
 

 

 

Assessing the asymmetric volatility 
linkages of energy and agricultural 
commodity futures during low and high 
volatility regimes 
Rezitis, A., Andrikopoulos, P. & Daglis, T. 
Published PDF deposited in Coventry University’s Repository  
 
Original citation:  
Rezitis, A, Andrikopoulos, P & Daglis, T 2023, 'Assessing the asymmetric volatility 
linkages of energy and agricultural commodity futures during low and high volatility 
regimes', The Journal of Futures Markets, vol. (in-press), pp. (in-press). 
https://dx.doi.org/10.1002/fut.22477 
 
DOI    10.1002/fut.22477 
ISSN   0270-7314 
ESSN  1096-9934 
 
Publisher: Wiley 
 
This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



Received: 15 January 2023 | Accepted: 30 November 2023

DOI: 10.1002/fut.22477

RE S EARCH ART I C L E

Assessing the asymmetric volatility linkages of energy
and agricultural commodity futures during low and
high volatility regimes

Anthony N. Rezitis1 | Panagiotis Andrikopoulos2 | Theodoros Daglis1

1School of Applied Economics and Social
Sciences, Agricultural University of
Athens, Athens, Greece
2Centre for Financial and Corporate
Integrity, Coventry University,
Coventry, UK

Correspondence
Panagiotis Andrikopoulos, Centre for
Financial and Corporate Integrity,
Coventry University, Coventry, UK.
Email: p.andrikopoulos@coventry.ac.uk

Abstract

This study investigated the volatility linkages between energy and agricultural

futures, including possible causes for these comovements, such as external

macroeconomic and financial shocks during low and high volatility regimes.

A combination of Markov‐switching regressions and quadrivariate

VAR–DCC–GARCH and VAR–BEKK–GARCH modeling revealed that ex-

ternal shocks have an asymmetric effect on the relationship of these assets

with higher cross‐correlations reported during high volatility regimes. This

comovement effect outweighs the substitution effect between energy and

agricultural products. Furthermore, the quadrivariate VAR–BEKK–GARCH
model provides strong evidence of a bidirectional price volatility spillover

between the agricultural and energy markets during periods of high volatility.

Overall, the results suggest that energy futures can be effectively used for

hedging in a portfolio comprising agricultural futures (and vice versa), while a

combination of macroeconomic and financial index futures can serve as an

effective hedging tool in investment portfolios comprising both energy and

agricultural commodities.

KEYWORD S
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1 | INTRODUCTION

Since the early 2000s, food‐based biofuel production has surged in both the United States and Europe. This has been
supported by policies devised to reduce the use of fossil fuels, such as the first EU biofuel directive introduced in 2003.
Furthermore, many countries around the world have initiated programs promoting biofuel production with the aim of
decreasing their dependence on fossil fuels.
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The use of agricultural products in energy production has created extra linkages between these two sectors (in
addition to their existing connection) because energy is used as input in the agricultural sector for agricultural
production, food processing, and transportation. This increasing integration and interdependence between energy and
agricultural commodity markets has fueled skepticism about the benefits of using food crops to produce biofuels
instead of feeding the world population, particularly given the global food crisis in 2008 and the extremely high food
prices in 2010–2012 and at present.

Extant literature suggests that the emergence of biofuel production might have engendered strong bidirectional
linkages between these two markets (López Cabrera & Schulz, 2016) because price changes in agricultural commodities
can induce a similar shift in biofuel prices—primarily due to feedstock costs constituting an increasingly high
proportion of overall biofuel production costs. Additionally, a change in the price of energy can trigger similar changes
in the prices of agricultural commodities by altering input costs and causing shifts in the biofuel market demand. This
is due to biofuel prices affecting the price of fossil fuel by influencing demand through the substitution effect (Gilbert,
2010; Han et al., 2020; Meyers & Meyer, 2008). These bidirectional linkages may cause bidirectional price volatility
spillovers between energy and agricultural commodity markets. A robust connection between these markets can
significantly affect price levels and the volatility linkages between them. More importantly, increased price volatility
reduces market participants' ability to accurately forecast future agricultural commodities and energy prices, thus
exposing them to the risk of higher prices. Hence, it is crucial for traders, investors, and policy‐makers to be aware of
the degree of price correlation and volatility between energy and agricultural commodity markets so that they can
adopt suitable hedging practices.

This study addresses this problem by investigating price, volatility, and correlation risk linkages between energy and
agricultural commodity prices and examining their dynamics over time. It also assesses whether bidirectional volatility
linkages exist between the markets under consideration, and whether the volatility linkage between energy and agricultural
commodity markets is the outcome of the comovement effect caused by external macroeconomic shocks or the substitution
effect induced by the biofuel industry (Gilbert, 2010; Han et al., 2020; Serra & Zilberman, 2013). López Cabrera and Schulz
(2016) posited that the short‐run volatility linkage between energy and agricultural markets is attributable to the
comovement effect, while the long‐run volatility linkage is attributable to the substitution effect between energy and the
biofuel market.1 However, Han et al. (2020) question such a hypothesis as they report that bidirectional linkages between
these two markets are driven by external shocks, rather than the substitution effect. Our study extends knowledge of this
issue by assessing the asymmetric effect of bidirectional linkages between these two markets under low and high volatility
regimes induced by external macroeconomic and financial shocks. Unlike Han et al. (2020), who investigated such
interconnectedness between two ad hoc subperiods (before and after the shale gas revolution), our study enhances the
accuracy and practical efficacy of the relevant hedging strategy by assessing volatility spillovers during low and high
volatility regimes, as determined by the Markov chain approach. Given that external shocks are found to be inherently
asymmetric across different markets and financial assets (Cologni & Manera, 2009; Hau et al., 2020; Li et al., 2016) we
should expect hedging efficiency to diverge across such regimes.

Hence, the contribution of this paper is fourfold. First, we use the dynamic conditional correlation (DCC) of the
multivariate generalized autoregressive conditional heteroskedasticity (MVGARCH) model to estimate dynamic conditional
cross‐correlations among energy and agricultural commodity prices. We consider two representative energy futures and two
representative agricultural futures, over the sample period from July 3, 1996, to November 2, 2020. The DCC–MVGARCH
model has been used in previous studies to measure the correlation between price volatilities but does not draw on an
extensive range of volatility causality links. To address this problem, we applied Markov‐switching regression models in the
estimated dynamic cross‐correlations obtained from the DCC–MVGARCH model to identify subperiods of high and low
conditional cross‐correlations. We then estimated the BEKK–MVGARCH model in each subperiod to investigate volatility
causality linkages between energy and agricultural commodity prices.2 The Markov‐switching technique is known for its
ability to identify not only regime states regarding high and low prices, but also the volatility of the variables examined
(Wang et al., 2021). Furthermore, it can demonstrate the probability of switching among the different regimes, rendering the
analysis robust. In this context, because the literature has already confirmed that different phases exist in the performance of

1Previous literature investigating price volatility spillovers between energy and agricultural commodity markets is rather scarce, while the literature
related to price‐level relations and spillovers is extensive (e.g., Ahmadi et al., 2015; López Cabrera & Schulz, 2016; Nazlioglu & Soytas, 2012).
2The advantage of the BEKK–MVGARCH model is that it can reveal possible bidirectional price volatility transmissions between energy and
agricultural markets.
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financial markets (Boroumand et al., 2016), the combination of the Markov‐switching technique with the
BEKK–MVGARCH can be regarded as a novel and robust method.

To the best of our knowledge, our study is the first to combine the DCC–MVGARCH, the Markov‐switching
regression approach, and the BEKK–MVGARCH in a single framework to detect subperiods of low and high
conditional cross‐correlations between energy and agricultural futures returns. In our view, this is a more accurate
approach towards examining the underlying determinants of low and high conditional cross‐correlation states and for
investigating volatility causality linkages between energy and agricultural commodity markets in each subperiod.

Second, we estimated a Markov‐switching regression model for each of the estimated dynamic conditional cross‐
correlations among energy and agricultural commodity prices obtained from the estimation of the DCC–MVGARCH. Contrary
to extant literature (e.g., Han et al., 2020; Nazlioglu et al., 2013), which breaks the period of examination into subperiods
according to an economic or political event, or employs state space approaches, the use of a Markov‐switching technique
enabled us to identify volatility regime‐shifts from the data without the need to prespecify structural breaks. As such, our
modeling approach is more forward‐looking and appropriate for forecasting purposes. The Markov‐switching regression model
also allowed us to investigate the effect of macroeconomic factors on the volatility regime levels. We accounted for increasingly
volatile conditional cross‐correlations among energy and agricultural commodity prices and changing economic conditions
over the sample period under consideration (July 3, 1996–November 2, 2020). Common (macroeconomic and financial) factors
relating to world GDP growth, monetary expansion, and exchange rate changes are likely to be the key factors inducing energy
and agricultural prices level changes. The modeling superiority of the discrete Markov‐switching model in our
multidimensional approach was evidenced by the fact that volatility regimes were found to play a role in the effect of
external shocks and the substitution effect, a result that is reported for the first time in the literature.

Third, to study the volatility linkages and transmission between energy and agricultural commodity prices, our
study is one of the few to estimate a quadrivariate VAR–BEKK–GARCH model for each of the subperiods obtained in
the previous step. Thus, all the variables under consideration were included in a quadrivariate Baba, Engle, Kraft, and
Kroner (BEKK) model, facilitating a simultaneous analysis of all energy and agricultural commodity variables. Previous
literature (e.g., Du et al., 2011; Han et al., 2020; Trujillo‐Barrera et al., 2012) primarily estimated bivariate BEKK models
between energy and agricultural commodities. However, such an approach fails to account for the simultaneous effect
of all the energy and commodity prices.3 We overcame this problem by performing Granger‐style causality tests (i.e.,
exogeneity tests) to investigate spillovers in the conditional variance–covariance matrix of the BEKK model; in other
words, we tested whether a set of coefficients on other (control) variables were zero.4

Finally, we made appropriate provisions for portfolio management and hedging activities associated with energy and
agricultural commodities for the whole period under consideration and the three subperiods derived from the
implementation of the Markov switch. Given that critical macroeconomic factors play an essential role in determining
the comovement of energy and agricultural prices, we demonstrated how futures contracts related to key macroeconomic
and financial factors can be used as hedging instruments for portfolios involving energy and agricultural commodities.
Hence, we extend relevant literature that investigates hedging activities and portfolio management between main
macroeconomic factors, energy, and agricultural prices, including the period at the start of the COVID‐19 pandemic.

The remainder of the paper is organized as follows. Section 2 presents and discusses existing literature. Section 3
details the empirical models, following which Section 4 describes the data. Section 5 reports the empirical results.
Hedging strategies are presented in Section 6 and concluding remarks are made in Section 7.

2 | LITERATURE REVIEW

In contrast to literature investigating price‐level linkages between energy and agricultural commodities, research on
price volatility interdependences between these types of assets is rather scarce.5 More importantly, although most of
those studies suggest the existence of such a relationship, the possible causes of such an effect are rather diverse. For

3The main difficulty when estimating a multivariate BEKK model is the high number of unknown parameters. Consequently, this model is rarely
used when the number of series is greater than 3. Furthermore, a key weakness of this modeling approach is that its parameters do not directly
represent the impact of the different lagged terms on the conditional variance–covariance matrix elements (Bauwens et al., 2006).
4An advantage of the BEKK model is that it is flexible enough to allow volatility causality links to move in any direction (Serra & Zilberman, 2013).
5In this study, we present a brief overview of the literature related to price transmission and volatility in biofuel markets. For an extensive coverage of
relevant literature, readers are advised to consult Meyers and Meyer (2008) and Serra and Zilberman (2013).

REZITIS ET AL. | 3

 10969934, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fut.22477 by T

est, W
iley O

nline L
ibrary on [05/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



example, a seminal study by Zhang et al. (2009) on price transmission and volatility spillovers between weekly
wholesale prices of US ethanol, corn, soybeans, gasoline, and oil for the period from March 1989 to December 2007
reported no evidence of price volatility spillovers from ethanol to corn and soybeans markets. However, the converse
was found regarding significant volatility price transmission from the corn and soybeans markets (agricultural
commodities) to the energy market, especially during the ethanol boom period. According to the authors, such an effect
can be attributed to higher incomes, particularly in Asia, leading to increased demand for meat and dairy products
which, in turn, elevates demand for corn and soybeans and energy inputs. By contrast, Kaltalioglu and Soytas (2011)
reported that variation in oil prices does not Granger cause the variance in food and agricultural raw material prices.

Employing stochastic volatility models to weekly crude oil, corn, and wheat futures prices, Du et al. (2011) reported
volatility spillovers from oil prices to agricultural commodity prices after the autumn of 2006, identifying a stronger
interdependence between crude oil and agricultural commodity markets induced by ethanol production. In a similar
vein, Nazlioglu et al. (2013) employed the causality in variance test and impulse response functions to examine
volatility transmission between oil prices and those of selected agricultural commodities (wheat, corn, soybeans, and
sugar). Their empirical findings revealed evidence of oil price volatility spillovers on agricultural price volatility only
after January 1, 2006.

With regard to the ethanol markets, Trujillo‐Barrera et al. (2012) analyzed volatility spillovers from energy to
agricultural markets using the daily futures prices of crude oil, ethanol, and corn. They found that spillovers from crude
oil to corn and ethanol markets were similar in magnitude over time in both markets, but with a stronger effect during
periods of high volatility in the crude oil market. In contrast to Zhang et al. (2009), the authors reported significant
volatility spillovers from crude oil to corn and ethanol markets, and argued that the biofuel era created stronger
connection between these two markets. This finding is supported by Serra (2011) for international crude oil prices and
Brazilian ethanol and sugar prices. According to these authors, the volatility of ethanol prices is affected by shocks in
the oil and sugar markets with the existence of a long‐run equilibrium between prices—with ethanol being adjusted in
line with deviations from this long‐run equilibrium—whilst crude oil and sugar are exogenous in the long run. This
was confirmed by a follow‐up study on crude oil prices and Brazilian ethanol and sugar prices that employed a
semiparametric GARCH model (Serra, 2011). In subsequent research, Du and McPhail (2012) investigated the
interconnectedness between ethanol, gasoline, and corn prices in the United States using a DCC–GARCH model with
structural breaks for the period from March 2005 to March 2011. They identified a structural change point in March
2008, with strengthened linkages between energy and corn markets in the second subperiod (i.e., after March 2008)
when ethanol production expanded.

By contrast, a study of price and volatility linkages between energy and agricultural commodity prices by López
Cabrera and Schulz (2016) reported a long‐run equilibrium relationship where both rapeseed and biodiesel prices react
to deviations from the long‐run equilibrium. The authors found that biodiesel did not affect the price level of rapeseed
and crude oil in the short run but did respond to price changes in the rapeseed and crude oil markets. The price
volatility of biodiesel was only weakly linked to rapeseed and crude oil volatility, whereas the relationship between the
price volatility of rapeseed and crude oil increased later in their sample period. In addition, their results do not provide
any significant evidence to suggest that biodiesel is the cause of high and volatile agricultural commodity prices.

Finally, regarding the underlying causes of such an effect (volatility spillovers), Gilbert (2010) found that the causes
of the correlation between agricultural and oil prices during the 2007–2008 food price rises, both in terms of levels and
changes, were common factors (e.g., world GDP growth, monetary expansion, and exchange rate change), rather than
market‐specific factors, such as supply shocks. Furthermore, they provided weak evidence to show that the
strengthened linkage between agricultural and oil prices was due to the increasing use of farm commodities in biofuel
production. This is supported by Han et al. (2020), who reported a statistically significant bidirectional volatility
relationship between energy and agricultural futures returns, especially after 2007. Such results indicate that this
bidirectional volatility linkage is attributable to the comovement effect prompted by external macroeconomic shocks
that emerged from the world economy, trade, and financial markets, rather than the substitution effect initiated by the
biofuel industry.

