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In this paper, a multiobjective and simultaneous two-problem allocation of a hybrid distributed generation (HDG) system
comprises of solar panels, wind turbines, and battery storage is proposed in a 33-bus unbalanced distribution network which
can decrease total losses and improve power quality (PQ). The PQ indices are defined as voltage swell, total harmonic
distortion, voltage sag, and voltage unbalance. In this study, the two problems of hybrid system design and its allocation in the
distribution network are solved simultaneously. In the allocation problem, the HDG is placed ideally in the network to reduce
energy losses and enhance PQ indices. The HDG is measured to minimize the cost of energy generation, including the initial
investment, maintenance, and operation costs. The decision variable including the size of HDG components and its location is
optimally determined via escaping bird search (EBS) algorithm which is inspired by the maneuvers of the swift bird to avoid
predation. The results cleared that the proposed methodology using the wind and solar resources integrated with battery
storage reduced the losses, voltage swell, total harmonic distortion, voltage sag, and voltage unbalance by 34.31%, 49.60%,
0.25%, 40.19%, and 2.18%, respectively, than the base network via the EBS and the results demonstrated the better network
performance using all renewable resources against wind or solar application only. The outcomes demonstrated the superiority
of the EBS in achieving the highest improvement of the different objectives compared with particle swarm optimization (PSO)
and manta ray foraging optimization (MRFO). Moreover, the superior capability of the EBS-based methodology is proved in
comparison with previous studies.

1. Introduction

1.1. Motivation. Due to many reasons such as the rising trend
in electrical energy consumption, the high manufacturing and
start-up costs of large-scale power plants, and greenhouse
gases caused by burning fossil fuels for power generation, util-
ities are increasingly turning to the construction of small-scale
power plants [1]. These low-cost, near-end-user network
resources need little upfront investment and may be up and
running quickly. Furthermore, they provide pollutant-free or
low-polluting electricity [2, 3]. It is possible to increase

demand by using clean and efficient renewable energy
resources (RESs). Therefore, solar and wind energy-based
(i.e., solar panel (SP) and wind turbine (WT)) systems are
termed DGs. Apart from the stated benefits, DGs can also
reduce power losses, sell active/reactive power, and enhance
the power quality (PQ) and voltage profile in distribution net-
works when used properly [4]. DG sources must be situated
adequately. Without adequate DG capacities and proper loca-
tions, the network will operate worse than before. Moreover,
this condition will also have negative impacts on the network’s
losses and PQ indices. As a result, one of the most critical
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considerations in the installation and operation of DGs is their
right size and location. SP andWT locations and sizes are often
done for a variety of reasons, including loss decrement, reliabil-
ity enhancement, and voltage profile improvement [5, 6]. On
the other hand, metaheuristic methods can be used to deter-
mine the optimal installation location and resource capacity
of the DGs. In recent years, the use of these methods has been
widely welcomed to achieve the optimal solution to obtain the
best characteristics of the distribution networks [7, 8].

1.2. Literature Review. As off-grid storage mechanisms are
explored in this part, literature studies are carried out on
the optimization [7, 8] of hybrid distributed generation
(HDG) systems with grid-connected storage mechanisms
and HDG system design. A nontraditional multiobjective
PSO is suggested in [9] to discover the optimal location
and size of DGs. After installation, cost analysis and power
losses are considered in this paper. Siting and sizing of
DGs by PSO and genetic algorithm (GA) are done in [10].
Some important objectives such as power losses, load shed-
ding, and voltage deviations are minimized by the proposed
techniques. Improved simulated annealing PSO (ISA-PSO)
proposed in [11] as an efficient algorithm is applied to deter-
mine the capacity and location of DGs. Total costs, including
operation, electricity, pollution, and grid losses, are consid-
ered in the paper. Moreover, constraints comprise bus volt-
age, power flow, capacity, and conductor current. Total
energy cost, average voltage drops, and power losses can be
minimized by using the artificial bee colony (ABC) algo-
rithm, which is proposed in [12]. An artificial hummingbird
algorithm (AHA) is applied to consider the capacity and
placement of WTs and SPs in [13] for a multiobjective func-
tion. The optimization challenge is aimed at minimizing
total emissions, costs, voltage stability, and voltage deviation.
It is possible to locate and size the DGs most efficiently by
using hybrid genetic PSO as mentioned in [14]. Conse-
quently, total power losses and voltage regulations will be
improved. The paper in [15] describes an ant lion optimizer
algorithm- (ALOA-) based method for optimizing the size
and location of SPs and WTs in the network to decrease
losses and increase voltage stability.

Although most SP and WT systems in the grid do not
employ HDG and additionally include battery storage sys-
tems (SWBHDG), they are deployed as wind-only systems
or in conjunction with SPs. A multiobjective optimization
procedure is proposed in [16] to support the planning of
SWBHDG. The objectives of the research include expanded
energy production density, levelized energy cost, and net
present value. Among other sources in SWBHDG, WTs pro-
duced flicker, which decreases power quality significantly in
distribution networks. A crow search algorithm (CSA) with
a differential operator is proposed in [17] to minimize active
and reactive losses, flicker emission, voltage deviation, and
battery storage (BS) system cost. Using a combination of
modified perturb and observe (MP&O) and modified flower
pollination algorithms (MFPA) is used in a SWBHDG to
minimize overall cost and total harmonic distortion (THD)
and to achieve stable power [18]. Considering reliability
limits and seasonal changes, [19] developed an off-grid

SWBHDG system to minimize yearly costs. The paper in [20]
employs a renewable hybrid system’s technical-economic
design to reduce current value costs in Malaysia. The paper
in [21] shows how to use HOMER software to reduce the cur-
rent value cost of energy production in an off-grid SWBHDG
system with a diesel generator for remote places. Employing
the artificial electric field algorithm (AEFA) which is proposed
in [22] presents an optimum SWBHDG system design as a
multiobjective function to reduce the cost of system lifespan
containing the cost of purchasing power, the cost of compo-
nents, and the cost of CO2 emissions. Using the improved har-
mony search algorithm (IHSA) to maximize network load
supply and reduce system yearly costs, [23] demonstrates the
SWBHDG system’s capabilities. The key target of [24] is to cal-
culate the economic feasibility of SWBHDG in the Brazilian
electric system. The analysis is done by changing different var-
iables such as installation cost, battery bank investment, and
discount rate based on three scenarios. The paper in [25] con-
structs an optimum SWBHDG system using the big bang algo-
rithm (BBA). Consideration of dependability restrictions
minimizes original investment expenses as well as replacement
costs and maintenance. The SWBHDG system is designed
optimally in [26] by applying new improved moth flame opti-
mization (IMFO) to decrease system costs along with the loss
of load and CO2 emission cost under consideration of reliabil-
ity. According to [27], optimization of the SWBHDG system
uses the grey wolf optimizer (GWO) method to reduce yearly
system costs related to power balance constraints. The paper
in [28] suggests utilizing the perturb and observe (P&O) con-
troller applied for maximum power point tracking (MPPT) to
optimize the SWBHDG to decrease costs and create high
power quality output. As shown by [29], a SWHDG system
may be designed with or without BS to accommodate a variety
of system configurations using varying solar and wind resource
capabilities to apply in hot climates. HOMER software is used
by [30] to develop a grid-connected SWHDG system that
meets household load demand while also minimizing energy
expenses. According to the data, the energy system described
is not cost-effective even at interest rates of up to 80%. A
grid-connected and off-grid SWHDG system with a FC is
designed optimally by utilizing the imperialist competitive
algorithm (ICA) and taking the marketability of the power into
account to reduce energy generating costs and the unsupported
energy cost of system demand. The optimal location and size of
WT, SP, and FC in the system are achieved by using the PSO
algorithm. Moreover, the results show that gas emissions are
reduced significantly [31].

