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Abstract: In this study, we extend the exploration of gout flare detection initiated by Osborne, J. D. 16 
et al, through the utilization of their dataset of Emergency Department (ED) triage nurse chief com- 17 
plaint notes. Addressing the challenge of identifying gout flares prospectively during an ED visit, 18 
where documentation is typically minimal, our research focuses on employing alternative Natural 19 
Language Processing (NLP) techniques to enhance the detection accuracy. This study investigates 20 
the application of medical domain-specific Large Language Models (LLMs), distinguishing between 21 
generative and discriminative models. Models such as BioGPT, RoBERTa-large-PubMed-M3, and 22 
BioElectra were implemented to compare their efficacy with the original implementation by Os- 23 
borne, J. D. et al. The best model was Roberta-large-PM-M3 with a 0.8 F1 Score on the Gout-CC-2019 24 
dataset followed by BioElectra with 0.76 F1 Score. We concluded that discriminative LLMs per- 25 
formed better for this classification task compared to generative LLMs. However, a combination of 26 
using generative models as feature extractors and employing SVM for the classification of embed- 27 
dings yielded promising results comparable to those obtained with discriminative models. Never- 28 
theless, all our implementations surpassed the results obtained in the original publication. 29 

Keywords: keyword 1; keyword 2; keyword 3 (List three to ten pertinent keywords specific to the 30 
article yet reasonably common within the subject discipline.) 31 
 32 

1. Introduction 33 
Gout affects over 9 million Americans[1,2] and is the most common form of inflam- 34 

matory arthritis in men with a prevalence rate over 5%. The U.S. National Emergency 35 
Department Sample (NEDS) documents more than 200,000 annual visits where gout is 36 
identified as the primary diagnosis, constituting 0.2% of all Emergency Department visits 37 
and resulting in annual billable charges exceeding $280 million [3].  38 

Despite strides in natural language processing (NLP) techniques for detecting gout 39 
flares from textual data, the prospective identification of such instances remains a com- 40 
plex task, especially within the constraints of Emergency Department (ED) environments. 41 
This study addresses this critical gap by advancing the methodologies proposed by Os- 42 
borne, J. D. et al [1]. 43 

The importance of this research lies in the need to improve the continuity of care for 44 
gout patients, especially after an ED visit. Often, gout flares treated in the ED lack optimal 45 
follow-up care, necessitating the development of methods for identifying and referring 46 
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patients with gout flares during an ED visit [1]. While retrospective studies have lever- 47 
aged NLP for gout flare detection, the prospective identification of patients in real-time 48 
ED settings presents a unique challenge. The study builds upon the groundwork laid by 49 
Osborne, J. D. et al [1], who annotated a corpus of ED triage nurse chief complaint notes 50 
for gout flares, paving the way for our exploration. 51 
1.1 Rationale for Using Large Language Models 52 

Large language models, such as BERT (Bidirectional Encoder Representations from 53 
Transformers), GPT-3 (Generative Pre-trained Transformer 3), and their variants, have 54 
demonstrated remarkable success in a wide range of natural language processing tasks. 55 
The use of large language models in text classification offers several compelling reasons: 56 

Contextual Understanding: Large language models leverage deep learning tech- 57 
niques to encode contextual information and relationships between words in a sentence. 58 
This contextual understanding allows them to capture subtle nuances and semantics, 59 
which is especially relevant in the medical domain where precise interpretation of clinical 60 
text is vital. 61 

Transfer Learning: Pre-training on vast corpora of textual data enables large lan- 62 
guage models to learn general language patterns. This pre-trained knowledge can be fine- 63 
tuned on domain-specific datasets, making them adaptable and effective for text classifi- 64 
cation tasks in the medical field with relatively limited labelled data. 65 
 66 
1.2 Natural Language Processing and Large Language Models in Healthcare 67 

In recent years, the domain of healthcare has witnessed a revolutionary transfor- 68 
mation due to the rapid advancements in Natural Language Processing (NLP) and the 69 
emergence of Large Language Models (LLMs). These technologies have the potential to 70 
revolutionize the healthcare industry by enhancing medical decision-making, patient 71 
care, and biomedical research. 72 

