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A B S T R A C T   

Pixel differences between classes with low contrast in medical image semantic segmentation tasks often lead to 
confusion in category classification, posing a typical challenge for recognition of small targets. To address this 
challenge, we propose a Contrastive Adaptive Augmented Semantic Segmentation Network with a differentiable 
pooling function. Firstly, an Adaptive Contrast Augmentation module is constructed to automatically extract 
local high-frequency information, thereby enhancing image details and accentuating the differences between 
classes. Subsequently, the Frequency-Efficient Channel Attention mechanism is designed to select useful features 
in the encoding phase, where multifrequency information is employed to extract channel features. One- 
dimensional convolutional cross-channel interactions are adopted to reduce model complexity. Finally, a 
differentiable approximation of max pooling is introduced in order to replace standard max pooling, strength
ening the connectivity between neurons and reducing information loss caused by downsampling. We evaluated 
the effectiveness of our proposed method through several ablation experiments and comparison experiments 
under homogeneous conditions. The experimental results demonstrate that our method competes favorably with 
other state-of-the-art networks on five medical image datasets, including four public medical image datasets and 
one clinical image dataset. It can be effectively applied to medical image segmentation.   

1. Introduction 

MEDICAL image segmentation has various applications and research 
values for disease diagnosis and analysis [1–3]. Conventional methods 
based on thresholding and morphological manipulation have achieved 
certain application results in medical image segmentation. However, 
their limitations, such as dependence on prior knowledge and strict 
application conditions, lead to unsatisfactory generalization perfor
mance. With the successful application of deep learning methods in 
computer vision, the semantic segmentation method based on the 
Convolutional Neural Network (CNN) has been widely used in the 
automatic segmentation of medical images owing to its low dependence 
on prior knowledge and powerful ability of feature learning. These 
methods excel in learning and extracting advanced semantic 

information from images, improving the distinction of different target 
regions. In addition, in comparison to traditional methods, these 
methods have better robustness and adaptability and can handle various 
image segmentation tasks under complex scenarios. Therefore, 
CNN-based semantic segmentation technology has become a vital tool in 
medical image analysis. 

The CNN includes multiple layers, including but not limited to the 
convolutional layer, nonlinearity layer, pooling layer, and fully con
nected layer [4]. The Fully Convolutional Network (FCN) [5] revolu
tionized the fully connected layers of classification networks with 
convolutional layers, creating an encoder-decoder structure for fully 
convolutional semantic segmentation. This enables end-to-end, pixel-
wise segmentation. Subsequently, FCNs have been widely applied in 
various segmentation tasks such as brain tumor segmentation, skin 
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lesion segmentation, etc. [6]. However, FCN only utilizes high-level 
semantic features, which makes it challenging to precisely localize ob
jects, resulting in relatively coarse segmentation results and the loss of 
fine details. Unlike general image segmentation tasks, medical images 
typically contain noise and exhibit blurred boundaries, requiring the 
model not only to detect and recognize high-level semantic features but 
also to rely on low-level features for accurate boundary delineation. 
Based on FCN, U-Net [7] introduces concatenation structures between 
the corresponding encoder and decoder layers. In U-Net, skip connec
tions are utilized to merge the feature maps from the encoding end with 
those at the decoding end, effectively combining low-resolution and 
high-resolution image features. This design enables end-to-end seg
mentation performance without any pretraining. Its simplicity and ef
ficiency render it a popular choice for medical applications. 
Consequently, U-Net has become the benchmark for medical image 
segmentation. To date, it has been widely used in various biomedical 
image segmentation tasks, such as cardiac segmentation by magnetic 
resonance, optic disc and cup segmentation in retinal fundus images, 
and organ segmentation in Computed Tomography (CT) images. 
Numerous advanced medical image segmentation networks have been 
improved based on this architecture, including SegNet [8], U-Net++

[9], AttU-Net [10], CPFNet [11], and CA-Net [12], among others. These 
improvements attest to the effectiveness of the symmetric coding 
structure. However, these methods directly input the input image into 
the network of symmetrical coding and decoding structure for calcula
tion, while our method sets a trainable contrast enhancement layer in 
the first layer of the network, and then performs segmentation on the 
enhanced image through the network of symmetrical coding and 
decoding structure. 

The semantic information in medical images may vary depending on 
the organ or tissue being examined, making it challenging to accurately 
capture this information during segmentation. As a result, many re
searchers have developed advanced network structures to address these 
challenges and improve the accuracy of medical image segmentation. U- 
Net++ was designed to address the large semantic gap between the 
features of U-Net’s skip connections by replacing them with nested and 
dense skip connections. The improvement was validated on colon polyp, 
liver, cell nuclei, and lung nodule datasets. CPFNet proposed a global 
pyramid guidance module that provides different levels of global 
context information for the decoder to dynamically fuse multiscale 
context information in high-level features. Experimental results show 
that CPFNet is highly competitive compared with other state-of-the-art 
methods on four different challenging tasks. CE-Net [13] incorporates 
a dense atrous convolution block that captures deeper and wider context 
features by fusing cascaded paths and a residual multikernel pooling 
block encoding global context information at multi-scale receptive 
fields. However, medical images can often contain noise, artifacts, and 
other irrelevant information. Direct feature reuse between convolu
tional layers might lead to negative transfer of feature knowledge. 

As a result, attention mechanisms have been increasingly used in 
medical image segmentation to help focus on the most relevant infor
mation in the feature map, enabling more accurate segmentation of 
varying sizes and shapes of target structures. AttU-Net designed an 
attention gate block to suppress the unrelated information in the feature 
map, improving the accuracy of multiclass image segmentation on two 
large CT abdominal datasets. However, a single type of attention may 
ignore other important information. To address this issue, CA-Net con
structed a comprehensive attentional network that combines spatial, 
channel, and scale attention to focus more on the foreground area, 
resulting in improved performance compared with the U-Net on skin 
lesion dataset from ISIC 2018. DANet [14] appended two types of 
attention modules on top of dilated FCN to model semantic in
terdependencies in spatial and channel dimensions, achieving 
state-of-the-art results on three scene segmentation datasets, and was 
later being applied to medical image segmentation tasks [15]. MEA-Net 
[16] focused on edge information extraction and introduced a new 

multilayer edge attention module to address the functional defects of the 
current attention mechanism system. The module performs spatial 
compression through global average pooling and further integrates 
features from shallow encoding layers. It achieved the best segmentation 
results on three public medical image datasets, including retinal vessels, 
lung and tongue images, as well as a clinical tongue dataset. However, 
complex attention structures and multi-level utilization of attention can 
easily lead to redundant use of computing resources and model pa
rameters. Our method considers eliminating redundant features through 
a lightweight channel attention during encoding, and utilizes spatial 
attention to focus on details such as position and shape when the 
first-layer encoded features are passed to the symmetrical decoding 
layer. 

In CNN-based semantic segmentation, the process involves two 
stages: feature extraction and resolution restoration. Pooling is 
employed to reduce resolution, effectively ignoring noise and decreasing 
the number of parameters to speed up training, leading to improved 
target recognition. However, the lost spatial information during pooling 
is not fully recovered through upsampling. To address this, aside from 
the previously mentioned method of cross-layer feature reuse, re
searchers have designed dedicated information compensation modules 
[13] and replaced pooling layers with convolutions of stride 2 [17]. 
Furthermore, using improved pooling functions is also a direct and 
effective approach to exploring solutions for this issue. Ms RED [18] 
introduced a novel pooling module (Soft-pool) to medical image seg
mentation for the first time, retaining more helpful information when 
downsampling and getting better segmentation performance. Inspired 
by this, we replace max pooling in the vertical encoding and trans
mission process with its differentiable approximation function, and use a 
trainable parameter to control the output size of pooling at different 
layers. 

