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Abstract—Building on recent trends in multiple-input multiple-
output and reconfigurable intelligent surfaces, where densely
spaced element arrays are considered, this paper focuses on con-
tinuous antenna systems where the receive antenna is modelled as
a continuous line (in the one-dimensional case) or a continuous
surface (in the two-dimensional case). Considering a spatially-
correlated Rayleigh process for the communication channel, we
conduct an analytical investigation based on matched filtering.
More specifically, we derive an approximated distribution for
the instantaneous received signal-to-noise ratio (SNR) at the
continuous surface. Furthermore, we derive approximations to
the achievable rate, average symbol error rate for M -ary phase
shift keying (MPSK) and an upper bound for the achievable rate.
We use extensive numerical examples to illustrate the accuracy
of our approximation to the SNR distribution as well as the
performance analysis.

Index Terms—Continuous surface, signal-to-noise ratio, corre-
lated channels, symbol error rate, achievable rate.

I. INTRODUCTION

The evolution of data traffic in recent years demonstrates an
unprecedented growth in demand for high data rate wireless
communications [1]. As a result, numerous technologies such
as massive Multiple-input multiple-output (MIMO), super-
wideband massive MIMO, reconfigurable intelligent surfaces
(RISs) and holographic MIMO are being proposed. One com-
mon theme among many novel technologies is the trend to-
wards implementing large antennas arrays with tightly packed
antenna arrays/elements. A common theme among the above
novel technologies is the trend towards implementing large
antennas arrays with tightly packed array elements.

MIMO antennas are ubiquitously used in current wireless
communication systems to provide the required data rates
[2]. With the introduction of fifth generation (5G) wireless
communications, there has been great interest in massive
MIMO which scales up the number of transmitters or receivers
by many orders of magnitude compared to the current state-
of-the-art [3], [4], thereby achieving much higher data rates
compared to conventional MIMO. Recently, super-wideband
massive MIMO systems were proposed in [5] where a large
number of antennas are tightly coupled in a compact space. It
was shown that one effect of the mutual coupling produced by
this tight integration is to widen the operational bandwidth of
the system, so that coupling can be turned into an advantage.

At the same time, RIS has gained much research attention
in recent years. With RIS, a large number of meta-material-
based reflecting elements on the surface, with adjustable phase

shifts, are used to reflect the signals toward a desired receiver.
This improves the coverage as well as capacity in wireless
communications systems [6]. Holographic MIMO systems, on
the other hand, are meta-surfaces with a massive number of
meta-material elements. Almost the whole surface is used for
radiating and sensing in these continuous surfaces, as opposed
to traditional MIMO with discrete antenna elements. RISs with
numerous meta-elements can also be considered as continuous
surfaces but with a different hardware implementation [7], [8].

Continuous surface systems have attracted notable research
attention in recent years. In [9], the spatial degrees of freedom
and capacity of a continuous surface system were studied
for different deployments of user terminals by performing
matched filtering (MF). However an infinitely large surface
area was considered. MF over a continuous surface with
finite dimensions was considered in [10], [11]. The surface
was divided into sub-areas corresponding to single-antenna
users. Considering an infinite number of sub-areas on the
surface, in [10], the uplink data rate of a sub-area was
analyzed and in [11], the distribution of the uplink sum-rate
was approximated. The interference channel in [10], [11] was
modeled by correlated fading due to the correlated multipath
environment. However, spatial channel correlation across the
continuous surface was not considered in [9]–[11]. However,
in practice the spatial correlation across the surface cannot be
ignored for continuous surfaces [12], [13].

In this paper, we consider a single antenna user communi-
cating with a receiver equipped with a finite-dimension con-
tinuous surface, unlike [9] with infinite dimensions. We con-
sider one continuous surface, unlike [10], [11] that conducted
analysis for infinite number of sub-areas on a planar space.
The channel model takes into account the spatial channel
correlation across the continuous surface. We start with a 1-D
case and provide a thorough analysis on the performance of
continuous antennas under a general channel model. Based on
a gamma approximation, we derive an accurate approximation
for the distribution of the instantaneous received signal-to-
noise ratio (SNR). To obtain the shape and scale parameters
of the gamma distribution, we compute the moments of
the instantaneous received SNR. Furthermore, we derive the
achievable rate and an upper bound on the achievable rate as
well as the average symbol error rate for M -ary phase shift
keying (MPSK). Then we extend our results to a 2-D rect-
angular continuous surface. We present extensive simulation



Fig. 1. System model with 1-D and 2-D continuous antenna systems.

results to illustrate the accuracy of our approximated SNR
distribution. Furthermore, the analytical expressions for the
achievable rate and average symbol error rate show excellent
agreement with simulated values. Our results also show that
the simple upper bound developed for the achievable rate is
very accurate in higher frequency bands.

