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Abstract: The dendritic cell (DC) vaccine anti-cancer strategy involves tumour-associated antigen
loading and maturation of autologous ex vivo cultured DCs, followed by infusion into the cancer
patient. This strategy stemmed from the idea that to induce a robust anti-tumour immune response, it
was necessary to bypass the fundamental immunosuppressive mechanisms of the tumour microenvi-
ronment that dampen down endogenous innate immune cell activation and enable tumours to evade
immune attack. Even though the feasibility and safety of DC vaccines have long been confirmed,
clinical response rates remain disappointing. Hence, the full potential of DC vaccines has yet to
be reached. Whether this cellular-based vaccination approach will fully realise its position in the
immunotherapy arsenal is yet to be determined. Attempts to increase DC vaccine immunogenicity
will depend on increasing our understanding of DC biology and the signalling pathways involved in
antigen uptake, maturation, migration, and T lymphocyte priming to identify amenable molecular
targets to improve DC vaccine performance. This review evaluates various genetic engineering
strategies that have been employed to optimise and boost the efficacy of DC vaccines.

Keywords: dendritic cells; dendritic cell-based vaccines; genetic engineering; RNAi; CRISPR gene editing

1. Introduction

In 1973, when Ralph Steinman focused his microscope on a distinct cell type in a
heterogeneous population of mouse splenocytes, even the most optimistic scientific mind
could not envisage the impact this discovery would have on the field of immunology. These
unusual cells possessed a distinctive tree-like morphology, motile capacity, and extensive
mitochondria. Due to their distinct morphology, Steinman and Zanvil Cohn named these
cells dendritic cells (DCs) after the Greek word “dendron” meaning tree [1]. Subsequent
early experiments confirmed DCs as the most potent inducers of the mixed lymphocyte
reaction and key immune response initiators, with the ability to initiate adaptive immune
responses and induce allogeneic T cell responses [2]. Five decades of research have proven
DCs to be highly specialised antigen-presenting cells (APCs) that bridge the gap between
the innate and adaptive immune systems. Due to their efficient phagocytic activity, DCs act
as “sentinels” of the immune system, sampling antigens in the periphery in order to seek out
pathogenic cues in tissue microenvironments and inform the adaptive immune system [3].
Developmentally, DCs can be initially classified into immature and mature cells. Immature
DCs are widely distributed at sites of potential antigen exposure and have full antigen-
endocytic capabilities with low expression levels of major histocompatibility complex
(MHC) and co-stimulatory molecules [4]. They also have a limited proinflammatory
cytokine production capacity. Maturation is triggered upon antigen capture and recognition
of danger-associated molecular patterns (DAMPs) and pathogen-associated molecular
patterns (PAMPs) [4]. DC maturation commences with the processing of engulfed antigen
into peptides and their subsequent presentation, linked to MHC molecules, on the cell
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surface. Crucially, maturation signals induce the expression of co-stimulatory molecules
(CD80, CD86, and CD40), chemokine receptors (e.g., CCR7), pro-inflammatory cytokines,
and ultimately migration from peripheral tissues via lymphatic vessels into draining lymph
nodes, where they activate tissue-specific T cell responses [4]. T cell activation is tightly
regulated and requires the presence of three sequential signals—“three-signal theory”.
T cell activation depends on antigen presentation (signal 1), binding of co-stimulatory
molecules (signal 2), and proinflammatory cytokine secretion (signal 3). Immune tolerance
occurs when there is antigen presentation in the absence of signals 2 and 3 [2].

With the exponential expansion in DC biology research, it became evident that “DCs”
is an umbrella term to describe a heterogeneous family of cells derived from hematopoi-
etic progenitors that produce multiple distinct functional subsets capable of generating
diverse immunological responses. An initial classification scheme based on source, phe-
notype, and function grouped human DCs into three main subsets: monocyte-derived
DCs (MoDCs), conventional (or classical) DCs (cDCs), and plasmacytoid DCs (pDCs) [5].
However, issues arose in this general phenotypic-based and function-based classification
system since environmental signals can influence and change DC functional roles and
phenotypic markers. Independent of functional or phenotypic properties, DC subset identi-
fication is now based around ontogeny with distinct developmental precursors and specific
transcription factors acting as lineage-determining factors through the induction of specific
transcription programs. Six clusters of distinct human DC subtypes have emerged. MoDCs
are a heterogeneous population of APCs that differentiate from monocytes in response to
inflammation [6,7]. Conventional DCs CD141+ cDC1 are central to type-1 immunity, while
CD1c+ cDC2 (which are further subdivided into cDC2A and CDC2B subtypes) specialise
in priming Th17 and Th2 cell immune responses via antigen presentation on MHCII [8].
Plasmacytoid DCs play a major role in immune responses to viral infections due to their
substantial IFN-I-producing ability. Finally, the newly discovered Axl + DCs, which are
inefficient at IFN-I production but can activate T and B cell responses [9,10]. DC ontogeny
and subtype complexity is an ever-evolving field that is not within the scope of this review
but has been well characterised elsewhere [5,11,12]. This review endeavours to highlight
various genetic engineering strategies that have been developed to boost the clinical efficacy
of DC vaccines. However, firstly, it is important to provide an overview of the dysfunctional
role of DCs in the tumour microenvironment (TME) and how the DC vaccine approach
was developed to bypass the TME and drive anti-tumour T-cell responses.

