic ‘early warning signals’ of tipping points. I give a summary of these techniques and how
they have been applied to Earth system tipping elements at the end of the chapter.

2.1 A Typology of Tipping Points
It is helpful to classify tipping according to a typology developed by Ashwin et al. 2012. They
identified three types of tipping:

B-tipping which refers to a tipping caused by a system crossing a bifurcation due to a change
in a parameter of the system.

N-tipping which refers to a tipping caused by noisy fluctuations driving the system from
one attractor to another.

R-tipping which refers to a tipping caused by a system failing to track its continuously
changing attractor. The ‘R’ is for ‘rate’ because the attractor is changing too fast for the
system to adapt to it.

Since then, other researchers have found it useful to consider additional types of tipping.
For example, Halekotte and Feudel 2020 introduced the concept of shock or S-tipping which
is when a single large perturbation can push the system into a new state. When the system’s
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attractor is not a steady state but is instead a limit cycle, the tipping can depend on the phase of
the cycle, a phenomenon which has been dubbed P-tipping (Alkhayuon, Tyson and Wieczorek
2021). More generally, if the tipping depends on the system’s location on its attractor then
it is known as partial tipping (Alkhayuon and Ashwin 2018). In spatial systems, fragmented
tipping is possible (Bastiaansen, Dijkstra and Heydt 2022) in which only part of the domain
experiences tipping.

A more detailed examination of B,N,R and S tipping will now be given.

2.1.1 B-Tipping

Theory

Consider a system with a state variable x ∈ Rn described by the system of ordinary differential
equations

dx
dt

= f (x). (2.1)

Suppose the system has a fixed point at x∗, such that f (x∗) = 0 then the linear stability of the
system (Strogatz 2015) is characterised by the behaviour of a small perturbation y about this
fixed point, where y = x− x∗. Then the dynamics of y are governed by

dy
dt

= Jy (2.2)

where terms of order O
(
|y|2
)

or higher have been neglected and J is a matrix called the
Jacobian defined by

Jij =
∂fi
∂xj

∣∣∣∣
x=x∗

. (2.3)

The solution to equation (2.2) is
y = etJy(0). (2.4)

Suppose J has n linearly independent eigenvectors (although similar conclusions will hold if it
does not (Guckenheimer and Holmes 1983)). Let the set of eigenvectors be {vi} and the set of
eigenvalues {λi} then equation (2.4) can be written as

y =
∑

i

cietλivi (2.5)

where {ci} are a set of constants chosen to match the initial conditions. It can be seen then that
the long-time behaviour of y is y ∼ c1etλ1v1 where λ1 is the eigenvalue with largest real part. If
this is positive, then y will leave the vicinity of x∗, whereas if it is negative y will approach x∗.
Suppose x∗ is a hyperbolic fixed point, which means that J has no eigenvalues with zero real
part. Then the Hartman-Grobman Theorem (Grobman 1959; Hartman 1960, 1963) guarantees

48



Chapter 2. Theory of Tipping Points and EarlyWarning Signals

that the trajectories of y will be topologically conjugate — that is to say qualitatively the same
— in some neighbourhood of x∗ to the trajectories of x. This means that x∗ is linearly stable
only when J has eigenvalues with only negative real parts. The directions vk with Re λk < 0
are known as stable directions (as the flow is attracted to the fixed point along these directions),
those with Re λk > 0 are unstable directions (Strogatz 2015).

B- or Bifurcation-tipping refers to tipping which is driven by changes to the stability, or
the loss altogether, of these fixed points. A bifurcation is a concept from the mathematical
theory of dynamical systems, introduced by Poincaré 1885. It is used to describe a situation
where the fixed points of a system qualitatively change as a control parameter is varied.

Consider a modification to equation (2.1) where a control parameter µ ∈ R (which could,
for example, be atmospheric CO2) has been introduced

dx
dt

= fµ(x). (2.6)

The fixed points are described by fµ(x∗) = 0. By the Implicit Function Theorem (Spivak
1965), x∗ is a smooth function of µ except at points where J has a zero eigenvalue, these points
in (x, µ) space are known as bifurcation points. Other bifurcation points can occur when a
stable fixed point becomes unstable (or vice versa). In both cases an eigenvalue of J must cross
the imaginary axis, i.e. have zero real part (Guckenheimer and Holmes 1983). As a result of
this, the Hartman-Grobman Theorem is not applicable and so a non-linear analysis must be
undertaken.

Fortunately, there are techniques to deal with this, using the Centre Manifold Theorem
(Hirsch, Pugh and Shub 1977), which can be stated loosely as

Theorem 1 (Centre Manifold Theorem). Let the eigenvalues, {λi}, of J be divided into three
sets such that spec J = σs ∪ σu ∪ σc, where σs = {λi : Re λi < 0}, σu = {λi : Re λi > 0} and
σc = {λi : Re λi = 0}. Let their respective eigenspaces be Es, Eu and Ec. Then there are stable and
unstable invariant manifolds Ws and Wu tangent to Es and Eu at x∗, and a centre manifold
Wc tangent to Ec at x∗.

The upshot of this theorem is that the dynamics are now controlled by the centre manifold.
Suppose that the unstable manifold is empty (the most relevant case for tipping point research)
then theorem 1 implies that the dynamics are topologically conjugate to

du
dt

= g(u) (2.7a)

dv
dt

= −v (2.7b)

with (u,v) ∈Wc ×Ws. At long times v → 0 so at long times the dynamics are given by u
on the centre manifold (Guckenheimer and Holmes 1983). In order to calculate g, suppose
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that x = (u, z) ∈ Rn so that

du
dt

= Au + p(u, z) (2.8a)

dz
dt

= Bz + q(u, z) (2.8b)

whereA, B have eigenvalues with zero and negative real parts respectively and p, q are nonlinear
functions without any linear terms. Then the centre manifold can be written as a graph
Wc = (u, h(u)) with z = h(u), so that on the centre manifold

du
dt

= Au + p (u, h (u)) . (2.9)

The next step is to make equation (2.9) as simple as possible. By the Hartman-Grobman
Theorem, equation (2.9) cannot be linearised. However the next most simplest approach is to
use normal forms, which describe the different sorts of possible bifurcations (Dijkstra 2011).

Consider again equation (2.6), but now enlarge the state space to Rn+1 by viewing µ as
a dynamic variable with µ̇ = 0. Suppose further, without loss of generality, that there is a
bifurcation point at (x, µ) = (0, 0) where J has a simple zero eigenvalue. Then using theorem 1
a centre manifold passing through (0, 0) can be found. If the trajectories are restricted to
the centre manifold and certain transversality conditions are met (∂µf ̸= 0, ∂xxf ̸= 0 at the
bifurcation point) the trajectories will be topologically equivalent (Guckenheimer and Holmes
1983) to

dx
dt

= µ + x2. (2.10)

This type of bifurcation is known as a saddle-node or a fold bifurcation. This remarkable fact
has simplified a high dimensional dynamical system to a generic one-dimensional system near
the bifurcation point (Glendinning 1994).

The saddle-node bifurcation is very important as other bifurcation problems can be per-
turbed into a saddle-node bifurcation problem (as it is unusual for the transversality conditions
not to be met). In this sense, saddle-nodes are the type of bifurcations to be expected in nature.
However if the transversality conditions are not met other types of bifurcations can arise.

If ∂µf = 0, then the system is equivalent to

dx
dt

= µx − x2, (2.11)

which is the normal form for a transcritical bifurcation. If ∂µf = 0 and ∂xxf = 0 with ∂xxxf ̸= 0
the bifurcation is known as a pitchfork bifurcation with normal form

dx
dt

= µx − x3. (2.12)
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Another important sort of bifurcation is a Hopf bifurcation (Hopf 1942). For this bifurc-
ation, a complex conjugate eigenvalue pair become purely imaginary, λ = ±iω. As there are
no zero eigenvalues the Implicit Function Theorem implies no new equilibria will be created.
However it will lead to a change in the dimensions of the stable and unstable manifolds, leading
to a qualitative change in the behaviour of the system. It can be shown that there is a centre
manifold on which a limit cycle can exist (Guckenheimer and Holmes 1983). In other words,
these bifurcations lead to the creation of periodic oscillatory behaviour. These bifurcations
can occur only in systems of dimension two or higher. The normal form of this bifurcation
(Kuznetsov 2004) can be expressed as a differential equation involving the complex variable
z = x + iy

dz
dt

= (µ + i)z− z|z|2. (2.13)

Stommel’s AMOCModel

As an example of B-tipping, consider Stommel’s AMOC model (Stommel 1961), which after a
rescaling (Dijkstra 2011) can be written as:

dT
dt

= η1 − T (1− |Ψ|) (2.14a)

dS
dt

= η2 − S
(
η3 + |Ψ|

)
(2.14b)

Ψ = T − S (2.14c)

whereT and S are (dimensionless) equator to pole temperature and salinity differences respect-
ively. The flux Ψ = T − S is the strength of the AMOC. The parameters η1, η2, η3 represent
thermal forcing, freshwater forcing and the ratio of their timescales respectively.

Figure 2.1 shows the equilibria of equation (2.14) as well the solution to equation (2.14) for
the case where η2 slowly increases to a maximum and then slowly decreases again following a
parabolic trajectory. As η2 is increased the strength of the AMOC decreases until it reaches
a saddle-node bifurcation point at η∗2 ≈ 1.2 where the AMOC abruptly transitions to a
weaker state with flow in the opposite direction. Near the bifurcation point, the flux behaves
like Ψ ∼

√
η∗2 − η2, which reflects the normal form equation (2.10). Note that when η2 is

decreased, it must be brought down to the lower value of 0.9 to transition back into its original
state. This is known as hysteresis.

2.1.2 N-tipping
If a system with multiple stable states is subject to stochastic forcing, then it will perform
transitions between these states if observed for long enough. This phenomenon is called N- or
noise-tipping. This has an important difference to B-tipping. In B-tipping an external driver

51



2.1. A Typology of Tipping Points

2

3

T

1

2

3

S

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.0

0.5

1.0

Ψ

η2

Figure 2.1: This shows the state of the Stommel model, equation (2.14), as a function of the
parameter η2. The stable equilibrium states are given by solid black lines and the unstable states are
given by the black dashed line. The red line shows the instantaneous state of the AMOC for η2
slowly increasing from 0.6 to 1.4. The blue line shows the instantaneous state for η2 decreasing
from 1.4 to 0.6. As η2 is increased, the AMOC transitions from a strong poleward flow to a
weaker equatorward state. Note that near the bifurcation point around η2 ≈ 1.2 the stable states
seem to behave like the square root of the control parameter. This reflects the normal form of
the bifurcation. Note that when η2 is decreased the transition back to the poleward flow state
happens at a lower value of η2 — this is an example of hysteresis. The other parameters were set to
η1 = 3, η3 = 0.3.
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changes a control parameter, causing a system to tip but in N-tipping the natural variability of
the system causes it to tip.

The role of noise in the climate system was identified by Hasselmann 1976. He viewed the
‘slow’ components of the Earth system (the ocean, the vegetation and the ice sheets) as being
deterministic and the ‘fast’ components (the atmosphere) as being essentially stochastic. This
stochasticity may be viewed as an effective model for chaotic systems (Lorenz 1963) or resulting
from unresolved processes (Palmer et al. 2009). Certain paleoclimate abrupt shifts, such as the
Dansgaard-Oeschger events, have been viewed as N-tipping (Ditlevsen 1999).

Stochastic differential equations can be written (Jacobs 2010) as

dx
dt

= F (x) + G(x)η(t). (2.15)

The vector function F represents the deterministic evolution and the matrix function G
represents the stochastic evolution. The function η(t) = dW

/
dt is known as white noise

and is the derivative of a Wiener process. It is the source of the stochasticity. It has mean zero
and is ‘delta correlated’ in time, by which is meant

E
(
ηi(t)ηj(t′)

)
= δijδ(t − t′) (2.16)

where δij is the Kronecker delta and δ(t − t′) is the Dirac delta function. This notation is
somewhat misleading as it suggests that all the functions involved are differentiable, however
realisations of the Wiener process are almost surely not differentiable (McKean, Birnbaum
and Lukacs 2014). More rigorously, equation (2.15) should be written as

dxt = F (xt) dt + G(xt) dWt (2.17)

where the differentials are understood to imply integration. The notation of equation (2.15)
tends to be favoured by physicists and that of equation (2.17) by mathematicians.

Viewing individual solutions of equation (2.15), or sample paths, is one approach to analys-
ing stochastic systems. Another useful approach is to calculate the probability density function
(pdf), p(x, t) of x and how it evolves in time. The tool to do this is the Fokker-Planck equation
(Fokker 1914; Planck 1917), given by

∂p
∂t

= −
∑

i

∂i
(
Fip
)

+
∑

i

∑

j

∂i∂j
(
Dijp

)
(2.18)

where D = GGT /2.

Kramers’ Escape Rate

Often a very simple one-dimensional model is used in studies of N-tipping

dx
dt

= −dU
dx

+ ση(t). (2.19)
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This is an example of a potential system because the deterministic dynamics are given by the
gradient of a potential function,U (x). Any one dimensional system can be put in this form but
that is not always the case for higher dimensional systems. Furthermore, the noise is assumed
to be ‘white’, with constant variance σ2. It is known as white noise because in the frequency
domain, all frequencies are excited with equal amplitude. This is a questionable assumption
for the Earth system, where the spectrum is not white (Mitchell 1976; Heydt et al. 2021) and
may change due to climate change (Huntingford et al. 2013).

Equation (2.19) has an associated Fokker-Planck equation

∂p
∂t

=
∂
∂x

(
dU
dx

p
)

+
1
2
σ2 ∂2p
∂x2 , (2.20)

which can also be written in the form of a continuity equation

∂p
∂t

+
∂J
∂x

= 0 (2.21)

where J is the probability current given by

J (x) = −dU
dx

p− 1
2
σ2 ∂p
∂x
. (2.22)

If equation (2.19) has multiple stable states, then an estimate of the transition rate between
these states can be made. This estimate is known as the Kramers’ Rate (Kramers 1940). This
derivation follows Risken 1984.

Suppose thatU has the form given by figure 2.2, which has a stable state at xmin, an unstable
state at xmax. The rate at which the system transitions from near xmin, in the region between x1
and x2, to the other side of the maximum, near x3, is to be determined. Assuming the system is
in a near steady state, equation (2.21) implies that J is approximately constant. By multiplying
equation (2.22) by the integrating factor exp 2U (x)

σ2 , J can be put into the form

J = − 1
2
σ2e−

2U (x)
σ2

∂
∂x

(
p(x)e

2U (x)
σ2

)
. (2.23)

This can then be integrated from xmin to x3 to give

J =
σ2

2

(
p(xmin)e

2U (xmin)
σ2 − p(x3)e

2U (x3)
σ2

)(∫ x3

xmin
e

2U (x)
σ2 dx

)−1

. (2.24)

As it will be rare to find the system at x3, as the noise is weak enough to make the transitions
rare, p(x3) is negligible. To estimate p(xmin), assume this is given by the equilibrium distribution
which can be found by setting J to a constant. This constant can be chosen to be the value of J
at xmin, giving the following expression for the equilibrium pdf, peq,

peq(x) = p(xmin)e
2U (xmin)

σ2 e−
2U (x)
σ2 . (2.25)
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Figure 2.2: An example of a potential with a stable state at xmin from which a system can escape
over the potential barrier at xmax to a new state near x3. The precise locations of x1, x2, x3 do not
matter at the level of approximation Kramers’ escape rate formula works at.
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The probability of finding the system near xmin is therefore

P =
∫ x2

x1

peq(x) dx = p(xmin)e
2U (xmin)

σ2

∫ x2

x1

e−
2U (x)
σ2 dx . (2.26)

The escape rate is r = J/P which becomes

r−1 =
2
σ2

∫ x2

x1

e−
2U (x)
σ2 dx

∫ x3

xmin
e−

2U (x)
σ2 dx . (2.27)

Each integral can be asymptotically evaluated using Laplace’s Method (Bender and Orszag
1978) to give Kramers’ escape rate

r−1 ∼ 2π√
U ′′(xmin)|U ′′(xmax)|

e
2
σ2 (U (xmax)−U (xmin)), (2.28)

for σ → 0.

Example

As an example consider the potential

U (x) = − 1
2
x2 +

1
12
x4 (2.29)

which has symmetric stable states at x = ±
√

3. There is a potential barrier at x = 0. Assuming
that σ = 0.75, Kramers’ rate predicts a transition timescale of r−1 ≈ 65 time units. Figure 2.3
shows transitions happening on this timescale.

2.1.3 R-tipping
A relatively recently discovered type of tipping is R-tipping. First discovered by Luke and
Cox 2010 in a simple model of soil temperatures, R-tipping or rate-induced tipping refers to a
situation where the rate of change of a control parameter, rather than the magnitude of the
parameter itself controls whether a system tips or not (Wieczorek et al. 2011). This type of
tipping occurs in nonautonomous dynamical systems, which is a system with explicit time
dependence (Ashwin, Perryman and Wieczorek 2017).

This sort of tipping is best explained through an example, taken from Ashwin et al. 2012.
The system is

dx
dt

=
(
x + µ

)2 − 4 (2.30a)

dµ
dt

= r. (2.30b)
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Figure 2.3: A time series showing transitions between two stable states (indicated by a dotted line).
Kramers’ formula, equation (2.28) predicts a transition timescale of about 65 time units. The time
series shows transitions happening on this timescale.

x

µ

Figure 2.4: Panels showing the state space of a system, equation (2.30), undergoing R-tipping.
From left to right, the figures show the system below the critical rate, at the critical rate and above
the critical rate. In the left panel, with r = 3.2 the lines xPB

± exist and are separated. In the centre
panel with r = rc = 4, xPB

± exist and have collided into one line. In the right panel, r = 4.8 and
therefore xPB

± do not exist. As a result trajectories diverge as the system has undergone R-tipping.
Note that for all values of r, the quasi-static equilibria exist.
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These equations can be interpreted as a system with state x in a changing environment repres-
ented by parameter µ that changes at some finite rate, r.

Consider the ‘frozen system’ (Wieczorek, Xie and Ashwin 2023), which is equation (2.30a)
withµ constant — this describes the dynamics in the case where the environment is unchanging.
It has equilibria at x∗± = ±2 − µ. The stability of these equilibria can be found in the
manner described in section 2.1.1, which in this case amounts to evaluating the derivative of
equation (2.30a) with respect to x at x∗±. These quasi-static equilibria are shown as grey lines
in figure 2.4, where the stable quasi-static equilibria are shown in solid grey and the unstable
quasi-static equilibria are shown as a dashed line. It can be shown that x− is stable for all µ
values, and x+ is unstable for all µ values. As a result a naïve B-tipping analysis would suggest
this system cannot tip. However, as will be shown, this system can undergo R-tipping.

To see this, make a change of coordinates into a co-moving frame by setting y = x + µ.
Then the system becomes

dy
dt

= y2 + r − 4. (2.31)

This equation has a stable fixed point at −
√

4− r and an unstable fixed point at
√

4− r.
Returning to the x coordinates these solutions correspond to the pullback attractor and
repeller of the system, xPB

± = ±
√

4− r − µ. These pullback objects are the appropriate
generalisation of attractors and repellers to the nonautonomous case (Ghil and Lucarini 2020).
They are plotted in black in figure 2.4 where the solid line is the stable state and the dashed
line is unstable. It is to xPB

− rather than x− that the solutions of equation (2.30) are attracted to,
plotted in red in figure 2.4.

If r < 4, then xPB
− exists and so solutions evolve towards it. However if r > 4 then xPB

− does
not exist and so solutions diverge to infinity. As a result there is a critical rate, rc = 4, above
which R-tipping occurs.

The Compost Bomb

The paradigmatic example of R-tipping is the Compost Bomb instability (Luke and Cox 2010;
Wieczorek et al. 2011; Clarke et al. 2021; O’Sullivan, Mulchrone and Wieczorek 2023), which is
a thermal instability in the soil. This phenomenon is caused by microbial respiration warming
the soil, which in turn increases the soil temperature. However, this respiration decreases the
supply of soil carbon and thus decreases the amount of respiration and thus heating in the soil.
Due to the differences between the (rapid) timescale of heating and the (slow) timescale of soil
carbon decrease there is the possibility for a dramatic increase in soil temperature. Luke and
Cox 2010 found that if the air temperature raised faster than a critical rate then the compost
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Figure 2.5: A plot of soil temperature relative to air temperature with two different rates of
warming, calculated from equation (2.32). Note the spike in temperatures for high enough rates of
warming—an example of R-tipping.

bomb instability would be caused. Their model was

µ
dTs

dt
= −λ (Ts − Ta) + Ar0CseαTs (2.32a)

dCs

dt
= Π− r0CseαTs (2.32b)

dTa

dt
= v (2.32c)

where Ts is the soil temperature, Ta is the air temperature and Cs is the soil carbon. The
parameters, taken from Wieczorek et al. 2011, are a heat capacity µ = 2.5× 106 J m−2 K−1, a
thermal coupling λ = 5.049×106 J yr−1 m−2 K−1, a heat of respirationA = 3.9×107 J kg−1 C,
a specific respiration r0 = 0.01 yr−1, a temperature dependence of respiration α = 0.09 K−1 and
a net primary productivity Π = 1.055 kg C m−2 yr−1. When the rate of increase in temperature
is increased above a critical rate, v ≈ 0.08 K yr−1 the instability is triggered.

Figure 2.5 shows two time series of equation (2.32) with v = 0.05 K yr−1 and v = 0.1 K yr−1.
For the larger rate of warming there is a clear spike in the soil temperatures.
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2.1.4 S-tipping
A more recent addition to the tipping points typology is that of S- or shock-tipping. This refers
to a situation where a single large perturbation can push a system from one state to another
(Halekotte and Feudel 2020; Feudel 2023), such as an extreme weather event on an ecosystem.
In this sense it is closely related to ideas of resilience introduced by Holling 1973.

It is related to N-tipping but should be differentiated from it in the following sense. If x∗

is a fixed point, with a basin of attraction B then the smallest perturbation required to push
the system into a new state is given by

∆ = arg min{|x′|: x∗ + x′ /∈ B}. (2.33)

If the system is the potential system equation (2.19), then this is equal in magnitude to the
distance to the nearest maximum, |xmax−xmin|. This should be compared to Kramers’ formula,
equation (2.28), which is a function of the difference in potentialU (xmax)−U (xmin). In other
words, S-tipping depends on the distance to the potential barrier, but N-tipping depends on
the height of that barrier.

Allee Effect

Consider a population growing via logistic growth with carrying capacity k that is subject to
the Allee Effect (Allee and Bowen 1932; Stephens, Sutherland and Freckleton 1999), which is
an effect that reduces growth rates at low population densities. A simple model of this is

dx
dt

= x (x − 1)
(

1− x
k

)
, (2.34)

where k > 1 and x is a population density. This has equilibria at x1 = 0, x2 = 1 and x3 = k. The
equilibria at x1 and x3 are stable. x1 corresponds to an extinct state and x3 to a populated state.

If the system is initially in equilibrium at x3, the distance to the basin boundary is ∆ =
|x3−x2|= k−1. Hence if the system receives a kick of this magnitude or greater then the system
will transition to the extinction state. Figure 2.6, shows the evolution of x as equation (2.34) is
integrated with k = 2.0 and given perturbations of magnitude 0.99 and 1.01 at times 25.0 and
50.0. The first perturbation is not large enough to push the system across the boundary of the
basin of attraction, yet the second one is, which is why the population undergoes S-tipping
after the second perturbation.

2.1.5 Tipping in Reality
This typology has given the impression that individual tipping phenomena can be easily
assigned to the categories of B,N,R or S-tipping. However this is not the case as any real
tipping point will have aspects of many of the different tipping types. For example, if a
control parameter is changing such that the system is approaching a B-tipping point, then
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Figure 2.6: An example of shock-tipping. The system given by equation (2.34) receives a perturba-
tion of 0.99 at time 25.0. This is not large enough to make it cross the basin boundary (given by
the dotted line) and so the system recovers. However at time 50.0 a perturbation of 1.01 is given
which is enough to make it cross the basin boundary and thus to make the population go extinct.

Kramers’ formula equation (2.28) implies that the system is more likely to undergo N-tipping.
Furthermore, a system nearing a tipping point will be more likely to undergo S-tipping as ∆,
defined by equation (2.33), is smaller as the basin of attraction shrinks. If a system is experiencing
a shock, it is also likely that its parameters will be changing quickly as well so this tipping will
have an R-tipping character too.

Although real tipping points may have multiple characteristics it is still often possible and,
more importantly, still useful to categorise the tipping into one of the above categories.