In previous years, different studies [32–39] were con-
ducted to determine the effects of using SP and WT systems
on the characteristics of the distribution network. In [33], a
multiobjective approach is suggested for sizing a grid-
connected system composed of WT and SP. Reducing emis-
sions and life cycle costs are the key objectives. A set of
Pareto-optimal solutions are generated using the suggested
model. Fathi et al. [34] offer a novel approach known as
information gap decision theory (IGDT) for lowering losses
and expenses while boosting system dependability. The
application of the optimization method is made to a renew-
able system made up of SP and WT. A hybrid system made
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up of PV, WT, and BS is used with the metaheuristic
improved whale optimizer algorithm (IWOA) to reduce
active losses and voltage variations [35]. In [37], the alloca-
tion of losses is carried out using a current summation pro-
cedure. In a network with radial distribution with DG, this
technique is taken into account. The size and location of
DGs, electric cars, and shunt capacitors are all optimized
in [40] using the grasshopper optimization algorithm
(GOA). By analysing demand response and time-varying
voltage-dependent load models, a novel method is presented
in [41] to choose the capacity and location of DGs. Spring
search algorithm (SSA) is used in [42] to optimize the size
and location of capacitor banks and DGs. In [43], the sine
cosine algorithm (SCA) is used to optimize the distribution
of DGs. In [44], the design of a hybrid system made up of
a diesel/WT/SP/BS is optimized using PSO and the con-
straint method. On balanced distribution networks, the
majority of the aforementioned techniques are evaluated
for efficiency. In [45], network reconfiguration is done using
adaptive ant colony optimization (AACO) to reduce power
losses. The efficiency of the suggested technique is tested
on both balanced and unbalanced distribution networks. In
order to reduce power losses and improve system perfor-
mance, such as total harmonic voltage distortion, annual
cost, voltage imbalance factor, and voltage profile, [46] uses
a fuzzy-genetic algorithm (FGA). Testing on an imbalanced
33-bus distribution system shows that the proposed solution
is preferable. In [47], a modified heuristic algorithm (MHA)
is suggested to reduce damage as well as costs caused by
power outages. On both balanced and unbalanced networks,
the suggested technique is evaluated.

1.3. Research Gap. There is more research on the best use of
DG or HDG resources in the distribution network to mini-
mize losses and increase voltage stability and voltage profile,
but their impact on the PQ indices is not fully studied. Most
research has also focused on balanced distribution networks,
which does not make sense given the imbalance nature in
the network phases. Although off-grid HDG systems may
be designed to save costs and yet meet load requirements,
literature evaluations show that these systems need meta-
heuristic methodologies with high computing power and
accuracy to be successful. By using WTs and BS systems, a
continuous power source may be created for a specific load.
A shift in the distribution network voltages and imbalance
occurred due to WBHDG injecting power into the network.
Furthermore, the node voltages will be changed by the effec-
tive alteration in the load flow’s impedance. Besides, the
induced voltage results from changes in the line current dis-
tribution. WBHDG systems can alleviate these issues and
optimize the benefit of deploying these kinds of energy-
generating systems in distribution networks [31]. As men-
tioned before, the impact of SWBHDG optimization on
PQ indices in unbalanced radial distribution networks has
not been well studied in the literature. The important PQ
indices taken into account in this research are voltage sag,
voltage swell, harmonics, and voltage unbalance. The litera-
ture review clears that there is still a need of an optimal allo-
cation framework for the allocation of SWBHDG energy

system in the distribution network which includes a multi-
objective optimization framework with a metaheuristic
method with easy implementation and high effectiveness.
The selected literature is reviewed and summarized in
Table 1.

1.4. Contributions. In this study, the reserve energy
management-based multiobjective and simultaneous two-
problem SWBHDG system allocation is carried out with
hybrid energy system component optimization and SWBHDG
allocation in the distribution network to reduce active power
loss and energy generation costs as well as to improve PQ indi-
ces such as voltage sag, voltage swell, and THD enhancement.
The storage system has a significant effect on the planned
energy supply in the hybrid system and has a major contribu-
tion to the cost function. Due to the high cost of using fuel cell
and hydrogen storage, in this study, batteries are used for
electric energy storage. A new metaheuristic optimization
approach is used to simultaneously handle these two issues.
The suggested approach is solved using the escaping bird
search (EBS) algorithm, which takes its cues from the move-
ments made by quick birds to evade predators. This algorithm
is used to determine the decision factors, such as the
SWBHDG’s ideal size and location in a distribution network.
The population-based EBS method searches the design space
using the search agents’ explicit maneuvers for the artificial
predator and the prey bird. The EBS employs no operators,
in contrast to the presentedmetaheuristic methods. Implemen-
tation of the suggested methodology is done on a distribution
network with unbalanced 33-bus network. The effectiveness
of the suggested methodology in achieving each aim is assessed
in this study, along with the influence of some key variables on
problem-solving and other objectives. Manta ray foraging opti-
mization (MRFO) and PSO approaches are contrasted with the
EBS to demonstrate its superiority in problem resolution.
Additionally, the effectiveness of various hybrid energy system
configurations based on various energy resources, such as
SWBHDG, WBHDG (wind turbines and battery storage),
and SBHDG (solar panels and battery storage), is assessed in
order to improve various objectives. The key highlights of the
research are presented below:

(i) Simultaneous two-problem-solving approach for
allocation of the hybrid generation system

(ii) Hybrid generation system with solar and wind
resources integrated with battery storage

(iii) Multiobjective function with losses, harmonic and
voltage unbalance, voltage swell, and sag

(iv) Network power quality improvement with reserve
energy management based on battery storage

(v) Superiority of the escaping bird search algorithm
compared with PSO and MRFO

1.5. Paper Organization. Section 2 models both the charge
and discharge phases of the battery storage as well as the
SWBHDG system. Section 3 presents the problem formula-
tion. The optimization strategy and how it works to solve the
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problem are described in Section 4. Results and discussion
are offered in Section 5, while Section 6 presents the
conclusion.