2. Dendritic Cells in Cancer—A Tumour Microenvironment (TME)-Induced
Dysfunctional Role

Cancer immunosurveillance—a concept originally postulated by Burnet and Thomas
in the mid-1950s—describes how under physiological conditions our immune system can
mount an anti-tumour response, specifically detecting and eliminating nascent tumour
cells, thereby preventing tumour growth and inducing immunological memory to control
future outgrowths [13]. Central to this process is the activation of tumour-specific CD8+

cytotoxic T lymphocytes following the presentation of tumour-associated antigens (TAAs)
by APCs to naive T cells in draining lymph nodes. This is the fundamental initiation step in
the cancer-immunity cycle [14]. Experimental confirmation of cancer immunosurveillance
opened a door to harnessing the power of the immune system to eliminate tumours [15].
Cancer immunotherapy is now established as the 5th pillar of cancer care, joining the
ranks of surgery, chemotherapy, radiation, and targeted therapies [16]. The development of
effective immune checkpoint therapies (ICTs) is revolutionising the clinical management
of certain malignancies, such as advanced metastatic melanoma and non-small cell lung
cancer [17]. However, numerous challenges remain. Most patients undergoing ICT rarely
exhibit an objective response due to the overriding immunosuppression mechanisms in
the tumour microenvironment (TME) and the subsequent absence of T-cells from the
TME [18–20]. Hence, additional adjunct strategies to boost anti-tumour immune responses
are required to fully unlock the power of current immunotherapies in the clinic.
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The central role of DCs in the cancer-immunity cycle has been confirmed in various
model systems [21], and live imaging studies have confirmed DCs ability to uptake and
process tumour antigens before migration to draining lymph nodes or tumour-associated
tertiary lymphoid structures (TLS) for presentation to T cells [22,23]. However, immuno-
suppressive mechanisms of an established TME—a niche created by the confluence of
tumour cells, supporting stroma, and infiltrating immune cells—induce DC dysfunction
and represent a fundamental barrier to the efficacy of current DC-based therapies [24]. Mul-
tiple TME-generated cellular and soluble factors contribute to suppressing DC recruitment,
activation, and antigen presentation. Immunosuppressive growth factors and cytokines
(e.g., vascular endothelial growth factor (VEGF), macrophage colony-stimulating factor
(M-CSF), interleukin-10 (IL-10), and transforming growth factor β (TGF-β)) are released
by a heterogenous population of cells within the TME and exert an immunosuppressive
influence by inhibiting DC differentiation and maturation [24]. Regulatory T cells (Tregs)
represent a specialized subpopulation of T cells that maintain homeostasis and tolerance
through immune response suppression and are key drivers of DC dysfunction in the
TME [25–27]. Following recruitment and infiltration of Tregs into the TME through CCR4
chemokine signalling, Tregs proliferate under the influence of IL-10 and TGF-β [25–27].
Tregs’ ability to suppress pro-inflammatory cells in the TME (including DCs) is based on the
further secretion of inhibitory cytokines or through direct cell-to-cell contact via inhibitory
receptors such as programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) [28]. Additionally, alterations of tumour antigens in the TME allow
tumour cells to evade DC detection. Indeed, Jaeger and colleagues (2019) recently high-
lighted a unique role for the molecular chaperone HSP90 in “hiding” tumour antigens
from the antigen presentation pathway by stabilising them [29]. Additional examples of
antigen masking include the inability of DCs to process and present post-translationally
hypoglycosylated MUC1 (hgMUC1) to T cells [30] and the ability of the hepatocellular car-
cinoma (HCC)-derived fucosylated variant of the oncofoetal tumour antigen, α-fetoprotein
(AFP), to reduce DC maturation marker levels, pro-inflammatory mediator expression,
and dampen T cell proliferative responses [31]. Further studies by Munson et al. (2023)
demonstrated that phagocytosis of HCC-derived AFP altered DC metabolism, decreased
expression of co-stimulatory molecules, and increased expression of immune checkpoint
molecules such as PD-L1 [32]. Other TME-related characteristics reported to inhibit DC
functions directly or indirectly include hypoxia, metabolic stress, and lipid accumulation
within DCs [24,33].

The TME-based immunosuppressive mechanisms represent a significant barrier to
normal DC function. However, due to their superior capacity to acquire, process, and
present TAAs to effector T cells, DCs remain a potential key weapon in the cancer im-
munotherapy arsenal and have been the focus of translational efforts designed to boost
effector T cell responses to tumours. Various strategies have been employed to modulate
the activity of tumour-infiltrating dendritic cells in vivo. These strategies include adminis-
tration of Toll-like receptor (TLR) ligands, intratumoural injection of TriMix mRNA (mRNA
encoding the co-stimulatory molecule CD70, the activation stimuli CD40 ligand, and con-
stitutively active Toll-like receptor 4) and attenuated viral agents [24,34,35]. Specifically,
TriMix administration was demonstrated to re-programme intratumoural DCs into mature
APCs capable of migrating to draining lymph nodes and initiating anti-tumour T cell
responses [34]. Furthermore, administration of the FMS-like tyrosine kinase 3 ligand
(FLT3L) was demonstrated to increase cDC proliferation and ultimately tumour infiltration
in a mouse model of melanoma [36]. Additional research and positive clinical trial results
will be required to confirm the feasibility of these endogenous tumour-infiltrating DC tar-
geting strategies. Regardless, in order to circumvent the immunosuppressive influence of
the TME on endogenous DC maturation and activation status, the DC vaccination approach
was developed.
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3. DC-Based Anticancer Vaccines “101”

