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Abstract
Deployment of robotic systems in the real world requires a certain level of robustness in order to deal with uncertainty factors,
such as mismatches in the dynamics model, noise in sensor readings, and communication delays. Some approaches tackle
these issues reactively at the control stage. However, regardless of the controller, online motion execution can only be as
robust as the system capabilities allow at any given state. This is why it is important to have good motion plans to begin with,
where robustness is considered proactively. To this end, we propose a metric (derived from first principles) for representing
robustness against external disturbances. We then use this metric within our trajectory optimization framework for solving
complex loco-manipulation tasks. Through our experiments, we show that trajectories generated using our approach can resist
a greater range of forces originating from any possible direction. By using our method, we can compute trajectories that solve
tasks as effectively as before, with the added benefit of being able to counteract stronger disturbances in worst-case scenarios.

Keywords Loco-manipulation · Robustness · Trajectory optimization · Direct transcription

1 Introduction

In this paper, we tackle the problem of robust loco-
manipulation for quadruped robots equippedwith robot arms,
such as the one shown in Fig. 1. Here, the challenge is not
only to generate whole-body trajectories for solving complex
tasks requiring simultaneous locomotion and manipulation
(commonly referred to as loco-manipulation), but also to
optimize the robustness of such trajectories against unknown
external disturbances. This is an important problem for two
reasons: first, loco-manipulation allows us to extend the
workspace of an otherwise-fixed-base-manipulator through
themobility of amobile base, such as a legged robot; and sec-
ond, increasing the robustness of the overall motion against
disturbances leads to legged systems that are more reliable,
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Fig. 1 Snapshots of our robot solving real-world tasks in an industrial
setting: (i) turning a hand wheel, (ii) pulling a lever, (iii) opening a gate
whilst standing on a ramp, and (iv) lifting a bucket by pulling a rope.
The robot and the objects being manipulated have been highlighted
for clarity. The overlaid yellow arrows indicate motion. Video footage:
https://youtu.be/3qXNHVCagL8
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and that can therefore be deployed in the real world with
greater confidence.

Enabling loco-manipulation is a very challenging prob-
lem because it involves repeatedly breaking and making
contacts between the feet and the environment in order to
move around, while maintaining balance and avoiding kine-
matic/actuation limits. Moreover, robust motion planning is
a complex subject on its own, as it requires the derivation
of good metrics that are able to quantify how robust trajec-
tories are. Consequently, combining loco-manipulation and
robustness is not trivial, as it brings together the challenges
from both problems.

Most of the previous research done on loco-manipulation
(Murphy et al. 2012; Zimmermann et al. 2021; Ma et al.
2022), has tackled the problem by splitting the arm from the
base, planning the manipulation separately from the locomo-
tion, and then considering arm movement as a disturbance
that the base should compensate for. Furthermore,most of the
existing research (Prete & Mansard, 2016; Xin et al., 2018;
Sleiman et al., 2021; Ma et al., 2022) has focused on reac-
tive robustness at the control stage, rather than taking into
account robustness proactively during planning.

The key components of our approach are (i) a trajectory
optimization framework which is able to solve complex real-
world tasks and which takes into account the full system
dynamics, and (ii) a robustnessmetric derived fromfirst prin-
ciples. This allows us to calculate the largest forcemagnitude
that the robot can counteract from any given direction, while
considering ground-feet contact stability and the actuation
limits of the system. Our results show that, given a contact
sequence, our framework is able to planwhole-body trajecto-
ries that are significantlymore robust to external disturbances
compared to other approaches.

1.1 Statement of contributions

This paper is a direct follow-up of our previous work. In Fer-
rolho et al. (2020), the framework we proposed was able to
optimizewhole-body trajectories for standingbalance behav-
iors only, i.e., not actual loco-manipulation. In contrast, this
paper proposes an improved formulation which is able to
optimize trajectories that involve contact changes—albeit the
sequence and timings of those contacts must be prescribed.
We are also able to better enforce the nonlinear dynamics
of rigid-body systems, as we have incorporated our findings
from Ferrolho et al. (2021). Furthermore, we show that our
formulation can handle cases where contact positions are not
enforced explicitly, which actually allows it to further max-
imize robustness through the adoption of more suitable feet
contact positions. Finally, the significant amount of systems
integrationwork thatwe have done in comparison to Ferrolho
et al. (2020) allowed us to deploy the robot in a realistic
scenario mimicking an industrial offshore platform, where

we showed the robot operating uninterrupted and repeatedly
solving the complex sequence of tasks highlighted in Fig. 1.
This has resulted in a robust loco-manipulation systemwhich
is capable of online motion planning for deployment in real-
istic scenarios.

2 Related work

Wenow summarize previous research related tomotion plan-
ning for quadruped robots equipped with arms, as well as
existing research on the topic of robustness.

2.1 Planning and control for quadrupeds with arms

Murphy et al. (2012)were oneof thefirst to investigate the use
of a legged robot base to improve the capabilities of a robotic
arm. They used trajectory optimization (TO) with a simpli-
fied dynamics model to generate open-loop behaviors for
Boston Dynamics’ robot BigDog. As a result of the coordi-
nated motion between the robot arm and the robot base, they
were able to increase the performance of lifting and throwing
tasks. In their hardware experiments, they showed the robot
dynamically tossing cinder blocks as heavy as 16.5kg and as
far as 4.2m. However, they only considered standing balance
behaviors (which do not change support contacts/move the
feet). In contrast, we consider the full dynamics model of the
robot during TO, and we also consider behaviors where the
robot’s feet can make and break contact with the environ-
ment.

A few years later, Zimmermann et al. (2021) equipped
Boston Dynamics’ flagship quadruped robot Spot with a
Kinova arm in order to perform dynamic grasping maneu-
vers. Direct control of Spot’s actuated joints is not possible
because of restricted access to its low-level controller. As
Spot’s whole-body controller for locomotion compensates
for the wrench induced by the manipulator, the tracking and
executed motion can differ from planned motion, resulting
in poor performance. To achieve precise loco-manipulation,
Zimmermann et al. treated Spot’s overall behavior as a black
box, and built a simplified model of the combined platform
from experimental data. While their approach successfully
grasped the target most of the times, it failed when the esti-
mated position of the ball was inaccurate or when the robot
started executing the planned trajectories from slight offset
poses. There were also cases when the robot failed to grasp
the target due to Spot’s complex internal behavior not being
fully captured by their simplified model. For example, when
the disturbance induced by the arm to the base was suffi-
ciently large, it could cause a delay that brought the individual
trajectory components out of sync. In contrast, our approach
does not suffer from this drawback because the robot we use
in our experiments grants us full control over its joints, and
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because we optimize trajectories for the robot considering
the dynamics of its whole body.

Ma et al. (2022) combined manipulation using model pre-
dictive control (MPC) with a locomotion policy obtained
from reinforcement learning (RL). First, they modeled the
wrenches (arising from the motion of the arm) applied to
the base of the robot as external disturbances that can be
predicted. Then, they trained the base control policy to coun-
teract those disturbances while (i) trying to keep a horizontal
base orientation and (ii) tracking velocity commands from
the MPC controller of the arm. In other words, their base
policy uses wrench predictions from the arm’s motion to
compensate for the disturbances applied to the base of the
robot.

All of the previous work mentioned thus far (Murphy et
al. 2012; Zimmermann et al. 2021; Ma et al. 2022) have
one thing in common: they all see the arm as a distur-
bance to be compensated for. In contrast, Bellicoso et al.
(2019) approached the problem differently, and took into
account the dynamics of the whole system. The authors
used a whole-body controller based on inverse dynamics,
re-planned locomotion continuously in a receding-horizon
fashion, and explicitly provided end-effector forces for the
controller to track. They equipped ANYbotics’ quadruped
robot ANYmal B with a Kinova arm—a combination which
results in a fully torque-controlled mobile manipulator, and
one which users have full control over. Bellicoso et al.
demonstrated that the resulting system is able to perform
dynamic locomotion while executing manipulation tasks,
such as opening doors, delivering payloads, and human-robot
collaboration.