In this study, we propose a Contrast-Adaptive Enhanced Network 
(CAENet) for semantic segmentation of medical images. The network is 
built upon a symmetric encoder-decoder structure, where an improved 
pooling function replaces the standard max pooling operation to 
enhance the continuity of semantic information transmission. The 
contrast enhancement module in the network actively enhances the 
quality of input images before encoding, aiming to improve the infor
mation quality of the images. An improved channel attention mecha
nism is employed to suppress redundant features during the vertical 
encoding propagation, and a spatial attention mechanism is used to 
focus on detailed information such as target positions. Additionally, the 
Deep Supervision strategy (DeepSup) is incorporated to further refine 
object delineation and expedite model convergence. The main contri
butions of this study are summarized as follows.  

1) We propose an Adaptive Contrast Augmentation (ACA) module that 
can adaptively enhance the contrast of images during training.  

2) We reconsidered the Max Pooling function (MaxPool) from the 
perspective of the differentiable approximation of the maximum and 
introduced the Smooth Maximum Pooling function (SMPool) to 
replace the maximum pooling function in the network, to reduce the 
information loss caused by downsampling in the coding process.  

3) Inspired by FCA [19] and ECA modules, we designed the 
Frequency-Efficient Channel Attention (FECA) module to enhance 
the useful channel features in the encoding stage.  

4) We extensively evaluated our proposed network, CAENet, on five 
distinct datasets, including four public medical image datasets and 
one clinical image dataset, and the evaluation demonstrated superior 
performance. 

2. Related works 

2.1. Attention mechanisms 

Attention mechanisms have achieved great success in many visual 

S. Li et al.                                                                                                                                                                                                                                        



Computers in Biology and Medicine 167 (2023) 107578

3

tasks, including image classification, object detection, semantic seg
mentation, video understanding, image generation, 3D vision, multi
modal tasks, and self-supervised learning. Among these, SENet [20] 
stands out with its Squeeze and Excitation (SE) block, which recalibrates 
channel features. This approach has been widely adopted and has been 
used as a foundation for many advanced attention modules. FCANet 
[19] is based on the understanding that using average pooling on its own 
is not sufficient to represent all feature information when extracting 
channel information. SE is reconceptualized from the perspective of 
frequency, and Frequency Channel Attention (FCA) is proposed to 
enrich feature information by introducing more frequency components. 
ECA-Net [21] demonstrates that appropriate cross-channel interaction 
can significantly reduce the model complexity while maintaining per
formance. It introduces an Efficient Channel Attention (ECA) that re
places the fully connected layer in the SE module with a 1D convolution 
operation without dimensionality reduction, resulting in improved 
performance with fewer parameters. CBAM [22] incorporates both 
channel attention module and Spatial Attention Module (SAM) in serial 
to achieve higher accuracy and lower error rate. Coordinate attention 
[23] decomposes channel attention into two 1D feature coding processes 
that capture long-range dependence in one spatial direction and pre
serve precise location information in the other. 

These attention mechanisms have shown promising results in various 
medical image segmentation tasks and have contributed to the devel
opment of more sophisticated and accurate models for this task [24]. 

2.2. Contrast enhancement methods 

Medical images, constrained by the performance of imaging devices, 
may suffer from issues such as low contrast and image blurriness, which 
pose challenges for further processing. Hence, contrast enhancement of 
the original images becomes crucial. In most cases, the contrast of the 
raw medical images is exceedingly low, which hinders the extraction of 
accurate features using the original network [25]. Therefore, contrast 
enhancement methods can be considered to improve the segmentation 
performance of the network. Depending on the treatment range, the 
commonly used contrast enhancement methods can be divided into two 
main groups: global and local approaches. 

Within the global enhancement methods, Linear Contrast Stretch 
(LCS) and Histogram Equalization (HE) are classical global image 
enhancement methods. While LCS linearly adjusts the dynamic range of 

the image, HE aims to uniformize the histogram distribution of the input 
image. However, both methods generally suffer from undersaturation 
and oversaturation, resulting in inferior-quality images [26]. 

On the other hand, local enhancement methods, such as Adaptive 
Histogram Equalization (AHE) and Contrast Limited Adaptive Histo
gram Equalization (CLAHE), are widely employed. AHE divides the 
image into multiple subregions and applies HE independently to each of 
them. CLAHE, an improved version of AHE, addresses issues related to 
abrupt transitions and over-enhancement. Another notable local 
approach is Adaptive Contrast Enhancement (ACE), which divides the 
image into high- and low-frequency components. It enhances the high- 
frequency part by calculating a gain coefficient, subsequently recon
structing the low-frequency component to obtain an enhanced image. 

From the perspective of linear enhanced image contrast, we con
structed a convolution module for enhancing the input image combined 
with the adaptability of convolution training. 

2.3. Pooling methods 

Pooling layers are crucial in deep learning tasks such as segmenta
tion and classification. On one hand, it reduces the computational cost of 
the network and increases its efficiency. On the other hand, it can in
crease the receptive field of the convolution during encoding [27]. Max 
pooling and average pooling are common pooling functions in various 
networks, with max pooling being most commonly used in semantic 
segmentation networks [7,10–12,16]. However, max pooling makes 
parts other than the position corresponding to the maximum zero during 
backpropagation, resulting in the loss of crucial information [13,16]. 

To solve this challenge, retaining important information during 
downsampling becomes crucial. Owing to the combination of the net
works discussed above, the information loss caused by the pooling 
process is mostly remedied by combining existing methods, including 
the design of specialized modules for information compensation [13] 
and replacing the pooling layer with convolution with a stride of 2 [17]. 
However, direct optimization of the pooling function to alleviate this 
loss has been relatively rare. 

Taking into account the combination of max pooling and average 
pooling, researchers have explored innovative approaches. For instance, 
Yu et al. [28] applied both maximum and average pooling according to 
probability, and Lee et al. [29] designed a pooling based on a decision 
tree to combine the max pooling and average pooling function. 

Fig. 1. Overview of the CAENet. Each encoding layer consists of an encoder and FECA module, and every encoder includes two 3 × 3 convolutions with a BN layer 
and ReLU activation function. 
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Alexandros et al. [27] introduced the Soft Pooling function (SoftPool) by 
calculating the exponentially weighted sum of activations, which ach
ieved performance improvement in the classification task. Ms RED [18] 
replaced the max pooling in the network with SoftPool in the segmen
tation of skin lesion datasets, proving the effectiveness of SoftPool in the 
task of medical image segmentation. 

In contrast to developing specialized modules for information 
compensation, we believe that a suitable pooling function is more 
convenient owing to fewer parameters and complexity. Therefore, we 
design a differentiable pooling function to replace max pooling in the 
encoding layer, which reduces the information loss of max pooling. 

2.4. Deep supervision 

In the field of medical image segmentation, the deep supervision 
strategy proves effective in aiding networks to capture multi-level fea
tures within images, making it a common training strategy. The recent 
study by MS-Dual-Guided [15] observed that introducing additional 
supervision at each scale enhanced the segmentation performance of the 
proposed model. This approach also facilitated deep supervision to 
allow the model to effectively capture the shapes and sizes of distinct 
object categories. 

In the context of salient object segmentation tasks, U2-Net [30] 
employed deep supervision to capture the multi-level structure of im
ages, enhancing its ability to focus on both low-frequency and 
high-frequency regions. PraNet [31] applied deep supervision to achieve 
segmentation from coarse to fine-grained segmentation strategies. 
GFANet [6] used deep supervision to progressively localize and refine 
objects for skin lesion image segmentation tasks. In these studies, the 
deep supervision approaches employed in the above-mentioned studies 
all involve directly upsampling the output maps from the last encoding 
layer and all decoding layers to match the size of the label. Subse
quently, losses are calculated separately for each and combined as the 
total model loss. 

However, some researchers argue that upsampling the output maps 
may lead to unnecessary information loss. An alternative approach has 
been proposed where the label is downsampled to match the size of each 
output map, and then the losses are computed individually and aggre
gated as the final loss, as demonstrated in Ref. [32]. 

