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Recently there has been a surge of interest in understanding implicit regularization properties of iterative
gradient-based optimization algorithms. In this paper, we study the statistical guarantees on the excess risk
achieved by early-stopped unconstrained mirror descent algorithms applied to the unregularized empirical
risk. We consider the set-up of learning linear models and kernel methods for strongly convex and Lipschitz
loss functions while imposing only boundedness conditions on the unknown data-generating mechanism.
By completing an inequality that characterizes convexity for the squared loss, we identify an intrinsic
link between offset Rademacher complexities and potential-based convergence analysis of mirror descent
methods. Our observation immediately yields excess risk guarantees for the path traced by the iterates of
mirror descent in terms of offset complexities of certain function classes depending only on the choice
of the mirror map, initialization point, step size and the number of iterations. We apply our theory to
recover, in a clean and elegant manner via rather short proofs, some of the recent results in the implicit
regularization literature while also showing how to improve upon them in some settings.

Keywords: Excess Risk; Regularization; Iterative Regularization; Early Stopping; Rademacher Complex-
ity; Mirror Descent; Fast Rates.
1. Introduction

In a typical supervised statistical learning set-up, we observe a dataset D,, of n input—output pairs (x;,y;) €
X x Y € R? x R sampled i.i.d. from some unknown distribution P. When learning with respect to a
loss function £ : Y x ) — [0, 00), the goal is to output a function g(D,,) : X — ) that minimizes the
risk R(g(D,)) defined as follows for any function g : X — Y

R(g) = By y)pl (X, V)]

T A prior version of this work appeared at the NeurIPS 2020 conference.
¥ For the purpose of open access, all the authors have applied the CC BY public copyright licence to any author accepted
manuscript version arising from this submission.

© The Author(s) 2023. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/
4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

€20 Joquieoaq €z uo 1sonB AQ L0BYYY2/0L0E/b/Z L/2101E/EeW/ W00 dNo"olWapeDe/: ARy Woly papeojumod



STATISTICAL COMPLEXITY OF EARLY-STOPPED MIRROR DESCENT 3011

A statistical estimator is a mapping g : D, + g(D,); we denote the range of this mapping by G. To
simplify the notation, we will often write g for g(D,,). Whether g denotes the estimator or the estimator’s
output g(D,,) will always be clear from the context. Among the most studied statistical estimators is
the empirical risk minimization (ERM) estimator, which, given a function class G, outputs a function
g = 8g(D,) defined as

_ . I <
8 € arsmink, (g), where R,(») = PINACIEARBE (1.1)
8€ i=1

in some cases with a regularization penalty term added to the optimization objective R, (g), such as £,
norm of the model parameters. We consider the agnostic or distribution-free setting, i.e. the case where
the data-generating distribution P is not constrained to follow a well-specified model or to satisfy some
low-noise assumptions. Instead, we only assume that the support of the distribution P is constrained to
the set X x V. In the agnostic case, a key performance measure of an estimator g is its excess risk with
respect to some reference class of functions F that does not necessarily coincide with the estimator’s g
range G:
E(@, F) = R(g) — inf R(f).
feF

We remark that the excess risk £(g, F) is a random variable because g = g(D,)) is a function of the
observed random sample D,,. In this paper, we obtain sharp excess risk bounds that hold with high
probability for a family of statistical estimators defined as suitably stopped optimization procedures,
in a sense explained below.

Traditionally, in learning theory, statistical and computational properties of ERM estimators have
been considered separately. From a statistical point of view, localized complexity measures have become
a default tool in statistical learning theory and empirical processes theory for controlling the excess risk
of ERM algorithms gg with respect to the function class G itself, i.e. for controlling £ @g, G) [13, 32].
A rich and general theory regarding these complexity measures has been developed and used to provide
excess risk bounds in both classification and regression settings, yielding minimax-optimal results in
several cases. Such complexity measures depend on combinatorial or geometric parameters of interest,
such as the VC-dimension or eigenvalue decay of the kernel matrix and, in particular, they serve as a
guiding principle to choose a suitable explicit regularizer for a set of candidate models @gk) yen> Where
A € A is a hyper-parameter that controls the amount of regularization. In practice, some A* € A is then
chosen via some model selection procedure such as cross-validation, aiming to select a model with the
smallest risk. From a computational point of view, computing the estimators (?g\gl) 54 can be done by
solving the corresponding optimization problems defined in Equation (1.1), one for each A € A. An
appealing aspect of this approach is that the design and analysis of efficient optimization algorithms,
exploiting the geometry of G, that arises from the structure of the model as well as the distribution P,
can be done independently of the statistical analysis of its performance.

Recent years have also witnessed an increased interest in directly studying the statistical proper-
ties of models trained by gradient-based methods, particularly in relation to the notions of implicit
regularization and early stopping. For a family of functions G = {g, : @ € R™} parametrized by a
vector o, such methods are fully characterized by the initialization point o, and an update rule, which,
given o, and the gradient of the empirical risk at «,, generates the next iterate o, , yielding a set
of candidate estimators @a,)tzo Early stopping has an effect akin to explicit regularization discussed
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Excess Risks along the Regularization Paths ()0, Excess Risks along the Optimization Paths (au)i>o
where a, € argmin, R, (o) + Mp(a) traced by Mirror Descent Algorithms
101 —— #(a) = ||al} (Ridge Regression) g —— 101 = —— {3 Mirror Map
s - (@) = |laf (Lasso) v/' N - Hyperbolic Entropy Mirror Map
= =
£ £0
0 0
-8 -6 —4 -2 0 2 0 50 100 150 200 250 300
log A Number of Iterations ¢
(a) Explicit regularization. (b) Implicit regularization.

FiG. 1. Let£(y,y) =y —y )2 be the quadratic loss and let us consider a distribution P such that X ~ N(0,1;) and Y|X = x ~
(a/ , x) +N(0,52) for some parameter o’ € R4, Fix n = 200,d = 100 and let &’ be a 10-sparse vector with non-zero entries equal to
+1. Due to the sparsity of &', explicit regularization via £ penalization results in a class of models ()3 >0 that at their minimum
achieve significantly lower risk than the class of models generated via £ penalization (cf. Fig. 1(a)). Figure 1(b) demonstrates a
similar phenomenon from an implicit regularization point of view. Due to the sparsity of ’, the choice of a hyperbolic entropy
mirror map (cf. Section 4.2) yields an optimization path that at its minimum achieves excess risk nearly an order of magnitude
lower than the path generated by the vanilla gradient descent updates. In the plot above, the solid lines denote means over 100
runs, whereas the shaded regions correspond to the 10th and the 90th percentiles.

above, and the stopping time t* can be chosen in practice via cross-validation, just as in the case of
choosing the explicit regularization parameter A* corresponding to the best model among (?g\g/\) rea- In
modern large-scale machine learning applications, early stopping is often the preferred way to perform
model selection, since obtaining a new model is as cheap as performing a step of gradient descent, as
opposed to solving a new optimization problem with a different regularization parameter. In Fig. 1,
we demonstrate that different choices of optimization algorithms applied to the unregularized empirical
risk R,, yield different statistical performance along the optimization path @a[)tzo, in a similar way that a
choice of an explicit regularizer affects the statistical performance along the corresponding regularization
path. Moreover, in general, early stopping is crucial to achieving optimal statistical performance in
the same way as selecting an appropriate regularization parameter is crucial for achieving optimal
statistical performance for penalized estimators. In particular, the results obtained in this paper cannot
be reproduced by restricting the analysis to the statistical estimator obtained at the convergence of the
iterative optimization procedure (i.e. taking r* = 0o). We discuss this point in more detail in Section 3.1
preceding the statement of Theorem 2.

It is by now well understood that changing the update rule that generates the sequence @at),zo, e.g.
by changing the optimization algorithm or parametrization of the model class, can directly affect both
the statistical properties of the iterates §at and computational properties, such as an upper-bound on the
optimal stopping time #*. However, most of the literature has focused on the investigation of vanilla
gradient descent updates: &, | = &, — 1V, R, (8,,) (cf. Section 2.1). The existing theory does not easily
generalize to other update rules corresponding to different problem geometries. A general theory that
connects the notion of early stopping for a more general class of update rules with the well-established
theory of localized complexities is still missing. More broadly, a general ‘language’ to reason about
the statistical properties of trajectories traced by optimization algorithms applied to the unregularized
empirical risk is still lacking.

€20 Joquieoaq €z uo 1sonB AQ L0BYYY2/0L0E/b/Z L/2101E/EeW/ W00 dNo"olWapeDe/: ARy Woly papeojumod



STATISTICAL COMPLEXITY OF EARLY-STOPPED MIRROR DESCENT 3013

In this paper, we study a family of update rules given by the mirror descent algorithm [15,44]. Mirror
descent, which includes vanilla gradient descent as a special case, is increasingly becoming the tool
of choice in optimization and machine learning, applied well beyond the traditional settings of convex
optimization and online learning. Among the properties that make mirror descent appealing are its ability
to exploit non-Euclidean geometries via properly designed mirror maps, the fact that the algorithm
admits a general potential-based convergence analysis in terms of Bregman divergences, and its ability
to represent a large class of algorithms in a unified and well-developed framework. Our work reveals
an inherent connection between the statistical properties of the mirror descent iterates (g, )~ and the
notion of offset Rademacher complexity [30,36]. Consequently, our work unearths a simple and elegant
way to simultaneously analyse upper-bounds on the stopping time r*, as well as the excess risk £ @az’ F)
for all + < ¢* in terms of the mirror map, the initialization point o, the step-size and the function
class F.

The rest of the paper is structured as follows.

e In Section 1.1, we introduce the background material on local Rademacher complexities and the
family of mirror descent algorithms.

e In Section 1.2, we formulate the assumptions under which we establish the main results of this paper.

e In Section 2, we introduce our proof technique in the simplified setting of the continuous-time mirror
descent flow with respect to the quadratic loss. We compare our approach with related work in
Section 2.1.

