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Abstract26

Modelling mangrove environments is crucial for implementing effective pro-27

tection measures and enhancing their resilience against climate change im-28

pacts, such as sea levels rise and land erosion. Traditionally, numerical mod-29

elling methods have been employed for this purpose; however, these methods30

are face time and computational complexities hindering the success of the31

protection and restoration projects. Recent advances in machine learning,32

particularly in physics-informed surrogate models, have gained attention for33

their ability to simulate complex dynamics while adhering to the governing34

physics equations. This paper introduces a novel hybrid physics-informed35

neural networks (PINNs) approach as a surrogate to the traditional and com-36

putationally expensive finite element (FE) numerical model. The proposed37

model is applied on complex boundary conditions and utilises heterogeneous38

data, including satellite imagery and simulations generated from numerical39

model as well as physics equations to constrain the solution of the output on40

a large and irregular spatial domain. To address the varying time dynamics41

across the large domain, a temporal causality weight is introduced to the loss42

function of the PINNs model, ensuring the minimisation of the loss on initial43

conditions before extending across the time domain. To demonstrate its ef-44

fectiveness in modelling the complex and nonlinear interactions of mangrove45

ecosystems, the approach is applied to the Sundarbans, the world’s largest46
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mangrove forest, situated in a climatically vulnerable region of South Asia.47

The study’s findings revealed that PINNs significantly outperformed the nu-48

merical model exhibiting a five-fold decrease in computational cost, enabling49

near real-time predictions of mangrove dynamics. This improvement in com-50

putational efficiency is crucial for situations requiring rapid responses, such51

as evaluating the resilience of mangroves against extreme climate events like52

tropical cyclones. Furthermore, the accuracy of PINNs was found to be com-53

parable, if not superior, to the traditional model enabling accurate capturing54

of the dynamics around the mangrove environments.55

Keywords: Coastal erosion, Hybrid modelling, Hydro-morphodynamic56

modelling, Mangrove Environments, Physics-informed neural networks57

1. Introduction58

Considering the prevailing patterns of global warming, the projected esca-59

lation in sea levels entails the potential to trigger catastrophic consequences60

for coastal ecosystems, neighbouring communities, and interconnected ma-61

rine ecosystems. Thus, developing proper climate mitigation and adaptation62

strategies is crucial for a better understanding of the resilience of such ecosys-63

tems against climate change impacts. One solution is the use of artificial64

barriers as defense against rising sea levels Losada et al. (2019), but this is65

often cost prohibitive. The United Nations, in its Intergovernmental Panel66

on Climate Change (IPCC) Sixth Assessment Report (AR6), therefore en-67

couraged the use of natural defenses, known as ecosystem-based adaptation68

solutions, as an alternative to mitigate climate change impacts Cooley et al.69

(2022). Such defenses have huge potential to be an inexpensive, yet reliable,70

solution with the additional benefit of preserving natural ecosystems.71

Among the most important natural defenses are mangrove ecosystems,72

which play a vital role in safeguarding coastal regions from the detrimental73

impacts of climate change, such as sea-level rise and land erosion Fanous74

et al. (2023b). Accurately modelling the complex dynamics of mangrove en-75

vironments is crucial for implementing effective protection and restoration76

strategies. Traditionally, numerical modelling techniques such as finite dif-77

ference, volume, or element methods have been employed for this purpose.78

However, these methods often face significant challenges related to time and79

computational complexities, which can hinder the success rates of proposed80

projects Fanous et al. (2023b). This is due to the fact that these models re-81
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quire high-resolution inputs, that account for spatial and temporal variations,82

to produce accurate solutions as well as solving complex physics equations,83

such as Navier–Stokes, that govern the hydro-morphodynamics of this region.84

Consequently, executing such models becomes time-consuming and imprac-85

tical, especially when real-time or near real-time predictions are necessary86

for effective coastal adaptation decision-making.87

An alternative approach to traditional numerical modelling is using ma-88

chine learning models as surrogates, which can efficiently replace the existing89

solvers by learning the dynamics entirely from the data Pinto et al. (2021);90

Partee et al. (2022); Weber et al. (2020). The utilisation of progressively91

larger models and datasets in deep learning has resulted in significant ad-92

vancements across various scientific disciplines, which is particularly evident93

in fields such as computer vision and natural language processing Liu et al.94

(2023); Høye et al. (2021). Such models require very large datasets in order95

to be properly trained, i.e. minimising the loss function that represents the96

misfit of the data. However, the acquisition of data for many scientific and97

engineering problems is accompanied by considerable costs. This is particu-98

larly true in the field of climate modelling where direct numerical simulation99

is utilised Sivarajah et al. (2017); Kochkov et al. (2021). Consequently, there100

arises a pressing need for machine learning models that are capable of gen-101

eralising effectively within the confines of limited data.102

One approach could be using Gaussian process (GP) surrogate models,103

which are particularly useful in cases with limited data or noisy observations104

