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Abstract
Theories in physics can provide a kind of map of the physical system under investigation,
showing all of the possible types of behavior which may occur. Certain points on the map are of
greater significance than others, because they describe how the system responds in a useful or
interesting manner. For example, the point of resonance is of particular importance when timing
the pushes onto a person sat on a swing. More sophisticatedly, so-called exceptional points have
been shown to be significant in optical systems harbouring both gain and loss, as typically
described by non-Hermitian Hamiltonians. However, expressly quantum points of interest—be
they exceptional points or otherwise—arising in quantum photonic systems have been far less
studied. Here we consider a paradigmatic model: a pair of coupled qubits subjected to an
unbalanced ratio of gain and loss. We mark on its map several flavours of both exceptional and
critical points, each of which are associated with unconventional physical responses. In
particular, we uncover the points responsible for characteristic spectral features and for the
sudden loss of quantum entanglement in the steady state. Our results provide perspectives for
characterizing quantum photonic systems beyond effective non-Hermitian Hamiltonians, and
suggest a hierarchy of intrinsically quantum points of interest.

Supplementary material for this article is available online

Keywords: non-Hermitian Hamiltonian, exceptional points, quantum master equation, qubits,
open quantum systems

(Some figures may appear in colour only in the online journal)

1. Introduction

Conventionally, quantum mechanics deals with with
Hermitian Hamiltonians. This common restriction ensures
both real eigenvalues and unitary time evolution. Remarkably,
relaxing this constraint by employing non-Hermitian
Hamiltonians can also lead to a physical quantum theory [1–3].
Most famously, constructing a quantum theory obeying

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

the less strict condition of parity-time (or PT ) symmetry
has led to some spectacular theoretical predictions within
modern optics [4–7]. In particular, theoretical treatments of
gain and loss naturally lead to non-Hermitian Hamiltonians,
which can become defective at so-called exceptional points—
points in parameter space which are typically associated with
unconventional physics [8, 9]. The creation of popular non-
Hermitian theories were soon followed by groundbreaking
experimental successes in (mostly classical) optical systems
demonstrating exceptional point physics [10–17].

Given the spectacular progress in PT -symmetric
optics, it is interesting to contemplate the consequences
of non-Hermitian physics in essentially quantum optical
systems [18–25]. Indeed, open quantum systems are a
natural playground to study non-Hermitian effects due to
their intrinsic description of system-environment interactions
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Figure 1. The unbalanced dimer and its populations. Panel (a): a pair of two-level systems, each of transition frequency ω0, where the first
qubit is pumped at a rate sκ, and the second qubit suffers loss at a rate κ. The coupling strength is g, and when the dimensionless parameter
s= 1 the system is PT -symmetric. Panel (b): the mean populations in the first (green) and second (pink) qubits as a function of time t (in
units of κ−1), for the cases of g= 2κ (thick lines) and g= κ/2 (thin lines), with s= 1 (cf equation (8)). Panel (c): the steady state current J
as a function of the coupling strength g (in units of ω0κ), for the cases of pumping associated with s= {1/2,1,2} (cf equation (10)).

accounting for gain and loss [26, 27]. Perhaps the simplest
case to consider is that of two coupled qubits [26–29], as
described by the Hamiltonian Ĥ (we take h̄= 1)

Ĥ= ω0

(
σ†
1σ1 +σ†

2σ2

)
+ g
(
σ†
1σ2 +σ†

2σ1

)
, (1)

whereω0 is the common transition frequency of both two-level
systems (2LSs), and the coupling strength between them is
accounted with g⩾ 0. The raising and lowering operators σ†

n
and σn satisfy both the anticommutator relation {σn,σ†

n}= 1
and the rule σ1σ2 = σ2σ1, corresponding to two distinguish-
able qubits [30, 31]. Accounting for losses in an open quantum
systems approach, we may employ the following quantum
master equation for the system’s density matrix ρ [29, 32]

∂tρ= i[ρ, Ĥ]

+
sκ
2

(
2σ†

1ρσ1 −σ1σ
†
1ρ− ρσ1σ

†
1

)
+
κ

2

(
2σ2ρσ

†
2 −σ†

2σ2ρ− ρσ†
2σ2

)
, (2)

where the rate κ⩾ 0 measures the loss out of the second 2LS,
and the dimensionless parameter s⩾ 0 tunes the overall gain
rate sκ into the first 2LS. Hence the gain-loss ratio amongst
the coupled qubits is generally unbalanced (that is, as long as
s ̸= 1) as is sketched schematically in figure 1(a).