2.2 EarlyWarning Signals

Given the large impact a climate tipping point would have (Lenton et al. 2019), it would be
useful to know at what level of climate forcing they would be triggered. However models
show little agreement about the level of forcing required to cause them (Drijfhout et al. 2015).
The processes of interest are by their nature nonlinear and often involve interactions between
the physical climate and the biosphere, where the ‘correct’ equations are inherently uncertain.
Furthermore, some tipping behaviour may depend on subgrid scale processes, such as in the
case of fire (Mangeon et al. 2016). As a result a precise determination of the dangerous level of
climate forcing is challenging.

Instead, a theory of early warning signals (EWS), sometimes known as early warning
indicators (EWI), has emerged (Dakos et al. 2008; Scheffer et al. 2009; Lenton 2011; Williamson
and Lenton 2015). These techniques attempt to use certain generic statistical features of tipping
points to provide an indication as to whether a system is moving towards a tipping point. This
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is closely related to ideas about normal forms developed in section 2.1.1.
However not all types of tipping will give good early warning signals. Noise and shock

tipping are not driven by a continuously changing external factor and so early warning signals
(in the conventional sense) will not be useful in these cases. For the case of rate tipping, there
has been some work on early warning signals (Ritchie and Sieber 2016). However most of the
work has been done for bifurcation tipping where statistics can be calculated as a function of a
slowly evolving parameter.

2.2.1 Critical Slowing Down

The basic idea of early warning signals is that of critical slowing down (Dakos et al. 2008).
Suppose there is a system

dx
dt

= f (x, µ) (2.35)

which has a stable state for µ < µc at x∗ and undergoes a bifurcation when µ = µc. Then before
the bifurcation, the system can be linearised about this steady state to give

dy
dt

= −λy (2.36)

where y = x− x∗ and λ = −f ′(x∗, µ). As the bifurcation is approached, λ→ 0 so any method
that detects changes in λ can act as an early warning signal, in a quite generic way, for B-tipping.

Solving equation (2.36) gives
y = eλty(0) (2.37)

and so λ−1 gives the timescale for perturbations to relax to equilibrium. This means that as
λ→ 0, this timescale approaches infinity, hence the name critical slowing down.

2.2.2 Variance and Autocorrelation

A very common way to approach early warning signals is to assume that the system of interest
can be modelled as a one dimensional system subject to additive Gaussian white noise. The
first of these assumptions is defensible on the grounds that near a bifurcation point, generic
systems behave qualitatively like equation (2.10). The second assumption is more suspect as
systems are generally subject to time correlated noise, such as red noise. However in the case of
red noise, as long as the dynamics are considered over long enough timescales, then the noise
can be approximated as white. This assumption amounts to analysing the Langevin equation
(Langevin 1908)

dx
dt

= f (x) + ση(t) (2.38)
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where η is delta correlated noise and σ2 is the variance of the noise. This system can then be
linearised to give

dy
dt

= −λy + ση(t) (2.39)

where y and λ are defined as in equation (2.36). This is the equation that defines an Ornstein-
Uhlenbeck process (Uhlenbeck and Ornstein 1930) and its statistical properties are well known.
The Fluctuation-Dissipation Theorem (Einstein 1905; Kubo 1966; Leith 1975; Marconi et al.
2008) provides a link between the variability of a system and its response to forcing, i.e. λ.

In this case the important statistics are

σ2
y =

σ2

2λ
(2.40)

α1 = e−λ (2.41)

where σ2
y is the variance of y and α1 is the autocorrelation of y at lag 1. As λ→ 0

σ2
y →∞ (2.42)
α1 → 1. (2.43)

This means that as a system with state x approaches a B-tipping point, then its fluctuations
about equilibrium, given by y, should have their variance diverge and their autocorrelation
tend to unity.

The question remains how to extract y from a time series of x. If x∗, the equilibrium, was
known then this could be directly subtracted from x to give y. However if the equilibrium was
known then there would be no need for early warning signals as the bifurcation point could
be calculated explicitly. Instead it is usually assumed that by subtracting a (possibly nonlinear)
trend off of x what remains will approximate y.

This leads to the following method to generate early warning signals from a time series:

1. Split the time series of x into rolling windows of length τw. Let xi refer to the x values in
window i.

2. Detrend the time series xi to get yi.

3. Calculate the variance σ2
yi and autocorrelation α1 of yi.

4. Perform statistical tests to detect if σ2
yi and α1 are increasing. Statistical tests, such as the

Mann-Kendall test (Wilks 2019) or a phase surrogate approach (Boettner and Boers
2022) are commonly used.

5. If they are increasing, then this can be taken as an early warning of an approaching
B-tipping.
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In order for this technique to work, a particular assumption about timescales must be
satisfied (Thompson and Sieber 2011). This is that

τdrift ≫ τcrit ≫ τstab, (2.44)

which are the timescales of the long term drift of the system, the timescale of the critical
direction of the system (which is the one being destabilised) and the other timescales of the
stable directions respectively. The first inequality is needed so that µ can be assumed to be
constant in each sliding window. The second is needed so that the timescale being detected
is the timescale corresponding to the critical direction. It should be noted that τcrit →∞ as
the bifurcation is approached and so inequality 2.44 will be violated eventually. Furthermore
anthropogenic climate change is happening on fast timescales so it may be the case that τdrift ≈
τcrit or even τdrift ≪ τcrit.

Example

In figure 2.7 early warning signals are calculated for the system

dx
dt

= x − 1
3
x3 − µ + ση(t) (2.45)

where µ = εt, σ = 0.025 and ε = 1× 10−4. The value of ε has been chosen to be small to enable
an autonomous analysis. The system has a bifurcation when µ = 2/3. The value of λ can be
calculated by taking a derivative:

λ = (x∗)2 − 1 (2.46)

where x∗ is the equilibrium. The variance and autocorrelation are estimated empirically from
the detrended time series of x. In addition, the variance and autocorrelation predicted by
equations (2.40) and (2.41) are calculated. It can be seen there is a good agreement and a clear
early warning signal before the bifurcation.

2.2.3 Other EarlyWarning Signals
These indicators have been generalised to higher dimensional and periodically forced systems
(Williamson and Lenton 2015; Williamson, Bathiany and M Lenton 2016). Attempts have
also been made to estimate λ, the inverse timescale directly (Boers 2021; Boettner and Boers
2022). The idea to look at changes in timescale of fluctuations has been investigated using
Detrended Fluctuation Analysis (Livina and Lenton 2007), where it was used to anticipate
the warming at the end of the Younger Dryas. Changes in these timescales can also lead to
spectral reddening (Kleinen, Held and Petschel-Held 2003). Higher order moments have
proved useful too, such as the skewness (Guttal and Jayaprakash 2008) and kurtosis (Xie et al.
2019). The phenomenon of flickering (Wang et al. 2012), in which systems ‘flicker’ back and
forth between alternative stable states can also be used to detect upcoming transitions. More
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Figure 2.7: An example of using early warning signals to detect an approaching tipping point. In
the top left is the original time series in black, obtained from integrating equation (2.45) with a
timestep of 0.1. Also shown in grey are the quasi-static equilibria, where the unstable equilibria are
shown with a dotted line. The top right shows the time series detrended using a cubic polynomial
in windows of length 500 time units. The bottom left shows the variance of the detrended time
series with the variance calculated through equation (2.40) in red. The bottom right shows the
autocorrelation of the detrended time series with the autocorrelation calculated by equation (2.41)
shown in red. There is a clear early warning signal of rising variance and autocorrelation before the
bifurcation.
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recently, machine learning techniques have had success in giving early warning for modelled
transitions (Bury et al. 2021). Any measure of resilience of an ecosystem can function as an
early warning indicator, see Krakovská, Kuehn and Longo 2023 for examples of ecological
resilience.

Methods which calculate the early warning statistics over space rather than over time have
also been used (Guttal and Jayaprakash 2009; Donangelo et al. 2010). Changes in spatial
patterns, for example of vegetation, have also been suggested as early warning indicators (Kéfi
et al. 2007, 2014) although introducing spatial dynamics can complicate the analysis of tipping
points (Rietkerk et al. 2021).

Whilst these indicators generally try to be generic — in that they are applicable to many
different systems — there is no reason why early warning indicators cannot be designed for
specific systems. Parry, Ritchie and Cox 2022 found that the seasonal cycle in temperature
was a potential early warning system for Amazon dieback and Boulton, Good and Lenton
2013 found the sensitivity of net ecosystem productivity to temperature decreases towards the
tipping point.

2.2.4 The Use of EarlyWarning Signals
Early Warning Signals have been applied to the Earth system. For example Dakos et al. 2008
applied them to a variety of abrupt shifts and found that they were preceded by rises in
autocorrelation, although some of these trends could have occurred by chance. They have
also been used to provide evidence for the subpolar gyre circulation destabilising prior to the
Little Ice Age (Arellano-Nava et al. 2022). Furthermore their presence has been used to argue
that Dansgaard-Oeschger events are B-tipping (Boers 2018) and their absence has been used
to argue that Dansgaard-Oeschger events are N-tipping (Ditlevsen and Johnsen 2010). These
contradictory findings are related to differences in the way the ice core data is processed.

Early Warning Signals have been investigated for the Greenland ice sheet (Boers and Rypdal
2021). This study suggested the ice sheet was close to a tipping point. However given the slow
response of the ice sheet and the fast change of the climate, inequality 2.44 is likely to be
violated with the timescale of the drift to be much faster than the timescale of the dynamics.
Furthermore, the analysis is of melt rates rather than a state variable which describes the ice sheet
itself. However, the researchers could relate the observed fluctuations to a physically motivated
simple nonlinear model of the ice sheet, which would suggest the ice sheet is approaching a
tipping point.

Later that year, another paper (Boers 2021), was published suggesting the AMOC was
approaching a tipping point due to increases in autocorrelation and variance. Other work
(Ditlevsen and Ditlevsen 2023) went as far as to suggest that most likely year for the AMOC
to tip is 2057. Although the dynamics of the AMOC are faster than that of the ice sheets
(Armstrong McKay et al. 2022), it is still not clear if inequality 2.44 is satisfied but early warning
signals have been used in complex models to detect AMOC shut-down (Boulton, Allison and
Lenton 2014). Furthermore, the analysis was not based on the AMOC strength directly but
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on ‘fingerprints’ derived from sea surface temperature and salinity data.
Recent work (Boulton, Lenton and Boers 2022) found increases in the autocorrelation in

the Vegetation Optical Depth (a satellite measure of vegetation biomass) in the Amazon, which
is consistent with a loss of resilience in that ecosystem. The results for changes in variance were
more equivocal. Whilst the Amazon is a relatively fast tipping point (Ritchie et al. 2021), some
complex models do not show generic early warning signals before the tipping point (Boulton,
Good and Lenton 2013). Other work (Fernández-Martínez et al. 2023), which examined global
datasets of net biome productivity, did not find increasing autocorrelation over the Amazon.
However net biosphere productivity is a flux, not a state variable.
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Chapter 3

The Compost Bomb Instability in the
Continuum Limit

To begin the research section of this thesis, I will examine a specific example of a tip-
ping point, namely the ‘Compost Bomb’. The Compost Bomb instability refers to
a proposed uncontrolled increase in soil temperature. This instability is caused when

sufficiently rapid atmospheric warming increases soil heterotrophic respiration which, in turn,
heats the soil further. This generates a runaway effect in which soil temperatures rise rapidly. I
will investigate this process, neglected in Earth System Models, but which has thus far been ana-
lysed with a conceptual model using ordinary differential equations. That model is deliberately
idealised without any representation of the spatial structure of soils. I confirm using a partial
differential equation framework that this runaway effect still occurs when accounting for soil
depth. Using this newer representation I investigate the forcing parameters that make soils
vulnerable to this instability. In particular, I find that the effect of dangerously large seasonal
cycle variations in air temperature can create plausible conditions for a ‘compost bomb’ thermal
instability.

This chapter is based on a published paper, ‘The Compost Bomb Instability in the Con-
tinuum Limit’ (Clarke et al. 2021).

3.1 Introduction

Coupled climate-carbon cycle Earth System Models (ESMs) show that rising temperatures
will cause carbon cycle feedbacks that accelerate global warming further (Cox et al. 2000).
Although the magnitude of the increase remains uncertain, a major contributing factor is the
response of the land carbon cycle to increased temperatures (Friedlingstein et al. 2006; Arora
et al. 2020). Over the last decade, there has therefore been a strong focus on improving models
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of the expected response of terrestrial carbon to global warming.
The largest uncertainties are associated with the response of soil carbon to warming (Varney

et al. 2020). The Jenkinson effect (Jenkinson, Adams and Wild 1991) is a positive carbon cycle
feedback related to the soil. Heterotrophic respiration converts organic matter held in soils into
CO2. At higher temperatures the rate of this reaction increases, leading to larger emissions of
CO2 from soils. However, a key aspect of heterotrophic respiration, ignored by ESMs (Arora
et al. 2020), is that due to respiration being an exothermic reaction, the released heat must raise
the temperature of the soils it occurs in. This biogeochemical heating has been shown to be
important in the thawing of permafrosts (Khvorostyanov et al. 2008a,b).

Furthermore, because the rate of respiration increases with temperature, the biogeochem-
ical heating will tend to further increase the rate of respiration. This positive feedback creates
the possibility of a tipping point, in which runaway respiration also significantly increases the
soil temperature.

This runaway potential was first investigated in Luke and Cox 2010. The Luke and Cox
model (hereafter referred to as the LC10 model) showed an instability if the rate of increase of
air temperature was large compared to the soil turnover time. They dubbed this instability
the ‘compost bomb’ due to the known capability of compost heaps to self-heat (Browne 1929;
Nelson et al. 2007; Sidhu et al. 2007).

A range of climate tipping points have been observed in paleoclimate records (Alley et
al. 2003), and both expert opinion (Lenton et al. 2008) and ESMs (Drijfhout et al. 2015)
raise the possibility that they may be triggered this century by climate change. These tipping
points associated so far with the behaviour of the Earth system are believed to correspond to
bifurcations. The mechanisms underpinning the compost bomb instability are more unusual
in that this is an example of rate-dependent tipping (Ashwin et al. 2012).

This rate-dependence was analysed mathematically by Wieczorek et al. 2011 where the
compost bomb was studied as an ‘excitable’ system in which critical rates were calculated
analytically. They found that when the air temperature was raised sufficiently slowly the system
could follow the steady state equilibrium. However, when the air temperature was raised more
rapidly, the system was unable to adapt sufficiently quickly to the new equilibrium and thus
tipped.

Here a focus is on the compost bomb instability in response to the seasonal cycle. In this
case the timescale of the forcing (1 year) is much faster than the response timescale of the soil
carbon (decades), and the soil carbon can be treated as a prescribed time-invariant quantity
(this is the ‘compost bomb limit’ of LC10).

Some limitations of the LC10 model are that it neglects important thermal processes and
soil structure, and in particular vertical variation. For example, as a ‘single box’ model, it assumes
that the soil is well represented by averaged quantities, such as an average soil temperature,
when in fact these quantities can be quite heterogeneous (Gedney and Cox 2003).

By definition, box models neglect processes such as heat diffusion which tend to suppress
regions of unusually high temperature. Hence an initial assumption might be that diffusive
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damping may make the compost bomb harder to trigger. Additionally, the LC10 model
assumes a single pool of carbon, rather than a spatially extended distribution, which might
increase the possibility for a compost bomb.

Despite these caveats, the LC10 model captures the essence of the system. The aim is to
add realism to the LC10 model by considering the vertical structure and heat conductivity
of the soil. The new model will consist of a one dimensional soil column in which heat can
diffuse and soil carbon decreases exponentially with depth. Whether or not an instability still
exists in this model will be investigated.

The compost bomb has generally been considered in relation to an upward decadal times-
cale linear ramp in air temperature, which is an idealisation of the change in air temperature
due to human caused climate change. However, there is also the possibility of rate-induced
tipping by the sinusoidal variations in air temperature caused by the diurnal and seasonal cycles.
These possibilities are investigated here, to see if there exist features of these oscillations that
may raise the risk of a compost bomb.

3.2 LC10 Single Box ConceptualModel
The compost bomb instability is based on the idea that heterotrophic respiration in the soil
is both an exothermic reaction (Thornley 1971) and also a reaction whose rate increases with
temperature. Hence this reaction could lead to a scenario of thermal runaway, where respiration
warms the soil which increases respiration further. The rate of respiration is often modelled
with a Q10 form (Kirschbaum 1995) for temperature dependence. In this representation the
reaction rate increases by a factor Q10 for every 10 ◦C of temperature increase. Hence the
specific rate of respiration, r(Ts) (m−2 s−1) can be modelled as r(Ts) = r0Q(Ts−Tref )/ 10

10 where
Ts (◦C) is the soil temperature and r0 is the reaction rate at Tref . The rate of reaction also
increases in proportion to the available substrate, here soil carbonCs (kg C m−2). TheQ10 form
implies an exponential dependence of the specific respiration rate on temperature: r(Ts) =
r0 exp (α (Ts − Tref )), where α = logQ10/ 10. The soil carbon is increased by Net Primary
Production (NPP) Π (kg C m−2 s−1) and decreased by heterotrophic respiration. Introducing
the parameters A (J kg−1 C), the specific heat of respiration, µA (J m−2 K−1) the areal soil heat
capacity and λ (W m−2 K−1) the soil-to-atmosphere heat transfer coefficient leads to the LC10
model:

µA
dTs

dt
= −λ(Ts − Ta) + ACsr0eα(Ts−Tref ), (3.1a)

dCs

dt
= Π− Csr0eα(Ts−Tref ). (3.1b)

The model assumes that in the absence of biogeochemical heating the soil temperature equilib-
rates to the atmospheric temperature Ta. The amount of soil carbon is set by the equilibrium
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balance between Π and heterotrophic respiration. If the decrease in soil carbon is too slow to
offset an increase in air temperature, the compost bomb instability is triggered, corresponding
mathematically to an instability in which Ts is ‘excited’ to a very large value, well in excess of
100 ◦C. This model implies a value for the equilibrium soil carbon

Ceq
s =

1
r0
e−α(Ta−Tref )Πe−Π/Πc (3.2)

where Πc = λ/αA. This equilibrium value is obtained by setting the derivatives in equation (3.1)
to zero.

3.3 ContinuumModelWith Vertical Depth
To investigate the effects of the representation of spatial variability in the vertical z (m) direction
the soil column is modelled as existing on a semi-infinite line, which extends from the surface
at z = 0 down to z = −∞. The vertical structure of soil carbon is set, as is sometimes assumed
(Burke, Chadburn and Ekici 2017), by the balance of the diffusion and decomposition of soil
carbon. It is assumed that these processes are in equilibrium, which yields an exponential
decrease of soil carbon with depth over a characteristic distance of H . The soil temperature is
modelled by a reaction-diffusion system, in which heat is generated by heterotrophic respiration
and diffused vertically. The conductivity of the soil is given by κ (W m−1 K−1) (Best, Cox and
Warrilow 2005), it has heat capacity µV (J m−3 K−1) and contains a total amount Cs of soil
carbon. Therefore the heat equation for the soil temperature Ts(z, t) becomes:

µV
∂Ts

∂t
= κ

∂2Ts

∂z2 +
ACsr0

H
eα(Ts−Tref )ez/H . (3.3)

At z = −∞ a no flux boundary condition is imposed. At the upper boundary the soil tem-
perature is controlled by the turbulent heat flux from the atmosphere which has temperature
Ta0 + δTa(t), where Ta0 represents a background mean temperature and δTa(t) a time depend-
ent warming. Mathematically:

∂Ts

∂z
= 0 at z = −∞, (3.4a)

−κ∂Ts

∂z
= λ (Ts (0, t)− Ta0 − δTa (t)) at z = 0. (3.4b)

Here the parameter λ characterises the turbulent heat transfer from the atmosphere to
the top layer of the soil. Cs is set to the equilibrium value using equation (3.2) where the
air temperature is taken to be Ta0. This approximation is justified provided the system is
investigated on timescales short relative to the turnover time of soil carbon, which is on the
order of many decades (Varney et al. 2020).

72



Chapter 3. The Compost Bomb Instability in the Continuum Limit

Parameter Symbol Equation Value

Net Primary Productivity Π 3.1b 0.5 kg C yr−1

Temperature response of respiration Q10 3.3 2.5
Characteristic Soil Depth H 3.3 0.4 m
Soil Thermal Conductivity κ 3.3 0.16 W m−1 K−1

Specific Heat of Respiration A 3.3 3.9× 107 J kg C−1

Volumetric Heat Capacity µV 3.3 1.0 MJ m−3 K−1

Heat Transfer Coefficient λ 3.4b 10 W m−2 K−1

Average Air temperature Ta0 3.4b 0.0 ◦C

Table 3.1: Parameter values used to produce the figures in this study.

Throughout this study I undertake the mathematical investigation using nondimensional
values. However, to aid understanding I plot certain figures using dimensional units, with
standard values given in table 3.1. It should be noted however that these parameters are choices
I have made, and different choices will lead to different figures, whereas the nondimensional
plots are valid for all parameter choices.

3.3.1 Numerical Investigation
The continuum model was integrated in both space and time, and it was found that it can give
rise to a compost bomb instability. The PDE, equation (3.3), was solved using the ‘method of
lines’ technique (Schiesser 1991). It was discretized spatially into 100 equally spaced intervals.
The spatial derivatives were approximated using central differences. This was then integrated
using the backwards differentiation formula bdf method from the scipy library (Virtanen et al.
2020). The bdf method was chosen as it is well suited to stiff problems. If scipy’s solver could
not find a solution, then it was assumed that compost bomb had occurred.

This is a first piece of evidence that the results of the LC10 model remain when soil depth
is taken into account. Figure 3.1 is a plot of the temperature profile of soil at different times,
initialised to be in equilibrium, undergoing the compost bomb thermal runaway after five
months. δTa was set to a a sinusoid of frequency one year. Figure 3.1 shows that the instability
remains in the continuous case, and it is not prevented by diffusion.

3.3.2 Consistency of the continuummodel with LC10
In this subsection the LC10 model and continuum model are compared numerically. The level
of soil carbon is chosen such that the soil temperature is initially in an equilibrium state with
δTa = 0. The models are then integrate forward in time with δTa constant and greater than
zero. For sufficiently large values of δTa the system has an instability. The smallest value of δTa
for which this is true is referred to as the ‘critical warming level’, because if air temperatures were
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Figure 3.1: Vertical temperature profiles of soil undergoing a compost bomb thermal runaway
when subject to a seasonal cycle of temperatures with amplitude 32.5 ◦C.
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Figure 3.2: The warming required to make the continuum model unstable as a function of κ,
compared to the LC10 model. Also plotted on is the seasonal cycle amplitude required for this
instability.

increased by this amount quickly with respect to the soil carbon turn over time, an instability
would be triggered.

This critical warming is plotted, as a function of κ in figure 3.2. Also overlaid is the warming
required to cause a compost bomb in the LC10 model. Also shown is the amplitude of the
seasonal cycle needed to cause a compost bomb. It can be observed that as κ→∞ the vertical
structure matters less and the continuum result asymptotes to the LC10 case. In addition, the
soil is more stable to seasonal cycle oscillations than instantaneous jumps. This ‘overshoot’
behaviour (Ritchie, Karabacak and Sieber 2019; Ritchie et al. 2021) is due to the fact that soil
temperatures do not instantly respond to the seasonal cycle. Surprisingly for smaller values of
κ the critical warming is actually lower in the continuum case than the LC10 case, despite the
damping effects of diffusion.

To investigate this further, the LC10 model will be derived from the continuum case. This
is done by vertically averaging equation (3.3). Vertically averaged quantities are denoted by
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⟨q⟩ = 1
H

∫ 0
−∞ qdz. Begin by integrating equation (3.3) over the vertical domain:

µV
d
dt

∫ 0

−∞
Ts dz = κ

∂Ts

∂z

∣∣∣∣
z=0
− κ

∂Ts

∂z

∣∣∣∣
z=−∞

+
ACsr0

H

∫ 0

−∞
eα(Ts−Tref )ez/H dz. (3.5)

Applying boundary conditions (equation (3.4)) gives

µVH
d ⟨Ts⟩

dt
= −λ (Ts (0, t)− Ta0 − δTa (t)) +

ACsr0

H

∫ 0

−∞
eα(Ts−Tref )ez/H dz. (3.6)

Assuming the vertical distribution of soil carbon does not affect the average value too
much and setting µA = µVH gives

µA
d ⟨Ts⟩

dt
= −λ (Ts (0, t)− Ta0 − δTa (t)) + ACsr0

〈
eα(Ts−Tref )〉 . (3.7)

This is equivalent to the LC10 model if Ts(0, t) ≈ ⟨Ts⟩ and ⟨eαTs⟩ ≈ eα⟨Ts⟩. These approxim-
ations become exact when Ts is not a function of z, which occurs when κ → ∞, as shown
in figure 3.2. Note however that because ⟨eαTs⟩ ≥ e⟨αTs⟩ the LC10 model underpredicts the
amount of respiration in soils when κ is finite, and so the LC10 model will need a higher
amount of warming to trigger a compost bomb.