* Section 3 contains our main results. In Section 3.1, we show that early-stopped mirror descent flow
satisfies a certain deterministic inequality called offset condition (cf. Section 1.1). In turn, it follows
that the excess risk of a suitably stopped mirror descent flow can be controlled via offset (local)
Rademacher complexity theory, known to yield sharp excess risk bounds in a variety of problem
settings. In Section 3.2, we obtain a corresponding result for the discrete-time mirror descent iterates
under an additional smoothness assumption on the empirical risk function and strong convexity
assumption on the mirror map.

* Example applications of our main results are demonstrated in Section 4.

* Some potential future directions are discussed in Section 5.

1.1 Background

We begin this section by explaining the difficulties involved in analysing early-stopped iterative
algorithms via the classical notion of localized complexities (Section 1.1.1). We then describe the offset
Rademacher complexities, which is a form of localization based on a different mathematical machinery
that is more suitable for our setting (Section 1.1.2). Finally, we define the mirror descent updates and
outline a short well-known potential-based proof of its convergence (Section 1.1.3).

In what follows, we let g — flI7 = 3 >, (€(x) — f()? and [lg — flI7 = El@(X) —f(X))?]
denote the empirical and population £, distances between functions g and f, respectively. Further, given
a function class F, we denote by gz € F a function that attains risk equal to inf geF R(g)." A table of
notation is provided in Appendix A.

U If such a function g F does not exist, we can redefine g 7 to be any function in F such that R(¢ 7) < inf,e 7 R(g) + 6 for any
arbitrarily small § > 0.
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1.1.1  Local Rademacher Complexities The classical notion of global Rademacher complexities [10]
can only establish the slow rates of order n~ 12 on the excess risk (cf. [11], Theorem 2.3)). This
observation was one of the primary motivating factors in the development of localized Rademacher
complexities [13,32]. Let G be the range of an estimator g. Rather than considering the Rademacher
complexity of the whole function class G, localization builds on the idea of computing the Rademacher
complexity of the smaller class {g € G : |lg — gg||2 < r} for some suitably defined radius r that can
be obtained by solving a certain fixed-point equation. More recent work focuses on unbounded and, in
particular, heavy-tailed settings [42] as well as extending the scope of localization to study estimators
other than ERM, e.g. to study the statistical performance of tournament procedures [40,43]. Crucially,
this line of research is rooted in the following two assumptions. First, (P, G) is assumed to satisfy a
convexity type assumption known in the literature as the Bernstein condition (cf. [11]), which states that
for some constant C > 0, R(g) — R(gg) > Cllg — gg ||123 for any g € G. If the class G is convex and the
loss function is quadratic then this condition follows immediately by convexity with C = 1 (see [43],
Definition 5.2) for more details). The second condition is imposed on the estimator g itself (rather than its
range G), which requires that the inequality R, (g) < R, (g¢g) holds for all realizations of D,, a property
naturally satisfied by the ERM algorithm over the class G. Our setting, however, does not easily fit into
the above assumptions. To see why, note that the sequence @a[) >0 Obtained by some iterative algorithm
aimed at minimizing the unconstrained empirical risk is not necessarily explicitly constrained to lie in
the class G. Thus by the time the inequality R,,(gat) < R, (gg) is satisfied, the iterate §at can already be
outside the class G, potentially violating the Bernstein condition (cf. Fig. 2) in all cases except when G
is taken to be the union of ranges of «/S’\a, over all t > 0.

1.1.2  Offset Rademacher Complexities When learning with the quadratic loss, a theory of localization
based on shifted Rademacher processes was proposed by Liang et al [36] (inspired by prior work in
online learning [49]). The use of shifted empirical processes in order to bypass technicalities present
in the classical localization arguments dates back at least to [63] and has recently found applications in
cross-validation [34], classification [70] and PAC-Bayes bounds [66].

Given an observed data sample D,, = (x;,y)"_, let Dy = (x;)i__,. The empirical offset Rademacher
complexity is defined as follows.

DEFINITION 1. (Empirical Offset Rademacher Complexity). Let D, = (x;,y;)}_; denote an observed
data sample and let oy, ...,0, be a sequence of independent Rademacher random variables (that is,
symmetric random variables taking values in {—1, +1}). For any parameter y > 0, the offset Rademacher
complexity of a function class G is defined as

l n
Rpe(G.7) =E,, [sug H DICIOR yg(x,.>2)H . (1.2)
i=1

Upper-bounds for offset Rademacher complexity of linear functions and kernel classes are demon-
strated in Section 1.2. Note that since the terms —y g()ci)2 are always non-positive, the above notion of
complexity is never larger than global Rademacher complexity of the class G, which is recovered with
the choice y = 0. On the other hand, for any y > 0, the quadratic term in the above definition has a
localization effect by compensating for the fluctuations in the term involving Rademacher variables (see
the discussions in [36], Section 5.2) and ([30], Section 3)). Importantly, the theory of localization via
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Violation of the Bernstein Condition

1.0
0.8
— (ar)r=0
0.6 x aF
Xx .

s+ o Rlap) — Rlag) >0
0.4 ‘\%& « o Rlaw) — Rlag) <0
0.2

a
0.0,
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FiG. 2. Let € (y,y) = (y — y’)2 be the quadratic loss; fix o/ = (1.5,0.5)7, n = 100 and consider a distribution P defined as
X~ N, %) andY|X = x ~ (as,x) +N(O, 0.52), where X = {: 5} For simplicity, we denote linear functions (¢, -) by the parameter
a.Forany R > Olet Fg = {« : |la|l; < R} denote an ¢; ball of radius R and let aFp = argminaej:R R(«) denote the population
risk minimizer in Fg. Let g be some estimator and suppose that we want to upper-bound £ (g, F1), where the function class F|
is denoted by the shaded region in the plot above. The theory of localized Rademacher complexities can be readily used to upper-
bound £(g, F) for proper algorithms (i.e. estimators g € F7) that with probability 1 satisfy R, () < Ru(x F,), for instance,
if g is an ERM algorithm over the class . The classical theory of localization is, on the other hand, less suitable for analysis
of unconstrained iterative algorithms. To see why, consider running mirror descent with the mirror map ¥ () = ozTEa/Z, the
initialization oy = 0 and the step-size n = 1073, Define the stopping time /* = min{z > 0 : Ry(e;) < R,L(oz]:I )} so that our
early-stopped estimator is identified with the parameter «;+. We plot the values of o+ (denoted by crosses and triangles) over
100 runs, where the crosses denote instances of o such that R(ax) < R(«, Fi ). Such points, in particular, violate the Bernstein

condition for all C > 0 (i.e. it does not hold that R(c+) — R(c ]:1) > Cllap — o F le,) and hence demonstrate that statistical
analysis of early-stopped mirror descent estimators does not easily fit within the classical framework of localized complexity
measures. In contrast, all points in F] (denoted by the shaded ball) satisfy the Bernstein condition with parameter C = 1; thence,
bounds on £(g, F1) can be easily obtained via the classical notion of localization whenever g is a proper estimator (i.e. g € Fp)
such that R, (2) < R, (« F,) almost surely.

offset complexities replaces the Bernstein condition used in the classical theory of localization by the
estimator-dependent offset condition defined below.

DEFINITION 2. (Offset Condition). A triplet (P, F,g) satisfies the offset condition with parameters &,y >
0, if for D, ~ P", with probability 1, we have R, (2) — R, (g7) + ¥ |2 — g 7II2 < ¢.

The above condition with ¢ = 0 was introduced in [36] where it was called the geometric inequality
and shown to hold for ERM estimators over convex classes JF as well as the two-step star estimator [7]
over general classes for finite aggregation. A key advantage offered by the theory of offset complexities
is that the range of g need not be a subset of F, as long as the offset condition is satisfied. This allows us
to consider very general estimators g, possibly with non-convex ranges G. In this respect, our work can
be seen as showing that early-stopped mirror descent satisfies the offset condition defined above. Once
an estimator is shown to satisfy the offset condition, its excess risk £(g, F) can be controlled in terms of

the expected offset complexity Ep, [ Rpe (G — g7, y)]. In particular, ([36], Theorem 3) provides such

guarantees for the expected excess risk. Recently, it was shown by Kanade et al. [30] that the expected
offset Rademacher complexity provides excess risk guarantees that hold with high probability. Before
we state this result, let us introduce some additional notation. For a function class F, denote its star hull
around zero by star(F) = {Af : f € F, 1 € [0, 1]}; also, for a function class F and any function g, let
F—g={f—g:feF}

THEOREM 1. (Theorem 3.3 in [30]). Let P be a data-generating distribution supported on X x [—b, b]
(that is, Y = [—b,b]), where b > 0. Let F be a class of reference functions mapping X to [—b, b].
Suppose that the following two conditions hold:
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1. There exists C;, > 0 such that for any y € [—b, b] the loss function £(-,y) is Cp,-Lipschitz;

2. The estimator g satisfies the offset condition (see Definition 2) with parameters ¢,y > 0.
Moreover, the estimator’s g range is a function class G mapping X to [—b, b].

Then, for any § € (0, 1) with probability at least 1 — &, we have

>

~1(C},)* log(1/8
E@F) = ¢ Cp, [ Ry star(@ — g, ()71 | + e ( b)n eld/® |,

where ¢, ¢, > 0 are some universal constants and C;) = C;, + yb.

The generality of the above result allows us to improve upon the existing bounds in the early stopping
literature even for the vanilla gradient descent updates (cf. Section 2.1). Indeed, observe that the above
bound does not impose any restrictions on the data-generating distribution P other than boundedness.
On the other hand, concerning random design excess risk bounds treated in this paper, the existing
works [51,64] connecting early-stopped gradient descent iterates to the notion of local Rademacher (or
Gaussian) complexity rely on a well-specified model assumption in their analysis.