The time evolution of the density matrix ρ in equation (2)
is governed by three ingredients. On the right-hand side of
equation (2), the first line contains the Liouville–vonNeumann
commutator, involving the Hermitian Hamiltonian operator Ĥ
of equation (1). The second line in equation (2) alludes to inco-
herent gain into the first qubit, and the third line in equation (2)
contains the Lindbladian dissipator of the second qubit—these
two additions impart non-Hermiticity into the model. Notably,
we do not remove the so-called refilling (or feeding) terms
from the two Lindbladians featuring in equation (2), and so
we do not entertain the celebrated case of a traditional non-
HermitianHamiltonianmodel [29]. Nevertheless, the quantum
physics of non-Hermitian Hamiltonians is rather interesting,
including for the promotion of squeezing and for the enhance-
ment of quantum entanglement [33, 34].

We also note that the quantum optical master equation
formalism that we employ in equation (2) is essentially equi-
valent to a more technically demanding quantum Langevin
equation-style approach, since both approaches are unifiable
within a higher-level quantum noise theory [35].

This considered minimal model of two coupled qubits, as
encapsulated by equations (1) and (2), showcases a variety of
quantum points of interest—including both exceptional points
and critical points. These special points arise when the system
parameters approach the values

s= 1, PT symmetry, (3a)

g=
√
s

(√
2± 1
2

)
κ, type− I MEP, (3b)

g=
|s− 1|

4
κ, type− II MEP, (3c)

g=

(
s+ 1
2

)
κ, SCP. (3d)

Let us consider each quantum point of interest in the list of
equation (3) in turn:

(A). In essentially classical systems, the border case
between a system being open and being closed has received
considerable attention. It was shown by Bender and co-
workers [36, 37] that when PT -symmetry is obeyed by an
effective Hamiltonian, the resulting eigenvalues can be real
despite the Hamiltonian being non-Hermitian. The prototyp-
ical PT -symmetric system is that of two coupled harmonic
oscillators [7], one being supplied with gain κ, and the other
suffering loss at the equivalent rate κ. Then it follows that upon
carrying out the parity operation (switching the positions of the
two oscillators) and the time operation (flipping time, so that
gain and loss are interchanged) the transformed system is equi-
valent to the starting one: thus PT -symmetry is obeyed [7]. It
was recently proposed by Huber and co-workers [26] that the
natural operation extending PT -symmetry to open quantum
systems is to interchange loss and gain using the operator
transformations σ1 → σ†

1 and σ2 → σ†
2 within the Lindblad

2
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dissipators. Hence, for the setup we consider in figure 1(a), the
system exhibits PT symmetry when the dimensionless para-
meter s= 1, such that the gain and loss is indeed evenly bal-
anced (cf equation (3a) and figure 1(a)).

(B). An intuitive way to write down an effective
Hamiltonian H arising from a quantum master equation is
to form the matrix equation for the mean values of the first
moments, that is objects like ⟨σ1⟩ and ⟨σ2⟩. In the case of
the considered equation (2), the resultant effective dynamical
equation is [29]

i∂tψ =Hψ, (4)

where the effective Hamiltonian H is a 4× 4 matrix

H=


ω0 − i sκ2 g −2g 0

g ω0 − iκ2 0 −2g
0 isκ ω0 − iκ

(
s+ 1

2

)
−g

0 0 −g ω0 − iκ
(
1+ s

2

)
 ,

(5)

and where ψ = (⟨σ1⟩,⟨σ2⟩,⟨σ†
1σ1σ2⟩,⟨σ1σ

†
2σ2⟩)T collects the

averaged first moment operators. The four complex eigenval-
ues of H (and their associated eigenvectors) coalesce at two
distinct points, exactly when the conditions of equation (3b)
are met — they are truly exceptional points or EPs. We
call these EPs arising from the first moments of the system
type− I MEPs. Strikingly, these EPs exist both in the PT -
symmetric arrangement (s= 1) and outside this balanced setup
(s ̸= 1).