2. SWBHDG Modeling

In this paper, the standalone SWBHDG system containing
wind turbines, solar panels, battery storage, and an inverter
is presented in Figure 1. A SWBHDG system is designed
to determine the size of wind turbines, solar panels, and
battery banks which leads for minimizing production cost
of the energy (PCE) and feed the load of the SWBHDG sys-
tem [4, 25].

2.1. Strategy of SWBHDG Operation. A connection to the
distribution network is possible for SWBHDG. A flowchart
of the standalone SWBHDG system operation is depicted

in Figure 2. The following describes the SWBHDG exploita-
tion plan in relation to the distribution network:

(i) The entire energy produced by SPs and WTs is equal
to load demand (PSP t + PWT t = PD HDG t /ηInv).
In this case, the total power produced by the SPs
and WTs is injected into the SWBHDG load through
the inverter. PSP t is PV power at time (t), PWT t is
WT power at time t, PD HDG t denotes HDG power
at time t, and ηInv refers to the inverter efficiency

(ii) The SWBHDG demand is larger than the entire
quantity of energy produced by SPs and WTs
(PSP t + PWT t > PD HDG t /ηInv). The extra power
generated by the SPs andWTs is routed to the battery
to be stored in this situation. If the quantity of
injected power in this particular instance surpasses

Table 1: Summary of the related literature.

Ref.
System Objective functions

Unbalanced system Other objectives
SP WT BS DG Losses Voltage sag Voltage swell THD Voltage unbalance Cost

[9] × × × ✓ ✓ × × × × ✓ × —

[10] × × × ✓ ✓ × × × × × × Load shedding
Voltage deviation

[12] × × × ✓ ✓ × × × × ✓ × Voltage drop

[13] ✓ ✓ × ✓ × × × × × ✓ ×
Emissions

Voltage deviation
Voltage stability

[14] × × × ✓ ✓ × × × × × × Voltage regulation

[15] ✓ ✓ × ✓ ✓ × × × × × × —

[17] ✓ ✓ × ✓ ✓ × × × × ✓ ×
Flicker

Emissions
Voltage deviation

[22] ✓ ✓ ✓ ✓ × × × × × ✓ × —

[26] ✓ ✓ ✓ ✓ ✓ × × × × ✓ × —

[31] ✓ ✓ × ✓ ✓ × × ✓ × ✓ × Emissions

[33] ✓ ✓ × ✓ ✓ × × × × × × —

[34] ✓ ✓ × ✓ ✓ × × × × ✓ × System reliability

[35] ✓ ✓ ✓ ✓ ✓ × × × × ✓ × Voltage deviations

[37] × × × ✓ ✓ × × × × × × —

[40] × × × ✓ ✓ × × × × × × Power factor
Voltage profile

[41] × × × ✓ ✓ × × × × × × —

[42] × × × ✓ ✓ × × × × ✓ × Emissions
Voltage deviation

[43] × × × ✓ ✓ × × × × × × Voltage deviation
Voltage stability

[44] ✓ ✓ ✓ ✓ × × × × × ✓ × System reliability

[45] × × × ✓ ✓ × × × × × ✓ —

[46] × × × ✓ ✓ × × × ✓ ✓ ✓
Voltage distortion,
Voltage profile

[47] × × × ✓ ✓ × × × × ✓ ✓ —

Present ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ —

× and ✓mean not specified and specified.
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the maximal battery level, the SWBHDG additional
power may be injected into the distribution network

(iii) SWBHDG load demand is less than the entire
quantity of energy generated by SPs and WTs
(PSP t + PWT t < PD HDG t /ηInv). The BS pro-
vides the shortfall power of load demand in
these circumstances. In this instance, the battery
is completely discharged. If the shortfall is more
than the battery’s nominal capacity, a portion
of the load should be reduced, resulting in a
load outage. The SWBHDG load supply plan,
on the other hand, is intended for complete
load supply by SPs and WTs generation in this
situation

The role of the battery is to compensate for power fluc-
tuations of PV and WT sources. Because without battery
storage, there is no possibility of continuous supply of load
with the desired level of reliability. Therefore, it causes elec-
trical scheduling in the hybrid system. The charging and dis-
charging patterns of the battery storage are determined
based on the power generation of renewable resources as
well as the load demand during the simulation hours.

2.2. SP Modeling. According to the irradiation, the output
power of each of the SPs is computed as follows [25]:

PSP = PSPRated
G

1000
× 1 − k TC − TRated , 1

Solar panel

Wind turbine

Inverter

Battery storage

Load

Regulator
and

Controller

Inverter

Load

Regulator
and

Controller

Figure 1: Block diagram of standalone SWBHDG system.

SWBHDG operation

No

Renewable power generation:
PRen = PSP + PWT

Extra of the load demand is injected to the battery. If the
battery reaches its maximum capacity, the rest of the

energy is delivered to the load.

Deficit of load power is provided by the battery
discharge

Yes

The power generated is transferred to the load

PRen (t) = PD_HDG (t)

PD_HDG (t)PRen (t) >

Figure 2: Flowchart of the standalone SWBHDG system operation.
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where G is the right irradiance to the array, PSPRated shows
the rated power of each SP at G = 1000W/m2, and TC and
TRated refer to SP temperature and rated temperature,
respectively. SP systems are typically equipped with MPPT
systems to extract the maximum output power.

2.3. WT Modeling. The biggest advantage of wind energy is
its economic efficiency. If the wind velocity surpasses the
speed of vci, the WT begins to operate. The power remains
fixed if the wind speed is larger than the wind turbine’s nom-
inal speed. However, the wind generator is shut down for
safety reasons when the wind speed surpasses the vco. A
wind generator’s output power is governed by vci and vco,
and its rated power (PWTRated) is computed based on wind
speed as follows [25]:

PWT =

0, if v ≤ vci or v ≥ vco,

PWTRated ×
v − vci
vr − vci

, if vci ≤ v ≤ vr,

PWTRated, if vr ≤ v ≤ vco,

2

where v refers to the wind speed and vci, vco, and vr declare
the cut-in, cut-off, and nominal rapidity of the WT.