3.3.3 Existence of the Compost Bomb in the ContinuumCase

Now that there is numerical evidence for a compost bomb in the continuum case, this will be
investigated analytically. In the approximation where soil carbon is constant, the rate depend-
ent tipping feature of the model is lost, and instead it reverts to a classical bifurcation-induced
tipping problem. Consider the case where δTa is a constant, given by the temperature increase
relative to the long term background state,Ta0, which is referred to as an atmospheric warming.
In this case δTa is the bifurcation control parameter. To begin the following nondimensional-
isations are made:

θ = α (Ts − Ta0) (3.8a)
δθa = αδTa (3.8b)

x =
λz
κ

(3.8c)

τ =
λ2t
κµV

(3.8d)

Π̃ = Π/Πc (3.8e)
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then equations (3.3) and (3.4) become

∂θ
∂τ

=
∂2θ
∂x2 +Weθex/D (3.9a)

∂θ
∂x

= 0 when x = −∞ (3.9b)

−∂θ
∂x

= θ(0, t)− δθa(t) when x = 0 (3.9c)

The nondimensionalisation process reveals two parameter clusters D = Hλ/κ andW =
Π̃e−Π̃/D, which correspond to a nondimensional soil thermal depth and a nondimensional
respiration strength. In terms of the parameters in table 3.1, these values are D = 25 and
W = 0.0001. Note that θ and δθa should be interpreted as (nondimensional) temperatures
relative to the background air temperature, so in particular δθa is a temperature anomaly.

It will now be shown that the model defined by equation (3.9) only has an equilibrium
state for low levels of atmospheric warming, δθa. First a change of variables is made to reveal
the first integral of the steady-state of equation (3.9a). Then a second integration followed by a
change of variables reveals a standard integral with a well-known solution.

Let δθa be constant, set ∂τθ = 0, and then let ψ = θ + x/D. Then equation (3.9a) becomes

d2ψ
dx2 +Weψ = 0. (3.10)

Multiplying this by dψ
/

dx and integrating gives
∫

dψ
dx

d2ψ
dx2 dz +

∫
W dψ

dx
eψ dx = 0 (3.11)

∫
d

dx

(
1
2

(
dψ
dx

)2
)

dx +W
∫

deψ

dx
dx = 0 (3.12)

1
2

(
dψ
dx

)2

+Weψ =
1
2
c1 (3.13)

with c1 a constant. Rearranging and recognising that this is a separable differential equation
gives ∫

dψ√
1− 2Wc−1

1 eψ
= ±√c1

∫
dx = c2 ±

√
c1x (3.14)

where c2 is another integration constant. The left hand side is then reduced to a standard

integral (Riley, Hobson and Bence 2006) with the substitution u =
(

1− 2W
c1 e

ψ
)1/2

, giving
∫

dψ√
1− 2Wc−1

1 eψ
=
∫

2
u2 − 1

du = −2 artanh u. (3.15)
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Inverting this then leads to
√

1− 2Wc−1
1 eψ = tanh

(
c2 ±
√
c1x
)
, (3.16)

where c1 and c2 have been redefined to absorb the factor of -2. As a result, ψ can be expressed as

ψ = log
c1

2W + log
(

1− tanh2 (c2 ±
√
c1x
))
. (3.17)

Using the Pythagorean identity (Riley, Hobson and Bence 2006) this can be reduced to

ψ = log
c1

2W + 2 log
(

sech
(
c2 ±
√
c1x
))
. (3.18)

In terms of θ, the solution is

θ = log
c1

2W + 2 log sech
(
c2 ±
√c1x

2

)
− x
D

(3.19)

Applying the boundary condition at x = −∞ implies that c1 = 1
D2 . The solution becomes:

θ = log
1

2WD2 + 2 log sech
(

1
2

(
c2 ±

x
D

))
− x
D
. (3.20)

Now applying the boundary condition at x = 0 gives

± 1
D

tanh
c2

2
− 2 log sech

c2

2
= − 1

D
− log 2WD2 − δθa. (3.21)

Denoting the left-hand side of this equation as F (c2), it can be shown that F has a minimum.
To see this note that F is a continuous function which for |c2|→ ∞ behaves like F (c2) ∼ |c2|
so it follows that F has a minimum. Hence for sufficiently large δθa, the right-hand side will
always be less than the left-hand side. This means there is no equilibrium solution, consistent
with a compost bomb having been triggered.

To determine the critical level of δθa to cause a compost bomb, the c2 that satisfiesF ′(c2) = 0
must be found and substituted back into equation (3.21). The derivative of F is

F ′(c2) = ± 1
2D

sech2 c2

2
+ tanh

c2

2
= ± 1

2D

(
1− tanh2 c2

2

)
+ tanh

c2

2
(3.22)

so that F ′(c2) = 0 can be solved for tanh c2 and so equation (3.21) becomes

δθcrit
a = log

(
2D
√
D2 + 1− 2D2

)
− 1 +

1
D
√
D2 + 1− 1

D
− log 2WD2 (3.23)

Note that for sufficiently large values ofW , the right-hand side of this equation is negative,
which can be interpreted as the soil being inherently unstable without any warming.

78



Chapter 3. The Compost Bomb Instability in the Continuum Limit

0.2 0.4 0.6 0.8
Ts − Ta0 (K)

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

z
(m

)

Figure 3.3: The equilibrium soil temperature profile, using the parameters in table 3.1. This is
given as an anomaly relative to Ta0. The soil was assumed to be 4 m deep and that δTa was zero.

Using the parameters in table 3.1 and setting δθa = 0, equation (3.21) was numerically
solved for c2 and thus the equilibrium distribution of θ was found. This was then converted
back to dimensional units and plotted in figure 3.3. Much like observations (Ping 1987),
the temperature was found to be nearly constant for depths below about 1 m. Near-surface
soil is in good thermal contact with the atmosphere, the temperature of which varies over
short timescales, and therefore it is unlikely that observed near-surface soil temperatures will
have reached their equilibrium value. Nevertheless, the profile here is compatible with soil
temperature observations.

AsW is a function of Π̃ andD, specifying Π̃ andD is enough to determine δθcrit
a , through

equation (3.23). The critical maximum warming is plotted in figure 3.4 for a range of Π̃ and
D values. Figure 3.4 shows the critical warming, above which no equilibrium solutions exist,
corresponding to triggering a compost bomb. Increasing the ‘fuel’, Π̃, decreases the warming
required to trigger a compost bomb. Furthermore, the figure shows that in this model, soils
with larger D, corresponding to soils that are well insulated and have a soil carbon with a weak
dependence on depth, are more unstable.
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Figure 3.4: Panel a: the relationship between nondimensional soil carbon e-folding depth D,
nondimensional NPP Π̃ and the critical warming required to cause a compost bomb δθa. Panel b:
Also plotted is a dimensional version using the standard parameters in table 3.1. The black crosses
denote the point corresponding to using the NPP and H values from table 3.1.

3.4 Vulnerability To Seasonal Cycle
The compost bomb instability is a rate-induced instability. To trigger the compost bomb
instability, the rate of increase in air temperature needs to be fast relative to the rate of decrease
of soil carbon. Prior work (Luke and Cox 2010) examined a linear increase in air temperat-
ure, corresponding to the increase in mean air temperature being caused by anthropogenic
influence.

However, air temperature varies on multiple timescales. Two important modes of rapid
air temperature change (relative to the timescale of soil carbon) are the diurnal and seasonal
cycles. Suppose δTa varies sinusoidally,

δTa(t) = ∆Ta sin
2πt
T

(3.24)

and numerically integrate equation (3.9a) for a range of forcing periods, using the standard
parameters in table 3.1. Sufficiently large forcing amplitudes will lead to a compost bomb.
These are plotted in figure 3.5.

Whilst the rate dependence alone would suggest that higher frequency oscillations are
more unstable, high frequency oscillations can be too rapid to affect the soil temperature. Such
high frequencies are in effect ‘averaged out’, as the air cannot heat the soil rapidly enough to
have an effect deeper in the soil. Hence diurnally driven compost bombs are unlikely except at
very high and unrealistic amplitudes.
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Figure 3.5: The relationship between forcing period T and the amplitude of the minimum near-
surface air temperature changes required to trigger a compost bomb.
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Figure 3.6: Panel a: the relationship between nondimensional respiration, soil depth and the
seasonal cycle amplitude required to cause a compost bombs. For typical values ofQ10, the seasonal
cycle could trigger a compost bomb. Panel b: Also plotted is the dimensional version, where the
standard value of κ is modified to 0.5 W m−1 K−1 so make the H values more realistic.

In particular from figure 3.5, the amplitudes required to cause a compost bomb from
the very high frequency diurnal cycle are about 100 ◦C, which is implausibly large. However
for oscillations corresponding to timescales of the annual seasonal cycle, the magnitude is
around 30 ◦C. This remains large, but such variations occur in high latitude, soil carbon rich
ecosystems, for instance in parts of Siberia (Peixoto and Oort 1992).

The possibility of a seasonal cycle triggered compost bomb was investigated and plotted
in figure 3.6, by scanning across the two nondimensional parameters. This shows that for a
variety of plausible parameters, a large seasonal cycle could trigger a compost bomb. Soils with
larger Π̃ are more susceptible to a seasonal cycle driven compost bomb as they have more ‘fuel’.
However, in marked contrast to the conditions for the existence of an equilibrium, shallower
soils are more susceptible to seasonal cycle driven compost bombs. This susceptibility can be
understood as the atmosphere being able to warm larger fractions of shallower soils per unit of
time.

3.5 Discussion
The purpose of this research is to determine features of raised near-surface temperature that
could trigger thermal runaway in soils, a process called a ‘compost bomb’. The compost bomb
instability was originally identified in a single box model. The overarching finding of this
chapter is that when accounting for vertical heterogeneity, thermal runaway still occurs. For
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all finite values of thermal conductivity, I find these temperature thresholds are lower than
those in the LC10 model, which I attribute to the strongly nonlinear respiration response to
temperature.

The analysis undertaken suggests there are two important nondimensional parameters, D
andW which characterise the ‘thermal thickness’ and energy output of respiration respectively.
However, I have created a deliberately simplified model of the compost bomb. This has the
advantage of being analytically tractable, yet ignores certain processes. Most obviously, I assume
soil carbon is in equilibrium. This is not an unreasonable assumption however as I consider
short enough timescales where this is approximately true. More importantly I neglect the role
of soil moisture. Although this is not a thorough analysis, I offer some justification for why
this model captures the essential features of the system. The addition of soil moisture has two
principal effects.

Firstly, it affects the amount of respiration in the soils. In the framework of our model,
weakening respiration corresponds to decreasingW , a nondimensional parameter that encodes
the amount of soil carbon, the heat released from respiration and the thermal properties of
the soil. Although this affects the precise value for the air temperature warming that leads to a
compost bomb, for anyW > 0 there is still a critical level of warming that produces a compost
bomb.

Secondly soil moisture affects heat transport by setting the conductivity of the soil. How-
ever the thermal conductivity can be modelled as varying linearly with soil moisture (Best
et al. 2011), whereas respiration has an exponential dependence on temperature. Therefore,
temperature variations should play a more important role than moisture variations in the
dynamics of the compost bomb.

3.6 Conclusion
In this chapter I present an advance in the realism of compost bomb models, by accounting
for the vertical structure of the soils. I have found that even accounting for the diffusive effects
of vertical structure, compost bombs can still occur. Furthermore, for realistic levels of heat
diffusion, warming levels required to initiate the instability are much smaller than in the LC10
case. For the set of parameters investigated a rapid warming of the order of 10 ◦C is enough to
push soils into an unstable regime. Furthermore, I have also found that for annual temperature
cycles of around 30 ◦C risk triggering compost bombs.

This research adds to the evidence base that fires may self-ignite in high-latitude soils,
which would have implications for the carbon cycle in these regions. This should encourage
the development of biogeochemical heating in state-of-the-art land surface models to study
the situations in which biogeochemical heating is important.
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Chapter 4

BiogeochemicalHeatingandtheTer-
restrial Carbon Cycle

Avertical dimension was introduced into a model of the compost bomb in chapter 3. It
was shown that this doesn’t suppress the compost bomb. That analysis was local — the

modelling was done at a single point on the Earth’s surface. It would be interesting
to see what a globally-averaged model that included biogeochemical heating would predict.
Work by Cox, Huntingford and Jones 2006 suggested that the terrestrial carbon cycle is stable
only for certain parameter ranges. In this chapter, I will explore the impact that biochemical
heating has on the stability of the global climate-carbon cycle system

4.1 Compost Bomb Bifurcation Analysis

4.1.1 Dynamical Equations
The compost bomb equations, introduced by Luke and Cox 2010, are

c
dTs

dt
= −κ (Ts − Ta) + Ar0CseαTs (4.1a)

dCs

dt
= Π− r0CseαTs , (4.1b)

where Ts and Cs are soil temperature and carbon, Ta is the atmospheric temperature, α =
0.1 logQ10 is the sensitivity of temperature to respiration, Π is Net Primary Productivity, A is
the heat released by respiration, κ is a heat transfer coefficient, c is a heat capacity and r0 is the
specific rate of respiration.

While the analysis in Luke and Cox 2010 was local, it will be assumed that equation (4.1)
hold at the global scale too, where quantities are replaced by their global value. It will also be
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Figure 4.1: The Lambert W function, for x ∈ [−1/ e, e]. The minimum value of x for which
W (x) is real is−1/ e. For x < 0, W (x) is multivalued.

assumed that Net Primary Productivity, Π, is an increasing function of atmospheric CO2, as
is Ta.

There is a timescale separation in equation (4.1). The dynamic of soil carbon are relatively
slow, with a soil turn over time measured in the decades (Varney et al. 2022), whereas the
dynamics of soil temperature are much faster, reaching an equilibrium with the air temperature
on the time scale of a day (Best, Cox and Warrilow 2005). With this in mind, the soil temperature
can be set to equilibrium, as calculated by putting equation (4.1a) equal to zero. This gives

0 = −κ (Ts − Ta) + Ar0CseαTs

which can be solved for the soil temperature

Ts = Ta −
1
α
W
(
−Ar0CsαeαTa

κ

)
, (4.2)

where W (x) is the Lambert W function (Corless et al. 1996). The Lambert W function,
plotted in figure 4.1, is defined as the solution to the equation

W (x)eW (x) = x. (4.3)

This function is multivalued, and the larger (less negative) of the two possible values should be
taken, which corresponds to the smaller value of Ts, which is the stable solution.

After noting that the argument of W is dimensionless, and that r0Cs has units of Net
Primary Productivity, the quantity

Πc =
κ
αA

(4.4)
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can be defined, which measures the influence of biogeochemical heating. No biogeochemical
heating occurs for A = 0 or, equivalently, for Πc = ∞. Similarly biogeochemical heating is
strongest for A→∞ or, again equivalently, for Πc = 0.

Equation (4.2) can now be rewritten as

Ts = Ta −
1
α
W
(
−r0CseαTa

Πc

)
. (4.5)

Equation (4.5) was then inserted into equation (4.1b) to give

dCs

dt
= Π + ΠcW

(
−r0CseαTa

Πc

)
. (4.6)

which for given Π and Ta determines the evolution of Cs.
The implied equilibrium value for Cs occurs when equation (4.6) is zero. The value of Cs

for which this is true is
Ceq
s =

Π
r0
e−αTae−Π/Πc . (4.7)

The no biogeochemical heating case can be recovered by sending Πc → ∞ which gives
Ceq
s = Π/ r0.

4.1.2 Closing the System
It has been stated that Ta and Π are functions of atmospheric carbon, so determining their
behaviours requires specifying the behaviour of the rest of the carbon cycle. The total carbon
in the carbon cycle is conserved and so

Cs + Ca + Co = Ceq
s + Ca0 + Co0 (4.8)

whereCa andCo are atmospheric and oceanic carbon and the quantities on the right-hand side
are the equilibrium values. Following Cox, Huntingford and Jones 2006, it will be assumed
that a fixed fraction, χ0, of atmospheric emissions reach the ocean, meaning

Ca = Ca0 −
1

1 + χ0
(Cs − Ceq

s ). (4.9)

In the rest of this chapter it will be assumed that χ0 = 1/4, on the grounds that roughly half of
atmospheric emissions remain in the atmosphere (Jones and Cox 2005) with the other half
split approximately evenly between the land and the ocean (Friedlingstein et al. 2022).

Making the further assumption that atmospheric temperatures scale logarithmically with
atmospheric CO2 (Pierrehumbert 2010) gives

Ta =
S

log 2
log

Ca

Ca0
(4.10)
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where S is the effective climate sensitivity experienced by the soils. Substituting equation (4.10)
into equation (4.6) leads to

dCs

dt
= Π(Ca) + ΠcW

(
−r0Cs

Πc

(
Ca

Ca0

)µ)
, (4.11)

where
µ =

αS
log 2

(4.12)

and Ca is determined through equation (4.9). By definition, Cs = Ceq
s when the left hand side

of equation (4.11) is set equal to zero. This will correspond to a pre-industrial equilibrium
when Ca = Ca0 or equivalently when Ta = 0. This requires that

r0 =
Π0

Ceq
s
e−Π0/Πc , (4.13)

where Π0 = Π (Ca0) is the NPP during the pre-industrial period.

4.1.3 Computation of Bifurcation Point

The stability of the equilibrium at Cs = Ceq
s is determined by the Jacobian of equation (4.11),

which in this case amounts to taking the derivative of the right-hand side of equation (4.11)
when Cs = Ceq

s . The system will transition from being stable to unstable when

dĊs

dCs
= 0.

In order to calculate the derivative the identity

W ′(x) =
W (x)

x (1 + W (x))
(4.14)

will be useful, which follows from taking the derivative of equation (4.3).
If the derivative of the right hand side of equation (4.11) is taken and set to zero,

dΠ
dCa

dCa

dCs
+

Πc

Ceq
s

W
(
− r0C

eq
s

Πc

)

1 + W
(
− r0C

eq
s

Πc

)
(

1 + µ
Ceq
s

Ca0

dCa

dCs

)
= 0 (4.15)

is obtained. This can be rearranged for µ to give

µ = −Ca0

Ceq
s

dCs

dCa


 dΠ

dCa

dCa

dCs

Ceq
s

Πc

1 + W
(
− r0C

eq
s

Πc

)

W
(
− r0C

eq
s

Πc

) + 1


 (4.16)
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which simplifies to

µ =
(

1 + χ0
) Ca0

Ceq
s
− Ca0

Πc

1 + W
(
− r0C

eq
s

Πc

)

W
(
− r0C

eq
s

Πc

) dΠ
dCa

. (4.17)

This can be further reduced, by using equation (4.7), to

µ =
(

1 + χ0
) Ca0

Ceq
s
− Ca0

Πc

1 + W
(
−Π0

Πc
exp
(
−Π0

Πc

))

W
(
−Π0

Πc
exp
(
−Π0

Πc

)) dΠ
dCa

and then by using the definition of the Lambert W function, equation (4.3), to give

µ =
(

1 + χ0
) Ca0

Ceq
s
− Ca0

Πc

1− Π0
Πc

−Π0
Πc

dΠ
dCa

.

This can then be cleaned up to give a final form for the critical µ value, notated as µ∗, which
separates stable from unstable soil carbon states. µ∗ is therefore

µ∗ =
(

1 + χ0
) Ca0

Ceq
s

+
Ca0

Π0

dΠ
dCa
− Ca0

Πc

dΠ
dCa

. (4.18)

It is instructive to take the Πc →∞ limit, which gives the behaviour in the no biogeochemical
heating case:

µ∗∞ =
(

1 + χ0
) Ca0

Ceq
s

+
Ca0

Π0

dΠ
dCa

. (4.19)

Therefore the effect of biogeochemical heating is the reduce the critical µ value for which an
instability occurs by the amount

Ca0

Πc

dΠ
dCa

. (4.20)

When Πc → 0 this reduction becomes infinite and no stable soil carbon state is possible.
Equation (4.18) can be plotted, as has been done in figure 4.2, to divide the (µ,Πc) parameter

plane into stable and unstable regions, for a range of dΠ
/

dCa values. For a 33% increase in
NPP due to doubling CO2 (Wenzel et al. 2016), then dΠ

/
dCa ≈ 0.05 yr−1.

4.1.4 Numerical Determination of Bifurcation Diagram
To numerically compute the equilibria of equation (4.11), the dependence of Π on Ca must be
set. It is chosen to be

Π(Ca) =
Π∞Ca

Ca + C1/2
, (4.21)
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Figure 4.2: A plot of the (µ,Πc) parameter plane, where the lines are drawn according to
equation (4.18) for a range of different dΠ

/
dCa values. The lines separate the stable and un-

stable regions such that stable regions are to the left of the lines. The other parameters are
χ0 = 0.25,Π0 = 55 Pg C yr−1, Ca0 = 589 Pg C and Ceq

s = 1500 Pg C.
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Figure 4.3: The equilibrium state of equation (4.11) for two values of Πc as a function ofµ. The two
values of Πc represent a no biogeochemical heating case (Πc =∞) and a biogeochemical heating
case (Πc = 308 Pg C yr−1). The other parameters were set to χ0 = 0.25, Π0 = 55 Pg C yr−1,
C1/2 = 593.6 Pg C, Ca0 = 589 Pg C, Ceq

s = 1500 Pg C.

which is the same choice as Cox, Huntingford and Jones 2006. The parameterC1/2 determines
the strength of the CO2 fertilisation effect. The value of Π∞ represents the saturation value
of NPP at high CO2 levels. As the pre-industrial NPP, Π0, is more accurately known than the
saturation value, Π∞ can be determined from Π0 using the formula

Π∞ = Π0
Ca0 + C1/2

Ca0
. (4.22)

It is now straightforward to compute the bifurcation diagram, which is plotted in figure 4.3.
The figure shows the equilibrium soil carbon as a function of µ for different values of Πc. It can
be seen that there is a transcritical bifurcation at a certain value of µ. This value of µ decreases
with decreasing Πc. The numerical calculations also reveal a stable state with large amounts of
soil carbon in addition to the pre-industrial state for large enough values of µ. The calculations
in section 4.1.3 are performed by linearising about the pre-industrial state and as such apply
only to that state, which is most scientifically relevant.
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4.2 Determining the Parameters

4.2.1 The Effective Climate Sensitivity, S
A first guess to the value of S may be the Equilibrium Climate Sensitivity, ECS, namely the
increase in global mean surface temperatures when atmospheric CO2 concentrations are
doubled (Sherwood et al. 2020). However, the pattern of warming is spatially heterogeneous,
with more warming happening over land than over oceans (Morice et al. 2021). As soil carbon
is found on land not in the oceans, it may be better to view S as the climate sensitivity over
land.

In order to determine what S should be, the soil carbon balance will be considered at every
point on the Earth’s surface. There will be a spatially varying amount of warming, ∆Ta(r, t),
which will lead to a change in global soil carbon. This will then be compared to what level
of spatially uniform warming would be required to give the same change in soil carbon. By
setting the spatially varying pattern of warming to the pattern of warming caused by doubling
CO2, the resulting effective warming will be S.

Ignoring the effects of biogeochemical heating, the spatially resolved soil carbon balance
can be written as:

∂Cs(r, t)
∂t

= Π(r, t)− r0(r)Cs(r, t)eα∆Ta(r,t), (4.23)

where r is the position on the Earth’s surface and Π, r0 and Cs are allowed to vary spatially. It
is assumed that α is constant and that there is no horizontal transport of soil carbon.