In Murphy et al. (2012), the manipulation task is planned
offline and separately from the locomotion planner; and in
Bellicoso et al. (2019), the task for opening the door uses
a controller that tracks gripper forces which need to be
explicitly specified. Sleiman et al. (2021) tackled both these
weaknesses when they proposed a unified MPC framework
forwhole-body loco-manipulation.Their approach augments
the dynamics of the object being manipulated to the cen-
troidal dynamics and full kinematics of the robot. This allows
the solver to exploit the base-limb coupling and, e.g., to
use the arm as a balancing “tail”. Despite using an MPC
approach, their planner is not adaptive with respect to the
dynamic properties of the objects being manipulated.

In our previous work Ferrolho et al. (2020), we proposed a
motion planning framework for legged robots equipped with
manipulators. In that work—and in this paper—we used the
same robot arm and quadruped shown in Bellicoso et al.
(2019), with a difference only in the number of fingers on
the gripper. Our motion planning approach was similar to
Sleiman et al. (2021) in the sense that we formulated the
planning problem for the whole body of the robot in a unified
manner, i.e., for the quadrupedal base and the robot manip-

ulator simultaneously. There are a couple of differences in
the problem formulation between our previous work Fer-
rolho et al. (2020), Bellicoso et al. (2019) and Sleiman et al.
(2021); e.g., we use a full model of the robot’s articulated
rigid-body dynamics1 instead of a simplified version, which
allows us to plan trajectories more faithfully to the real hard-
ware. However, the most important difference and our main
contribution is that we focus on planning motions that are
not only physically feasible, but that also maximize robust-
ness against unknown external disturbances. This aspect is
something that none of the previous work mentioned (Mur-
phy et al., 2012; Zimmermann et al., 2021; Ma et al., 2022;
Bellicoso et al., 2019; Sleiman et al., 2021) have considered.

2.2 Motion robustness against disturbances

Prete and Mansard (2016) proposed a solution to improve
the robustness to joint-torque tracking errors at the con-
trol stage. The authors modeled deterministic and stochastic
uncertainties in joint torques within their control framework
optimization. In our case, we maximize the upper-bound
force magnitude the system can withstand from any possible
direction, and we do this during the planning stage. Xin et
al. (2018) proposed a hierarchical controller in which exter-
nal forces are estimated directly. Their goal was to minimize
actuator torques while enforcing constraints for the contact
forces. However, in contrast to our work, they did not explic-
itly enforce actuator limits; and since their main focus is on
control, they do not have a planner for computing elaborate
whole-body behaviors.

The robot experiments shown in Ma et al. (2022) and in
Sleiman et al. (2021) demonstrate some capability of resis-
tance against external forces; but this robustness is reactive,
in the sense that it is either the learned locomotion policy
or the MPC that compensate for the disturbances online in
a reactive fashion. In contrast, research on proactive robust-
ness (Caron et al., 2015; Orsolino et al., 2018; Ferrolho et
al., 2021) attempts to take uncertainty into account at the
planning stage, i.e., ahead (or just in time) of online exe-
cution. A proactive approach allows planning frameworks to
increase the system’s ability of counteracting disturbances by
exploiting kinematic redundancy. Some examples of human
kinematics pre-shaping during dynamic tasks are: leaning
body backwards while pulling on a rope during a game of
tug of war, leaning body forwards and stretching arms while
pushing on a broken down car, and a bent-knees stance in
preparation for a skateboard trick. Similarly, in robotics, we
can increase robustness proactively with offline planning, by
e.g. compiling a library of optimal kinematic stances and

1 Henceforth, we shall refer to this as the ‘full dynamics model’ of the
robot.
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optimal trajectories, which can then be looked up during
online execution.

Caron et al. (2015) proposed a feasible region (a poly-
tope), called Gravito-Inertial Wrench Cone (GIWC), which
can be used as a general stability criterion. This representa-
tion is very efficient for testing the robust static equilibrium
of a legged robot, but it neglects the system’s actuation limits.
Subsequently, Orsolino et al. (2018) proposed to extend the
properties of the GIWC by incorporating the torque limits
of the system. They demonstrated how the resulting poly-
topes can be used to e.g. optimize the center of mass (CoM)
trajectory in the xy-plane for the base-transfer motion of
quadrupeds. Orsolino et al. formulated a reduced version of
the problem, but even then the technique used to compute
polytopes was prohibitively expensive. As a workaround,
they computed the polytope only once for the first point
of the trajectory, and used that as an approximation for the
rest of the motion. We have followed this line of research
in our previous work Ferrolho et al. (2021), where we pro-
posed a force polytope representation, called residual force
polytope, which considers not only the torque limits but also
the dynamics of the system during trajectory execution. The
polytope is computed from the forces and torques remain-
ing after accounting for Coriolis, centrifugal, and gravity
terms, as well as from the nominal feed-forward torques of
the motion.

The polytope calculations in Orsolino et al. (2018) and
Ferrolho et al. (2021) require significant computation time
and, in general, deriving explicit descriptions of a projected
polytope is NP-hard (Tiwary, 2008). Zhen and den Her-
tog (2018) formulated a computationally-tractable approach
for finding maximally-sized convex bodies inscribed in pro-
jected polytopes. Later, Wolfslag et al. (2020) adapted that
approach for computing the robustness of static robot con-
figurations. Their work was an improvement over exact
computations; however, it was still too complex for being
considered in trajectory optimization. In our previous work
Ferrolho et al. (2020), we adapted the technique from Zhen
and den Hertog (2018) to reformulate the problem of com-
puting the smallest unrejectable force (SUF), which allowed
us to formulate bilevel trajectory optimization problems for
maximizing the robustness of the generated trajectories. In
this paper, our work extends those ideas further to motion
with contact changes.

3 Robust trajectory optimization

3.1 Robot model formulation

We formulate the model of a legged robot in the same way
as in our previous work Ferrolho et al. (2020), i.e., as a
free-floating base B to which the limbs are attached to. For

example, the robot we used for our experiments (seen in
Fig. 1), has four legs and one arm attached to its base; each
leg has three motors and the arm has six.2 We describe the
motion of the system with respect to (w.r.t.) a fixed iner-
tial frame I . We represent the position of the free-floating
base w.r.t. the inertial frame, and expressed in the inertial
frame, as I r I B ∈ R

3. As for the orientation of the base,
we represent it using modified Rodrigues parameters (MRP)
(Gormley, 1945; Terzakis et al., 2018) as ψ I B ∈ R

3. The
joint angles describing the configuration of the 6-degrees of
freedom (DoF) arm and the four 3-DoF legs are stacked in a
vector q j ∈ R

n j , where n j = 18. Finally, we write the gen-
eralized coordinates vector q and the generalized velocities
vector v as

q =
⎡
⎣I r I B

ψ I B
q j

⎤
⎦ ∈ R

3 × R
3 × R

n j , v =
[
νB

q̇ j

]
∈ R

nv , (1)

where the twist νB = [I vB BωI B]� ∈ R
6 encodes the

linear and angular velocities of the base B w.r.t. the inertial
frame expressed in the I and B frames, and nv = 6 + n j .