The application of vaccines in oncology has generated considerable excitement in
recent years and represents a potential paradigm shift in how cancer could be treated
and ultimately prevented. Three types of vaccine platforms or formulations have been
developed for cancer therapy: cellular vaccines, vector-based vaccines, and molecular
vaccines (DNA, RNA, peptides, and proteins) [37,38]. Despite the recent focus on molecular
vaccines, the DC vaccine strategy (which falls under the cellular vaccine category) repre-
sents an exciting therapeutic avenue. With this strategy (shown in Figure 1), DCs’ superior
antigen presentation machinery is exploited, whereby DCs are tumour-associated antigen
(TAAs)-loaded and matured ex vivo before their autologous reinfusion into cancer patients
in order to bypass TME immunosuppressive mechanisms and generate TAA-specific CTLs
to initiate tumour cell killing and induce long-term immunological memory [2]. Although
various clinical trials have confirmed the safety and feasibility of DC vaccines to induce
an anti-tumour response, clinical patient responses remain poor [39]. Sporadic clinical
responses are unsurprising considering the lack of a standardized protocol and the numer-
ous variable factors involved in the design and execution of a DC vaccine strategy [40].
Such variable factors include the source and production of a DC cell type with potential
inherent suboptimal antigen presentation and migration capacity. DC maturation stimuli,
route of vaccine administration, frequency of injection, additional adjuvants, and overall
competence of the patient’s immune system can also influence clinical outcomes. Initial DC
vaccine strategies were designed to target advanced cancers, meaning the well-established
active immunosuppression mechanisms of the TME provided a significant barrier to effi-
cacy. The genomic instability of late-stage cancers results in heterogeneous tumour antigen
expression, which again can hamper vaccines designed around a single epitope-targeting
strategy. Despite these obstacles, the main technical issue with DC vaccines that needed
to be overcome in order to make it a feasible translational avenue was the limited source
material due to the low prevalence of DCs in the peripheral blood, ranging from 0.1–1%
of peripheral blood mononuclear cells (PBMC) [41]. The original vaccine preparation
attempts used density gradients to isolate an analogous APC-enriched preparation (leuka-
pheresis) from a cancer patient’s own blood. This early strategy yielded Sipuleucel-T
(Provenge®; Dendron Corporation, Seattle, WA, USA), a DC vaccine against asymptomatic
or minimally symptomatic metastatic castration-resistant prostate cancer [42]. Sipuleucel-T
was generated by exposing ex vivo cultured analogous APC-enriched preparations to a
recombinant fusion protein consisting of the tumour antigen prostatic acid phosphatase
(PAP) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The IMPACT trial
subsequently confirmed that Sipuleucel-T increased median overall survival (OS) rates by
3.9 months for castration-resistant prostate cancer patients [42]. Although modest, this
clinical outcome was crucial in demonstrating the safety of the DC vaccine approach and
led to subsequent FDA approval in 2010. Currently, further trials are underway with
Sipuleucel-T in combination with other anticancer therapies in order to increase response
rates [43].
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Figure 1. Schematic representation of the DC-based anti-cancer vaccination strategy. Immature
dendritic cells are isolated from blood (peripheral blood mononuclear cells [PBMCs] or DC-enriched
PBMCs) or derived from blood monocytes (MoDCs) and CD34+ hematopoietic stem progenitor cells
(HSPCs). After ex vivo activation and antigen loading, these autologous DCs could be re-administered
into the cancer patient via various routes of administration (I.V., intravenous; I.N., intranodal; I.D.,
intradermal; and S.C., subcutaneous) to induce an antigen-specific T cell response against tumours [44].
The figure was created using www.app.biorender.com (accessed on 12 October 2023).

Despite the FDA approval of Sipuleucel-T, the majority of early DC vaccine trials
were disappointing. In a bid to improve response rates and low numbers of source mate-
rials, second-generation DC vaccine design initiatives centred on the ex vivo generation
of MoDCs alongside the inclusion of maturation signals to produce a more reliable and
readily available source of APCs that expressed high levels of co-stimulatory molecules.
Monocytes (CD14+) compose ~10% of PBMC, and large numbers of MoDCs can be gen-
erated following treatment with GM-CSF and IL-4 [45,46]. Additional sources of DCs
have stemmed from advancements in ex vivo DC derivation. CD34+ hematopoietic stem
progenitor cells (HSPCs) from bone marrow and umbilical cord blood can now be used
as a DC source material [47,48]. Indeed, HSPCs incubated in a cytokine cocktail of FLT3L,
thrombopoietin (TO), and stem cell factor (SCF) can produce APCs with a primary DC
phenotype distinct from MoDCs, capable of inducing more robust anti-tumour T cell
responses [49,50]. Furthermore, the inclusion of maturation stimuli in any DC vaccine
strategy is now one of general consensus, with the failure of early trials undeniably linked
to the use of immature DCs that lacked sufficient expression of activation markers, with
concomitant reduced migratory capacity and ability to stimulate T cell responses. Matu-
ration strategies are constantly evolving to produce DCs that have a full activation status
that can respond to secondary lymphoid organ chemokines and produce high levels of
interleukin-12 (IL-12p70). Strategies can range from cytokine cocktails and TLR ligands