Equation (4.23) can be averaged over space. Denoting spatial averages with ⟨•⟩, this gives

d ⟨Cs⟩
dt

= ⟨Π⟩ −
〈
r0Cseα∆Ta

〉
. (4.24)

Assuming the warming (and therefore the soil carbon change) is small, the exponential can
be expanded to first order using ex ≈ 1 + x. This will not affect the behaviour of the model
as long as α∆Ta ≪ 1. Assuming Q10 = 2, this requires that ∆Ta ≪ 33 K, which is the case
for realistic amounts of climate change. This means that, to first order in ∆Ta and soil carbon
change

d ⟨Cs⟩
dt
≈ ⟨Π0 + ∆Π⟩ −

〈(
r0Ceq

s + r0∆Cs
)

(1 + α∆Ta)
〉

≈ ⟨Π0 + ∆Π⟩ − ⟨r0Ceq
s + αr0Ceq

s ∆Ta + r0∆Cs⟩ +O (∆Ta∆Cs) ,

where Π0 (r) is the local NPP when ∆Ta (r) = 0, ∆Π (r) is the local change in NPP, Ceq
s (r)

is the local equilibrium soil carbon when ∆Ta (r) = 0 and ∆Cs (r) is the local change in
soil carbon. Respiration must balance NPP in equilibrium when ∆Ta (r) = 0, so Π0 (r) =
r0 (r)Ceq

s (r). As a result, equation (4.24) can be written

d⟨Cs⟩
dt
≈ ⟨∆Π− r0∆Cs⟩ − α⟨Π0∆Ta⟩. (4.25)
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Introducing an effective temperature change ∆Teff , defined so that

−α ⟨Π0∆Ta⟩ = −α ⟨Π0⟩∆Teff (4.26)

which implies

∆Teff =
⟨Π0∆Ta⟩
⟨Π0⟩

. (4.27)

After a doubling of CO2, ∆Teff = S and ⟨∆Ta⟩ = ECS which means that

S
ECS

=
⟨Π0∆Ta⟩
⟨Π0⟩ ⟨∆Ta⟩

. (4.28)

In words, this means S is given by an NPP weighted average of global temperatures. A simple
estimate of this ratio can be made by noting that Π0 is zero over ocean. Assuming that over
land the correlation between NPP and ∆Ta is weak then

S
ECS

=
⟨Π0⟩land ⟨∆Ta⟩land
⟨Π0⟩land ⟨∆Ta⟩global

=
⟨∆T ⟩land
⟨∆T ⟩global

(4.29)

which means that S is the climate sensitivity over land, as predicted by the rough guess. The
IPCC find that there has been about 1.5 times more warming over land than over the globe as
a whole (IPCC 2021).

Equation (4.28) can be used with abrupt-4xCO2 CMIP runs (Eyring et al. 2016) to estimate
S. Taking Π0 to be the initial NPP in these simulations gives an estimate of S of around 1.5, as
will be shown in table 5.1.

4.2.2 The influence of biogeochemical heating, Πc

The quantity Πc, which measures the role of biogeochemical heating on the global carbon
cycle depends on the sensitivity of heterotrophic respiration to temperature, the heat released
by respiration and the heat transfer coefficient between the land and the atmosphere.

The first of these, α, is reasonably well known. In terms of Q10 it is α = 0.1 logQ10. Q10 is
usually taken to be about 2 (Jones 2001; Clark et al. 2011). This means that α ≈ 0.07.

The second quantity, A, can be estimated biochemically. Its value is taken to be A =
3.9× 107 J kg−1 C (Luke and Cox 2010).

The final quantity to estimate is the heat transfer coefficient between the land and the
atmosphere. This varies from region to region, depending on the land surface cover (Beringer
et al. 2001), the soil hydrology (Dharssi et al. 2009) and the soil type (Best et al. 2011). As such
an effective heat transfer coefficient will be required.

The heat transfer coefficient can be estimated from the conductivity via

κ =
2λ
∆z

(4.30)
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where ∆z is a soil thickness and λ is the conductivity. Taking the thickness ∆z = 0.1 m and the
conductivity λ = 0.227 W m−1 K−1 (Cox et al. 1999) gives a value of κ = 4.5 W m−2 K−1 and a
value of Πc = 8000 Pg C yr−1. This value is much larger than typical values of NPP and so this
biogeochemical heating effect must be small at the global scale. However, it should be noted
that κ can be smaller in, for example, well insulated mossy soils and as such the biogeochemical
heating may still be significant regionally.

4.3 Conclusions
In this chapter, I have investigated the role of biogeochemical heating at the global scale. I have
shown how the terrestrial carbon cycle is only stable for a certain parameter range, and that
biochemical heating reduces the maximum carbon-climate system sensitivity compatible with
a stable carbon cycle.

There are a number of deficiencies with this modelling approach. Firstly, the representation
of the ocean is very simple and does not capture any dynamic features of the ocean carbon cycle.
This is an issue taken up in chapter 5. Furthermore, this chapter only looks at the compost
bomb at the global scale, whereas it is more likely to be important regionally where κ and thus
Πc values may be substantially smaller. However there is no reason to believe the dependencies
on climate-carbon system sensitivity and the CO2 fertilisation effect would not hold at the
regional as well as the global scale.
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Chapter 5

The Stability of ConceptualModels
of the Carbon Cycle

In chapter 4, I adapted a result of Cox, Huntingford and Jones 2006 which showed that
there were conditions under which the pre-industrial state of the carbon-climate system
was unstable. This instability was driven by the terrestrial carbon cycle. That analysis

involved representing the effect of the ocean as taking up a fixed fraction, χ0, of carbon emissions
to the atmosphere. This neglects any dynamical role of the ocean, including processes that
occur on different timescales. Furthermore that analysis made inconsistent assumptions about
the pre-industrial climate. This chapter will update Cox, Huntingford and Jones 2006, by
constructing a model of the climate-carbon system with a dynamical ocean component that is
consistent about the pre-industrial state.

I will neglect the role of biogeochemical heating as chapter 4 found it a small effect at the
global scale.

5.1 Background

5.1.1 Climate Response to Radiative Forcing

As was outlined in chapter 1, the climate system responds to increasing levels of greenhouse gases
in the atmosphere by increasing in temperature. The radiative forcing forcing and associated
temperature rise caused by doubling the concentration of CO2 in the atmosphere is generally
assumed to be state independent. The amount of warming in the global mean caused by
doubling CO2 is known as the equilibrium climate sensitivity, ECS, and is 3.0 K with a likely
range of 2.5 K to 4.0 K (Sherwood et al. 2020; IPCC 2021). However the latest generation
CMIP6 climate models have climate sensitivities up to 5.6 K (Zelinka et al. 2020) and some
climate models can give sensitivities of over 11 K (Stainforth et al. 2005).
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It should also be noted that the warming is not globally uniform, with land warming more
than the oceans (Morice et al. 2021) and higher latitudes warming more than the tropics (Serreze
and Barry 2011). This enhanced warming in the Arctic is known as ‘Arctic amplification’. A
common approximation is ‘pattern scaling’ which related the spatially dependent warming,
∆T (r, t) to the change in global mean surface temperature ∆T (t) by a time invariant pattern
of warming, f (r), through ∆T (r, t) = f (r)∆T (t) (Huntingford and Cox 2000).

5.1.2 Terrestrial Carbon Cycle Response to CO2
Whilst the above discussion of ECS treats the amount of CO2 in the atmosphere as a given
quantity, in reality it is also affected by the climate system, which determines the fluxes of
carbon into and out of the atmosphere through biogeochemical cycles (Rothman 2014).

One important feedback is the so-called Jenkinson effect (Jenkinson, Adams and Wild
1991) which is enhanced heterotrophic respiration due to elevated surface temperatures. This
tends to increase the amount of CO2 in the atmosphere and so it is a positive feedback on
climate change.

At higher levels of CO2, the net primary productivity (NPP) of vegetation increases, this
effect is called the CO2 fertilisation effect (Wenzel et al. 2016). This tends to decrease the levels
of CO2 in the atmosphere and is thus a negative feedback on climate change.

The net effect of these two feedbacks is that the terrestrial response to CO2 is uncertain as
the sign of the response depends on the relative magnitude of these effects. Overall it is thought
that CO2 fertilisation dominates at lower CO2 levels, which is consistent with the observed
carbon sink, however at higher CO2 levels the Jenkinson effect dominates (Cox et al. 2000;
Friedlingstein et al. 2006; Arora et al. 2020).

5.1.3 Potential For Instability

Combining these two sensitivities gives the potential for an instability. Consider the following
situation. Suppose some carbon is transferred from the land to the atmosphere. Then the
Earth will warm. Due to positive feedbacks from the land more carbon will be released into the
atmosphere leading to further warming and more carbon released. This cycle could continue
until all the carbon from the land has been released into the atmosphere. However, because of
the negative feedbacks in the system (principally CO2 fertilisation) these positive feedbacks
would have to be sufficiently strong in order for this to happen.

The fact that there is carbon on land (Crowther et al. 2019) combined with the small
variation in atmospheric CO2 over the pre-industrial Holocene (Marcott et al. 2014; Bauska
et al. 2015), therefore indicates something about the magnitudes of the land carbon feedback
and the climate sensitivity, namely that they cannot be too large. To make progress analysing
this we must include the effect of the other store of carbon: the ocean.
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5.2 A Climate-CarbonCycle model using IMOGEN as
the Ocean Component

5.2.1 IMOGEN description
The land surface model JULES is often used in conjunction with IMOGEN (Huntingford et al.
2004, 2010) which is a model that ‘closes’ the carbon cycle in that it provides an atmospheric
and oceanic response to changes in terrestrial carbon. In this chapter, the ocean component of
IMOGEN will be isolated. The ocean component is based on the model of Joos et al. 1996
which represents ocean carbon in terms of an impulse response to atmospheric CO2.

It calculates the changes in dissolved inorganic carbon in the surface water as

δΣCO2 =
∫ t

0
Fa(t − s)GI (s) ds . (5.1)

where Fa is the atmosphere to ocean flux of carbon and GI is IMOGEN’s impulse-response
function. This function is defined as

GI (t) =

{
1− 2.2617t + 14.002t2 − 48.770t3 t ≤ 1 yr
f0 +

∑5
i=1 fie−t/ τi t > 1 yr

(5.2)

where f0 = 0.014819, f1 = 0.70367, f2 = 0.24966, f3 = 0.066485, f4 = 0.038344, f5 =
0.019439 and τ1 = 0.70177, τ2 = 2.3488, τ3 = 15.281, τ4 = 65.359, τ5 = 347.55, the τi have
units of years. This function is dimensionless and plotted in figure 5.1.

The carbon flux is given by

Fa(t) = k (∆Ca − ∆Co) (5.3)

where ∆Ca and ∆Co are the perturbations in atmospheric and ocean carbon. To take into
account ocean temperature feedbacks on the ocean carbon cycle ∆Co and δΣCO2 are related
by

∆Co = g(To, δΣCO2)e0.0423∆To (5.4)

where To is the initial ocean temperature, ∆To is the change in ocean temperature and g is a
quintic polynomial in δΣCO2 whose coefficients depend on To.

5.2.2 Terrestrial Carbon Cycle
The total carbon in the carbon cycle is a constant given by C = Cs + Ca + Co where Cs is the
soil carbon, Ca is the atmospheric carbon and Co is the ocean carbon. Therefore to close the
system, given the ocean dynamics, only the land carbon dynamics need to be set, with the
dynamics of atmospheric carbon being controlled by this conservation law.
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Figure 5.1: The impulse-response function for the ocean carbon uptake in IMOGEN, described
by equation (5.2). The function is discontinuous at t = 1 yr. The dotted line indicates this
discontinuity. Note the differences in scales on both the x and y axes either side of this discontinuity.
On the left of the discontinuity, the scale is linear, but it is logarithmic to the right.
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The change in soil carbon is given by the difference between net primary productivity and
heterotrophic respiration. Heterotrophic respiration is assumed to have the following form:

Rh = r0CsQ∆Ta/ 10
10 = r0Cseα∆Ta (5.5)

where ∆Ta is the change in atmospheric temperature, r0 is a reference respiration level and
α = 0.1 logQ10 is the strength of the temperature feedback.

It is assumed that ∆Ta depends logarithmically on atmospheric carbon

∆Ta =
S

log 2
log

Ca

Ca0
(5.6)

where Ca0 is a reference CO2 level, set at 589 Pg C, which is approximately the pre-industrial
level of CO2 (Lade et al. 2018). The parameter S is an NPP weighted climate sensitivity, as
shown in chapter 4. This could be larger than ECS by a factor of about 1.5, estimates of S/ECS
are given in table 5.1. Equation (5.5) can be combined with equation (5.5) to give

Rh = r0Cse
αS

log 2 log Ca
Ca0 = r0Cs exp

(
log

((
Ca

Ca0

) αS
log 2
))

(5.7)

or

Rh = r0Cs

(
Ca

Ca0

)µ

(5.8)

where

µ =
1

log 2
αS. (5.9)

Following Cox, Huntingford and Jones 2006, net primary productivity is modelled as

Π(Ca) = Π∞
Ca

Ca + C1/2
, (5.10)

which is an increasing function of CO2 that saturates for Ca ≫ C1/2. Unless otherwise
stated, C1/2 = 280 ppm, which is compatible with other estimates (Kolby Smith et al. 2016;
Wenzel et al. 2016). This parameter controls the strength of the CO2 fertilisation feedback.
Equation (5.10) assumes that net primary productivity depends only on CO2. Allowing for
other factors like nitrogen limitation would act to reduce the effective C1/2 value. Π∞ is set so
that Π0 = Π(Ca0) is the pre-industrial level of net primary productivity 55 Pg C yr−1 (Lade
et al. 2018).
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CMIP5 CMIP6
Model S/ECS Model S/ECS

BCC-CSM1-1 1.1 BCC-CSM2-MR 1.4
BCC-CSM1-1-M 1.4 BCC-ESM1 1.2
BNU-ESM 1.4 CanESM5 1.2
CanESM2 1.4 CAS-ESM2-0 1.4
IPSL-CM5A-LR 1.6 CESM2 1.1
IPSL-CM5A-MR 1.7 CESM2-FV2 1.3
IPSL-CM5B-LR 1.7 CESM2-WACCM 1.3
MIROC-ESM 1.6 CESM2-WACCM-FV2 1.2
HadGEM2-ES 1.3 CMCC-CM2-SR5 1.6
MPI-ESM-LR 1.4 CMCC-ESM2 1.6
MPI-ESM-MR 1.5 GFDL-ESM4 1.3
MPI-ESM-P 1.6 NorCPM1 1.2
GISS-E2-H 1.5 GISS-E2-1-G 1.5
GISS-E2-R 1.6 GISS-E2-1-H 1.5
CCSM4 1.3 GISS-E2-2-G 1.4
NorESM1-M 1.3 GISS-E2-2-H 1.5
GFDL-ESM2G 1.6 INM-CM4-8 1.4
GFDL-ESM2M 1.5 INM-CM5-0 1.4

IPSL-CM5A2-INCA 1.9
IPSL-CM6A-LR 1.2
NorESM2-LM 1.2
NorESM2-MM 1.3
TaiESM1 1.3
UKESM1-0-LL 1.3

Ensemble Mean 1.5± 0.2 Ensemble Mean 1.4± 0.2

Table 5.1: Estimates of the ratio of S to ECS for CMIP5 and CMIP6 models, calculated by the
methodology described in chapter 4. The ensemble mean is given plus or minus one standard
deviation.
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Putting this all together leads to the following set of coupled differential equations:

dCs

dt
= Π(Ca)− Csr0

(
Ca

Ca0

)µ

(5.11a)

dCo

dt
= I(Ca,∆To, Co) (5.11b)

Ca = C − Cs − Co (5.11c)

∆To =
1
ν

S
log 2

log
Ca

Ca0
. (5.11d)

As the dynamics are highly non-trivial, the function I has been used to represent the IMO-
GEN model. ∆To is the change in ocean temperature which is related to the change in land
temperature by the factor ν = 1.45. Note that S and Q10 (through µ) appear separately in this
equation, so both parameters will affect the bifurcation point.

Note that there is an equilibrium at Ca = Ca0, Cs = Ceq
s = Π(Ca0)/ r0, Co = 0, ∆To =

0, corresponding to the pre-industrial equilibrium, which has been experienced only small
variations over the (pre-industrial) Holocene.

The realism of this model could be challenged. Firstly, atmospheric and ocean temperatures
do not adjust instantaneously to changes in atmospheric CO2. Secondly, I have neglected
any temperature dependence on NPP as well as the spatial structure of the land response.
Furthermore, IMOGEN’s representation of ocean carbon is not ‘processed based’, but is
instead based on fitting an impulse-response function to a GCM. As such, it is hard to give a
physical explanation for the precise functional form chosen. However, it has been found that
this functional form gives a good representation for ocean carbon uptake (Joos et al. 1996).

5.2.3 Bifurcations in IMOGEN
Equation (5.11) is solved for a range of values of S withQ10 = 2. The system was initialised close
to equilibrium and then allowed to equilibrate over 5000 years. The results for atmospheric
carbon are plotted in figure 5.2 and other carbon cycle quantities in figure 5.4. For values of S
between 10 K to 11 K there is a transition to oscillatory behaviour. In section 5.5 this will be
shown to be caused by a Hopf bifurcation. This represents very pronounced climate change,
possibly putting the system in a state far from states the model was designed to handle. As
such, the validity of the model for these larger values of S should be questioned.

To scan the parameter space, this IMOGEN model was used to estimate the critical S as
a function of Q10 and C1/2, the parameter that controls the CO2 fertilisation effect. This is
plotted in figure 5.3.

As some CMIP6 models have an S ≈ 9 K this imposes limits on the strength of their
carbon cycle feedbacks. Furthermore, because these models are near this bifurcation point,
they will be subject to critical slowing down. This could lead to unrealistic CO2 variability,
even if they are in the non-oscillatory branch of the carbon cycle.
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Figure 5.2: Atmospheric carbon calculated with the IMOGEN model given by equation (5.11) for
a range of S values, with Q10 = 2. Overlaid are measurements of early Holocene (10 000 yr BP to
5000 yr BP) CO2 levels, taken from Bereiter et al. 2015. Note that large S values lead to behaviour
incompatible with the observed atmospheric CO2 record.
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Figure 5.3: A contour plot showing the value of S as a function of Q10 (the temperature depend-
ence of respiration) and C1/2 (the strength of the CO2 fertilisation feedback) at which the Hopf
bifurcation occurs in equation (5.11). Values of S larger than this are incompatible with the observed
behaviour of the carbon cycle.
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Figure 5.4: Soil carbon, ocean carbon change, global temperature change, NPP and heterotrophic
respiration calculated with the IMOGEN model for a range of S values, with Q10 = 2. Large
S values give behaviours incompatible with the observed behaviour of the carbon cycle over the
Holocene.
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Despite the simplicity of this model, it is still too complex to analyse mathematically. In the
next section a simplified model will be developed to enable this bifurcation to be investigated
further.

5.3 A Simpler OceanModel
This simpler model will neglect temperature feedbacks on the ocean response. Further assumed
is that the ocean carbon carbon uptake can be viewed as N non-interacting boxes which each
respond over a timescale τi where i indexes the boxes. A fraction fi of the total carbon flux will
enter the ith box. These assumptions can be justified in that they represent a simplification of
the IMOGEN model and can be used to fit the observed ocean carbon uptake, which is done
in section 5.6.1.

The model is as follows: the change in carbon stored in the ith box, Ci, is given by

dCi

dt
= fik∆Ca(t)− Ci

τi
, (5.12)

where k = 0.2 yr−1 gives the timescale of the ocean uptake and ∆Ca is the change in atmospheric
carbon from its equilibrium value.

For a given Ca(t) equation (5.12) can be solved in quadratures to give

Ci(t) =
∫ t

0
fike−s/ τi∆Ca(t − s) ds , (5.13)

where Ci(0) = 0.
The overall ocean response is therefore

∆Co(t) =
N∑

i=1

∫ t

0
fike−s/ τi∆Ca(t − s) ds . (5.14)

or
∆Co(t) =

∫ t

0
G(s)∆Ca(t − s) ds (5.15)

where

G(t) =
N∑

i=1

fike−t/ τi (5.16)

is the impulse response function for the uptake of ocean carbon. It is assumed that ∆Ca(t) = 0
for t < 0, and thus the lower bound of integration can be set to zero. Equation (5.16) is similar
to equation (5.2), except the short term behaviour differs qualitatively and there is no nonlinear
dependence on ocean carbon.

105



5.4. One Box Ocean

5.4 One Box Ocean
The simplest possible ocean box model is a one box model. This will be analysed first to see if
it can reproduce the results of the IMOGEN model.

The one box model can be written symbolically through the following set of ODEs

dCs

dt
= Π(Ca)− r0Cs

(
Ca

Ca0

)µ

(5.17a)

dCo

dt
= k(Ca − Ca0)− Co

τ
(5.17b)

Ca = C − Cs − Co. (5.17c)

Note that unlike the IMOGEN case the dependence on Q10 and S is combined into one
parameter µ. Again, there is a fixed point at Ca = Ca0, Co = 0 and Cs = Ceq

s . It will be shown
that under suitable conditions there is another fixed point.

5.4.1 Stability of Pre-industrial State in the One Box Ocean
Model

As shown in section 2.1.1, a fixed point of a system is unstable when the Jacobian, J , of that
system evaluated at the fixed point has an eigenvalue, γ, with a positive real part. The Jacobian
of equation (5.17) is given by

J =

(
r0

(
µC

eq
s

Ca0
− 1
)
−Π′(Ca0) µC

eq
s

Ca0
−Π′(Ca0)

−k −k− 1
τ

)
(5.18)

where Π′(Ca) denotes the derivative of NPP with respect to atmospheric carbon.
To find the eigenvalues of the Jacobian, the characteristic polynomial

det
(
J − γI

)
= 0 (5.19)

must be solved for γ.
This equation is quadratic and therefore has two roots. Solving it leads to a solution of the

form:

γ± =
B±
√
D

2τCa0
(5.20)

where
B = −kτCa0 −Π′(Ca0)τCa0 − r0τCa0 − Ca0 + µΠ0τ (5.21)

and

D = C2
a0τ

2

((
k + Π′ + r0 +

1
τ
− µΠ0

Ca0

)2

− 4
τ

(
kr0τ + Π′ + r0 −

µΠ0

Ca0

))
(5.22)
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is the discriminant and the substitution Π0 = r0C
eq
s has been made.

The stability of this system is governed by Re γ. This number is controlled by the sign of
D. If D > 0, then γ is purely real, but if D < 0, then Re γ = B/2τCa0.

5.4.2 Real Eigenvalues

If τ < 1/ r0 then D > 0 for all values of µ. As 1/ r0 = Ceq
s /Π0 ≈ 30 yr this situation represents

a relatively fast ocean response. Under this assumption, it turns out that γ+ > 0 when

µ∗ =
Ca0

Ceq
s

+
Ca0

Π0

dΠ
dCa

+
Ca0

Ceq
s
kτ. (5.23)

It is interesting to compare this to the condition given in equation (4.19). If the parameter χ0 is
introduced, as by Cox, Huntingford and Jones 2006, and set to χ0 = kτ, then equation (5.23)
is identical to equation (4.19). This gives an interpretation to χ0 as the ratio of the timescale
of the ocean carbon flux to the timescale of its response. Previously, χ0 was interpreted as a
fraction. This can be done only if τ < 1/ k = 5 yr.

The system equation (5.17) is integrated to equilibrium and the equilibria are plotted as
a function of µ in figure 5.5, with τ = 3.7 yr. The dashed line represents the position of the
analytically calculated bifurcation point. It can been seen that the agreement is good, and that
this is a transcritical bifurcation.

5.4.3 Complex Eigenvalues
In the case where the ocean timescale is larger than 1/ r0, then D < 0. This means if the ocean
response is considered to have a long timescale, the stability of the system is given by the sign
of B.

The value of B will become positive when µ exceeds the following threshold:

µ∗ =
Ca0

Ceq
s

+
Ca0

Π0

dΠ
dCa

+
Ca0

Ceq
s
kτ
(

1 +
1
kτ

)
1
r0τ

(5.24)

This is similar to the conditions derived in equations (4.19) and (5.23) except now χ0 =
kτ
(

1 + 1
kτ

) 1
r0τ ≈ k/ r0 where the approximation assumes k ≫ r0. This means the “frac-

tion absorbed by the oceans” is now controlled by the ratio of the timescale of the ocean flux to
the turnover time of the soil. Furthermore because k > r0, then χ0 will be larger than 1. This
means that χ0 can’t be interpreted as a fraction of carbon absorbed any more. In addition, be-
cause γ is complex, this bifurcation occurs when the complex conjugate eigenvalue pair crosses
the imaginary axis. This means this bifurcation is a Hopf bifurcation rather than a transcritical
bifurcation. For the case where τ = 300 yr equation (5.17) was integrated numerically and the
equilibrium was found as a function of µ, which is plotted in figure 5.6. Where the equilibrium
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Figure 5.5: Equilibrium levels of soil carbon as a function of µ for the one box ocean model,
equation (5.17), calculated numerically. The ocean timescale is 3.7 yr, which is in the fast ocean
response regime. The dashed line is the analytically calculated bifurcation point, equation (5.23).
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Figure 5.6: Equilibrium levels of soil carbon as a function of µ for the one box ocean model,
equation (5.17), calculated numerically. The ocean timescale is 300 yr, which is in the slow ocean
response regime. The dashed line is the analytically calculated bifurcation point, equation (5.24).
Solid black lines represent a steady state condition, whereas red lines show that maximum and
minimum of an oscillatory state. The oscillation period increases almost linearly with µ from
around 23 yr to 112 yr.
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is an oscillation rather than a steady state the plot shows the maximum and minimum of the
oscillation in red. It can be seen that the agreement with the numerics is good.