3. Methods 

3.1. Network architecture 

The overall architecture of the CAENet is shown in Fig. 1, starting 
with the ACA module followed by the encoding and decoding layers. 
FECA is used to assign weights to different channel features from the 
output of the encoder to enhance useful features. To reduce the loss 
caused by max pooling, downsampling between encoding layers is 
replaced by SMPool, and SAM is subsequently introduced at the first skip 
connection between encoding and decoding to select useful spatial in
formation. The upsampling method at the decoding end is the bilinear 

interpolation. The outputs of each decoder (prediction 0–3) are super
vised during training, where each pair of the prediction and the ground 
truth label is used to compute the total loss. During inference, the pre
diction 0 is considered as the final output. 

3.2. Adaptive Contrast Augmentation module (ACA) 

When the contrast of medical images is inferior, the boundaries be
tween the target and background and between targets are not clear, 
which increases the difficulty of feature extraction. Therefore, the high- 
frequency components in the image can be enhanced before feature 
extraction. The global contrast enhancement method enhances the 
entire image, which is suitable for cases where the gray values of useful 
objects are close; nonetheless, the interference and noise information are 
simultaneously enhanced. Whereas the local contrast enhancement 
method separately enhances the local features of the image and is suit
able for images with large differences in gray values, it may over- 
enhance the gray peak region. 

Based on the concept of linear enhancement of LCS and high- 
frequency extraction of ACE, we propose the ACA module, a contras
tive enhancement module designed to adaptively enhance the high- 
frequency information within an image. As shown in Fig. 2, we first 
smooth the raw images xin through a trainable convolutional filter, such 
that the filter parameters can be optimized as the network is trained. The 
smoothed image is subsequently subtracted by xin to obtain the high- 
frequency component of the image. A controlled multiplicative factor, 
A, is thereafter used to control the multiplier of the enhancement. 
Finally, the augmented component is superimposed on xin to obtain the 
augmented image xo. In this process, adaptability is manifested in the 
use of image local features for processing and the update of convolution 
kernel parameters along with model training. 

3.3. Smooth Maximum Pooling function (SMPool) 

Max pooling reduces the amount of data by considering the 
maximum value, usually by selecting the largest pixel value from a 
subregion of the input feature map as the result of pooling. The MaxPool 
can be defined as follows: 

max(x1,⋯, xN), (1)  

where x1,⋯, xN denote all values for a given pooled kernel region, and N 
is the number of the pooled pixels. 

Since max(x1,⋯, xN) is not differentiable, losing information during 
network training is easy, which is not conducive to identifying small 
objects and details. Therefore, its approximate differentiable function 
can be considered as a substitute. According to the Kreisselmeier–
Steinhauser (KS) function [33], 

max(x1,⋯, xN)= lim
β→∞

1
β

ln

(
∑N

i=1
eβxi

)

. (2) 

Accordingly, by L’Hopital’s rule of the limit, 

Fig. 2. Overall structure of the ACA module. H and W denote the height and width of the image, respectively. A is a constant that weights high-frequent features by a 
default value of 2. 
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lim
β→∞

1
β

ln

(
∑N

i=1
eβxi

)

= lim
β→∞

∑N

j=1
xjeβxj

∑N

i=1
eβxi

. (3) 

We can obtain two differentiable approximation functions SM1 and 
SMPool2 for the maxima: 

SM1=
1
β

ln

(
∑N

i=1
eβxi

)

, (4)  

SMPool2=

∑N

j=1
xjeβxj

∑N

i=1
eβxi

. (5) 

According to (5), xmin ≤ SMPool2 ≤ xmax can be inferred, and the 
equality sign holds if and only if all x’s are equal. 

Since β is in the denominator, when β → 0, 

lim
β→0

SM1= lim
β→0

1
β

ln

(
∑N

i=1
eβxi

)

=∞. (6)  

In this case, SM1 is divergent, which is not conducive to the correct 
expression of features when used for pooling. When β > 0, 

xmax ≤ SM1 ≤
ln N

β
+ xmax. (7) 

At this point, the value of SM1 is larger than the maximum value of 
the pooling region. Let SM1 − ln N

β to construct a new form SMPool1: 

SMPool1 = SM1 −
ln N

β

=
1
β

ln

(
∑N

i=1
eβxi

)

−
ln N

β

=
1
β

ln

(
1
N

∑N

i=1
eβxi

)

, β > 0 .

(8) 

According to (8), it is true that xmin ≤ SMPool1 ≤ xmax, lim
β→0

SMPool2 

= lim
β→0

SMPool2 = xmean, and lim
β→∞

SMPool1 = lim
β→∞

SM1 = lim
β→∞

SMPool2 = xmax. 

Accordingly, we can obtain two differentiable approximate functions 
of the MaxPool: SMPool1 and SMPool2. According to (5) and (8), 
compared with that of SMPool2, the calculation of SMPool1 is simple, 
and both are equally differentiable of higher order. When β = 0, 
SMPool2 = AvgPool, and when β = 1, SMPool2 = SoftPool. 

There is only one parameter trained to automatically control the bias 
of SMPool1 or SMPool2, and due to β → ∞, SMPool1 is xmax, β > 0 is set 
when it is used in the model. In our model, for each feature map, the 

value of β is determined, larger activation values will exert a stronger 
influence on the output. 

3.4. Frequency-Efficient Channel Attention (FECA) 

Attention mechanisms have proven to be valuable for enhancing the 
performance of deep CNNs. Building upon this foundation, our aim is to 
develop an effective channel attention mechanism that doesn’t intro
duce excessive parameters, which could lead to model overfitting. Thus, 
we introduce the FECA, as illustrated in Fig. 3. FECA facilitates channel 
communication by employing a one-dimensional convolution with a 
kernel size of 3, all while avoiding the reduction of channel dimension. 
However, in situations with limited channel information, channel in
teractions may be insufficient. Drawing inspiration from the approach 
used in FCA, we utilize a 2D Discrete Cosine Transform (2DDCT) to 
compute multi-frequency component information for the channels. This 
incorporating multiple frequency aspects allows us to extract com
pressed channel details more effectively. 

First, the input image I is divided into n equal parts denoted as I0, I1,

⋯, In− 1 according to the channel, in which Ii ∈ RC/n×H×W. On each 
channel component, the frequency components Freq0, Freq1,⋯, Freqn− 1 

are calculated according to (9). 

Freqi = 2DDCTui ,vi
(
Ii) =

∑H− 1

h=0

∑W− 1

w=0
Ii
:,h,wHuivi

h,w , (9)  

Hui ,vi
h,w = cos

(
πh
H

(

ui +
1
2

))

cos
(

πw
W

(

vi +
1
2

))

, (10)  

s.t. i ∈ {0, 1,⋯, n − 1},
h ∈ {0, 1,⋯,H − 1},

w ∈ {0, 1,⋯,W − 1},

where 2DDCT denotes the 2D discrete cosine transform, H and W denote 
the height and width of the image, respectively, u and v represent 
component subscript of 2DDCT as the same as [19] by default, and n is 
set to 16. 

Subsequently, the obtained values of each frequency component are 
respliced according to the original channel division, and y is activated by 
one-dimensional convolution without dimensionality reduction to 
obtain the channel weight ω, as shown in (11), in which C1D3 represents 
the one-dimensional convolution operation with convolutional kernel 
size 3. 

ω= sigmoid
(
C1D3

(
cat
( [

Freq0,Freq1,⋯,Freqn− 1]))) (11) 

SE utilizes average pooling to extract channel information and em
ploys a dimension-reducing followed by dimension-increasing fully 
connected layer for channel feature interaction. This addition 

Fig. 3. Illustration of the FECA module. K denotes the size of the convolution kernel.  
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contributes an increment of 76.288K parameters to the proposed model. 
ECA, an improvement over SE, uses one-dimensional convolutions for 
effective local cross-channel interaction, reducing computational over
head and adding only 0.023K parameters to the proposed model. The 
kernel size of the one-dimensional convolution is determined by the 
number of input feature channels. Building upon SE, FCA regards the 
channel representation problem as a compression process using fre
quency analysis, which generalizes the existing channel attention 
mechanism in the frequency domain. Since 2DDCT calculations do not 
involve trainable parameters, the parameter quantity introduced by FCA 
remains the same as that of SE. Meanwhile, our proposed FECA com
bines the strengths of FCA and ECA. It calculates different frequency 
components for various channel components and achieves channel 
interaction through a non-reduced one-dimensional convolution with a 
kernel size of 3. Remarkably, this method incurs only 0.015K parameters 
in the model, making it a more lightweight and efficient attention 
module. 