1.1.3  Mirror Descent The key object characterizing the geometry of the mirror descent algorithm
is the mirror map ¥, a strictly convex and differentiable function mapping some open set D € R™ to
R whose gradient is surjective, i.e. {Vi{/(«) | « € D} = R™. By slightly abusing notation, we use
R,(x) := R,(g,) to denote the empirical risk of g,. When optimizing the empirical risk R, (), the
mirror descent updates in continuous and discrete time are given, respectively, by

_1
Sy = - (VZW(at)) VR, (@) and V(o) = V¥ (a,) — 1VR,(@,), (1.3)

where n > 0 is the step-size. We remark that the choice ¥ (o) = % ||a||% reduces the above updates to
gradient descent. A key notion in the analysis of mirror descent algorithms is the Bregman divergence,
defined as Dy, (o', &) = (') — ¥ (e0) — (Vi (a), o’ — @) for all o', & in the domain of 1. By convexity
of ¥, the Bregman divergence D,, is non-negative and enters the analysis of mirror descent algorithms
through the following elementary equality:

d
— EDW(O/"XI) = <—VRn(at),o/ — oct>. (1.4)

Leta, = % fé a,dt. In the optimization literature, the above equation can be used to establish that R, («,)
can get arbitrarily close to R, (e) from above, for any reference point «’. In particular, by convexity of
R,, we have (—VR, (o), &’ — ;) = R, (t;) — R, (&) and s0

t t
;Dw(a/,ao) > ;/0 —%Dv, (o', a)ds > ;/0 (R, () — R, (a))ds > R, (&,) — R, (@), (1.5)

where the last line follows by convexity of R, . Remarkably, the above proof works independently of the
choice of the mirror map ¥, establishing convergence for a family of algorithms in a unified framework.
For more information we refer the interested reader to the surveys by Bubeck [18] and Bansal and Gupta
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[9]. The latter survey focuses entirely on such potential-based proofs in a variety of settings, including
acceleration.

1.2 Assumptions

In this section, we formulate the assumptions on the loss function and the representation of prediction
functions needed to establish our main results presented in Section 3.

The first assumption requires that the loss function £ is strongly convex and differentiable, in the
sense formulated below.

AssumPTION 1. (Strong Convexity and Differentiability). Let £ : ) x )V — [0, 00) be the loss function.
Forany y € ) let Zy, : Y — [0, 00) denote the function y — £(y,y"). We assume that the following two
conditions are satisfied.

1. For any y’ € ), the function ¢, is differentiable.

2. There exists y > 0 such that for any y’ € ) the function £, is y-strongly convex, in the sense
that for any y,,y, € Y the following inequality holds:

Ly ) = €y (1) + £, ) 0y =) + 50 —3)*.

A classical example of a loss function satisfying the above condition is the quadratic loss £(y,y") =
(v — ¥")?, which is 2-strongly convex. Observe that the above condition is much weaker than assuming
that the empirical risk function @ — R, (g, ) is strongly convex.

The second assumption concerns the representation of functions. We will only consider parametric
classes of linear functions in the following sense. We identify the parameter system by the set R for
some natural number m and denote the parameters by « € R™. Each vector « € R identifies a linear
function f,, satisfying the conditions described below.

AssumPTION 2. (Function Class Representation). Let D, = (x;,y; ?:1 denote the observed data sample.
We assume that the learning algorithm has access to a (possibly data dependent) matrix Z = Z(D,)) €
R™™ such that for any o € R™, the corresponding function f, satisfies f,, (x;) = (Z«); for any i =

1,...,n.

Let us provide two example settings commonly studied in iterative regularization literature that admit
the conditions specified in Assumption 2.

ExaMPLE 1. (Linear Regression). Given a data sample D, = (x;,y,)i_,, where x; € R?, let m = d and
let the i-th row of Z € R"*“ be given by the vector x;r. For any o € R, let 8, () = {«, ) be the linear
function identified by «. This is the setting of simulations performed in Figs 1 and 2, for different choices
of mirror maps.

Letting G = {g, : @ € R?} be the set of all d-dimensional linear functions, its (empirical) offset
Rademacher complexity R, (G, ) can be upper bounded as follows via a direct computation:

1 n
N,G.v) =E, [; > (og(x) — yg(x,.)2)H
i=1

I
&=
2
S
1
wn
=i
T

{(G,Za) — yaTZTZa}:|

Il
|
&
2
S
1
wm
=1
T
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T
1 1 n T n
= ;]Eal ’’’’ on @( E UiZi) (Z Z)T E O’iZl-
i=1 i=1

1 n
=—>71(Z"2)'z
4)/71 i=1

1 T T
:mtrace(ZZi Z'2)'z,

i=1

_ ﬁ trace ((ZTZ)T(ZTZ))

IA

1
——rank(Z)
4yn

d
< -
~ 4yn

where (ZTZ)Jf denotes the Moore—Penrose inverse of Z'Z. We remark that the global Rademacher
complexity corresponding to y = 0 is infinite in the above example, while it leads to the ‘slow rate’ of
order 1/4/n under the additional boundedness condition |[|«||, < 1 instead of the ‘fast rate’ d/n obtained
above.

We now turn to the second example that admits the conditions of Assumption 2, namely, the setting
of non-parametric regression in reproducing kernel Hilbert spaces (RKHS), frequently considered in
iterative regularization literature (e.g. [14, 51, 64, 67]).

ExAMPLE 2. (Kernel Regression). Let D, = (x;,y;)’_; be an observed data sample, where (x;,y;,) €
X x Y for some abstract space X and )V C R. Letk : X x X — [0,00) be a Mercer kernel which
for any x,y € X satisfies (k(x,-),k(y,)); = k(x,y) and consequently induces a reproducing kernel
Hilbert space H equipped with norm ||-||4,. Then, conditionally on the observed sample D,,, denote by
K € R™" a matrix such that K,:/ = k(xi,xj). To each o € R", we associate a function g, € H defined
as g, = >y a;k(-,x;). Thus, for any i = 1,...,n, we have g,(x;) = (Ka); and hence we may set
m = n and Z = K. We refer the interested reader to the book by Scholkopf and Smola [56] for more
background on reproducing kernel Hilbert spaces.

Let H; = {h € H : |iglly < 1}. We will show how to bound the (empirical) offset Rademacher
complexity R, (H,,y). Keeping the data sample D, fixed, by the Representer theorem it is enough
to consider functions of the form {g, = Zf:l ak(x;,-) o Ko < 1} € H,. Hence, repeating the
calculations carried out in Example 1 while taking the additional constraint a Ko < 1 into account, for
any y € (0, 1] we have

acR:aTKa<1

1
R,(H,y) = —EGI o |: sup {(O’,KO[) — yaTKzoc}:|
n n

1
=—EK, . g,,[ sup {(G,K(ya)) - (VOZ)TKZ(VOZ)}:|
yn aeR"aTKa<1
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! [ T2
= Fpo| s {(0.Ka) —dK%)
rn | aeRaTKa<l1
1 [ 3 T2 T
:ﬁ]Egl ,,,,, Gn_sélﬂg'z)lng(.){<o,1{a)_a KO[—)»(O( Ka_l)}
| _
< —E,, | inf [A + sup [<G,Ka) —oT(K? +XK)°[}H
yn seeesUn L )\.>0 aeRn
1
= iﬁo[ + [uﬂg (0. Ka) — a7 (K? + 1K)a
L 1 2 T2
= — inf A+—trace((K +AK)K) .
yn i>0 4

We will now rewrite the above bound in a more familiar form resulting from the classical local
Rademacher complexity bounds for kernel classes. Letting pt; > p,--- > pu, > 0 denote the
eigenvalues of the kernel matrix K and choosing A > 0 that balances the X term with the trace term, we
obtain
R (Hiy) < . 2infla 0,\>lzn: Hi
,Y) < —-2in >0:1> - —_—
It Y 4 wi+ A

i=1
1 1< Auw
= — . 2inf A>0:x23-zi
41.:1/4«1"")\,

n

1 1 AL
= —2inf{a>0:a> [ > L
yn { 2\ mit A
<12'f{k ox>1i'{,\}
< —.2in >0:A>— min{u;,
yn { 2 p !

It can now be verified that the obtained upper-bound on the offset Rademacher complexity is the
same as the corresponding bounds obtainable via the classical localization theory2 ; see, for example,
([62], Corollary 14.5). In particular, the order of magnitude of 9R,(H, y) is determined by the rate of
eigenvalue decay of the kernel matrix K, which can be readily computed from the given data sample.
Consequences of the above bound for various kernel classes are discussed in ([62], Section 13.4.2).

2. Summary of Techniques and Main Results

We develop a general theory for learning linear models (including kernel machines) with strongly
convex and Lipschitz loss functions, which shows how the optimization trajectory of unconstrained

2 Indeed, the offset Rademacher complexity can be upper bounded via the classical notion of local Rademacher complexity, as
shown in ([30], Lemma 3.5).
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mirror descent applied to minimize the unregularized empirical risk is inherently connected to excess
risk guarantees offered via the offset Rademacher complexity theory. Unlike in most prior work on
early stopping, the notion of statistical complexity appears naturally from intrinsic properties of mirror
descent applied to the unregularized empirical risk, without invoking lower level arguments related to
concentration to the fictitious population version of the algorithm. Furthermore, our theory leads to an
explicit characterization of stopping times from the point of view of both optimization and statistics,
which directly yields excess risk bounds and allows us to re-derive previously established results, and
some new results, in a much simpler fashion.

As discussed in Section 1.1, early-stopped unconstrained iterative algorithms do not easily fit within
the mathematical framework of classical localization techniques, partially explaining the scarcity of
results connecting localized complexity measures with such algorithms. Offset Rademacher complex-
ities, on the other hand, open up another avenue for establishing such connections via the design of
update rules tailored to satisfy the offset condition (cf. Definition 2). In the view of the preconditions of
Theorem 1, instead of optimizing the empirical risk R,, a natural approach to consider is an application
of some iterative optimization algorithm to directly minimize the term appearing in the definition of the
offset condition: Rz: V(@) = R, (@) —R,(&")+ ylg, — & ||3. For any y > 0, the gradient Vakzi " (@)
depends on the unknown reference point &’ and hence cannot be computed in practice. Remarkably, we
show that the mirror descent updates applied to the empirical loss R, simultaneously implicitly minimizes
iegi ! for all reference points o’ up to a certain stopping time (which depends on «’) while also staying
inside a certain Bregman ‘ball’ centred at o’ up to the corresponding stopping time. While mirror descent
was developed within the framework of convex optimization, it has also found applications in a wide
range of problems including bandits [1], online learning [28], the k-server problem [19] and metrical
task systems [20]. In this respect, our work can be seen as an exposition of yet another example where
mirror descent naturally solves a problem outside of its originally intended scope.