(C). Naturally, another appealing route to uncover EPs
within an open quantum systems approach is to consider
higher orders of the moments. For example, by considering
the second moments of the system, objects like ⟨σ†

1σ1⟩ and
⟨σ†

2σ2⟩, the dynamical equation formed from the quantum
master equation of equation (2) is given by

i∂tΨ =MΨ +P, (6)

whereΨ = (⟨σ†
1σ1⟩,⟨σ

†
2σ2⟩,⟨σ

†
1σ2⟩,⟨σ

†
2σ1⟩)T gathers the four

second moments, and with the column vector driving term
P = (isκ,0,0,0)T. Explicitly, the dynamical matrix M is
defined via

M=


−isκ 0 g −g
0 −iκ −g g
g −g −i

(
1+s
2

)
κ 0

−g g 0 −i
(
1+s
2

)
κ

 , (7)

which admits complex eigenvalues (and eigenvectors) which
simultaneously coalesce at only one point (cf equation (3c)).
This EP may be termed a type− II MEP due to its association
with the second moments. Notably, here the EP vanishes when
s= 1, such that there is no type− II MEP when the system is
in its PT -symmetric, balanced arrangement.

(D). The quantum nature of the model of equation (2) nat-
urally leads one to consider the explicitly quantum features
which may be governed by truly quantum points of interest.
Considerations of the properties of the density matrix ρ —

and especially entanglement measures — lead to the obser-
vation of a critical (and non-exceptional) point. In particular,
the critical point at which the quantum state suddenly becomes
unentangled (or separable), which we dub a separable critical
point (SCP), is given by equation (3d) in the steady state.

Let us mention that if we were to neglect the refilling terms
in the Lindbladians appearing in equation (2) in order to enter a
non-Hermitian Hamiltonian model regime, the two influential
dynamical matrices discussed previously,H andM as defined
in equations (5) and (7)] respectively, would be markedly dif-
ferent [29]. As a knock-on effect, the locations of the EPs
(as well as the overall dynamics) also change significantly.
However, there is the pronounced cost of the approximation
employed (neglecting the refilling terms) highly restricting the
parameters one may reasonably consider, such that we releg-
ate a discussion of the non-Hermitian Hamiltonian aspects of
the model to the supplementary material [29].

Inwhat follows, we consider the impact of the four quantum
points of interest listed in equation (3) in a handful of com-
mon observables and measures. In doing so, we highlight
the importance of such analyses for complete descriptions
of quantum optical systems with substantial non-Hermitian
aspects (as they arise from a proper quantum master equation
approach).

2. Populations

The mean values of the second moments ⟨σ†
nσn⟩ gives

access to the average populations of the two qubits.
The analytic expressions for the dynamic populations,
with the initial conditions ⟨σ†

1σ1⟩= 1 and ⟨σ†
2σ2⟩= 0 at

the starting time t= 0, are particularly simple when the
loss and gain are balanced (that is, when s= 1). These
two qubit populations, accessed from the solution of the
equation of motion given in equation (6), then read [29,
38]

⟨σ†
1σ1⟩=

κ2 + 2g2

κ2 + 4g2
+

2g2 cos(2gt)+κgsin(2gt)
κ2 + 4g2

e−κt, (8a)

⟨σ†
2σ2⟩=

2g2

κ2 + 4g2
− 2g2 cos(2gt)+κgsin(2gt)

κ2 + 4g2
e−κt, (8b)

which display exponential decay, with the time constant 1/κ,
of the trigonometric population oscillations towards unequal
steady states (given by the first terms on the right-hand sides
of equation (8)). Such behaviour for the left (green) and
right (pink) qubits is displayed graphically in figure 1(b).
When the coupling g is strong (thick lines) distinctive Rabi
cycles of the populations may be observed. Otherwise, for
weak coupling g (thin lines) there is a monotonic approach
to the steady state population, which is created due to an
equilibrium being found between the competing loss and gain
processes.

The results for unbalanced arrangements of the qubits
(where the dimensionless parameter s ̸= 1) do indeed
admit type− II MEPs (cf equation (3c)). However, the
reconstruction of the population expressions of equation (8)

3



J. Opt. 25 (2023) 095201 C A Downing and O I R Fox

Figure 2. The optical spectrum S(ω), as a function of the shifted emission frequency ω−ω0 (in units of κ), for the balanced case of s= 1
(thick cyan lines). Panel (a): the coupling strength g= κ/5, which is below the first type− I MEP. Panel (b): g= κ, which is between the
first and second type− I MEPs. Panel (c): g= 2κ, which is above the second and final type− I MEP. Thin colored lines: the four
contributions to the overall spectrum, due to the four possible transitions in the system (cf equation (12)). The type− I MEPs occur at
g= (

√
2− 1)κ/2≃ 0.207κ and g= (

√
2+ 1)κ/2≃ 1.207κ respectively (cf equation (3b)).

around these exceptional points (from damped-trigonometric
to damped-algebraic) is not readily noticeable and so these
results are not displayed here—although we do note that
some signatures of these EPs have recently been obtained in
reference [27].