2.4. BS Modeling. In hybrid systems, batteries are applied to
supply for the power shortage produced by SPs and WTs.
The battery capacity is variable in hybrid systems due to
the random nature of renewable resources. The state of
charge (SOC) of the battery is demonstrated as follows [25]:

(i) The battery bank is in charge mode when the entire
power of SPs and WTs sanded to the system is higher
than the requested load of SWBHDG. At time t, the
quantity of battery charge can be obtained as follows

SOC t = SOC t − 1 +
PBS t
Vbus

× Δt,

PBS t = PSP t + PWT t − PD HDG t /ηInv,
3

where Vbus is the DC bus voltage (V), PBS t is the battery’s
input/output power, and t is time step of the simulation,
which is set to one hour [45]. ηInv denotes the inverter’s effi-
ciency. In addition, in this research, SOCmin is set to 20% of
the battery upper capacity and SOCmax is set at 100% [25].

(ii) When the total produced power of SPs and WTs is
below the SWBHDG demand, the battery storage
enters discharging condition. Consequently, the
battery energy at the moment t can be described as
follows:

PBS t =
PD HDG t

ηInv
− PSP t − PWT t 4

3. Problem Formulation

BS is employed in the HDG system to provide SWBHDG
load demand as well as for energy management. The storage
system may inject additional SWBHDG electricity into the
distribution network. The study’s goal is to find the best
decision variables of the issue, such as the ideal size and
placement of the SWBHDG system, as well as the optimal
capacity of SPs, WTs, and BS, to decrease grid loss and
enhance PQ indices related to network operating limitations.
In addition, the decrement of network losses and the
expenditures of the SWBHDG system, comprising initial
investment and maintenance costs, should be addressed
throughout the problem-solving process. As a consequence,
the issue’s major aim is to improve distribution network
PQ by lowering network losses and energy generation costs.
The SWTHDG system is regarded as a power source by the
distribution network. As a consequence, two concerns are
dealt with simultaneously. The first problem is the
SWBHDG system’s design, which aims to reduce energy
generation costs by considering full load supply. The second
challenge is to improve PQ indices comprising voltage swell,
voltage sag, THD, and voltage imbalance, as well as to
reduce network losses by considering network operating
restrictions. The EBS is then utilized to address each of these
issues simultaneously. To put it another way, the optimal
size and location of the SWBHDG are determined to
decrease power losses and energy generation costs while
simultaneously increasing PQ in the distribution network.
The proposed solution is tested on a 33-bus network that
is unbalanced. The challenge is treated as a multiobjective
optimization problem, with the results compared before
and after the SWBHDG system in the network improved.
In addition, the findings of this paper are compared to the
findings of former research works to verify the validity of
the recommended approach.

3.1. Objective Function. The general objective function of the
problem is defined as follows:

OF =W1
CHDG

CHDG,max
+W2

Ploss
Ploss,max

+W3
V sag

V sag,max
+W4

V swell
V swell,max

+W5
VTHD

VTHD,max
+W6

Vunb
Vunb,max

,

5

where CHDG and Ploss are the HDG system’s energy-
generating costs and the network’s power losses, respec-
tively. Voltage swell, voltage sag, voltage imbalance of the
network, and THD of the bus are represented by the vari-
ables V swell, V sag, Vunb, and VTHD, respectively. Moreover,
the subscript “max” denotes the maximum values of the
aforementioned parameters. Besides, W1, W2, W3, W4, W5,
and W6 are the weighting factors of losses, energy generation
cost, voltage sage, voltage swell, THD of the bus voltages, and
network voltage imbalance, respectively. The weight coefficient
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of each of the first to sixth sections is equal to 0.2, 0.2, 0.15, 0.15,
0.15, and 0.15, respectively, based on independent executions
of the optimization algorithm for different values of each of
the weight coefficients.

3.1.1. Energy Generation Cost of the SWBHDG. The cost of
energy generation (CHDG) formulation is offered. The
HDG’s design target function is described as the total of
the component’s investment cost and maintenance and
operation expenses, including SPs, WTs, and BSs, as follows:

CHDG = CSP + CWT + CBS,

CSP = CSP inv + CSP O&M,

CWT = CWT inv + CWT O&M,

CBS = CBS inv + CBS OM

6

The energy production costs of the HDG induced by
SPs, WTs, and BSs, respectively, are represented by CSP,
CWT, and CBS. In addition, CSP inv , CWT inv , and CBS inv
are the initial investment expenses for SPs, WTs, and BSs,
respectively. CSP O&M, CWT O&M, and CBS O&M represent
the maintenance and operating expenses per kW/kAh of
SP, WT, and BS, respectively.

3.1.2. Power Losses of the Network. Power losses of the net-
work based on the resistance and current of the lines can
be represented as follows [48]:

Ploss = RI2,

Ik =
Vi −V j

Rk + jXk
,

Ploss = 〠
Nb

K=1
RI2k

7

In the above equations, R is the resistance of the lines
under consideration and I is the current flowing, Rk and
Xk are the kth line’s resistance and reactance, respectively,
and Nb is the number of lines between buses i and j.

3.1.3. Power Quality Indices

(1) Voltage Sag. To improve the voltage drop of the entire
network, this study tries to escalate the average voltage drop
across all buses. The voltage sag is determined by calculating
the residual voltage in a bus [5]:

V sagav−bus =
1

m∑m
j=1 1/n∑n

i=1V
j
i

8

Under fault conditions in bus j, the voltage of bus i is V j
i .

In addition, j is the number of possible faults and i denotes
the bus number. Under voltage drop situations, V sagav−bus dis-
plays the average bus voltages.

(2) Voltage Swell. The voltage swell is the opposite of Equa-
tion (8), and it is determined as a transient in RMS voltage.

(3) THD of Voltage. Total harmonic distortion is computed
by applying the THD of bus voltages as follows [5]:

%VTHD,busi =
Vd,i
V rms,i

× 100, 9

where

V rms,i = V2
1,i +V2

d,i , 10

where Vd,i refers to the distortion component of the voltage
of bus i and it is calculated as follows [5]:

Vd,i = 〠
m

h=1
V2

h,busi 11

(4) Voltage Unbalance. Imbalanced loads cause unbalanced
network conditions. The imbalanced level of the network is
computed in this article by monitoring unbalanced bus volt-
ages as follows [5]:

Vunbav−bus =
1

n∑n
i=1 ∑c

j=a Vneg,i/Vneg,i × 100
, 12

where

Vpos,i =
1
3

Va
i + α1V

b
i + α2V

c
i ,

Vneg,i =
1
3

Va
i + α2V

b
i + α1V

c
i ,

α1 = complex −0 5, 0 866 ,

α2 = complex −0 5,−0 866 ,

13

where Vpos,i is the positive sequence voltage of bus i, Vneg,i is

the negative sequence voltage of bus i, and V j
ishows the jth

phase voltage of the bus i.

3.2. Problem Constraints. The answer to the optimization issue
is complemented by a set of technical limitations that must be
obeyed throughout the optimization process’s execution. The
mentioned limitations may be summarized as follows.