In this paper, we show that the excess risk of early-stopped mirror descent iterates can be controlled
using the offset Rademacher complexity theory. In order to do so, we need to show that the pre-conditions
of Theorem 1 hold. In particular, we need to show that suitably early-stopped mirror descent iterates
satisfy the offset condition, and also, we need to guarantee that the early-stopped iterates lie in some
bounded set, the offset Rademacher complexity of which will give the resulting excess risk bound.

To show the key idea of the proof technique that we present in this paper, for simplicity, let us
temporarily fix the loss function £(y,y’) = (y — y)? to be the quadratic loss. In addition, for the sake of
the exposition, we will only consider the continuous-time mirror descent flow in this section, deferring
the analysis of discrete-time updates to Section 3.2.

The key insight behind our main result is the following identity, linking the potential-based analysis
of mirror descent (cf. Section 1.1) to the statistical guarantees derived from offset complexities via the
offset condition (cf. Definition 2).

LEMMA 1. Let £(y,y") = (y—)')? be the quadratic loss and suppose that the function class representation
assumption (Assumption 2) holds. Then, for any «, o’ € R™, the following holds:

(VR (@),0' —a) =R, (@) — R, @) + llg, — g |l

Proof. By Assumption 2, there exists some Z € R such that for any parameter « € R™ we have
84 (x;) = (Za);. Hence, we can express the empirical loss function as R, (a) = %HZO( - y||§, where
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y € R” is a vector with the i entry equal to ;- Hence, for any o, o’ € R™ we have

(—VR,(a). 0 —a) = 2 <—ZT(Za e — a>
n

= %(—(Za —Zd' +Zd' —y),Z(d' — a))

=2 Jza 2o/~ 1 2fza — v 20~ )

= 2 Yo~ zol | L (2o 32 + |2t~ 02~ 12 1)
- % | 2o — 2o/ ||} - % - (nR, @) + | 2@ = @) |5 = nR, @)

2
n’

=R, (o) — Rn(o/) + ||ga — 8y

where the fourth line follows by applying the equality 2 (a, b) = ||a||% + ||b||% — |la — b||% , which holds
for any vectors a, b € R™. O

To appreciate the interest in the above lemma, we shall now revisit the potential-based proof of mirror
descent presented in Equation (1.5) in Section 1.1. This time, instead of using the convexity of R, which
gives (—VR, (o)), o’ — ;) > R,(e,) — R, (c'), we directly plug in the identity given in Lemma 1 into
Equation (1.4) which yields the following equality:

d
= 2Dy @) = Ry(@) = R,(@) + llgq, = &l

The above equation shows that while R, (e,) — R, (&) + || 8o, — 8 ||% > (, the iterates of mirror descent
stay within the Bregman ball {« € R™ : D, (@, a) < D, (o', &)} At the same time, the integration
argument used in Equation (1.5) establishes that the term R, (¢t,) — R, (&) + 184, — 8 ||% eventually gets
arbitrarily close to 0, and thus the early-stopped mirror descent iterates satisfy the offset condition (cf.
Definition 2). For a visual demonstration of the above proof sketch see Fig. 3. We provide full details of
this argument in the proof of Theorem 2 as well as a discrete-time version in Theorem 3.

Summary of contributions:

1. Our work extends the scope of offset Rademacher complexities to a family of early-stopped
mirror descent methods. Additionally, we extend the scope of mirror descent to be used as a
computationally efficient statistical device in an i.i.d. batch statistical learning setting.

2. Our main results, in a short and transparent way, yield bounds on the excess risk of the iterates of
(both continuous-time and discrete-time) mirror descent using offset Rademacher complexities. In
contrast to prior work, our arguments require no direct use of low-level mathematical techniques
such as symmetrization, peeling or concentration to the population version of the algorithm.

3. In Section 4, we demonstrate some selected applications of our main results and comment on the
connections to the related work therein.

€20 Joquieoaq €z uo 1sonB AQ L0BYYY2/0L0E/b/Z L/2101E/EeW/ W00 dNo"olWapeDe/: ARy Woly papeojumod



3022 V. KANADE ET AL.
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FiG. 3. Consider the setting of Fig. 1 and let &y = Ry(oy) — Rp()) + || o — 8u/ ||ﬁ The above plots illustrate the following
two points. First, there exists a stopping time time ¢* such that e ~ 0 (denoted by the vertical dotted line). Hence, the triplet
(P, {gq'}s g%*) satisfies the offset condition (cf. Definition 2) with parameters (¢ = 1, & & 0). Second, while &; > 0, the Bregman
divergence Dy, (o', ay) denoted by the green line is non-increasing. It follows that the estimator 8ay is constrained to lie in the set
{8a : Dy (a@,a) < Dy (o', )}, the offset complexity of which can be used to upper bound the excess risk of interest. Crucially,
this type of analysis does not directly rely on the particular form taken by the mirror descent update rules, which bypasses the
limitations present in prior work (cf. Section 2.1) and allows us to provide excess risk guarantees for a family of mirror descent
algorithms. In the plot above, the solid lines denote means over 100 runs, the dots denote the minimum of each solid line and the
shaded regions correspond to the 10™ and the 90" percentiles.

2.1 Comparison with Related Work

The idea of iterative regularization has a long history. Early ideas can be traced back to the stochastic
approximation arguments of Robbins and Monro [54]. Even more closely related are the ideas put forth
by Louis Landweber [33], yielding one of the regularization schemes in the theory of inverse problems;
see the book by [23] for further details and a more extensive background from the inverse problems
point of view. In the Statistics literature, the first work to analyse early-stopped gradient descent in
connection to minimax optimality appears to be due to Bithlmann and Yu [21], formulated in the context
of L,-boosting algorithms. Regarding early stopping regularization for boosting algorithms, see also the
works [12,16,29,68]. However, from the practical perspective, early stopping regularization was used
long before, for example, in neural network training [48].

Closer to the setting investigated in this paper, statistical and computational properties of uncon-
strained gradient descent updates have been a subject of intense study over the past two decades, with
most of the existing results focusing on the quadratic loss in reproducing kernel Hilbert spaces (RKHS)
[14,17,21,51,67], while for general loss functions, see [39,64]. It shall be noted that, in contrast to our
work, some of the works investigating early stopping focus on attaining bounds in the |-||,, or in the ||-|| p
norms. The quality measure |-||, assumes that the design is non-random. At the same time, the quality
measure ||-||p is different from the excess risk considered in this paper; as discussed in ([57], Section
1), bounds obtained in ||-||, norm do not, in general, imply bounds on the excess risk. In addition, the
analysis in the above-cited works [14,21,51,67] is closely tied to the £, geometry of the gradient updates
and to the quadratic loss function. Such a set-up admits closed-form expressions for the early-stopped
gradient descent iterates in terms of relatively simple linear operators acting on the observed labels.
Spectral properties of these linear operators are then analysed as a function of the number of iterations,
which can be solved for a stopping time via some form of bias-variance decomposition. Our work, in
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contrast, enables simultaneously studying a family of update rules, characterized by different choices of
the mirror map, in a unified framework without relying on the access to closed-form expressions of the
iterates.

One of the primary contributions of our work is the connection between mirror descent iterates and
localized complexity measures. To the best of our knowledge, there are only two prior works making
connections of a similar nature, albeit only in the setting of Euclidean gradient descent updates, that is,
with the choice of the mirror map ¥ (o) = ||| % /2 [51,64]. Such connections are observed in an algebraic
fashion in the former work, while localized complexities appear more naturally in [64], via the analysis
of the range of estimators defined by gradient descent iterates up to the stopping time. In this respect,
the work in [64] is the closest to ours. In Theorem 4, we show how a straightforward application of our
main results immediately recovers results similar to the ones obtained in [51,64] and defer an extended
discussion of similarities and differences to Section 4.1.

Beyond the Euclidean set-up, interest in understanding the generalization properties of neural
networks has sparked research into implicit regularization properties of various factorized models. In
the context of neural networks, the authors of [6,25,26,35,65] show that iterates of gradient descent
applied to factorized matrix models are implicitly biased towards some sparsity-inducing structure such
as low-rankness or low nuclear norm. Such results, however, hold under certain limit statements, such as
vanishing initialization or step-size, the number of iterations going to infinity or no noise in the problem.
In the setting of linear regression, matrix factorization models reduce to vector Hadamard product
factorizations, where early-stopped gradient descent was shown to yield minimax optimal rates for sparse
recovery with the analysis vitally relying on the restricted isometry property [59,69]. In Theorem 5, we
demonstrate a simple analysis of such updates within our framework without any assumptions on the
design matrix other than bounded columns, yielding a (up to a log factor) minimax optimal algorithm
for in-sample linear prediction under £; norm constraints.

Implicit regularization properties of mirror descent have recently attracted a considerable amount of
attention; however, most results in this area either focus on optimization guarantees that do not provide
any direct link to statistical guarantees on out-of-sample prediction [8,27], or establish a connection to
statistics via some forms of explicit regularization [58]. Specifically, it is shown in ([58], Section 3) that
the continuous-time mirror descent flow satisfies excess risk guarantees similar to guarantees obtainable
via a regularization path of an explicitly penalized procedure. However, this analysis is based on a strong
convexity assumption on the empirical risk function, an assumption not present in our work (see the
discussion following Assumption 1). Without strong convexity of the empirical loss function, ([58],
Section 4) show that mirror descent iterates can diverge from a regularization path of a corresponding
explicitly regularized procedure. This does not cause issues in our analysis because our excess risk
guarantees, obtained for suitably early-stopped mirror descent iterates, do not rely on pointwise closeness
to some specific explicit regularization scheme. In Proposition 6, we show how the analysis of such
problems naturally fit into our framework and defer an extended discussion and comparison with the
other related work [2] to Section 4.3. Yet other papers have used early stopping to solvers applied directly
to appropriately constrained problems and regularization-promoting structures encoded directly into the
loss function [41].