The general analytic expressions for the steady state popu-
lations limt→∞⟨σ†

nσn⟩ are readily obtainable for any gain-loss
imbalance, as judged by the dimensionless parameter s. The
following neat formula for the population imbalance across
the dimer system may then be found [29]

lim
t→∞

⟨σ†
1σ1⟩− ⟨σ†

2σ2⟩
⟨σ†

1σ1⟩+ ⟨σ†
2σ2⟩

=
(s+ 1)κ2

8g2 +(s+ 1)κ2
, (9)

which is bounded between 0 and 1 for strong and weak coup-
lings g respectively. The population imbalance of equation (9)
suggests the formation of a steady state current across the duo
of qubits is possible [39]. Indeed, the driving sκ into the first
2LS and the loss κ out of the second 2LS allow for a nonzero
steady state current J to be set up, with the strength [29]

J=

(
s

s+ 1

)
4g2κ

4g2 + sκ2
ω0. (10)

The current J displays the bounds 0⩽ J⩽ ω0κs/(s+ 1) for
weak and strong couplings g, as shown in figure 1(c) for sev-
eral values of s. This current J could act as a useful observable
to calibrate the coupled quantum system under experimental
consideration.

3. Spectra

The quantum regression formula provides a route to the
first-order correlation function g(1)n (τ) of the nth qubit. With
the delay time τ ⩾ 0, this degree of coherence may be
defined, using the steady state population as normalization,
as g(1)n (τ) = limt→∞⟨σ†

n(t)σn(t+ τ)⟩/⟨σ†
n(t)σn(t)⟩. By defin-

ition, |g(1)n (0)|= 1 demonstrates full coherence, |g(1)n (0)|= 0
perfect incoherence and otherwise 0< |g(1)n (0)|< 1 partial
coherence [32]. Analytical formulas for g(1)n (τ) are rather long

in general, but simplify in the balanced case of s= 1 to [29]

g(1)1 (τ) =
e−iω0τe−κτ

κ2 + 2g2

{
κ2 +κg+ 2g2

2
cos(qτ)

+
κ2 −κg+ 2g2

2
cos(pτ)+

κ2 (3g+κ)

4q
sin(qτ)

− κ2 (3g−κ)

4p
sin(pτ)

}
, (11a)

g(1)2 (τ) =
e−iω0τe−κτ

4g

{
(2g+κ)cos(qτ)+ (2g−κ)cos(pτ)

+
κ(4g+κ)

2q
sin(qτ)+

κ(4g−κ)

2p
sin(pτ)

}
,

(11b)

where we have introduced the auxiliary functions q=√
g2 − gκ−κ2/4 and p=

√
g2 + gκ−κ2/4. Total incoher-

ence arises at long times, g(1)n (∞) = 0, due to the lack of cor-
relations with large time delays τ .

The optical spectrum S(ω) of the first (and driven)
qubit may be calculated directly from the degree of coher-
ence g(1)1 (τ), via the normalized spectral formula S(ω) =

limt→∞Re
´∞
0 g(1)1 (τ)/π [40, 41]. There are four possible

transitions in the coupled system (in the simplest case of
the bare states, they are from |1,1⟩ → |1,0⟩& |0,1⟩ and from
|1,0⟩& |0,1⟩ → |0,0⟩) which are all associated with a certain
transition frequency and a certain lifetime. Therefore, there
are four contributions (thin colored lines) to the overall spec-
trum S(ω) (thick cyan lines) with particular peak positions
and broadenings, as is shown in figures 2(a)–(c). The pos-
itions and broadenings may be determined via the real and
imaginary parts respectively of the four complex eigenval-
ues ϵ±,±, arising from the governing dynamical matrix H of
equation (5), which read [29]

ϵ±,± = ω0 − iκ±
√
g2 −

(κ
2

)2
± gκ. (12)

This expression contains two points of coalescence, consist-
ent with the type− I MEPs of equation (3b). Across the row