II. SYSTEM MODEL

We consider linear or one-dimensional (1-D) as well as
rectangular or two-dimensional (2-D) continuous surfaces sep-
arately, as shown in Fig. 1 (a) and (b), respectively. We assume
a single antenna user equipment (UE) with channel h(x),
0 ≤ x ≤ W , in the linear 1-D case and channel h(x, y),
0 ≤ x ≤ W , 0 ≤ y ≤ H in the rectangular 2-D case. As
such, the received signal is given by

r(x) = h(x)s+ n(x), (1)

in 1-D and
r(x, y) = h(x, y)s+ n(x, y), (2)

in 2-D, where n(x) and n(x, y) are 1-D and 2-D noise
processes and s is the transmitted symbol satisfying E

[
|s|2

]
=

Es. The noise processes are zero-mean Gaussian with
a covariance structure E [n(x1)n

∗(x2)] = σ2ρ1(x1, x2)
and E [n(x1, y1)n

∗(x2, y2)] = σ2ρ2(x1, y1, x2, y2) where
ρ1(x, x) = ρ2(x, y, x, y) = 1, |ρ1(.)| ≤ 1 and |ρ2(.)| ≤ 1. The
channel is assumed to be a Rayleigh process so that h(x) ∼
CN (0, β) and h(x, y) ∼ CN (0, β) with covariance functions
E [h(x1)h

∗(x2)] = βr1(x1, x2) and E [h(x1, y1)h
∗(x2, y2)] =

βr2(x1, y1, x2, y2). The correlations r1(.) and r2(.) satisfy
r1(x, x) = 1, r2(x, y, x, y) = 1 and |r1(.)| ≤ 1, |r2(.)| ≤ 1.

III. ONE-DIMENSIONAL ANALYSIS

In this section we consider the 1-D case which is later
extended to the 2-D case. Without specifying a particular re-
ceiver, let us assume that the surface provides receive filtering

at every point via a weighting function w(x). Aggregating the
outputs over the surface gives the global output as

Z1 =

∫ W

0

w∗(x)r(x)dx ≜ γ1s+ w1, (3)

where γ1 =
∫W

0
w∗(x)h(x)dx and w1 =

∫W

0
w∗(x)n(x)dx.

Hence, the instantaneous received signal-to-noise ratio (SNR)
for the surface filtering is:

γs =
Es|γ1|2

En [|w1|2]
, (4)

where En [.] represents expectation over the noise process.
First, we compute the first two moments of the signal power
and evaluate En

[
|w1|2

]
. Then, we leverage these parameters

to develop performance measures for surface filtering.
Let us begin by focusing on the moments of γ1. From (3),

we obtain

E [γ1] =

∫ W

0

E [w∗(x)h(x)] dx, (5)

and

E
[
|γ1|2

]
=

∫ W

0

∫ W

0

E [w∗(x)h(x)w(x′)h∗(x′)] dxdx′. (6)

Next, from (3) we also obtain

En

[
|w1|2

]
=

∫ W

0

∫ W

0

En [w
∗(x)w(x′)]En [n(x)n

∗(x′)] dxdx′

= σ2

∫ W

0

∫ W

0

w∗(x)w(x′)ρ1(x, x
′)dxdx′.

(7)

Further developments of (5)-(7) depends on the precise weight-
ing function implemented across the surface.

To gain better insights, in this paper we consider MF. When
MF is applied, w(x) = h(x) and (5)-(7) depend on basic
results for correlated Gaussian variables: E

[
|h(x)|2

]
= β,

E
[
|h(x)|2|h(x′)|2

]
= β2(1+ r21(x, x

′)) and E [h∗(x)h(x′)] =
βr1(x

′, x). Hence, from (5)-(7), we obtain

E [γ1] = βW, (8)

E
[
|γ1|2

]
= β2

∫ W

0

∫ W

0

(1 + r21(x, x
′))dxdx′. (9)

Note that for any reasonable choice of a correlation model,
(9) is an easily computable integral with a smooth, bounded
integrand. For particular correlation models, (9) can often be
simplified or solved exactly (see Sec. III-A).