Recent work has also focused on providing statistical guarantees for iterates generated via gradient
descent updates in stochastic [3,38,45,55], accelerated [22,47] and distributed settings [37,52,53]. These
works provide statistical guarantees without establishing connections to localized complexity measures;
we anticipate such connections to be studied within our framework in future work, for a family of mirror
descent algorithms.
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3. Main Results

The main results of this paper establish that early-stopped mirror descent iterates satisfy the preconditions
needed to obtain excess risk bounds via the offset Rademacher complexity theory; see the statement of
Theorem 1. In particular, we show that suitably stopped mirror descent iterates satisfy the offset condition
(see Definition 2) while remaining in a certain bounded set, the offset complexity of which yields an
excess risk upper-bound.

In the argument sketched in Section 2, we have restricted our attention to the simplified case of
the quadratic loss that allowed us to prove the equality (cf. Lemma 1) (—VR, (), — o) = R, (a) —
R, (&) 4118y — &y ||%. However, the argument presented in Section 2 only relied on having a lower-bound
on (—VRn (@), a’ — a). Such a lower-bound follows directly from the strong convexity assumption on the
loss function (Assumption 1), as we show in the following lemma.

LEMMA 2. Suppose that the loss function ¢ satisfies the y-strong convexity assumption (Assumption 1)
and suppose that the function class representation assumption (Assumption 2) holds. Then, the following
inequality holds for any o’ € R™:

14
(~VR, (@), 0 =) = R,(@) = R,(@) + ZlIge = gu'll7
Proof. Recall that (x;,y;)?_, denotes the observed data sample and for any y’ € R denote by ¢y the
function y — £(y,y’). By Assumption 1, the following holds for any i = 1,...,n:
Y
€y, (8o () = £y,(86, () + €5,(84, () (8 () — 84 (x))) + E(g“ () — 8o (X))

Summing the above equation for i = 1, ..., n and dividing both sides by n yields

2
ne

1 n
Ry(@) = Ry (@) + ~ D (80 () (8o () — 84, () + g |8 — 8 (3.1)

i=1

Finally, by Assumption 2, we have g, (x;) = (Za); = z;—a, where z; € R™ is the i-th row of the matrix
Z € R™™ Hence, we have

% ; €, (86 () (8 (%) — g4, (%) = % ; .Gl e =zl o)

% g (Ziﬁ;i (z,-Toz))T (o — )

3 (Vb ) @ e
i=1

= (VRn(oz), o — a).

Plugging the above identity into the inequality (3.1) and rearranging completes the proof. g
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We will now state and prove our main results. The rest of this section is split into two parts. First,
we prove a continuous-time result (Section 3.1) already sketched in Section 2. Next, in Section 3.2, we
prove a discrete-time result under additional assumptions on smoothness of the empirical risk function
and strong convexity of the mirror map.

3.1 Continuous-Time Version of the Main Result

In this section, we state and prove a continuous-time version of our main theorem, which demonstrates the
key ideas behind our approach in the simplest setting. The first part of the theorem shows that the iterates
of mirror descent stay within a certain Bregman ball up to the prescribed stopping time ¢*. The second part
of the theorem immediately establishes that when the parametrization given by @ € R™ is independent of
the data®, the early-stopped estimator 8an satisfies the offset condition (cf. Definition 2) with parameters
y /2 (depending on the strong convexity of the loss function £) and any ¢ > 0 (depending on the amount
of prescribed computational resources). For the applications we consider, we choose ¢ to match the
complexity measure of interest and recover the statistical-computational trade-offs consistent with the
previous results in the literature. In particular, * = O(Dw (o', ag)/€), so that achieving higher statistical
accuracy requires more computational power; we also note that the dependence of #* on the unknown
radius D, (o', o) is unavoidable purely from an optimization point of view. Finally, we remark that
early-stopping is, in general, necessary to transform the results of the below theorem into sharp statistical
guarantees. Indeed, in Section 4.2, we demonstrate an application to sparse linear prediction problem
where early-stopped mirror descent iterates satisfy an excess risk bound with logarithmic dependence
on the ambient dimension, whereas at convergence (i.e. * = 00), this is no longer true. To see this,
consider the setting of Section 4.2 and take d = n and Z = /nl,,where I, is the n x n identity matrix;
then, at * = oo we obtain the (unique) ordinary least squares solution with excess risk of constant order
(i.e. a trivial guarantee).

THEOREM 2. Suppose that the y-strong convexity assumption (Assumption 1) and the function repre-
sentation assumption (Assumption 2) hold. Let oy € R™ be the initialization point and ¥ : R” — R be
a mirror map (cf. Section 1.1.3). Consider the continuous-time mirror descent dynamics given by

4y = ~(V*Y (@) ' VR, ()
df t t n t/-

Then, for any chosen reference point ¢’ and any ¢ > 0, there exists a stopping time * =
*(D,, ¥, 0, a') < 2D, (o', &) /€ such that:

l. Forall0 <t <t g, € G, g, a') ={g, € R": Dw(a’,a) < Dw(a’,ao)}. In particular, up
to the stopping time #*, the mirror descent iterates remain in the set G(¥, o, o).

2. At the stopping time 7*, we have R, (a,.) — R, () + %Ilg%, — g,1I2 < . In particular, at the
stopping time 7*, the estimator 8a satisfies the offset condition (cf. Definition 2) with parameters
¢ and y /2.

3 When the parametrization is data-dependent, such as in the setting of kernel methods, our main theorems also establish that
the early-stopped mirror descent iterates satisfy the offset condition (cf. Definition 2). We analyse a concrete example and provide
full details in Theorem 4.
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Proof. Using Lemma 2 instead of Lemma 1, we may repeat the argument sketched in Section 2. To
simplify the notation, let §, = R, (o;) — R, (&) and r, = % lg, — g, I|2. As discussed in Section 1.1.3,
the continuous-time mirror descent iterates satisfy the following identity:

d !/ /!
— =Dy @) = (—VR, (@), a' —a,).

Combining the above equation with Lemma 2 we obtain the following bound on the continuous-time
change of Bregman divergence

d
_ E‘Dw (@ a) >r, +34,.

LetT =2D,, (o', &) /&. Integrating both sides of the above inequality we obtain

T d T
an (o/,ao) — Dw(a/,ar) = /0 _EDW (o/,ocl)dt > /0 (r, +8,)dt

Dl[f (Ol/, ao) _ E

1 T
— inf {r, + 8,} < —/ (r, +8,)dt < .
T Jo 2

0<t<T
It follows that the following infimum is well defined:

r=infl0<r<T|r+5 <e}

Hence, r,. + 84 < ¢, which proves the second assertion of this theorem. To prove the first assertion,
observe that for all 0 < ¢ < * we have

t
Dw(a',ao) -D, (o/,oct) > /0 (r,+8,)dt > te > 0.

The above inequality implies that Dw (o, a,) < Dz// (o, o), which concludes our proof. O

3.2 Discrete-Time Version of the Main Result

In the following theorem, we prove a discrete-time counterpart to the continuous-time theorem proved in
the previous section. We will show a variant of a discrete-time result under smoothness of the empirical
loss function R, and under strong convexity of the mirror map; such assumptions are natural from the
optimization point of view (see, e.g. the monograph by Bubeck [18]).

Let ||| denote any norm. We say that R, is S-smooth with respect to ||-|| if R,(¢) < R, (&) +

(VR (&), o' — ) + g e — a’”z for any o, o’ in the domain of R,. We also say that the mirror map
is p-strongly convex with respect to ||-|| if for any «, o’ we have D, (,a) > 5 ||a’ -« H2

With the definition of smoothness and strong convexity with respect to general norms in place, we
are now ready to state the discrete time theorem.

THEOREM 3. Suppose that the y-strong convexity assumption (Assumption 1) and the function repre-
sentation assumption (Assumption 2) hold. Additionally, suppose that the empirical risk function R, is
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B-smooth and the mirror map ¥ (cf. Section 1.1.3) is p-strongly convex with respect to some norm ||-||.
Let oy € R™ be the initialization point and let 0 < n < % be the step size. Consider the discrete-time
mirror descent updates given by

VW(%_H) = VV/(O{[) - HVRn(a[)'

Then, for any chosen reference point &’ and any ¢ > 0, there exists a stopping time #* =
*(D,, ¥, ag, 0, ) < (Dy, (@', 09) + nR, (@) /(ne) such that:

l. Forall0 <t <1r,g, € GW,ap, o', n) = {g, : Dw(a’,a) < Dw(a’,ao) + nR,(a’)}. In

particular, up to the stopping time ¢*, the mirror descent iterates remain in the set G (¥, vy, o', n).

2. At the stopping time 7*, we have R, (¢,.) — R, (&) + %Ilg% — g,1I2 < . In particular, at the
stopping time ¢*, the estimator 8ap satisfies the offset condition (cf. Definition 2) with parameters
eand y/2.

Before providing the proof, we briefly comment on the above theorem. First, the step-size condition
n < p/pB and the number of iterations O(1/¢) needed to reach a desired level of accuracy are identical
to the guarantees proved in purely convex optimization settings (cf. Theorem 4.4 in [18]). On the other
hand, comparing Theorems 2 and 3, in the discrete setting we pay a price of nR,(«’) in the radius of
the Bregman ball where our early-stopped estimator lies. This is consistent with prior work in the early
stopping literature, where such an expansion of the radius dependent on the ‘noise level’ (when measured
by R(a’), which for the population risk minimizer «’ in a well-specified least-squares regression model
corresponds to the variance of the additive response-variable noise) propagates into the resulting bounds
(cf. definition of C in Theorem 1 in [64]). Our work, on the other hand, allows for a more fine-grained
control of statistical-computational trade-offs via a selection of a small enough step-size 7.