Knudde et al. (2020); Donnelly et al. (2022). Unlike other machine learning105

methods, that assume a specific functional form, GPs provide a flexible and106

adaptable way to model complex relationships in data. The main issue,107

nonetheless, with GPs, and generally most other deep learning models, is108

that they are considered black box models where the underlying process used109

to provide the output is not fully understandable or explainable Vakili et al.110

(2021); Wang et al. (2019); Chatrabgoun et al. (2022). This can be a concern111

in applications where understanding the reasoning or factors influencing the112

predictions is crucial such as climate modelling. In this case, for example,113

such models could provide physically impossible outputs, whilst considering114

it a plausible solution, which could lead to dangerous consequences if relied115

upon in developing mitigation strategies.116

In recent years, the emergence of physics-informed machine learning (PIML)117

has provided a promising avenue for simulating complex dynamics while ad-118

hering to the fundamental laws governing physical systems Karniadakis et al.119

3



(2021); Kumar et al. (2021); Mahjoubi et al. (2022). PIML represents an in-120

terdisciplinary approach that combines concepts from physics and machine121

learning by leveraging the representation and approximation capabilities of122

neural networks and integrating domain knowledge and governing physics123

equations into the learning process. This concept tackles both data scarcity124

and model explainability, which are shortcomings of deep learning and GP125

models.126

Physics-informed neural networks (PINNs) are a specific type of PIML127

models that has gained significant attention as they use the physics equations128

as regularisation terms in the loss function thus constraining the outputs to129

physically consistent solutions Raissi et al. (2019). By introducing a physics130

loss term in the loss function, PINNs would tend to minimise both unrealistic131

solutions and data fitting errors. The physics loss is determined by calculat-132

ing the residuals associated with the model and the physics equations. This133

can be done easily using Automatic Differentiation (AD) to calculate the134

partial derivatives of the outputs for the corresponding inputs Raissi et al.135

(2019).136

Previously, PINN models would either heavily rely on data (e.g., as com-137

putational fluid dynamics (CFD) solutions at selected input configurations)138

or be trained solely based on the underlying physics equations. Both ap-139

proaches may be challenged by large and complex applications, such as mod-140

elling the hydro-morphodynamics around mangrove environments. The for-141

mer requires input data that is computationally expensive to generate, while142

the latter may fail to capture the full complexities of the region (e.g., the143

interactions of the mangroves with tidal waves). In this paper, we propose144

a novel hybrid PINNs model, which partially uses data from CFD simula-145

tions and also partially uses physics equations to constrain the predicted146

solutions, in order to model different fields such as elevations, velocities, and147

sediment dynamics around mangrove environments. By incorporating both148

data-driven insights and physics-based constraints, PINNs offer a promising149

approach to efficiently and effectively address the limitations of traditional150

numerical and machine learning modelling methods in capturing the complex151

interactions and non-linearities, present in modelling mangrove environments152

dynamic.153

To demonstrate the effectiveness of the proposed PINNs in modelling154

mangrove dynamics, we conducted a case study in the Sundarbans, the155

world’s largest mangrove forest situated between India and Bangladesh. The156

Sundarbans face significant climate change impacts, including sea-level rise157
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and land erosion, making it an ideal location to investigate the potential of158