A. Signal-to-Noise Ratio Analysis

We develop an approximation to the SNR distribution using
our calculation of the moments above. From (3), we obtain
γ1 =

∫W

0
|h(x)|2dx. Also, we assume a spatially white noise

process, so that ρ1(x1, x2) = 0 unless x1 = x2. Hence,
from (7), we obtain En

[
|w1|2

]
= σ2

∫W

0
|h(x)|2dx, and the

instantaneous SNR in (4) takes the simple form

γs =
Es

σ2

∫ W

0

|h(x)|2dx =
Es

σ2
γ1. (10)



Therefore, from (8) and (9) we derive the moments of γs as

E [γs] =
βEsW

σ2
, (11)

E
[
γ2
s

]
=

β2E2
s

σ4

∫ W

0

∫ W

0

(1 + r21(x, x
′))dxdx′. (12)

Motivated by the fact that the gamma distribution accurately
approximates sums of exponential variables, e.g., [14], we
proceed to approximate γs as a gamma random variable.
Note that the integral in (10) can be thought of as the limit
of a sum of exponential variables. In principle, improved
approximations can be obtained by computing higher order
moments [15], but our results in Section V show that the two-
moment approximation is satisfactory.

We now compute the second moment in (12). Here, we
consider correlation models where r1(x, x

′) depends only on
the spatial separation, so that r1(x, x′) = r1S(|x−x′|). Thus,
after some manipulation, (12) can be written as

E
[
γ2
s

]
=

β2E2
s

σ4

(
W 2 + 2

∫ W

0

(W − x)r21S(x)dx

)
. (13)

Now consider the particular spatial fading correlation model,
r1S(x) = J0(2πx/λ) [16], [17], where Jk(.) is the k-th order
Bessel function of the first kind. Therefore, (13) becomes∫ W

0

(W − x)J2
0 (2πx/λ)dx

= W

∫ W

0

J2
0 (αx)dx−

∫ W

0

xJ2
0 (αx)dx,

(14)

where α = 2π/λ. For convenience, we define the terms
in (14) by A(α,W ) = W

∫W

0
J2
0 (αx)dx and B(α,W ) =∫W

0
xJ2

0 (αx)dx. We derive A(α,W ) as follows by defining
z = αx and using standard integrals,

A(α,W ) =
W

α

∫ αW

0

J2
0 (z) dz

= W 2
2F3

(
1

2
,
1

2
; 1; 1;

3

2
;−α2W 2

)
,

(15)

where 2F3 is the hypergeometric function [18, Sec. 9.14]. Also
we calculate the function B(α,W ) by defining t = x/W as
follows [18, 6.521.1],

B(α,W ) = W 2

∫ 1

0

tJ2
0 (αWt)dt = W 2 1

2
J2
1 (αW ). (16)

Referring to (13)-(16), we compute the second moment as

E
[
γ2
s

]
=

β2E2
sW

2

σ4

(
1 + 2 2F3(

1

2
,
1

2
; 1; 1;

3

2
;−α2W 2)− J2

1 (αW )

)
.

(17)

Therefore from (11) and (17), we calculate the SNR variance:

V ar [γs] =

β2E2
sW

2

σ4

(
2 2F3(

1

2
,
1

2
; 1; 1;

3

2
;−α2W 2)− J2

1 (αW )

)
.

(18)

Finally, we compute the the shape and scale parame-
ters of our gamma approximation for the SNR as a =
(E [γs])

2/V ar[γs] and δ = E [γs] /V ar[γs] and therefore
our approximated gamma distribution is γs ∼ G(a, δ) with
probability density function (PDF) pγs

(γ). The accuracy of
our gamma approximation is demonstrated in Section V, using
(11) and (18) to compute the gamma parameters.