4
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Figure 3. The unbalanced dimer and its correlations. Panel (a): second-order direct correlation function g(2)n (τ) as a function of the delay
time τ (in units of κ−1) for the first (n= 1) and second (n= 2) resonators (cf equations (13a) and (13b)), with s= 1. Panel (b): second-order
cross-correlation function g(2)X (τ), as a function of the delay time τ , with s= 1 (cf equation (13c)). Panel (c): second-order cross-correlation

function at zero delay g(2)X (0), as a function of the coupling strength g (in units of κ), for the cases of s= {1/2,1,2} (cf equation (14)).

of panels in the spectral figure 2, we consider three success-
ively increasing values of the coupling strength g for the
balanced case of s= 1, so that the type− I MEPs occur at
g= (

√
2− 1)κ/2≃ 0.207κ and g= (

√
2+ 1)κ/2≃ 1.207κ

(cf equation (3b)). In panel (a) the coupling strength g is
below the first type− I MEP, and the spectrum S(ω) presents
a singlet structure since the complex eigenvalues describing
the transitions all have ω0 as the real part and four distinct
imaginary parts leading to four different spectral broaden-
ings (cf equation (12)). Between the first type− I MEP and
the second type− I MEP, there are three distinct real parts
of the complex eigenvalues (since the first type− I MEP has
been passed, associated with a coalescence) such that the sing-
let has developed noticeable spectral shoulders in panel (b).
Finally in panel (c), above the second and final type− I MEP,
the four distinct real parts of the complex eigenvalues (cf
equation (12)) lead to a characteristic doublet spectrum with
significant spectral shoulders. Hence the evolution with g of
the number of peaks within the optical spectrum S(ω) presents
a useful and rather vivid indicator for when the system has
passed through type− I MEPs.

4. Correlations

The degree of second-order coherences g(2)(τ) measure the
emission properties of the duo of coupled qubits [32]. The
normalized second-order correlation functions are defined
by, for the two direct correlation functions: g(2)n (τ) =
limt→∞⟨σ†

n(t)σ
†
n(t+ τ)σn(t+ τ)σn(t)⟩/⟨σ†

n(t)σn(t)⟩2, with
n= {1,2}. These correlators count the probabilities
of two emissions, with a time delay τ , from the
same qubit. Likewise, the cross-correlator is simil-
arly given by g(2)X (τ) = limt→∞⟨σ†

1(t)σ
†
2(t+ τ)σ2(t+

τ)σ1(t)⟩/(⟨σ†
1(t)σ1(t)⟩⟨σ

†
2(t)σ2(t)⟩), which tracks two

τ -delayed emissions, one from each qubit in the dimer.
The explicit expressions for these types of g(2)(τ) are most

simple in the balanced case of s= 1, where they read [29]

g(2)1 (τ) = 1−
[(
2g2 +κ2

)
cos(gτ)− gκsin(gτ)

]2
(2g2 +κ2)

2 e−κτ ,

(13a)

g(2)2 (τ) = 1− [2gcos(gτ)+κsin(gτ)]2

4g2
e−κτ , (13b)

g(2)X (τ) = 1−
[
gκcos(gτ)+

(
2g2 +κ2

)
sin(gτ)

]2
2g2 (2g2 +κ2)

e−κτ .

(13c)

We plot the two direct correlation functions g(2)n (τ) in
figure 3(a), where n= 1 is marked with the green line and
n= 2 by the pink line. At zero time delay (τ = 0), the two-level
nature of the qubits enforces g(2)n (0) = 0, since a finite time τ
is required for the qubit to be re-excited from the ground state
in order to emit a second photon. For nonzero τ the phenomena
of antibunching, as defined by g(2)n (0)< g(2)n (τ) emerges as a
non-classical effect. The long time limit (τ →∞) sees perfect
coherence being approached due to the random nature of the
emissions in this asymptotic scenario.

We plot the cross-correlation function g(2)X (τ), as defined

in equation (13c), in figure 3(b). The result g(2)X (0) ̸= 0 arises
since simultaneous emissions, one in each qubit, are possible
even at zero time delay (τ = 0). Thereafter, there are charac-
teristic oscillations until the asymptotic result g(2)X (∞) = 1 is
approached, signifying the qubits are behaving independently
for large delay times τ . At zero delay (τ = 0), and for a general
unbalanced system with any s, we find the cross-correlation
formula

g(2)X (0) =
4g2 + sκ2

4g2 +(s+ 1)κ2
. (14)

We plot g(2)X (0) in figure 3(c) as a function of the coup-
ling g for three values of s, showcasing the weak coupling
limit of g(2)X (0) = 1/(1+ s), and the strong coupling result of

g(2)X (0) = 1, such that the degree of antibunching can be some-
what tuned by the pumping strength sκ. Similar to the pop-
ulation dynamics, the correlation functions considered (with
s ̸= 1) do not allow for as striking a fingerprint of an excep-
tional point as compared to the optical spectrum, since the
behaviour of the relevant functions at the exceptional point
is rather similar to the behaviour immediately above and
below it.