the PINNs in supporting ecosystem-based adaptation solutions Mukul et al.159

(2019). In our study, we compared the performance of PINNs against a tradi-160

tional FE model that was developed to simulate the hydro-morphodynamics161

of mangrove environments. We focused on achieving two key aspects: de-162

creasing computational cost and increasing accuracy.163

This paper is organised as follows. In Section 2, we introduce the PINNs164

architecture and underlying equations. In Section 3, we introduce the region165

of study with its characteristics and modelling conditions to demonstrate166

the performance of PINNs in modelling complex dynamics around mangrove167

environments in real-world settings. We also compare the performance of168

PINNs with a traditional numerical FE model at the same region, which is169

recently developed in Fanous et al. (2023a). Finally, we conclude our work170

and discuss present limitations and possible solutions in Section 4.171

2. Physics-informed neural networks172

In this section, we first provide the methodology illustrated in Figure 1,173

where panel a) shows the numerical model used to solve Navier Stokes equa-174

tions to model the hydro-morphodynamics of mangrove environments, which175

is briefly discussed in Section 2.1 (the full details can be found in Fanous176

et al. (2023a)). This numerical model was used to generate simulations over177

the region of interest and is required to construct the novel surrogate model178

proposed in this paper. Panel b) illustrates the the PINNs model including179

its equations, architecture, and evaluation metrics, which is developed for180

this complex real-world problem, over a large irregular spatial domain with181

complex boundary conditions. The details of this model will be discussed in182

Section 2.2.183

2.1. Hydro-morphodynamic modelling of mangrove environments184

Simulating the hydro-morphodynamics at a region of interest requires185

solving the Navier–Stokes (NS) equations that encompass the continuity in186

addition to the momentum equations Fanous et al. (2023a). Having a depth187

scale much smaller than the horizontal scale, it is possible to then use the188

depth-averaged NS, also known as the Shallow Water Equations (SWEs), as189

it saves on some unnecessary computational complexities.190

The hydrodynamic equations of the 2D model are derived by depth-191

averaging from the bed, zb, to the water surface, η. The model incorporates192
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Figure 1: Proposed methodology outline

a kinematic boundary condition for the water surface, treating it as a free-193

moving boundary while assuming the impermeability of the bed, i.e., water194

does not pass through it. Therefore, the nonlinear SWEs used in this model195

can be expressed as follows:196

∂η

∂t
+∇ · (hu) = 0, (1)

∂u

∂t
+ u · ∇u− ν∇2u+ g∇η = 0, (2)

where, h = η − zb represents the depth, ν denotes the turbulent kine-197

matic eddy viscosity, and u is the depth-averaged velocity vector, and its198

components, u1 and u2, correspond to the flow in the x and y directions,199

respectively (refer to Fanous et al. (2023a) for further details).200

Regarding the morphodynamics, we adopt an Eulerian approach, which201

considers the concentration of sediment particles and determines sediment202

dynamics using an advection-diffusion equation. By combining diffusion and203

dispersion effects over a prolonged sedimentation process, the depth-averaged204

sediment concentration is given by:205
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∂

∂t
(c̄) +

∂

∂x
(u1c) +

∂

∂y
(u2c) =

∂

∂x

[(
es
∂c̄

∂x

)]
+

∂

∂y

[(
es
∂c̄

∂y

)]
(3)

Here, c̄ represents the sediment concentration, es denotes the sediment206

turbulent diffusivity coefficient, given by es = vhs /σs, where v
h
s represents the207

horizontal viscosity, and σs stands for the turbulent Schmidt number.208

In order to solve the above equations, we developed a two-dimensional209

coupled hydro-morphodynamic model within Thetis, a finite element model210

for simulating coastal and estuarine flows. The main advantage of using211

Thetis is that it uses a discontinuous Galerkin (DG)-based finite element212

discretisation, which is proven to be robust for solving NS problems Fehn213

et al. (2018). DG employs an unstructured mesh composed of triangular214

elements for tessellation, upon which a FE space is established. The repre-215

sentation of variables within a discontinuous space involves solving for the216

variables along element edges. Due to its suitability for advection-dominated217

problems and its ability to handle unstructured meshes, which are particu-218

larly important for irregular geometries in coastal areas, this approach has219

gained significant interest in hydro-morphodynamic applications Weinberg220

and Wieners (2021).221

A semi-implicit Crank-Nicolson time-stepping method is employed to en-222

sure second-order accuracy and computational efficiency. This approach223

requires only one non-linear solution per time-step, contributing to faster224

execution. Furthermore, this particular time integration scheme minimises225

excessive dissipation of tidal waves, preserving the solutions’ characteristics226

without excessively smoothing them, unlike the fully implicit backward Euler227

method Fanous et al. (2023a).228

In order to avoid some instabilities in the numerical model, as a result229

of not reaching a stable flow state at the beginning of the simulation, which230

may result in unrealistic sediment changes, we initialise the model first by231

spinning the hydrodynamics. Once the elevation and velocity fields have232

reached a steady state, we introduce then the morphodynamic equations233

(see Fanous et al. (2023a) for further details).234

Using an unstructured mesh and a semi-implicit time-stepping method,235

we provide the numerical model with appropriate time and space-varying236

conditions to describe the settings at the region of interest so that the model237

can accurately simulate the hydro-morphodynamics.238
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2.2. PINNs model239

The solutions to partial differential equations (PDEs) can be generally240

represented in the following form:241

ut + N [u;λ] = 0, x ∈ Ω, t ∈ [0, T ] (4)