Our study extends this stream of literature on the dynamic nature of cross‐correlations among energy and
agricultural commodity prices. Unlike previous studies, we performed a multistage analysis that combined the
VAR–DCC–GARCH model, the Markov‐switching technique, and a quadrivariate VAR–BEKK–MVGARCH model.
Furthermore, our sample period covered the beginning of the COVID‐19 pandemic, and hence provided more insights
into these interrelationships given the evident shocks in both macroeconomic conditions and the financial markets.

4 | REZITIS ET AL.
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3 | MODEL

In this study, we utilized the DCC and BEKK GARCH models with a Markov‐switching technique in a manner that
enabled us to overcome the problems that arise when using one of these techniques in isolation.6 Specifically, using the
DCC–GARCH model, we initially identified dynamic conditional cross‐correlations between energy and agricultural
futures for the period under investigation. Next, by applying Markov‐switching regressions to the estimated dynamic
conditional cross‐correlations obtained from the DCC–GARCH model, we established the subperiods of low and high
volatility regimes. In addition, we applied Markov‐switching regressions on dynamic conditional cross‐correlations
obtained from the BEKK–GARCH model. However, identifying subperiods of low and high volatility was challenging
because the conditional cross‐correlations were highly volatile. Furthermore, the DCC–GARCH approach is unable to
investigate potential causal effects. To overcome this weakness, we employed a BEKK–GARCH model for each
subperiod by identifying and treating the subperiods evidenced from the DCC–GARCH model as independent periods.
In this way, we were able to capture possible causality effects by utilizing the strengths of each technique.

3.1 | VAR(p)–DCC(1, 1)–MVGARCH(1, 1) model

We utilized the DCC of the MVGARCH model (Engle, 2002) to estimate dynamic conditional cross‐correlations among
energy and agricultural commodity prices for the entire period examined. In Section 3.2, we explain how we applied
Markov‐switching regression models on the estimated dynamic conditional cross‐correlations to identify high and low
conditional cross‐correlation subperiods. This model follows a VAR(p)–MVGARCH(1, 1) structure with DCCs in the
error terms. Throughout this section, i and j are used interchangeably to refer to oil, ngas, corn, or soybeans commodity
futures. In particular, the VAR(p)–DCC(1, 1)–MVGARCH(1, 1) is given by

⋯Y C Y Y Y ε t T= + Φ + Φ + + Φ + , = 1, …, ,t t t p t p t1 −1 2 −2 − (1)

ε H v= ,t t t

1
2 (2)

H D R D= ,t t t t (3)

where Y y= { }t i t, denotes a (4 × 1) vector of futures' price returns; C = {c }i is a (4 × 1) vector of constant terms;

{ }φΦ =p ij
p indicates a (4 × 4) matrix of coefficients; p is the number of lags of the conditional means given by Equation

(1); ε ε= { }t i t, is a (4 × 1) error term vector of the conditional means, where E ε( ) = 0t and Cov ε H( ) =t t ; Ht is a (4 × 4)

conditional covariance matrix; Rt is a (4 × 4) conditional correlation matrix; Dt is a (4 × 4) diagonal matrix with time‐
varying standard deviations on the diagonal; and vt is a (4 × 1) vector of iid errors such that E v( ) = 0t and ( )E v v I′ = .t t

The elements of the diagonal matrix ( )D diag h h h h= , , ,t oil ngas corn soyb

1
2

1
2

1
2

1
2 represent the standard deviations from

univariate GARCH(1, 1) models

h c a ε b h= + +i t i i i t i i t, 0, , −1
2

, −1 (4)

for i = oil, ngas, corn, and soybeans, where ai and bi are nonnegative scalar parameters with a b+ < 1i i , and c > 0i0, .
Furthermore, R ρ= { }t ij t, is a symmetric correlation matrix of conditional correlation coefficients. In the DCC(1, 1)

model, Rt is decomposed into

R Q Q Q= * * ,t t t t
−1 −1 (5)

where

6Although not explicitly claimed, we believe this is also a methodological contribution of our paper.
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Q a b Q aξ ξ bQ= (1 − − ) ¯ + ′ + ,t t t t−1 −1 −1 (6)

where ξ ε h= /t i t i t, , is a (4 × 1) vector of standardized errors, Q q= { }t ij t, is a (4 × 4) conditional variance–covariance
matrix, and ( ) ( )Q Cov ξ ξ E ξ ξ̅ = ′ = ′t t t t is the unconditional variance–covariance matrix of the standardized errors ξt,

which can be estimated as Q ξ ξ¯ = ′
T t

T
t t

1
=1 . The parameters a and b are scalars and must satisfy the conditions

≥ ≥a b a b0, 0, and + < 1, andQ*t is a diagonal matrix containing the square root of the diagonal elements ofQt, that
is,Q diag q* = { }t ii t, . It is also important to note that ρ q q q= /ij t ij t ii t jj t, , , , is obtained by estimating Equation (6) using a

maximum likelihood method (Engle, 2002).

3.2 | Markov‐switching regression

On the basis of the work of McCulloch and Tsay (1994), the next step was to estimate a Markov‐switching regression
model on each of the conditional cross‐correlations obtained from the implementation of the VAR(p)–DCC
(1, 1)–MVGARCH(1, 1) model. Let us assume that the conditional cross‐correlation between commodity returns i and j

is given by ρij t, . For simplicity, we drop subscripts i j, from ρij t, . A two‐state Markov‐switching regression model is

written as

( )( )ρ s k β σ N X β σ| = , , ~ ′ , ,t t k k t k k
2 2 (7)

where s{ }t is a Markov chain with two states {1, 2}, X x x= ( , …, )′t t it1 indicates a set of exogenous variables that include a
constant vector of unity, β β β= ( , )′k 1 2 is a vector of regression coefficients for each state, and ∞σ <i

2 is the
corresponding variance. The probabilities of the Markov‐switching states are given by P s s ε( = 2| = 1) =t t−1 1 and
P s s ε( = 1| = 2) =t t−1 2.

We then adopt Bayesian analysis to estimate the model's parameters, using a Markov chain Monte Carlo (MCMC)
algorithm based on the Gibbs sampler to draw the iid sample from the posterior distribution of the parameters of the
above model. Thus, the conjugate priors are

( )β Ν β Α σ
v λ

χ
ε Beta γ γ , i~ , , ~ , ~ ( , ) where = 1, 2i i i ι

i i

v

i i i,0
−1 2

2 ,1 ,2

i

(8)

deriving the full conditional posterior distribution for each parameter of the model.
If ∙p w( | ) denotes the conditional posterior distribution of w, given all the other parameters and the data, we obtain

the following:

(i) For i = 1 and 2, ∼( ) ( )p β p β ρ s σ N β A( |·) = | , ,
*
,

*i i i i i i
2

, ,
−1 , where ρ β,

*i i, , and A *i, are defined as:

Let the observational vector be ρ ρ ρ= ( , …, )′n1 and the state vector be s s s= ( , …, )′.n1 In addition, let
⋯i i i< < < n1 2 i

indicate all the time indices such that s i=ij . For t i= j, the vector ρi is then defined by

( )ρ ρ ρ ρ= , …, ′
i i i in1 2

. Given the above, we have












 







 


A σ X X A β

X X

σ
A

X ρ

σ
A β* =

′ + and
*
=

′
+

′ ′
+ .i i

j

n

i i i i

j
n

i i

i
i

j
n

i i

i
i i,

−2

=1
,

=1

2

=1

2 ,0

i

j j

i

j j

i

j j

(ii) For i = 1 and 2, ∙( )p σ | ~i
2 inverted χ2 such that ∼( )v λ S σ χ+ /i i i i v n

2 2
+

2
i i

, where Si
2 = ( )ρ X β− ′ .j

n
i i i=1

2
i

j j

(iii) The conditional posterior distribution of εi depends only on s and we have p ε s( | )~i Beta γ k γ n k( + , + − )i i i i i,1 ,2 for
i = 1, 2. It is important to note that k1 is the number of jumps from State 1 to State 2, while k2 indicates the number
of jumps from State 2 to State 1.
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(iv) The conditional posterior distribution of s is given by ⋅ ∝ ⋅p s ρ s p ρ p s s ε ε( | , , ) ( | ) ( | , )t k t k t k t k, ,(− ) , ,(− ), 1 2 which is a
discrete distribution with 2k possible outcomes. Here, st k, represents a subsection s s s s= ( , , …, )′t k t t t k, +1 + −1 of s with
length k and st k,(− ) is the subset of s with st k, removed. Furthermore,

⋅ ∝ ⋅ 











( )

p ρ p y y s
π σ

exp
ρ X β

σ
( | ) ( , …, | , ) =

1

2

1 − − ′

2
.t t k t k

j t

t k

s

j j s

s
+ −1 ,

=

+ −1
2

2
j

j

j

3.3 | VAR(p)–BEKK(1, 1)–MVGARCH(1, 1) model

The BEKK(1, 1) of the MVGARCH model (Engle & Kroner, 1995) was employed to estimate the conditional
variance–covariance matrix among energy and agricultural commodity prices for the entire sample period, as well as
for the subperiod determined from the application of the Markov‐switching regression model. This is because the
BEKK–GARCH model permits a richer dynamic dependence between the volatility series than the DCC–GARCH
model. In this case, we allowed a VAR(p) structure in the conditional mean equations but a BEKK(1, 1) structure in the
error terms. Thus, whilst the conditional mean is given by Equations (1) and (2), the conditional variance–covariance
matrix, Ht, which defines market volatility, is provided by

H A ε ε A B H B= ΩΩ + ′ ′ + ′ ,t t t t
′

−1 −1 −1 (9)

where ωΩ = { }ij is a (4 × 4) lower triangular matrix, and A a= { }ij and B b= { }ij are general (4 × 4) matrices. Elements
of matrix A are the coefficients of the ARCH effect, which represents the impact of shocks in the chosen market and
shock spillovers from other markets on the conditional volatility of the chosen market. Conversely, elements of matrix
B are the coefficients of the GARCH effect, which represents the impact of past volatility in the chosen market and past
volatility spillover from the other market on the conditional volatility of a chosen market. The minimum values of
Akaike Information Criterion (AIC), Schwartz Bayesian Criterion (SBC), and Hannan–Quinn information criterion
(HQ) determined the goodness of fit of the models under consideration. However, the BEKK–GARCH model has a
number of weaknesses. First, the parameters in the A and B matrices of the conditional variance–covariance matrix do
not allow direct interpretations regarding lagged values of shocks or volatilities. Second, the number of estimated
parameters increases rapidly in line with the number of variables included in the model. Because of these
disadvantages, most previous studies have used a bivariate BEKK–GARCH model. In the current study, however,
we employed a quadrivariate BEKK–GARCH model by including all four variables under consideration. Finally, the
Ljung–Box statistics was employed to test for serial correlation in the residuals of the models under consideration. The
null hypothesis of such a test is that there is no autocorrelation.

4 | DATA

4.1 | Energy and agricultural commodity future prices

The data used in this study consisted of daily returns for two energy futures (New York Mercantile Exchange [NYMEX]
West Texas Intermediate [WTI] crude oil and NYMEX natural gas) and two agricultural futures (Chicago Board of
Trade [CBOT] corn and the CBOT soybeans) covering the period from July 3, 1996 to November 2, 2020. These assets
are major agricultural commodities (corn and soybeans) and energy (crude oil and natural gas) representatives. We
used commodity futures instead of spot market prices as the former are a type of financial asset strongly influenced by
market expectations, thereby allowing better price discovery and higher liquidity. Moreover, commodity future
contracts provide a range of prices for the delivery of specific quantities of an underlying commodity at different
maturities, unlike the commodity spot market which provides the price of a particular commodity for immediate
purchase and delivery.

The data were collected from Bloomberg and we used the daily closing prices (pt) to calculate daily price returns,
y log p p= 100 × ( / ).t t t−1 Descriptive statistics for the price returns of the energy and agricultural futures are reported in
columns (1) to (4) of Table 1, and Figure 1 presents plots of the commodity futures prices.

REZITIS ET AL. | 7
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We had to be extremely careful regarding the number of assets included in the multivariate VAR–BEKK–GARCH
models, as these models are highly nonlinear and therefore struggle to converge to a stable solution. Hence, any
increase in the number of variables makes it increasingly difficult for these models to converge. For this reason, most of
the multivariate VAR–BEKK–GARCH models used in extant literature are bivariate or triradiate in nature. Our study
extended this type modeling approach by estimating quadrivariate VAR–BEKK–GARCH models, further contributing
to this stream of literature. Furthermore, given the nonlinear nature of the adopted quadrivariate GARCH models, we
also attempted to re‐estimate these models after controlling for potential seasonal effects, using dummy variables for
each quarter of the year and/or month, in the conditional variance equations (and/or the conditional mean equations).
However, these models failed to converge.

4.2 | Proxies for external macroeconomic factors

In this study, we employed two leading indicators to capture macroeconomic conditions: the Commodity Research
Bureau index (crb) and the U.S. dollar index (usdx). The crb is considered an appropriate indicator of commodity price
trends (Beckmann et al., 2014; Ji & Fan, 2012) because it includes the most important 19 commodities associated with
energy, soft/tropical, grains/livestock, and industrial/precious metals. There are three key reasons for using the crb
index. First, it can be utilized as a representative indicator of the worldwide commodity markets (Han et al., 2020).
Second, it measures the impact of inflation on the various commodity sectors and overall commodity trades because it
is computed as an unweighted geometric mean of the individual commodity prices relative to their base periods. This

TABLE 1 Descriptive statistics of energy futures, agricultural futures, and index returns.

oil ngas corn soyb crb usdx
(1) (2) (3) (4) (5) (6)

Mean 0.0125 0.0155 0.0019 −0.0021 −0.00042 0.00057

Minimum −28.2206
(2020:03:09)

−19.8993
(2003:02:27)

−26.8620
(2013:07:15)

−23.4109
(2008:09:15)

−11.0933
(2020:04:21)

−2.7168
(2009:03:18)

Maximum 31.9633
(2020:04:22)

32.4353
(2003:02:24)

25.0288
(2013:07:05)

20.3209
(2008:09:12)

5.8814
(2020:03:19)

2.5237
(2008:09:30)

SD 2.5180 3.3035 1.739499 1.5227 1.0261 0.4690

Skewness 0.0713 0.5358 −0.4999 −1.1430 −0.4940 −0.0652

Kurtosis 18.2525 5.6809 23.9654 21.7259 6.4887 1.8579

Notes: The table presents descriptive statistics for the returns of oil, natural gas, corn, soybeans, as well as the returns of crb and usdx indices. Dates are
provided in parentheses.

FIGURE 1 Time series of the oil, natural gas, corn, and soybeans futures prices.

8 | REZITIS ET AL.

 10969934, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fut.22477 by T

est, W
iley O

nline L
ibrary on [05/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



reduces the impact of extreme disturbances in individual commodity prices in the index, which may convey the wrong
signals in relation to widespread inflationary pressures (Gargano & Timmermann, 2014; Han et al., 2020). Third, it can
be used as an indicator of commodity prices and market access, thereby measuring the general trend of the commodity
sector. The usdx is the ratio of the US dollar to a geometric weighted average of the six most important foreign
currencies, and thus we employed it as a proxy of the world financial markets. Several studies in the literature have
examined the interaction between international commodity prices (especially oil prices) and usdx (Benhmad, 2012;
Chen et al., 2013; Harri et al., 2009; Rezitis, 2015a, 2015b; Sun et al., 2017).