www.app.biorender.com
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to gene therapy. The Jonuleit cytokine cocktail (IL-1β, TNFα, IL-6, and prostaglandin E2
(PGE2)) was the original “gold standard” maturation strategy [2] until the substitution of
PGE2 for IFNα (α type-1 polarised DC cocktail) was shown to produce DCs capable of
producing higher levels of IL-12 and subsequently increase TAA-specific CTL numbers in a
melanoma model [51,52]. The use of gene therapy to introduce endogenously expressed
maturation signals (e.g., the TriMix platform) has resulted in the rapid induction of matu-
ration without the additional requirement of cytokine cocktails. Such genetic modulation
approaches could also contribute to remedying reliability and reproducibility issues in
terms of ex vivo DC vaccine generation and maturation. In terms of future directions,
next-generation DC vaccines will potentially involve the use of the cDC1 subset owing
to their optimal ability to induce TAA-specific T cell responses [53–55]. However, robust
strategies are still required to produce cDC1 cells ex vivo that resemble their primary
counterparts at a scale that is amenable to therapeutic vaccine formulations.

Despite these evolving developmental steps, DC vaccines are showing continued ben-
efits in the clinical setting, such as most recently in a phase III clinical trial in glioblastoma
(GBM), the most lethal primary brain cancer (Clinical Trial ID: NCT00045968). The addition
of autologous tumour lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care
temozolomide resulted in a statistically significant extension of survival for patients with
both newly diagnosed and recurrent GBM [56]. Such results, especially in cancers with
traditionally poor survival rates, have maintained the focus on DC vaccines as a therapeutic
avenue. However, the main question now is “Have DC vaccines reached the maximum of
their potential, or do they remain to be unlocked?”. The immunosuppressive mechanisms
of the TME remain a major hurdle that hampers the efficacy of DC therapy and the ability of
DC vaccines to mount robust anti-tumour responses. Hence, there is an urgent need for in-
terventional strategies to boost and maximise the potential of DC vaccines. Currently, there
are two main avenues of investigation. Firstly, bypass the immunosuppressive features of
the TME by combining DC vaccines with FDA-approved treatment modalities that target
these mechanisms (e.g., ipilimumab, tremelimumab) [40]. The second intervention strategy
involves the genetic engineering of ex vivo-generated DCs using well-known molecular
technologies (viral transduction, RNA interference (RNAi), and CRISPR/Cas9-mediated
genome editing). Of note, the former strategy is beyond the scope of this review and is
excellently reviewed elsewhere [40].

Our understanding of the biological roles of dendritic cells at the interface between
the immune system and cancer enabled us to identify molecular targets for optimising
their performance as a vaccination strategy. For instance, enhancing tumour-associated
antigen (TAA) presentation [57] and lymph node migration [58], as well as enhancing
immunogenicity [59,60], could be achieved by modulating the expression of different genes
responsible for these anti-tumoural phenotypes. In this review, we discuss several attempts
aimed at improving DC anti-tumoral functions and vaccine efficacy.

4. Genetic Engineering of DC-Based Vaccines to Improve Their Immunotherapeutic
Potentials—A from within Approach
4.1. Viral-Based Approaches

Due to viruses’ natural capability to efficiently transduce eukaryotic cells with foreign
nucleic acids, viral vectors have consistently been utilised as an efficient delivery vehicle
for genetic modification purposes in academic and industrial laboratories for both research
and clinical gene therapy applications. Viral vectors are classified according to whether
viral infection results in transient short-term gene expression or permanent long-term gene
expression following integration into the host genome. Additionally, depending on their
genetic makeup, viruses can be classified into RNA-based and DNA-based vectors with
either single-stranded (ss) or double-stranded (ds) genomes. Examples of the viral vectors
include γ retroviruses, lentiviruses, adenoviruses, and adeno-associated viruses [61].
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4.1.1. CCR7

Manipulation of DCs’ ability to migrate to lymphoid tissues in order to prime CD8+

CTLs could dramatically improve DC vaccine efficacy. Numerous animal models have
established that the chemokine receptor C-C chemokine receptor type 7 (CCR7), a G-protein-
coupled receptor for the chemokine ligands CCL19 and CCL21, regulates DC chemotaxis,
survival, and migratory speed in lymphoid tissue [62]. Indeed, high CCR7 expression
levels in human tumours correlate with better clinical outcomes [63]. In 2005, Okada
et al. proposed that genetically engineered DC vaccines to enhance CCR7 expression
could produce a TAA-loaded DC that would efficiently home to a nearby lymphoid tissue
and activate a robust T-cell response after administration—a strategy called “lymphoid
tissue-directivity DC vaccine” [58]. Hence, a CCR7-overexpression bone marrow-derived
DC vaccine was created by viral gene transduction using replication-deficient AdRGD
(an adenovirus serotype 5 backbone with deletions of the E1 and E3 regions and the RGD
sequence for AV-integrin targeting). Subsequent efficient AdRGD-mediated CCR7-gene
transduction and overexpression into BMDCs were confirmed by semi-quantitative qRT-
PCR analysis. Additionally, they reported that BMDCs—overexpressing CCR7 and cultured
for 24 h—exhibited sufficient CCR7 protein localization on the cell surface in the flow
cytometric analyses and showed strong migratory ability toward a CCL21 concentration
gradient in a chemotaxis assay. Moreover, BMDCs expressing enhanced green fluorescent
protein (eGFP) and transduced with AdRGD-CCR7 were demonstrated to migrate into the
regional lymph nodes at approximately a 15-fold higher rate compared with mock DCs
upon intradermal injection into the flank of wild-type mice.