We now introduce two lemmas supporting the proof of Theorem 3. The first lemma is a well-known
generalization of the Euclidean identity ||a||§ + ||b||% = |la— b||% +2(a, b), which holds for any Bregman
divergence D, induced by any mirror map .

LeEMmaA 3. For any mirror map ¥ and any points x, y, z in the domain of 1 we have
Dy (2.3) = Dy (2.y) = (VY (@) — Vi (3).x — 2) — D (x.).

Proof. The identity follows by the definition of Bregman divergence. U

The second lemma proves a discrete-time counterpart to the identity given in Equation (1.4), which
combined with Lemma 2 states that —%DV/ («',a) = (—VR, (&), &' —,) = 8, + r,. We remind our
reader that §, = R, (&) — R, (') and r, = % |lg, — & [12.

LEmMMA 4. Consider the setting of Theorem 3. Then, the discrete-time mirror descent iterates (c,),~(
satisfy the following inequality for any reference point o’ and any time z > 0:

Dw(a/aa;) - D¢(a/,at+1) = 77(51_4_1 + Vt)a

where 8, | = R, () — R, (&) and r, = [|g,, — g II2-
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Proof. Combining Lemma 3 with the definition of discrete-time mirror descent updates (cf. Equation
(1.3)) we have

Dy () =Dy @ )
= (V¥ (@) — V(o)) — ) — Dy (o)
= (nVR, (), e, — &) = (Y (@) — Y (s ) — (VY (@ 1) — o))
= (1VR, (@), — ') = (=D @) + (VY (@) = VY (), — 1))
= (1VR, @), 0, — ') = (=D @100 + (1VR, (@), 0, = @.1))

= (nVR, (), 0, — ') + Dy (oty . 2)) + (—nVR, (), 0, — o, 1) (3.2)

By the p-strong convexity of the mirror map v, the second term in Equation (3.2) can be lower bounded

as Dy (a1, 0) = g ““z+1 — atHZ. The last term in Equation (3.2) can be lower bounded using the
B-smoothness condition of the empirical risk function R,, which yields (=VR (o), o, — 0o, ) =

(VR (&), 0,y — o) = R, (o) — R, (@) — §||ozlurl — a,]|%. We can hence continue from Equation
(3.2) as follows:

Dy (@, a) =Dy (', ;)
= (nVRn(Ott),C(t - Ol/) + Dw(at-q—l’at) + (—HVRn(Ol;)’Olz - O‘t—i—l)
’ P 2 13 2
= (VR (@), = a') 4+ 3 ey — o |7+ | Rylory ) = Ry(@) = Slleryy — o

o —nB
2

= R = o)+ (257) L =+ 080 = )

Since n < p/B, the second term is lower bounded by 0. Also, by Lemma 2, the first term can be lower
bounded as follows: n{—VR, («,),o’ — «,) > n(8,+r,). Combining these two observations with the last
equation above we obtain

DI/,((X/,OCI) - Dw(a/7a[+]) =08, + 1),

which completes our proof. g

With Lemma 4 at hand, we can prove Theorem 3 following along the same steps used to prove
Theorem 2, albeit with the continuous-time equation — %Dw (o', ;) = 8, + r, replaced with its discrete-
time counterpart Dy, (', ;) — Dy (&', e, 1) = n(8,y + ). In the discrete-time equation, §, is replaced
with 8, ;, which results in the expansion of the radius of the Bregman ball in which the mirror descent
iterates lie before the prescribed stopping time (cf. the discussion following the statement of Theorem 3
above).
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Proof of Theorem 3. By Lemma 4 we have Dw(a’,at) - D, @, a, ) = @y +r). Let T =

{Dl/, (o’ \@0)+nRu (")

e —I Summing both sides of the above equation for t = 0, ..., T we obtain

T
D, (o, 0g) — Dw(a/,aT) > nry + Z n(r, +8,) + ndpy
=1
Zthl r 94, < Dw(a/,ao) + 1R, () -

s

— IZHEET {6, +r} <

where in the last inequality we have used the definition of 7 and facts that D, (&', 7)) > 0, 7y > 0 and
8741 = =R, ().

It follows that the following minimum is well defined: r* = min{t = 0,...,T | r, +§, < ¢}. Hence,
r«+38, < &, which proves the second assertion of the theorem. To prove the first assertion of the theorem,
note that for any 1 < 7 < r* by telescoping the equation D, (&', &) — D, (', ;1) = 1(8, 1y +1,) from
Otot— 1 we obtain

t—1
Dy (o, ag) — Dy (o) = nrg+ D n(r+8,) + né,
=1
t—1
= Dy (@) <Dy ) — D n(r,+8) —nd, < Dy (e ) + 1R, ('),

1=1
where in the last line we have used the facts that §, + r, > ¢ > 0 and —§, < R, (). O

4. Selected Applications of the Main Results

In this section, we discuss three selected applications of our main theorems.

Most of the results on early stopping in prior literature are shown for vanilla gradient descent updates
in the non-parametric regression setting over reproducing kernel Hilbert spaces (cf. Section 2.1). In such
settings, the parametrization « depends on the observed data. Theorem 4 that we present in Section 4.1
demonstrates that such data-dependent parametrizations easily fit within our framework. Additionally,
we obtain results that in some ways improve upon related work, e.g. we obtain bounds on excess risk
with no assumptions on the distribution P other than boundedness of its support.

In Section 4.2, we consider a problem of bounding the in-sample linear prediction error under the
quadratic loss and under the £, constraints on the optimal predictor. Such a setting has recently attracted
a lot of attention in implicit regularization literature, specifically, when the design matrix is assumed to
satisfy regularity conditions such as the restricted isometry property [59,69]. In Theorem 5, we obtain an
up to logarithmic factors minimax-optimal bound in the setting where the design matrix does not satisfy
the restricted isometry condition, but instead, its columns are bounded in £, norm.

Some recent works [2,58] investigated the connections between continuous-time optimization paths
traced by gradient and mirror descent algorithms, and regularization paths of suitably regularized
problems. Via Proposition 6 proved in Section 4.3, we demonstrate that such questions can also be
addressed within our framework.
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Crucially, various different questions recently studied in the related literature naturally fit within the
framework developed in our paper, which provides a simple and unified way to approach such problems.
Moreover, in all of the three considered examples, we prove results that in some aspects improve upon
the prior work spanning several different sub-areas in the early stopping literature.

4.1 Early Stopping for Non-Parametric Regression

In this section, we consider the kernel regression setting described in Example 2 in Section 1.2.

Let P be any distribution supported on X x [—M, M] for some constant M > 0. Letk : X x X —
[0, 00) be a Mercer kernel which induces a Hilbert space of functions H equipped with norm ||-||4,.
Assume that sup, .y k(x,x) < L for some constant L > 0 and, conditionally on the observed data
sample D, = (x;,y;)’__,, denote by K € R"*" a matrix such that K = k(x;,x)).

In the theorem below, we consider the discrete-time mirror descent updates defined as

n
ay =0, Ay =0o,— ;(Kat - ). “.1)

The above updates correspond to mirror descent updates with the mirror map ¥ () = ' Ka.* Observe
that the mirror map 1 is 2-strongly convex with respect to the norm ||-||x defined by ||oz||%( = Y(a) =
aTKa. To each & € R, we associate a g, € H defined as g, = >, a;k(x;,-). For any &, o/, the
squared distance between the functions g, and g, with respect to the RKHS norm ||-||4 is given by the
Bregman divergence D,, (', ):

180 — 84ll3 = (@ —e)TK(e' — ) = |l&' — |} = Dy (&' ).

We make the following assumptions on the loss function £:

1. The loss function ¢ satisfies the y-strong convexity assumption (Assumption 1);

2. Forany b > 0 and any y" € [—b, b], the function £(-,y') : [—b, b] — [0, 00) is C,,-Lipschitz;
3. The empirical risk function R, () is B = B(D,,)-smooth with respect to the || - || norm.

For example, if £(y,y)) = (y — y/)? is the quadratic loss function, then the strong convexity
parameter satisfies y = 2, the Lipschitzness parameter satisfies C;, = 4b, and the smoothness parameter
satisfies B = 2A . (K/n), where A . (K /n) denotes the maximum eigenvalue of the normalized (data-
dependent) kernel matrix K /n.

Since our parameter system is data-dependent (both K and the parametrization given by o depend
on the observed data points), there is, in general, no single &’ € R” such that g’ = g, for all realization
of D,, where ¢ € H is some arbitrary reference function of interest. Hence, Theorem 3 does not
immediately establish that early-stopped mirror descent iterates satisfy the offset condition. Our proof
that we present below demonstrates how a data-dependent parameter system can be analysed within our

max

4 Typically, the map Vi : R” — R” is required to be surjective to ensure that the elements of the dual space can always be
mapped back to the primal space, which is not necessarily the case with the choice of the mirror map ¥ («) = o Ka. However,
note that pre-multiplying both sides of Equation (4.1) by 2K, for any ¢ > 0 it holds that Vi (e;1) = Vi (ar) — nVRu (o) and
hence the updates defined in (4.1) are mirror descent updates.
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framework. The key idea is to find o’(D,) € R", one for each dataset D,,, such that g, ) is ‘close
enough’ to a reference function of interest g’.

THEOREM 4. Consider the set-up described above and consider the discrete-time mirror descent updates
(4.1) with any step size n € (0,2/8). Fix any R > 0 and let F = {h € H : ||hllyy < R}. Then,

there exists a data-dependent stopping time * < (R’ )2/ (nE Dy [ i)%D'Xl (Fr» Cb_1 y/ 4)]) such that for any
6 € (0, 1), with probability at least 1 — § it holds that

—172
- v~ Cylog(1/8)
E s Fr) < 1CHEp, [ Ry (Fies Gy /)] + 02252,

where R > 0 satisfies (R')> = 10R> 4 2sup,[_y 5 £(0,), b = max{M,L(R' + R)}, and ¢|,c, > 0
are universal constants.