Based on the conditions derived in equations (5.23) and (5.24) the critical value of µ can
be chosen to match the bifurcation point predicted by the IMOGEN model. This involves
choosing τ = 2.23 yr. This puts the ocean into the fast regime, and therefore a transcritical
bifurcation. This is a different sort of bifurcation to the one found in IMOGEN and so
motivates increasing the complexity of the ocean model slightly.

5.5 Two BoxModel
To improve the realism of the model, the two box ocean case is now considered. In order to
do this equation (5.17) must be modified to include two ocean stores of carbon C1 and C2.
Each box will have their own timescale τ and τ/ ε respectively. This notation is suggestive of C1
responding quickly and C2 responding slowly to increased atmospheric carbon, although this
restriction is not necessary.

This leads to the following system of equations:

dCs

dt
= Π(Ca)− r0Cs

(
Ca

Ca0

)µ

(5.25a)

dC1

dt
= fk(Ca − Ca0)− C1

τ
(5.25b)

dC2

dt
= (1− f )k(Ca − Ca0)− ε

C2

τ
(5.25c)

Ca = C − Cs − C1 − C2. (5.25d)

Again note the equilibrium at Ca = Ca0,Cs = Ceq
s and C1 = C2 = 0. To determine the

stability of this state the eigenvalues of the Jacobian of equation (5.25) must be computed,
which involves finding the roots of a cubic characteristic polynomial. Whilst this is possible in
principle it is analytically very challenging.

To avoid this therefore some heuristic arguments are given as to why a Hopf bifurcation
occurs at a critical value of µ. A special case of the characteristic polynomial of the Jacobian
is solved, which corresponds to assuming the existence of a Hopf bifurcation. Under this
assumption critical values of µ are found at which a Hopf bifurcation could occur, which is
then verified with a numerical investigation.

5.5.1 A Heuristic Argument
For this section, it will be assumed that C2 has a slow response to a given atmospheric CO2
forcing, when compared to C1. This implies that ε ≪ 1. Ignoring equation (5.25b), it has
already been shown in section 5.4.3 that a system with a slow ocean response will undergo a
Hopf bifurcation at a critical value of µ.
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Mechanistically, this happens because the instability leads to the soil releasing its carbon to
the atmosphere. The ocean box can then draw down the excess carbon from the atmosphere,
which cools the climate and allows carbon to accumulate on land again. Eventually, enough
carbon will have accumulated in the soils that the state becomes unstable and it will be released
back into the atmosphere, starting the cycle again.

Taking into account equation (5.25b), this will tend to increase the draw down of atmo-
spheric carbon, thus potentially stabilising the system. However it seems reasonable to expect
that the above mechanism will not be totally disrupted and therefore a Hopf bifurcation might
still be expected.

5.5.2 Computation of Bifurcation Point
If the assumption that there is a Hopf bifurcation can be made, then there is another mode of
attack. At the Hopf bifurcation a pair of complex conjugate eigenvalues cross the imaginary axis
from the negative real part side to the positive real part side. This means that at the bifurcation,
the eigenvalues are purely imaginary. It is comparatively easy to solve a cubic equation under
the assumption of imaginary roots.

The characteristic polynomial of the Jacobian of equation (5.25) will be of the form

γ3 + a1γ2 + a2γ + a3 = 0, (5.26)

where γ is an eigenvalue. As has been stated, at the Hopf bifurcation, γ is purely imaginary so
the substitution γ = iλ with λ ∈ R can be made. Then equation (5.26) becomes

−iλ3 − a1λ2 + ia2λ + a3 = 0. (5.27)

For this equation to be satisfied, both real and imaginary parts of equation (5.27) must be zero.
This leads to λ = ±√a3/ a1 and λ = ±√a2. For consistency, these expressions for λ must be
equal. This requires that a3 = a1a2. Alternatively, both expressions for λ can be satisfied if
λ = 0. However, this leads to γ = 0 which has no non-zero imaginary part and so cannot lead
to oscillatory solutions and thus is not consistent with the assumption that there is a Hopf
bifurcation.

The condition a1a2 = a3 can now be solved for µ. Doing this gives two solutions.

µ∗ =
Ca0

2Π0τ(1 + ε)

(
M1 ±

√
M2

)
, (5.28)

where
M1 = −fkτ(1− ε) + r0τ(2 + kτ + 2ε)+

kτ(2 + ε) + (1 + ε)(1 + 2Π′τ + ε)
(5.29)

and

(5.30)M2 = f 2k2τ2(1− ε)2 − 2fkτ(1− ε)
(
r0τ(kτ + 2ε + 2)− kτε− (1 + ε)2)

+
(

1 + kr0τ2 − kτε− ε2)2 .
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Equation (5.28) is very unwieldy but in the case of a timescale separation where ε≪ 1, a
zeroth order approximation for equation (5.28) can be derived. It is given by

µ∗ ∼Ca0

Π0

(
1

2τ
+ k(1− 1

2
f +

1
2
r0τ) + r0 + Π′

± 1
2

√
1
τ2 +

2kf
τ

+ k(kf 2 + 2(1− 2f )r0 − 2kr0τf + kr2
0τ2)

) (5.31)

as ε→ 0. Note that there are 2 values of µ that satisfy the consistency condition and so there
could be two Hopf bifurcations. It can be further noted that in the case where ε = 0 and f = 1
then equation (5.28) should reduce to the one box condition. Performing this analysis gives

µ∗± =
Ca0
(
±
(
−kr0τ2 + kτ + 1

)
+ r0τ(kτ + 2) + kτ + 2Π′τ + 1

)

2Π0τ
(5.32)

or

µ∗+ =
Ca0

Ceq
s

+
Ca0

Π0

dΠ
dCa

+
Ca0

Ceq
s

(
k
r0

+
τ−1

r0

)
(5.33)

µ∗− =
Ca0

Ceq
s

+
Ca0

Π0

dΠ
dCa

+
Ca0

Ceq
s
kτ (5.34)

which does indeed correspond to the conditions (equations (5.23) and (5.24)) derived for the
one box case.

5.5.3 Numerical Results
To test if the value of µ in equation (5.28) does give rise to a Hopf bifurcation, equation (5.25)
was integrated with f = 0.5, τ = 0.45 and ε = 0.004. Furthermore the eigenvalues of the
Jacobian were numerically computed for a range of values of µ. The eigenvalues of the Jacobian
are plotted in figure 5.7, which show the eigenvalues crossing the imaginary axis at the predicted
bifurcation point, µ−. Furthermore, the equilibrium soil carbon state is plotted in figure 5.8.
For µ ⪅ 2.1, the system is in a quiescent state, in which the state variables do not change with
time. For larger values of µ, carbon moves between the soil, the atmosphere and the ocean
boxes in an oscillatory fashion, with temperature oscillating in phase with atmospheric carbon.
It can be seen that the bifurcation corresponds to the theoretical prediction. No bifurcation
was found at µ+. This could be because µ+ represents a spurious solution. Alternatively there
could be other parameters for which µ+ represents a real bifurcation. In any case as µ+ > µ−,
the bifurcation at µ− will have more relevance to the climate system.

It can be seen therefore that the two box model is complex enough to reproduce the
behaviour of the IMOGEN model but simple enough to be analytically tractable.
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Figure 5.7: The eigenvalues of the Jacobian of the two box model equation (5.25) plotted in the
complex plane as a function of µ. The colour of the eigenvalue is given by the value of µ. The
colour scheme has been chosen so that the colours transition from blue to red at the bifurcation
point µ− given by equation (5.28). This shows the eigenvalues crossing the imaginary axis at the
predicted point, which is where the Hopf Bifurcation happens.
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Figure 5.8: Equilibrium levels of soil carbon as a function of µ for the two box ocean model,
equation (5.25), calculated numerically. The ocean parameters are τ = 0.45 yr, ε = 0.004 and
f = 0.5. The dashed line is the analytically calculated bifurcation point, µ− given by equation (5.28).
Solid black lines represent a steady state condition, whereas red lines show the maximum and
minimum of an oscillatory state. The oscillation period increases almost linearly with µ from
around 23 yr to 64 yr. These periods are comparable, at least near the critical value of µ, with those
predicted by the imaginary part of the eigenvalues of the Jacobian, plotted in figure 5.7.
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Figure 5.9: A comparison of the bifurcation diagrams of the IMOGEN, one box and two box
models. Ocean parameters have been chosen so that the bifurcation happens at the same value of
S. Q10 has been set to 2. Black lines represent a steady state condition, whereas red lines show that
maximum and minimum of an oscillatory state. The solid lines are the values for IMOGEN, the
dotted lines are for the one box model and the dashed lines are for the two box model. IMOGEN
and the two box model undergo a Hopf bifurcation at S ≈ 10.5 K, whereas the one box model
undergoes a transcritical bifurcation here. The oscillation period for the two box model increases
linearly with S from 34 yr to 77 yr. The oscillation period for the IMOGEN model shows little
variation with S, having an oscillation period of 1250 yr.

5.6 Model Comparison

In this chapter, the ocean component of the Earth’s carbon cycle has been represented in three
different ways: by a one-box, a two-box and as a more complex model. Each model suggests
the carbon cycle has bifurcations for large enough values of the climate sensitivity. In this next
figure, figure 5.9 the equilibria are plotted for each model. The ocean parameters have been
chosen so that the bifurcation occurs at the same point. For the one box model, this involved
setting τ = 2.34 yr. For the two box model there was more freedom in the parameter choice.
The choice τ1 = 0.1 yr, f = 0.92 and ε = 1.6× 10−5 was made.

Unlike the other two models, the one box model does not give any oscillatory behaviour.
The two box model gives oscillations for all values of S above a threshold, whereas IMOGEN

115



5.6. Model Comparison

Parameter Estimated Quantity

One Box Two Box

τ1 3.7 yr 0.5 yr
τ2 124 yr
f1 1 0.9
f2 0 0.1

Table 5.2: Parameter Estimates for one and two box ocean models.

shuts the oscillations down at large enough S, and no carbon is found in the atmosphere.
However the two box model and IMOGEN give qualitative agreement on the amplitude of
the limit cycles beyond the bifurcation point.

5.6.1 Ocean Parameter Estimation

Equation (5.14) can be fitted to observed changes in ocean carbon to estimate the parameters fi
and τi in the N -box models. This is done for the one box model, in which only τ1 needs to be
estimated and for the two box model where τ1,τ2 and f1 must be estimated. The quantity f2 is
determined by the requirement that f1 + f2 = 1.

Using equation (5.14), the ocean carbon uptake for an atmospheric CO2 time series can
be computed for given values of τi and fi. The Global Carbon Budget (Friedlingstein et al.
2022) provide estimates of the ocean carbon uptake as well as the increase atmospheric carbon
dioxide, which is ultimately caused by anthropogenic activities, from the year 1781 onwards.
Assuming ∆Co = ∆Ca = 0 before 1781, a least squares fit of the Global Carbon Budget data
can be performed to equation (5.14) to estimate the parameters τ1 for the one box model, as
well as τ1, τ2 and f1 for the two box model. These parameter estimates are shown in table 5.2.

These fits are plotted in figure 5.10. It can be seen that both one and two box models do a
reasonable job in capturing the historical record of ocean carbon uptake. However the two
box model does better, although this to to be expected given the two extra parameters.

These parameters can also be compared to the ones used to make the bifurcation point in
IMOGEN line up with the bifurcation points in the one and two box models. In the one box
model case, the single parameter τ1 is close to that used to match the IMOGEN case. In the
two box case, parameters τ1 and f1 are similar, however the second timescale obtained from
observations is much shorter.

That the second timescale obtained from observations is much shorter than required to
make the bifurcation points in the two box and IMOGEN models match may imply that the
record is not long enough to allow all the relevant timescales to be resolved. Furthermore,
given that the IMOGEN ocean carbon model is able to accurately represent the observed
ocean uptake (Joos et al. 1996), this might suggest that the extra factors accounted for by
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Figure 5.10: The fit of equation (5.14) to the ocean carbon uptake estimated by the Global Carbon
Budget using one and two box models. The fitted parameters are given in table 5.2. The driving
atmospheric CO2 is plotted in the top panel, and the ocean uptake in the lower panel. Both one
and two boxes give decent fits to the data but the two box model gives a better fit.
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IMOGEN (such as the extra time scales and the non-linearities) may be important to get a
Hopf bifurcation near to 10.5 K.

5.7 Conclusion
In this chapter I have taken a simple but physically motivated model of the carbon cycle and
shown that only certain parameter values are compatible with the qualitative behaviour of
the terrestrial carbon cycle during the Holocene. In particular these parameters relate to key
sensitivities in the Earth system: the climate sensitivity, the sensitivity of terrestrial carbon
to temperature and the sensitivities of net primary production to CO2. In this model I find
that the negative feedbacks on the system (namely changes in net primary production due
to increased CO2) must be sufficiently strong enough to offset the positive feedbacks (the
Jenkinson effect).

For realistic parameters of Q10 = 2 and C1/2 = 280 ppm, the critical value of S which leads
to an instability is 10.7 K. This is similar to, but larger than, the Cox, Huntingford and Jones
2006 critical value of 9 K, a difference which can be attributed to the simplified representation
of the ocean in that paper.

Although this model was relatively simple, the ocean component is still too complex to
handle analytically. I simplified the ocean model down to a box model of the oceans, which
meant I could derive exact results about the bifurcation. I found that a single box could recreate
the oscillatory behaviour seen for large enough climate sensitivities, however it did not do this
at the correct bifurcation point. On the other hand, a two box model could reproduce the
oscillations at the correct bifurcation point.

I could then fit the box models to the observed carbon uptake by the oceans to estimate
what parameters best fit the observations. These parameters are similar to those found in the
more complex model, although they disagree on the position of the bifurcation.
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Chapter 6

Spatial EarlyWarning Signals

Earlier in this thesis, specific examples of tipping points were examined. There is much
interest in creating monitoring systems to determine how close these and other tipping
points are to being triggered. One proposed way to do this is with Early Warning Signals.

These Early Warning Signals assume the system is forced slowly compared to its timescale.
However in the case of many systems of interest, the forcing (climate change) is fast relative to
the system’s own dynamics. In this chapter I will try to produce Early Warning Signals more
appropriate to this case.

6.1 Fast and SlowTipping Elements

An open question in the theory of Early Warning Signals is how to modify them to be ap-
propriate to the case when the control parameter of a system changes quickly relative to the
timescale of the system (Bolt, Nes and Scheffer 2021). To formalise what is meant by a control
parameter changing rapidly relative to the system, consider the system

dy
dt

=
f (y, rt)
T

(6.1)

where y is the system state, T is a characteristic timescale of the system and r is the rate the
system is linearly forced at. Assume that the partial derivatives of f are of order one. There is
an associated frozen system

dy
dt

=
f (y, µ)
T

(6.2)

where µ is a constant control parameter. Suppose further than there is a bifurcation in the
frozen system when µ = µ∗, which corresponds to a tipping point in equation (6.1) at time
t = t∗ (i.e. when the forcing reaches a magnitude of rt∗ = µ∗). By considering the ratio of the
system’s timescale T , to forcing timescale, 1/ r, the parameter ε = rT can be defined. Time can
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be rescaled through t = Ts so that equation (6.1) becomes

dy
ds

= f (y, εs). (6.3)

Alternatively, this can be rewritten autonomously as

dy
ds

= f (y, µ) (6.4a)

dµ
ds

= ε. (6.4b)

An important limit is the small ε limit. This corresponds to small r, which means the
system is forced very slowly, or equivalently to large T — which means the system responds
very slowly to forcing. In this limit, equation (6.4) is a fast-slow system (Kuehn 2011) and the
usual tools of bifurcation theory can be applied without too much difficulty. In this case, rises
in the autocorrelation and variance of fluctuations about the system’s quasi-static equilibrium
state are to be expected as the tipping point is approached (Scheffer et al. 2009).

In the case of climate change, systems to which this small ε limit applies are known as fast
tipping elements. An example of a fast tipping element is the Amazon rainforest (Ritchie et al.
2021).

There also exist slow tipping elements in which ε is not small. It is difficult to get good early
warning signals using the variance and autocorrelation techniques (Bolt, Nes and Scheffer
2021). Unfortunately these systems which respond slowly to forcing, such as the Greenland ice
sheet (Ritchie et al. 2021), are common in the Earth system.

The reason slow tipping elements are common in the Earth system is because the rate of
global warming is fast, on the order of 1 K per century (Osborn et al. 2021), which is a rate
unprecedented in at least the last 2000 years (IPCC 2021). Many important tipping elements
have timescales of centuries or longer (Lenton et al. 2008; Armstrong McKay et al. 2022). This
implies that, for tipping elements subject to anthropogenic climate change, ε is unlikely to be
small, as shown in table 6.1. This motivates the development of Early Warning Signals that are
reliable for systems with larger values of ε.

One way to understand the problems with Early Warning Signals for slow tipping elements
is to recognise that the equilibrium implied by the changing forcing is changing significantly
over the sliding windows used to calculate the Early Warning Indicators. Although it may
be possible to make the sliding window shorter, this will increase the uncertainties on any
statistical estimate. Furthermore, the sliding window must be large enough to resolve the
critical dynamics of the system, which are themselves slowing down, and so will eventually
occur on timescales larger than the sliding window. A potential way to avoid this problem
is to try to make ‘instantaneous’ measurements of the variance and autocorrelation of the
fluctuations about equilibrium. This could be done by calculating these statistics over space
instead of over time.
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Tipping Element System Timescale (years) Estimated ε

Greenland Ice Sheet 1000–15 000 20–300
West Antarctic Ice Sheet 500–13 000 10–260
Boreal Permafrost 100–300 2–6
AMOC 15–300 0.3–6
Amazon Rainforest 50–200 1–4
Southern Polar Gyre Convection 5–50 0.1–1

Table 6.1: Estimates of ε values for a subset of tipping elements using the estimated timescales
in Armstrong McKay et al. 2022. The forcing timescale was chosen to be 50 yr. Assuming a current
level of warming of around 1 K, if temperatures increase by 1 K over the forcing timescale then this
choice of timescale corresponds to around 3 K of warming by the end of the century. This is about
the level of warming expected under current policies (Rogelj et al. 2023).

Spatial early warning signals have been studied before. Donangelo et al. 2010 compared
spatial and temporal early warning signals, finding that the spatial variance can give an earlier
early warning than the temporal variance. Another study (Kéfi et al. 2014) found rising memory,
variability and changes to patchiness were all spatial indicators of an upcoming transition.
A range of studies have applied spatial early warnings to ecological problems (Guttal and
Jayaprakash 2009; Carpenter and Brock 2010; Dakos et al. 2011). Spatial early warning signals
have even been applied to observational data (Kéfi et al. 2007; Eby et al. 2017; Tirabassi and
Masoller 2023). It should be noted that recent high profile applications to the Earth system
(Boers 2021; Boers and Rypdal 2021; Boulton, Lenton and Boers 2022; Ditlevsen and Ditlevsen
2023) have all involved temporal rather than spatial indicators, even though spatially resolved
data was used.

6.2 The System

In order to investigate spatial early warning signals a specific system will be examined. This
system will be chosen to be generic enough that broader conclusions can be drawn. The system
will be made as simple as possible to aid in the analysis.

As outlined in section 2.1.1 near a B-tipping point many systems are governed by similar
one-dimensional dynamics, which motivates the introduction of one dependent variable y.
In one dimension there is only one generic type of bifurcation giving rise to catastrophic
transitions, the saddle node (Thompson, Stewart and Ueda 1994). The saddle node normal
form is ẏ = µ− y2, however y diverges for µ < 0. Therefore to keep y finite and the dynamics
simple, the system to be investigated will contain only the lowest order terms which give a
saddle node and bounded dynamics, namely ẏ = y− y3/3− µ, where µ is a control parameter.

To take into account the spatial nature of the problem a coupling in space must be con-
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sidered. Attention will be restricted to a 1 dimensional periodic domain of length L. To couple
in space the well studied diffusive coupling is used; this acts to smooth out the value of y over
the domain. Such a diffusive form has found numerous uses in climate and ecological models.
For example, it has been used in energy balance models for the global temperature (Ghil 1976),
ecosystem pattern formation (Gowda, Riecke and Silber 2014; Bastiaansen et al. 2018) and in
continuum models of the compost bomb (Clarke et al. 2021).

Noise will be introduced into the system and the control parameter, µ, will change linearly
with time. These considerations combine to motivate studying

∂y
∂t

= y− 1
3
y3 − µ + D

∂2y
∂x2 + σζ (6.5a)

dµ
dt

= ε (6.5b)

where ζ is delta-correlated noise with mean

E [ζ (x, t)] = 0 (6.6)

and covariance
E
[
ζ (x, t) ζ (x′, t′)

]
= δ(x − x′)δ(t − t′) (6.7)

The parameter σ2 is the variance of the noise, and D gives the strength of the spatial coupling.
The variable µ linearly increases between µ = 0 and µ = 1 and so the system will undergo a
saddle node bifurcation at µ = 2/3.

Whilst the spatially uncoupled system is bistable, travelling waves (Leemput, Nes and
Scheffer 2015) generated by noise induced transitions between the two states will destroy the
bistability in the spatially coupled system. The timescale of these transitions in the coupled
system can be estimated from the Kramers’ escape time in the uncoupled system. If σ = 0.1,
then the Kramers’ escape time (equation (2.28)) for the uncoupled system is 1064 for µ = 0, far
longer than any simulation performed in this chapter. This means that although the system is
not formally bistable, it is effectively bistable on relevant timescales.

This system, equation (6.5), can be viewed variationally1. The deterministic dynamics can
be related to the ‘energy’ of the system, defined as

E =
∫ L

0
− 1

2
y2 +

1
12
y4 + µy +

1
2
D
(
∂y
∂x

)2

dx. (6.8)

This gives further justification for using a diffusive coupling in the following sense. Suppose
a general E was written as a power series

E =
∫ L

0
− 1

2
y2 +

1
12
y4 + µy + b1

∂y
∂x

+ b2y
∂y
∂x

+ b3

(
∂y
∂x

)2

+ . . . dx . (6.9)

1A brief review of the concepts of the variational derivative are presented in appendix A.
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If the coupling is required to be isotropic in space, then b1 = b2 = 0, so to lowest order
equation (6.9) reduces to equation (6.8).

Given E , equation (6.5a) can be rewritten as

∂y
∂t

= − δE
δy(x)

+ σζ, (6.10)

which is a Time Dependent Ginzburg Landau equation which describes the mean field dy-
namics of systems like the Ising model (Goldenfeld 2018).

6.3 Effect of Diffusion on Critical Slowing Down
In chapter 2 it was shown how critical slowing down leads to temporal early warning signals.
In this section, I will show that early warning signals are still expected to manifest themselves
when viewed spatially. Recognising that equation (6.10) describes the mean field dynamics of
the Ising model, I will do this using the results of the Landau theory of phase transitions. To
draw connections between this and critical slowing down in non-spatial systems I will begin
by calculating the early warning indicators using a Fokker-Planck approach for the uncoupled
case.

The uncoupled case corresponds to D = 0. Furthermore, assume ε is small enough so
that µ can be taken to be a parameter of the system. This is equivalent to calculating the
conventional early warning signals over an ensemble of realisations and so should reproduce
the well known results about rising variance and autocorrelation (Dakos et al. 2008).

Linearising equation (6.5) about an equilibrium, y∗, gives

dz
dt

= −λz + σζ (6.11)

where z = y − y∗ and λ = (y∗)2 − 1. To be precise, z and ζ are both functions of t and x.
However, given the periodic boundary conditions and the fact that D = 0, the stationary
distribution of z will not be a function of x. Hence this distribution can be calculated by
looking at a particular x value, say x = 0. Therefore, equation (6.11) should be viewed as being
evaluated at x = 0.

In this case, the Fokker-Planck equation, equation (2.18), can be used to calculate the
statistics (Risken 1984). The Fokker-Planck equation associated with equation (6.11) is

∂p
∂t

=
∂
∂z
(
λzp
)

+
1
2
σ2 ∂2p
∂z2 (6.12)

where p is the pdf for the system. The steady state solution, assuming p and its derivatives
vanish as z→ ±∞ is

p(z) =
1
Z
e−

1
σ2 λz2

. (6.13)
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The normalisation factor Z is given by

Z =
∫ ∞

−∞
e−

1
σ2 λz2

dz = σ
√
π
λ
. (6.14)

Note that the variance of the stationary distribution of z is

σ2
z = −σ2 ∂ logZ

∂λ
=
σ2

2λ
(6.15)

so that as the system moves towards the bifurcation and thus λ→ 0, it will be the case that
σ2
z diverges. It follows from the Fluctuation-Dissipation Theorem (Kubo 1966; Marconi et al.