B. Upper Bound on the Achievable Rate

Here, we give a simple upper bound on the mean achievable
rate, R, based on our calculations of the first moment of γs.
Using Jensen’s inequality [19] and referring to (11) gives,

E{R} ≤ Rup = log(1 + E{γs}) = log

(
1 +

βEsW

σ2

)
. (19)

C. Achievable Rate Analysis

For our approximate gamma distribution, γs ∼ G(a, δ), the
achievable rate is given as

E{R} =

∫ ∞

0

log2(1 + γ)pγs(γ)dγ. (20)

By substituting the gamma PDF into (20), we obtain

E{R} =
δa

ln(2)Γ(a)

∫ ∞

0

ln(1 + γ)γa−1e−δγdγ, (21)

where Γ(.) is the gamma function. Finally, we compute the
expression in (21) as [20]

E{R} =
1

ln(2)Γ(a)
G 1,3

3,2

(
1−a 1 1

1 0

∣∣∣∣ 1δ
)
, (22)

where G(.) is the Meijer G function that can be calculated
using the built-in Matlab function meijerG. Note that (22) is
an approximation to the mean rate using the gamma model.

D. Symbol Error Rate Analysis

We calculate the average symbol error rate for M-ary phase
shift keying (MPSK), using our gamma approximation. The
average symbol error rate can be written as [19]

P̄s =
1

π

∫ M−1
M π

0

∫ ∞

0

e
−gγs
sin2 ϕ pγs(γ) dγdϕ, (23)

where g = sin2(π/M). Based on the definition of the
moment generating function (MGF) and using the MGF of
our approximated gamma distribution Mγs

(s), (23) becomes

P̄s =
1

π

∫ M−1
M π

0

Mγs

(
−g

sin2 ϕ

)
dϕ

=
1

π

∫ M−1
M π

0

(
1 +

g

δ sin2 ϕ

)−a

dϕ.

(24)

The integral in (24) is computed as [21]

P̄s =
Γ(a+ 1

2 )

2
√
πΓ(a+ 1

2 )
Mγs

(−g) 2F1

(
a,

1

2
; a+ 1;

1

1− g/δ

)
+

1

π
cos(π/M)Mγs

(−g)

+ F1

(
1

2
, a,

1

2
− a;

3

2
;
cos2(π/M)

1− g/δ
, cos2(π/M)

)
,

(25)



where 2F1 is a hypergeometric function and F1 is the Appell
hypergeometric function. Note that (25) is an approximation
to the SER using the gamma model.

IV. TWO-DIMENSIONAL ANALYSIS

We now extend our analysis to the 2-D case where the
continuous surface has a rectangular shape as illustrated in
Fig. 1(b). Assuming spatially white noise, the development
in equations (3)-(10) can be simply followed in the 2-D case
to give the weighting function, w(x, y) = h(x, y) and the
instantaneous received SNR , γ̃s, is given by

γ̃s =
Es

σ2

∫ W

0

∫ H

0

|h(x, y)|2dydx =
Es

σ2
γ̃1. (26)

Our approach to approximate the SNR distribution as a
gamma distribution from Section III is still valid as γ̃1 has the
same interpretation as an integral of a Chi-squared process.
Hence, we compute the first two moments of γ̃s. The mean is
given by

E [γ̃s] =
Es

σ2
βWH =

Es

σ2
βA, (27)

where A is the surface area. For the second moment, similar
to (12), we have

E
[
γ̃2
s

]
=
β2E2

s

σ4

∫ W

0

∫ H

0

∫ W

0

∫ H

0

(1+r22(x, y, x
′, y′))dy′dx′dydx.

(28)
Referring to (27)-(28) we obtain

V ar [γ̃s] =
β2E2

s

σ4

∫ W

0

∫ H

0

∫ W

0

∫ H

0

r22(x, y, x
′, y′)dy′dx′dydx.

(29)
In general, (29) depends on the particular correlation model
adopted and cannot be simplified. However, substantial sim-
plification occurs for common models where the corre-
lation is isotropic or separable in the x, y domain. As-
suming the correlation is isotropic, then r2(x, y, x

′, y′) =
g(
√
(x− x′)2 + (y − y′)2). Introducing the change of vari-

ables u = x−x′ and v = y−y′, allows (29) to be re-expressed
as

V ar[γ̃s]=
4β2E2

s

σ4

∫ W

u=0

∫ H

v=0

(W−u)(H−v)g2(
√

u2 + v2)dvdu.

(30)
Then, changing to polar coordinates gives

V ar[γ̃s] =
4β2E2

s

σ4

∫ √
W 2+H2

r=0

rg2(r)∫
θ∈S(r)

WH−Wr sin θ −Hr cos θ +r2 sin θ cos θdθdr,

(31)

where S(r) denotes the range of θ and we derive S(r) as

S(r) =


[0, π/2] r ≤ H

[0, sin−1(Hr )] H < r ≤ W

[sin−1(Hr ), cos
−1(Wr )] W < r ≤

√
W 2 +H2.