Columns (5) and (6) of Table 1 report the descriptive statistics for crb and usdx index returns, while Figure 2
provides plots of both index series. As indicated in Figure 2, the crb and usdx indices exhibit opposite trends, implying
that these two indices may contain substantially different information and affect the energy and agricultural markets in
different ways. Table 2 also presents the Pearson correlation matrix between the energy and agricultural futures returns
and the two index returns. This reveals that the return on the crb (usdx) index is positively (negatively) correlated with
all the energy and agricultural futures returns at a 1% level of significance. Plots in Figures 1 and 2 support this finding,
displaying similar (opposite) trends in the crb (usdx) indices and the energy and agricultural prices.

It is important to emphasize that, in general, there is no guarantee that the daily data of assets will be recorded at
the same time that trades are executed as there are numerous factors that could affect the exact time a trade is recorded;
for example, order procession and settlement processes, the actual exchange where the asset is traded, the time zone in
which the asset is traded, and other factors. Furthermore, delays in the reporting and processing of trading information
could be introduced by the various data providers. However, given that most market participants make investment
decisions based on timely and accurate information, financial data providers make substantive efforts to minimize any

FIGURE 2 Time series of the crb and usdx indices.

TABLE 2 Unconditional pairwise Pearson correlation matrix for the full sample period.

oil ngas corn soyb crb usdx

oil 1
–

0.2116*** (7.699) 0.1450*** (5.210) 0.1223*** (4.381) 0.7500*** (40.325) −0.1740*** (−6.282)

ngas 1
–

0.0884*** (3.155) 0.0953*** (3.402) 0.3963*** (15.348) −0.1094*** (−3.913)

corn 1
–

0.5152 (21.373) 0.3939*** (15.240) −0.2129*** (−7.749)

soyb 1
–

0.3568*** (13.582) −0.1689*** (−6.094)

crb 1
–

−0.3514*** (−13.345)

usdx 1
–

Notes: This table presents the unconditional pairwise Pearson correlation coefficients for the oil, natural gas, corn, and soybeans futures returns, as well as the
crb and usdx index returns. t Statistics are provided in parentheses.

***Indicates significance at the 1% level.

REZITIS ET AL. | 9
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discrepancies or delays in the data. Our study used two energy futures contracts (the NYMEX WTI crude oil and the
NYMEX natural gas futures) and two agricultural futures (the CBOT corn and the CBOT soybeans futures). The time
zone difference between these two exchanges (i.e., NYMEX and CBOT) is only 1 h, and minimal trading volume is
recorded outside the standard exchange trading hours. Additionally, since 2006, these two exchanges have belonged to
the CME Group which uses a single trading system: CME Globex. On that basis, we believe that the assets under
examination in the current study are subject to minimal execution, recording, and reporting delays.

5 | EMPIRICAL RESULTS

5.1 | VAR(5)–DCC(1, 1)–MVGARCH(1, 1) results

Table 3 presents the estimated coefficients for the VAR(5)–DCC(1, 1)–MVGARCH(1, 1) model for the entire sample
period (i.e., 1996:07:03–2020:11:02). The results of the conditional mean equations (Equation 1) are presented in Panel
A, while the empirical results of the conditional variance (Equation 4) and the DCC (Equation 6) are provided in Panels
B and C, respectively. All the estimated GARCH and DCC parameters of Panels B and C are positive and statistically
significant at the 1% level, supporting the validity of the modeling specification. The values of the estimated coefficients
of the GARCH term bi are close to 1, indicating persistent volatility within the examined return time series. For the
DCC model, the sum of the estimated coefficients, a and b, is less than 1, suggesting that the DCCs among these assets
are reverting to the mean. Hence, although the relationship between these commodities can experience significant
short‐term volatility, the results from Panel C indicate a move back towards historical averages. This renders the
movement of those assets more predictable, at least in terms of their correlation patterns. In addition, such a result also
has significant implications for portfolio management as it implies that the potential diversification benefits can vary
over time with periods of high (low) correlations among those assets leading to decreased (increased) effectiveness in
portfolio diversification. Overall, we argue that this mean‐reversion effect will provide a sense of stability and
confidence in long‐term investment strategies.

The HQ criterion, given in Panel D, determines the optimal lagged number in the mean equations (Equation 1).
Panel D details the model diagnostics, while Panel E shows that the model residuals are free from autocorrelation.

Panel F presents the Wald test results, testing the null hypothesis that the conditional mean equations (Equation 1)
should be modeled as having separate autoregressions on each variable. The results reject the null hypothesis at all
conventional levels of significance and thus support the VAR(5) representation in the conditional mean model. The
conditional cross‐correlations for the entire sample period (i.e., 1996:07:03–2020:11:02) were obtained from the
estimation of the VAR(5)–DCC(1, 1)–MVGARCH(1, 1) model. We continued our analysis by applying Markov‐switching
regression models to identify subperiods of high and low conditional cross‐correlations.

5.2 | Markov‐switching regression results

The Gibbs sampler generated M+N= 2000 + 5000 iterations for each of the conditional cross‐correlations obtained
from the estimation of the VAR(5)–DCC(1, 1)–MVGARCH(1, 1) model. Table 4 presents the empirical results of the
estimation of the two‐state Markov‐switching regression model (Equation 7), while Figure 3 presents the conditional
cross‐correlations obtained from the estimation of the VAR(5)–DCC(1, 1)–MVGARCH(1, 1) model and the
corresponding posterior probabilities of the high mean regime (i.e., State 2) obtained from the estimation of the
Markov‐switching regression.

As depicted in Table 4, all estimated coefficients are statistically significant at the 1% level. The mean and variance
of each of the conditional cross‐correlations for State 1 (i.e., μ1 and σ1

2, respectively) are lower than the corresponding
mean and variance for State 2 (i.e., μ2 and σ2

2, respectively). Thus, we can consider State 1 the lower conditional cross‐
correlation state and State 2 the higher conditional cross‐correlation state. Moreover, the impact of the Commodity
Research Bureau Index (crb) and the US dollar index (usdx) on the conditional cross‐correlations has the expected sign
in that the impact of crb is positive while that of usdx is negative. However, the impact of these variables is stronger in
State 2 than that in State 1.

It is also evident that both states are highly persistent with State 1 exhibiting slightly higher persistence than State 2
in four out of the six conditional cross‐correlations. Moreover, the probability that the conditional cross‐correlation will

10 | REZITIS ET AL.
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TABLE 3 Coefficient estimation for VAR(5)–DCC(1, 1)–MVGARCH(1, 1) for the whole period (1996:07:03–2020:11:02).

yoil yngas ycorn ysoyb

Panel A: Mean estimators from Equation (1)

coil 0.040** (0.021) cngas 0.043 (0.047) ccorn 0.019 (0.021) csoyb 0.014 (0.014)

φoil oil,
1 −0.005 (0.015) φngas oil,

1 −0.031** (0.015) φcorn oil,
1 −0.027*** (0.007) φsoyb oil,

1 −0.016*** (0.005)

φoil ngas,
1 0.006 (0.005) φngas ngas,

1 −0.031** (0.014) φcorn ngas,
1 0.006 (0.005) φsoyb ngas,

1 0.005** (0.002)

φoil corn,
1 −0.008 (0.011) φngas corn,

1 0.012 (0.020) φcorn corn,
1 0.046** (0.019) φsoyb corn,

1 0.014* (0.011)

φoil soyb,
1 0.013 (0.013) φngas soyb,

1 0.024 (0.024) φcorn soyb,
1 −0.015 (0.020) φsoyb soyb,

1 −0.019* (0.013)

φoil oil,
2 −0.027*** (0.010) φngas oil,

2 0.014 (0.013) φcorn oil,
2 0.015** (0.006) φsoyb oil,

2 0.001 (0.004)

φoil ngas,
2 0.003 (0.005) φngas ngas,

2 −0.025** (0.011) φcorn ngas,
2 0.0003 (0.005) φsoyb ngas,

2 0.005* (0.003)

φoil corn,
2 −0.006 (0.012) φngas corn,

2 0.002 (0.021) φcorn corn,
2 −0.044*** (0.016) φsoyb corn,

2 0.002 (0.011)

φoil soyb,
2 0.029* (0.016) φngas soyb,

2 0.026 (0.026) φcorn soyb,
2 0.021* (0.017) φsoyb soyb,

2 0.009 (0.014)

φoil oil,
3 −0.023** (0.009) φngas oil,

3 −0.009 (0.012) φcorn oil,
3 −0.005 (0.007) φsoyb oil,

3 0.003 (0.005)

φoil ngas,
3 0.006 (0.006) φngas ngas,

3 −0.012* (0.008) φcorn ngas,
3 −0.007* (0.005) φsoyb ngas,

3 −0.013*** (0.004)

φoil corn,
3 0.008 (0.011) φngas corn,

3 −0.019 (0.020) φcorn corn,
3 −0.002 (0.011) φsoyb corn,

3 0.003 (0.007)

φoil soyb,
3 −0.0002 (0.014) φngas soyb,

3 0.053** (0.023) φcorn soyb,
3 −0.003 (0.011) φsoyb soyb,

3 −0.003 (0.008)

φoil oil,
4 0.015* (0.007 φngas oil,

4 0.003 (0.016) φngas oil,
4 −0.004 (0.007) φsoyb oil,

4 −0.007* (0.005)

φoil ngas,
4 −0.002 (0.005) φngas ngas,

4 0.010 (0.009) φcorn ngas,
4 −0.0001 (0.005) φsoyb ngas,

4 0.0004 (0.004)

φoil corn,
4 −0.016* (0.011) φngas corn,

4 −0.016 (0.020) φcorn corn,
4 −0.016** (0.009) φsoyb corn,

4 0.012* (0.006)

φoil soyb,
4 0.004 (0.012) φngas soyb,

4 0.042* (0.026) φcorn soyb,
4 0.021* (0.012) φsoyb soyb,

4 −0.008 (0.012)

φoil oil,
5 −0.004 (0.006) φngas oil,

5 0.004 (0.015) φcorn oil,
5 0.008* (0.006) φsoyb oil,

5 0.010** (0.005)

φoil ngas,
5 −0.0008 (0.005) φngas ngas,

5 −0.030*** (0.009) φcorn ngas,
5 −0.005 (0.005) φsoyb ngas,

5 0.001 (0.003)

φoil corn,
5 0.015* (0.011) φngas corn,

5 0.017 (0.019) φcorn corn,
5 −0.023* (0.017) φsoyb corn,

5 −0.010 (0.012)

φoil soyb,
5 −0.020* (0.015) φngas soyb,

5 −0.003 (0.023) φcorn soyb,
5 −0.012 (0.021) φsoyb soyb,

5 −0.026* (0.015)

Panel B: Variance estimators from Equation (4)

c oil0, 0.095*** (0.028) c ngas0, 0.150*** (0.037) c corn0, 0.117* (0.071) c soyb0, 0.029*** (0.008)

aoil 0.093*** (0.017) angas 0.082*** (0.009) acorn 0.114** (0.054) asoyb 0.075*** (0.010)

boil 0.891*** (0.018) bngas 0.908*** (0.009) bcorn 0.850*** (0.068) bsoyb 0.912*** (0.010)

Panel C: D(1, 1) estimators from Equation (6)

a 0.012*** (0.004) b 0.978*** (0.009)

Panel D: Model diagnostics
Log likelihood: −50,907.2868
AIC: 16.118
SBC: 16.223
HQ: 16.154
Usable observations: 6329

Panel E: Residual diagnostics
Q(10) statistic: 127.2643; significance level: 0.9735
Q(20) statistic: 308.3814; significance level: 0.6695

(Continues)
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switch from State 1 to State 2 is lower than the probability of switching from State 2 to State 1 in four out of the six
conditional cross‐correlations. It is also clear that the intercept of State 1 is smaller than that of State 2, and both are
statistically significant, indicating that each state is also affected by additional external shocks associated with the
world economy and these are accumulated in the intercept term beyond those captured by the crb and usdx variables.

Contrary to previous literature (e.g., Han et al., 2020; Nazlioglu et al., 2013), the Markov‐switching regression
enabled us to identify regime‐shifts from the data without needing to prespecify structural breaks. Table 5 displays the
percentage of total observations for which the probability that the conditional cross‐correlations in the low mean state
exceeds 0.5, and thus the corresponding conditional cross‐correlation is deemed to be in State 1. The results indicate
that we can consider three subperiods: subperiod I (1996:07:03–2006:12:29) and subperiod III (2013:01:01–2020:11:02)
where State 1 dominates, except in the case of ρngas soyb, where both states are equivalent, and subperiod II

TABLE 3 (Continued)

yoil yngas ycorn ysoyb

Q(30) statistic: 483.1493; significance level: 0.4511
Q(40) statistic: 655.9261; significance level: 0.3227

Panel F: Exogeneity test in the mean Equation (1)
Test of exogeneity in the mean of all variables:
H φ: = 0,i j

P
0 , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

≠H φ: i j
P

1 , 0 for at least one φi j
P
, , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

χ2(60) = 151.8926 or F(60, ∗) = 2.5315 with significance level 0.0000

Notes: This table presents the estimated coefficients based on Equations (1), (4), and (6). Standard errors are in parentheses. Q(10), Q(20), Q(30), and Q(40) are
the Ljung–Box statistics for serial correlation in the model residuals computed with 10, 20, 30, and 40 lags, respectively.

Abbreviations: AIC, Akaike Information Criterion; DCC, dynamic conditional correlation; HQ, Hannan–Quinn information criterion; MVGARCH,
multivariate generalized autoregressive conditional heteroskedasticity; SBC, Schwartz Bayesian Criterion; VAR, vector autoregressive.

***, **, and * indicate significance at the 1%, 5%, and 10% levels.

TABLE 4 Coefficient estimation for Markov‐switching regression for the whole period (1996:07:03–2020:11:02).

ρoil corn, ρoil soyb, ρngas corn, ρngas soyb,

β1,0 0.115*** (0.003) 0.106*** (0.004) 0.045*** (0.003) 0.025*** (0.004)

β usdx1, −0.006*** (0.001) −0.016*** (0.002) −0.008*** (0.001 −0.008*** (0.002)

β crb1, 0.005*** (0.001) 0.013*** (0.002) 0.006*** (0.001) 0.007*** (0.001)

β2,0 0.275*** (0.010) 0.278*** (0.009) 0.142*** (0.006) 0.125*** (0.004)

β usdx2, −0.049*** (0.004) −0.052*** (0.004) −0.014*** (0.003) −0.022*** (0.002)

β crb2, 0.034*** (0.003) 0.037*** (0.003) 0.011*** (0.002) 0.017*** (0.001)

μ1 0.114*** (0.003) 0.105*** (0.004) 0.044*** (0.003) 0.025*** (0.004)

μ2 0.271*** (0.009) 0.274*** (0.008) 0.141*** (0.006) 0.124*** (0.004)

σ1
2 0.001*** (0.000) 0.002*** (0.000) 0.001*** (0.000) 0.001*** (0.000)

σ2
2 0.007*** (0.000) 0.005*** (0.000) 0.002*** (0.000) 0.002*** (0.000)

p (1,1) 0.993*** (0.001) 0.996*** (0.001) 0.990*** (0.002) 0.986*** (0.002)

p (2,1) 0.007*** (0.001) 0.004*** (0.001) 0.010*** (0.002) 0.014*** (0.002)

p (1,2) 0.011*** (0.002) 0.007*** (0.002) 0.016*** (0.003) 0.012*** (0.002)

p (2,2) 0.989*** (0.002) 0.993*** (0.002) 0.984*** (0.003) 0.988*** (0.002)

Notes: This table presents the estimated coefficients of the Markov‐switching regression (7). Standard errors are in parentheses.