2008) that the autocorrelation at lag-t is α(t) = e−λt and so α→ 1 at the bifurcation. This is
the same behaviour as in the non-spatial case, as expected.

If D ̸= 0, then equation (6.11) becomes

∂z
∂t

= −λz + D
∂2z
∂x2 + σζ = −δH

δz
+ σζ, (6.16)

where

H =
∫ L

0

1
2
λz2 +

1
2
D
(
∂z
∂x

)2

dx . (6.17)

Equation (6.16) can be analysed by performing a Fourier series decomposition (Riley, Hobson
and Bence 2006), where a function q(x, t) can be split into oscillatory modes in space with
amplitude qk(t) for wavenumber k defined through

q(x, t) =
1
L
∑

k

qk(t)eikx (6.18)

or

qk(t) =
∫ L

0
q(x, t)e−ikx dx (6.19)

where qk = q∗−k to ensure that q(x, t) ∈ R. Performing this decomposition gives an equation
for each mode

dzk
dt

= −λzk −Dk2zk + σζk. (6.20)

To find the variance of ζk, consider the product

ζm(t)ζ ∗n (t′) =
∫ L

0
ζ (x, t)e−imx dx

∫ L

0
ζ (x′, t′)einx′ dx′ , (6.21)

which can be written

ζm(t)ζ ∗n (t′) =
∫∫

ζ (x, t)ζ (x′, t′)e−i(mx−nx′) dx dx′ . (6.22)
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Taking the expectation of both sides gives the covariance of ζm(t) with ζn(t′)

E
(
ζm (t) ζ ∗n

(
t′
))

=
∫∫

δ(x − x′)δ(t − t′)e−i(mx−nx′) dx dx′ (6.23)

or

E
(
ζm (t) ζ ∗n

(
t′
))

= δ(t − t′)
∫ L

0
e−i(m−n)x dx (6.24)

so the covariance structure of the modes of ζ can be written as

E
(
ζm (t) ζ ∗n

(
t′
))

= δ(t − t′)δmnL, (6.25)

where δij is the Kronecker delta.
From equation (6.20) it can be seen that each mode with wavenumber k relaxes to equilib-

rium on a timescale
τk =

1
λ + Dk2 . (6.26)

As λ→ 0, τk increases, so critical slowing down is still to be expected. Suppose however that
only large k modes were resolved, which corresponds to viewing the system at too small a scale.
In this case τk ∼ 1/Dk2 so critical slowing down would not be observed, which would hamper
early warning signals.

To investigate the effects of critical slowing down on variance and autocorrelation, the
probability distribution, p[z, t] which is now a functional of z, of equation (6.16) must be
calculated. This system has its own form of the Fokker-Planck equation (Goldenfeld 2018)
which describes the evolution of p[z, t],

∂p
∂t

=
∫

δ
δz(x′)

(
δH
δz(x′)

p +
1
2
σ2 δp
δz(x′)

)
dx′ . (6.27)

Again, this has an equilibrium solution

p[z] =
1
Z
e−

2
σ2 H[z] (6.28)

where
Z =

∫
e−

2
σ2 H[z]Dz. (6.29)

In order to find the variance, consider the two-point correlation function

G(x1 − x2) = E (z (x1) z (x2)) . (6.30)

To calculate this function, consider a modifiedH,

H′[z] = H[z]−
∫ L

0
B(x)z(x) dx (6.31)
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with a modified Z

Z′ =
∫

e−
2
σ2 H′[z]Dz. (6.32)

The two point correlation function is equal (Goldenfeld 2018) to

G(x1 − x2) =
σ4

4
δ

δB(x1)
δ logZ′

δB(x2)

∣∣∣∣
B=0

. (6.33)

To see this, note

δ
δB(x1)

δ logZ′

δB(x2)
= − 1

Z′2

(
δZ′

δB(x1)

)2

+
1
Z′

δ
δB(x1)

δZ′

δB(x2)
(6.34)

and, from equation (6.32),

1
Z′

δZ′

δB(x1)

∣∣∣∣
B=0
∝
∫

z(x1)
e−

2
σ2 H[z]

Z′ Dz =
∫

z(x1)p[z]Dz = E(z(x1)) = 0 (6.35)

and similarly
1
Z′

δ
δB(x1)

δZ′

δB(x2)

∣∣∣∣
B=0
∝
∫

z(x1)z(x2)p[z]Dz. (6.36)

The integral in equation (6.32) can be evaluated (see appendix B) to give the following
form for G

G(x) =
1
4
σ2 ξ
D
e−x/ ξ (6.37)

where x = x1 − x2 and

ξ =
√
D
λ

(6.38)

is the correlation length. The variance is thus G(0) = σ2/
√

16λD, which diverges as the
bifurcation is approached.

6.4 Statistics

The autocorrelation and variance of equation (6.5) will be compared when calculated over
space and over time. These two different ways of calculating the statistics will now be defined.
A summary is given in table 6.2.
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6.4.1 Spatial Statistics

The average of a quantity, A, calculated over space is defined to be

⟨A⟩ =
1
L

∫ L

0
A(y(x, t), x) dx. (6.39)

The spatial variance estimator of y at time t is then

σs(t)2 = ⟨y2⟩ − ⟨y⟩2, (6.40)

and the temporal autocorrelation estimator over space is defined as

αs(t,∆t) =
⟨y(t, x)y(t + ∆t, x)− ⟨y(t, x)2⟩

σs(t)2 . (6.41)

The quantity ∆t is the lag of the autocorrelation. However equation (6.5) will ultimately be
solved numerically and in everything that follows ∆t will be set to the timestep, so that αs is the
lag-1 autocorrelation.

6.4.2 Temporal Statistics

When working over time, the spatio-temporal data will be converted to temporal data by first
averaging in space to get ⟨y⟩. Averaging in time is defined as follows. Consider the quantity
B(t). The temporal average is

B =
1
τw

∫ Tw

0
B(t) dt (6.42)

where the average is taken over some suitable window of length Tw.
When computing early warning indicators over time, the time series must first be ‘de-

trended’. The detrended time series of ⟨y⟩ is denoted by z. The estimators of variance and
autocorrelation, defined over a window of length τw are

σ2
t = z2 − z2 (6.43)

and

αt =
z(t)z(t + ∆t)

σ2
t

. (6.44)
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Quantity Domain Symbol Definition

Variance Space σ2
s ⟨y2⟩ − ⟨y⟩

Time σ2
t z2 − z2

Autocorrelation Space αs
⟨y(t,x)y(t+∆t,x)⟩−⟨y(t,x)2⟩

σs(t)2

Time αt z(t)z(t+∆t)
σ2
t

Table 6.2: The definition of the early warning indicators used in this chapter, taken from equa-
tions (6.40), (6.41), (6.43) and (6.44).

6.5 Numerical Results

6.5.1 NumericalMethod
To solve equation (6.5), the domain, of lengthL = 2π, was discretized intoN = 100 grid points
and the diffusive term is calculated with finite differences. The value of y at the kth gridpoint
is yk. Integration forward in time was accomplished by using an implicit Euler method, where
the resulting nonlinear equation was solved using MINPACK’s HYBRD method accessed
through SciPy (Virtanen et al. 2020). To avoid excessively long integrations when ε is small,
the timestep was set to δt = 0.001/ ε and the system was integrated until t = 1/ ε. Early warning
signals were calculated from εt = 0 until εt = 2/3, which is the time of the tipping point.
When working over time, the window size was chosen to contain 500 data points (i.e. half
the time series), so that the window length is τw = 1/ (2ε). Detrending was accomplished by
removing a fitted quadratic polynomial from these windows. To stand a chance of getting
good early warning signals in time it is required that ε < 1/ τw, which is always satisfied. Systems
are initialised in equilibrium and spun up for 1000 time steps.

6.5.2 Two Limits
Before determining the reliability of the early warning signals as a function of ε and D, two
important limits will be investigated. They are the uncoupled (D = 0) and slowly forced
(ε≪ 1) limits.

Uncoupled Limit

First the case when D = 0 is investigated, for large and small values of ε. Consider figure 6.1.
The left column shows the small ε case. This is the case where temporal early warning signals
are expected to work well. For this value of ε the system transitions to its new state near the
time of the bifurcation and its variance calculated over space and calculated over time both
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Figure 6.1: Early warning signals when D = 0. The left column shows the slow forcing case and
the right column shows the fast forcing. The top row shows the individual trajectories with the
mean trajectory shown in green. The black curves are the quasi-static equilibria. The second row
shows plots of σ2

s in black and σ2
t in red, normalised by the variance of the driving noise. Note

that there is an extra factor of N in the normalisation of the temporal estimate that comes from
averaging over trajectories. The grey dashed line shows the analytical variance estimate, which is
the same for both spatial and temporal estimates, given by equation (6.15). In the bottom row σ2

t is
calculated from the individual gridpoints rather than the domain average. The Kendall τ value is
calculated for each gridpoint and then a histogram of these τ values is plotted. The mean τ values
are 0.69 and 0.06 for the slow and fast case respectively.
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clearly increase near the bifurcation point. Furthermore calculating the statistics for each of
the individual grid points shows that most grid points experience a rise in variance over time as
well.

For the larger ε case the results are different. The system has not yet transitioned to its
new state even by the end of the simulation. A clear rise in σ2

t , given by the red curve, cannot
be seen near the bifurcation point. Furthermore looking at the individual grid points in the
lower right panel, no coherent warning of the upcoming transition is given. However there is a
very clear rise in σ2

s , the black curve, before the bifurcation, demonstrating that spatial early
warning signals are superior in this case.

Slowly Forced Limit

Figure 6.2 is similar to figure 6.1 except it now examines the limit of slow forcing (ε = 0.01) but
but with a non-zero coupling in space. D values of (N/L)2D = 1 and (N/L)2D = 105 were
chosen, where N/L is a factor related to the discretisation. For low D and slow forcing early
warning signals are expected to work both when calculated spatially or temporally. At higher
D the correlations between the grid points will be so great that there will no longer be any
variability between different grid points, and so no detection of spatial early warning signals
should be possible. This is precisely what is seen in figure 6.2 where for D = 105(L/N )2 the
system acts like a single grid point.

6.5.3 Exploring the ε andD parameter space
Now that the two limits have been investigated, the parameter space can be explored more
fully. Early warning signals will be investigated in the region of the parameter plane defined by
(ε,
(N
L

)2 D) ∈ [10−2, 101]×[10−7, 107], where the factor ofN/L comes from the discretisation.
50 points are sampled in each direction, geometrically spaced, giving 2500 total points.

It can be determined if an early warning indicator is increasing or decreasing by calculating
the Kendall’s τ for the data. A positive value implies an increasing trend (Wilks 2019). The
reliability of the warning can be assessed by repeating the numerical experiment 100 times
(with different realisations of the noise) and calculating a distribution of Kendall’s τ. If the
signal-to-noise ratio (SNR) of the distribution of τ values, defined as the ratio of the mean to
the standard deviation, is smaller than 1 then a reliable early warning cannot be expected.

This signal-to-noise ratio is calculated in figure 6.3 for temporal and spatial early warning
statistics. Only for certain regions of the parameter plane are early warning signals of the
upcoming tipping point reliable. It can be noted that there is a complementarity between
spatial and temporal early warning signals. For rapidly forced systems good early warning
signals in space are obtained as long the the coupling in space is not too strong. Conversely,
for strongly coupled systems there are good early warning in time as long the forcing is slow
enough. It is important to note that the strongly coupled and rapidly forced region does not
give good early warning signals with either method.
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Figure 6.2: Early warning signals when ε = 0.01. The left column shows the weakly coupled
case, the right shows what happens in the strongly coupled (large D) case. The top row shows the
quasi-static equilibria (black) the individual trajectories of the grid boxes (grey) and the domain
average (green). The variance is plotted in the second row, calculated over space (black) and over
time (red). The analytical prediction for σ2

s is plotted with a dashed grey line. The bottom row
shows a histogram of the Kendall τ values calculated over time for each yk.
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Figure 6.3: Each panel shows the same region of the (ε, D) parameter plane. The left column
shows the reliability of the variance as an early warning and the right column the reliability of the
autocorrelation. The top row is calculated over time and the bottom row is calculated over space.
The colour gives reliability of the early warning. Blue colours correspond to a SNR of less than 1,
and thus an unreliable early warning. Red colours correspond to reliable early warnings. The solid
line is the SNR = 1 contour. The dashed line is the line given by ξ = L/2 and the dotted line is the
line ε = τk for k = 2π/L.
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6.6 Scaling Arguments
In this section an attempt is made to explain why the early warning signals only work in certain
regions of the parameter plane plotted in figure 6.3.

6.6.1 Temporal EarlyWarning Signals
Consider the equilibrium solution to equation (6.10) (i.e. at fixed µ). This will correspond to
a minimum of equation (6.8). Noting that equation (6.8) is a strictly increasing function of
∂y
/
∂x it must be the case that the equilibrium solution is uniform in x and hence independent

of D.
This motivates setting y = yeq + z where yeq is the spatially uniform equilibrium solution

to the deterministic part of equation (6.10). Temporal early warning signals are based on ⟨y⟩ so
its evolution equation will be determined by averaging equation (6.5) in space. This gives

d⟨y⟩
dt

= ⟨y⟩ − 1
3
〈
y3〉− µ + D

〈
∂2y
∂x2

〉
+ ση

= ⟨y⟩ − 1
3
〈
y3〉− µ + ση

where η = ⟨ζ ⟩ is noise delta correlated in time only, with covariance E(η(t)η(t′)) = δ(t − t′)/L.
T he diffusive term has vanished due to the periodic boundary conditions. Although there
is no explicit dependence on D here, this equation still implicitly depends on D through the
nonlinear averaged term ⟨y3⟩.

The evolution equation for z = y− yeq can be written, to first order in z, as

d⟨z⟩
dt

=
(

1− y2
eq

)
⟨z⟩ + ση +O

(
z2) (6.45)

where the fact that yeq is an equilibrium solution of equation (6.5a) has been used and that
O(z2) is small with high probability. This has no dependence onD and hence it can be expected
that the temporal early warning signals are independent of D.

To get good early warning signals it is required that ⟨z⟩ is small so that the linearisation in
equation (6.45) is valid, but as z isO

(
ε1/3
)

(Berglund and Gentz 2006), good temporal early
warning signals can only be expected therefore when ε1/3 ≪ 1.

6.6.2 Spatial EarlyWarning Signals
It was shown in section 6.3 that by recognising the connection between equation (6.10) and
Landau theory for phase transitions, the two point correlation function could be computed
and the correlation length ξ =

√
D/λ determined. In order to detect any spatial variability the

system must be sampled over scales large compared to the correlation length, which means
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ξ ≪ L/2. Half the domain length has been used because when ξ = L/2 all points in the
domain are one correlation length or less away from each other.

Applying equation (6.38) and assuming that λ = O(1), which is true at the start of the
simulation, the condition for good spatial early warning signals becomes

D≪ L2

4
. (6.46)

Equation (6.20) shows that the system responds to a fluctuation in mode k of zk(0) by
relaxing to equilibrium like zk(t) = exp (−t/ τk) zk(0). So for times long compared to τk the
fluctuation dies away. As it is these fluctuations that will show critical slowing down, they
cannot die away too fast or else no early warning signal will be seen. Therefore over a timescale
O(ε), exp (−t/ τk) ≈ 1 which requires ε ≪ τk. Requiring that this holds for wavenumbers
corresponding to the scale of the domain (which is when τk is largest) gives the requirement
that

ε≪ 1
1 + 4π2D

L

(6.47)

where again it is assumed that λ = O(1) and k = 2π/L.

6.6.3 ComparisonWithNumerical Experiments
Figure 6.3 implies the critical ε above which temporal early warning signals fail is εc ≈ 0.04.
Performing the computation ε1/3

c = 0.34 shows that this is indeed compatible with the theory
which requires that ε1/3 ≪ 1. Also plotted in figure 6.3 are the lines D = L2/4 and ε = τ2π/L. It
can be seen that they bound the region where good early warning signals can be obtained and
also approximate the shape of this region.

The lines do not give the tightest bound possible to the region, but this is to be expected.
The reason for this is that the scaling arguments assume a constant value for λ, whereas in reality
λ is decreasing towards zero. Furthermore, early warning signals will not suddenly become
worse when equations (6.46) and (6.47) are violated. Instead they will become progressively
less reliable, and so these scaling arguments should overestimate the reliable region, which
indeed they do.

6.7 Discussion

It has been shown that calculating early warning signals over space allows the user to get reliable
signals in a previously inaccessible parameter regime (for larger values of ε). As well as having
this advantage it is also noted further that calculating early warning signals over space avoids
the problems of detrending. These problems are inherent to the method of calculating early
warning signals over time.
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Figure 6.4: A schematic illustrating the complementarity of early warning signals in space and
time. The lines are drawn according to the scalings given in section 6.6

There is a interesting complementarity however between early warnings in space and time.
For fast forcing and weak coupling in space, early warnings in space are reliable but those in
time are not. For slow forcing but strong spatial coupling then early warnings in time are
reliable but those in space are not. If the coupling is weak but the forcing is slow both methods
are reliable. There is still an inaccessible parameter region, for fast forcing and strong spatial
coupling. This is illustrated schematically in figure 6.4.

6.8 Practical Considerations
So far I have applied this method to a simple idealised system. In this section, I will suggest
how this method could be applied in practice.

Suppose a candidate tipping element has been identified — which for concreteness I
will take to be the Amazon Rainforest. A spatio-temporal dataset which represents the state
variable, such as Vegetation Optical Depth (VOD), should be obtained. A value of ε should
also be estimated. It is to be hoped that it is small enough. Table 6.1 suggests that the Amazon
Rainforest is a marginal case. By calculating a spatial correlation, a correlation length can be
determined. If this quantity is small relative to the size of the rainforest, then it is plausible that
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the spatial early warning signals investigated in this chapter may give skilful early warnings.
However, other factors should be considered. The Amazon is strongly influenced by

ENSO, which may cause the Amazon’s variability to change. Other systematic effects, such
as a latitudinal climate gradient or human land use, may complicate matters for example by
making the parametersD and µ functions of space. This could be avoided by masking out data
near human settlement or by working over latitudinal bands.

6.9 Conclusion
Obtaining temporal early warning signals for tipping points are challenging, not least because
they are often used in rapidly forced systems. In this chapter the hypothesis has been advanced
that spatial early warning signals may be useful in these more rapidly forced systems. It has
been found that spatial early warning signals can be used for more rapidly forced systems, as
figures 6.1 and 6.3 illustrate.

It has been shown that their usefulness decreases as the spatial interactions increase. In
particular there is a dichotomy between temporal early warning signals (which work well in
strongly spatially coupled and slowly temporally forced systems) and spatial early warning
signals (which work well in weakly spatially coupled and strongly temporally forced systems).

It is noted that there is still an inaccessible parameter region — systems forced strongly
in time and strongly coupled in space. There are also further limitations to this approach.
Only considered one functional form of coupling has been considered, but others are possible.
Secondly, a strong assumption has been made that space is isotropic, but if, for example, D is
itself a function of x then this will introduce challenges.

There is no reason for using only one method of calculating early warning signals. It is
likely that using spatial early warning signals in conjunction with temporal ones could provide
a useful tool to detect approaching tipping points.

136



Chapter 7

Seeking more robust early warning
signals for climate tipping points:
the Ratio of Spectra method (ROSA)

Previous chapters were an examination of specific tipping points in the Earth system.
These tipping points present challenges for society and ecosystems, yet the global warm-
ing thresholds at which these may be triggered remain uncertain. However, a theory of

‘critical slowing down’ has been developed which could warn of approaching tipping points.
Applications of this theory often implicitly assume stationary white-noise forcing, itself requir-
ing a clean separation between forced trends and variability, which is especially difficult under
contemporary climate change. This chapter proposes a modified method to derive an early
warning signal in a system, such as the climate, which is forced by time correlated processes.
The method looks at the Ratio of Spectra (ROSA) of a system state variable relative to a forcing
variable. I demonstrate the ROSA method on an idealised forced dynamical system, before
applying it to a particular challenging example from the Earth system: dieback of the Amazon
rainforest. I show that ROSA identifies more examples of abrupt transitions in the Amazon,in
state-of-the-art CMIP6 Earth System Models, than conventional early warning signals.

This chapter is based on a published paper, ‘Seeking more robust early warning signals for
climate tipping points: the ratio of spectra method (ROSA)’ (Clarke et al. 2023).

7.1 Introduction

The paleoclimate record contains numerous examples (Brovkin et al. 2021) of major compon-
ents of the Earth system experiencing rapid change. Such changes can be caused by relatively
small changes in external forcing, such as changes in incoming solar radiation or in greenhouse
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gas concentrations.
Over the last two hundred years humans have increasingly forced the climate system,

primarily through the burning of fossil fuels, which has caused global warming and other
related changes to the climate system. As a result there is now major scientific interest and public
concern (Steffen et al. 2018; Lenton et al. 2019; Ritchie et al. 2021) that future temperature
increases may also cause key Earth system components (so called ‘Tipping Elements’) to cross
critical thresholds known as ‘Tipping Points’, undergoing rapid irreversible transitions (Lenton
et al. 2008).

Tipping points are typically triggered by a small change in a system parameter, such as one
describing the forcing or relating to aspects of the internal structure. Crossing some critical
threshold associated with this parameter causes the system to be pushed into a qualitatively
different state. Mathematically this can be described as a system passing through a bifurcation.
Although different types of tipping exist (Ashwin et al. 2012), the analysis here will be concerned
with so-called ‘Bifurcation-’ or ‘B-tipping’.

Pioneering work by Stommel suggested that the Atlantic Meridional Overturning Cir-
culation (AMOC) (Stommel 1961) is such a tipping element, although his work predates
widespread use of the term. Since then, numerous examples of potential tipping elements have
been identified. For example, the Amazon Rainforest can undergo dieback (Cox et al. 2000),
the Greenland ice-sheet can melt (Feldmann and Levermann 2015) and permafrost can thaw
rapidly (Steffen et al. 2018).

Sophisticated climate model simulations (Rahmstorf 1995) provide evidence that tipping
points can occur in the Earth system. For example, multiple instances of abrupt shifts were
identified in the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor, Stouffer
and Meehl 2012) collection of Earth System Models (ESMs) (Drijfhout et al. 2015) and hysteresis
has been found in simulations of the Antarctic Ice Sheet (Garbe et al. 2020).

It is unsurprising that major transitions in important components of the Earth system
would have significant impacts. As tipping points are not routinely included in Integrated
Assessment Models (IAMs) many of their impacts on society are not yet quantified, yet recent
work (Dietz et al. 2021) suggests including tipping points in IAMs substantially increases
the Social Cost of Carbon. Impact studies of individual Tipping Points reveal significant
challenges for many people. For instance, a collapse of the AMOC is projected to cause
widespread cessation of arable farming in Great Britain (Ritchie et al. 2020). High latitude
communities face increased fire risks caused by the self-heating of soils (Clarke et al. 2021)
and infrastructure damage caused by a rapid increase in permafrost degradation (Teufel and
Sushama 2019).

Given the potential for major impacts, it would be useful to know the exact thresholds of
these tipping points, however precision remains elusive (Steffen et al. 2018). There is almost no
inter-ESM agreement on which tipping points are the most likely to happen, or on the levels
of global warming that will trigger their occurrence (Drijfhout et al. 2015). However due to the
mathematical theory of Normal Forms (Guckenheimer and Holmes 1983; Strogatz 2015), all
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systems approaching a B-tipping point share some common features.
For purposes of this study, the most important of these generic characteristics is critical

slowing down. Systems generally revert to equilibrium after a small disturbance. The time to
return to equilibrium is a characteristic timescale which, importantly, increases as the system
approaches a tipping point, at which moment the timescale becomes infinite (Scheffer et al.
2012)—referred to as ‘critical slowing down’. For near-equilibrium systems, the variance of a
system will increase and its autocorrelation (AC) will tend to unity as the system approaches a
bifurcation (Held and Kleinen 2004; Scheffer et al. 2009). These statistical changes lead to the
possibility of ‘Early Warning Signals’ of approaching Tipping Points.