Some tasks in NLP could be automated using LLM such as text classification [4, 5, 6], 73 
keyword Extraction [7, 8, 9], machine translation [10], and text summarization [11]. Fur- 74 
thermore, NLP and LLM can assist in the early detection and diagnosis of diseases by 75 
sifting through vast datasets to identify patterns, symptoms, and risk factors. 76 

 77 
1.3 Gaps and Limitations of Current Literature 78 
Insufficient Comparative Studies Between Domain-Specific Generative LLMs and Dis- 79 
criminative LLMs 80 

While some studies have compared a single generative LLM (GPT) with discrimina- 81 
tive LLMs, a comprehensive comparison between multiple domain-specific generative 82 
LLMs and discriminative LLMs for medical intent classification is lacking. Such compari- 83 
sons are essential to determine the performance disparities between different LLM types 84 
and guide the selection of the most suitable model for our specific medical intent classifi- 85 
cation task. 86 

In light of these gaps, our research aims to bridge these deficiencies in the current 87 
literature. We specifically focus on intent classification of medical letters by leveraging 88 
domain-specific generative LLMs as feature extractors. Additionally, our study includes 89 
comparative analyses of multiple domain specific generative LLMs and discriminative 90 
LLMs to gain comprehensive insights into their performance on this particular medical 91 
classification task. By addressing these gaps, we hope to contribute novel findings and 92 
enrich the existing literature. 93 

 94 
In the current research landscape, the use of Large Language Models (LLMs) in the 95 

medical domain has demonstrated remarkable success. LLMs, such as Roberta-large-Pm- 96 
m3-voc, BioElectra, and BioBart, have shown promise in their ability to comprehend and 97 
process medical text […]. The integration of these advanced models in gout flare detection 98 
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within chief nurse complaints presents an exciting avenue for exploration. Furthermore, 99 
the study introduces a novel approach of using LLMs for feature extraction, followed by 100 
classification with a Support Vector Machine (SVM), contributing to the evolving meth- 101 
odologies in this field […]. 102 

2. Materials and Methods 103 

Data Collection 104 
We utilized the dataset curated by Osborne, J. D. et al, consisting of Emergency De- 105 

partment (ED) triage nurse chief complaint notes. This dataset, annotated for the presence 106 
of gout flares, served as the foundation for our investigation. Each Chief Complaint (CC) 107 
in the dataset was annotated to determine its indication of a gout flare, non-indication of 108 
a gout flare, or remained unknown in terms of gout flare status. Following this, a manual 109 
chart review was conducted by a rheumatologist (MID) and a post-doctoral fellow (GR) 110 
to ascertain the gout flare status for 197 out of the 300 Emergency Department (ED) en- 111 
counters. The following table, extracted from the publication by Osborne, J. D. et al., illus- 112 
trates the data structure. 113 

Table 1: GOUT-CC-2019-CORPUS Examples (Osborne, J. D. et al,) 114 

Chief	Complaint	Text Predicted* Actual** 
AMS, lethargy, increasing generalized weakness over 2 
weeks. Hx: ESRD on hemodialysis at home, HTN, DM, gout, 
neuropathy 

No No 

I started breathing hard” hx-htn, gout, anxiety, No No 
R knee pain x 8 years. pmh: gout, arthritis Unknown No 
Doc N Box DX pt w/ R hip FX on sat. Pt states no falls or 
injuries. PMH: gout 

Unknown No 

out of gout medicine Yes Yes 
sent from boarding home for increase BP and bilateral knee 
pain for 1 week. Hx of HTN, gout. 