4.1.2. CD40L

CD40 Ligand (CD40L) or (CD154) is a type II transmembrane protein and a member
of the tumour necrosis factor (TNF) superfamily of protein ligands [64]. Stimulation of
the CD40 receptor on DCs by CD40L on activated CD4+ T lymphocytes (a process called
DC licensing) results in the upregulation of co-stimulatory molecules (CD80/CD86) on
DC surfaces, promotes proinflammatory cytokine production (e.g., IL-12, TNF-α, and
interferon-γ (IFN-γ), facilitates the cross-presentation of antigens [64,65], and up-regulates
CCR7 expression to enhance the capacity of DCs to migrate into secondary lymphoid
tissues [66]. IL-12 is considered a Th1-polarising cytokine in both mouse and human DCs [4].
Additionally, it delivers a crucial cue for both Th1 T cell and CD8+ T cell differentiation
and functions to induce potent anti-tumour cytotoxic T-cell immune responses. Ex vivo
maturation of MoDCs by incubation with the Jonuleit cytokine cocktail showed some
drawbacks [67,68]. For instance, matured MoDCs were found to be able to migrate but
lack IL-12p70 expression [69]. To overcome this drawback, Ilka Knippertz and colleagues
(2009) transduced MoDCs with an adenovirus vector coding for the trimeric human CD40L
(Ad5hCD40L) in the presence of the Jonuleit cytokine cocktail in combination with a
recombinant human IFN-γ treatment, which resulted in an increase in IL-12p70 expression
and migration towards CCL19 [70].

4.2. RNA-Based Approaches

There are two main RNA approaches to enhance DC vaccine potential: firstly, mRNA
transfection to overexpress genes involved in enhancing DC maturation; secondly, the use
of RNA molecules, such as siRNAs, to knock down genes that suppress the immunothera-
peutic potential of DCs.

4.2.1. CD40L and TLR4

CD40L was introduced in the previous section and can increase DC expression of
co-stimulatory molecules and ultimate maturation. Toll-like receptor 4 (TLR4) is a pattern
recognition receptor that plays a central role in initiating innate immune cell responses
and is involved in DC activation and pro-inflammatory cytokine production [71]. Hence,
overexpressing TLR4 in DCs was determined to be a novel route to activate DCs without
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the need for cytokine cocktails. An example of a strategy to deliver mRNA in DCs was
described by Calderhead et al. (2008) [72].CD40L mRNA was delivered by electroporation
to cytokine-matured (treated with IL-1β, TNFα, IL-6, and PGE2) MoDCs, resulting in
the long-term expansion of MART-1-reactive T cells that showed a CD28+/CD45RA−

effector/memory phenotype. In terms of TLR4 manipulation, Cisco et al. (2004) [73]
showed that electroporation of a mRNA encoding a constitutively activated version of
TLR4 (caTLR4) RNA into human DCs could lead to significant cytokine production and DC
maturation (without the need for IL-12/TNF-γ-specific maturation) that led to enhanced
allostimulation of CD4+ T-cells. Bonehill et al. (2008) combined both approaches through
the delivery of mRNA species for CD40L, caTLR4, and CD70 into immature MoDCs as
mRNA [74]. They demonstrated in vitro that the specific introduction of CD40L and
caTLR4 into immature MoDCs could generate mature, cytokine-secreting DCs, mimicking
CD40-CD40L and TLR4-LPS ligations. Furthermore, the co-introduction of CD70 provided
a co-stimulatory signal to CD27+ naïve T-cells capable of blocking activated T-cell apoptosis
and supporting T-cell proliferation. This combination was named TriMix and has been
taken forward into preclinical trials where, instead of antigen pulsing, TriMix and MelanA-
encoding (tumour-associated antigen) mRNA were electroporated together into DCs [35].
Results demonstrated the ability of this strategy to activate CD8+ T cells specific for tumour
antigens. In a recent phase II clinical trial, TriMixDC-Mel in combination with ipilimumab
was used to treat patients with pre-treated advanced melanoma [75]. In total, 39 patients
were treated, and primary end-point data were collected at six months, where 38% of
patients demonstrated anti-tumour responses. There were some common adverse events,
such as skin reactions at the injection site (100%) and flu-like symptoms (84%); however,
there were no grade 5 adverse events, and grade 3 or 4 immune-related adverse events
were 36%. It was therefore concluded that this treatment was tolerable and showed tumour
responses in the patient cohort tested. Fifteen patients were followed up for 5+ years, and
their immune stimulation was measured [76]. After 390 weeks, 11 patients were alive, with
7 in complete remission. CD8+ T-cell responses for tumour-associated antigens were seen
in all patients. Such findings clearly highlight the considerable potential for DC vaccines
in vivo.