The equations of motion of a floating-base rigid-body sys-
tem that interacts with the environment are written as

M(q)v̇ + h(q, v) = S�τ + J�
s (q)λ + J�

e (q) f , (2)

whereM(q) ∈ R
nv×nv is themassmatrix, and h(q, v) ∈ R

nv

is the vector of Coriolis, centrifugal, and gravity terms. On
the right-hand side of the equation, τ ∈ R

nτ is the vector
of joint torques commanded to the system, and the selec-
tion matrix S = [0nτ ×(nv−nτ ) Inτ ×nτ ] selects which DoF
are actuated. We consider that all limb joints are actuated,
thus nτ = n j . The vector λ ∈ R

ns denotes the forces and
torques3 experienced at the contact points, with ns being
the total dimensionality of all contact wrenches. The sup-
port Jacobian J s ∈ R

ns×nv maps the contact wrenches λ to
joint-space torques, and it is obtained by stacking the Jaco-
bians which relate generalized velocities to limb end-effector
motion as J s = [J�

C1
· · · J�

Cnc
]�, with nc being the num-

ber of limbs in contact. Finally, f represents any external
force applied to the end-effector. This force may be the result
of a push or of some unpredicted disturbance. Under nominal
circumstances, this force is zero, i.e., f = 0. The Jacobian

2 Please note that our formulation is not tied to the specific robot shown
in Fig. 1 In fact, it is general enough such that it can be applied to any
legged robot, biped or quadruped, with or without arms.
3 In the equations of motion above, λ represents the contact wrenches,
i.e., forces and torques, acting on the robot. However, and similarly to
Di Carlo et al. (2018) and Winkler et al. (2018), we chose to represent
only the force-component as decision variables in our formulation. This
is because the quadruped used in our experiments has point-like feet and
we can assume the torque-component is negligible.
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Je ∈ R
3×nv is used to map a linear force f applied at the

end-effector to joint-space torques.

3.2 Problem discretization

In order to plan motions for complex robot systems, we use
an approach called direct transcription, which is a powerful
technique for TO.

We start by converting the original motion planning
problem (which is continuous in time) into a numerical
optimization problem that is discrete in time. We divide
the trajectory into N equally spaced segments, tI = t1 <

· · · < tM = tF , where tI and tF are the start and final
instants, respectively. This division results inM = N+1 dis-
crete mesh points, for each of which we explicitly discretize
the states of the system, as well as the control inputs. Let
xk ≡ x(tk) and uk ≡ u(tk) be the values of the state and con-
trol variables at the k-th mesh point. We treat xk � {qk, vk}
and uk � {τ k,λk} as a set of nonlinear programming (NLP)
variables, and formulate the basis of our trajectory optimiza-
tion problem as

find ξ s.t. xk+1 = f (xk, uk), xk ∈ X , uk ∈ U , (3)

where ξ is the vector of decision variables, xk+1 = f (xk, uk)
is the state transition function incorporating the nonlinear
dynamics of the system, and X and U are sets of feasible
states and control inputs enforced by a set of equality and
inequality constraints. The decision variables vector ξ results
from aggregating the generalized coordinates q1:M , general-
ized velocities v1:M , joint torques τ 1:N , and contact forces
λ1:N , i.e.,

ξ � {q1, v1, τ 1,λ1, . . . , qN , vN , τ N ,λN , qM , vM }. (4)

3.3 System constraints

After having discretized the states and controls of the system
over time as decision variables, we need to define a set of
rules that restrict the motion represented by those variables.
We do this by specifying a set of mathematical equalities
and inequalities, so that the solver “knows” how to compute
trajectories that are not only physically feasible but that also
complete the tasks we want the robot to solve.

3.3.1 Domain of decision variables

The most straightforward constraints we need to write are
the lower and upper bounds of each decision variable in ξ .
We constrain the joint positions, velocities, and torques to be
within their corresponding lower and upper bounds.

qL ≤ qk ≤ qU ∀k = 1 : M (5)

vL ≤ vk ≤ vU ∀k = 1 : M (6)

τ L ≤ τ k ≤ τU ∀k = 1 : M − 1 (7)

3.3.2 Initial and final velocities

We enforce the initial and final velocities of every joint to
be zero, i.e., v1 = vM = 0. Note, however, that this is not a
strict requirement of our framework but is chosen to ensure
static start and end configurations.

3.3.3 End-effector poses

We enforce end-effector poses with

f fk(qk, i) = pi , (8)

where f fk(·) is the forward kinematics function, qk are the
joint coordinates at the k-th mesh point, i refers to the i-
th end-effector of the robot, and pi ∈ SE(3) is the desired
pose. We use these constraints for defining the position and
orientation of the robot’s hand at specific mesh points, as
well as to define the point contacts for the robot’s feet during
stance phases.4 We pre-specify the contact sequence for the
feet, which can be computed e.g. using contact planners such
as Tonneau et al. (2020).

3.3.4 Contact forces

For mesh points where the robot is not in contact with
the environment (according to the pre-specified contact
sequences), we enforce the contact forces at the respective
contact points to be zero, i.e., λk = 0.

3.3.5 Friction cone constraints

Similarly to Caron et al. (2015), we model friction at the
contact points using an inner linear approximation with a
four-sided friction pyramid. Consider the set of points {Ci }
where the robot is in contact with its environment. Let ni
and μi be the unit normal and the friction coefficient of the
support region at each contact, respectively. A point contact
remains fixed as long as its contact force f ci lies inside the
linearized friction cone directed by ni :

| f ci · t i | ≤ (μi/
√
2)( f ci · ni ), (9)

| f ci · bi | ≤ (μi/
√
2)( f ci · ni ), (10)

f ci · ni > 0, (11)

where (t i , bi ) form the basis of the tangential contact plane
such that (t i , bi , ni ) is a direct frame.

4 We do not constrain the robot’s feet positions during leg swing phases.
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NLP Problem 1 NLP Problem 3NLP Problem 2

Required inputs
  Footstep locations and timings.

Required inputs
  A whole-body trajectory.

Required inputs
  Same as in Problem 1.

Decision variables
, joint positions
, joint velocities
, actuator torques
, contact forces

   -
   -

Decision variables
   -
   -
   -
   -

, SUF magnitude
, gain matrix

Decision variables
, joint positions
, joint velocities
, actuator torques
, contact forces
, SUF magnitude

, gain matrix

Constraints
  Task-related constraints and 
  whole-body dynamics.

Constraints
  Rigid-body dynamics equations 
  related to the SUF magnitude.

Constraints
  Aggregation of constraints 
  from Problems 1 and 2.

Purpose
  Compute feasible trajectories 
  with full-body dynamics.

Purpose
  Analyze the robustness of 
  already-existing trajectories.

Purpose
  Compute trajectories that are 
  robust to external disturbances.

Objective
  Minimization of actuator torques 
  and contact forces, or none at all.

Objective
  Maximization of SUF magnitude.

Objective
  Same as in Problem 2.

Fig. 2 Block summaries of NLP Problems 1, 2, and 3. Inside each
block, the summary states the purpose for using that formulation, the
required inputs, the decision variables and constraints involved, and the

objective function employed. The empty lineswith a ‘–’ under ‘Decision
variables’ emphasize that NLP Problem 3 is a combination of Problems
1 and 2

3.3.6 System dynamics

We enforce the equations of motion (Eq.2) using inverse
dynamics. This decision comes from our recent research on
the benefits of inverse dynamics versus forward dynamics for
eliminating dynamics defects in direct transcription formu-
lations. In brief, we have shown that problems formulated
using inverse dynamics are faster, more robust to coarser
problem discretization, and converge in fewer iterations—
see Ferrolho et al. (2021) for more details.