Yes Yes 

*Consensus predicted gout flare status determined by annotator examination of CC 115 
**Gout flare status determined by chart review. 116 

Large Language Models 117 
In this study, we harnessed the power of Large Language Models (LLMs) and trans- 118 

fer learning for the task of gout flare detection within Emergency Department (ED) triage 119 
nurse chief complaint notes. LLMs are state-of-the-art natural language processing mod- 120 
els, designed to comprehend and generate human-like text trained on vast amounts of 121 
pre-existing linguistic data. 122 

Model Selection 123 
We employed several LLMs tailored for the medical domain, for their ability to cap- 124 

ture intricate patterns within medical text, making them well-suited for discerning nu- 125 
ances in chief complaints related to gout flares. 126 
Discriminative models  127 

In the domain of discriminative Large Language Models (LLMs), we strategically in- 128 
corporated robust models renowned for their discriminative prowess—Roberta-PM-M3- 129 
Voc and BioElectra. 130 

Model Roberta-PM-M3-
Voc 

BioElectra BioBart 

Model Size 355M Parameters --- 139M Parameters 
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Hidden Size 1024 768 768 

Model Size 24 Layers, 16 atten-
tion heads 

12 Layers, 12 atten-
tion heads 

12 Layers, 12 atten-
tion heads 

Base Model RoBERTa-large Electra Base Bart Base 

Training Data PubMed and 
MIMIC-III corpora 

PubMed and Pub-
Med central (mil-
lions of articles) 

PubMed abstracts, 
PMC articles 

 131 
Generative models  132 

In the realm of generative Large Language Models (LLMs), we strategically chose 133 
BioGPT, BioMedLM, and PMC_LLaMA_7B for their renowned scale and exceptional per- 134 
formance in natural language processing tasks. These models represent the forefront of 135 
generative language understanding, and their comprehensive specifications, training 136 
data, and architectural features are elucidated below. 137 

Table 2: Description of Generative LLMs implemented 138 

Model BioGPT BioMedLM PMC_LLaMA_7B 

Model Size 347M Parameters 2.7B Parameters 7B Parameters 

Hidden Size 1024 2560 4096 

Model Size 24 Layers, 16 atten-
tion heads 

32 Layers, 20 atten-
tion heads 

32 Layers, 32 atten-
tion heads 

Base Model GPT2-medium GPT2 LLaMA_7B 

Training Data 15M PubMed ab-
stracts from scratch 

All the PubMed ab-
stracts and full docu-
ments from The Pile. 

4.8 million Biomedi-
cal academic papers 
from the S2ORC da-

taset. 

Benchmark methods 139 
To facilitate a comprehensive benchmarking analysis, we incorporated benchmark 140 

methods for comparison with our Large Language Models (LLMs). The benchmark meth- 141 
ods involved the transformation of textual data into numerical vectors, a crucial step for 142 
machine learning algorithms that inherently require numerical input.  143 
Textual Data Transformation: 144 

Given that machine learning algorithms cannot interpret textual data directly, we 145 
employed Sklearn's 'TfidfVectorizer' algorithm to translate textual information into nu- 146 
merical vectors. This algorithm transforms documents into a matrix of tf-idf (term fre- 147 
quency-inverse document frequency) characteristics, capturing the significance of words 148 
within the corpus. 149 
N-gram Exploration: 150 

The tf-idf vectorizer, in its default setting, considers single-word tokens (unigrams) 151 
from sentences. In our research, we expanded this exploration by incorporating and eval- 152 
uating various n-gram combinations of words. N-grams represent consecutive sequences 153 
of n words in a sentence. After experimentation, we opted for the (1, 2) ngram setting, 154 
utilizing both unigrams and bigrams to capture a more comprehensive contextual under- 155 
standing of chief nurse complaints. 156 
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Performance Evaluation 157 
The performance of each model was evaluated using standard metrics, including pre- 158 

cision, recall, and Macro F1-score. We compared our results with the original algorithm 159 
proposed by Osborne et al., ensuring a comprehensive assessment of the advancements 160 
achieved. 161 

 162 

3. Results 163 
In this section, we meticulously analyze and compare the performance of three dis- 164 

tinct models—Roberta-large-Pm-m3-voc, BioElectra, and BioBart—on two separate da- 165 
tasets: Gout-cc-2019 and Gout-cc-2020. The comprehensive assessment involves a thor- 166 
ough examination of overall recall and F1-score metrics, providing insights into the mod- 167 
els' respective capabilities in capturing and identifying instances of gout flares within 168 
chief nurse complaints. 169 