4.2.2. IKKα and IKKβ

Ubiquitous NFκB transcription factors are central coordinators of immunity, inflamma-
tion, and cell survival [77]. In mammals, NFκB comprises a family of five proteins, forming
ubiquitous dimeric complexes, NFκB1(p50)/RelA(p65) being the most abundant. In the
canonical NFκB pathway, these dimers are normally held inactive, bound to IκB-family
inhibitory proteins, and can be activated by signals causing the phosphorylation and prote-
olysis of IκBs by the IκBα-kinase (IKK) complex (typically comprising the two homologous
catalytic subunits, IκB kinase α (IKKα) and IκB kinase β (IKKβ) and the regulatory scaffold
subunit NEMO) and the proteasome, respectively [78]. NFκB thereafter enters the nucleus
to activate transcription of a multitude of inflammatory mediators, immunoregulators,
apoptosis inhibitors, and other genes, moulding the host defence responses to stress, injury,
and infection [77]. NFκB pathway activation has been demonstrated to be crucial for DC
maturation [79,80], and consequently, the overexpression of certain components of this
pathway, in particular IKKα and IKKβ, could potentially open an additional avenue for
mature DCs. Therefore, Pfeiffer et al. (2014) thought to activate this pathway through elec-
troporation of constitutively active mutants of IκB kinases (caIKKα and caIKKβ) mRNAs
in cytokine-matured human MoDCs [81]. DCs expressing these kinases had upregulated
maturation markers, secreted higher cytokine levels (including IL-12), and induced CD27
expression in T cells in vitro. CD27 expression on T-cells indicates a memory phenotype
demonstrating enhanced expansion capability, unlike traditional cytokine-maturated DCs
alone. A follow-up study also demonstrated that these DCs can robustly activate autolo-
gous NK cells (which can directly lyse and kill tumour cells), as shown by the upregulation
of CD54, CD69, and CD25 in vitro [82].
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4.2.3. PD-L1 and PD-L2

Programmed death 1 (PD-1) is involved in the control of immune tolerance and is one
of the main protagonists in immune escape mechanisms during chronic viral infections
and cancer [83,84]. The ligands of PD-1 (PD-L1 and PD-L2) are type I transmembrane gly-
coproteins that, upon binding to PD-1 on activated T and B cells, block T cell proliferation,
cytokine production, and cell adhesion [83,84]. PD-L1 and PD-L2 expression have been
demonstrated on the surface of APCS, including DCs. Consequently, siRNA silencing of
PD-L1 and PD-L2 was undertaken by Hobo et al. (2010) in MoDCs [60]. Compared with
the non-electroporated controls, these cells were shown to have the capacity to efficiently
expand CD8+ effector and memory T cells in leukemic patients. Overall, DCs with PD-L1
and PD-L2 knockdown were demonstrated to enhance T cell proliferation and cytokine
production. More recently, instead of electroporation, Hobo et al. showed that they could
deliver the PD-L1 siRNA in lipid nanoparticles, resulting in the same DC phenotype as
above [59].

4.2.4. PTEN

Phosphatase and tensin homologue (PTEN) is a key negative regulator of the phos-
phatidylinositol 3-kinase (PI3K)/AKT pathway, which is involved in the activation of
DCs [85,86]. Therefore, Kim et al. (2010) hypothesized that inhibition of PTEN could
lead to heightened activation of DCs through unlocking the PI3K/AKT axis [87]. Indeed,
down-regulation of PTEN in bone marrow-derived DCs (BMDCs) by transfection of PTEN
siRNA was shown to result in AKT-dependent DC maturation [54]. Also observed was
the upregulation of co-stimulatory molecules and the chemokine receptor CCR7, which
demonstrated higher levels of in vitro T cell activation and generated higher numbers of
tumour-specific CD8+ T cells in the HPV-16 E7-expressing murine tumour model [54].

4.3. CRISPR/Cas9-Based Engineering of DCs

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated (Cas) system was discovered as a part of the adaptive immune system in bacteria
that introduces site-specific double-stranded breaks (DSBs) in target foreign DNA by means
of the dual RNA-guided DNA endonuclease Cas9 [88]. Since then, it has been widely used
to modify targeted genes in eukaryotic cells and organisms and has emerged as a powerful
tool for genome engineering. The induced DNA DSBs are usually repaired in eukaryotic sys-
tems by specific DNA-repair pathways (homology-directed repair [HDR], microhomology-
mediated, end joining [MMEJ], and non-homologous end-joining (NHEJ]) [89]. Homology-
directed repair (HDR) is a precise repair mechanism that depends on a homologous DNA
template (a homologous sequence flanking the DNA cut site) to guide the repair of DSBs.
MMEJ leads to deletions of DNA stretches of various lengths at the DNA break sites,
resulting in the loss of sequence information. NHEJ leads to random insertions or dele-
tions (InDels) of base pairs, resulting in frame shift mutations. Accordingly, MMEJ and
NHEJ repair pathways functionally inactivate targeted genes with high efficiency [88].
The recent advancements of CRISPR/Cas9 gene-editing methodologies have made them
more efficient (high specificity with minimal off-target effects), technically feasible, and
promising to be included in DC-based vaccine manufacturing. If the actionable target
genes that are implicated in the dysfunctional anti-tumoral roles of DCs do not severely
affect the cell-cycling or cell viability phenotypes, such a strategy could be valuable in
creating more potent genetically manipulated DC-based vaccines. Recent investigations,
outlined below in Figure 2 and concluded in Table 1, revealed adverse molecular roles
of several specific DC genes in the milieu of the tumour microenvironment (TME). It is
worth noting that many other genes and signalling pathways have been suggested to be
targeted to enhance the DC activation process. For instance, in the presence of TGF-β [90],
DCs acquire a regulatory phenotype that favours the promotion of a tolerogenic immune
response—a rationale to target TGFBR1 and TGFBR2 for genetic manipulation in DC-based
vaccines. Additionally, interleukin-10 (IL-10) [91] produced by DCs efficiently inhibits
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proliferative and cytokine responses in T-cells, mediating immunological unresponsiveness
and suppression of immune reactions—another rationale to ablate IL-10 in DC-based vac-
cines. However, the genes outlined below were reviewed based on favourable anti-tumoral
phenotypes achieved by in vitro and/or in vivo knockdown or knockout in the context of
tumorigenesis. Such experimental interventions have been demonstrated to be effective at
enhancing anti-tumoral DC function in pre-clinical models.
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Table 1. Proposed CRISPRR/Cas9-based gene ablations to improve the immunotherapeutic potential
of DC-based vaccines.