5
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Figure 4. The unbalanced dimer and its quantum information in the steady state. Panel (a): the entanglement measure EPR as a function of
the coupling strength g (in units of κ) for the cases of s= {1/2,1,2} (cf equation (15)). Dashed grey lines: the maximum values of
1/16≃ 0.063 and 1/18≃ 0.056. Panel (b): the linear entropy S as a function of the scaled coupling strength g/κ (cf equation (16)). Dashed
grey lines: the asymptotic values of 1 and 224/243≃ 0.92. Panel (c): the concurrence C as a function of the scaled coupling strength g/κ.
Dashed grey lines: the concurrence zeroes first occur at 1/2, 1 and 3/2, matching the SCPs of equation (3d).

5. Informatics

Let us now consider some measures typically used in quantum
information science—such as purity, linear entropy, concur-
rence and negativity—and the impact upon them of the special
points of interest listed in equation (3), be they exceptional or
otherwise. In particular, we are interested in the response of the
system in the steady state. Notably, the steady-state entangle-
ment properties of two coupled qubits is known to be import-
ant for quantum information processing and device design
[42–46].

The measure EPR frequently arises in quantum met-
rology, where the inequality EPR> 0 suggests entangle-
ment [47]. Considering the steady state with the asymp-
totic time t→∞, and coming directly from the definition of
EPR= limt→∞(⟨σ†

1σ1⟩⟨σ
†
2σ2⟩− ⟨σ†

1σ1σ
†
2σ2⟩), we obtain this

key measure as [29]

EPR=

(
s

s+ 1
2gκ

4g2 + sκ2

)2

, (15)

which exhibits the lower bound of 0 for both weak and strong
coupling (g≪ κ and g≫ κ respectively), and the upper bound
of s/[2(1+ s)]2 at the certain coupling strength g=

√
sκ/2.

We plot the EPR in figure 4(a) as a function of g, showcasing
the stronger EPR entanglement for moderate coupling values
and how it vanishes for extremely weak or strong couplings,
such that no exceptional or critical points influence this simple
measure.

The linear entropy S is a common measure of the mixed-
ness of a quantum state ρ. This quantity may be defined by
S = (4/3)[1−Tr(ρ2)], where the prefactor of 4/3 ensures that
the bounds fulfil S ∈ [0,1]. The lower bound corresponds to a
pure state and the upper bound to a maximally mixed state. In
the steady state, the linear entropy S for the unbalanced qubit
system reads [29]

S =
32
3

s
(s+ 1)4

(
g

4g2 + sκ2

)2

×
{
(1+ s2)(1+ s)2κ2 + 8(s2 + s+ 1)g2

}
. (16)

We plot the linear entropy in figure 4(b) as a function of the
coupling g, which highlights the total purity of the state with

small couplings g≪ κ as may be expected. The monotonic
rise in mixedness of the state with increasing coupling g even-
tually plateaus at a value given by S ≃ 16s(1+ s+ s2)/[3(1+
s)4]. Hence, only with balanced coupling (s= 1) does a max-
imally mixed state arise with S = 1 identically.

The concurrence C, as developed by Wooters [48, 49], is
a celebrated entanglement measure of bipartite mixed states.
Zero concurrence is associated with a separable state, while
nonzero concurrence measures the degree of entanglement of
the state (up to a maximum of unity for maximum entangle-
ment). We consider the steady state concurrence C as a func-
tion of the coupling strength g in figure 4(c) for the cases of
s= {1/2,1,2}. Strikingly, there are critical points at which the
steady state concurrence suddenly drops to zero such that the
state becomes separable—we calls these points separable crit-
ical points or SCPs (cf equation (3d)). Otherwise, in the region
of nonzero entanglement one finds (for the balanced case of
s= 1) the maximal obtainable concurrence

max{C}= 1

1+
√
5
≃ 0.309 . . . , (17)

which occurs with the moderate coupling g= κ/(1+
√
5)≃

0.309κ, and which is slightly higher than the maximum val-
ues of C for the unbalanced arrangements of the qubits. The
entanglement-disentanglement transitions in figure 4(c) are
wholly governed by equation (3d), which is a useful quantum
point of interest in addition to the exceptional points of the
system.