Here, u(t,x) represents the solution, and N [.;λ] is a general linear or242

nonlinear operator with system parameters λ. The variables t and x corre-243

spond to the time and spatial inputs of the system, respectively. The spatial244

domain Ω can be bounded based on prior knowledge of the dynamical sys-245

tem, and [0, T ] denotes the time interval over which the system evolves. To246

properly define the problem and solve Equation (4), it is typically necessary247

to specify initial conditions u(x, 0) and/or boundary conditions u(x0, t0).248

This general form encompasses a wide range of problems, where N can249

be parabolic, hyperbolic, or elliptic, representing fluid dynamics, heat con-250

duction, or steady-state diffusion, respectively.251

For a two-dimensional problem, following Raissi et al. (2019), the func-252

tion u(x, y, t) is approximated using a fully connected network denoted as253

f(x, y, t). This network takes the coordinates (x, y, t) as inputs and provides254

the corresponding outputs uN (x, y, t). Then, by using AD, we can back-255

propagate from the outputs to the inputs to calculate the partial derivatives256

in terms of both time and space coordinates, i.e. ∂u
∂x

or ∂u
∂t
. A residual is257

calculated between the calculated partials of f(x, y, t) and equation partials258

u(x, y, t), which will be added as an equation loss term in the loss function.259

Hence, f(x, y, t) and u(x, y, t) have shared parameters, but with different260

activation functions, which is attributed to the inclusion of the differential261

operator N . The main advantage of using AD is its ability to calculate the262

exact derivatives, thus eliminating the descritisation error.263

The structure of the explained PINNs model is shown in Figure 2, com-264

promising of a fully connected neural network with multiple hidden layers265

with each hidden neuron containing a weight wi,j, bias bj, and a nonlin-266

ear activation function σ such as hyperbolic tangents, ReLUs, leaky ReLUs,267

ELUs or Swish Bihlo and Popovych (2022).268

The neural network parameters are learned by minimising the mean269

squared error (MSE) loss, which is defined as follows:270

L = L0 + Lb + Lr, (5)

where271
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Figure 2: Physics-informed neural network (PINN) architecture. The inputs
to the network are the time and space coordinates, which are passed through a deep
fully connected neural network to obtain the desired quantities of interest such as water
elevation (η), velocity (u) in both x and y directions, and sediment concentration (c).
Then, gradients of the network’s output with respect to its input are computed at these
locations using automatic differentiation. Finally, the residual of the underlying differential
equation is computed using these gradients and added as an extra term in the loss function
in addition to the data loss.

L0 =
1

N0

N0∑
i=1

∥∥u (xi, yi, 0)− I i
∥∥2

Lb =
1

Nb

Nb∑
i=1

∥∥u (xi, yi, ti)−Bi
∥∥2

Lr =
1

Nr

Nr∑
i=1

∥∥u (xi, yi, ti)− ri
∥∥2

(6)

In these equations, L0, Lb, and Lr represent the initial loss, boundary272

loss, and residuals of the governing equations, respectively. These losses are273
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computed using a finite set of collocation points. These points are sampled274

uniformally, although there are different sampling strategies that could be275

implemented as well, across the domain and constitute the location where276

the solutions of the PINNs model is compared against the actual solutions of277

the numerical model Raissi et al. (2019); Daw et al. (2022). Furthermore, I i,278

Bi, and ri correspond to the initial, boundary, and domain solutions at these279

collocation points, respectively. Finally, N0, Nb, Nr are the number of points280

at these domains. The obtained residuals are minimised by adjusting the281

neural network parameters through optimisation algorithms such as Adam282

or L-BFGS-B, which utilise gradient descent or quasi-Newton methods, re-283

spectively Cuomo et al. (2022).284

While PINNs provide promising alternatives for numerical models, the285

standard formulation explained above fails to capture complex multi-scale286

high nonlinear solutions Monaco and Apiletti (2023). This is due to the287

model minimising all losses L· simultaneously even if predictions at previous288

time are inaccurate Wang et al. (2022). This would inevitably violate the289

temporal causality, and thus lead to errors especially for time-dependent290

PDEs. In order to avoid this issue, Wang et al. (2022) suggest reducing the291

emphasis on subsequent time steps. In pursuit of this objective, the authors292

reformulate the residual term as a weighted combination of residual losses293

calculated at a fixed time step using the following equation:294

Lr =
1

Nt

Nt∑
i=1

wiLr (ti) (7)

where Nt is the temporal descritisation, and the weights wi would have large295

enough values to enable the minimisation of Lr (ti) upon the condition if all296

previous residuals {Lr (tk)}i−1
k=1 prior to ti are suitably minimised. To achieve297

this, the weights wi would be defined as the following:298

wi = exp

(
−ϵ

i−1∑
k=1

Lr (tk)

)
(8)

where ϵ is the temporal causality parameter, controlling the steepness of the299

weights wi. Consequently, the reformulated residual loss term can be written300

as follows:301

Lr =
1

Nt

Nt∑
i=1

exp

(
−ϵ

i−1∑
k=1

Lr (tk)