The inverse dynamics problem computes the joint torques
and forces required to meet desired joint accelerations at a
given state, i.e.,

τ ∗
k = f id(qk, vk, v̇

∗
k ,λk), (12)

where f id(·) is the function that solves the inverse dynamics
problem, and the desired joint accelerations can be calculated
implicitly with v̇∗

k = (vk+1 −vk)/h. We compute q̇∗
k+1 from

vk+1, and integrate it (using semi-implicit Euler integration)
to compute the next generalized coordinates q∗

k+1. Finally,
we define the dynamics defect constraints as

q∗
k+1 − qk+1 = 0 and τ ∗

k − τ k = 0. (13)

3.4 Robustness against disturbances

3.4.1 NLP problem 1

Thus far, we havemodeled the robot and its full body dynam-
ics, discretized the motion planning problem, and defined
a set of rules in the form of mathematical constraints. At
this stage, we have all the “ingredients” required for plan-
ning feasible trajectories that can be executed on the robot.
Henceforth, we will refer to this version of the formulation
as NLP Problem 1—a summary for this version of the for-
mulation is shown on the left block in Fig. 2.

Next, we are going to build upon our previous work
Ferrolho et al. (2020) to present two different problem for-
mulations, NLP Problem 2 and NLP Problem 3, which can
be used to analyze the robustness of known trajectories and
to maximize the robustness of trajectories being computed,
respectively.

3.4.2 NLP problem 2

When we compute a robot trajectory using NLP Problem
1, we may be interested in understanding how robust those
trajectories are against forces applied to e.g. the end-effector.
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Thus, onewayof determining the robustness of that trajectory
is by studying the set of forces that the end-effector is able
to resist, both in terms of force magnitude and direction. The
metric proposed in our previous work Ferrolho et al. (2020),
the smallest unrejectable force (SUF), represents the smallest
force magnitude (applied from any possible direction) that
the robot is not able to counteract. In other words, it gives the
magnitude of the largest force that the robot can counteract
in a worst-case scenario. Next, we explain how to compute
it.

Given a discretized robot trajectory (e.g., the output of
NLP Problem 1), we can compute the SUF magnitude
throughout that motion by re-formulating the NLP problem.
The decision variables for such a problem are

ξNLP Problem 2 � {ρ1, Kλ1, . . . , ρN , KλN }, (14)

where, for each k-th mesh point, ρk is the magnitude of the
SUF and Kλk is the instantaneous gain matrix mapping a
force expressed in end-effector space to ground-feet contact
space. Each and every ρk is bound to R+, i.e.,

ρk ≥ 0 ∀k = 1 : N . (15)

Kλk have no explicit bounds; but they are constrained by

a�
λ λ +

∥∥∥a�
λ Kλ

∥∥∥ ≤ bλ, (16)

with aλ and bλ pertaining to the alternative form of writing
the friction cone constraints, i.e., Aλλ ≤ bλ.5 Akin to the
equations of motion, the relationship between the SUF and
the robot capabilities at everymesh point is given by S�K τ +
J�
s Kλ + J�

e ρ = 0. And this can be rewritten in a way that
highlights the inherent structure of the constraint:

[
0
I

]
K τ = −

[
J�base
s

J�limbs
s

]
Kλ −

[
J�base
e

J�limbs
e

]
ρ, (17)

where K τ is an instantaneous gain matrix mapping a force
expressed in the end-effector frame to joint-torque space.We
enforce this relationship by splitting it into two parts. For the
top part of the equation, concerning the floating base, we
write the following nonlinear equality:

J�base
s Kλ + J�base

e ρ = 0. (18)

As for the bottom part, concerning the limbs of the robot, we
write the following nonlinear inequality:

a�
τ τ +

∥∥∥a�
τ

(
−J�limbs

s Kλ − J�limbs
e ρ

)∥∥∥ ≤ bτ . (19)

5 We refer readers to Ferrolho et al. (2020) for a full explanation and
derivation of the terms.

Once we have defined the above constraints and decision
variables, we can maximize the following objective function
with any off-the-shelf nonlinear solver:

argmax
ξNLP Problem 2

N∑
k=1

ρk . (20)

In summary, for a given (constant) trajectory, the outcome
of this nonlinear optimization problemwill be the magnitude
of the SUF over time (i.e., the ρk for every mesh point of the
discretized trajectory) and Kλk . K τ are also an output, since
they can be computed as a function of Kλ and ρ without
performing any inversion—as hinted by Eq.17. The outputs
Kλ and K τ can be used to understand and explain the specific
constraint that determines the upper bound of the SUF (i.e.,
friction cone or torque, on which foot or motor), although
that is something we do not investigate in this paper.

3.4.3 NLP problem 3

NLP Problems 1 and 2 allow us to compute a feasible
whole-body trajectory and to calculate the robustness of said
trajectories, respectively. By combining NLP Problem 1 and
NLP Problem 2, we obtain a single (albeit more complex)
problem formulation which is able to compute whole-body
trajectories that are not only feasible but also more robust
against external disturbances. We call this single formula-
tion NLP Problem 3, and it is summarized on the right block
in Fig. 2. The decision variables of NLP Problem 3 are

ξNLP Problem 3 � {q1, v1, τ 1,λ1, ρ1, Kλ1,

· · · ,

qN , vN , τ N ,λN , ρN , KλN ,

qM , vM }.

(21)

The constraints are the combined constraints of NLP Prob-
lems 1 and 2. The objective function is the same as NLP
Problem 2, i.e., the maximization of every mesh point’s SUF
added up:

argmax
ξNLP Problem 3

N∑
k=1

ρk . (22)

3.5 Contact switching

In contrast to our previous work Ferrolho et al. (2020), the
NLP formulations in Fig. 2 consider themaking and breaking
of contacts between the feet of the robot and its environment.
This is one of the main contributions of this paper, and we
will now explain how we have enabled this.
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As we have previously explained in ‘System Constraints’
(Sect. 3.3), during problem discretization, we handle feet
that are in contact with the ground (stance phase) differently
from feet that are moving through free space (swing phase).
In short, for each mesh point of the trajectory, and for each
foot of the robot: if that foot is in stance phase, we enforce
it to remain still and we also enforce the contact force to lie
within friction cone boundaries; otherwise, we enforce only
a zero contact force constraint. Since this is done during the
problem transcription process, it requires knowing the tim-
ings for contact switches a priori, aswell as feet positions6 for
each stance phase. The upside is that the problem complex-
ity does not increase much, especially compared with other
approaches that consider contact switching by formulating
complementarity constraints (e.g. Posa et al. 2014).

The approach explained in the last paragraph is enough
for enabling contact switching in NLP Problem 1. However,
additional changes are needed for Problems 2 and 3, since
those problem formulations involve extra constraints and
decision variables regarding the maximization of the SUF. In
essence, the decision variables Kλk pertaining to the feet in
swing phase must be set to zero, since no contact forces exist
in that context. Fortunately, we need not worry about K τ k ,
since it is defined as a function of Kλk (see Eq.17). Nonethe-
less, themost challenging aspect of thesemodifications is not
in the writing of the constraints, but rather in the writing of
the functions that evaluate the Jacobian of those constraints
(together with their sparsity structure). To this end, we use
modern automatic differentiation capabilities from Bezan-
son et al. (2017), but the process of passing the results of
the Jacobian and sparsity structure evaluations to specialized
NLP solvers remains tricky and requires particular attention
by the programmer to the indexing of the decision variables
and constraints.We formulate large but sparseNLP problems
through our framework and therefore specifying the sparsity
pattern is very important to attain shorter computation times,
as the Jacobianof the constraints containmostly zeroes (espe-
cially the dynamics Jacobian, which is block diagonal).

3.6 Computation time

It is not trivial to formulate or solve the optimization prob-
lems described in this paper. Special care needs to be taken
when transcribing the constraints and objective functions,
otherwise computation becomes prohibitively expensive—
especially when considering full body dynamics models.
Here, we show that our approach is computationally feasible
as an offline planning tool suitable for industrial applications.

The following evaluations were carried out in a single-
threaded process on aMacBookAir (2020)with anAppleM1

6 For now, we will consider the feet positions to be fixed, but we will
release this limitation in Sect. 5, where we discuss this subject further.