Care is needed when using early warning signals, as both AC and variance are expected
to increase as a tipping point is approached (Ditlevsen and Johnsen 2010). Whilst this is only
strictly true in the case of near one dimensional systems (an approximation which is often
made, such as by using principle component analysis to reduce the dimensionality of the
system (Held and Kleinen 2004)), considering one quantity alone increases the chance of a
false positive as that quantity may change for other reasons such as an increase in the noise
variability. It should be noted that false positives can still occur even when considering both
quantities. Additionally, if a transition is noise-induced (rather than bifurcation-induced) then
critical speeding up is possible, where a decrease in the variance and AC can be signs of an
approaching transition (Titus and Watson 2020).

The technique of observing an increase in the variance and AC has been applied to the
paleoclimate record, where it has been shown to give early warnings of tipping points (Boers
2018). It has also been used to suggest that for the present day, due to an increase in global
temperatures, there are approaching tipping points in the Greenland Ice Sheet (Boers and
Rypdal 2021) and in the AMOC (Boers 2021). However, a key assumption when using the
variance and AC as early warning signals is that the system is subject to a statistically stationary
white-noise forcing. Unfortunately, for many components of the Earth system, the external
drivers do not have variability that exhibits white noise characteristics, and so this assumption
is not satisfied. For example, forcing factors in the Earth system are rarely well approximated
by stationary white-noise, due to the many quasi-oscillatory modes of variability in the Earth
system (Heydt et al. 2021), which add peaks to the power spectrum of the forcing. For example,
the Amazon Rainforest, which is of particular interest due to its risk of large-scale vegetation
dieback in a potentially hotter and drier climate, experiences forcing which is coherent in space
and in time, but is also strongly modulated by the El-Niño Southern Oscillation (ENSO)
(Jiménez-Muñoz et al. 2016). White noise forcing is also incompatible with long memory
processes (Hurst 1957), such as the effect of sea ice changes on the AMOC (Kuehn, Lux and
Neamţu 2022). Recently, it was shown (Kuehn, Lux and Neamţu 2022) that traditional early
warning signals can change their characteristics or disappear entirely when these assumptions
on the forcing are relaxed. This motivates creating early warning signals that do not assume
white noise.

There has been some investigations in using early warning signals with time correlated noise
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using generalised least squares (Boers 2021; Boettner and Boers 2022) and a Bayesian method
(Heßler and Kamps 2022a,b). Here I examine a different method of estimating the critical
slowing down that occurs near a bifurcation that works even in the presence of time-correlated
noise is examined.

7.2 Failure of EarlyWarning Signals
In this section, it will be demonstrated how conventional early warning signals may fail in
the presence of autocorrelated noise. Due to the fact that near a saddle node bifurcation all
dynamical systems with such a bifurcation behave similarly (Guckenheimer and Holmes 1983),
this motivates investigating the simplest bistable system exhibiting a saddle node bifurcation.
Hence, the system to be examined is:

ε
dx
dt

= x − 1
3
x3 − µ(t) + η(t), (7.1)

where ε defines the timescale of the system, µ is a control parameter and η provides the noise.
Note that there is a noisy saddle node bifurcation when µ = 2/3, corresponding to a tipping
point where x transitions from a positive to a negative state. To ensure x remains in approximate
equilibrium, ε is set to be small, take ε = 0.01 throughout.

η is defined by the following Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein 1930):

dη
dt

=
r − 1
δt

η +
√

1− r2

δt
ξ (7.2)

where ξ is the derivative of a standard Wiener process. This choice is more transparent when
looked at in discrete form, with timestep δt:

ηt+1 = rηt +
√

1− r2εt (7.3)

with εt ∼ N (0, 1). When r = 0, this is the conventional white noise assumed in most early
warning signals studies. However, as r approaches unity the process becomes more and more
autocorrelated.

After discretizing with time step δt = 0.0004, these equations are solved numerically using
the Euler-Maruyama method (Jacobs 2010).

7.2.1 False Negatives
As a system approaches a tipping point, the conventional early warning signals suggest that the
system should become more autocorrelated. However, if the system is subjected to autocorrel-
ated noise, then this can act to mask the changes in the AC of the system so that such changes
are no longer detectable. Furthermore, decreasing variability in the forcing can decrease the
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Figure 7.1: Panel A shows two time series of system (equations (7.1) and (7.3)), with µ(t) = t
passing through a saddle node bifurcation at time t = 2/3. In the case of the blue curve the system
is subject to white noise forcing (r = 0), the red curve is subject to red noise forcing (r = 0.99).
Panels B and C show the classic early warning signals for the case of white and red noise, calculated
after a quadratic detrend in a window of width 0.2 (in normalised time units or 500 data points).
The AC is plotted with a solid curve and the variance with a dashed curve. The white noise case
shows clear early warning signals, but the red noise case gives no indication of the approaching
tipping point. Panel D shows λ calculated from ROSA, after a quadratic detrend in windows of
length 0.2, in the white (blue curve) and red (red curve) noise case. The solid black line is the true
value of λ. In both instances there is a clear Early Warning Signal.
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system variance even if the system is approaching a tipping point. This again acts to mask
the approaching tipping point, which clearly poses problems for conventional early warning
signals as these would present a ‘false negative’.

To illustrate this, set µ(t) = t, so that the system described by equation (7.1) has a tipping
point at t = 2/3 and calculate the conventional Early Warning Signals after detrending with a
second order polynomial, plotted in figure 7.1. Panel A of figure 7.1 shows two time series of
the state variable of equation (7.1) approaching a tipping point. The series are similar, except
that one of them (blue) is subject to white noise (r = 0), while the other (red) curve is driven
by red noise (r = 0.99). To ensure the tipping occurs at a similar time in both cases, the
magnitude of the red noise is reduced by half. Despite the qualitative similarity of the time
series, the classical early warning signals plotted in Panels B and C, are very different. To assist
with comparisons to the method of this chapter, I plot 1

δt logAC instead of the AC directly.
However, this transformation will have no effect on any trends.

The variance and AC show a clear rise in the white noise case, giving a clear Early Warning
Signal. Whereas, for the red noise case there is no trend in the AC. The variance shows both
increases and decreases. A positive trend occurs near the tipping point however this would
give, if any, very little warning. Figure 7.2 repeats this test for 1000 different noise realisations,
showing the challenge of getting early warning signals when the noise is very autocorrelated.

The results of an investigation into subsampling the timeseries plotted in figure 7.1 are
plotted in figure 7.3. Subsampling the timeseries will act to reduce the autocorrelation of the
timeseries, which may make early warning signals stronger. However, figure 7.1 shows that
subsampling does not give better early warning signals in this case, which underscores the need
to develop better early warning methods.

7.2.2 False Positives

An additional problem with assuming the system is subject to stationary white noise is that
it also implies that the variability and AC of the forcing is constant over time. However in
the case of climate change, it is likely that the variability of the forcing, such as temperature,
will change (Huntingford et al. 2013). Increasing the variability, such as in Boers 2021, of the
forcing will increase the variance of the system even if the system is not approaching a tipping
point. This is an example of a false alarm (i.e. a false positive).

An example of this phenomenon is plotted in figure 7.4. Equation (7.1) has been integrated
with µ = −1, hence there is no tipping point. The stochastic forcing η, described by equa-
tion (7.2), has its r value linearly increasing from r = 0.2 at t = −1 to r = 0.7 at t = 1. The
state variable is plotted in Panel A. Although there is no tipping point crossed in the system
of interest (equation (7.1)), because the forcing is becoming increasingly autocorrelated, the
classical early warning indicators (Panel B) falsely suggest a tipping point is approaching.
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Figure 7.2: This figure shows the results of repeating the red noise experiment illustrated in
figure 7.1 1000 times. The conventional early warning indicators are calculated, namely the variance
and autocorrelation, up until the tipping time. The increase in these early warning indicators is
quantified by Kendall’s τ statistic. A successful early warning occurs if the measured τ is greater
than or equal to a given threshold. The figure shows the fraction of tipping points that will be
identified as a function of that τ threshold. This shows that only at low τ thresholds (i.e. weak
enough trends) are there any appreciable chance of successfully detecting the tipping point.

143



7.2. Failure of EarlyWarning Signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Subsampling

0.20

0.15

0.10

0.05

0.00

0.05

Ke
nd

al
l T

au

Normal window
Longer window

Figure 7.3: By subsampling a time series its level of autocorrelation is reduced. This figure
subsamples the time series in figure 7.1 to investigate the effect on the trends in autocorrelation.
The value, n of subsampling along the x axis refers to taking every nth timestep. As subsampling
reduces the number of point in the window, this was also repeated for a longer window, set at
double the length of the original window. Overall, it can be seen that this makes little difference to
the trend in the autocorrelation.
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Figure 7.4: Panel A shows a time series obtained by integrating equation (7.1) with µ = −1 when
subject to noise described by equation (7.2) where the value of r linearly increases from r = 0.2 to
r = 0.7. Panel B shows the classic Early Warning indicators: AC in the solid line and variance in
the dashed line. They falsely indicate a tipping point is approaching. In panel C λ obtained from
ROSA is plotted, with the true value plotted in the dashed line. It shows no overall trend hence
correctly avoiding the false positive.
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7.3 Theory
These issues motivate creating a generic early warning signal, for B-tipping, that is independent
of the form of external forcing. Conceptually, the method is to ‘divide out the’ the noise process.
While it is not clear how to do this directly from the time series, it will be shown that this can
be achieved by moving to the frequency domain, where it is has been shown to be possible to
extract estimates of distances to bifurcation points (Kleinen, Held and Petschel-Held 2003),
by taking a Fourier Transform of the data. Under white noise forcing, it is found that the
spectrum reddens (Dakos et al. 2012; Kéfi et al. 2014), this study looks at the case where the
forcing can mask this reddening.

Begin by modelling a tipping element with a state variable y that evolves in time t, and
depends on a slowly evolving parameter µ. The tipping point occurs when µ = µc. This can be
written generically as:

dy
dt

= f (y, µ), (7.4)

dµ
dt

= εg(y, µ). (7.5)

for some functions f and g, and ε ≪ 1. As εg(y, µ) is small, the theory of fast-slow systems
(Kuehn 2011) can be used to reduce to a one dimensional dynamical system depending only on
the parameter µ:

dy
dt

= f (y, µ). (7.6)

At this point, an additional time-dependent perturbation ξ (t) is applied, which can have a
stochastic component. The system is now:

dy
dt

= f (y, µ) + ξ (t). (7.7)

The classical theory of early warning signals assumes ξ is a white noise process, however no
such restriction is made here. It may have both deterministic and stochastic components, it is
only required that its Fourier Transform exists.

Linearising about a quasi-equilibrium, x∗, (i.e. that is evolving on the slower timescale),
and denoting y(t) = x∗ + x(t) to give:

dx
dt
≈ −λx + ξ (t), (7.8)

where λ = −f ′(x∗, µ) and the prime denotes a derivative with respect to x. Physically, λ
represents the rate at which the system returns to equilibrium after a disturbance, and thus
characterises the resilience of a system. Held and Kleinen (Held and Kleinen 2004) developed
a technique to estimate λ under the assumption that ξ is Gaussian white noise. Here, that
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assumption will be relaxed. When µ → µc, which is to say that the system approaches the
tipping point, then it turns out that λ → 0 (Guckenheimer and Holmes 1983). This is the
phenomenon of critical slowing down. The aim is to therefore identify changes in λ, and in
particular discover any evidence of a decrease which would suggest an approaching tipping
point, and to do this in a way that is not dependent on ξ being white noise. This can be
achieved by moving to the frequency domain.

Denoting the Fourier transform of a function with a tilde, so that when taking the Fourier
transform of equation (7.8) it becomes:

iωx̃(ω) = −λx̃(ω) + ξ̃ (ω). (7.9)

This can be rearranged equation (7.9), and have its squared modulus taken to get:

|x̃(ω)|2=
|ξ̃ (ω)|2
ω2 + λ2 . (7.10)

The ratio of spectra (ROSA) can now be defined as: R(ω) = |x̃/ ξ̃ |2 so that

R(ω) =
1

ω2 + λ2 . (7.11)

Note that by construction R takes on a universal form for any forcing process, hence estimates
of λ, and thus of the distance to the tipping point, can be made from R regardless of whether
the noise is time correlated or not. It also suggests an Early Warning Signal method.

The method is as follows. Take a moving window of length τw, smaller than the slow
timescale 1/ ε, but of sufficient length that the power spectrum of x can be calculated, i.e.
|x̃(ω)|2, and also of ξ , i.e. |ξ̃ (ω)|2. With the knowledge of these power spectra, a least-squares
fit of equation (7.11) can be performed to obtain an estimate for |λ|. Then consider how |λ|
varies over longer timescales, i.e. of size 1/ ε, to see if its value changes. If the estimate for |λ| is
decreasing towards zero in time this implies that a tipping point is approaching.

7.3.1 Choosing ξ
Unlike most early warning signals, the ROSA method requires knowledge of the driving
process that controls the variability of the system. Therefore, using this method requires
an understanding of the system. Furthermore the system must be of sufficient temporal
resolution such that both x and ξ can be measured. If ξ is not chosen correctly then changes to
the calculated λ could be driven by changes to the incorrectly chosen ξ , rather than a tipping
point.

It is possible that there is no obvious ‘correct’ choice as in reality many different quantities
may contribute to the forcing, and the output of the system itself may itself influence these
quantities.
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I argue that these requirements are not too restrictive, at least in the case of early warning
signals for transitions caused by contemporary climate change. Many different Earth system
quantities are regularly measured and many processes are understood. Furthermore to help
guard against choosing the wrong ξ it could first be tested in an Earth System Model (ESM).
Note however that ESMs represent tipping elements poorly, with little agreement between
models (Drijfhout et al. 2015).

7.4 Test in SimpleModels
This ROSA method is examined using the two test cases considered earlier in section section 7.2;
namely its ability to avoid false positives and false negatives. The power spectra of x and η is
calculated using Welch’s method (Welch 1967) after a quadratic detrend in moving windows
of length 0.2. A least squares fit to equation (7.11) was performed and λ extracted. The results
are plotted in panels D and C of figures 7.1 and 7.4 respectively.

7.4.1 Avoiding False Negatives
In figure 7.1 there is a plot of the case where the system is approaching a tipping point subject
to white or red noise. Panel D provides the value of λ estimated from ROSA and shows a
clear rise towards zero in both the white and red noise case indicating a successful warning, in
contrast to the classical indicators. Furthermore, both the white and red noise estimates lie
close to the true value of λ, plotted in the black curve.

7.4.2 Avoiding False Positives
In figure 7.4 the case where the system is not approaching a tipping point is examined, but due
to a reddening of the noise process the classic Early Warning Indicators give a false positive. In
Panel C there is a plot of λ obtained from ROSA, which stays constant and close to the true
value (plotted in the dashed line). ROSA therefore avoids a false positive in this case.

Figure 7.4 shows ROSA avoiding a false positive in one particular case with one particular
noise realisation. Figure 7.5 shows the results of repeating this experiment with 1000 different
noise realisations. Given a particular Kendall τ threshold, the fraction of realisations that had a
τ equal to or greater than that threshold was calculated for each early warning signal. As there
was no tipping in this experiment, this fraction represents the probability of a false positive.
Figure 7.5 shows that ROSA gives fewer false positives than the variance or autocorrelation do.

7.5 Comparison to alternative methods
Recently, Boers 2021 introduced a new technique, to avoid the problems introduced by noise
that isn’t white.This was more rigorously analysed by Boettner and Boers 2022. The technique,
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Figure 7.5: The experiment is repeated in figure 7.4 1000 times to calculate the probability of a
false detection of a tipping point. A tipping point is ‘detected’ when Kendall’s τ is large enough. A
larger τ corresponds to a stronger trend. It can be seen that ROSA is much less likely to falsely
detect a tipping point in this case.
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which is referred to here as the BB method, is essentially a way of regressing ẋ against x, to give
an estimate for λ. This requires a model for the noise, for example that it is generated by an
Ornstein-Uhlenbeck process. Significantly, the BB method makes a quasi-static assumption
about the noise, such that the parameters of the noise model are assumed to be fixed in each
window (although can change between windows). On the other hand, ROSA does not have
such a restriction because the noise is analysed directly.

The BB method is compared with ROSA for a system defined by equation (7.1). Set µ = t
so that the system reaches a tipping point at t = 2/3. Furthermore r is linearly decreased
from r = 0.99 to r = 0.0 between t = −1 and t = 1. This decreasing AC of the noise
can feed through into the system’s AC, thus masking the conventional early warning signals.
This test therefore combines the challenges of predicting a tipping point with dealing with
non-stationary noise.

Both methods give estimates for −λ, which should rise to zero as the tipping point is
approached. To compare the rise a running Kendall τ (Wilks 2019) is computed for all data
points up to that time. This quantity, bounded between−1 and 1 gives a measure of whether a
sequence is increasing or decreasing. A strongly positive τ suggests a tipping point is approach-
ing, and a strongly negative τ suggests one is not. To give the best early warning τ should
become large as long before the tipping point as possible.

This is computed for 10 different noise realisations and the τ values are calculated as a
function of time and plotted in figure 7.6. Both indicators show a positive τ near the tipping
point. However, ROSA becomes positive substantially earlier than the BB method and there is
less variance in the τ values for the ROSA method, as required for a more reliable early warning
indicator. This is indicative of an earlier and stronger warning than the BB method.

Nevertheless, the BB method has its advantages. It is flexible and straightforward to modify
to different noise models and in many cases gives a good Early Warning Signal ahead of the
tipping point. Its principle advantage over ROSA is that an explicit time series of the forcing is
not required to use it. As a result, ROSA and BB should be seen as complementary methods:
where data is scarce such as in paleoclimate studies, BB is more suitable but for contemporary
climate change where the earliness of the warning is important ROSA is more suited.

7.6 ComplexModels

The verification of the proposed early warning system with relatively simple conceptual models
is important. However, the majority of components of the Earth system are complex, requiring
highly detailed numerical models to emulate them. Hence, it is desirable to see if the technique
is still successful in the case of a more complex model. The dimensionality of such models can
be very high, due to their spatial extent and related heterogeneity, and because the forcing ξ is
uncertain and may not be a single dominant forcing, but instead a combination of external
fluctuating drivers. These individual components, when combined, make-up ‘full-form’ Earth
System Models (ESMs).
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Figure 7.6: A plot of running Kendall τ values as a function of time for the ROSA (blue) and BB
(red) methods. Individual realisations are plotted in faint lines and the mean value is plotted in the
stronger colour. ROSA gives an earlier and more reliable warning than the BB method.
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There are a very large number of ESMs available, and additionally a substantial number
of attributes of the Earth system amenable to investigation. Amazon forest dieback is ex-
amined here in state-of-the-art ESMs from the Coupled Model Intercomparison Project Phase
6 (CMIP6) (Eyring et al. 2016) database. Recently, five (EC-Earth3-Veg, GFDL-ESM4, Nor-
CPM1, SAM0-UNICON and TaiESM1) of seven models, which possess a Dynamic Global
Vegetation Model (DGVM), have been shown to feature abrupt local Amazon dieback shifts
(in the IPCC defined North South American region) in an idealised run of increasing CO2 by
1% per year (Parry, Ritchie and Cox 2022).

The algorithm used in the study (and here) detects an abrupt shift if the following three
criteria are satisfied:

1. the abrupt change is fast such that vegetation carbon drops by at least 2 kg C m−2 in a
15-year period,

2. the abrupt shift contributes to at least a quarter of the total change in the run, and

3. the mean annual rate of change is more than three times the variability of the rate of
changes observed in the unforced control run.

In every grid point identified as containing an abrupt shift, the time series of monthly ve-
getation carbon had its nonlinear trend and seasonal cycle removed using the seasonal and
trend decomposition using LOESS (STL) method (Cleveland et al. 1990). In windows of
length 50 years the conventional early warning signals and ROSA were calculated. The 2m air
temperature was chosen as the forcing variable, which was detrended similarly to the vegetation
carbon.

Although this choice of forcing variable is unlikely to capture all aspects of the forcing,
there is a known connection between temperature and Amazon dieback. For example, increases
in the temperature seasonal cycle amplitude reveal declines in the evaporative fraction and
hence a drying over the Amazon basin (Ritchie et al. 2022). Moreover, high sensitivities of the
temperature seasonal cycle to global warming are more likely to incur abrupt forest dieback
events (Parry, Ritchie and Cox 2022) in CMIP6. Furthermore there is a link between temper-
ature anomalies and Amazon productivity (Boulton, Good and Lenton 2013). Therefore, the
air temperature plays an important role in controlling the resilience of the forest.

Figure 7.7 shows an example of a grid point undergoing an abrupt shift. It also shows
λ, calculated by the ROSA method, and the conventional early warning indicators, variance
and autocorrelation. The ROSA method shows an increase in λ and thus gives a good early
warning of the abrupt shift. There is, however, little change in the autocorrelation and variance,
thereby giving no early warning.

Proceeding more systematically, for each of these indicators, the Kendall τ statistic was
calculated for the 20 year period prior to the abrupt shift. If that τ is above some threshold,
that is counted as a detection. As it is expected that the variance in vegetation carbon to be
higher in a high CO2 world, only increases in variance are taken as a detection if the AC is not
decreasing. The results, as a function of threshold value is plotted in figure 7.8.
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Figure 7.7: An example of an abrupt shift in vegetation carbon happening in a grid cell at 5◦N
56◦W in the NorCPM1 model. The time of the abrupt shift, calculated by the algorithm detailed
in section 7.6 is indicated by a dashed line. Early warning indicators are calculated from 50 years
before the early warning signal. Whilst λ, calculated by the ROSA method, shows a clear rise before
the abrupt shift, the conventional indicators give little warning.
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Note that the algorithm will, in addition to examples of B-tipping, detect examples of
N-tipping and rapid change which is not a true tipping point. As a result, no early warning
signals will successfully detect all abrupt shifts. This also means that some of the warning
signals will be false positives. However this possibility affects all the early warning signals so the
comparison remains fair. All three early warning signals are capable of detecting substantial
proportions of the identified abrupt shifts. Overall, it can be seen that ROSA outperforms
the traditional early warning signals. For individual models, ROSA detects more abrupt shifts
than the AC alone and is often better than the variance. Hence, for most of the CMIP6 models
considered, ROSA is able to give a more robust early warning for abrupt shifts.

7.7 Discussion and Conclusions
The potential presence of tipping points in the climate system remains of particular concern.
Tipping points imply that relatively small changes in forcing could trigger disproportionately
large (and possibly irreversible) changes. For these reasons, it is essential to develop statistics
that can identify approaching tipping points.

Although there has been much work on early warning signals for Tipping Points, this has
tended to focus on the simple case that the system is subject to additive white noise. In this
chapter I have shown how early warning signals can be generalised to deal with more general
noise characteristics. By normalising by the power spectrum of the forcing, I am able to extract
a time-evolving parameter λ, which robustly approaches zero as a tipping point is approached.

Approximating the driving noise as white is reasonable when r is small or when the window
length can be chosen to be long relative to the noise’s decorrelation time. In these instances,
conventional early warning signals will be useful. ROSA is most applicable to the cases where
this choice is not possible. This is relevant to anthropogenic climate change given that the
changes are fast.

This work relies on a couple of key assumptions:

A. that there is a separation of timescales; and

B. that the power spectrum of the forcing and the system is known.

Item B requires having data for a sufficiently long period of time, which may prove challenging
in practise. Item B is notable as other early warning signals, like the BB technique, do not
require the forcing to be known. Although item A is typically assumed when dealing with
early warning signals, its applicability to the rapidly changing modern climate is still an open
question. As a result, future work should investigate early warning signals for systems without
this timescale separation. Nevertheless, I believe this approach represents an increase in the
flexibility and generality of early warning signals for tipping points in a changing climate.
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of threshold Kendall τ for three early warning signals across 5 ESMs. The blue line is the variance,
the red is the AC and the black is ROSA.
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Chapter 8

Conclusions

In this thesis I set out to advance understanding of tipping points in the climate-carbon
cycle system. Below I summarize the findings of each of the research strands that have
been presented in this thesis. I will then discuss potential avenues for further work.

8.1 Research Conclusions

The Compost Bomb Instability in the Continuum Limit

In chapter 3 I investigated the the effect of adding a vertical spatial dimension to a model of
the compost bomb instability. The purpose of this was twofold. Firstly, I was interested to see
if the instability still existed in a more realistic model. Secondly, I wanted to know if certain
wildfires could be caused by biogeochemical heating and in order to do this more realistic
physics was desirable.

In order to investigate this, I created a partial differential equation model of soil temperature
which included biogeochemical heating. I made the assumption that soil carbon could be
viewed as being time invariant, which placed the model into the ‘compost bomb limit’ of Luke
and Cox 2010. This came at the cost of preventing R-tipping so the potential for B-tipping
was investigated. Furthermore the effect of a large seasonal cycle in atmospheric temperatures
on the soil was investigated.