)
Lr (ti) . (9)
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Defining wi as an inversely exponential related to the magnitude of the302

cumulative residual loss from previous time steps ensures that Lr (ti) will not303

be minimised unless all previous residuals {Lr (tk)}i−1
k=1 decrease to a small304

value such that wi is sufficiently large.305

In addition to introducing the causality weighted loss, we introduce a data306

loss term Ldata which will account for the residual between the predicted and307

actual output, where the latter would come from the CFD simulation. The308

motivation behind the data loss term is that the interaction between the309

mangrove dynamics and incoming tidal waves are not fully accounted for in310

Equations (1) and (2). Thus, the modified loss equation would become:311

L = L0 + Lb + Lr + Ldata, (10)

To properly capture such interactions, it would require defining spatially312

varying parameters such as Manning’s friction coefficient, kinematic viscos-313

ity, and varying bed levels which could significantly increase the training314

time for the PINNs model (see Fanous et al. (2023a) for details about these315

parameters). Therefore, we utilise a small dataset from the numerical simu-316

lation output to train the PINNs on the elevation and velocity fields, while317

the sediment concentration is inferred purely from the physics equations,318

i.e., from Eq.3. Consequently, this becomes a hybrid data and physics driven319

PINNs model, which would result in faster training and convergence times320

than regular PINNs.321

2.3. Model setup322

Our PINNs model is constructed using the NVIDIA Modulus framework323

(see details about this Modulus, mod), which is a PyTorch-based neural324

network framework designed for PINNs. The PINNs model we developed325

consists of six fully connected multi-layer perceptron architectures, each com-326

prising 256 neurons, and utilises the “swish” activation function. The swish327

activation function, defined by the following equation328

ϕ(x) =
x

1 + e−x
, (11)

which is a smooth non-monotonic function that has demonstrated im-329

proved performance over ReLU in deeper models Ramachandran et al. (2017).330

To incorporate boundary and initial conditions into the PINNs, we sam-331

pled points both on the domain boundary and in the interior. We employed332

the Adam optimiser and utilised an exponentially decaying learning rate of333
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0.95 per 100,000 iterations for a total of 1,000,000 iterations and with a batch334

size of 512. An L2 regularisation (sum of squares error) was applied to mea-335

sure the approximation error of the neural network, which was minimised336

using the Adam optimiser Raissi et al. (2019).337

To assess the performance and evaluate the accuracy of the constructed338

PINNs model, a comprehensive validation process was conducted by com-339

paring its predictions with the simulation data obtained from Thetis. The340

comparison was carried out at multiple time-steps, specifically at 12, 16, 20,341

and 24 hours, which show the spatial and temporal evolution of the model342

under different tidal stages (i.e., beginning of the tide, tidal peak, and end343

of tide).344

The model simulation period was chosen from June 30, 2013, to July 1,345

2013, due to the availability of reliable tidal gauge records. Furthermore,346

the numerical model was validated against this tidal data to ensure that the347

model is accurate and can be used as validation against the output of the348

PINNs model Fanous et al. (2023a).349

2.4. Performance metrics350

In order to asses the model’s predictive performance, the root mean351

squared error (RMSE) was employed as a performance metric to assess the352

predictive capability of the model for elevation, u1 and u2 velocities, and con-353

centration outputs at times 12, 16, 20, and 24 hours. It is calculated using354

the equation:355

RMSE =
√

E [(y − ŷ)2], (12)

where y represents the actual output obtained from the numerical simu-356

lation, and ŷ corresponds to the predicted output from the PINNs model.357

The selection of the RMSE as the evaluation metric in this study is due358

to its ability to provide interpretable results by scaling the prediction errors359

back to the original unit of measurement, which in this case is expressed in360

meters [m].361

In addition to providing RMSE values of the outputs (i.e., elevations at362

both directions and sediment concentrations) at the mentioned time-steps,363

we will illustrate the actual, predicted and their differences of these outputs364

at the time-steps over the entire spatial domain in Section 3.2. These images365

could be also used to examine the predictive performance of the proposed366

method in this paper.367
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3. Case Study: PINNs for modelling Sundarbans mangroves368