Table 1 Average computation time (in s) for solving the valve task at
different discretization rates (50Hz and 100Hz)

50Hz 100Hz

NLP problem 1 1.69 (42) 7.5 (84)

NLP problem 2 12.40 (590) 23.7 (73)

NLP problem 3 26.00 (1500) 38.0 (240)

Table 2 Characteristics of the NLP Problems for a 4 s-long trajectory
discretized at 100Hz (valve task)

NLP prob 1 NLP prob 2 NLP prob 3

Decision variables 32,448 14,800 47,248

Linear inequalities 8000 0 8000

Nonlinear equalities 25,218 7200 32,418

Nonlinear inequalities 0 22,400 22,400

Nonzeros in Jacobian 548,538 237,600 993,738

chip and 8GB of unified memory. Our framework has been
implemented in Bezanson et al. (2017), using the rigid-body
dynamics library RigidBodyDynamics.jl (RBD.jl) (Koolen
et al., 2016), and the Artelys Knitro (Byrd et al. 2006) opti-
mization library. We used the interior-point method of Waltz
et al. (2006) to solve the NLP problems. Automatic sparsity
detection was used to provide sparsity patterns to the solver,
and automatic differentiation (forward mode) for evaluating
the Jacobians of the constraints—but we allowed Knitro to
compute the Hessians via the limited-memory quasi-Newton
BFGS method.

InTable 1,wepresent the elapsed time (in s) for solving the
three NLP problems summarized in Fig. 2, for an industrial
task where the quadruped robot must rotate a wheel/valve
using the arm mounted on its torso.7 The average solving
timewas determined by solving each problemmultiple times
with different initial conditions. These conditions involved
random translations and rotations of the robot’s base relative
to the manipulated object.

Based on the table, it is evident that tackling these
problems involves a high computational cost, making our
approach impractical for online planning. However, the com-
putation times are still quite reasonable to consider using
our framework offline, enabling us to create a repository of
behaviors that can be efficiently accessed during online exe-
cution.

In relation to the size of the problems, employing a 100Hz
discretization over a trajectory duration of 4 s yields a total
of 401 knot points. Table 2 shows the number of decision
variables, constraints, and nonzeros in the Jacobian for that

7 Apart from this example, an in-depth evaluation of the NLP perfor-
mance is beyond the scope of this paper. For further investigation, refer
to Ferrolho et al. (2020).
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amount of knot points, offering some insight into the com-
plexity of problems of such size.

4 Experiments and results

We now present the experiments we carried out for evalu-
ating our work and their respective results. This section is
organized as follows:

4.1 Describes the system integration work required for com-
bining the quadruped robot and the robot arm, as well as
our planning framework with existing controllers;

4.2 Presents a repeatability test where we commanded the
robot to turn an industrial handwheelmultiple times from
different starting positions and orientations;

4.3 Compares the robustness of two distinct trajectories for
turning a hand wheel and for pulling a lever;

4.4 Explains how the SUF can be used as a tool for analyzing
existing robot trajectories;

4.5 Demonstrates the capabilities of our framework to plan
robust whole-body motions involving making and break-
ing of contacts; and finally,

4.6 Tests the robustness of a loco-manipulation trajectory for
lifting a bucket with incremental weights until failure.

Subsections 4.1, 4.2, 4.3, and 4.4 are concrete evaluations
of our method on real robot hardware. Whereas the focus of
subsections 4.5 and 4.6 is to demonstrate new features.

4.1 System integration

In order to demonstrate the capabilities of our planning
framework on the real robot, we integrated it with the exist-
ing software stacks of the ANYmal quadruped and Kinova
arm.

For the quadruped, we used one of ANYbotics’ software
releases which comes with multiple locomotion controllers
working out-of-the-box. Human operators can control the
robot remotely via a joystick to tell the robot where to walk
and which gait to use, or they can pre-specify a mission as a
set ofwaypoints for the robot towalk through.Moreover, they
provide an interface for specifying a custompayload attached
to the robot, but this is assumed to be a static payload, such
as a thermal camera, or an imaging sensor.

For controlling the robot as awhole (quadruped+arm),we
settledon twooperationmodes: teleoperated andautonomous.
When the robot is in teleoperated mode, we do not move
the Kinova arm; it remains still in a “parked” configuration
(stowedon top of the quadruped).Doing this allows us to con-
sider the arm a static payload, which we can specify using
the interface provided by ANYbotics. In turn, this allows us
to take advantage of every existing capability provided by

ANYbotics’ stack. Finally, whenever we wish to operate the
arm, we switch to autonomous mode. In this mode, we use
a custom controller.8 for the quadruped base and Kinova’s
velocity controller for the arm. This is the mode we use to
execute the whole-body trajectories generated with our plan-
ning framework.

In summary, we start the robot in teleoperated mode by
default. In this mode, we can walk the robot on flat ground
and over ramps, but we cannotmove the arm.We use the tele-
operatedmode towalk the robot around a facility and towards
points of interest. Then, once the robot reaches said points
of interest, it awaits an instruction (e.g, “turn the wheel”, or
“pull the lever”). As soon as the robot is given an instruction,
it switches into autonomousmode, our planning framework is
triggered and computes awhole-body trajectory for the robot.
This trajectory is then passed on to the arm and quadruped
controllers for synchronous execution. Once the robot fin-
ishes executing the task autonomously, it switches back into
teleoperated mode and the system returns control to the
human operator, who can walk the robot remotely towards
the next task of the mission.

A demonstration of the entire system is available here:
https://youtu.be/3qXNHVCagL8. In the video, a human tele-
operates the robot to walk around a mock-up scaffolding
of an offshore platform (such as an oil rig). The operator
approaches different points of interest, and commands the
robot to autonomously turn a hand wheel, pull a lever, push a
gate whilst standing on a ramp, and pull a rope to lift a 1.1kg
bucket. These tasks are the ones shown in Fig. 1. Although
we have focused on tasks relevant for industrial inspection,
our framework allows us to formulate virtually any loco-
manipulation task through the definition of a set of constraints
for the robot.

4.2 Repeatability test

Our goal for this experiment was to ensure the following
characteristics of our system:

• the robot is able to operate continuously for extended
periods of time without falling;

• the operator is able to send walking commands to
the robot during teleoperated mode, but not during
autonomous mode;

• the Vicon motion capture system calculates the relative
transform between the free-floating base of the robot and
the manipulation target reliably;

8 We use the same controller as in our previous work Ferrolho et al.
(2020). We commanded each joint of the quadruped with feedforward
torque and feedback on position and velocity. Position, velocity, and
torque references are updated at 400Hz.

123

https://youtu.be/3qXNHVCagL8


1472 Autonomous Robots (2023) 47:1463–1481

Fig. 3 Snapshots of the robot grasping the hand wheel during the
repeatability test. Notice how the position and orientation of the robot
base relative to the wheel are different on every snapshot. Video: https://
youtu.be/Ok8Pcwn_I0w

• the planning framework computes a feasible whole-body
trajectory for completing the manipulation task;

• the controller is able to reach and grasp targets, and track
reference trajectories accurately.

To verify the points above, we carried out a repeatability
test for turning an industrial hand wheel. During this test, we
operated the robot continuously for 30min without a safety
harness. During this time, a human operator walked the robot
to different points near the manipulation target and triggered
the “turn wheel” behaviour. The test was completed success-
fully and our system passed all of the points listed above.
Figure3 shows a few snapshots of the robot grasping the
wheel during the test. Video footage is also available here:
https://youtu.be/Ok8Pcwn_I0w.