6. Thermodynamic limit

The results for the considered coupled qubits (cf equation (1))
may be approached from the analogous model of two coupled
quantum harmonic oscillators by truncating the number of
energy levels N of each oscillator. In the untruncated limit
(N→∞), the pure coupled oscillator system admits the fol-
lowing quantum points of interest [29]

g=

(
s+ 1
4

)
κ,

{
type− I MEP,

type− II MEP,
(18a)
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Figure 5. The unbalanced dimer beyond the two-level limit. We consider the steady state (t→∞) regime, and the two-level system results
are denoted by thick orange, cyan and pink lines for the cases of s= {1/2,1,2} respectively. Also shown are the results for a pair of
truncated quantum harmonic oscillators: the number of levels of each oscillator is N, so that N= 2 recovers the two-level system results
while untruncated oscillators are approached in the N≫ 2 limit (thin green lines). Panels (a)–(c): the purity P as a function of the coupling
strength g (in units of κ). Dotted grey lines: the values of interest as N≫ 2 are 1/(2

√
2)≃ 0.354, 1/2 and 1/

√
2≃ 0.707 for panels

(a)–(c) respectively, aligning with the MMCP for the coupled oscillators (cf equation (18b)). Panels (d)–(f): as for the upper panels, but
instead showing the negativityN as a function of g. Dotted grey lines: the values of interest as N≫ 2 are 1/(2

√
2)≃ 0.354, 1/2 and

1/
√
2≃ 0.707 for panels (d)–(f) respectively, aligning with the SCP for the coupled oscillators (cf equation (18b)). Dashed grey lines: the

negativity zeroes along the top row of panels occur at 3/4, 1 and 3/2 respectively for N= 2, which are the qubit SCPs (cf equation (3d)).
Panels (g)–(i): as for the upper panels, but instead showing the Liouvillian gap as a function of g. Dotted grey lines: the values of interest as
N≫ 2 are 1/(2

√
2)≃ 0.354, 1/2 and 1/

√
2≃ 0.707 for panels (g)–(i) respectively, these points are Liouvillian gap critical points (LGCPs)

for the coupled oscillators (cf equation (18b)). Dashed grey lines: the Liouvillian gap plateaus along the bottom row of panels occur at
(
√
2+ 2)/4≃ 0.85, (

√
2+ 1)/2≃ 1.21 and (

√
2+ 2)/

√
2≃ 1.71 respectively for N= 2, aligning with the largest type− I MEP for the

coupled qubits (cf equation (3b)).

g=

√
s
2
κ,


MMCP,

SCP,

LGCP.

(18b)

Notably, the type− I and type− II MEPs coincide for
this (N→∞ level) linear model (equation (18a)), in stark
contrast to the qubit case with N= 2 levels (equations (3a)
and (3b)). Interestingly, there is also a coexistence of the SCP
and the LGCP, defined as the point in parameter space at
which the Liouvillian gap closes, which can indeed occur in
the thermodynamic limit of N→∞. Additionally, there is

a further coincidence in equation (18b) with the maximally
mixed critical point (MMCP), which is associated with purity
of the state becoming zero.

In what follows, we consider a handful of illuminating
quantum steady state properties in the extreme limits of N= 2
for coupled qubits, N→∞ for coupled quantum harmonic
oscillators, and otherwise for some values of N in between
these instructive limits.

Let us first consider the purity P of the system, a meas-
ure of the mixedness of the state ρ as defined by P = Tr(ρ2),
so that P = 1 corresponds to a pure state and P = 1/D to a
maximally mixed state (here D is the dimension of the Hilbert
space in question). The top row of figure 5 displays the steady

7
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state purity P as a function of the coupling strength g, for
the cases of s= {1/2,1,2} in panels (a)–(c) respectively. The
qubit (N= 2) results are given by the thick colored lines in the
figure, and are described by the exact expression

P =
16g2

[
s2(1+ s)2κ2 +(1+ s2)2g2

]
+ s2(1+ s)4κ4

(1+ s)4 (4g2 + sκ2)2
,

(19)

which is necessarily unity with vanishing coupling g. The
truncated oscillator results are represented by the thin green
lines in figures 5(a)–(c), and for greater visibility the edge
cases of N= 3 and N= 20 are given by dark green and light
green lines respectively. Notably, with increasing the number
of levels N the purity P tends towards zero—suggesting max-
imal mixedness—at the MMCP defined by equation (18b),
which is marked by the dotted grey lines in the figure.