3.5. Deep supervision strategy 

In medical image segmentation, deep supervision strategies play a 
crucial role in enhancing segmentation performance, offering adapt
ability to various types of medical image data and task requirements. 

We assume that the bottleneck layer has a high number of channels, 
which necessitates a significant number of parameters for channel 
transformation. Furthermore, direct upsampling of the bottleneck layer, 
as demonstrated in Ref. [32], may lead to unnecessary loss of target 
information. In contrast to the conventional approach of supervising 
using the bottleneck layer (the last encoding layer in Fig. 1) and all the 
decoder’s outputs [6,19,30–32], we supervise the output of each 
decoder individually, the deep supervision process is shown in Fig. 4. 

First, the output maps of each decoder with different channel di
mensions in Fig. 1 are unified to a single channel through a 1 × 1 
convolution. Second, the output maps are resized to match the size of the 
Ground Truth (GT) through bilinear interpolation. Finally, during model 
training, losses are computed separately for each map Pi and the GT, and 
the aggregated loss serves as the final model loss. The ultimate predic
tion result is obtained from P0, and it is combined with the GT to assess 
the segmentation performance of the model. 

4. Experiments and analysis 

4.1. Datasets 

Five datasets, including CHAOS-T1, CHAOS-T2, Lung, Tongue, and 
Clinical-Face, were used to evaluate the performance of the different 
methods, as detailed below. 

CHAOS-T1 and CHAOS-T2: The two abdominal MRI datasets are 
from the Combined Healthy Abdominal Organ Segmentation (CHAOS) 
Challenge [34–36]. We focus on the segmentation of abdominal organs 
(spleen, liver, and kidneys) on MRI T1DUAL in phase and T2SPIR. Each 
slice of both datasets has a resolution of 256 × 256 pixels. We chose the 
original training dataset for our experiments, randomly splitting its 2D 
slices into training (80 %), validation (10 %), and test set (10 %). 

Lung: This dataset includes 267 images and their respective labels. 
These 2D CT lung images are acquired from the Lung Nodule Analysis 
(LUNA) competition. The size of each image is 512 × 512. During the 
experiments, images were randomly split into the training, validation, 
and test sets with a ratio of 6:2:2. The source data is available at http 
s://www.kaggle.com/datasets/kmader/finding-lungs-in-ct-data. 

Tongue: Tongue images were acquired from the TongeImageDataset. 
This dataset comprises 300 images with their respective labels published 
by BioHit. The size of each tongue image is 768 × 576 pixels. These 
images have been resized to 512 × 512 pixels and are randomly split into 
the training, validation, and test sets with a ratio of 6:2:2 during ex
periments. The source data is available at https://github.com/BioHi 
t/TongeImageDataset. 

Clinical-Face: This dataset is acquired from the Shanghai University 
of Traditional Chinese Medicine, Shanghai, China. Informed consent has 
been obtained for the release of the identifying images. Face images 
were captured by specialized equipment in an open environment, and 
five key-organ mapping regions (forehead-heart, left cheek-liver, nose- 
spleen, right cheek-lung, and jaw-kidney) were annotated by clinical 
experts. There are 180 images with a dimension of 1080 × 1440 in the 
original dataset; nonetheless, it is resized to 224 × 320 due to compu
tational limitations. In our experiments, we use 80 % of the dataset for 
training, 10 % for validation, and 10 % for testing. 

Fig. 4. Deep Supervision Method. Where Di represents the output map of the i-th decoder, i is in {1, 2, 3, 4}; Pj denotes a one-channel feature map of the same size as 
GT for the j-th decoder, j is in {0, 1, 2, 3}; Up × n signifies bilinear upsampling by a factor of n, n is in {2, 4, 8}. 
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4.2. Experimental configuration 

Experimental settings. All experiments were performed in the 
PyTorch 1.8.0 library with an NVIDIA RTX 6000 GPU. We train all the 
networks using the stochastic gradient descent optimizer with a mini
batch of size 16, and the momentum and weight decay are set to 0.9 and 
5e-4, respectively. The learning rate policy adopts StepLR (step_size =
200, gamma = 0.5) with an initial learning rate of 0.02. The maximum 
number of epochs is 500. The model with the highest mean Intersection 
over Union (mIoU) on the validation set is adopted to explore the net
work’s performance on the test set. In all cases, the Multiclass Cross 
Entropy (MCE) between prediction and ground truth is employed as the 
segmentation loss. Here, we adopt deep supervision for the four side- 
outputs (i.e., P0, P1, P2, and P3 in Fig. 4). Each map is upsampled to 
match the size of the GT. As a result, the total loss for CAENet can be 
formulated as: Losstotal =

∑
iLossi =

∑
iMCE(Pi,GT), i ∈ {0,1, 2,3}. 

Evaluation criteria. We performed three-fold validation on both 
ablation and contrast experiments and finally reported the average re
sults over three folds. To objectively assess the performance of the 
segmentation model, five quantitative evaluation metrics were 
employed, including mean Intersection over Union (mIoU), mean F1 
score (mF1), Pixel Accuracy (PA), mean Recall (mRe), and Hausdorff 
Distance (HD). The specific calculations are shown in equations (12)– 
(16). In these equations, mIoU, mF1, PA, and mRe all indicate the 
overall similarity between the predicted results and the ground truth 
labels, where larger values indicate higher similarity. On the other hand, 
HD is related to the similarity at the edges of both the predicted results 
and the ground truth labels, with smaller values indicating higher edge 
similarity. 

mIoU =
1
k
∑k

i=1

pii
∑k

j=1pij +
∑k

j=1pji − pii
(12)  

mF1=
1
k
∑k

i=1

2 × pii
∑k

j=1pij +
∑k

j=1pji
(13)  

PA=

∑k
i=1pii

∑k
i=1
∑k

j=1pij
(14)  

mRe=
1
k
∑k

i=1

pii
∑k

i=1pij
(15)  

Table 1 
Results of contrast experiments on CHAOS-T1 dataset (mean ± standard devi
ation). The best results are shown in bold. The backbone of FCN and DANet are 
ResNet101 and ResNet50, respectively.  

Network mIoU (%) mF1 (%) PA (%) mRe (%) HD (mm) 

FCN [5] 73.63 ±
0.91 

84.67 ±
0.61 

98.99 ±
0.06 

91.99 ±
0.54 

1.45 ±
0.10 

SegNet [8] 42.66 ±
29.30 

92.77 ±
1.03 

98.79 ±
0.47 

47.64 ±
33.66 

1.73 ±
0.33 

U-Net [7] 86.04 ±
0.38 

92.47 ±
0.22 

99.49 ±
0.05 

93.27 ±
0.89 

1.24 ±
0.10 

U-Net++

[9] 
73.26 ±
3.45 

84.33 ±
2.35 

99.09 ±
0.11 

87.81 ±
2.17 

1.85 ±
0.14 

AttU-Net 
[10] 

86.73 ±
0.62 

92.87 ±
0.36 

99.49 ±
0.07 

92.86 ±
1.19 

1.23 ±
0.12 

DANet [14] 79.34 ±
0.77 

88.41 ±
0.48 

99.24 ±
0.08 

93.16 ±
0.53 

1.37 ±
0.08 

CPFNet 
[11] 

82.76 ±
0.64 

90.52 ±
0.38 

99.37 ±
0.07 

92.03 ±
0.50 

1.30 ±
0.09 

MEA-Net 
[16] 

82.43 ±
0.98 

90.30 ±
0.60 

99.41 ±
0.06 

88.33 ±
0.80 

1.34 ±
0.06 

CAENet 
(ours) 

88.21 ±
0.38 

93.72 ±
0.21 

99.55 ±
0.04 

93.99 ±
0.14 

1.15 ±
0.09  

Table 2 
Results of contrast experiments on CHAOS-T2 dataset (mean ± standard devi
ation). The best results are shown in bold. The backbone of FCN and DANet are 
ResNet101 and ResNet50, respectively.  