In this section, we introduce the computational domain used to model the369

hydro-morphodynamics around mangrove environments at the Sundarbans.370

Then, we demonstrate the performance of the developed PINNs model and371

discuss its results and suitability as a surrogate when compared against the372

numerical solver.373

3.1. Computational domain374

The geographical extent of the model encompasses the complete shelf375

area of the Bay of Bengal, as well as the Sundarbans mangrove forest that376

straddles the border of India and Bangladesh. The spatial coverage of this377

region is illustrated in Figure 3.378

Figure 3: Geographical location of the Sundarbans

We developed a spatially varying mesh resolution to capture the dynamics379

of the tidal waves from the Indian Ocean up until the Sundarbans mangroves.380

The resolution of the domain varied from 8 km deep at the Ocean to 1.5 km at381
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the mangroves site. The generated mesh is shown in Figure 4. The resultant382

mesh has over 125,000 cells with spatially varying resolutions.383

Figure 4: Mesh generated using Gmsh with varying resolution from 1.5 km to 8 km

In order to account for the absence of topography/bathymetry in the384

PINNs model, we incorporated the effect of mangroves at the land border385

by imposing a no-slip condition, where both horizontal velocities (u1 and u2)386

are set to zero. Similarly, to ensure comparability with the numerical solver,387

we enforced the same boundary condition at the land boundary.388

Furthermore, to simulate tidal waves, we implemented a periodic bound-389

ary condition at the sea, which introduces a tidal elevation using the following390

equation:391

Elevation = A sin

(
2πtl
T

)
, (13)

where A represents the tidal amplitude, tl is the simulation time, and T392

denotes the tidal period. For our model, we selected A to be 1 m and set T393
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to 12 hours, which corresponds to a semi-diurnal tidal wave pattern observed394

in the Bay of Bengal.395

Finally, in addition to the no-slip boundary conditions imposed at the396

land boundary, we imposed spatially varying Manning’s coefficient to simu-397

late the effect of mangrove environments. To explain, at the mangrove region,398

a Manning’s value of 0.15 was set that represents a dense forest Fanous et al.399

(2023a). However, moving towards the sea boundary, the value of Manning’s400

coefficient decreases reaching 0.001 as the friction is negligible deep in the401

Ocean.402

3.2. Results403

Running the PINNs model took approximately 24 hours in real time,404

which is significantly faster when compared to the numerical FE model that405

took approximately five days between hydrodynamic spin-up and full simu-406

lation. Such increase in the computational speed is critical, as discussed in407

Section 1, to increase the success rate of protection and mitigation projects408

when faced with different climate events.409

With regards to the training loss of the model, Figure 5 shows the change410

of the log aggregated loss as the number of iterations increase. From Figure 5,411

it can be noticed that the loss decreases remarkably during the first 200,000412

iterations. From there, the loss almost stabilises with minimal decreases over413

the rest of the iterations. Furthermore, the loss appears to be decreasing in414

a stable manner, which proves the training stability of the PINNs model.415

To quantify the model’s accuracy, we compared the results of the PINNs416

model with those of the numerical model, and Table 1 shows the RMSE417

scores of the elevation, u1-velocity and u2-velocity, and concentration at dif-418

ferent times of the simulation. From Table 1, it can be seen that the PINNs419

model performs very well over all fields and across different simulation times.420

This shows that the model is able to accurately capture the change in the421

hydrodynamics as well as the morphodynamics (sediment transport) across422

different stages of the tidal cycle.423

Finally, spatial illustrations in Figures 6 - 9 visualise the prediction power424

of PINNs when compared to that of the numerical model for all outputs at the425

same time snapshots of Table 1. From Figures 6 - 8, the ability of mangroves426

to attenuate incoming tidal waves is clearly visible. The mangrove reduced427

tidal heights and velocities almost entirely, and the region at the land border428

does not have any significant tidal heights or velocities left. Furthermore,429

the PINNs model was able to regenerate the complex tidal structure and430
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Figure 5: Training of PINNs model with y-axis showing the log(RMSE) loss and x-axis
showing the training steps

.

the interaction between mangrove environments and the tides. This also431

demonstrates the importance of adding the temporal causality. Without this432

causality, the PINNs model would not have been properly trained for the433

initial conditions at the region, which could result in significant errors, as434

the initial structure is critical for determining the interaction for the rest of435

the tidal cycle.436

With respect to Figure 9, the output clearly shows the ability of man-437

grove environments to prevent entirely any sediment erosion. The change in438

sediment concentration over time is barely visible and just seen at the inter-439

face of the incoming tides and mangrove region. It is important to note here440

that the PINNs model did not predict the very small concentration change441

at this interface. This is possibly due to the change being minimal, i.e. in442

the order of e−6 and less, and the PINNs model focusing on higher losses in443
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Figure 6: Actual vs predicted elevation at times 0, 6, 12, 18, and 24 hours.
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Figure 7: Actual vs predicted u1-velocity at times 0, 6, 12, 18, and 24 hours.
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Figure 8: Actual vs predicted u2-velocity at times 0, 6, 12, 18, and 24 hours.

19



Figure 9: Actual vs predicted concentration at times 0, 6, 12, 18, and 24 hours.
20



Table 1: RMSE values for elevation, u1-velocity, u2-velocity, and concentration of PINNs
against FE model/Thetis Fanous et al. (2023b)

.