(i) Power balance in the HDG system during the day [31]

〠
24

t=1
PSP t + PWT t + PBS t + Pslack t

− PDHDG
t − Ploss t − PDDN

t = 0
14

(ii) Satisfying the constraints of the SP and the WT
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(a) (b)

(c)

Figure 3: Escape maneuvers of the prey bird from the predator: (a) turn maneuver, (b) vertical maneuver and upward movement of the prey
bird, and (c) vertical maneuver and diving movement of the prey bird [49].
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0 < PSP < PSP,max,

0 < PWT < PWT,max
15

(iii) Satisfying the charging and discharging conditions

SOCmin < SOC t < SOCmax 16

(iv) Bus voltages

Vmin <V < Vmax 17

(v) Satisfying the line powers

Fb < Limitb 18

According to Equation (18), the current passing through
each network line (Fb) should not exceed a permissible value
(Limitb).

PSP t , PWT t , PBS t , and PD HDG t show the generated
power by SP, WT, BS, and power consumption of the HDG at
hour t, respectively. Pslack t , Ploss t , and PD DN t refer to the
power supplied from the main substation of the distribution
network, the power losses in the distribution network, and
the power consumption of it at the time t, respectively. Fur-
thermore, PSP,max and PWT,max are the maximum generated
power by SP and WT, SOC t , SOCmin, and SOCmax are bat-
tery state of charge at time t and minimum and maximum
SOC of battery, Vmin and Vmax refer to the minimum and
maximum bus voltages, and Limitb is the thermal limit of line
b and Fb which refers to power flowing from line b,
respectively.

For load flow, the forward/backward sweep method was
applied in this study. There are two fundamental stages in
the algorithm for progressive forward load flow, which is
very simple to learn and used in all radial networks. Firstly,
the voltage of all the network buses is equal to 1. Then, it
uses two steps to find new voltages and current flows. These
two steps act as a ring and the forward sweeper in this sec-
tion has been used. All the buses’ voltages are considered
equal to 1. The flow of each bus is easily achieved. At this
step, the flow of each bus is achieved. The voltage level is
updated at the conclusion of the feeder. We are aware that
the voltage was set to 1 and that bus flow was obtained.
Now, the same current is used to derive the new voltage at
the end of the feeder. On the other hand, we know that the
value of S is always constant over the whole forward/back-
ward sweep load flow stage. Again, new voltages were
obtained. It turns again to the leading forward step and then
the backward step. These steps continue so that the error
between the two steps, the difference in voltages, reaches a

very small amount, and ultimately, the current and voltage
of all branches and buses are obtained.

4. Proposed Optimization Method

This study presents the optimal allocation of the SWBHDG
system for improving network power quality indices using
the EBS [49].

4.1. Escaping Bird Search (EBS) Algorithm. Different types of
living organisms have unique and advanced strategies to
avoid predation. One of the birds with a smooth and contin-
uous flight is Apus (swift) which uses surface and vertical
maneuvers to escape from predators. In the surface maneu-
ver, the prey bird can make fast turns to avoid being caught
by a predator that attacks horizontally. In the vertical
maneuver, the bird uses fast ascending flights against the
diving predator. Also, the prey bird uses diving behavior
against the upward movement of the predator. These two
maneuvers are shown in Figure 3. In this figure, the dashed

Table 2: SP data [25].

Parameter Value

Type KC200GT

TemSTSP 25°C

RaSTSP 1000W/m2

PSPRated 1 kW

Temperature coefficient -0.0037 k

Table 3: WT data [25].

Parameter Value

Type Bergey BWC

vci 4m/s

vco 25m/s

PWTRated 1 kW

vr 13m/s

Table 4: BS data [25].

Parameter Value

PBSRated 1 kAh

VolBS 12 volts

SOCmin 0.2 kAh

DOD 80%

Table 5: Technical and cost data of the system [25].

Parameter PV WT BS

Lifetime (year) 20 20 5

Investment cost ($) 2000 3200 100

Operation and maintenance cost ($) 33 100 5
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line represents the path of the predator after being misled by
the prey bird.

The EBS algorithm is inspired by the maneuvers of the
swift bird to avoid predation. The EBS algorithm is popula-
tion-based, which explores the design space based on the
maneuvers expressed for the prey bird and the artificial
predator as search agents. A randomly selected bird from
the population, with less adaptation, is considered as a prey
bird and another as a predator bird. The place of the artifi-
cial bird in the search space is presented as a vector that is
modified during the flight of the bird. Maneuverability of
artificial bird i (MBi) depends on factors such as the bird’s
body surface area (bi), wing beat rate (β), and speed, which
is modeled as follows [49].

MBi = bi Veli
β, 19

Veli = 〠
j

Vel2i,j, 20

where the velocity vector Veli represents the difference
between the current and former places of the ith bird.

The MB depends on the wing beat rate, which is
expressed by the β parameter and varies randomly between
0 and 2. The body coefficient (bi) also presented the influ-
ence of the bird’s body area (cost) in the form of the follow-
ing normalized relationship [49].

bi =
cmax − ci

cmax − cmin + ε
, 21

where ci is the cost of agent i, cmax and cmin are the maximum
and minimum costs of the current population, and ε is a
very small constant (provided to avoid division by zero).

According to the maneuverability of the attacking bird
(AB) and the escaping bird (EB), the escape rate (ER) is
modeled as follows [49]:

ER =
MBEB

MBAB +MBEB
, 22

where MBAB and MBEB refer to the maneuverability of the
predator bird and the prey bird, respectively.

In the process of vertical maneuvering, the prey bird
selects a path in the opposite direction of the predator bird
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Figure 10: Convergence curve of EBS in one and two HDG multiobjective allocations in the unbalanced distribution network.

Table 6: Optimal size and site of one SWBHDG in an unbalanced 33-bus network.

Objective function SP size (kW) WT size (kW) BS size (kW) Location (bus) Cost (M$)

min Ploss 253 481 610 30 10.405

min ∑V sag 179 484 550 30 9.987

min ∑V swell 301 490 242 15 10.713

min ∑VTHD 305 482 446 15 10.627

min ∑Vunb 361 445 689 33 10.286

min OF (multiobjective) 127 258 111 30 7.385
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to mislead it. The presented artificial flight is modeled as
follows:

POEB = POEB + r × ER × Opp POAB − POEB , 23

where POAB and POEB represent the positions of predator
and prey birds, r refers to a random value created with a uni-
form distribution between 0 and 1, and ER represents the
escape rate.

The Opp PO function expresses the opposite value of a
vector in the search space, which is defined as follows [49]:

Opp POAB = POL + POH − POAB 24

In the condition of small ER, the prey bird executes the
surface maneuver by changing the direction of its current
position. This maneuver is modeled as follows:

POEB = POL + r × POH − POL , 25

where POL and POH represent the low and high values of
the vector of variables, respectively, and r is a vector with
random values in the range between 0 and 1.