Before presenting the proof, we compare the above theorem with the related works connecting
early stopping and localized complexity measures [51,64] in the setting of RKHS. First, the work [51]
considers the quadratic loss, while the work [64] considers general loss functions under strong convexity,
smoothness and Lipschitzness conditions, in close similarity to the setting considered above. Second,
the works [51,64] considered vanilla gradient descent updates; in contrast, the above theorem follows
as a corollary of Theorem 3 that treats a general family of mirror descent algorithms. The flexibility
of Theorem 3 comes from the fact that we use different mathematical machinery to obtain excess risk
bounds; namely, we rely on localization via offset Rademacher complexities, which allows us to consider
a more general class of algorithms for the reasons outlined in Section 1.1. Consequently, and in contrast
to the results obtained in [51,64], our main results can also be applied to provide statistical guarantees
along the whole optimization path (cf. Proposition 6)). Third, concerning the random design setting
considered in this work, the bounds in [51,64] were proved under a well-specified model and i.i.d. noise
assumptions, neither of which is present in Theorem 4 considered in this section. Finally, the differences
aside, Theorem 4 is similar to the results obtained in [51,64]. In particular, we recover similar conditions
on the step size and provide almost identical statistical and computational guarantees. We refer to ([62],
Chapters 13 and 14) for further discussions concerning the statistical optimality of localized complexity
measures for non-parametric regression.

Proof of Theorem 4. By the Representer theorem, there exists o’ = «(D,), such that 8«'(D,) €
argming. . R, (g) and hence, by convexity of F and % -strong convexity of ¢, the triplet (P, F, &4/(p,))
satisfies the offset condition with parameters ¢ = 0 and y /2. Consequently, with probability one we have

14
R,(@ (D)) = Ry(85) + 7 I12urn,) — 8717 = 0. 4.2)

Since ay = 0, we have D, (' (D,), a9) = [/ (D)% = I8 p 13, < R

Also, by the fact that g, ) is an empirical risk minimizer, we have R, (e’(D,)) < R,(0) <
supyer—pmy £(0,y) = £, Hence, applying Theorem 3 with o' =o' (D,), for any ¢ > 0, there exists a
data-dependent stopping time ¢* satisfying

< (Dy (@, ap) + 1R, (@) /(e) < (R + nlypa)/(1E) < (R* + £10)/(ne),
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such that the following two inequalities hold with probability 1:

4
Ry (@) = R, (@' (D)) + S lIga, = 8wyl = &

D, (@' (D), 0p) < D, (@'(D,), o) + ¢ 4.3)

max-*
Combining the first inequality above with Equation (4.2), the following holds with probability 1:

Ry (@) = Ry(87) + T80, = 87,1
<R, (@) — R, (D) + R, (@ (D,)) — R, (g7,

4 4
+ 5180 = 8wnlln + 5 8w, = 87l

Thus, the triplet (P, Fp, 804,*) satisfies the offset condition with parameters (g, y/4). In addition, by
Equation (4.3) we have
2
<
=
< 2D, (' (D,). ;) + 8R*

2 2
o T2 |gw 0 — 8715

go{t* - g]:R 2 ga,* - ga/(Du)‘

<10R* 420, .
[N ———
denote by(R')?

Hence 8up — 8Fz € F. Finally, by the assumption sup,. k(x,x) < L, for any h € H we have
sup,cy|A(x)| < LAl 4. Since 8ap € Friyg» it follows that SupxeX'&x,*' < L(R' + R). Applying
Theorem 1 to the early-stopped mirror descent estimator 8a, (with b = max{M, L(R’ + R)}) completes
the proof of this theorem. O

4.2 In-Sample Linear Prediction Under £, Constraints

Let Z € R"*¢ be a fixed-design matrix such that the £, norms of columns of Z//n are bounded by some
constant «. Assume a well-specified model, i.e. the existence of a vector «’ such that the observations
y € R” follow the distribution y = Za’ + &, where £ is a vector with i.i.d. zero-mean o 2-subGaussian
components. We aim to find a vector @ € R that achieves a small in-sample prediction error defined as
!z~ 2|

A candidate implicit regularization based algorithm, known to be minimax optimal for sparse
recovery under restricted isometry assumption [59,69], is defined as follows. Let o, € R¢ denote the
iterate obtained at time ¢, let © denote the Hadamard product, and let 1 denote a vector with all entries
equal to one. Consider the parametrization &, = u, © u, — v, ® v, where u,,v, € R%. Instead of running
gradient descent directly on «,, the algorithm considered in the works [59,69] is defined by running
gradient descent updates on the concatenated parameter vector (u,v), yielding the following updates
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(where y € R):

ug=vog=+v/2-1, o, =u,Qu, —v,0v,
Uy = Uy © (1 - 277VRn(05,)), Vier =Vt O} (1 + ZﬁVRn(O[t))

We remark that the above updates were also studied in [65], albeit with a focus on how the initialization
scale affects the gradient descent solution obtained at convergence. Noting that 1 + x & ¢* for small
X, we can approximate the above updates (with the step-size n rescaled by a constant factor) by the
unconstrained EG= algorithm [31] whose updates are given by

af =ag =@/Dl, @, = —a,
a:H = a;“ O exp(—nVR,(a,)), o, =a,; ©exp(nVR,(x,)).
It was shown in [24] that the above updates correspond to running unconstrained mirror descent

initialized at O with the mirror map given by

d

V(@) =¢,(@) = Z (ocl- arcsinh (;/y) — /o + y2) .

i=1

See [4,5] for extended discussions on the above update rules. In the rest of the section, we denote
by ¢, to make the dependence on y explicit. We consider running mirror descent with the hyperbolic

entropy mirror map ¢, with any 0 < y < (el A 1)/ (3¢?d) and with any step-size 7 that satisfies

0<n< 3 4K2”a,”1110g a0 A ”g{;g‘ . The theorem below yields minimax-optimal rates [50] for the in-

sample prediction error up to the multiplicative factor log(3y ~1).

THEOREM 5. Consider the set-up described above. There exists a data-dependent stopping time t* <

n/(n - 3ko+/log d) such that with probability at least 1 —2¢~"¢ — _L_ where c is an absolute constant,
g p y 843
we have
1 2 K |l o4/logd B
~ | Zet, — Zo/”2 <36- ”HIT logBy™h.

Before proving the above theorem, we state two lemmas, which relate the Bregman divergence
induced by the mirror map ¢,, to the geometry induced by the £; norm. We prove both lemmas at the
end of this section.

LEMMA 5. Forany 0 < y < (||o/||1 A 1)/(3e2d) we have
le/ll, < Dy, (@'.0) < [l TogGy ™.

Denote by B = {w € RY | lwll; <R} an £, ball of radius R. The following lemma will be applied
to show that before stopping, the mirror descent iterates («,),~ stay inside an £, ball with radius at most

6 ||o/“l log(3y~h).

€20 Joquieoaq €z uo 1sonB AQ L0BYYY2/0L0E/b/Z L/2101E/EeW/ W00 dNo"olWapeDe/: ARy Woly papeojumod



3034 V. KANADE ET AL.

LEMMA 6. Forany o’ € R?andany 0 < y < (||’ ||1 A 1)/(3¢*d) we have

d.
{Ot e R%: D¢V (a/’a) < 2D¢y (a/, O)} g 86”(1/“1 10g(3y’1)'

We are now ready to prove Theorem 5. We remark that since the slow rate n~!/2 is minimax optimal

[50] in the setting considered in Theorem 5, the localization effect provided by offset complexities is
not needed in this example. However, we can apply Theorem 3 together with the basic inequality proof
technique, as demonstrated in the proof below.

Proof. Proof of Theorem 5. First note that since the ¢, norms of the columns of Z/4/n are bounded by
«, the empirical loss function R, is 2k2-smooth with respect to the £; norm. Let

R =6|d ||1 log(3y ™ h.

As shown in ([24], Lemma 4), ¢y is also p = (2R*)~!-strongly convex with respect to the ¢ { horm on
Bg«. Thus, we set the smoothness parameter 8 = 2«? and the strong convexity parameter p = (2R*) L.
Condition on the event A; = {R, () < 202}. Since the noise random variables are o2-subGaussian,
by sub-Exponential concentration we have ]P’(Al) > 1 — 2e¢7", where ¢ is an absolute constant
independent of any problem parameters. (cf. [61], Section 5.2.4)). By Theorem 3, Lemma 5 and
R, (a) < 202, itis hence enough to set
L el e Dy@0)

< — A < — A ——8M8—
T=%42r " 202 =287 L)

so that there exists a stopping time

2D, (o', 0) *
o< 0 <R

ne ~ 3ne
such that for all # < ¢* it holds that

o, €{aeR?: Dy (a',@) < D, (,0) + 1R, (a")} C Bg.  (cf. Lemma 6)
and also such that the following inequality holds:

N1 2
Ry(e) = Ry(@) + =~ [ Ze = 2]y < .

Rearranging the above inequality, as is typically done via the basic inequality proof technique (see, for
example, ([62], Theorem 7.20)) we obtain

1 1 1
L P T G MRS
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Define the event A, = {% ||ZT€ o < 4ko+/logd//n}. Since the £, norms of the columns of Z/\/n

are bounded by « and since the noise vector & consists of independent o> sub-Gaussian random variables,
P, >1— 8}7 by standard sub-Gaussian concentration.