***Indicates significance at the 1% level.
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(2007:01:01–2012:12:31) where State 2 clearly dominates. Figure 3 depicts these states of high conditional cross‐
correlation.

The Markov‐switching regression results suggest a stronger impact of the external shocks associated with common
macroeconomic factors, as captured by the intercept term and the crb and usdx variables on the conditional cross‐
correlations between energy and agricultural commodity prices when the high volatility regime dominates. This
indicates that volatility links between energy and agricultural commodities are mainly initiated by common
macroeconomic factors rather than the substitution effect between energy and agricultural commodities. This is
because the substitution between energy and agricultural commodities was anticipated to weaken, especially from
2006, as shale gas production increased (Han et al., 2020). Shale gas was expected to diminish the volatility links among
energy and agricultural commodity markets because it provides a more cost‐effective alternative for a lower‐carbon
economy (Middleton et al., 2017). Our findings indicate that during subperiod II (subperiod I), when shale gas

(a)

(b)

(c)

(d)

FIGURE 3 Conditional correlations from VAR(5)–DCC(1, 1)–MVGARCH(1, 1) and corresponding MCMC probability of the high mean
regime (State 2) of the Markov‐switching regression. (a) Oil and corn conditional correlation (left graph) and the corresponding MCMC
probability of the high mean regime (State 2) of the Markov‐switching regression (right graph). (b) Oil and soybeans conditional correlation
(left graph) and the corresponding MCMC probability of the high mean regime of the Markov‐switching regression (right graph). (c) Natural
gas and corn conditional correlation (left graph) and the corresponding MCMC probability of the high mean regime of the Markov‐
switching regression (right graph). (d) Natural gas and soybeans conditional correlation (left graph) and the corresponding MCMC
probability of the high mean regime of the Markov‐switching regression (right graph). DCC, dynamic conditional correlation; MCMC,
Markov chain Monte Carlo; MVGARCH, multivariate generalized autoregressive conditional heteroskedasticity; VAR, vector autoregressive.

TABLE 5 Percentage of total observations in regime 1.

ρoil corn, (%) ρoil soyb, (%) ρngas corn, (%) ρngas soyb, (%)

Subperiod I (1996:07:03–2006:12:29) 84.14 83.82 65.43 49.23

Subperiod II (2007:01:01–2012:12:31) 16.03 2.43 31.67 36.60

Subperiod III (2013:01:01–2020:11:02) 67.11 74.47 77.56 50.17
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production was high (low), conditional cross‐volatility between energy and agricultural commodities was high (low),
which was induced by the strong (weak) effect of common macroeconomic factors on the conditional cross‐volatilities.

5.3 | VAR(5)–BEKK(1, 1)–MVGARCH(1, 1) results

We estimated a quadrivariate VAR(5)–BEKK(1, 1)–MVGARCH(1, 1) model for the whole period as well as for the
three subperiods identified by the Markov‐switching regression.7 The empirical results are presented in Tables 6–9.
The estimated parameters of the mean equations (Equation 1) are provided in Panel A of the corresponding tables,
while the estimated coefficients of the conditional variance–covariance matrix (Equation 9) are given in Panel B. The
AIC, SBC, and HQ criteria reported in Panel C determine the optimal lagged number in the mean equations. Panel C
presents the model diagnostics, while Panel D indicates that the model residuals are free from autocorrelation.

We performed exogeneity tests to examine the dynamic dependencies in the conditional mean (Equation 1) of
the VAR(5)–BEKK(1, 1) model for the whole period as well as for the three subperiods.8 Our results reveal that
prices behave differently across the three subperiods. During the second subperiod all prices are endogenous,
while in the other two subperiods some prices are exogenous. In the first subperiod energy prices are exogenous,
while in the third subperiod corn prices are exogenous. The bidirectional linkage between energy and agricultural
commodity prices in the high volatility regime subperiod (subperiod II) could be attributed to the comovement
effect induced by external shocks associated with the world economy rather than by the substitution effect caused
by the biofuel industry. Our findings support those of several studies addressing price‐level links between energy
and agricultural commodity markets (Cha & Bae, 2011; Chang & Su, 2010; Gilbert, 2010; Wixson & Katchova,
2012). Thus, external shocks associated with the world economy play a role in influencing the prices of energy and
agricultural commodities, while futures markets, especially those tied to these sectors, may be more sensitive to
global economic events, such as financial crises or geopolitical developments. Furthermore, the comovement effect
between energy and agricultural commodity prices is influenced more by external shocks than the biofuel
industry. Therefore, traders focusing on the biofuel sector may find that its impact on agricultural commodity
prices is less significant than broader economic factors. Finally, the volatility and bidirectional linkage that exists
confirms that there may be short‐ to medium‐term trading opportunities in both energy and agricultural
commodity futures markets. Therefore, traders skilled in technical and fundamental analysis may find
opportunities to profit from price movements.

Tables 6–9 present the results of several exogeneity tests conducted to examine the dynamic dependencies
in the conditional variance–covariance matrix given by (Equation9) for the full period as well as for the
three subperiods. Short‐run endogeneity tests affirmed the higher degree of bidirectional price volatility
spillovers between energy and agricultural commodity markets during the high volatility regime subperiod (i.e.,
subperiod II) compared with the low volatility regime subperiods (i.e., subperiods I and III).9 The main finding of
the log‐run exogeneity tests is the exogeneity of oil, indicating that supply and demand shocks (e.g., the
substitution effect) do not support price volatility spillovers from the agricultural commodity markets to the crude
oil market; however, there is some evidence for price volatility spillovers from the agricultural commodity markets
to the natural gas market. The finding that oil remained long‐run exogenous in the second and third subperiods
indicates that the substitution effect between energy and agricultural commodities might have been weakened by
the “shale gas revolution” (Han et al., 2020).

7The lag selection was based on criteria, such as the AIC, SBC, and HQ, with an optimal lag of 5 chosen using the AIC. The vector autoregressive
model examines the impact of lagged values in parallel equations, while the GARCH process models imply volatility. Despite some insignificant
parameters in the mean equations, the VAR model remained suitable, as significant parameters were reported for lag 5 and other smaller lags (first,
second, third, and fourth). Further exogeneity tests rejected the null hypothesis for most cases, confirming the validity of our model's results for lag
selection.
8The first test is presented in Panel F and examines the exogeneity of all variables in the conditional mean Equation (1). The Wald test results
supported the VAR(5) representation in the conditional mean model for the whole period (Table 6) as well as for the three subperiods (Tables 7–9).
We also performed exogeneity tests for specific variables for the whole period and for the three subperiods under consideration.
9More specifically, Panels F and G of Tables 6–9 present exogeneity tests based on each of the A and B matrices. In particular, the exogeneity tests
based on matrix A are related to short‐run exogeneity (i.e., external shocks associated with the world economy), while those based on matrix B are
connected to long‐run exogeneity (i.e., supply and demand shocks associated with the energy and agricultural commodity markets).
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TABLE 6 Coefficient estimation for VAR(5)–BEKK(1, 1)–MVGARCH(1, 1) for the whole period (1996:07:03–2020:11:02).

yoil yngas ycorn ysoyb

Panel A: Mean estimators from Equation (1)

coil 0.031 (0.022) cngas 0.047 (0.037) ccorn 0.011 (0.014) csoyb 0.003 (0.012)

φoil oil,
1 −0.006 (0.010) φngas oil,

1 −0.040*** (0.015) φcorn oil,
1 −0.021*** (0.005) φsoyb oil,

1 −0.012*** (0.004)

φoil ngas,
1 0.010 (0.007) φngas ngas,

1 −0.031** (0.013) φcorn ngas,
1 0.006** (0.003) φsoyb ngas,

1 0.006** (0.003)

φoil corn,
1 −0.014 (0.013) φngas corn,

1 0.011 (0.018) φcorn corn,
1 0.037*** (0.014) φsoyb corn,

1 0.0005 (0.009)

φoil soyb,
1 0.019* (0.011) φngas soyb,

1 0.022 (0.020) φcorn soyb,
1 −0.018* (0.010) φsoyb soyb,

1 −0.012 (0.011)

φoil oil,
2 −0.027** (0.011) φngas oil,

2 0.014 (0.011) φcorn oil,
2 0.009* (0.005) φsoyb oil,

2 0.0002 (0.004)

φoil ngas,
2 0.006 (0.006) φngas ngas,

2 −0.023** (0.010) φcorn ngas,
2 −0.001 (0.004) φsoyb ngas,

2 0.005* (0.003)

φoil corn,
2 −0.003 (0.012) φngas corn,

2 −0.002 (0.018) φcorn corn,
2 −0.038*** (0.014) φsoyb corn,

2 0.007 (0.009)

φoil soyb,
2 0.023* (0.013) φngas soyb,

2 0.023 (0.021) φcorn soyb,
2 0.015 (0.013) φsoyb soyb,

2 0.006 (0.011)

φoil oil,
3 −0.015 (0.011) φngas oil,

3 −0.007 (0.013) φcorn oil,
3 −0.002 (0.005) φsoyb oil,

3 0.004 (0.004)

φoil ngas,
3 0.007 (0.007) φngas ngas,

3 −0.009 (0.009) φcorn ngas,
3 −0.006** (0.003) φsoyb ngas,

3 −0.011*** (0.003)

φoil corn,
3 0.002 (0.011) φngas corn,

3 −0.020 (0.020) φcorn corn,
3 −0.006 (0.010) φsoyb corn,

3 0.006 (0.007)

φoil soyb,
3 −0.011 (0.014) φngas soyb,

3 0.038 (0.021) φcorn soyb,
3 −0.007 (0.010) φsoyb soyb,

3 −0.007 (0.009)

φoil oil,
4 0.015 (0.012) φngas oil,

4 0.003 (0.014) φngas oil,
4 −0.005 (0.005) φsoyb oil,

4 −0.008** (0.004)

φoil ngas,
4 −0.003 (0.007) φngas ngas,

4 0.010 (0.009) φcorn ngas,
4 −0.0004 (0.004) φsoyb ngas,

4 0.001 (0.003)

φoil corn,
4 −0.012 (0.011) φngas corn,

4 −0.015 (0.017) φcorn corn,
4 −0.026*** (0.008) φsoyb corn,

4 0.015*** (0.005)

φoil soyb,
4 0.008 (0.013) φngas soyb,

4 0.045** (0.020) φcorn soyb,
4 0.013 (0.009) φsoyb soyb,

4 −0.008 (0.007)

φoil oil,
5 −0.014 (0.010) φngas oil,

5 0.008 (0.012) φcorn oil,
5 0.007 (0.005) φsoyb oil,

5 0.010** (0.004)

φoil ngas,
5 0.003 (0.006) φngas ngas,

5 −0.027*** (0.008) φcorn ngas,
5 −0.002 (0.003) φsoyb ngas,

5 0.002 (0.003)

φoil corn,
5 0.015 (0.012) φngas corn,

5 0.012 (0.019) φcorn corn,
5 −0.021** (0.010) φsoyb corn,

5 −0.012* (0.007)

φoil soyb,
5 −0.028* (0.016) φngas soyb,

5 −0.014 (0.021) φcorn soyb,
5 −0.009 (0.011) φsoyb soyb,

5 −0.018** (0.009)

Panel B: Variance estimators from Equation (9)

ωoil oil, 0.260*** (0.017)

ωngas oil, −0.094* (0.049) ωngas ngas, 0.371*** (0.036)

ωcorn oil, −0.017 (0.039) ωcorn ngas, −0.007 (0.045) ωcorn corn, 0.427*** (0.105)

ωsoyb oil, 0.010 (0.019) ωsoyb ngas, 0.0008 (0.015) ωsoyb corn, −0.028 (0.054) ωsoyb soyb, 0.194*** (0.032)

aoil oil, 0.228*** (0.009) aoil ngas, −0.065*** (0.018) aoil corn, −0.014** (0.007) aoil soyb, 0.002 (0.004)

angas oil, 0.012** (0.006) angas ngas, 0.222*** (0.013) angas corn, 0.013*** (0.004) angas soyb, −0.004 (0.004)

acorn oil, −0.006 (0.015) acorn ngas, −0.037** (0.016) acorn corn, 0.342*** (0.067) acorn soyb, −0.039* (0.023)

asoyb oil, 0.016 (0.018) asoyb ngas, 0.025 (0.023) asoyb corn, −0.144*** (0.043) asoyb soyb, 0.266*** (0.032)

boil oil, 0.967*** (0.002) boil ngas, 0.022*** (0.005) boil corn, 0.006*** (0.002) boil soyb, −0.0009 (0.001)

bngas oil, −0.001 (0.001) bngas ngas, 0.966*** (0.003) bngas corn, −0.003 (0.002) bngas soyb, 0.001 (0.001)

bcorn oil, 0.004 (0.007) bcorn ngas, 0.016* (0.009) bcorn corn, 0.889*** (0.042) bcorn soyb, 0.026* (0.014)

bsoyb oil, −0.004 (0.007) bsoyb ngas, −0.014 (0.009) bsoyb corn, 0.070*** (0.027) bsoyb soyb, 0.944*** (0.016)

(Continues)
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TABLE 6 (Continued)

yoil yngas ycorn ysoyb

Panel C: Model diagnostics
Log likelihood: −51,111.0268
AIC: 16.191
SBC: 16.326
HQ: 16.238
Usable observations: 6329

Panel D: Residual diagnostics
Q(10) statistic: 197.5853; significance level: 0.0232
Q(20) statistic: 355.9640; significance level: 0.0811
Q(30) statistic: 517.3367; significance level: 0.1157
Q(40) statistic: 673.9620; significance level: 0.1707

Panel E: Exogeneity test in the mean Equation (1)
Test of exogeneity of all variables in the mean:
H φ: = 0,i j

P
0 , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

≠H φ: i j
P

1 , 0 for at least one φi j
P
, , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

χ2(60) = 144.8485 or F(60, ∗) = 2.4141 with significance level 0.0000
Test of exogeneity in the mean equation of oil:
H φ: = 0,oil j

P
0 , where j = ngas, corn, soybeans, and P= 1,…, 5

≠H φ: oil j
P

1 , 0 for at least one φoil j
P
, , where j = ngas, corn, soybeans, and P= 1,…, 5

χ2(15) = 18.2296 or F(15, ∗) = 1.2153 with significance level 0.2507
Test of exogeneity in the mean equation of ngas:
H φ: = 0,ngas j

P
0 , where j oil= , corn, soybeans, and P= 1,…, 5

≠H φ: ngas j
P

1 , 0 for at least one φoil j
P
, , where j oil= , corn, soybeans, and P= 1,…, 5

χ2(15) = 24.4800 or F(15, ∗) = 1.6320 with significance level 0.0573
Test of exogeneity in the mean equation of corn:
H φ: = 0,corn j

P
0 , where j oil= , ngas, soybeans, and P= 1,…, 5

≠H φ: corn j
P

1 , 0 for at least one φcorn j
P

, , where j oil= , ngas, soybeans, and P= 1,…, 5
χ2(15) = 28.9725 or F(15, ∗) = 1.9315 with significance level 0.0162
Test of exogeneity in the mean equation of soybeans:
H φ: = 0,soyb j