3.1. Direct LLMs Classification  170 
This subcategory encompasses results obtained by directly employing Large Lan- 171 

guage Models (LLMs) for the classification of Chief Complaints (CCs). Analyze and pre- 172 
sent the performance metrics, such as recall and F1-score, achieved by each LLM (Roberta- 173 
large-Pm-m3-voc, BioElectra, and BioBart, BioGPT, BioMedLM) when used inde- 174 
pendently for gout flare prediction within CCs. 175 

 176 

Table 3: Direct LLM Classification 177 

 Gout-CC-2019 Gout-CC-2020 

Model Precision Recall F1-score Precision Recall F1-score 

Roberta-large-
PM-M3 

0.80 0.79 0.80 0.62 0.72 0.63 

BioElectra 0.76 0.76 0.76 0.63 0.68 0.65 

BioBart 0.74 0.73 0.73 0.65 0.70 0.67 

BioGPT 0.62 0.59 0.60 0.45 0.50 0.48 

BioMedLM 0.49 0.49 0.47 0.51 0.52 0.52 
 178 
 179 

 180 
3.2. LLMs Embedding Extraction and Classification with SVM 181 
In this subcategory, we explore the outcomes derived from using LLMs to extract 182 

embeddings from Chief Complaints, followed by a secondary classification using a Sup- 183 
port Vector Machine (SVM). 184 

Table 4: LLMs Embedding Extraction and Classification with SVM 185 

 Gout-CC-2019 Gout-CC-2020 

Algorithm Precision Recall F1-score Precision Recall F1-score 

SVM with BioGPT 
Embeddings 0.79 0.79 0.75 0.69 0.73 0.71* 

SVM with Bio-
MedLM Embed-

dings 
0.70 0.72 0.70 0.59 0.70 0.61 
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SVM with 
PMC_LLaMA_7B 

Embeddings 
0.64 0.64 0.64 0.60 0.60 0.60 

 186 
3.3. Benchmark Methods  187 
This subcategory involves benchmarking the performance of traditional methods for 188 

textual data transformation, specifically focusing on the Tf-idf vectorizer with different n- 189 
gram settings. Contrast and compare the results obtained with these benchmark methods 190 
against the outcomes achieved by the LLMs, providing valuable insights into the effec- 191 
tiveness of each approach for gout flare prediction. In this section we have also included 192 
the results from the original publication (shaded), the results will be discussed further in 193 
the discussion section.  194 

 195 
 Gout-CC-2019 Gout-CC-2020 

Algorithm Precision Recall F1-score Precision Recall F1-score 

SVM with TF-IDF 0.75 0.75 0.75 0.82 0.74 0.77 

NAIVE-GF 0.23 1.00 0.38 0.28 0.56 0.37 

SIMPLE-GF 0.44 0.84 0.58 0.37 0.40 0.38 

BERT-GF 0.71 0.48 0.56 0.79 0.47 0.57 

4. Discussion 196 
4.1. General Analysis  197 
The results on the GOUT-CC-2019-CORPUS and GOUT-CC-2020-CORPUS datasets 198 

were unsatisfactory in relation to machine learning standards. The highest performance 199 
on these datasets was the SVM with BioGPT embeddings and oversampled data on the 200 
merge of the datasets with 70% accuracy but after further analysis of the results its clear 201 
the model is not able to predict the positive label as well as the negative label, and the 202 
high results of the negative class indicate a bias of the model towards the negative class, 203 
even after oversampling. 204 

None of the models employed in this study were able to accurately make predictions 205 
of the GOUT-CC2019-CORPUS and GOUT-CC-2020-CORPUS datasets. The unsatisfac- 206 
tory results are related to the nature of the dataset. All the chief nurse complaints contain 207 
the keyword “gout” and most of the nurse complaints did not contain any clear indicator 208 
of gout flare. This is proven by the analysis of the predict column, where the professional 209 
annotators attempted to predict the presence of GOUT flare bases solely on the complaint. 210 
In the test set used more than half were miss classified by the professional rheumatolo- 211 
gists. 212 