4.3 SUF optimization for turning a wheel and
pulling a lever

In this experiment, our goal is to compare the resulting SUF
of two different objective functions: the first trajectory (base-
line) is optimized considering a cost function that minimizes
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(c) SUF magnitude over time
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Fig. 4 From top to bottom: initial configuration of the baseline trajec-
tories (top), initial configuration of the proposed trajectories (middle),
and plot comparing the SUF of the baseline and proposed trajectories
(bottom). Left and right columns concern the tasks of turning an indus-
trial hand wheel and pulling down a lever, respectively

torques and contact forces, while the second trajectory (pro-
posed)maximizes the SUF explicitly.We run this experiment
for two tasks: (i) turn a hand wheel clockwise by a full rev-
olution, and (ii) pull down a lever from its resting position.
Figure4 shows an instance of the results of this experiment.

4.3.1 Turning the hand wheel

In Fig. 4’s left column, we can see that the SUF magni-
tude of the proposed trajectory (orange line) is within 73N
to 76N throughout the entire motion; whereas the SUF of
the baseline trajectory (blue line) lies within 56 N to 66
N—it starts and ends at ∼ 56N, increasing slightly in the
middle of the trajectory where it peaks at ∼ 66N. The SUF
mean-percentage-increase of the proposed approach versus
the baseline is approximately 24%. Video: https://youtu.be/
1M32AHuuDhI.
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4.3.2 Pulling the lever

In Fig. 4’s right column, the SUF magnitude of the proposed
trajectory (orange line) remains within 68–75 N throughout
the entire motion; on the other hand, the SUF magnitude
of the baseline trajectory (blue line) remains within 50–
69 N. The SUF mean-percentage-increase of the proposed
approach versus the baseline is approximately 18%. Video:
https://youtu.be/6A9eSdfcj7A.

We repeated this experiment multiple times for different
robot orientations relative to the wheel and the lever. The
results were identical to those shown in Fig. 4. Both the
baseline and proposed trajectories successfully completed
the task. However, trajectories planned using the proposed
approach outperformed the baseline version in both tasks in
terms of their robustness against external disturbances.

4.4 The SUF as a tool for analyzing trajectories

Earlier in this manuscript, when we presented Fig. 2, we
explained how the SUF allows us to analyze the robustness
of existing trajectories, and also how it allows us to compare
multiple trajectories with each other. In this experiment, we
want to further develop the idea of using the SUF as an anal-
ysis tool. Our goal is to show that, thanks to our problem
formulation, we can analyze individual trajectories to under-
stand e.g. how important of a role each of the legs play during
a motion.

In Fig. 5a, we show a robot trajectory planned with our
framework for picking up something from the ground; and
in Fig. 5b, the solid blue line represents the SUF over time
for that motion. An important question we may ask is:
how important is each leg for a successful execution of the
motion? We can ask a similar question from a different per-
spective: if there is a hardware fault on any of the quadruped
legs, how much of the initial motion’s robustness remains?
Next, we explain how we can answer these questions.

Thanks to the way we formulated the SUF constraints, we
can set individual terms in Kλk to zero in order to “simu-
late” what would happen if the torques of the motors of a
specific leg of the robot were at their torque limits, or what
would happen if the contact force at a specific foot was on the
boundary of the friction cone—or both. We solved Fig. 2’s
NLP Problem 2 four times (one for each leg) with the goal of
analyzing the SUF at the end-effector while considering the
motor torques to be at their limits and the ground-feet con-
tact forces to be at the boundaries of their respective friction
cones. The dashed lines plotted in Fig. 5b show the results.

We can see that the magnitude of the SUF decreases,
regardless of which leg is affected. We can also see that the
dashed lines are slightly different from each other, which is
expected since the trajectory is not perfectly symmetric and
each leg has a slightly different load from every other leg.
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Fig. 5 The image on the top shows a motion plan for picking up an
object from the floor. The plot on the bottom shows, for each leg, how
the SUF decreases if we were to consider the current torques to be at
actuator limits and current contact force at the friction cone boundary

Moreover, we can actually identify which leg plays the most
important role in this motion by looking at the dashed line
with the lowest values (the one for which the SUFmagnitude
decreased the most)—it was the hind right (HR) leg.

4.5 SUF optimization withmaking and breaking
contacts

In this experiment, we wanted to verify that our plan-
ning framework is able to optimize trajectories involving
switching contacts. We also evaluated whether the proposed
objective function is able to compute a trajectory that is more
robust to external disturbances than the baseline cost.

We defined a task in which the robot starts with all four
feet on pre-specified positions and then raises its right hind
foot off the ground for a short time. We also constrained the
gripper to remain still at a certain location for the duration of
the whole motion. We then solved the task in two different
ways: with NLP Problem 1 (baseline) andwith NLP Problem
3 (optimized). The plot in Fig. 6 shows the magnitude of the

123

https://youtu.be/6A9eSdfcj7A


1474 Autonomous Robots (2023) 47:1463–1481

0.0 0.5 1.0 1.5 2.0
time [s]

0

20

40

60

80

fo
rc

e 
[N

]
Smallest Unrejectable Force (SUF)

Baseline
Optimised

Fig. 6 Plot of the SUFmagnitude over time for two trajectories solving
the same task specification.Blue shows the baseline version (solvedwith
NLP Problem 1), and orange shows the optimised version (solved with
NLP Problem 3)

SUF over time for the resulting trajectories. Because NLP
Problem 1 only outputs a trajectory, we passed it to NLP
Problem 2 afterwards in order to compute the SUF values—
keep in mind that this did not change the baseline trajectory.

The planner was able to compute a feasible trajectory for
solving the task using both approaches. However, as we can
see in Fig. 6, the optimized trajectory is more robust than
the baseline. Moreover, the plot shows that the breaking and
making of contacts directly influences the magnitude of the
SUF. For both trajectories, the SUF magnitude decreases
when the right hind foot breaks contact with the floor; and
then increases again as the foot reestablishes contact. Video:
https://youtu.be/H6-g8NLGyYE.

4.6 Robustness test with incremental weights

In this last (but central) experiment, we plan a robust loco-
manipulation trajectory for pulling a rope attached to a bucket
and execute it on the real robot. Our goal is to show that
the extended version of our framework can handle prob-
lems that require simultaneous locomotion andmanipulation
while maximizing robustness against disturbances. Planning
loco-manipulation trajectories where robustness is consid-
ered proactively was not possible before, and this is really
what we have been trying to tackle with our work in this
paper.

The experimental setup (shown in Fig. 7) consisted of a
rope threaded through a pulley. On one end, the rope was
attached to a bucket on the ground; and on the other end, the
rope was attached to a handle on a platform. The task for the
robot was to grasp the handle from the top of the scaffolding
and then pull the rope to lift the bucket. Importantly, in order
to lift the bucket high enough, the robot had to take a few steps
back while simultaneously pulling the rope with its arm. The

position of the handle w.r.t. the robot was calculated with the
Vicon motion capture system (similarly to the other tasks),
and the footsteps were pre-specified using a static crawl gait.

To test the robustness of the trajectory planned with our
framework, we asked the robot to lift the bucket in multiple
trials, wherein the weight of the bucket was incremented 1kg
in each trial (and the bucket was empty on the first trial). The
bucket itself weighs approximately 1.1kg.

The robot completed 4 successful trials, in which it lifted
1.1, 2.1, 3.1, and 4.1kg. On the 5th trial (5.1kg) the robot
was able to lift the bucket momentarily, but then the han-
dle slipped off the gripper and we counted this as a failure.
A video of the experiment is available: https://youtu.be/
puy2S90_3CM, and Fig. 7 shows some snapshots of the last
successful trial (i.e., trial 4), where the robot lifted the bucket
containing three 1kg weight plates. Finally, Fig. 8 shows the
magnitude of the SUF over time for this task, where we can
see the dips corresponding to the intervals when the robot
was taking steps.