P
0 , where j oil= , ngas, corn, and P= 1,…, 5

≠H φ: soyb j
P

1 , 0 for at least one φsoyb j
P

, , where j oil= , ngas, corn, and P= 1,…, 5
χ2(15) = 43.9584 or F(15, ∗) = 2.9305 with significance level 0.0001

Panel F: Exogeneity test in the variance Equation (9) based on A matrix: ARCH effect test
Block exclusion test based on A matrix for oil
H a a a: = = = 0ngas oil corn oil soyb oil0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 4.7581 or F(3, ∗) = 1.5860 with significance level 0.1903
Block exclusion test based on A matrix for ngas
H a a a: = = = 0oil ngas corn ngas soyb ngas0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 19.6101 or F(3, ∗) = 6.5367 with significance level 0.0002
Block exclusion test based on A matrix for corn
H a a a: = = = 0oil corn ngas corn soyb corn0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 12.3560 or F(3, ∗) = 4.1186 with significance level 0.0062
Block exclusion test based on A matrix for soyb
H a a: = = 0oil soyb ngas soyb0 , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 3.2674 or F(3, ∗) = 1.0891 with significance level 0.3521
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A number of additional test results are of particular interest because they highlight the net effect of both short‐ and
long‐run exogeneity regarding energy and agricultural commodity markets.10 These results indicate that the short‐run
effects (i.e., external shocks associated with the world economy) prevail over the long‐run effects (i.e., the substitution
effect) in the second subperiod. Furthermore, they support bidirectional price volatility spillovers between the
agricultural commodities and energy markets in the high volatility regime subperiod. However, volatility spillover

TABLE 6 (Continued)

yoil yngas ycorn ysoyb

Panel G: Exogeneity test in the variance Equation (9) based on B matrix: GARCH effect test
Block exclusion test based on B matrix for oil
H b b b: = = = 0ngas oil corn oil soyb oil0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 1.0763 or F(3, ∗) = 0.3587 with significance level 0.7827
Block exclusion test based on B matrix for ngas
H b b b: = = = 0oil ngas corn ngas soyb ngas0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 29.0132 or F(3, ∗) = 9.6710 with significance level 0.0000
Block exclusion test based on B matrix for corn
H b b b: = = = 0oil corn ngas corn soyb corn0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 7.3301 or F(3, ∗) = 2.4433 with significance level 0.0620
Block exclusion test based on B matrix for soyb
H b b b: = = = 0oil soyb ngas soyb corn soyb0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 4.263886 or F(3, ∗) = 1.4213 with significance level 0.2343

Panel H: Exogeneity test in the variance Equation (9) based on A and B matrices
Wald Test of Diagonal BEKK
χ2(24) = 67.2528 or F(24, ∗) = 2.8022 with significance level 0.0000
Block exclusion test, oil equation variance
H a a a b b b: = = = = = = 0ngas oil corn oil soyb oil ngas oil corn oil soyb oil0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 7.1210 or F(6, ∗) = 1.1868 with significance level 0.3097
Block exclusion test, ngas variance
H a a a b b b: = = = = = = 0oil ngas corn ngas soyb ngas oil ngas corn ngas soyb ngas0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 30.3800 or F(6, ∗) = 5.0634 with significance level 0.0000
Block exclusion test, corn variance
H a a a b b b: = = = = = = 0oil corn ngas corn soyb corn oil corn ngas corn soyb corn0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 14.0654 or F(6, ∗) = 2.3442 with significance level 0.0289
Block exclusion test, soyb variance
H a a a b b b: = = = = = = 0oil soyb ngas soyb corn soyb oil soyb ngas soyb corn soyb0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 4.6871 or F(6, ∗) = 0.7812 with significance level 0.5845

Notes: This table presents the estimated coefficients based on Equations (1) and (9). Standard errors are in parentheses. Q(10), Q(20), Q(30), and Q(40) are the
Ljung–Box statistics for serial correlation in the model residuals computed with 10, 20, 30, and 40 lags, respectively.

Abbreviations: AIC, Akaike Information Criterion; BEKK, Baba, Engle, Kraft, and Kroner; HQ, Hannan–Quinn information criterion; MVGARCH,
multivariate generalized autoregressive conditional heteroskedasticity; SBC, Schwartz Bayesian Criterion; VAR, vector autoregressive.

***, **, and * indicate significance at the 1%, 5%, and 10% levels.

10Panel H of Tables 6–9 presents the results of exogeneity tests conducted simultaneously on both the A and B matrices of the conditional
variance–covariance matrix. The results of the first test in Panel H of Tables 6–9 reject the null hypothesis of a diagonal BEKK model for the whole
period (Table 6) as well as for the three subperiods (Tables 7–9). The remainder of the Wald tests, in Panel H, test the exogeneity of each of the four
variables in the conditional variance–covariance matrix.
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TABLE 7 Coefficient estimation for VAR(5)–BEKK(1, 1)–MVGARCH(1, 1) for the first subperiod (1996:07:03–2006:12:29).

yoil yngas ycorn ysoyb

Panel A: Mean estimators from Equation (1)

coil 0.077* (0.041) cngas 0.129** (0.058) ccorn −0.007 (0.021) csoyb −0.028 (0.019)

φoil oil,
1 0.008 (0.017) φngas oil,

1 −0.074*** (0.024) φcorn oil,
1 −0.022** (0.010) φsoyb oil,

1 −0.010 (0.009)

φoil ngas,
1 −0.001 (0.009) φngas ngas,

1 −0.023 (0.019) φcorn ngas,
1 0.004 (0.005) φsoyb ngas,

1 0.004 (0.004)

φoil corn,
1 −0.010 (0.026) φngas corn,

1 −0.027 (0.038) φcorn corn,
1 0.050** (0.020) φsoyb corn,

1 −0.007 (0.015)

φoil soyb,
1 0.028 (0.024) φngas soyb,

1 0.005 (0.037) φcorn soyb,
1 −0.054*** (0.016) φsoyb soyb,

1 −0.018 (0.020)

φoil oil,
2 −0.068*** (0.018) φngas oil,

2 −0.028 (0.020) φcorn oil,
2 0.014* (0.008) φsoyb oil,

2 0.005 (0.007)

φoil ngas,
2 0.019* (0.010) φngas ngas,

2 −0.013 (0.018) φcorn ngas,
2 0.008 (0.006) φsoyb ngas,

2 0.007 (0.005)

φoil corn,
2 −0.013 (0.024) φngas corn,

2 0.00009 (0.038) φcorn corn,
2 −0.017 (0.016) φsoyb corn,

2 0.011 (0.013)

φoil soyb,
2 0.005 (0.022) φngas soyb,

2 0.008 (0.037) φcorn soyb,
2 0.028** (0.013) φsoyb soyb,

2 0.005 (0.014)

φoil oil,
3 −0.007 (0.017) φngas oil,

3 −0.010 (0.023) φcorn oil,
3 0.002 (0.011) φsoyb oil,

3 0.006 (0.008)

φoil ngas,
3 0.009 (0.011) φngas ngas,

3 0.013 (0.016) φcorn ngas,
3 −0.014** (0.006) φsoyb ngas,

3 −0.013*** (0.005)

φoil corn,
3 −0.013 (0.024) φngas corn,

3 0.040 (0.040) φcorn corn,
3 −0.009 (0.015) φsoyb corn,

3 0.005 (0.012)

φoil soyb,
3 0.003 (0.024) φngas soyb,

3 −0.054 (0.040) φcorn soyb,
3 −0.001 (0.016) φsoyb soyb,

3 −0.004 (0.014)

φoil oil,
4 0.008 (0.016) φngas oil,

4 −0.015 (0.026) φngas oil,
4 −0.017* (0.009) φsoyb oil,

4 −0.022*** (0.008)

φoil ngas,
4 −0.006 (0.010) φngas ngas,

4 0.026* (0.014) φcorn ngas,
4 0.003 (0.005) φsoyb ngas,

4 0.010** (0.005)

φoil corn,
4 −0.048* (0.026) φngas corn,

4 −0.015 (0.034) φcorn corn,
4 −0.005 (0.015) φsoyb corn,

4 0.056*** (0.013)

φoil soyb,
4 0.035 (0.024) φngas soyb,

4 0.014 (0.035) φcorn soyb,
4 0.025* (0.015) φsoyb soyb,

4 −0.046*** (0.016)

φoil oil,
5 −0.028** (0.017) φngas oil,

5 −0.032 (0.026) φcorn oil,
5 0.007 (0.009) φsoyb oil,

5 0.003 (0.008)

φoil ngas,
5 0.012 (0.011) φngas ngas,

5 −0.008 (0.014) φcorn ngas,
5 −0.007 (0.006) φsoyb ngas,

5 0.005 (0.005)

φoil corn,
5 −0.012 (0.023) φngas corn,

5 0.005 (0.037) φcorn corn,
5 −0.030** (0.014) φsoyb corn,

5 −0.035** (0.014)

φoil soyb,
5 −0.009 (0.023) φngas soyb,

5 0.002 (0.038) φcorn soyb,
5 −0.007 (0.021) φsoyb soyb,

5 −0.008 (0.014)

Panel B: Variance estimators from Equation (9)

ωoil oil, 1.170*** (0.212)

ωngas oil, −0.273 (0.281) ωngas ngas, 0.146 (0.110)

ωcorn oil, −0.080 (0.061) ωcorn ngas, −0.439*** (0.073) ωcorn corn, 0.223** (0.099)

ωsoyb oil, −0.042 (0.033) ωsoyb ngas, −0.113*** (0.020) ωsoyb corn, 0.192*** (0.050) ωsoyb soyb, 0.034 (0.032)

aoil oil, 0.265*** (0.035) aoil ngas, 0.236*** (0.075) aoil corn, −0.020 (0.013) aoil soyb, −0.001 (0.007)

angas oil, −0.027 (0.031) angas ngas, 0.308*** (0.060) angas corn, 0.023*** (0.007) angas soyb, −0.0001 (0.004)

acorn oil, −0.062 (0.046) acorn ngas, −0.066 (0.067) acorn corn, 0.289*** (0.068) acorn soyb, 0.018 (0.025)

asoyb oil, 0.011 (0.025) asoyb ngas, 0.027 (0.058) asoyb corn, 0.016 (0.071) asoyb soyb, 0.237*** (0.020)

boil oil, 0.792*** (0.075) boil ngas, 0.169* (0.096) boil corn, 0.034** (0.017) boil soyb, 0.013** (0.006)

bngas oil, 0.037 (0.033) bngas ngas, 0.917*** (0.045) bngas corn, −0.009* (0.005) bngas soyb, −0.002 (0.002)

bcorn oil, 0.045 (0.040) bcorn ngas, 0.008 (0.046) bcorn corn, 0.892*** (0.047) bcorn soyb, −0.011 (0.020)

bsoyb oil, −0.010 (0.014) bsoyb ngas, −0.004 (0.026) bsoyb corn, −0.007 (0.027) bsoyb soyb, 0.962*** (0.006)
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TABLE 7 (Continued)

yoil yngas ycorn ysoyb

Panel C: Model diagnostics
Log likelihood: −22,025.7151
AIC: 16.294
SBC: 16.568
HQ: 16.393
Usable observations: 2719

Panel D: Residual diagnostics
Q(10) statistic: 156.8450; significance level: 0.5557
Q(20) statistic: 326.6775; significance level: 0.3865
Q(30) statistic: 485.8224; significance level: 0.4174
Q(40) statistic: 651.1402; significance level: 0.3714

Panel E: Exogeneity test in the mean Equation (1)
Test of exogeneity of all variables in the mean:
H φ: = 0,i j

P
0 , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

≠H φ: i j
P

1 , 0 for at least one φi j
P
, , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

χ2(60) = 145.3231 or F(60, ∗) = 2.4220 with significance level 0.0000
Test of exogeneity in the mean equation of oil:
H φ: = 0,oil j

P
0 , where j = ngas, corn, soybeans, and P= 1,…, 5

≠H φ: oil j
P

1 , 0 for at least one φoil j
P
, , where j = ngas, corn, soybeans, and P= 1,…, 5

χ2(15) = 14.3324 or F(15, ∗) = 0.9555 with significance level 0.5004
Test of exogeneity in the mean equation of ngas:
H φ: = 0,ngas j

P
0 , where j oil= , corn, soybeans, and P= 1,…, 5

≠H φ: ngas j
P

1 , 0 for at least one φoil j
P
, , where j =oil, corn, soybeans, and P= 1,…, 5

χ2(15) = 19.0198 or F(15, ∗) = 1.2679 with significance level 0.2128
Test of exogeneity in the mean equation of corn:
H φ: = 0,corn j

P
0 , where j oil= , ngas, soybeans, and P= 1,…, 5

≠H φ: corn j
P

1 , 0 for at least one φcorn j
P

, , where j oil= , ngas, soybeans, and P= 1,…, 5
χ2(15) = 47.2746 or F(15, ∗) = 3.1516 with significance level 0.0000
Test of exogeneity in the mean equation of soybeans:
H φ: = 0,soyb j

P
0 , where j oil= , ngas, corn, and P= 1,…, 5

≠H φ: soyb j
P

1 , 0 for at least one φsoyb j
P

, , where j oil= , ngas, corn, and P= 1,…, 5
χ2(15) = 58.3069 or F(15, ∗) = 3.8871 with significance level 0.0000

Panel F: Exogeneity test in the variance Equation (9) based on A matrix: ARCH effect test
Block exclusion test based on A matrix for oil
H a a a: = = = 0ngas oil corn oil soyb oil0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 3.0527 or F(3, ∗) = 1.0175 with significance level 0.3835
Block exclusion test based on A matrix for ngas
H a a a: = = = 0oil ngas corn ngas soyb ngas0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 16.8631 or F(3, ∗) = 5.6210 with significance level 0.0007
Block exclusion test based on A matrix for corn
H a a a: = = = 0oil corn ngas corn soyb corn0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 10.8948 or F(3, ∗) = 2.3343 with significance level 0.0123
Block exclusion test based on A matrix for soyb
H a a a: = = = 0oil soyb ngas soyb corn soyb0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 0.6832 or F(3, ∗) = 1.0339 with significance level 0.8771

(Continues)
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effects between agricultural commodities and energy markets are weaker in the first and third subperiods. In general,
our volatility spillover results are in line with previous literature as volatility transmission has been evidenced
between agricultural and energy markets (Du et al., 2011; Du & McPhail, 2012; Gilbert, 2010; Han et al., 2020;
Nazlioglu et al., 2013; Trujillo‐Barrera et al., 2012; Zhang et al., 2009). Our approach extends these results,
demonstrating the presence of volatility spillovers for specific subperiods (based on the regimes evidenced from the
Markov‐switching technique).