In the process of evolution of the simulation, the flight
towards the best global experience of all prey so far
(POGbest) has been added; thus, the bird of prey maneuver
is presented as follows [49]:

POCandidate
AB = POAB + r1 × POEB − POAB + r2

× POGbest − POEB ,
26

where r1 and r2 are randomly generated in the range of 0
and 1. The capturing rate (CR) is presented as follows:

CR = 1 − ER 27

In the condition of a high ER value, the value of CR is
zero and vice versa.

Equation (27) represents an update of the summation
position, which is a stepping behavior in some methods such
as the PSO algorithm. But, in the EBS algorithm, instead of
the adaptive and inertia coefficients of PSO, only a CR adap-
tation coefficient is used.

The steps of the EBS algorithm based on the simulated
maneuvers of artificial birds of prey and predator are pre-
sented as follows:

(1) Step (1) Random population generation of N artifi-
cial birds. The ith bird is produced as follows
according to the upper and lower range of the design
variables

POi = POL + r × POH − POL 28

(2) Step (2) The amount of each MB is calculated based
on Equation (19) and the normalized cost values in
Equation (21)

Table 7: Results of power loss and PQ indices for one SWBHDG in an unbalanced 33-bus network.

Objective function Ploss (kW) ∑V sag ∑V swell ∑VTHD ∑Vunb

Base net 1655.28 7.10 165.50 8.26 34.98

min Ploss 975.381 4.412 83.715 8.301 34.330

min ∑V sag 2855.603 2.954 81.124 8.209 33.458

min ∑V swell 17926 10.301 70.611 7.923 33.100

min ∑VTHD 17738 10.083 70.701 7.899 33.095

min ∑Vunb 19124 6.462 76.382 8.155 32.429

min OF (multiobjective) 1087.275 4.246 83.402 8.239 34.216

Table 8: Optimal size and site of one and two HDG placement in an unbalanced 33-bus distribution network with a multiobjective function.

Number of HDG SP size (kW) WT size (kW) BS size (kW) Location (bus)

One 127 258 111 30

Two 201, 111 164, 312 4, 15 30, 11

Table 9: Results of one and two HDG placements in an unbalanced 33-bus network with a multiobjective function.

Number of HDG Ploss (kW) System cost (M$) ∑V sag ∑V swell ∑VTHD ∑Vunb

One 1087.275 7.385 4.246 83.402 8.239 34.216

Two 1072.617 10.642 4.016 83.205 8.224 34.179
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Figure 11: Energy management due to SWTBAHDG allocation in 33-bus network: (a) one SWBHDG and (b) two SWBHDGs.
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(3) Step (3) The above main loop is executed until the
convergence conditions are satisfied as follows:

(i) For i as many as N artificial birds, the opera-
tion should be performed

(ii) The best bird should be selected as AB and the
worst as EB

(iii) Calculate MB, ER, and CR parameters for AB
and EB birds

(iv) Provide a candidate solution for AB based on
Equation (26)

(v) Calculate the cost ofPOCandidate
AB

(vi) In a condition that the amount of POCandidate
AB

cost is less compared to POAB, POAB replaces it

(vii) Exit the loop after completing the number of
cost function evaluations (NCFE) relative to
the default value
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Figure 12: Variation of battery for SWBHDG allocation in 33-bus network: (a) one SWBHDG and (b) two SWBHDGs.
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(viii) For EB based on either surface maneuver or
vertical maneuver, a candidate solution is gen-
erated. The transition between the described
maneuvers is modeled as follows [49]:

POCandidate
EB =

POL + r × POH − POL , if ER <
1
N
,

POEB + r × ER × Opp POAB − POEB , otherwise

29

(ix) Calculate the cost of POCandidate
AB

(x) In the case of lower cost of POCandidate
AB compared to

POEB, POEB replaces it

(xi) Exit from the main loop as soon as NCFE reaches
NCFEmax

(xii) POGbest update

(xiii) In the condition i =N and NCFE < NCFEmax, go to
Step 3. If not, exit the loop and go to Step 4

(4) Step (4) In this step, the updated POGbest is saved as
the optimal solution

4.2. The EBS Implementation. The proposed EBS optimiza-
tion algorithm seeks to determine the optimal set of optimi-
zation variables by minimizing the objective function
(Equation (5)) and satisfying the constraints Equations
(14)–(18) of the problem. Therefore, the proposed algorithm
is looking for the optimal solution in the allowed range of
decision variables, with the aim of reaching the minimum
value of the objective function and in this condition also
meeting the constraints of the problem.

The steps of the EBS for problem solving are as follows:

(i) Step (1) Define the decision variables and con-
straints, including the maximum number of itera-
tions and EBS parameters
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Figure 13: Effect of SWBHDG allocation in a 33-bus network on voltage sag: (a) one SWBHDG and (b) two SWBHDGs.
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(ii) Step (2) Examining the principal circumstance of
the randomly selected population

(iii) Step (3) The objective function is evaluated and the
objective values for each population member are
calculated

(iv) Step (4) Equation (23) is used to declare the new
status of each member of the population

(v) Step (5) The population member’s position will be
updated if the acquired locations fall within the
search range

(vi) Step (6) The new value of the objective function is
determined based on the new circumstances of
each population member

(vii) Step (7) The EBS is updated. If the population
members achieve a higher position than previously
recorded, replace them with the new information

(viii) Step (8) If convergence criteria are met, proceed to
Step 9, otherwise repeat Steps 4 through 8.

(ix) Step (9) Stop the EBS and print the best results

5. Simulation Results and Discussion

This section presents the simulation results of SWBHDG
allocation based on SPs and WTs with BS to enhance power
quality indices in an unbalanced 33-bus radial distribution
network. Figure 4 depicts the single-line diagram of the IEEE
standard 33-bus network.

The overall power usage in the 33-bus network is
3720 kW and 2300 kVAr. There are 37 branches in the 33-
bus network. Moreover, it is comprised of the main branch
and three subbranches [45]. Figures 5–7 show the data var-
iations. Figures 8 and 9 show the SWBHDG load curve with
a 100 kW peak as well as the network’s normalized load.

Tables 2–4 show the technical data for the SPs, WTs, and
BSs, respectively. Table 5 also includes technical and eco-
nomic statistics for the HDG system’s components [25].

5.1. Results of One and Two HDG Optimizations. The single
and multiobjective allocation results of one SWBHDG via
the EBS are reported in this section. Figure 10 depicts the
convergence curve of EBS in one and two SWBHDG
multiobjective optimizations in an imbalanced 33-bus distri-
bution network. The optimization process employing the
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Figure 14: Effect of SWBHDG allocation in a 33-bus network on voltage swell: (a) one SWBHDG and (b) two SWBHDGs.
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suggested method in various iterations and optimum solu-
tion accomplishment is shown in Figure 10. As can be
shown, a rise in HDGs has resulted in a drop in objective
function or improved physical attainment.