This experiment showed that our robotwas capable of reli-
ably executing a loco-manipulation trajectory planned with
our framework. Moreover, it showed that the robot is indeed
capable of dealingwith external disturbanceswhile executing
a trajectory. It is worth remembering that for this experiment
(as well as for the other experiments shown in this paper)
we did not model the payload; in other words, the system
does not know about the bucket or how much it weighs a pri-
ori (during planning). Instead, the weighted bucket is acting
as a disturbance, and the robot’s ability to lift the bucket is
therefore a direct outcome of our robustness metric and the
feedback terms used in our controller.

5 Contact location optimization

Throughout this work, we pre-specified the position for each
foot of the robot during the loco-manipulation planning stage.
For example, when the human operator commands the robot
to turn the hand wheel, our framework calculates the feet
positions of the robot at that instant via forward kinematics,
and then the mathematical constraints of our optimization
problem ensure the robot’s feet remain on those positions
while the wheel is being turned. But this raises an impor-
tant question: when we optimize a trajectory that maximizes
robustness, if we constrain the feet to specific positions, will
that not limit how robust the resulting trajectory is? In other
words, perhaps the resulting trajectory could be more robust
if another set of feet locations had been chosen.

In light of this, we set out to investigate an approach for
choosing more adequate contact locations within our motion
planning framework. We now consider the additional prob-
lemof optimizing the continuous location of the feet contacts.
Our goal was to understand whether our planner is capable
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Fig. 7 Snapshots of the robot lifting a bucket withweight plates, weigh-
ing 4.1kg in total. This task requires the quadruped base to take steps
at the same time as the arm moves (loco-manipulation). Despite the

dynamics of the heavy bucket not being modeled, the robot is still able
to complete the task, thanks to the robustness of the planned motion and
to the feedback gains of the controller
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Fig. 8 SUF magnitude over time for the bucket task

of adapting feet positions such that the resultant whole-body
trajectory can be more robust.

In order to enable optimization of feet locations, we
extended our NLP formulation. For that, we expand the vec-
tor of decision variables of the NLP problem to include the
xy-coordinates of each foot for the beginning of each individ-
ual stance phase. We added the xy-coordinates of each foot
to our problem as decision variables, assuming that the robot
would stand on flat ground (i.e., we assume the z-coordinate
for each foot is zero). We also modified Eq.8 to consider
those decision variables, since previously their right hand-
side (i.e., pi ) were a pre-specified constant position for each
foot. The extended NLP formulation is more complex than
the one previously used throughout this work: it has addi-
tional decision variables (some of them coupled9), and more

9 Feet positions are represented explicitly by the new xy-coordinates,
but also implicitly by the forward kinematics of the robot’s configuration
q.

complex constraints for enforcing the contact positions; how-
ever, it provides more flexibility to the solver, which should
now be able to compute feasible trajectories that furthermax-
imize robustness by adapting foot contact locations.

To test this more-flexible NLP formulation, we defined
a motion planning task in which the robot must maintain
its configuration while reaching a target point in task-space
with its end-effector. Then, we solved three slightly different
versions of the optimization problem:

Nominal In this version of the problem, we fixed the con-
figuration of the robot base to its default joint
positions (defined by the manufacturer). We did
not constrain the configuration of the Kinova arm.
Therefore, the solution to this version of the prob-
lem consists of the robot moving only its arm to
reach for the target and then holding that configu-
ration. No objective function is provided, so this is
a feasibility problem.

Baseline In this version, the solver is able to change the con-
figuration of the whole-body of the robot. This is
similar to the baseline formulation used in previ-
ous sections, but the feet locations are nowdecision
variables. The torques and contact forces over time
are minimized.

Proposed In this version, the solver is also able to change
the configuration of the whole-body of the robot.
This is similar to the proposed formulation used
in previous sections, but the foot locations are now
decision variables. The magnitude of the SUF over
time is maximized.

Next, we show the results of these slightly different prob-
lem versions. The robot configurations of each version are
shown in Fig. 9. The feet positions of each solution are shown
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Fig. 9 Robot configurations resultant from the extended NLP formulation which allows the solver to optimize feet locations. The radius of the
sphere corresponds to the magnitude of the SUF
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Fig. 10 Feet locations, support polygons, and projected centers of mass
of the trajectories computedusing thenominal (blue),baseline (orange),
and proposed (green) versions of the optimization problem. Feet posi-
tions are shown using circles; the line segments connecting the circles
form the support polygons; and the diamonds denote the center of mass
positions projected onto the support polygons (Color figure online)

in the plot of Fig. 10. After solving each version of the prob-
lem, we then computed the magnitude of the SUF at the
gripper. The computed SUF spheres are also shown in Fig. 9,
and labeled with their respective magnitude.

The first thing we can observe from these results is that
the solver did take the liberty of optimizing the feet loca-
tions. This verifies that the solver is able to deal with our
more-complex NLP formulation, albeit taking longer than
the previous formulation. Secondly, the plot of the feet loca-
tions clearly shows that the trajectory optimized with the
baseline approach has a smaller support polygon than the
trajectory optimized with the proposed approach. This is rel-
evant because we know that the support polygon is a good
representation for the region where the CoM projection can
lie for achieving static balance.However, the support polygon
is only an approximation since it does not take into account
robot capabilities (torques and friction at the contacts); e.g.,
it is not guaranteed that the robot has enough actuation power
to maintain a pose whose CoM projection lies on one of the
corners of the support polygon. This leads to our next obser-

vation: while the baseline approach keeps the CoM position
close to the nominal version, the CoM of the trajectory opti-
mizedwith the proposed approach lies further from the center
of the support polygon. Our metric converges to this config-
uration because it takes into account the robot capabilities,
and is able to find a more stable and robust pose, even though
its CoM projection does not lie at the center of the support
polygon. Finally, we can see that the worst-case disturbance
scenario that the robot can resist is better for the proposed
approach, and worse for the nominal scenario. As labeled
in Fig. 9, the magnitude of the SUF for the nominal, base-
line, and proposed approaches were 58N, 57N, and 76N,
respectively.

The above results show that our formulation is able to
optimize feet locations, and that ourmetric is able to guide the
solver to solutions that have increased capabilities of resisting
external forces—at least in theory, that is. However, whenwe
deploy our method on the robot, there are always practical
subtleties that may affect how the robot behaves, such as
signal delay or the type of controller being used. With that in
mind, we carried out an experiment to assess the actual force-
rejection capabilities of the real robot. Next, we explain the
experiment setup and then analyze the results.

In this experiment, we executed the trajectory optimized
with each approach on the real robot and, for each case, we
disturbed the robot by pulling its end-effector from three
different angles. A summary of the events that occurred for
each angle/trajectory is given below:

Summary of Angle #1

Nominal First, the end-effector deviated from its set
point. Then, the right hind and right front feet started
to slide. However, the robot did not fall over.
Baseline First, the end-effector deviated from its set
point. Then, the right front foot started to slide. Next,
the right hind foot lost contact. Finally, the robot top-
pled to its left side.
Proposed First, the end-effector deviated from its set
point. Then, the right front foot started to slide. Next,
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both left and right hind feet slipped, but only slightly.
The robot did not fall over.

Summary of Angle #2

Nominal The end-effector deviated from its set point
and the hind feet started to slip at approximately the
same time. The robot would have fallen down, but the
harness prevented it from collapsing on the floor.
Baseline The end-effector deviated from its set point.
The feet did not move and the robot did not fall over.
Proposed First, the end-effector deviated from its set
point. Then, the hind feet started to move. If the har-
ness had not supported it, the robot would have fallen
down.

Summary of Angle #3

Nominal The end-effector deviated from its set point.
The left hind foot moved. The robot did not fall.
Baseline The end-effector deviated from its set point.
The left front foot moved and the left hind foot lost
contact. Finally, the robot toppled over to its right
side.
Proposed The end-effector deviated from its set
point. The left front foot moved and the left hind foot
lost contact. Finally, the robot toppled over to its right
side.