This study contributes to the literature by demonstrating price‐level links and price volatility interactions between
energy and agricultural commodity markets for an extended period and its subperiods, and that these correspond to
high and low volatility regimes. It further identifies that the primary source of volatility linkages is the comovement of

TABLE 7 (Continued)

yoil yngas ycorn ysoyb

Panel G: Exogeneity test in the variance Equation (9) based on B matrix: GARCH effect test
Block exclusion test based on B matrix for oil
H b b b: = = = 0ngas oil corn oil soyb oil0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 4.8440 or F(3, ∗) = 1.6147 with significance level 0.1835
Block exclusion test based on B matrix for ngas
H b b b: = = = 0oil ngas corn ngas soyb ngas0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 9.0745 or F(3, ∗) = 3.0248 with significance level 0.0283
Block exclusion test based on B matrix for corn
H b b b: = = = 0oil corn ngas corn soyb corn0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 3.8617 or F(3, ∗) = 1.2872 with significance level 0.2767
Block exclusion test based on B matrix for soyb
H b b b: = = = 0oil soyb ngas soyb corn soyb0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 3.8972 or F(3, ∗) = 1.299 with significance level 0.2727

Panel H: Exogeneity test in the variance Equation (9) based on A and B matrices
Wald Test of Diagonal BEKK
χ2(24) = 75.3748 or F(24, ∗) = 3.1406 with significance level 0.0000
Block exclusion test, oil equation variance
H a a a b b b: = = = = = = 0ngas oil corn oil soyb oil ngas oil corn oil soyb oil0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 5.9062 or F(6, ∗) = 0.9843 with significance level 0.4337
Block exclusion test, ngas variance
H a a a b b b: = = = = = = 0oil ngas corn ngas soyb ngas oil ngas corn ngas soyb ngas0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 25.9250 or F(6, ∗) = 4.3208 with significance level 0.0002
Block exclusion test, corn variance
H a a a b b b: = = = = = = 0oil corn ngas corn soyb corn oil corn ngas corn soyb corn0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 14.0063 or F(6, ∗) = 2.3343 with significance level 0.0295
Block exclusion test, soyb variance
H a a a b b b: = = = = = = 0oil soyb ngas soyb corn soyb oil soyb ngas soyb corn soyb0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 6.2034 or F(6, ∗) = 1.0339 with significance level 0.4007

Notes: This table presents the estimated coefficients based on Equations (1) and (9). Standard errors are in parentheses. Q(10), Q(20), Q(30), and Q(40) are the
Ljung–Box statistics for serial correlation in the model residuals computed with 10, 20, 30, and 40 lags, respectively.

Abbreviations: AIC, Akaike Information Criterion; BEKK, Baba, Engle, Kraft, and Kroner; HQ, Hannan–Quinn information criterion; MVGARCH,
multivariate generalized autoregressive conditional heteroskedasticity; SBC, Schwartz Bayesian Criterion; VAR, vector autoregressive.

***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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TABLE 8 Coefficient estimation for VAR(5)–BEKK(1, 1)–MVGARCH(1, 1) for the second subperiod (2007:01:01–2012:12:31).

yoil yngas ycorn ysoyb

Panel A: Mean estimators from Equation (1)

coil 0.059 (0.048) cngas −0.006 (0.082) ccorn 0.081* (0.044) csoyb 0.082*** (0.030)

φoil oil,
1 −0.065*** (0.024) φngas oil,

1 −0.006 (0.028) φcorn oil,
1 −0.053** (0.021) φsoyb oil,

1 −0.068*** (0.015)

φoil ngas,
1 0.021 (0.014) φngas ngas,

1 −0.065*** (0.021) φcorn ngas,
1 0.030** (0.012) φsoyb ngas,

1 0.017* (0.009)

φoil corn,
1 0.020 (0.022) φngas corn,

1 0.045 (0.029) φcorn corn,
1 0.045* (0.024) φsoyb corn,

1 0.0008 (0.017)

φoil soyb,
1 0.043 (0.029) φngas soyb,

1 0.010 (0.040) φcorn soyb,
1 0.033 (0.034) φsoyb soyb,

1 0.026 (0.026)

φoil oil,
2 0.011 (0.023) φngas oil,

2 0.040* (0.025) φcorn oil,
2 0.028 (0.020) φsoyb oil,

2 0.017 (0.018)

φoil ngas,
2 0.026* (0.014) φngas ngas,

2 −0.0004 (0.021) φcorn ngas,
2 −0.025* (0.014) φsoyb ngas,

2 −0.023** (0.011)

φoil corn,
2 0.007 (0.023) φngas corn,

2 0.027 (0.030) φcorn corn,
2 0.001 (0.021) φsoyb corn,

2 0.035** (0.017)

φoil soyb,
2 −0.043 (0.033) φngas soyb,

2 −0.042 (0.033) φcorn soyb,
2 −0.077** (0.032) φsoyb soyb,

2 −0.039 (0.027)

φoil oil,
3 −0.033 (0.021) φngas oil,

3 −0.014 (0.020) φcorn oil,
3 −0.008 (0.015) φsoyb oil,

3 −0.018* (0.011)

φoil ngas,
3 0.004 (0.015) φngas ngas,

3 −0.046*** (0.018) φcorn ngas,
3 0.012 (0.012) φsoyb ngas,

3 −0.003 (0.010)

φoil corn,
3 0.014 (0.021) φngas corn,

3 −0.037 (0.028) φcorn corn,
3 −0.034* (0.020) φsoyb corn,

3 0.008 (0.016)

φoil soyb,
3 0.011 (0.030) φngas soyb,

3 0.135*** (0.031) φcorn soyb,
3 0.045* (0.025) φsoyb soyb,

3 0.027 (0.019)

φoil oil,
4 0.025 (0.021) φngas oil,

4 0.004 (0.026) φngas oil,
4 0.031* (0.016) φsoyb oil,

4 0.003 (0.011)

φoil ngas,
4 −0.026* (0.014) φngas ngas,

4 −0.034** (0.017) φcorn ngas,
4 −0.011 (0.012) φsoyb ngas,

4 −0.012 (0.009)

φoil corn,
4 0.035* (0.021) φngas corn,

4 0.008 (0.029) φcorn corn,
4 0.0003 (0.019) φsoyb corn,

4 0.008 (0.015)

φoil soyb,
4 −0.028 (0.029) φngas soyb,

4 0.050 (0.036) φcorn soyb,
4 −0.047* (0.026) φsoyb soyb,

4 −0.002 (0.025)

φoil oil,
5 −0.032 (0.022) φngas oil,

5 0.016 (0.024) φcorn oil,
5 −0.040*** (0.015) φsoyb oil,

5 −0.001 (0.012)

φoil ngas,
5 −0.022 (0.014) φngas ngas,

5 −0.079*** (0.021) φcorn ngas,
5 0.003 (0.013) φsoyb ngas,

5 −0.004 (0.009)

φoil corn,
5 0.073*** (0.025) φngas corn,

5 0.034 (0.031) φcorn corn,
5 0.001 (0.022) φsoyb corn,

5 0.035* (0.018)

φoil soyb,
5 −0.057 (0.037) φngas soyb,

5 −0.015 (0.035) φcorn soyb,
5 0.006 (0.025) φsoyb soyb,

5 −0.036 (0.026)

Panel B: Variance estimators from Equation (9)

ωoil oil, 0.213*** (0.070)

ωngas oil, 0.068 (0.073) ωngas ngas, 0.167*** (0.063)

ωcorn oil, 0.148 (0.280) ωcorn ngas, −0.379 (0.358) ωcorn corn, 0.603** (0.300)

ωsoyb oil, −0.105 (0.084) ωsoyb ngas, −0.232** (0.116) ωsoyb corn, −0.172 (0.192) ωsoyb soyb, −0.00001 (0.124)

aoil oil, 0.224*** (0.038) aoil ngas, 0.011 (0.024) aoil corn, 0.059* (0.035) aoil soyb, −0.0002 (0.036)

angas oil, −0.021* (0.012) angas ngas, 0.129*** (0.024) angas corn, 0.059** (0.028) angas soyb, 0.001 (0.012)

acorn oil, −0.078** (0.036) acorn ngas, 0.044 (0.033) acorn corn, 0.237*** (0.051) acorn soyb, −0.124*** (0.030)

asoyb oil, 0.081** (0.040) asoyb ngas, −0.022 (0.040) asoyb corn, −0.087** (0.044) asoyb soyb, 0.418*** (0.071)

boil oil, 0.961*** (0.012) boil ngas, −0.021*** (0.005) boil corn, −0.013 (0.010) boil soyb, −0.004 (0.014)

bngas oil, 0.001 (0.003) bngas ngas, 0.984*** (0.004) bngas corn, −0.012* (0.007) bngas soyb, −0.006** (0.003)

bcorn oil, 0.029 (0.029) bcorn ngas, 0.053* (0.028) bcorn corn, 0.860*** (0.040) bcorn soyb, 0.073*** (0.026)

bsoyb oil, −0.009 (0.026) bsoyb ngas, 0.016 (0.024) bsoyb corn, 0.100*** (0.029) bsoyb soyb, 0.872*** (0.033)

(Continues)
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TABLE 8 (Continued)

yoil yngas ycorn ysoyb

Panel C: Model diagnostics
Log likelihood: −13047.5075
AIC: 16.878
SBC: 17.310
HQ: 17.039
Usable observations: 1561

Panel D: Residual diagnostics
Q(10) statistic: 150.9944; significance level: 0.6829
Q(20) statistic: 337.8491; significance level: 0.2360
Q(30) statistic: 483.9069; significance level: 0.4415
Q(40) statistic: 627.4317; significance level: 0.6312

Panel E: Exogeneity test in the mean Equation (1)
Test of exogeneity of all variables in the mean:
H φ: = 0,i j

P
0 , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

≠H φ: i j
P

1 , 0 for at least one φi j
P
, , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

χ2(60) = 227.1733 or F(60, ∗) = 3.7862 with significance level 0.0000
Test of exogeneity in the mean equation of oil:
H φ: = 0,oil j

P
0 , where j = ngas, corn, soybeans, and P= 1,…, 5

≠H φ: oil j
P

1 , 0 for at least one φoil j
P
, , where j = ngas, corn, soybeans, and P= 1,…, 5

χ2(15) = 30.8284 or F(15, ∗) = 2.0552 with significance level 0.0092
Test of exogeneity in the mean equation of ngas:
H φ: = 0,ngas j

P
0 , where j oil= , corn, soybeans, and P= 1,…, 5

≠H φ: ngas j
P

1 , 0 for at least one φoil j
P
, , where j oil= , corn, soybeans, and P= 1,…, 5

χ2(15) = 29.8879 or F(15, ∗) = 1.9925 with significance level 0.0123
Test of exogeneity in the mean equation of corn:
H φ: = 0,corn j

P
0 , where j oil= , ngas, soybeans, and P= 1,…, 5

≠H φ: corn j
P

1 , 0 for at least one φcorn j
P

, , where j oil= , ngas, soybeans, and P= 1,…, 5
χ2(15) = 40.8945 or F(15, ∗) = 2.7263 with significance level 0.0003
Test of exogeneity in the mean equation of soybeans:
H φ: = 0,soyb j

P
0 , where j oil= , ngas, corn, and P= 1,…, 5

≠H φ: soyb j
P

1 , 0 for at least one φsoyb j
P

, , where j oil= , ngas, corn, and P= 1,…, 5
χ2(15) = 49.8654 or F(15, ∗) = 3.3243 with significance level 0.0000

Panel F: Exogeneity test in the variance Equation (9) based on A matrix: ARCH effect test
Block exclusion test, oil equation variance
H a a a: = = = 0ngas oil corn oil soyb oil0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 6.6654 or F(3, ∗) = 2.2218 with significance level 0.0833
Block exclusion test, ngas variance
H a a a: = = = 0oil ngas corn ngas soyb ngas0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 4.0883 or F(3, ∗) = 1.3628 with significance level 0.2520
Block exclusion test, corn variance
H a a a: = = = 0oil corn ngas corn soyb corn0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 13.6790 or F(3, ∗) = 4.5596 with significance level 0.0033
Block exclusion test, soyb variance
H a a a: = = = 0oil soyb ngas soyb corn soyb0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 17.8002 or F(3, ∗) = 5.9334 with significance level 0.0004

22 | REZITIS ET AL.

 10969934, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fut.22477 by T

est, W
iley O

nline L
ibrary on [05/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



common macroeconomic factors rather than the substitution effect between energy and agricultural commodity
markets, corroborating the results of Han et al. (2020).

Currently, there is an ongoing debate concerning two main hypotheses. The first states that the comovement
between agricultural and energy commodities is due to the substitution effect induced by the biofuel industry, while
the second suggests that macrofactors are the primary cause. Our empirical approach examined both hypotheses by
determining which one dominates and in which subperiod this happens during the period under investigation. The
empirical findings indicate that during the period of high volatility (i.e., subperiod II) the macroeconomic factors
dominate, while in the rest of the period (i.e., subperiods I and III), which is characterized by low volatility, the
substitution effect is stronger than the macroeconomic shocks.

TABLE 8 (Continued)

yoil yngas ycorn ysoyb

Panel G: Exogeneity test in the variance Equation (9) based on B matrix: GARCH effect test
Block exclusion test based on B matrix for oil
H b b b: = = = 0ngas oil corn oil soyb oil0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 3.1963 or F(3, ∗) = 1.0654 with significance level 0.3623
Block exclusion test based on B matrix for ngas
H b b b: = = = 0oil ngas corn ngas soyb ngas0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 50.8275 or F(3, ∗) = 16.9425 with significance level 0.0000
Block exclusion test based on B matrix for corn
H b b b: = = = 0oil corn ngas corn soyb corn0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 18.3994 or F(3, ∗) = 6.1331 with significance level 0.0003
Block exclusion test based on B matrix for soyb
H b b b: = = = 0oil soyb ngas soyb corn soyb0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 9.7441 or F(3, ∗) = 3.3333 with significance level 0.0208

Panel H: Exogeneity test in the variance Equation (9) based on A and B matrices
Wald Test of Diagonal BEKK
χ2(24) = 171.7885 or F(24, ∗) = 7.1578 with significance level 0.0000
Block exclusion test, oil equation variance
H a a a b b b: = = = = = = 0ngas oil corn oil soyb oil ngas oil corn oil soyb oil0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 24.6902 or F(6, ∗) = 4.1150 with significance level 0.0003
Block exclusion test, ngas variance
H a a a b b b: = = = = = = 0oil ngas corn ngas soyb ngas oil ngas corn ngas soyb ngas0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 53.1163 or F(6, ∗) = 8.8527 with significance level 0.0000
Block exclusion test, corn variance
H a a a b b b: = = = = = = 0oil corn ngas corn soyb corn oil corn ngas corn soyb corn0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 22.3921 or F(6, ∗) = 3.7320 with significance level 0.0010
Block exclusion test, soyb variance
H a a a b b b: = = = = = = 0oil soyb ngas soyb corn soyb oil soyb ngas soyb corn soyb0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 20.000 or F(6, ∗) = 3.3333 with significance level 0.0027

Notes: This table presents the estimated coefficients based on Equations (1) and (9). Standard errors are in parentheses. Q(10), Q(20), Q(30), and Q(40) are the
Ljung–Box statistics for serial correlation in the model residuals computed with 10, 20, 30, and 40 lags, respectively.

Abbreviations: AIC, Akaike Information Criterion; BEKK, Baba, Engle, Kraft, and Kroner; HQ, Hannan–Quinn information criterion; MVGARCH,
multivariate generalized autoregressive conditional heteroskedasticity; SBC, Schwartz Bayesian Criterion; VAR, vector autoregressive.