Network mIoU (%) mF1 (%) PA (%) mRe (%) HD (mm) 

FCN [5] 77.50 ±
0.65 

87.30 ±
0.42 

98.84 ±
0.03 

92.80 ±
0.64 

1.57 ±
0.02 

SegNet [8] 57.27 ±
26.65 

92.45 ±
0.26 

98.83 ±
0.47 

61.67 ±
28.81 

1.76 ±
0.35 

U-Net [7] 86.30 ±
1.11 

92.63 ±
0.65 

99.31 ±
0.03 

91.95 ±
1.25 

1.42 ±
0.01 

U-Net++

[9] 
74.82 ±
3.12 

85.47 ±
2.06 

98.85 ±
0.14 

85.65 ±
1.84 

2.01 ±
0.16 

AttU-Net 
[10] 

86.87 ±
1.11 

92.96 ±
0.64 

99.31 ±
0.06 

92.17 ±
1.02 

1.41 ±
0.05 

DANet [14] 81.60 ±
1.00 

89.85 ±
0.61 

99.11 ±
0.06 

92.18 ±
0.67 

1.51 ±
0.02 

CPFNet 
[11] 

83.24 ±
1.02 

90.84 ±
0.62 

99.18 ±
0.05 

91.10 ±
0.62 

1.50 ±
0.05 

MEA-Net 
[16] 

84.18 ±
2.41 

91.37 ±
1.45 

99.19 ±
0.11 

90.07 ±
2.61 

1.56 ±
0.06 

CAENet 
(ours) 

89.95 ±
0.86 

94.70 ±
0.48 

99.49 ±
0.04 

94.33 ±
1.10 

1.26 ±
0.03  

Fig. 5. Results for four subjects on the CHAOS-T1 dataset. The cyan, blue, yellow, and orange regions represent the liver, right kidney, left kidney, and spleen.  
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HD=max
(

max
a∈A

{

min
b∈B

‖a − b‖
}

,max
b∈B

{

min
a∈A

‖b − a‖
})

(16)  

Where k is the number of segmentation target classes, pij represents the 
number of pixels where true class i is predicted as class j, and ‖⋅‖ denotes 
the Euclidean distance between pixel sets A and B. In the context of our 
evaluation metrics, these calculations help quantify the degree of simi
larity between the predicted results and the ground truth labels for each 
class. 

4.3. Segmentation results on CHAOS-T1 and CHAOS-T2 datasets 

Quantitative comparative evaluation. Table 1 and Table 2 quan
titatively show the comparison results between the proposed network 
CAENet and other excellent CNN methods on CHAOS-T1 and CHAOS-T2 
datasets, respectively. CAENet outperforms the comparison networks in 
all evaluation criteria. In the results for the CHAOS-T1 dataset, CAENet 
achieves 88.21 %, 93.72 %, 99.55 %, 94.33 %, and 1.15 mm in mIoU, 
mF1, PA, mRe, and HD, respectively. Compared with several networks 

(i.e., U-Net, AttU-Net, CPFNet, and MEA-Net), CAENet realizes a mean 
improvement of 2.17 %, 1.48 %, 5.45 %, and 5.78 % for the main 
evaluation metric mIoU index, and 1.25 %, 0.85 %, 3.20 %, and 3.42 % 
for mF1 index, respectively, proving the effectiveness of CAENet in this 
dataset. For the CHAOS-T2 dataset (Table 2), compared with U-Net and 
AttU-Net with enhanced performance, CAENet improves by 3.65 % (on 
mIoU), 2.07 % (on mF1), 0.18 % (on PA), 2.38 % (on mRe), and 0.16 
mm (on HD) for U-Net and 3.08 % (on mIoU), 1.74 % (on mF1), 0.18 % 
(on PA), 2.16 % (on mRe), and 0.15 mm (on HD) for AttU-Net. Exper
imental results show that the proposed network can be effectively 
applied to multiclass image segmentation and outperform the compar
ison methods. 

Qualitative comparative evaluation. These samples (Fig. 5) from 
the CHAOS-T1 dataset pose various challenges, such as irregular objects 
and/or fuzzy details. According to Fig. 5, U-Net++ mainly suffers from 
category confusion and oversegmentation. For example, the blue target 
in the first row is partially identified as an orange target, and the cyan 
target in the third row and the background in the fourth row are over
segmented. The performance of CPFNet is inferior on small targets, such 

Fig. 6. Results for four subjects on the CHAOS-T2 dataset. The cyan, blue, yellow, and orange regions represent the liver, right kidney, left kidney, and spleen.  

Table 3 
Results of contrast experiments on the Lung dataset (mean ± standard devia
tion). The best results are shown in bold. The backbone of FCN and DANet are 
ResNet101 and ResNet50, respectively.  

Network mIoU (%) mF1(%) PA (%) mRe (%) HD (mm) 

FCN [5] 94.98 ±
0.21 

97.42 ±
0.11 

98.80 ±
0.08 

98.49 ±
0.04 

6.35 ±
0.14 

SegNet [8] 96.00 ±
0.21 

97.96 ±
0.11 

99.06 ±
0.07 

98.31 ±
0.21 

6.00 ±
0.14 

U-Net [7] 96.87 ±
0.16 

98.41 ±
0.08 

99.27 ±
0.05 

99.00 ±
0.18 

5.65 ±
0.08 

U-Net++

[9] 
94.25 ±
1.99 

97.03 ±
1.06 

98.61 ±
0.51 

98.53 ±
0.35 

6.86 ±
0.89 

AttU-Net 
[10] 

96.46 ±
0.15 

98.20 ±
0.08 

99.17 ±
0.05 

98.68 ±
0.20 

5.94 ±
0.10 

DANet [14] 95.23 ±
0.27 

97.56 ±
0.14 

98.86 ±
0.08 

98.53 ±
0.00 

6.34 ±
0.23 

CE-Net [13] 96.21 ±
0.29 

98.07 ±
0.15 

99.10 ±
0.08 

98.95 ±
0.09 

6.01 ±
0.21 

CPFNet 
[11] 

96.11 ±
0.28 

98.01 ±
0.15 

99.08 ±
0.09 

98.80 ±
0.11 

5.92 ±
0.18 

MEA-Net 
[16] 

96.21 ±
0.21 

98.07 ±
0.11 

99.11 ±
0.06 

98.80 ±
0.11 

6.14 ±
0.03 

CAENet 
(ours) 

97.54 ±
0.06 

98.76 ±
0.03 

99.42 ±
0.03 

98.92 ±
0.12 

5.31 ±
0.12  

Table 4 
Results of contrast experiments on the Tongue dataset (mean ± standard devi
ation). The best results are shown in bold. The backbone of FCN and DANet are 
ResNet101 and ResNet50, respectively.  