When we carried out the experiment, we used a force
gauge between the end-effector of the robot and the source of
the disturbance in order to measure—and capture on video—
the magnitude of the force being applied to the robot’s
end-effector.

In Fig. 11, we show the state of the experiment at the
instantwhen the force gauge indicated the greatest forcemag-
nitude, for each trajectory and for each angle. The label on the
bottom right corner of each snapshot indicates the magnitude
of the value measured by the force gauge. For each row, i.e.,
for each trajectory, the label highlighted in red corresponds to
the magnitude of the SUF found experimentally for the three
distinct angles used for the experiment. The way to interpret
these results is to take the smallest SUF found experimen-
tally for each trajectory (highlighted in red and signifying the
worst case perturbation), and then compare thosemagnitudes
to find the trajectory with largest worst case SUF (indicating
the highest robustness).

As highlighted in Fig. 11, the proposed trajectory exhib-
ited the highest SUF (60N). In percentage terms, the SUF of
the proposed trajectory was approximately 33% better than
both nominal and baseline trajectories, which is a signif-
icant improvement. Moreover, the SUF magnitudes found
experimentally were 21–22% smaller than the SUF predicted
originally (the ones shown in Fig. 9). We understand this is

due to model mismatch and unaccounted factors when we
deploy the trajectory on the real robot. But the fact that the
percentage decrease is similar for each trajectory is reassur-
ing, as it tells us that the unaccounted factors of the real
robot affected the SUF equally, and the proposed trajectory
performed better than the nominal and baseline trajectories
as we had predicted in relative terms.

6 Discussion and future work

In this paper, we presented a framework for planning whole-
body loco-manipulation trajectories robust to external distur-
bances. We integrated our framework with existing software
stacks to enable easy switching between teleoperated and
autonomous modes. We demonstrated the capabilities of that
integration by having a human operator remotely control the
robot via a joystick in a mock-up rig of an industrial site, and
by having the robot autonomously plan complex and rich
whole-body motions for real-world tasks within that setting,
such as turning a hand wheel, pulling a lever, opening a gate
whilst on a ramp, and lifting a heavy bucket by pulling a rope.
We also carried out a wide range of experiments to test the
reliability of the full system, analyze the SUF of existing tra-
jectories, optimize the robustness of trajectories (including
those involvingmaking and breaking of contacts). Finally,we
carried out an initial investigation on the possibility of using
our framework for the purpose of optimizing feet positions.

Our experiments showed that the resulting system was
reliable and versatile. The robot was able to navigate the
industrial scaffolding and successfully execute all the chal-
lenges we prepared. Moreover, we showed that the SUF is a
valuable metric, both for analyzing existing trajectories and
for maximizing the robustness of new trajectories. Finally,
our preliminary research on the optimization of feet loca-
tions showed promising results. We now conclude with a list
of interesting avenues for future work.

6.1 Taking into account force-feedback during
execution

In this work, we have disregarded the dynamics model of
objects being manipulated by the robot. We maximized
robustness against external disturbances at the end-effector
in order to demonstrate that we do not have to necessarily
model the object dynamics (which may not be available at
planning time), as the controller is able to track the reference
trajectory and compensate for the object dynamics through
feedback terms at the controller level. However, in extreme
cases, controller feedback terms are not enough to execute
the desired motion appropriately.

An immediate extension of our work would be to take
into account force-feedback during execution of the task.
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Fig. 11 Snapshots of the experiment in which we disturbed the robot
by pulling its end-effector. Pictures on the same row correspond to the
same trajectory, whereas pictures under the same column share the same
disturbance angle. The snapshotswere taken from the video footage col-
lected during the experiment, at the time the force gauge indicated the

greatest force magnitude—which is shown in the label on the bottom
right corner of each picture. Labels highlighted in red are the worst-
case scenario for each row (out of the three angles shown). The five red
circles on each snapshot represent the initial positions of the four feet
and of the end-effector. Video: https://youtu.be/tUXQUqLneTE

We could plan the motion just like we have done throughout
this paper before starting the actual manipulation task. How-
ever, once the robot starts executing the task, the object being
manipulated will exert a set of forces that in turn apply torque
at the robot’s joints. An interesting direction for future work
would be to take into account those torques at the joint level
to estimate the force being applied to the robot as a conse-
quence of the robot-object interaction, and then replanning
the motion taking into account that force estimation. This
would mean that we would still be able to maximize the
SUF, but we would now have a much better model of the
task taking place.

6.2 Decreasing computational time for real-time
execution

For many real-world tasks, such as the ones we showed with
our robot, it is sufficient to take the current state of the world,
plan a motion in “one-shot” for completing the task, and
then executing that trajectory. However, there are scenarios
where this approach might fail, especially if the state of the
world changes as the robot executes the task—meaning that
the planned trajectories become invalid. Real-time control
schemes (such as MPC) are usually employed for dealing
with those scenarios. Currently, the computation times of
our framework for planning robust trajectories are too slow
to be compatible with the budget available in those real-time
control schemes.
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There are a few possible approaches for tackling this chal-
lenge, if we want to use our framework for such scenarios. In
the first approach, we can try to decrease the computational
time e.g. by making the robot model simpler, making the
problem smaller by considering amore coarse discretization,
or by decreasing the complexity of the problem constraints.
Another approach would be to change the NLP solver used
for solving the trajectory optimization problems. E.g., we
could attempt to formulate our robustness optimization prob-
lem using a DDP-based approach, such as Mastalli et al.
(2020), instead of using a direct transcription approach that
relies on off-the-shelf solvers. However, the disadvantage of
this approach is that, while off-the-shelf commercial solvers
are able to deal with a wide range of constraints, enforc-
ing general constrains with DDP-based approaches is pretty
much an active research topic of its own. Finally, a third pos-
sible approach would be to speed-up the computation of the
robustness metric itself. Perhaps there is a way the metric
can be learnt, represented by a surrogate model, or stored in
a look-up table for quick retrievals.

6.3 Whole-body robustness analysis

In this work and in our previous work Ferrolho et al. (2020),
we focused on improving the robustness to external distur-
bances applied at the end-effector. This was because wewere
interested in applications where the robot had to interact
with objects withoutmodeling the dynamics of those objects.
However, the mathematical derivation of the SUF applies to
any point on any rigid body of the robot mechanism. In other
words, instead of computing the SUF at the end-effector, we
could also compute the SUF at the robot’s base, at the knees,
at the elbows, and so on. An interesting path for future work
would be the development of a software for analyzing robot
trajectories where a robot and a trajectory are given as inputs,
and then as an output we could see the SUF spheres at mul-
tiple points along the robot’s kinematic chain. This kind of
visualization would allow us to better understand and have
a very clear visual representation of bottlenecks and weak-
nesses in trajectories. With such a tool, we would be able
to look at a trajectory, and easily indicate that at a certain
time, the robot is susceptible to failure even with small dis-
turbances applied to specific parts of its body.

6.4 Robust footstep optimization

Another interesting direction for future research is the possi-
bility of finding contact locations by taking into account the
robustness metric. We presented preliminary work on this
topic in the previous section.
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Appendix

In Table 3, we list all the videos supplementing our work,
in the same order as they appear in this manuscript. A playlist
is also available here: shorturl.at/oFJU0.

Table 3 Supplementary videos

Description Link (YouTube)

System demonstration youtu.be/3qXNHVCagL8

Repeatability experiment youtu.be/Ok8Pcwn_I0w

Robustly turning a wheel youtu.be/1M32AHuuDhI

Robustly pulling a lever youtu.be/6A9eSdfcj7A

SUF with contact switching youtu.be/H6-g8NLGyYE

Test with incremental weights youtu.be/puy2S90_3CM

Robust footstep locations youtu.be/tUXQUqLneTE
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