***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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TABLE 9 Coefficient estimation for VAR(5)–BEKK(1, 1)–MVGARCH(1, 1) for the third subperiod (2013:01:01–2020:11:02).

yoil yngas ycorn ysoyb

Panel A: Mean estimators from Equation (1)

coil 0.006 (0.036) cngas 0.020 (0.068) ccorn −0.010 (0.022) csoyb −0.003 (0.018)

φoil oil,
1 −0.016 (0.019) φngas oil,

1 −0.032* (0.017) φcorn oil,
1 −0.019** (0.008) φsoyb oil,

1 −0.005 (0.006)

φoil ngas,
1 0.027* (0.014) φngas ngas,

1 −0.029 (0.022) φcorn ngas,
1 −0.001 (0.007) φsoyb ngas,

1 0.006 (0.006)

φoil corn,
1 −0.028* (0.017) φngas corn,

1 0.002 (0.033) φcorn corn,
1 0.054 (0.048) φsoyb corn,

1 0.032** (0.016)

φoil soyb,
1 0.032 (0.030) φngas soyb,

1 0.031 (0.049) φcorn soyb,
1 0.002 (0.036) φsoyb soyb,

1 −0.020 (0.022)

φoil oil,
2 −0.026 (0.023) φngas oil,

2 0.044*** (0.017) φcorn oil,
2 0.014* (0.008) φsoyb oil,

2 −0.003 (0.006)

φoil ngas,
2 −0.025** (0.012) φngas ngas,

2 −0.055*** (0.019) φcorn ngas,
2 0.001 (0.006) φsoyb ngas,

2 0.009 (0.006)

φoil corn,
2 −0.011 (0.017) φngas corn,

2 −0.029 (0.031) φcorn corn,
2 −0.074*** (0.023) φsoyb corn,

2 −0.013 (0.011)

φoil soyb,
2 0.053* (0.028) φngas soyb,

2 0.065 (0.050) φcorn soyb,
2 0.057** (0.026) φsoyb soyb,

2 0.015 (0.019)

φoil oil,
3 −0.0006 (0.023) φngas oil,

3 −0.012 (0.018) φcorn oil,
3 −0.006 (0.008) φsoyb oil,

3 0.007 (0.007)

φoil ngas,
3 0.001 (0.013) φngas ngas,

3 −0.014 (0.019) φcorn ngas,
3 −0.007 (0.005) φsoyb ngas,

3 −0.013* (0.007)

φoil corn,
3 −0.013 (0.020) φngas corn,

3 −0.057* (0.035) φcorn corn,
3 0.013 (0.025) φsoyb corn,

3 0.010 (0.013)

φoil soyb,
3 −0.021 (0.032) φngas soyb,

3 0.083 (0.054) φcorn soyb,
3 −0.016 (0.026) φsoyb soyb,

3 −0.039** (0.019)

φoil oil,
4 0.008 (0.025) φngas oil,

4 0.003 (0.015) φngas oil,
4 −0.004 (0.006) φsoyb oil,

4 −0.002 (0.006)

φoil ngas,
4 0.009 (0.013) φngas ngas,

4 0.017 (0.015) φcorn ngas,
4 −0.001 (0.007) φsoyb ngas,

4 −0.005 (0.006)

φoil corn,
4 −0.035** (0.016) φngas corn,

4 −0.036 (0.026) φcorn corn,
4 −0.058** (0.025) φsoyb corn,

4 −0.009 (0.014)

φoil soyb,
4 −0.004 (0.029) φngas soyb,

4 0.075 (0.053) φcorn soyb,
4 0.007 (0.027) φsoyb soyb,

4 −0.013 (0.021)

φoil oil,
5 0.009 (0.017) φngas oil,

5 0.019 (0.015) φcorn oil,
5 0.013* (0.007) φsoyb oil,

5 0.014** (0.006)

φoil ngas,
5 0.006 (0.012) φngas ngas,

5 −0.017 (0.015) φcorn ngas,
5 0.001 (0.007) φsoyb ngas,

5 0.002 (0.007)

φoil corn,
5 0.003 (0.019) φngas corn,

5 −0.007 (0.030) φcorn corn,
5 0.023 (0.026) φsoyb corn,

5 −0.025* (0.015)

φoil soyb,
5 −0.052** (0.021) φngas soyb,

5 0.017 (0.046) φcorn soyb,
5 −0.047 (0.045) φsoyb soyb,

5 −0.012 (0.021)

Panel B: Variance estimators from Equation (9)

ωoil oil, 0.261*** (0.041)

ωngas oil, −0.064 (0.0730) ωngas ngas, 0.386*** (0.043)

ωcorn oil, 0.007 (0.059) ωcorn ngas, 0.079 (0.066) ωcorn corn, 0.500*** (0.076)

ωsoyb oil, −0.009 (0.033) ωsoyb ngas, 0.039 (0.028) ωsoyb corn, 0.029 (0.057) ωsoyb soyb, 0.133* (0.025)

aoil oil, 0.303*** (0.031) aoil ngas, −0.065** (0.030) aoil corn, −0.014** (0.007) aoil soyb, −0.001 (0.006)

angas oil, 0.016 (0.012) angas ngas, 0.219*** (0.024) angas corn, −0.002 (0.007) angas soyb, −0.0008 (0.005)

acorn oil, 0.010 (0.012) acorn ngas, −0.030 (0.019) acorn corn, 0.470*** (0.088) acorn soyb, 0.032** (0.016)

asoyb oil, −0.0002 (0.028) asoyb ngas, −0.004 (0.035) asoyb corn, −0.257*** (0.099) asoyb soyb, 0.143*** (0.033)

boil oil, 0.951*** (0.009) boil ngas, 0.025*** (0.006) boil corn, 0.007*** (0.002) boil soyb, 0.001 (0.001)

bngas oil, −0.004 (0.003) bngas ngas, 0.963*** (0.005) bngas corn, −0.0007 (0.003) bngas soyb, −0.0003 (0.001)

bcorn oil, −0.007 (0.007) bcorn ngas, 0.008 (0.008) bcorn corn, 0.810*** (0.033) bcorn soyb, −0.032*** (0.011)

bsoyb oil, 0.008 (0.007) bsoyb ngas, −0.009 (0.010) bsoyb corn, 0.128*** (0.040) bsoyb soyb, 0.996*** (0.009)
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TABLE 9 (Continued)

yoil yngas ycorn ysoyb

Panel C: Model diagnostics
Log likelihood: −15,659.3333
AIC: 15.476
SBC: 15.823
HQ: 15.603
Usable observations: 2040

Panel D: Residual diagnostics
Q(10) statistic: 168.9456; significance level: 0.2987
Q(20) statistic: 341.2501; significance level: 0.1981
Q(30) statistic: 508.9873; significance level: 0.1739
Q(40) statistic: 692.4959; significance level: 0.0739

Panel E: Exogeneity test in the mean Equation (1)
Test of exogeneity of all variables in the mean:
H φ: = 0,i j

P
0 , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

≠H φ: i j
P

1 , 0 for at least one φi j
P
, , where ≠i j = oil, ngas, corn, soybeans, and P= 1,…, 5

χ2(60) = 117.3482 or F(60, ∗) = 1.9558 with significance level 0.0000
Test of exogeneity in the mean equation of oil:
H φ: = 0,oil j

P
0 , where j = ngas, corn, soybeans, and P= 1,…, 5

≠H φ: oil j
P

1 , 0 for at least one φoil j
P
, , where j = ngas, corn, soybeans, and P= 1,…, 5

χ2(15) = 35.9517 or F(15, ∗) = 2.3967 with significance level 0.0017
Test of exogeneity in the mean equation of ngas:
H φ: = 0,ngas j

P
0 , where j oil= , corn, soybeans, and P= 1,…, 5

≠H φ: ngas j
P

1 , 0 for at least one φoil j
P
, , where j oil= , corn, soybeans, and P= 1,…, 5

χ2(15) = 24.5242 or F(15, ∗) = 1.6349 with significance level 0.0567
Test of exogeneity in the mean equation of corn:
H φ: = 0,corn j

P
0 , where j oil= , ngas, soybeans, and P= 1,…, 5

≠H φ: corn j
P

1 , 0 for at least one φcorn j
P

, , where j oil= , ngas, soybeans, and P= 1,…, 5
χ2(15) = 21.3235 or F(15, ∗) = 1.4215 with significance level 0.1268
Test of exogeneity in the mean equation of soybeans:
H φ: = 0,soyb j

P
0 , where j oil= , ngas, corn, and P= 1,…, 5

≠H φ: soyb j
P

1 , 0 for at least one φsoyb j
P

, , where j oil= , ngas, corn, and P= 1,…, 5
χ2(15) = 24.2285 or F(15, ∗) = 1.6152 with significance level 0.0613

Panel F: Exogeneity test in the variance Equation (9) based on A matrix: ARCH effect test
Block exclusion test based on A matrix for oil
H a a a: = = = 0ngas oil corn oil soyb oil0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 2.3240 or F(3, ∗) = 0.7746 with significance level 0.5079
Block exclusion test based on A matrix for ngas
H a a a: = = = 0oil ngas corn ngas soyb ngas0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 6.7204 or F(3, ∗) = 2.2401 with significance level 0.0813
Block exclusion test based on A matrix for corn
H a a a: = = = 0oil corn ngas corn soyb corn0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 7.4214 or F(3, ∗) = 2.4738 with significance level 0.0596
Block exclusion test based on A matrix for soyb
H a a a: = = = 0oil soyb ngas soyb corn soyb0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 3.9560 or F(3, ∗) = 1.3186 with significance level 0.2662

(Continues)
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In this regard, our work not only follows the literature but also significantly extends it. Han et al. (2020) assert that
robust bidirectional volatility linkages exist between agricultural and energy futures, particularly following the shale
gas revolution. Such findings contradict the substitution effect, indicating that it may be overshadowed by a
comovement effect resulting from various shared external shocks. These findings align with our work but only for
certain volatility regimes. Employing the Markov‐switching MVGARCH model as a method for identifying subperiods
of high and low volatility, we add further clarity to the “substitution versus external shocks” academic debate. The
results presented not only validate the variability in the relationship between agricultural and energy futures but also
confirm the superiority of the comovement effect between these two types of derivative instruments over specific
volatility regimes rather than across the entire testing period.

TABLE 9 (Continued)

yoil yngas ycorn ysoyb

Panel G: Exogeneity test in the variance Equation (9) based on B matrix: GARCH effect test
Block exclusion test based on B matrix for oil
H b b b: = = = 0ngas oil corn oil soyb oil0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 3.5796 or F(3, ∗) = 1.1932 with significance level 0.3105
Block exclusion test based on B matrix for ngas
H b b b: = = = 0oil ngas corn ngas soyb ngas0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 14.8419 or F(3, ∗) = 4.9473 with significance level 0.0019
Block exclusion test based on B matrix for corn
H b b b: = = = 0oil corn ngas corn soyb corn0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 14.69750 or F(3, ∗) = 4.8991 with significance level 0.0020
Block exclusion test based on B matrix for soyb
H b b b: = = = 0oil soyb ngas soyb corn soyb0 , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(3) = 8.6935 or F(3, ∗) = 2.8978 with significance level 0.0336

Panel H: Exogeneity test in the variance Equation (9) based on A and B matrices
Wald Test of Diagonal BEKK
χ2(24) = 54.7212 or F(24, ∗) = 2.2800 with significance level 0.0003
Block exclusion test, oil equation variance
H a a a b b b: = = = = = = 0ngas oil corn oil soyb oil ngas oil corn oil soyb oil0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 5.2874 or F(6, ∗) = 0.8812 with significance level 0.5075
Block exclusion test, ngas variance
H a a a b b b: = = = = = = 0oil ngas corn ngas soyb ngas oil ngas corn ngas soyb ngas0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 21.3280 or F(6, ∗) = 3.5546 with significance level 0.0016
Block exclusion test, corn variance
H a a a b b b: = = = = = = 0oil corn ngas corn soyb corn oil corn ngas corn soyb corn0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 15.0427 or F(6, ∗) = 2.5071 with significance level 0.0199
Block exclusion test, soyb variance
H a a a b b b: = = = = = = 0oil soyb ngas soyb corn soyb oil soyb ngas soyb corn soyb0 , , , , , ,

H :1 at least one of the coefficients in H0 is different than 0
χ2(6) = 8.9104 or F(6, ∗) = 1.4850 with significance level 0.1786

Notes: This table presents the estimated coefficients based on Equations (1) and (9). Standard errors are in parentheses. Q(10), Q(20), Q(30), and Q(40) are the
Ljung–Box statistics for serial correlation in the model residuals computed with 10, 20, 30, and 40 lags, respectively.

Abbreviations: AIC, Akaike Information Criterion; BEKK, Baba, Engle, Kraft, and Kroner; HQ, Hannan–Quinn information criterion; MVGARCH,
multivariate generalized autoregressive conditional heteroskedasticity; SBC, Schwartz Bayesian Criterion; VAR, vector autoregressive.

***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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6 | HEDGING

Following Kroner and Sultan (1993), we constructed optimal hedge ratios using the conditional volatility estimates
obtained from Equation (9). Given a portfolio of two commodities i and j, a long position of one dollar in commodity i
can be hedged with a short position in commodity j, such that the risk of the portfolio is minimized without reducing
returns. The optimal hedge ratio between commodity i and commodity j can be computed as

β
h

h
= ,ij t

ij t

jj t
,

,

,
(10)

where hij t, is the estimated conditional covariance between commodities i and j, and hjj t, is the estimated conditional
variance of commodity j, both of which are obtained through the estimation of Equation (9). A dynamic hedging
strategy consists of a long position of one dollar in commodity i and a short position of β dollars in commodity j.

Furthermore, we constructed the optimal portfolio weight to determine the optimal amount of each commodity to
be included in the one‐dollar investment portfolio. On the basis of Kroner and Ng (1998), the optimal portfolio weight
of commodity i is given by

≤ ≤
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(11)

where wij t, is the weight of commodity i in a dollar portfolio of two commodities (i.e., commodity i and commodity j) at
time t; hij t, is the estimated conditional covariance between commodities i and j; and hjj t, is the estimated conditional
variance of commodity j. (Note that the weight of the second commodity is 1−wij t, ).

Panel A of Table 10 presents the optimal hedge ratios between agriculture and energy for the whole period as well
as for the three subperiods. Comparing these values across subperiods reveals that the hedging values of the second
subperiod are higher than those of the first and third subperiods as well as those of the full period. Thus, it is much
more expensive to hedge during the second subperiod and much cheaper to hedge during the first subperiod.

TABLE 10 Optimal hedge ratios (long/short) and optimal portfolio weights between agriculture and energy.

Full sample Subperiod I Subperiod II Subperiod III

Panel A: Hedge ratio (long/short) between agriculture and energy; means (standard deviations)

oil/corn 0.11 (0.13) 0.05 (0.07) 0.31 (0.14) 0.07 (0.15)

corn/oil 0.23 (0.36) 0.13 (0.16) 0.35 (0.23) 0.24 (0.60)

oil/soyb 0.10 (0.14) 0.02 (0.07) 0.30 (0.19) 0.07 (0.09)

soyb/oil 0.25 (0.37) 0.07 (0.18) 0.50 (0.29) 0.28 (0.45)

ngas/corn 0.04 (0.10) 0.02 (0.06) 0.12 (0.10) 0.02 (0.16)

corn/ngas 0.16 (0.27) 0.14 (0.37) 0.22 (0.16) 0.12 (0.28)

ngas/soyb 0.04 (0.08) 0.03 (0.08) 0.07 (0.10) 0.02 (0.05)

soyb/ngas 0.16 (0.35) 0.17 (0.45) 0.19 (0.23) 0.10 (0.28)

Panel B: Portfolio weights; means (standard deviations)

oil/corn 0.35 (0.17) 0.28 (0.09) 0.48 (0.18) 0.34 (0.19)

oil/soyb 0.28 (0.16) 0.28 (0.13) 0.33 (0.19) 0.23 (0.17)

ngas/corn 0.22 (0.13) 0.15 (0.09) 0.32 (0.10) 0.24 (0.15)

ngas/soyb 0.17 (0.13) 0.14 (0.12) 0.32 (0.10) 0.16 (0.11)

Notes: Standard errors are in parentheses.
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The cheapest hedges are: for the first subperiod, long oil–short soyb, and long ngas–short corn; for the second
subperiod, long ngas–short soyb; and for the third subperiod, long ngas–short soyb, and long ngas–short corn. The
results also suggest that during the second and third subperiods (i.e., after 2007) the average optimal ratio for
agricultural futures (i.e., oil and soyb) to hedge against gas futures (i.e., ngas) is smaller than the ratio used to hedge
against oil futures (i.e., oil). This finding is in line with Han et al. (2020), indicating that in recent years, hedging against
a long position in the oil market has been more expensive than hedging against a long position in the gas market.