Network mIoU (%) mF1 (%) PA (%) mRe (%) HD (mm) 

FCN [5] 96.02 ±
0.21 

97.97 ±
0.11 

99.11 ±
0.02 

98.30 ±
0.14 

6.48 ±
0.10 

SegNet [8] 96.42 ±
0.20 

98.18 ±
0.10 

99.20 ±
0.05 

98.43 ±
0.20 

6.25 ±
0.17 

U-Net [7] 97.09 ±
0.16 

98.52 ±
0.09 

99.35 ±
0.04 

98.73 ±
0.28 

6.01 ±
0.05 

U-Net++

[9] 
94.93 ±
0.76 

97.40 ±
0.40 

98.86 ±
0.15 

97.89 ±
0.55 

6.51 ±
0.15 

AttU-Net 
[10] 

97.11 ±
0.14 

98.54 ±
0.08 

99.36 ±
0.02 

98.68 ±
0.17 

6.06 ±
0.10 

DANet [14] 96.65 ±
0.15 

98.30 ±
0.08 

99.25 ±
0.04 

98.76 ±
0.05 

6.29 ±
0.10 

CE-Net 
[13] 

96.42 ±
0.11 

98.18 ±
0.06 

99.20 ±
0.02 

98.62 ±
0.14 

6.49 ±
0.11 

CPFNet 
[11] 

96.61 ±
0.15 

98.27 ±
0.08 

99.24 ±
0.03 

98.63 ±
0.13 

6.38 ±
0.12 

MEA-Net 
[16] 

96.42 ±
0.36 

98.18 ±
0.18 

99.21 ±
0.08 

97.89 ±
0.47 

6.29 ±
0.08 

CAENet 
(ours) 

97.55 ±
0.07 

98.76 ±
0.04 

99.46 ±
0.01 

98.88 ±
0.11 

5.73 ±
0.09  
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as the blue target in the first row and the orange target in the fourth row 
that are not identified. As can be seen in the fourth row of Fig. 5, the 
orange target is small and blurry, hindering segmentation. DANet, FCN, 
SegNet, U-Net, and MEA-Net failed to correctly identify it; although 
AttU-Net segmented it, it was oversegmented. The proposed CAENet can 
effectively identify small targets and segment more details, and the 
segmentation results are closer to the true labels. 

As can be seen in Fig. 6, the CHAOS-T2 dataset suffers from coarse 
details and class confusion. Among the compared methods, although 
FCN, DANet, and CPFNet exhibit suitable category recognition capa
bility, they provide coarse segmentation details. SegNet exhibits an 
inferior ability to recognize different classes, and the identified edges of 
large objects are coarse and uneven. Although U-Net++ reduces the 
semantic gap, it may introduce noisy information, which leads to cate
gory confusion, oversegmentation, and insufficient detail discrimination 
in segmentation results. MEA-Net exhibits a certain ability to recognize 
edges; however, the recognition of details is not sufficiently accurate, 
and the bit category confusion and background misjudgment indicate 
the insufficiency of the feature extraction ability of MEA-Net on this 
dataset. U-Net and AttU-Net are more accurate in shape information 

recognition; nonetheless, background misidentify exists (e.g., Row 4). 
The proposed CAENet exhibits superior semantic category recognition 
ability and can retain more valuable details, such as the edge of the cyan 
category in the first and second rows, the gap between adjacent cate
gories in the second row, the connectivity of the cyan category in the 
third row, and the correct recognition of background in the fourth row. 

4.4. Segmentation results on LUNA and tongue datasets 

Quantitative comparative evaluation. Table 3 and Table 4 quan
titatively show the comparison results between the proposed network 
CAENet and other excellent methods on Lung and Tongue, respectively, 
including FCN, SegNet, U-Net, U-Net++, AttU-Net, DANet, CE-Net, 
CPFNet, and MEA-Net. Overall, the performance of each network on 
the two datasets is relatively efficient, and the segmentation perfor
mance of each one is above 94 % (on mIoU), among which CAENet 
achieves the optimal results on five comparison indexes. 

Quantitative comparative evaluation. Images from Lung and 
Tongue datasets are both single-target segmentation tasks. The differ
ence is that the Lung dataset is a single-target, multiregion segmentation 

Fig. 7. Results of four subjects on the Lung dataset. The colors white, red, and green indicate correct segmentation, oversegmentation, and undersegmentation, 
respectively. 

Fig. 8. Results of four subjects on the Tongue dataset. The colors white, red, and green indicate correct segmentation, oversegmentation, and undersegmentation, 
respectively. a. Results of four subjects on the Clinical-Face dataset. The white, yellow, cyan, gray, and orange regions represent the forehead-heart, left cheek-liver, 
nose-spleen, right cheek-lung, and jaw-kidney, respectively b. The effect of CAENet for foreground segmentation. The colors white, red, and green indicate correct 
segmentation, oversegmentation, and undersegmentation, respectively. 

S. Li et al.                                                                                                                                                                                                                                        
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task, whereas the Tongue dataset is a single-target, fully connected re
gion segmentation task. The difficulty of segmentation in Lung images 
mainly lies in the accurate segmentation of edges and complex con
nected regions, which in Tongue images mainly lies in the accurate 
differentiation of tongue and lip colors and the accurate identification of 

irregular edges. From Figs. 7 and 8, the compared networks frequently 
result in oversegmentation or undersegmentation. In comparison, the 
qualitative results of CAENet in Figs. 7 and 8 show that the network is 
more dominant in terms of edge and tongue segmentation. 

4.5. Segmentation results on Clinical-Face dataset 

Quantitative comparative evaluation. To validate the general
ization performance of the proposed CAENet, we conducted experiments 
on the Clinical-Face dataset, a clinical TCM-related dataset. The results 
in Table 5 present that CAENet reaches better performance than all the 
comparative networks. Unlike U-Net, it exhibits an overall improvement 
(2.11 % for the mIoU index, 1.32 % for the mF1 index, 0.11 % for the PA 
index, 0.81 % for the mRe index, and 0.17 mm for the HD index). Since 
the data set is collected in an open environment, the background of the 
image is complex and the pixel value is rich, which makes the seg
mentation more difficult. Therefore, each network in the performance of 
the dataset partition is relatively lacking and the proposed CAENet 
network on the various indicators of optimal goal proves the method’s 
complex background processing ability. 

Qualitative comparative evaluation. Images in the Clinical-Face 
datasets captured in an open environment are vulnerable to light in
tensity and complex backgrounds, which can hinder segmentation. 
Fig. 9a shows that U-Net and AttU-Net make relatively accurate pre
dictions; however, a few oversegmented and undersegmented edges 
exist. U-Net++ is insensitive to intercategory interval information, 
resulting in category confusion. Each category of CPFNet is identified; 

Table 5 
Segmentation performances of different networks on Clinical-Face dataset 
(mean ± standard deviation). The best results are shown in bold. The backbone 
of FCN and DANet are ResNet101 and ResNet50, respectively.  

Network mIoU (%) mF1 (%) PA (%) mRe (%) HD (mm) 

FCN [5] 47.43 ±
11.32 

63.19 ±
11.33 

96.49 ±
1.11 

57.13 ±
11.92 

4.25 ±
0.45 

SegNet [8] 31.60 ±
12.04 

81.56 ±
2.62 

96.30 ±
0.88 

37.12 ±
13.97 

4.88 ±
0.48 

U-Net [7] 78.71 ±
0.45 

88.06 ±
0.28 

98.65 ±
0.10 

88.32 ±
0.88 

3.12 ±
0.10 

U-Net++

[9] 
56.75 ±
5.21 

72.11 ±
4.41 

96.54 ±
0.72 

85.54 ±
4.38 

3.99 ±
0.30 

AttU-Net 
[10] 

72.07 ±
1.26 

83.67 ±
0.84 

98.25 ±
0.16 

81.52 ±
1.17 

3.33 ±
0.07 

DANet [14] 34.23 ±
7.73 

50.20 ±
8.83 

92.45 ±
1.69 

66.44 ±
2.56 

4.98 ±
0.82 

CPFNet 
[11] 

35.31 ±
7.10 

45.73 ±
14.21 

96.07 ±
0.69 

38.14 ±
9.27 

4.56 ±
0.28 

MEA-Net 
[16] 

70.79 ±
1.82 

82.83 ±
1.29 

98.20 ±
0.25 

78.64 ±
2.54 

3.40 ±
0.13 

CAENet 
(ours) 

80.82 ±
0.67 

89.38 ±
0.40 

98.76 ±
0.17 

89.13 ±
1.06 

2.95 ±
0.10  

Fig. 9. Results of four subjects on the Clinical-Face dataset.  
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nonetheless, undersegmentation is severe. SegNet only segments regions 
with large shapes and sharp edges. DANet incorrectly identified the neck 
as the jaw in the first row and the nontargeted face region in the back
ground as the target in the second row, indicating its weak antijamming 
capability. The classification accuracy of FCN is higher than that of 
CPFNet; however, it loses extensive details and is insensitive to target 
location and edge information. The proposed CAENet is still able to 
accurately localize the target and accurately identify the category in
formation in diverse backgrounds, and the edge segmentation effect is 
closer to the true label, indicating that the network is robust against 
interference and suitable for complex background segmentation tasks. 
Fig. 9b shows the oversegmentation and undersegmentation of CAENet 
for targets, indicating that the main deficiency lies in the edge regions. 
These deficiencies can be further strengthened and improved in future 
work. 