Tables 6 and 7 display the results of a single-objective
and multiobjective optimization of one SWBHDG using
the EBS, including the size and position of one SWBHDG,
as well as power loss, SWBHDG system cost, voltage surge,
voltage drop, voltage imbalance, and total harmonic distor-
tion (THD). The results indicate that WTs have a greater
impact in SWBHDG and that bus 30 is the optimal site for
installing SWBHDG. In addition, 7.385M$ is the shortest
cost for SWBHDG when multiobjective optimization is
applied to the problem-solving procedure.

The simulation results revealed that a loss reduction target
function with a singular aim yields the lowest loss. Consider-
ation of a single optimization has a positive impact on all
PQ indicators. Using the single optimization for PQ indices
appears to have a negative impact on power loss reduction.
All PQ indices are enhanced by addressing voltage sag and
voltage imbalance as a single-objective optimization function.
On the other hand, voltage sag is reduced in voltage surge and
THD target optimization. The voltage sag objective function
returns the value with the lowest voltage sag. The function

value of voltage sag has a considrable impact on other PQ indi-
cators relative to the base value, but it also increases network
losses. By contemplating the voltage increase as a single-
objective optimization, the minimum value of voltage is
attained in this instance. On the other hand, only the objective
function of voltage expansion has a considerable impact on
voltage imbalance and THD, reducing them relative to the
base value. It has a negative effect on cost, voltage drop, and
loss, however. In the THD optimization, the minimum THD
is attained. The THD function has a substantial effect on volt-
age imbalance and voltage swell, but no effect on the other
indices. The objective function of voltage imbalance improves
all PQ indices, excluding power loss. In addition, the ideal
voltage imbalance is achieved in this scenario. All target
functions are merged and normalized during multiobjective
optimization. When one SWBHDG is multiobjectively opti-
mized in a 33-bus distribution network, the power loss is
declined, all PQ indices improve, and the lowest SWBHDG
cost is attained. Consequently, incorporating the multiobjec-
tive problem improves PQ. As a result, multiobjective optimi-
zation is a more practical and accurate approach to solving a
problem in which all of its objectives are satisfied.

In addition, the optimization of two SWBHDG in a 33-
bus distribution network is performed, and the obtained
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Figure 15: Effect of SWBHDG allocation in a 33-bus network on voltage unbalance: (a) one SWBHDG and (b) two SWBHDGs.
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Figure 16: Effect of SWBHDG allocation in the 33-bus network on THD: (a) one SWBHDG and (b) two SWBHDGs.
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results are contrasted with the optimization of a single
SWBHDG, according to Tables 8 and 9. The sizes of two
SWBHDG are presented, and the results of one SWBHDG
optimization are compared. As it is clear, the cost of with
two SWBHDG is greater than the optimal implementation
of a single SWBHDG, but the values of power loss and PQ
indices are superior to those of a single SWBHDG. Clearly,
all indices are enhanced by implementing two SWBHDG
optimizations.

Energy management and contribution of the HDG com-
ponents and power transferred to the network are shown in
Figure 11 for one and two SWBHDG. Also, the SOC of the

battery storage is illustrated for one and two SWBHDG opti-
mizations in Figure 12. Moreover, voltage sag, voltage swell,
voltage unbalance, and THD without and with SWBHDG
are depicted in Figures 13–16. These figures show an
improvement in PQ indices with the optimal application of
one and two SWBHDG. Also, these figures show more
improvement in PQ indices and also power loss reduction
with two SWBHDG in comparison with one SWBHDG
optimization.

5.2. Evaluation of EBS Performance. The performance of EBS
in one and two SWBHDG multiobjective allocation is
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Figure 18: Convergence process of a different method with multiobjective optimization (two SWBHDGs).

Table 10: Comparison of optimal size and site of one SWBHDG in a 33-bus network with multiobjective via different optimization
methods.

Optimization method SP size (kW) WT size (kW) BS size (kW) Location (bus) Cost (M$)

EBS 127 258 111 30 7.385

PSO 114 389 380 30 7.871

MRFO 87 356 83 30 7.134

Table 11: Comparison of results of one SWBHDG allocation in a 33-bus network with multiobjective using different optimization methods.

Optimization method Ploss (kW) ∑V sag ∑V swell ∑VTHD ∑Vunb

EBS 1087.275 4.246 83.402 8.239 34.216

PSO 1133.520 4.583 83.48 8.235 34.301

MRFO 1108.950 4.65 83.85 8.236 34.26

Table 12: Comparison of optimal size and site of two SWBHDG in a 33-bus network with multiobjective using different optimization
methods.

Optimization method SP size (kW) WT size (kW) BS size (kW) Location (bus) Cost (M$)

EBS 201, 111 164, 312 4, 15 30, 11 10.642

PSO 205, 135 308, 147 58, 7 32, 28 10.378

MRFO 269, 79 233, 26 64, 0 31, 2 6.765
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compared to PSO and MRFO techniques in this section. The
numerical results of the design and placement of one and
two SWBHDG and PQ indices values are shown, as well as
the convergence curves of the optimization techniques. In
contrast to other approaches, the EBS method achieves a
greater objective function value, as shown in Figures 17
and 18.

In contrast to the PSO and MRFO, the EBS delivers
reduced losses and improved PQ indices, according to the
simulation findings presented in Tables 10–13. Furthermore,
for one SWBHDG design and location, all optimization
algorithms choose bus 30 to install SWBHDG. Moreover,
using the EBS approach, buses 30 and 11 are selected for
the design and placement of two SWBHDGs.

5.3. Impact of Network Load Increasement. The impact of
increased demand on multiobjective allocation of one
SWBHDG is investigated in this section. According to
Tables 14 and 15, when the network load grows, so does

the amount of SWBHDG and the value of losses. The PQ
indexes have weakened as well.

5.4. Impact of HDG Combinations. The results and position-
ing of multiple HDG combinations in the 33-bus unbal-
anced distribution network are analysed in this section.
Tables 16 and 17 show the size and optimization outcomes.
The findings suggest that combining SWB with both HDG-
based renewable units reduces costs and losses while
improving PQ indicators.

5.5. Comparison with Other Methods. The proposed EBS is
compared to various solutions for minimizing unbalanced
33-bus network losses in this section. The proposed tech-
nique in this research resulted in a power loss of
1087.275 kW during 24 hours. Over an hour, the average
power loss is 45.303 kW. The EBS results are compared with
AACO, FGA, and MHA techniques in Table 18. The EBS
recommended strategy, which is based on SWBHDG design

Table 13: Comparison of results of two SWBHDG placements in a 33-bus network with multiobjective using different optimization
methods.