Summary statistics for portfolio weights are reported in Panel B of Table 10. Here, it is important to note that the
average weights of the second subperiod are much higher than those of the other two subperiod and for the full period.
The results show that the average optimal weight for energy futures (i.e., oil and ngas) is smaller than that of
agricultural commodity futures (i.e., corn and soyb) for the three subperiods and the entire period. This suggests that
portfolio investors should place greater weight on agricultural commodity futures in a portfolio involving energy and
agricultural futures, which is in accordance with the results of Han et al. (2020).

Panels A and B of Table 11 display the optimal hedge ratios between macroeconomic index futures (i.e., crb or usdx)
and energy‐agricultural portfolios for the whole period as well as for the three subperiods. (The energy‐agricultural
portfolios were created using the optimal portfolio weights provided in Panel B of Table 10.) Panel A of Table 11 reveals
that the average values of the hedge ratios between energy‐agricultural portfolios (i.e., oil&corn, oil&soyb, ngas&corn, or
ngas&soyb) and crb are lower than the corresponding average hedge ratio values between crb and energy‐agricultural
portfolios for the whole period as well as for the three subperiods. Thus, the strategy of hedging long in energy‐
agricultural portfolios and short in crb is cheaper than the strategy of hedging long in crb and short in energy‐
agricultural portfolios.

Moreover, a comparison of the optimal hedging values across subperiods indicates that the hedging values of the
second subperiod are higher than those of the first and third subperiods as well as those of the full period.

Panel B of Table 11 shows that the average values of the hedge ratios between usdx and energy‐agricultural
portfolios are negative for the full period as well as for the three subperiods. Negative values for a hedge indicate that a
short position should be taken in the first asset and a long position in the second asset. The average values of the hedge

TABLE 11 Optimal hedge ratios between crb (usdx) and energy‐agriculture portfolio.

Full sample Subperiod I Subperiod II Subperiod III

Panel A: Hedge ratios between crb and energy‐agriculture portfolio; means (standard deviations)

oil&cron/crb 0.52 (0.17) 0.49 (0.13) 0.59 (0.09) 0.49 (0.24)

crb/oil&corn 0.99 (0.30) 0.85 (0.22) 1.22 (0.21) 0.94 (0.34)

oil&soyb/crb 0.56 (0.19) 0.52 (0.15) 0.67 (0.15) 0.51 (0.23)

crb/oil&soyb 0.84 (0.32) 0.81 (0.28) 0.99 (0.28) 0.71 (0.30)

ngas&corn/crb 0.33 (0.19) 0.30 (0.12) 0.41 (0.16) 0.29 (0.25)

crb/ngas&corn 0.72 (0.33) 0.60 (0.26) 0.97 (0.26) 0.60 (0.30)

ngas&soyb/crb 0.37 (0.22) 0.29 (0.14) 0.54 (0.19) 0.35 (0.28)

crb/ngas&soyb 0.62 (0.34) 0.57 (0.33) 0.83 (0.31) 0.47 (0.25)

Panel B: Hedge ratios between usdx and energy‐agriculture portfolio; means (standard deviations)

oil&corn/usdx −0.05 (0.08) −0.02 (0.07) −0.13 (0.06) −0.04 (0.07)

usdx/oil&corn −0.45 (0.72) −0.11 (0.45) −1.30 (0.70) −0.27 (0.44)

oil&soyb/usdx −0.07 (0.09) −0.03 (0.07) −0.15 (0.08) −0.05 (0.08)

usdx/oil&soyb −0.43 (0.63) −0.18 (0.39) −1.11 (0.73) −0.25 (0.37)

ngas&corn/usdx −0.04 (0.07) −0.02 (0.06) −0.08 (0.06) −0.03 (0.06)

usdx/ngas&corn −0.34 (0.64) −0.11 (0.47) −0.87 (0.64) −0.20 (0.48)

ngas&soyb/usdx −0.05 (0.08) −0.03 (0.06) −0.11 (0.07) −0.04 (0.07)

usdx/ngas&soyb −0.35 (0.54) −0.19 (0.42) −0.81 (0.55) −0.20 (0.35)

Notes: Standard errors are in parentheses.
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ratios between energy‐agricultural portfolios and usdx are lower (in absolute value) than the corresponding average
hedge ratio values between usdx and energy‐agricultural portfolios for the whole period as well as for the three
subperiods. Furthermore, the hedging values of the second subperiod are higher (in absolute value) than those of the
first and third subperiods as well as those of the full period.

In general, the results of Table 11 indicate that crb and usdx index futures can be employed as effective risk
management (hedging) instruments to mitigate risk for portfolios involving energy and agricultural commodities. The
hedging strategy explained above provides insights into the different portfolio structures investors should be aware of,
based on the different market phases, as demonstrated by the Markov‐switching techniques. This finding makes a vital
contribution to the field of portfolio management.

Asset prices are known to reflect several linkages among their underlying assets. Agricultural and energy futures
are among these cases. Because the fundamental goal of numerous investors and financial professionals is to minimize
the risk of their asset portfolio, it is imperative for them to diversify their portfolios across different asset classes,
financial instruments, regions, and industries. Using financial futures is an integral part of such an approach, with
energy and agricultural futures being commonly used assets, especially when following investment strategies, such as
inter‐commodity spread trading. Testing the various commodity pairs on an ex‐ante basis enabled us to identify
possible weak relationships for modeling purposes. Hence, potential low hedge ratios do not necessarily challenge the
validity of our work, but they do question whether such assets, when combined within a fully diversifiable investment
portfolio, would eliminate portfolio risk.11

In the next step, we calculated hedging effectiveness (HE), offering comparable information on the hedging
performance of the different portfolios in line with Han et al. (2021). The HE index is algebraically formulated as
follows:

Hedging Effectiveness HE
variance variance

variance
( ) =

−
.

unhedged hedged

unhedged
(12)

Here, a better hedging strategy corresponds to high HE index values, suggesting significant risk reduction. Table 12
presents the HE indices between energy and agricultural futures. According to the results, the highest HE index for the
entire sample period may not be the best indicator for the subsamples. More specifically, corn and soybean futures,
both with a HE index of 0.02, are the best hedging instruments against oil futures for the full sample. However, corn
futures are the best hedging instruments against oil futures in the first subperiod, and soybean futures are the best in
the second subperiod. Corn and soybean futures are the best hedging instruments for the third subperiod. The HE
indices of Table 12 indicate that hedging agricultural futures against oil futures achieves better performance than
hedging against natural gas futures.

Panels A and B of Table 13 report the HE indices between energy‐agricultural portfolios and crb and usdx index
futures, respectively for (i) the entire period and (ii) the three subperiods separately. The results of Panel A indicate that
crb index futures are more effective hedging instruments in the second subperiod (HE= 52% for crb against oil&corn
and HE= 5 3% for crb against oil&soyb) than the first (32% and 33%) and third (31% and 24%) periods, respectively. A
similar picture is presented for crb index futures hedging against the ngas&corn and ngas&soyb commodity pairs, albeit
of a significantly lower magnitude (27% and 37%, respectively), for the second period. The results of Panel B indicate
that usdex index futures are more effective hedging instruments in the second subperiod, results that are consistent
with those of the crb index futures.

In general, these findings suggest that during periods of increased volatility linkage between agricultural and energy
markets, such as in the second subperiod of our sample, agricultural (energy) futures could become good hedges for
energy (agricultural futures). Furthermore, because agricultural and energy markets are more exposed to common
macroeconomic shocks, crb and usdx index futures can be utilized as effective hedging tools against agricultural and
energy portfolios in periods of high volatility. However, all these HE indicators fall considerably below what is
generally considered an optimal hedge ratio (80%–120%) according to the existing literature (Bialkowski et al., 2023).

Our work is in line with, and indeed significantly extends, the current literature. For example, other recent studies
confirm that volatility spillover is transmitted between the energy and agricultural sectors (Tiwari et al., 2022), but such

11In the same context, other studies, such as that by Han et al. (2021), utilize a wide range of similar hedging pairs, that is, oil&corn/soyabeans/
wheat, and gas&corn/soyabeans/wheat, validating our commodity pairs selection approach.

REZITIS ET AL. | 29

 10969934, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fut.22477 by T

est, W
iley O

nline L
ibrary on [05/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



spillover effects vary over time (Bonato, 2019) and across different futures (Zivkov et al., 2020). In this regard, certain
combinations in the same portfolio are better than others (Yang & Awokuse, 2003). These findings are corroborated by
our modeling approach as our results also suggest a lack of uniformity for the examined hedges (i.e., energy vs.
agriculture, vice versa, and similarly with macroeconomic variables), even though specific pairs are better than others.
Moreover, according to Narayan et al. (2015), futures markets indicate variability in the context of trading strategies as
this relationship is frequency‐dependent. Therefore, the dynamic nature of price volatility transmission in these
industries justifies our chosen approach and its superiority in capturing such diverse dynamics.

Finally, regarding the efficiency of relevant hedging strategies, previous approaches have yielded mixed findings as
their results varied between the entire period and subperiods (Han et al., 2020). By contrast, the robustness of our
results is demonstrated by consistently showing that the oil/corn and oil/soybean pairs exhibit the highest hedging
efficiency across all subperiods and the entire period. More importantly, hedging efficiency is significantly better in the

TABLE 12 Hedge ratio efficiency between agriculture and energy.

Full sample Subperiod I Subperiod II Subperiod III

oil/corn 0.021 0.004 0.116 0.008

corn/oil 0.002 −0.010 0.120 −0.068

oil/soyb 0.017 0.001 0.130 0.006

soyb/oil −0.032 −0.003 0.095 −0.321

ngas/corn 0.003 0.001 0.020 0.001

corn/ngas −0.047 −0.085 −0.002 −0.028

ngas/soyb 0.002 0.001 0.009 0.001

soyb/ngas −0.075 −0.118 −0.018 −0.048

TABLE 13 Hedge ratio efficiency between crb (usdx) and energy‐agriculture portfolio.

Full sample Subperiod I Subperiod II Subperiod III

Panel A: Hedge ratio efficiency between crb and energy‐agriculture portfolio

oil&cron/crb 0.386 0.316 0.517 0.306

crb/oil&corn 0.067 0.090 −0.090 0.013

oil&soyb/crb 0.385 0.332 0.533 0.239

crb/oil&soyb 0.279 0.182 0.341 0.177

ngas&corn/crb 0.166 0.118 0.269 0.115

crb/ngas&corn −0.081 −0.102 −0.237 −0.028

ngas&soyb/crb 0.188 0.111 0.374 0.116

crb/ngas&soyb 0.117 −0.064 0.268 0.090

Panel B: Hedge ratio efficiency between usdx and energy‐agriculture portfolio

oil&corn/usdx 0.007 0.001 0.032 0.002

usdx/oil&corn −1.247 −0.057 −14.390 −0.455

oil&soyb/usdx 0.009 0.002 0.037 0.003

usdx/oil&soyb −0.889 −0.139 −8.772 −0.273

ngas&corn/usdx 0.003 0.001 0.012 0.001

usdx/ngas&corn −0.859 −0.076 −7.221 −0.291

ngas&soyb/usdx 0.005 0.001 0.021 0.002

usdx/ngas&soyb −0.679 −0.222 −4.340 −0.184
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high volatility regime than its low counterparts. Consequently, combining Markov regime switches with MVGARCH
models can help investors develop optimal portfolio strategies for different market volatility phases, a finding that adds
strongly to the literature on portfolio management.12

7 | CONCLUSION

In this paper, we investigated the volatility linkages between energy and agricultural commodity futures and examined
their dynamics over time. Specifically, we tested whether bidirectional price volatility linkages exist between energy
and agricultural commodity markets, and whether such volatility linkages are the result of the comovement effect
caused by external macroeconomic and financial shocks stemming from the world economy, or the substitution effect
induced by the biofuel industry. The contribution our study makes to the existing literature is fourfold. First, using a
quadrivariate VAR–DCC–GARCH model, we estimated dynamic conditional cross‐correlations between energy and
agricultural futures from July 3, 1996 to November 2, 2020. Second, by performing Markov‐switching regressions on the
estimated dynamic conditional cross‐correlations, we identified two subperiods of a low volatility regime (i.e., July 3,
1996–December 29, 2006, and January 1, 2013–November 2, 2020) and one subperiod of a high volatility regime (i.e.,
January 1, 2007–December 31, 2012). Markov‐switching estimates revealed that common macroeconomic and financial
external shocks from the world economy, as proxied by crb and usdx indices, exerted a stronger effect on conditional
cross‐correlations in the high volatility regime (second subperiod) than in the low volatility regime (first and third
subperiods).

This finding indicates that during the second subperiod (i.e., high volatility regime), the comovement effect induced
by external macroeconomic and financial shocks outweighed the weak substitution effect between energy and
agricultural products caused by the development of shale gas. Therefore, whilst the shale gas revolution may weaken
the volatility linkage between the energy and agricultural markets by diminishing the substitution effect between these
markets, the comovement effect caused an overall increase in the volatility linkages in the second subperiod. Third,
using a quadrivariate VAR–BEKK–GARCH model, we affirmed bidirectional price volatility spillovers between the
agricultural commodities and energy markets in the high volatility regime subperiod. However, volatility spillover
effects between agricultural commodities and energy markets were weaker in the first and third subperiods (i.e., low
volatility regime subperiods). Specifically, exogeneity test results revealed that for the second subperiod, short‐run
effects (i.e., external shocks associated with the world economy) prevailed over the long‐run effects (i.e., the
substitution effect). Finally, we provided useful information for portfolio management activities associated with energy
and agricultural commodities and crb and usdx index futures. For instance, we found that energy (agricultural) futures
could be employed as a good hedge for agricultural (energy) futures. As such, portfolio investors should place greater
weight on agricultural commodity futures in a portfolio encompassing energy and agricultural futures. Finally, crb and
usdx index futures can be employed as effective hedging tools to reduce risk for portfolios entailing energy and
agricultural commodities.

We also analyzed the HE of these strategies. Our results indicate that the effectiveness of hedging varied across
different subperiods. In particular, crb index futures were more effective during the second subperiod while the usdx
index futures were more effective in the second subperiod. This suggests that agricultural and energy futures can
function as mutually effective hedging tools during periods of increased market volatility. Furthermore, due to their
exposure to common macroeconomic shocks, certain index futures, such as the crb and usdx, can be utilized during
those periods of high volatility as effective hedging instruments against agricultural and energy portfolios. Our work
paves the way for in‐depth investigations that consider alternative regime states in the various volatility phases when
examining the price transmission between commodities. Future studies could expand our work by incorporating
various other commodities, such as industrial/precious metals.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.

12More recently, Liu et al. (2023) reported a similar finding with respect to the inflation‐hedging ability of various commodity futures. As their study
reveals, the hedging performance of the various commodities exhibits time‐varying characteristics. From the large number of commodities tested,
only industrial and precious metals can be effectively employed against inflation, but with smaller reliability in the case of precious metals.
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