Candidate Gene Phenotype after Silencing/Knockout Model System Investigated References

YTHDF1
- Enhanced antigen-presentation

capacity.

In vitro

- Ythdf1−/− FLT3L-DCs (conventional
DCs pulsed with necrotic B16-OVA
cells in vitro) co-cultured with OT-I
naive CD8+ T cells.

In vivo

- CD11b+ or CD8+ conventional DCs
collected from draining lymph node
(DLNs) of B16-OVA- or
MC38-OTIp-tumour-bearing
Ythdf1−/− mice and co-cultured with
OT-I naive CD8+ T cells.

[57]

www.app.biorender.com
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Table 1. Cont.

Candidate Gene Phenotype after Silencing/Knockout Model System Investigated References

SATB1

- Enhanced anti-tumour immunity.
- Enhanced antigen-presentation

capacity.
- Enhanced survival rates of

tumour-challenged mice.

In vivo

- (siRNA-loaded nanoplexes-based
silencing of SATB1 specifically in
tumour-associated DCs of mice
bearing ID8-Defb29/Vegf-a tumours
and pulsing Satb1-silenced
tumour-associated DCs with the
full-length ovalbumin (OVA)).

[92,93]

XBP1

- Enhanced anti-tumour immunity.
- Enhanced antigen-presentation

capacity.
- Enhanced capacity to restrain

tumour growth.

In vitro

- Bone marrow-derived DCs (BMDCs)
pulsed with full-length OVA protein in
the presence of tumour-conditioned
media (TCM) co-cultured with
OT-1 T cells.

- XBP1-deficient tumour-associated DCs
(pulsed with full-length OVA or
apoptotic OVA-expressing tumour
cells in the presence of ascites)
co-cultured with OT-1 T cells.

In vivo

- p53/K-Ras-driven primary and
metastatic ovarian cancer in irradiated
mice reconstituted with XBP1f/f

CD11c-Cre donor bone marrow

[92,94]

4.3.1. YTHDF1

YTH N6-methyladenosine RNA binding protein F1 (YTHDF1) is a member of a protein
family—called “readers”—that can recognise the N6-methyladenosine (m6A) methylation
as a post-transcriptional modification of mRNA transcripts. This family contains the YT521-
B homology (YTH) domain; hence, the name YTHDF protein family [95]. In dendritic
cells, YTHDF1 could bind to m6A-marked mRNAs encoding lysosomal cathepsins (pro-
teases responsible for lysosomal-specific antigen degradation), promoting their translation
and negatively affecting antigen presentation capabilities [57]. Recently, Dali Han and
colleagues showed that the extent to which Ythdf1−/− FLT3L-DCs (conventional DCs
pulsed with necrotic B16-OVA cells in vitro) could cross-prime T cells expressing transgenic
ovalbumin-specific (OT-I) T cell receptors was higher than the wildtype DCs. Additionally,
at an in vivo level, CD8α+ and CD11b+ DCs from draining lymph nodes (DLNs) of B16-
OVA- or MC38-OTIp-tumour-bearing Ythdf1−/− mice showed a substantially augmented
cross-priming capacity as compared with those collected from the wild mice when both
co-cultured with OT-I T cells. Such an enhanced cross-priming capacity of CD8+ T-cells
was attributed to the improved antigen presentation by DCs (as assessed by the abun-
dance of H-2Kb-SIINFEKL complexes on DCs from wild-type and Ythdf1−/− mice bearing
B16-OVA tumours).

4.3.2. XBP1

X-box binding protein 1 (XBP1) is a major transcription factor and a downstream
effector of the inositol-requiring enzyme 1 (IRE1α) in the unfolded protein response
(UPR)—a process that is usually initiated by endoplasmic reticulum (ER) membrane-bound
sensors [96] to ensure protein folding fidelity and relieve the load of unfolded or misfolded
proteins, restoring protein homeostasis (proteostasis) [97]. IRE1α-XBP1 activation and over-
expression of various endoplasmic reticulum (ER) stress response markers were reported
in ovarian cancer-associated DCs as compared with DCs isolated from non-tumorigenic
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normal tissues. This DC-specific ER stress was a result of the elevated levels of intracel-
lular reactive oxygen species (ROS) that induced lipid peroxidation-generating reactive
by-products (for example, the unsaturated aldehyde 4-hydroxy-trans-2-nonenal (4-HNE))
that could alter the ER-resident chaperone functions. Compounds that could sequester ROS
or lipid peroxidation by-products (vitamin E or hydralazine, respectively) were reported
to inhibit Xbp1 mRNA splicing and prevent the induction of the expression of ER stress
response genes in ovarian cancer-associated DCs. Most importantly, the development and
progression of p53/K-Ras-driven primary ovarian cancer were compromised in irradiated
mice that were reconstituted with XBP1f/f CD11c-Cre donor bone marrow as compared
with control hosts transplanted with XBP1-sufficient (XBP1f/f) littermate bone marrow.
Additionally, the same effects were observed in metastatic ovarian cancer models and were
accompanied by the infiltration and accumulation of CD44+ IFNγ-secreting CD8+ and CD4+

T cells at tumour beds. Accordingly, the expression of XBP1 in CD11c+ DCs was reported to
be critical for the initiation and progression of ovarian cancer, and its conditional ablation in
DCs in the tumour microenvironment enhanced the capacity to restrict tumour growth. Fi-
nally, it was reported that aberrant XBP1 activation in tumour-associated dendritic cells led
to lipid accumulation (due to aberrant triglyceride synthesis and accumulation), disrupting
their normal antigen-presenting capacity, and XBP1-deficient ovarian cancer-associated
DCs showed enhanced antigen-presenting capacity [33].