5. Ablation experiment 

To evaluate the individual contribution of different components of 
our proposed network to the segmentation performance, we also per
formed a stepwise ablation experiment on the CHAOS-T1 and CHAOS- 
T2 datasets. The models compared are as follows: 

Baseline: Consider the basic U-shape model shown in Fig. 1 as a 
baseline method. 

Model 1: Baseline + DeepSup. 

Model 2: Baseline + SAM. 
Model 3: Baseline + ACA. 
Model 4: Baseline + SMPool1. 
Model 5: Baseline + FECA. 
Model 6: Baseline + FECA + SAM. 
Model 7: Baseline + ACA + SMPool1. 
Model 8: Baseline + ACA + SMPool1+FECA + SAM. 
CAENet (ours): Baseline + ACA + SMPool1+FECA + SAM +

DeepSup. 
Table 6 provides detailed quantitative experimental results for 

Baseline and Baseline with multiple module compositions. The addition 
of DeepSup, ACA module, and SMPool1 pooling function, respectively, 
improve over the Baseline (i.e., the mIoU index increases 0.8 %, 0.20 %, 
and 0.75 % for CHAOS-T1, 1.69 %, 0.51 %, and 1.03 % on the CHAOS- 
T2 dataset), indicating that each of these methods positively influences 
the Baseline. The gains obtained by DeepSup and SMPool1 over Baseline 
clearly show that the auxiliary optimization at the decoding end of each 
layer enables improving the overall performance of the model and that 
max pooling leads to information loss during downsampling. In addi
tion, the differentiable approximate pooling function SMPool1 enhances 
the connections between neurons in the network, such that more useful 
information can be retained during encoding. 

Compared with SMPool1 and ACA alone, the combination of 
SMPool1 and ACA is superior, indicating that the combination of 
SMPool1 and ACA is more effective than the single one. FECA empha
sizes the importance of channel features, while SAM filters out spatial 
details. As can be seen from Table 6, adding FECA and SAM alone does 
not always improve the performance of the model, as the attention may 
not make more accurate judgments when it does not extract more useful 
information. The ACA module combined with SMPool1 enhances high- 
frequency information and ensures continuity of information trans
mission; however, it may transmit redundant information simulta
neously. Therefore, FECA and SAM are added to screen important 
features and achieve better results in all metrics. Finally, the output 
auxiliary training of each decoding layer is supervised by DeepSup to 
optimize the final output result. The final segmentation performance on 
the CHAOS-T1 dataset outperforms the Baseline by 1.44 % (on mIoU), 
0.82 % (on mF1), 0.05 % (on PA), 0.28 % (on mRe), and 0.06 mm (on 
HD), respectively. For the CHAOS-T2 dataset, in contrast to Baseline, the 
proposed method improves by 2.83 % (on mIoU), 1.67 % (on mF1), 0.15 
% (on PA), and 0.16 mm (on HD). 

6. Discussion 

6.1. ACA module study 

Fig. 10 illustrates the augmented feature maps obtained via different 
contrast augmentation methods, where the pixel values are represented 
by different colors, with higher colors being warmer. As can be seen 
from Fig. 10, the enhancement of LCS and HE is for the global image, 
where LCS enhances the background more than HE. Both enhance the 
edge information and the high-frequency noise within the class, such as 
the distinction between the details of the cyan category in lines 1–2, 
causing loss of category information and rendering it adverse to subse
quent feature extraction and semantic category recognition. The CLAHE 
algorithm is a limited local contrast enhancement method, which is 
based on setting a threshold on the gray level of the image histogram, 
clipping the excess part, and assigning it equally to each gray level. 
According to the results in Fig. 10, the enhanced feature maps perform 
better than LCS and HE, and the high-frequency information is enhanced 
while the integrity of the target is mostly preserved. 

However, the enhancement effect of this method varies for different 
input images. For example, in the second row, over-enhancement within 
the class and background still exists. This is because the threshold of the 
CLAHE method needs to be set manually; different input images are 
suitable for different thresholds, and the effects of different images at the 

Table 6 
Ablation study for different modules on CHAOS-T1 and CHAOS-T2 datasets 
(mean ± standard deviation). The best results are shown in bold.  

Dataset Method mIoU 
(%) 

mF1 (%) PA (%) mRe (%) HD 
(mm) 

CHAOS- 
T1 

Baseline 86.77 ±
0.56 

92.90 ±
0.32 

99.50 ±
0.06 

93.71 ±
1.20 

1.21 ±
0.09 

Model 1 87.57 ±
0.47 

93.36 ±
0.27 

99.53 ±
0.04 

94.50 ±
0.10 

1.18 ±
0.08 

Model 2 87.13 ±
0.98 

93.10 ±
0.56 

99.51 ±
0.05 

94.01 ±
0.88 

1.22 ±
0.06 

Model 3 86.97 ±
0.81 

93.01 ±
0.47 

99.51 ±
0.05 

92.79 ±
1.20 

1.19 ±
0.09 

Model 4 87.52 ±
0.90 

93.33 ±
0.51 

99.52 ±
0.05 

93.93 ±
1.17 

1.19 ±
0.05 

Model 5 86.84 ±
1.07 

92.93 ±
0.62 

99.50 ±
0.06 

94.14 ±
0.13 

1.22 ±
0.06 

Model 6 87.24 ±
0.74 

93.16 ±
0.42 

99.52 ±
0.04 

93.80 ±
0.99 

1.22 ±
0.06 

Model 7 87.57 ±
0.88 

93.35 ±
0.50 

99.53 ±
0.05 

93.77 ±
0.99 

1.18 ±
0.06 

Model 8 87.67 ±
1.05 

93.41 ±
0.60 

99.53 ±
0.05 

93.79 ±
1.45 

1.18 ±
0.08 

CAENet 88.21 ±
0.38 

93.72 ±
0.21 

99.55 ±
0.04 

93.99 ±
0.14 

1.15 ±
0.09 

CHAOS- 
T2 

Baseline 87.12 ±
2.01 

93.03 ±
1.17 

99.34 ±
0.06 

91.83 ±
1.74 

1.42 ±
0.08 

Model 1 88.81 ±
1.53 

94.06 ±
0.87 

99.44 ±
0.04 

92.97 ±
1.84 

1.29 ±
0.04 

Model 2 87.08 ±
1.99 

93.06 ±
1.16 

99.32 ±
0.06 

91.85 ±
2.07 

1.44 ±
0.05 

Model 3 87.63 ±
1.12 

93.40 ±
0.64 

99.35 ±
0.03 

92.32 ±
1.08 

1.41 ±
0.03 

Model 4 88.15 ±
1.39 

93.69 ±
0.8 

99.40 ±
0.04 

92.85 ±
0.98 

1.37 ±
0.03 

Model 5 87.70 ±
1.64 

93.43 ±
0.94 

99.36 ±
0.06 

93.67 ±
0.38 

1.39 ±
0.03 

Model 6 87.78 ±
0.73 

93.48 ±
0.42 

99.38 ±
0.02 

92.83 ±
0.52 

1.37 ±
0.03 

Model 7 88.44 ±
0.84 

93.85 ±
0.48 

99.41 ±
0.03 

93.44 ±
0.49 

1.35 ±
0.02 

Model 8 88.49 ±
1.22 

93.88 ±
0.69 

99.39 ±
0.03 

92.97 ±
1.84 

1.38 ±
0.04 

CAENet 89.95 ±
0.86 

94.70 ±
0.48 

99.49 ±
0.04 

94.33 ±
1.10 

1.26 ±
0.03  
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same threshold are different. The proposed ACA module focuses on 
target boundaries while avoiding the over-enhancement of classes. This 
is because the method adjusts the enhancement scope automatically 
during the training process, and enhances the edge between categories 
and the background between categories, which on reservation of target 
information simultaneously increases the degree of differentiation be
tween target and nontargeted classes, reducing the introduction of high- 
frequency noise. 