By the union bound, the events A, and A, happen simultaneously with probability at least 1 —2e~"“¢ —

#. Setting ¢ = R*ko+/log d//n concludes our proof. (]

Proof of Lemma 5. The upper-bound is shown in ([24], Section 3). We proceed as follows to prove the
lower-bound:

d ’

Dy, (@, a) = Z |:al{ (arcsinh (%) — arcsinh (%)) - \/(alf)z +y2+ Ja? + yz]
i=l

d /
> Za; (arcsinh (%) — arcsinh (%)) -2 Ho/ ||] + lleell
i=1

d i
> Zal{ arcsinh (&) — “o/”l arcsinh (%) -2’ ||1 + llelly
14 14

1+ (@) + 92
O e oo, (150) 2 ), e,

/
= g 20— o st (Y10) 2 e+ e,
!/
= ”(x’ ”1 log !Zﬂ — ||o/ Hl arcsinh (@) + llelly, 4.4)

where the penultimate line follows via an application of the log sum inequality. The result follows by
plugging in |||, = 0 and using y < ||o/ ||1 /(é3d). [l

Proof of Lemma 6. Note that for any x > y > 0, we have arcsinh(x/y) < log(3x/y). Hence, continuing
from Equation (4.4) we have

leely > o]

— el = 0y, @0+ e (102 (624) + 105 141)

eIl
11 el
D, (o lifles 5 +3
< ¢y(a,a)+”““1(ogy+2H0‘§”)

1
= llall; <2D, (¢, 0) +2 e, log;.

The result follows by applying the upper-bound proved in Lemma 5, namely, quy (@ a) <
2D, (@',0) < 2]le/[l, log3y ~"). O

€20 Joquieoaq €z uo 1sonB AQ L0BYYY2/0L0E/b/Z L/2101E/EeW/ W00 dNo"olWapeDe/: ARy Woly papeojumod



3036 V. KANADE ET AL.

4.3 Statistical Guarantees Along the Optimization Path

In this section, we show that through the lens of offset Rademacher complexity, the iterates of the
mirror descent algorithm satisfy similar excess risk guarantees to a family of explicitly constrained
empirical risk minimization estimators. As discussed in the introduction, such results are of interest
from the computational point of view: computation of a regularization path corresponds to solving a
new optimization problem for each regularization parameter. In contrast, the computation of the mirror
descent optimization path is relatively cheap in comparison, amounting to the cost of one gradient-based
update to obtain a new candidate estimator.

We consider the following set-up. As in the rest of this paper, Assumptions 1 and 2 hold. In addition,
in order for the general offset Rademacher complexity excess risk upper-bound (cf. Theorem 1) to be
applicable, we assume that the data-generating distribution P is supported on X’ x [—b, b] for some b > O,
and for any y € [—b, b] the loss function £(:,y) is Cp-Lipschitz.

Fix an arbitrary oy € R™ and for R > 0 let

Fr=F(op,R) ={x e R": Dy (e, ) < R}.

We define any optimal parameter in the space Fp by ag:

ap € argmin, .z, R(@),

where in the case of multiple minimizers, the ties may be broken arbitrarily.

REMARK 1. In the conference version of this paper, the result ([60], Theorem 5) is incorrect as stated: its
proof is only correct for symmetric Bregman divergences. The correct formulation of this result is stated
below in Proposition 6.

Henceforth, we restrict our analysis to mirror maps ¥ for which the corresponding Bregman
divergences D, are symmetric: for any o, o’ it holds that Dy (c, a) = D, (o', ). Consider the family
of constrained empirical risk minimization estimators

as™ e argmin, 7o Ry (@).

For example, when ¥ (o) = ||(x||%, the estimators (5§§rm)) r>0 correspond to the ridge regression

regularization path. For any R > 0, the convexity of the class F, implies that the triplet (P, Fp, fiﬁfrm))

satisfies the offset condition (cf. Definition 2) with parameters ¢ = 0 and y /2, where recall that y is
equal to the strong-convexity parameter of £ stated in Assumption 1. In particular, by Theorem 1, for any
R > 0 and for any § € (0, 1), with probability at least 1 — § it holds that

2y~ 1(C})? log(1/8)

E(ggtem ) < ¢ CHEp, [%Dz (star(]-‘R — 842) (€ g)] n . @45)

where ¢, ¢, > 0 are universal constants appearing in the statement of Theorem 1 and C, = C), + yb/2.

We now show that continuous-time mirror descent iterates («,),~. satisfy nearly identical bound to
(4.5): the bound stated below is the same modulo enlargement of the class Fy by F and an extra additive
term ¢ > 0, which can be chosen to be arbitrarily small at the expense of deteriorating upper-bounds on
the stopping time.
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PROPOSITION 6. Let (o)~ be the continuous-time mirror descent optimization path (cf. Theorem 2).
Suppose that for any «,a’ we have D, (o, ) = D, (o, ) (.e. Dy (-,-) is a squared Mahalanobis
distance) and fix any & > 0. Then, there exists a data-dependent stopping time 7, < 2R/e such that
for any § € (0, 1) with probability at least 1 — § it holds that

_ 2y~1(C})? log(1/8)
5(gat;a,}_R) = ch'[/,EDn[Sf{DE (star(}"4R = 8a3)- () 1%)] +c, b +e.

n

Proof. We apply Theorem 2 with the reference point &’ = aj. By Theorem 2, there exists a data-

dependent stopping time £}, < 2D¢ (ag,ag)/e < 2R/e such that Dw (a*,(xt}) < DW (a*,0p) < Rand

the estimator 8o satisfies the offset condition with parameters ¢,y /2. By the assumption that D, is
R

symmetric, we have D, (a,0)) = |la — o ||/% = (@ — ') TA(a — o) for some positive semi-definite
matrix A (see [46], Lemma 2) for a proof of this claim). It follows that

2 2 2
Dy (e o) = Nl — gl < 2l — g3 + 2l — agll < 4R.

In particular, in addition to satisfying the offset condition, the estimator 8an is contained in the set Fp.
R

The result follows by Theorem 1. O

By replacing the application of Theorem 2 with Theorem 3, a corresponding result may be obtained
for discrete-time mirror descent iterates.

The above proposition complements some recently obtained results that connect optimization and
regularization paths, as discussed below. First, ([58], Theorem 3) establishes that the optimization paths
of continuous-time mirror descent algorithms and the regularization paths of corresponding regularized
problems, when suitably aligned via some mapping between the number of mirror descent iterations and
the regularization parameter of the penalized problem, are point-wise close. This allows the authors of
the paper mentioned above to port existing results on explicitly regularized estimators to early-stopped
mirror descent algorithms. However, their proof crucially depends on two assumptions. The first one
requires strong-convexity and smoothness of the mirror map v with respect to the Euclidean norm; note
that mirror maps of the form () = %aTAa are symmetric, yet Proposition 6 does not depend on the
conditioning of A. Their second assumption requires the empirical risk function R, («) to be strongly
convex with respect to the Euclidean norm. Again, such an assumption is not present in our work, as
explained in Section 1.2.

Concerning connections between regularization and optimization paths, another related paper is [2].
Therein, the authors study the optimization path of continuous-time gradient descent on a least-squares
objective and show that the solution at time ¢ has risk at most 1.69 times the risk of the ridge solution
with regularization parameter A = 1/¢. Their results are based on the analytic tractability of gradient
descent flow on least squares objective for a well-specified Gaussian model. Because we work under
different assumptions (the loss is not quadratic, and the model is misspecified), our result obtained above
is necessarily based on different tools.

5. Future Directions

Our work provides a simple and transparent framework for simultaneously analysing statistical and
computational properties of iterates traced by a family of mirror descent algorithms applied to the
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ii.d. batch statistical learning setting. Among the research directions that would yield additional
computational savings are extensions of our results to stochastic and accelerated frameworks, where
connections between early stopping and localized complexity measures are yet to be established, even
in the restricted setting of Euclidean gradient descent updates.

Beyond the computational savings, our main results reveal a curious property of mirror descent. For
an unknown parameter of interest denoted by «’, the statistical complexity of an appropriately stopped
mirror descent iterate is given by the offset complexity of the class {g, — g, : D, (o ) < D, (o, o)}
Thus, g,, is implicitly constrained to lie in a possibly non-convex Bregman ball centred at the unknown o’
with unknown radius D, (¢, o). Therefore, in general, solutions traced by mirror descent iterates cannot
be practically expressed as solutions of explicitly constrained optimization problems. Consequently,
early-stopped mirror descent can potentially solve problems that cannot be tractably solved by the means
of explicit regularization. This observation necessitates further investigation.
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A. Table of Notation

TABLE A1  Table of notation

Symbol Description
n The number of data points.
P The data-generating distribution supported on X' x ).
(x;,y;) The i"* data point sampled independently from the distribution P.
. A collection of n data points (x;,y,)’_; sampled i.i.d. from P.
D, A collection of n input points (x;)?_,, where D, = (x;, y,)i__|.
L The loss function £ : Y x Y — [0, 00).
R(g) The population risk of a function g defined as E y y)p[ £(8(X), Y)].
R,(g) The empirical risk of a function g defined as % S g, y))-
g An estimator, which maps datasets D, to some set of functions G.
g The set of possible values of functions, which some estimator g can select.
F Some generic class of functions.
star(F) A star hull around 0 of F, defined by {Af : f € F, A € [0, 1]}.
E@F) The excess risk R(g) — inf geF R(g) of an estimator g with respect to F.
gr A function g € F such that R(g) = infge]_- R(g).
llg —f||?, Population £, distance between g and f defined as E[(g(X) — (X))
lg—f ||3l Empirical £, distance between g and f defined as % > (gx) —f (xl-))z.
%Dﬁ G,o) The offset Rademacher complexity of G (cf. Equation (1.2)).
m The dimensionality of the parameter space.
8y A function parameterized by o € R™.
Z e R™m A matrix such that conditionally on D, , g, (x;) = (Za), for any o € R™.
R, () A shorthand notation for R, (g,,).
v A mirror map.
D, Bregman divergence induced by the mirror map .
ag The initialization point of the mirror descent iterates.
o, The mirror descent iterate at time ¢.
o An arbitrarily chosen reference point.
5, A shorthand notation for R, (¢,) — R, (&').

r, A shorthand notation for %H 8y, — 8 ||ﬁ.
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