4.3.3. SATB1

Special AT-rich sequence-binding protein-1 (SATB1) is a master coordinator of gene
expression in various cell types. Through binding to the AT-rich motifs of the nuclear matrix
attachment regions (MARS) of the DNA, it forms distinct loops, providing a “docking
site” for chromatin remodelling proteins and transcription factors for the regulation of the
expression of many genes. Such a SATB1-mediated nuclear organisation could control
long-range regulation of genes located distal to the SATB1-bound loci. Accordingly, SATB1
integrates global epigenetic and transcriptional programmes, determining multiple cellular
phenotypes [98]. Recently, Amelia J. Tesone and colleagues showed that although SATB1
could initiate a genome-wide transcriptional programme required for terminal steady-state
DC differentiation and effective MHC II-mediated antigen presentation, its unremitting
expression in fully committed inflammatory ovarian cancer-associated DCs drove an im-
munosuppressive phenotype, contributing to accelerated ovarian malignant progression.
Additionally, SATB1 silencing in tumour-associated DCs boosted the anti-tumour immune
response and delayed malignant progression [93]. Briefly, at an in vivo level, they found
that small interfering RNA (siRNA)-loaded nanoplexes-based silencing of Satb1, specif-
ically in tumour-associated dendritic cells of mice bearing ID8-Defb29/Vegf-a tumours,
significantly enhanced anti-tumour immunity (assessed by the level of infiltration and
accumulation of Granzyme B and IFN-γ-secreting antigen-experienced CD44+ cytotoxic
T cells) as compared with non-targeting nanoplexes control. Additionally, upon in vivo
pulsing Satb1-silenced tumour-associated DCs with the full-length ovalbumin (OVA),
CD3+CFSE+OT-I+ T cells in situ responded to the cognate antigen in the ovarian cancer
microenvironment stronger than those tumour-associated DCs in control mice treated with
irrelevant nanoparticles. Most importantly, SATB1-specific silencing in tumour-associated
DCs enhanced the survival rates of ID8-Defb29/Vegf-a-challenged mice [93].

5. Conclusions and Future Outlooks

Despite the steady evolution of DC vaccines, clinical responses to cancer remain spo-
radic. Such variability in response rates can be partly explained by the lack of consistency
in manufacture when it comes to antigen loading, maturation protocols, source material,
DC subtype, and trial design. Additionally, the immunosuppressive mechanisms that
drive dysfunction in the TME can also potentially dampen the responses of even the most
highly activated DC vaccines. Despite these obstacles, there is a pressing need to improve
this branch of immunotherapy so that it can fully realise its potential. Although growing
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evidence points towards the cDC1 subtype as the ideal platform for next-generation DC
vaccines due to its central role in tumour immunity and its superior ability to prime CD8+

T cells [99], a better understanding of DC biology and the immunosuppressive mechanisms
that drive DC dysfunction remains essential if DC vaccine efficacy is to be augmented. In
this review, we have identified several promising amenable targets along key immune
modulatory pathways that could potentially unlock DC vaccines’ potential through the
application of the latest genetic engineering tools. The revolution in the clinical application
of genetic engineering, driven by CRISPR-based gene editing, means that for the first
time, genetically edited DC therapies have a chance of future translation into the clinical
setting. A point emphasised by the fact that CRISPR/Cas9 gene editing has revolutionised
immunotherapy through the development of T-cell therapies, e.g., CAR-T-cell therapy,
which have produced outstanding results in patients with hematologic malignancies and
promising early results in solid tumours [100,101]. While the genetic manipulation of
our highlighted targets is still at the in vitro and in vivo mouse model stage, the next
step would be to move to clinical trials with these new approaches. The combination of
modifications in terms of DC activation (e.g., CD40L and caTLR4), DC migration to lymph
nodes (e.g., CCR7), and knockout of PDL1-driven immunosuppression could dramatically
increase DC vaccine efficacy in cancer therapy. Of note, breakthroughs in genetic editing of
DCs generated ex vivo could potentially lead to approaches to “re-educate” endogenous
TME-resident DCs to a more tumoricidal phenotype. A concept that seems closer with the
development of CRISPR-Cas9-Ribonucleoprotein and macrophage-targeted nano-assembly
delivery systems to genetically edit our gene candidates in tumour-associated macrophages
in vivo [102]. Such breakthroughs could rapidly expand the application of DC-based ther-
apies beyond cancer to clinical initiatives to fight infectious diseases like HIV [103] or
modulate DCs to promote the healing of chronic diabetes ulcers [104]. So, in a bid to answer
our original question—How soon is now?—regarding the next generation of DC vaccines
capable of generating robust anti-tumour responses: it is close, but important steps remain.
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