It was shown that for sufficiently large atmospheric temperatures the model had no steady
state. This meant that the soil temperatures had diverged and that a compost bomb had
occurred. If, as in the real world, soil carbon was allowed to evolve dynamically then the amount
of soil carbon would decrease which would prevent the soil temperatures from diverging;
instead they would simply reach a large value.

It was also shown that a sufficiently large seasonal cycle — which could be realised by a
summer heat wave — could be enough to trigger a compost bomb. Furthermore, the size
of the seasonal cycle was not dissimilar to the seasonal cycles observed in parts of Siberia in
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Figure 8.1: The largest observed seasonal cycle in the ERA5 reanalysis (Hersbach et al. 2020)
over the period 1940–2022. The magnitude of the seasonal cycle is defined as half the difference
between the maximum and minimum monthly averaged 2.0 m air temperatures.

extreme years such as 2010, as shown in figure 8.1. This can be seen as evidence that Siberian
wildfires may be caused, in part, by biogeochemical heating.

Due to the approximation that soil carbon was constant in time, the compost bomb
instability became an example of B-tipping rather than R-tipping. It does not necessarily
follow that the system would experience R-tipping if this approximation was relaxed. However,
it is reasonable to assume that the vertical diffusion of heat would not be a barrier to R-tipping,
as long as the atmospheric temperatures were raised rapidly compared to the soil carbon
timescale, due to the significant timescale separation between the soil thermal and carbon
timescales (Luke and Cox 2010).

The approximation that soil carbon is constant is accurate over the timescales of a year,
given the multi-decadal turnover time of soil carbon (Varney et al. 2020). It follows therefore,
that there can be good confidence in the conclusions drawn about the seasonal cycle. However,
the applicability of the results to Siberian wildfires may be more doubtful. This is because it may
be better to view a hot summer period as a shorter perturbation to atmospheric temperatures,
rather than an amplified sinusoid. This case has since been studied by O’Sullivan, Mulchrone
and Wieczorek 2023 for the model of Luke and Cox 2010. They also found for realistic Siberian
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summer temperatures compost bombs were possible.
To summarise, in chapter 3 I managed to show that adding in the vertical diffusion of heat

does not suppress the compost bomb. This therefore increases the confidence that the effect is
real. Furthermore I also showed that a hot summer, as modelled by a large seasonal cycle of
temperature, could cause compost bombs, which suggests biogeochemical heating may play
a role in Siberian wildfires. A paper based on this chapter has been published as Clarke et al.
2021.

Biogeochemical Heating and the Terrestrial Carbon Cycle

The investigation into the role of biogeochemical heating in the carbon cycle was continued
in chapter 4. Instead of looking at the local effect of biogeochemical heating, the effect at the
global scale was considered. This was motivated by the fact that the extra carbon released by
biogeochemical heating would increase atmospheric temperatures, further increasing respira-
tion and thus biogeochemical heating. This positive feedback therefore increases the chances
of a compost bomb occurring, and it is important to quantify.

In order to do this, the model of Luke and Cox 2010 was assumed to hold at the global scale,
meaning quantities could be replaced with their globally averaged values. The air temperature
was set to scale logarithmically with atmospheric CO2, which in turn was calculated through
carbon conservation. The additional effect of CO2 fertilisation was considered, by assuming
Net Primary Productivity was a saturating function of atmospheric carbon. The role of the
ocean was accounted for very simply, by assuming that a fixed fraction of carbon emissions
become ocean carbon, which is equivalent to scaling down the flux from the land to the
atmosphere by a fixed amount.

First, the stability of this model was investigated. To do this its bifurcation diagram was
computed and it was found that there was a bifurcation if the climate sensitivity was large
enough or the biogeochemical heating was strong enough. The model was simple enough that
the location of the bifurcation point could be computed analytically.

It was found that for realistic amounts of biogeochemical heating, only a small difference
to the stability of the system was made. It was however striking, that when there was no CO2
fertilisation, the system was unstable at comparatively low levels of climate sensitivity. These
levels are low enough to be in the range of CMIP models. It is therefore interesting to note
that without CO2 fertilisation the Earth’s carbon and thus climate system may not be stable.

This approach to analysing the role of biogeochemical heating has its problems. To begin
with, as demonstrated in chapter 3, biogeochemical heating can be important regionally, yet this
global modelling approach greatly reduces its influence. For example, for some combination
of climate sensitivity and biogeochemical heating it could be the case that a region of the Earth
has an unstable carbon cycle whereas the global analysis would give a stable carbon cycle. This
is problematic as an instability in one region of the Earth could propagate to give a global
instability.

Other modelling assumptions are also suspect. For example, it was assumed that atmo-
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spheric temperatures adjust instantaneously to increases in atmospheric CO2, but in reality
this process can take years (Rugenstein et al. 2019). It was also assumed that the ocean could be
modelled as absorbing a fixed fraction of carbon, an assumption that is further investigated in
chapter 5.

Chapter 4 set out to analyse the effect, at the global scale, of biogeochemical heating.
Due to the problems caused by biogeochemical heating being so regionally heterogeneous,
firm conclusions cannot be drawn. However, more confidence can be had in the role CO2
fertilisation and climate-carbon sensitivity play. CO2 fertilisation acts to destabilise the system
with respect to biogeochemical heating, although it still plays a stabilising role overall. The
terrestrial carbon system is most unstable at higher values of the climate-carbon sensitivity and
lower values of the CO2 fertilisation strength.

The Stability of ConceptualModels of the Carbon Cycle

In chapter 4, it was noted that the Earth’s terrestrial carbon cycle was stable for only some values
of the climate-carbon sensitivity and that at low CO2 fertilisation this critical sensitivity was
very low. Chapter 5 took these ideas further to investigate which parameter combinations were
compatible with the reconstructed behaviour of atmospheric CO2 in the the pre-industrial
Holocene epoch, which was a time of low CO2 variability.

In order to constrain the parameters a better ocean model was required than was used in
chapter 4. In chapter 5 the ocean carbon cycle from the IMOGEN model was used in addition
to simplified box models. Biogeochemical heating was also not accounted for on the grounds
that chapter 4 had found the effect weak at the global scale.

Using the IMOGEN ocean carbon cycle model, it was found that there was a critical value
of climate sensitivity beyond which the carbon cycle would become unstable. The bifurcation
appeared to be a Hopf bifurcation. The oscillations after the bifurcation had a large amplitude
and are incompatible with the observed behaviour of the carbon cycle.

Using a two box model, these results could be recreated. Furthermore, it could be confirmed
that the bifurcation was a Hopf bifurcation and the bifurcation point could be determined
analytically. The two box model could give a Hopf bifurcation at the same point in parameter
space as the IMOGEN model.

A one box model was also formulated, which could show a bifurcation of various types
depending on the choice of the timescale of the box. For a fast timescale, this was a transcritical
bifurcation, similar to the system analysed in chapter 4. Furthermore, because the bifurcation
point could be analytically computed, this can be compared to the bifurcation point derived
in chapter 4 to give an interpretation to the ocean model in that chapter. It was found that the
ocean model in chapter 4 was self-consistent only when the ocean timescale was very short.

If the ocean box timescale was longer, the bifurcation would become a Hopf bifurcation.
However the bifurcation point was at a different point in parameter space to that of the
bifurcation in IMOGEN.

The critical climate sensitivities found using the IMOGEN model were, for realistic values
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of CO2 fertilisation, around 10 K which could be related to equilibrium climate sensitivities
around of 6 K. These values are not substantially larger than those found in a number of
CMIP6 (Zelinka et al. 2020). This raises the possibility that when performing coupled climate-
carbon simulation some of these models may not be able to simulate a stable pre-industrial
period. Furthermore those models which have low enough climate sensitivity to be on the
‘correct’ side of the bifurcation may still have unrealistic levels of CO2 variability due to the
phenomenon of critical slowing down. As climate models increase the complexity of their
carbon cycle representations by including, for example, nutrient limitation, the magnitude
of the CO2 fertilisation effect may decrease (Wiltshire et al. 2021), which would make these
models more likely to be unstable.

The analysis in chapter 5 ignored certain effects. It ignored the climate effect on net primary
productivity, which is likely to weaken it in the tropics where temperatures exceed the optimum
temperatures for photosynthesis and strengthen it in the high latitudes where temperatures
are currently below optimum (Sage and Kubien 2007). However, this effect is small relative
to the effect of CO2 fertilisation in most models (Arora et al. 2020). It also made the same
assumptions about the instantaneous temperature equilibration to atmospheric CO2 as was
made in chapter 4. Whilst this may effect the behaviour of the carbon cycle beyond the
bifurcation point where CO2 is varying significantly; it is unlikely to effect the position of the
bifurcation much as CO2 levels are constant before the bifurcation and thus the equilibrium
assumption is more reasonable.

In summary, chapter 5 showed that certain parameter regimes were not compatible with
the behaviour of CO2 over the Holocene. This behaviour could not be recreated recreated
using a one box model, but could be using a two box model. This suggests the importance
of two timescales to the bifurcation. Furthermore the critical parameter values identified are
close to those in some CMIP6 models suggesting that they would not be able to give a stable
pre-industrial control simulation if run in a coupled climate-carbon configuration.

Spatial EarlyWarning Signals

In the final portion of this thesis I was interested in examining early warning signals for tipping
points when the usual assumptions made do not apply. Chapter 6 examined the case where
the system is not forced slowly compared to its own timescale. This was of interest because
anthropogenic climate change occurs on relatively short timescales compared to the timescales
of the Earth system, so there is reason to suspect that early warning signals may be less effective.

The use of spatial early warning signals was investigated. This was motivated by the fact
that they give an ‘instantaneous’ early warning signal and so do not have to be calculated over
a non-stationary time series. However, by introducing a spatial dimension into the system, the
interaction between different spatial locations need to be considered. This therefore lead to a
numerical investigation of the reliability of early warning signals as a function of the rate of
forcing and of the strength of the spatial coupling.

To investigate this, a simple system with diffusive coupling was considered which depended
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on two parameters: the rate of forcing and the strength of the spatial coupling. This system was
identified as a mean field theory of the Ising ferromagnet, which enabled the use of techniques
from the theory of phase transitions.

The reliability of both spatial and time series based early warning signals was calculated as
a function of the two parameters. It was found that spatial early warning signals were more
reliable at larger rates of forcing than time series based early warning signals. However as
the spatial coupling strength increased this advantage decreased, until time series based early
warning signals became more reliable for very strongly coupled systems. Arguments were given,
in terms of the correlation length and the distance from equilibrium in order to explain this
dependence.

Although spatial early warning signals are reliable at increased rates of forcing compared
to time series based early warning signals, they are still not reliable at rates which exceed the
timescale of the system itself. This suggests it may not be applicable to important Earth system
tipping elements, such as the ice sheets, which have very slow time scales. Furthermore, the
reliability decreases with increasing spatial coupling which could be problematic for some
tipping elements which have large-scale coherence. Whilst the coupling considered was the
simplest local coupling, non-local coupling may be important in the climate system. Non-local
couplings could act to increase the correlation length which would decrease the usefulness of
spatial early warning signals further.

Overall however, this chapter extends the use of early warning signals to more rapidly
forced systems. It also identifies a complementarity; spatial early warning signals are more
reliable for rapidly forced systems that are weakly coupled in space but time series based early
warning signals are more reliable for slowly forced systems that are strongly coupled in space.
Given the vast quantity of remotely sensed spatial data available (Campbell and Wynne 2011) it
is hoped that these techniques will be of use to researchers.

Seeking more robust early warning signals for climate tipping points: the
Ratio of Spectra method (ROSA)

In chapter 7, I investigated the role of the assumptions made about the noise systems experience
and how that affects early warning signals. The typical assumption made is that the noise is
white noise — which means it has no temporal correlations. However when a system is forced
over short timescales relative to its own time scale, which is of relevance to climate change,
temporal correlations become more important. Furthermore, there is no guarantee that these
temporal correlations are constant — the stochastic process may not be stationary.

I investigated the effect of temporal correlations in the noise process by comparing early
warning signals for a simple system, which could undergo a bifurcation, when subject to white
and red noise. It was found that in the presence of red noise the early warning signals were
worse than in the case of white noise.

I then showed how, if there was some estimate of the noise, early warning signals could
still be obtained for arbitrary noise processes. This could be done by moving to the frequency
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domain where the effect of the noise process could be easily removed. I could verify numerically
that the early warning signals obtained this way worked well for red and white noise processes.
Furthermore, in the case where the noise was not stationary, this method could still give good
early warning signals.

I also applied this to the case of local Amazon dieback in CMIP6 models. It was found
that the new method could give more early warning signals for abrupt transitions in Amazonia
when compared to more conventional early warning signals. The noise process was assumed to
be given by the 2 m air temperature; this gives evidence, along with other work (Parry, Ritchie
and Cox 2022; Ritchie et al. 2022), of the role air temperature plays in giving early warning
signals about Amazon dieback.

The most obvious problem with this method is that it assumes the noise process is known.
The correct choice of noise is not in necessarily known for all tipping elements and as such relies
on the scientific understanding of the problem. It also requires that the noise has been measured,
thus requiring extra data compared to conventional early warning signals. Additionally, it
assumes a single noise source, whereas in reality the noise is likely to be a combination of
multiple components.

Chapter 7 set out to investigate the role of temporal correlations play in early warning
signals. It was able to demonstrate the importance of uncorrelated noise for conventional early
warning signals. Furthermore it was able to offer a way to avoid these problems, even in the
case where the noise was non-stationary. Whilst in some situations it may not be possible to
use the method developed in chapter 7, its usefulness was demonstrated in the case of Amazon
dieback where the method did perform well. A paper based on this chapter has been published
as Clarke et al. 2023.

8.2 Outlook

One obvious future research direction would be to consider the effect of biogeochemical
heating in a complex land surface model, such as JULES. This would enable a more precise
quantification of this process, taking into account the effect of spatially heterogeneous soil
properties such as soil moisture and changes in conductivity. Conductivity in particular was
shown to have a significant control on the magnitude of the effect of biogeochemical heating.

Furthermore, the use of JULES, combined with forcing data sets would enable an in-
vestigation into Siberian wildfires. For example, 2020 was a year of unusually widespread
Siberian fires (Witze 2020). ‘Zombie’, or over-winter, fires were identified as a possible cause.
This is of interest because fires caused by biogeochemical heating may manifest as zombie
fires. Furthermore, using future projections of climate change the changing probability of
biogeochemical heating driven fires could be quantified.

It was noted that the investigation in chapter 4 could not capture the regional effects of
biogeochemical heating. One way this investigation could be easily extended without resorting
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to a complex land surface model is by considering a ‘two-region’ model of soil carbon:

dC1

dt
= Π1(Ca) + Πc1W

(
−r1C1

Πc1

(
Ca

Ca0

)µ1)
(8.1a)

dC2

dt
= Π2(Ca) + Πc2W

(
−r2C2

Πc2

(
Ca

Ca0

)µ2)
(8.1b)

(8.1c)

where Ci are the soil carbon levels in region i, the parameters Πci quantify the amount of
biogeochemical heating and µi the climate-carbon sensitivity in that region. By assuming
Πc1 ≪ Πc2 this then models a region where biogeochemical heating is important, such as high
latitude peatlands, coupled to a region where biogeochemical heating is less important, which
could represent the rest of the globe.

Another use for JULES could be to determine the bifurcation point which separates stable
from unstable carbon cycles. To do this, it could be paired with IMOGEN to emulate both the
ocean carbon cycle as well as the effect of changes in atmospheric CO2 on surface temperatures.
It seems likely that this JULES-IMOGEN combination would still experience the sort of
bifurcation described in chapter 5. This is because JULES has, at each grid square, essentially
the same soil carbon dynamics as in chapter 5 and the ocean carbon cycle as simulated by
IMOGEN will be same. However, changing the representation of ocean temperatures in
IMOGEN may change the position of the bifurcation.

To extend the investigation into spatial early warning signals, more complex spatial coupling
forms could be considered. Furthermore, the investigation was done in 1 dimension, it would
be interesting to look at the two and three dimensional case as the behaviour of spatial systems
near the bifurcation point is known to be strongly dependent on dimension (Stanley 1999).
The ROSA method could also be extended by considering the multidimensional case in terms
of both state and noise.

As chapter 6 showed, for very rapidly forced systems early warning signals, even when
calculated spatially, are not reliable. It would be useful therefore to establish early warning
signals for this regime. Indeed, given the possibility for overshooting tipping points (Ritchie
et al. 2021), it would be useful to create warning signals that could indicated when a system has
passed the tipping point but not yet transitioned to the new state. As this is a nonautonomous
regime, few generic properties can be assumed. It may therefore be most useful to investigate
system specific early warning signals in this case.

8.3 Summary
The aim of this thesis was to examine instabilities in the climate-carbon system and adapt early
warning signals to more climate relevant cases. It extended the realism of models of biogeo-
chemical heating by adding a spatial dimension, demonstrating its potential relevance to some
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types of wildfire. Although this biogeochemical feedback was shown to be small at the global
level, that analysis revealed that there are constraints on climate-carbon system parameters. In
particular, it showed that only certain values climate sensitivity and CO2 fertilisation strengths
are compatible with the behaviour of CO2 over the Holocene. Furthermore, these values are
close to some values found in CMIP6 models, suggesting some of these models are at risk of
being unrealistically unstable.

The theory of early warning signals was advanced, extending them to more realistic cases
where the behaviour of the forcing matters — either due to its time correlation structure or
because it is rapidly changing. In doing so I have drawn connections to the physics of phase
transitions, the theory of which constitutes a rich body of research which I hope will provide
many insights in the future.
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Appendix A

Variational Calculus

Some of results involving the functional or variational derivative will be summarised in
this section. This section largely follows Lancaster and Blundell 2014 and Goldenfeld
2018. The notation adopted here will be the one used by physicists both for reasons of

clarity and also to emphasise the non-rigorous presentation.

A.1 Functionals

A function is a map between numbers. For example the function f :R→ R

f (x) = x2 (A.1)

associates the input number 2 to the output number 4.
However functionals associate functions to numbers, they are often denoted with square

brackets. For example the definite integral

I[ f ] =
∫ ∞

−∞
f (x) dx (A.2)

is a functional of f . It associates the function e−x2 to the number
√
π.

An important functional is the action of a system

S[q] =
∫ t

0
L(q(t′), q̇(t′), t′) dt′. (A.3)

where L is known as the Lagrangian.
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A.2 Derivatives
The definition of a derivative is well known:

Definition A.2.1 (Derivative of a Function). Let f :R→ R be a function. Then the derivative
of f is

df
dx

= lim
ε→0

f (x + ε)− f (x)
ε

(A.4)

if the limit exists.

More intuitively, the derivative measures how much a function changes when its input
changes by a small quantity.

Similarly, it can be interesting to know what happens to a functional when its input is
changed by a small quantity. The functional derivative (also known as a variational derivative)
can be defined as follows.

Definition A.2.2 (Functional Derivative). Let J be a functional of f which is in turn a
function of x ∈ R. Then the functional derivative is

δJ [ f (x)]
δf (x′)

= lim
ε→0

J [ f (x) + εδ(x − x′)]− J [ f (x)]
ε

(A.5)

if the limit exists. Here, δ(x) is the Dirac Delta function.

For example, consider the functional derivative of equation (A.2). From definition A.2.2
we have

δI
δf (x)

= lim
ε→0

1
ε

(∫ ∞

−∞
f (x) + εδ

(
x − x′

)
dx −

∫ ∞

−∞
f (x) dx

)
,

which can be simplified to give
δI

δf (x)
= lim

ε→0

1
ε

∫ ∞

−∞
εδ(x − x′) dx = 1.

A.3 Useful Results
Two useful results related to the chain rule will now be proven.

Theorem 2. Let f, g:R→ R be suitable functions. Then

δ
δf (x)

∫ b

a
g
(
f
(
y
))

dy = g′
(
f (x)

)
(A.6)

and
δ

δf (x)

∫ b

a
g
(
f ′
(
y
))

dy = − d
dx

(
dg
(
f ′ (x)

)

df ′

)
(A.7)

where conventional derivatives have been denoted with primes.
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Proof. Define

J [ f ] =
∫ b

a
g
(
f
(
y
))

dy

Beginning with the first claim using definition A.2.2:

δJ
δf (x)

= lim
ε→0

1
ε

(∫ b

a
g
(
f (y) + εδ

(
y− x

))
dy−

∫ b

a
g
(
f
(
y
))

dy
)

= lim
ε→0

1
ε

(∫ b

a
g
(
f (y)
)

+ εδ
(
y− x

)
g′
(
f
(
y
))

dy−
∫ b

a
g
(
f
(
y
))

dy
)

where the function g has been Taylor expanded to first order. The second order terms will
vanish in the limit and can therefore be ignored. Taking the limit gives

δ
δf (x)

∫ b

a
g
(
f
(
y
))

dy =
∫ b

a
δ(y− x)g′( f (y)) dy

= g′( f (x)).

Defining

J [ f ] =
∫ b

a
g
(
f ′
(
y
))

dy,

the proof of equation (A.7) proceed similarly for the second claim:

δJ
δf (x)

= lim
ε→0

1
ε

(∫ b

a
g
(
∂
∂y
(
f (y) + εδ(y− x)

))
dy−

∫ b

a
g
(
f ′
(
y
))

dy
)

= lim
ε→0

1
ε

(∫ b

a
g( f ′(y)) + εδ′(y− x)

dg( f ′(y))
df ′

dy−
∫ b

a
g( f ′(y)) dy

)

=
∫ b

a
δ′(y− x)

dg( f ′(y))
df ′

dy

= − d
dx

dg( f ′(x))
df ′

after integrating by parts.

An important special case of theorem 2 is

∂2f
∂x2 = − δ

δf (x)

∫ b

a

1
2

(
∂f
∂y

)2

dy, (A.8)

which explains the sign in equation (6.8).
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Appendix B

Correlation Function

Correlation functions play an important role in the analysis of spatially distributed
stochastic systems. In this appendix, I will derive the correlation function given
by equation (6.37). The correlation function can be derived by taking functional

derivatives of a particular functional integral.
The functional integral is given by the partition function of the system described by

equation (6.10), where an additional field, B, has been introduced. Symbolically, the partition
function is

Z =
∫

exp
(
− 2
σ2H

)
Dz, (B.1)

where

H[z] =
∫ L

0

1
2
λz(x)2 +

1
2
D
(
∂z
∂x

)2

− B(x)z(x) dx . (B.2)

To attack this integral, the tactic will be to shift to Fourier space, in which the part of
the integral that survives differentiation can be factored out. In Fourier space, equation (B.2)
becomes

H[{zk}] =
1
L2

∑

n,m

(
1
2

(λ−Dnm) znzm − Bmzn
)∫ L

0
ei(n+m)x dx . (B.3)

The integral over x is non-zero only when m = −n, so the sum over m can be eliminated
yielding

H[{zk}] =
1
L
∑

n

(
1
2
(
λ + Dn2) znz−n − B−nzn

)
. (B.4)

Using the fact that z ∈ R, which means that zn = z∗−n, equation (B.4) can be simplified to

H[{zk}] =
1
L
∑

n

(
1
2
(
λ + Dn2) |zn|2 − B−nzn

)
. (B.5)
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Setting ϕk = zk − Bk
Dk2+λ and completing the square meansH is now

H[{ϕk}] =
1
L
∑

n

(
1
2
(
λ + Dn2) |ϕn|2 −

1
2
|Bn|2

λ + Dn2

)
. (B.6)

This can be written asH[{ϕk}] = H0[{ϕk}]− 1
2L
∑

n
|Bn|2
λ+Dn2 , so that equation (B.1) becomes

Z =
∫ ∏

k>0

exp
(
− 2
σ2H0[{ϕk}]

)
dϕk exp

(
1
σ2

1
L
∑

n

|Bn|2
λ + Dn2

)
(B.7)

or

Z = Z0 exp

(
1
σ2

1
L
∑

n

|Bn|2
λ + Dn2

)
. (B.8)

Inverting Bk back into real space gives

Z = Z0 exp
(

1
σ2

∫∫
B(x1)g(x1 − x2)B(x2) dx1 dx2

)
. (B.9)

where
g(x1 − x2) =

1
L
∑

n

ein(x1−x2)

λ + Dn2 . (B.10)

This sum can be evaluated by replacing it with an integral, assuming L is large enough:

g(x) =
1

2π

∫ ∞

−∞

eikx

λ + Dk2 dk =
1
2
ξ
D
e−x/ ξ , (B.11)

hence using equation (6.33),

G(x) =
1
2
σ2g(x) =

1
4
σ2 ξ
D
e−x/ ξ . (B.12)
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