Time
(hours)

Elevation u1-velocity u2-velocity Concentration

0 0.008 0.023 0.023 6.23e-06
6 0.007 0.017 0.02 2.12e-06
12 0.007 0.016 0.019 1.11e-06
18 0.006 0.015 0.018 1.25e-06
24 0.007 0.016 0.02 7.51e-07

the elevation and velocities. Nevertheless, the outputs still demonstrate the444

model’s ability in predicting that almost no sediment change is happening at445

the domain.446

Thus, the figures illustrate the remarkable accuracy of the PINNs model447

and its ability to handle complex interactions in large domains with complex448

boundary conditions. The PINNs model was able to replicate with very449

high accuracy the hydro-morphodynamic outputs simulated by the numerical450

model without needing to solve the complex physics equations. In terms of451

computational efficiency, the PINNs model, as discussed at the beginning of452

the section, was considerably faster than the numerical model when training453

the latter for initial and boundary conditions in addition to some simulation454

data taken from the numerical model. Moreover, for providing inference at455

unseen data-points, the model was substantially faster as it took less then 15456

seconds to provide its predictions for the outputs fields. This is not possible457

in the numerical model as it has to rerun the whole simulation again, which is458

impractical in real-world cases where the speed of getting the information is459

crucial for effective and quick decision making by the local and governmental460

entities at the region.461

It could be argued that the PINNs model used some numerical simula-462

tion data for training, thus there is an inevitable computational demand for463

running the numerical model first. However, as with any machine learning,464

once the model is properly trained, i.e. converged to an acceptable loss, the465

model does not have to be retrained again. In fact, just providing the new466

conditions, the PINNs model would then be able to immediately predict the467

output as long as the conditions were not significantly changed to the ones468

used in training. This concept is present in all machine learning models,469

where if the testing data is quite different to the data trained on, the model’s470
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accuracy and performance would deteriorate. In our case, the model would471

be able to perform well on similar tidal and mangrove boundary conditions,472

which are normally present in this region. Nonetheless, if one wants to in-473

corporate not only daily changes but also seasonal and annual dynamics, it474

would be possible to achieve performance comparable to the current model475

by training the PINNs model on appropriate time scales. Since the model is476

meshless, it does not require solving these equations in any spatial or time477

domains.478

4. Conclusion479

Quantifying the role of mangrove environments in attenuating waves, pre-480

venting erosion, and providing ecosystem-based adaptation solutions is cru-481

cial for effective risk assessment, informed decision-making, and mitigating482

climate change impacts. Understanding the extent of these services enables483

scientists, policymakers, and stakeholders to make informed choices regarding484

coastal development, land-use planning, and infrastructure design, while also485

protecting natural ecosystems, biodiversity, and fragile habitats. Recognising486

the importance of mangroves in coastal areas is key to fostering sustainabil-487

ity, environmental management, and ensuring a sustainable future for both488

coastal ecosystems and neighbouring communities.489

The proposed machine learning model provides a fast and accurate alter-490

native to traditional numerical models, which could be critically important491

for real-time predictions and assessment of current climate conditions at the492

region of study. This paper uses novel machine learning methods to model the493

hydro-morphodynamics of mangrove environments for an expansive region494

with real complex boundary conditions. The approach involves developing a495

hybrid data and physics-informed neural network (PINNs) and a custom loss496

function that accounts for temporal causality when training the model. This497

would ensure accurate modelling of mangrove environments and their ability498

in attenuating waves and preventing erosion due to their complex root struc-499

ture. Furthermore, the temporal causality factor addresses the shortcomings500

of vanilla PINNs (consisting of a fully connected deep neural network and501

physics loss function) by forcing the model to converge on initial conditions502

before reducing the losses for upcoming temporal discretisations.503

The developed model has several advantages over traditional deep learn-504

ing models. One key advantage is its ability to incorporate known physi-505

cal laws into the learning process by enforcing the governing equations and506
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boundary conditions as constraints during training. This leads to more ac-507

curate and physically consistent predictions over other deep learning models.508

Moreover, PINNs are data efficient as they require fewer training data points509

compared to traditional models since they effectively learn from limited data510

and extrapolate predictions to unseen scenarios. Finally, PINNs can han-511

dle irregular domains and complex geometries more effectively, making them512

suitable for a wide range of applications. To explain, traditional deep learn-513