Optimization method Ploss (kW) ∑V sag ∑V swell ∑VTHD ∑Vunb

EBS 1072.617 4.016 83.205 8.224 34.179

PSO 1205.868 5.371 83.541 8.258 34.607

MRFO 1077.78 5.438 84.638 8.261 34.649

Table 14: Impact of network load increasement on one SWBHDG optimal sizing and cost results as multiobjective.

Loading level SP size (kW) WT size (kW) BS size (kW) Location (bus) Cost (M$)

Rated network load 127 258 111 30 7.385

20% increasement 121 441 722 30 8.882

Table 15: Impact of network load increasement on one SWBHDG optimization results as multiobjective.

Loading level Ploss (kW) Cost (M$) ∑V sag ∑V swell ∑VTHD ∑Vunb

Rated network load 1087.275 7.385 4.246 83.402 8.239 34.216

20% increasement 1538.310 8.882 5.153 84.321 8.827 34.242

Table 16: Results of size and cost of one HDG optimization by considering different combinations as multiobjective.

Combination SP size (kW) WT size (kW) BS size (kW) Location (bus) Cost (M$)

SWBHDG 127 258 111 30 7.385

WBHDG — 408 1390 30 7.594

SBHDG 612 — 1584 30 7.877

Table 17: Results of one HDG optimization considering different combinations as multiobjective.

Combination Ploss (kW) ∑V sag ∑V swell ∑VTHD ∑Vunb

SWBHDG 1087.275 4.246 83.402 8.239 34.216

WBHDG 1205.595 4.782 83.936 8.223 34.346

SBHDG 1269.570 4.794 84.105 8.224 34.472
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and network placement, has lower losses and an improve-
ment in the PQ index than the other ways, according to
the data.

6. Conclusions

In this study, the design and allocation of the HDGs are per-
formed to minimize the energy losses and enhance PQ indi-
ces in an unbalanced 33-bus distribution network. The
objective of the HDG allocation is to reduce energy losses
and improve the voltage sag and swell and harmonic and
voltage unbalance of the network by determining the opti-
mal size and location of the HDG components during 24
hours considering multiobjective optimization and using
the EBS algorithm. The proposed methodology is imple-
mented as single- and multiobjective allocation to show the
effectiveness of the EBS via multiobjective optimization.

(i) According to the findings, the establishment of mul-
tiobjective optimization allocation using the HDGs
and the integration of energy resource generation
with battery reserve energy via the EBS has achieved
a favorable compromise between different objectives
compared to single-objective allocation; whereas in
single-objective allocation, some objectives have
exceeded the basic value. In addition, combining
energy sources as well as number of HDG increas-
ing has led to more enhancement of PQ indices
and further decreasing the energy losses

(ii) Besides, the better capability of the proposed meth-
odology based on the EBS in the optimal system
allocation compared to other methods has been
confirmed by further improving the network perfor-
mance and achieving better objectives

(iii) The superior capability of the EBS is verified in com-
parison with the PSO and MRFO in improving the
network power quality. In addition, the simultaneous
combination of solar panel-wind sources integrated
with the battery compared to hybrid system combina-
tions has led to achieving better PQ indices

(iv) Therefore, the overlapping of energy resources with
the storage elements has helped to enhance the net-
work power quality

(v) The hybrid system allocation to improve power
quality indices with the uncertainty of resource
generation and the network load is suggested for
future work

Abbreviations

HDG: Hybrid distributed generation
SP: Solar panel
WT: Wind turbine
BS: Battery storage
SWBHDG: A HDG system consists of SP, WT, and BS
PQ: Power quality
EBS: Escaping bird search
PSO: Particle swarm optimization
MRFO: Manta ray foraging optimizer
RES: Renewable energy resource
GA: Genetic algorithm
ISA-PSO: Improved simulated annealing PSO
ABC: Artificial bee colony
NRLF: Newton-Raphson load flow
AHA: Artificial hummingbird algorithm
ALO: Ant lion optimizer
CSA: Crow search algorithm
MO&O: Modified perturb and observe
MFPA: Modified flower pollination algorithms
THD: Total harmonic distortion
AEFA: Artificial electric field algorithm
IHSA: Improved harmony search algorithm
BBA: Big bang algorithm
IMFO: Improved moth flame optimization
GWO: Grey wolf optimizer
MPPT: Maximum power point tracking
ICA: Imperialist competitive algorithm
GOA: Grasshopper optimization algorithm
SSA: Spring search algorithm
EGC: Energy generation cost
SOC: State of charge
AACO: Adaptive ant colony optimization
FGA: Combined GA methodology and fuzzy logic
MHA: Modified heuristic algorithm.

Variables, Parameters, and Symbols

PSP: Output power of SP
PSPRated: Rated power of each SP
G: Right irradiance to the SP arrays
TC: SP temperature
TRated: Rated temperature
PWT: Output power of WT
PWTRated: Rated power of WT
v: Wind speed
vr: Rated rapidity of the WT
vci: Cut-in rapidity of the WT
vco: Cut-off rapidity of the WT
PBS: Input/output power of BS
Vbus: DC bus voltage (V)
t: Simulation time step
ηInv : Inverter’s efficiency
PD HDG: Output power of HDG
SOC: State of charge
OF: Objective function
Wi: Weighting factors
CHDG: Energy generating costs of HDG system

Table 18: Comparison with previous studies for an unbalanced 33-
bus network.

Optimization method Ploss (kW) ∑V swell ∑VTHD

EBS 45.303 83.402 8.239

AACO [45] 143.870 — —

FGA [46] 148.69 — 13.307

MHA [47] 142.71 — —
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Ploss: Power loss of the network
V sag: Voltage sag
V swell: Voltage swell
VTHD: THD of the bus voltage
Vunb: Voltage imbalance of the network
Ci: Cost of energy generation system i
Ci inv : Initial investment expenses for energy generation

system i
Ci O&M: Maintenance and operating expenses for energy

generation system i
R: Resistance of the line
X: Reactance of the line
I: Current of the line
Nb: Number of branches
V j

i : Voltage of bus i under fault conditions in bus j
Pslack : Power supplied from the main grid
PD DN: Power consumption of the distribution network
Fb: Power flowing from line b
Limitb: Thermal limit of line b
MBi: Maneuverability of artificial bird i
Veli: Velocity vector of bird i
bi: Body surface area of bird i
β: Wing beat rate
ci: Cost of agent i
ER: Escape rate
POi: Position of bird i
r: A random value between 0 and 1
Opp : Function expresses the opposite value of a vector

(as its input)
CR: Capturing rate.
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