4.2. Comparative Analysis  213 
The following table compares the results acquired from this study, with the results 214 

obtained from the paper by Osborne et al. 215 
 Gout-CC-2019 Gout-CC-2020 

Algorithm Precision Recall F1-score Precision Recall F1-score 

Roberta-large-PM-M3 0.80 0.79 0.80* 0.62 0.72 0.63 

BioElectra 0.76 0.76 0.76 0.63 0.68 0.65 

BioBart 0.74 0.73 0.73 0.65 0.70 0.67 

BioGPT 0.62 0.59 0.60 0.45 0.50 0.48 
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BioMedLM 0.49 0.49 0.47 0.51 0.52 0.52 

SVM with BioGPT 
Embeddings 0.79 0.79 0.75 0.69 0.73 0.71* 

SVM with Bio-
MedLM Embeddings 0.70 0.72 0.70 0.59 0.70 0.61 

SVM with 
PMC_LLaMA_7B Em-

beddings 
0.64 0.64 0.64 0.60 0.60 0.60 

SVM with TF-IDF 0.75 0.75 0.75 0.82 0.74 0.77* 

NAIVE-GF 0.23 1.00 0.38 0.28 0.56 0.37 

SIMPLE-GF 0.44 0.84 0.58 0.37 0.40 0.38 

BERT-GF 0.71 0.48 0.56 0.79 0.47 0.57 
 216 
As shown in the above table Roberta was the best performing model on the GOUT- 217 

CC-2019-CORPUS dataset followed by BioElectra, showcasing the superiority of discrim- 218 
inative LLMs in classification tasks. The SVM with BioGPT embedding and TF-IDF also 219 
performed well in relation to the other models. In the GOUT-CC-2020-CORPUS dataset 220 
the best LLM was SVM with BioGPT embeddings which outperformed all the discrimi- 221 
native LLMs due to the use of oversampling, which was not possible using the discrimi- 222 
native LLMs. This result was still outperformed by SVM with TF-IDF features. All of our 223 
models outperformed the models used in the study by Osborne et al.(in grey) in both da- 224 
tasets. 225 

4.3. Future Directions 226 
Some improvements can be done to enhance the results obtained in this research:  227 
Full Fine-Tuning and Distributed Computing: While parameter-efficient fine-tun- 228 

ing, specifically LoRA, was applied in this study due to hardware constraints and the 229 
models' size, pursuing full fine-tuning would enhance the results of the models. Imple- 230 
menting distributed computing is necessary to apply full fine tuning, due to the very large 231 
size of the models this process requires distributing the model load across different GPUs 232 
to perform the calculations. This strategy would enable more comprehensive fine-tuning, 233 
potentially leading to an increase in model performance. 234 

Enhanced Dataset Quality and Size: with such a limited number of samples the 235 
model cannot be properly trained, validated and tested. To address this more samples 236 
must be acquired or whole new datasets to test the models effectively. 237 

Exploring Embeddings and Discriminative LLMs: A new direction to follow would 238 
be a similar approach to the one employed in this study where the embeddings of the 239 
discriminative LLMs are extracted and used for classification using a separate classifier, 240 
in order to test the different embeddings side by side in a similar setting. 241 

Ensemble Learning for Enhanced Embeddings: A promising route is the utilization 242 
of deep learning models to create an ensemble that enhances embeddings before their 243 
application in text classification. This strategy could potentially enhance the information 244 
captured by the embeddings, thereby leading to improved classification outcomes. 245 

5. Conclusions 246 
Overall this study highlighted the potential of generative LLMs for classification 247 

tasks, achieving results comparable to the discriminative models. Additionally the models 248 
also have shown potential as feature extractors for classification tasks even without fine 249 
tuning, due to their ability to understand contextual information and produce contextual 250 
rich embeddings. Despite the results between the two types of models being comparable, 251 
the computational requirements to perform the same task is much greater using the 252 
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generative LLMs employed in this study. Similar or superior results can be obtained using 253 
much smaller discriminative models.  254 

Still, this research highlights the importance of using the domain specific variants of 255 
the models when the text contains specialized and out of word vocabulary.   256 

Given the considerations mentioned above, the following conclusions can be drawn. 257 
The integrations of Large language models trained on medical publications holds poten- 258 
tial to reshape classification tasks in the medical domain for the future. 259 
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