ing models often require structured and evenly sampled data, which can be514

challenging when dealing with irregularly shaped domains or complex geome-515

tries. By incorporating the governing equations and boundary conditions as516

constraints during training, PINNs can capture the behaviour of the system517

even in regions with sparse or irregularly distributed data.518

The results of the study demonstrate the suitability of the developed519

PINNs model as an effective surrogate when compared to a finite element520

numerical model. The RMSE of all output fields, including elevation, velocity521

in both x and y directions, and sediment concentration, were between e−2
522

and e−3. The model was also consistent for different stages of the tidal523

cycle, i.e. beginning of the tide, tidal peak, and end of tide as demonstrated524

in the figures in Section 3.2. This shows the robustness of the developed525

model and its flexibility in modelling different complex interactions between526

the incoming tidal waves and the mangrove environments. Furthermore,527

with regards to mangrove environments, the results showed their ability to528

attenuate most of the tidal heights and its velocity, in addition to preventing529

almost any sediment change where such changes were barely visible.530

Computational efficiency was also a key element in showing the superi-531

ority of the PINNs model compared to the numerical model. The training532

time of the PINNs model was about 24 hours for 1,000,000 iterations al-533

though the model mostly converged after approximately 200,000 iterations.534

This is significantly faster than the numerical solver, which took approxi-535

mately 5 days to simulate the same period including hydrodynamic spin-up536

to prevent model instabilities.537

Using a hybrid data and physics-driven approach for the PINNs model538

has some computational costs that we need to consider. Modelling the inter-539

actions of mangrove environments and the complex dynamics associated with540

them is non-trivial and requires extensive modifications to the Navier–Stokes541

equations. This makes the training procedure of the PINNs model more dif-542

ficult, demanding a significant increase in training time. Thus, utilising a543

hybrid approach, where some data from numerical simulations is used to aid544
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the PINNs model in modelling such complex processes, eases the computa-545

tional cost of the latter but inevitably requires some numerical simulation546

to run. Although this increases the overall cost in general, once sufficiently547

trained, i.e. the cumulative loss is reduced to an acceptable level, there is no548

further requirement for additional numerical simulation data for prediction549

and conducting inference at testing points, as the network parameters have550

been optimised. This makes the inference process at “unseen” data-points551

incredibly fast, taking just few seconds. The numerical model, in contrast,552

requires running the full simulation again, which is computationally very ex-553

pensive, particularly for the applications discussed in this study. As a result,554

the associated training cost for the PINNs model depends on the objective555

of the steady, i.e. determining daily, monthly, seasonal, or decadal trends,556

and in all cases prediction cost would be negligible.557

While the developed PINNs model in this study focused on mangrove558

environments, the methodology described can be extended to model other559

coastal ecosystems (e.g., marshes) and even generalise to any problem involv-560

ing simulating hydrodynamics and morphodynamics. The only difference561

would be in the data-driven part of the PINNs model, which requires some562

simulations for the selected case. This demonstrates the potential of the de-563

veloped hybrid data and physics-driven PINNs, in addition to the modified564

temporal weighted loss, to be applied to a wide range of problems where565

the underlying physics of the domain can be described using Navier–Stokes566

equations.567

Such flexibility of the proposed PINNs model can also be observed in568

training on different time scales. In this study, we trained the PINNs model569

to infer daily interactions of the mangrove environments and the tidal waves.570

Nonetheless, it is possible to expand the time scale to capture weekly, sea-571

sonal, and even yearly trends. This would mainly depend on the intended572

objective from building such models. Furthermore, this would mean some in-573

crease in the computational cost driven by the need of more simulation data574

to train the PINNs model. However, the inferencing time for such large time575

scale applications would be immeasurable compared to traditional numeri-576

cal modelling. Future works should consider modelling real extreme climate577

events such as tropical cyclones using PINNs. These events pose significant578

challenges due to their intricate dynamics and interactions with the envi-579

ronment posing significant threats to the coastal communities. Leveraging580

PINNs has the potential to provide huge advantages especially when real-581

time monitoring and evaluation is required in order to implement immediate582
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protection and mitigation strategies to save the lives of people living in those583

areas and preserve the natural ecosystems.584

Furthermore, an important limitation of PINNs is the lack of a direct ap-585

proach to uncertainty quantification using a Bayesian paradigm. Quantifying586

uncertainty is crucial in many scientific and engineering applications, as it587

provides valuable insights into the reliability and confidence of the model’s588

predictions. While quantifying uncertainty could be done using sampling589

techniques, such as Monte Carlo, this limits the ability to propagate un-590

certainty from the inputs to the outputs, thus omitting valuable informa-591

tion when quantifying the confidence of the model in predicting the output592

fields. Future works could address this limitation by incorporating Gaussian593

Processes into the framework of PINNs, or as a standalone complementary594

procedure after training the PINNs model, would significantly enhance their595

practical utility and provide robust quantification of predictive uncertainty.596
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