6.2. Pooling method study 

Comparison of the effect of different pooling functions. Fig. 11 
displays the segmentation performance of CAENet with different pool
ing methods on the two datasets. According to the results, the proposed 

Fig. 10. Visualization results of the different methods for image augmentation. The warmer color indicates a higher value. The color band is listed at the rightmost 
end of the image. 

Fig. 11. Segmentation performance of CAENet with different pooling functions.  

Table 7 
Statistics of 10 pooling replacements on different networks (mean ± standard 
deviation).  

model Before After P-value 

mIoU (%) mF1 (%) mIoU (%) mF1 (%) mIoU mF1 

U-Net 84.13 ±
0.53 

91.35 ±
0.32 

85.13 ±
0.64 

91.94 ±
0.38 

1.32e- 
3 

1.52e- 
3 

AttU- 
Net 

85.28 ±
054 

92.03 ±
0.32 

86.14 ±
068 

92.54 ±
0.40 

5.83e- 
3 

6.08e- 
3 

MEA- 
Net 

80.90 ±
0.56 

89.36 ±
0.35 

82.42 ±
0.51 

90.28 ±
0.32 

6.00e- 
6 

9.00e- 
6 

CAENet 87.59 ±
0.20 

93.37 ±
0.12 

88.60 ±
0.43 

93.95 ±
0.24 

1.40e- 
5 

1.40e- 
5  
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differentiable pooling function can enable improving the performance of 
CAENet, and SMPool1 achieves the best results compared with the 
others on three main metrics. Compared with MaxPool, AvgPool, 
SMPool1, and SMPool2 perform better, indicating that global informa
tion can retain more useful information than local maxima during 
downsampling. Among them, AvgPool achieves similar performance as 
SMPool1 in terms of index results. However, Fig. 11 demonstrates that 
AvgPool has a larger standard deviation, this is attributed to the fact that 
average pooling tends to dilute the impact of all activations within the 
pooling region, especially when there are multiple crucial features 
present in the pooling window. In contrast, SMPool mitigates this in
formation loss, enhancing model stability and robustness. Furthermore, 
the varying performance of SoftPool suggests weaker generalization 
ability on different datasets. Similarly, SMPool1 functions as a non- 
linear operation where larger activation values contribute more to the 
output. However, SMPool1’s computation is simpler, and the output 
results are regulated by the trainable parameter β. As the values of β 
adjust and change across different pooling layers due to training, 
SMPool becomes more adaptable to data variations, ultimately demon
strating improved performance and stability. 

SMPool replaces the non-differentiable max pooling operation, 
enabling even slight variations to result in corresponding output 

changes. For each feature map, the value of β is determined, with larger 
activation values exerting a stronger influence on the output. This in
dicates that SMPool ensures the representation of prominent features 
while also considering the contributions of other features, delivering 
more comprehensive information. For MaxPool, the mIoU index on 
CHAOS-T1 and CHAOS-T2 datasets are 87.37 % and 89.24 %, respec
tively, whereas the mIoU index is 88.21 % (an increase of 0.84 %) and 
89.95 % (an increase of 0.71 %) for SMPool. When using SMPool2, 
CAENet achieves suboptimal results on CHAOS-T1 and CHAOS-T2 
datasets, affording the mIoU index of 88.07 % (an increase of 0.77 %) 
and 89.58 % (an increase of 0.34 %). As can be seen from the overall 
results, SMPool1 and SMPool2 achieve optimal and suboptimal results, 
respectively, in terms of the three main metrics—mIoU, mF1, and 
PA—for both datasets. 

The substitution effect of pooling function on different net
works. In order to validate the generalization performance of the 
pooling function on different models, we further performed 10 experi
ments with the pooling function replacement on the first fold data from 
the public dataset CHAOS-T2 independently. The statistical results are 
shown in Table 7, the compared networks show stable improvement in 
mIoU and mF1 after replacing the original pooling function with 
SMPool1. The results show that the proposed pooling function is also 
effective in improving the performance of other segmentation networks, 
with some generalization. 

The statistical analysis software SPSS was used to test the normality 
of the 10 statistical results for the two metrics for each network, and the 
nonparametric test results showed that the statistical results all satisfy 
the normality. In addition, the average values of the results before and 
after pooling replacement for different models are compared. Student t- 
test was performed for those that met the homogeneity of variance and 
the Satterthwaite t-test was performed for those that did not meet the 
requirement. Table 7 presents that all values of P-value are much smaller 

Fig. 12. Channel maps arise from different attention mechanisms. The warmer color indicates a higher value. The color band is listed at the rightmost end of 
the image. 

Table 8 
The parameter increments introduced by different 
attention methods.  

Methods Params (K) 

SE 76.288 
ECA 0.023 
FCA 76.288 
FECA(ours) 0.015  
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than 0.05, which corresponds to confidence 95 % that the improved 
results are indeed due to the replaced pooling. In other words, the 
improvement caused by the replacement of the pooling function is sta
tistically significant. 

6.3. Attention mechanism study 

To understand the effect of the attention mechanism more clearly, 
we visualized the semantic heat maps of channel outputs after attention 
modules at the encoding end, as shown in Fig. 12. 

The response of a specific semantic category is more noticeable after 
channel attention modules. Although SE, ECA, and FCA can also high
light specific class semantics, there are still certain nontargeted regions 
in the semantic maps of small targets, such as small targets in the second 
row that cannot be appropriately distinguished in the corresponding 
attentive feature maps. The proposed FECA module generates a feature 
(the sixth column) that better focuses on the specific regions of the 
structures of interest and simultaneously focuses on the size and shape of 
the region, avoiding ambiguous regions that might result in 
misclassification. 

In contrast, FECA excels in precise target identification by utilizing 
2DDDCT to calculate multi-frequency information. It focuses on the 
highest-energy low-frequency, akin to the effect of average pooling, 
while also considering information carried by other frequency compo
nents. This approach enhances the model’s perception of distinct fre
quency features, resulting in improved performance. The results in the 
first row of Fig. 12 illustrate that both FECA and FCA successfully 
identify blurred semantic objects, whereas SE and ECA fall short in this 
regard. Comparing ECA and SE, they yield similar outcomes, with ECA 
being more lightweight in terms of parameters (Table 8). Notably, FECA 
achieves an even lighter parameter count, introducing only 0.015K pa
rameters, while delivering more accurate performance. 

7. Conclusion 

In this paper, we have proposed a novel CAENet network with the 
ability to efficiently identify details and small targets. First, the ACA 
module is designed to enhance the contrast of the input images, while 
the approximation of differentiable max pooling is introduced to retain 
more useful information during the downsampling phase. In addition, 
the channel attention FECA is proposed to counter the introduction of 
redundant channel feature information. Furthermore, the fully con
nected layer is replaced by a one-dimensional convolution with convo
lution kernel size 3 based on multifrequency information to maintain 
accuracy and reduce computational complexity. Finally, the segmenta
tion performance of CAENet is validated by ablation and contrast ex
periments on five medical image datasets. Experimental results show 
that the proposed CAENet identifies small objects and details more 
effectively and achieves the best comparison results in five quantitative 
metrics, indicating that the network exhibits strong generalization 
ability in medical image segmentation and can be further applied to 
other medical image segmentation tasks. 

The modules presented in this paper can be easily ported into other 
networks. However, the convolution of the encoding and decoding 
layers is not changed, which may limit the segmentation performance. 
Therefore, in future studies, we will explore new encoder and decoder 
structures to build a more efficient segmentation network in combina
tion with the approach proposed in this paper. 
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