The negativity N is a popular quantifier of how much
entanglement is contained within a quantum state ρ [50, 51].
This quantity is zero for separable states and nonzero for
entangled states. Defined as the absolute sum of the negative
eigenvalues of the partial transpose of the state ρ, it may be
computed exactly in the steady state and for the N= 2 level
case as [29]

N =
2g

4g2 + sκ2

{√
(s− 1)2 g2 + s2κ2 −

(
s2 + 1
s+ 1

)
g

}
× 1
s+ 1

Θ
(
s+1
2 κ− g

)
, (20)

where Θ(x) is the Heaviside theta function. The presence of
the step function within equation (20) highlights the hard bor-
der between entangled and unentangled states at the critical
points defined by equation (3d) for the qubit (N= 2) case. For
example, within the balanced arrangement of the qubit dimer
(s= 1) we find the maximal negativity max{N}= 1/(2+
2
√
5)≃ 0.155 occurs at g= κ/(1+

√
5)≃ 0.309, while the

SCP may be found at g= κ/2. This circumstance is plotted as
the thick cyan line in figure 5(e), while the panels (d) and (f)
show the equivalent results for the unbalanced cases of s= 1/2
(thick orange line) and s= 2 (thick pink line) respectively,
where the qubit SCPs are denoted by the dashed colored lines.
The cases of truncated oscillators are shown in the second
row of figure 5 by thin green lines. Notably, in the thermo-
dynamic limit N→∞ the coupled oscillator negativities N
in figures 5(d)–(f) seemingly go to zero at the SCPs pre-
dicted by equation (18b), which are marked by the dotted grey
lines in the figure. This statement is most easily seen in panel
(d), and more supporting evidence for this claim is presented
in [29].

The Liouvillian spectral gap is defined from the complex
eigenvalue of the Liouvillian with the smallest real part (after
removing any zero eigenvalues from consideration) [52–54].
The closing of the Liouvillian gap, which is possible in the
thermodynamic limit N→∞, may occur at a critical value of
some system parameter. This gap closing phenomena is asso-
ciated with a dissipative phase transition, which have already
been measured in a handful of modern photonic architec-
tures [55–57]. We plot the Liouvillian gap as a function of

the coupling strength g in figures 5(g)–(i) for three different
values of s. The coupled qubit (N= 2) results are denoted
by thick colored lines and cannot lead to a closing of the
Liouvillian gap due to the finite size of the Hilbert space, how-
ever the plateau feature arises due to the largest type− I MEP
(cf equation (3b)). Interestingly, the truncated oscillator res-
ults (thin green lines) suggest a closing of the gap in the large
N limit exactly at the LGCP of equation (18b). This trend of
gap closing is best seen in panel (g), andmore supporting evid-
ence for this claim is given in [29].

Overall, by truncating the linear harmonic oscillator model
to recover the qubits results, one notices the evolution of the
SCPs in the middle row of figure 5, describing the movement
in g/κ-space of the entanglement-disentanglement transitions
in the steady state. The consideration of a thermodynamic
limit with the coupled oscillators also revealed the critical
points that we have dubbed MMCP and LGCP, govern-
ing the mixedness zero and the dissipative phase transition
in the system using equation (18b), which complement the
more celebrated exceptional points of the oscillator model (cf
equation (18a)).

7. Discussion

In conclusion, we have considered a simple quantum optical
model of two coupled qubits experiencing both loss and gain.
In analogy to the (essentially semiclassical) exceptional points
found when using non-Hermitian Hamiltonians to model
optical systems, here we have elucidated the many flavours
of quantum points of interest — both exceptional and critical
— which should appear in quantum optical systems describ-
able within an open quantum systems approach. In particular,
we have suggested that a change in the number of peaks in the
optical spectrum can be a neat signifier of movement through a
certain flavour of first moment exceptional point, while steady
state entanglement measures abruptly becoming zero are asso-
ciated with passing past a certain critical point. Following
a series of recent pioneering experiments in quantum non-
Hermitian physics — primarily exploiting superconducting
qubits [58–70]—we hope that our theoretical results can stim-
ulate further experimental work in the study of quantum points
of interest, broadly interpreted, and their distinctive physical
consequences.
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