(32)
Note that (32) assumes that W ≥ H but in the isotropic case
results for W < H are simply obtained by switching W and

H . Each of the integrals over θ in (31) is trivial so we combine
(31)-(32) to calculate the variance as

V ar[γ̃s]=
4β2E2

s

σ4

{∫ H

0

rg2(r)

[
WH

π

2
− (W+H)r+

r2

2

]
dr

+

∫ W

H

rg2(r)

[
WHsin−1

(
H

r

)
+W

√
r2−H2−Wr −H2

2

]
dr

+

∫ √
W 2+H2

W

rg2(r)

[
WH

(
cos−1

(
W

r

)
− sin−1

(
H

r

))
+

W 2 +H2 + r2

2
−W

√
r2−H2 −H

√
r2−W 2

]
dr

}
.

(33)

Note that (33) is an integral over a finite region for a smooth,
bounded function. Thus, numerical integration is straightfor-
ward using built-in software.

Now, using (27) and (33), a gamma approximation can be
fitted to γ̃s. As shown in Sec. V, the gamma fit is excellent in
2-D. Whilst not shown here due to page limitations, the rate
bound, the mean rate and the SER results for the 1-D case can
all be used in the 2-D case, by the simple expedient of using
(27) and (33) for the SNR moments.

V. NUMERICAL RESULTS

In this section we provide numerical examples to illustrate
the accuracy of our analysis. In simulations we adopt com-
monly used frequency bands in 4G and 5G including 0.5
GHz, 5.8 GHz and 28 GHz [22]. We first present results
for the 1-D case. In all cases, the classic spatial correlation
model J0(2πd/λ) is used, where d is the spatial separation.
In the simulations, the integral representations for γs and γ̃s
are simulated by the standard Riemann sum approach. Hence,
the surface is broken into discrete points where the number of
points is selected to be large enough so that no change in the
integral is observed if more points are used.

Figs. 2 and 3 show the cumulative distribution function
(CDF) of the instantaneous receive SNR along with the
approximated gamma distribution. Fig. 2 is for a fixed length
W = 600 mm and the frequencies are changed as 0.5 GHz, 5.8
GHz and 28 GHz. Fig. 3 shows results for a fixed frequency
of 5.8 GHz and W is changed to 200 mm, 400 mm and 600
mm lengths. As can be seen, for all of the above cases the
gamma approximation is an excellent fit to the simulation.
Hence, the approach can deliver accurate outage values and the
subsequent plots demonstrate that this also leads to accurate
rate and SER results.

Figs. 4 and 5 compare the upper bound on achievable rate in
(19) with the simulated mean rate, for a range of lengths and
SNRs, respectively. As can be seen from the results, the bound
is still reasonable at 0.5 GHz but is almost exact for higher
frequencies. This property follows from the fact the spatial
correlation reduces for smaller wavelengths, considering the
spatial fading correlation model adopted in Section III. Hence,
more averaging occurs over the surface and the SNR stabilizes
making the upper bound a good approximation.
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Fig. 5. Mean rate versus Es
σ2 for fixed length W= 600 mm, β = 1.
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Fig. 6. Average achievable rate versus Es
σ2 for W= 600 mm and β = 1.

In Fig. 6, we plot the mean rate versus Es

σ2 . The analytical
achievable rate results are generated using (22). From the
plot we observe that the gamma approximation is in close
agreement with the simulated values. Since the mean rate
is largely driven by the mean SNR, which is constant for
all frequencies, there is little variation in rate across the
frequencies.

In Fig. 7, we plot the average symbol error rate (SER) versus
Es

σ2 . The analytical average SER is computed by our results in
(25) with the simulated average SER computed using a Monte-
Carlo simulation. We consider 3 different modulation methods,
namely, BPSK, QPSk and 16-PSK. The figure shows that the
results from our analytical expression are extremely accurate
at all SNRs and for all modulation methods considered.

Finally, for the 2-D case, it suffices to show that the
gamma approximation for the SNR is accurate, since rate
and SER results immediately follow from the gamma model
as explained in Section IV. Fig. 8 shows the CDF of our
approximate gamma distribution for γ̃s and the simulated CDF,
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for a fixed height and width of the rectangular surface. As can
be seen, the gamma distribution in the 2-D case is an excellent
match to the simulated distribution. Due to page limitations,
rate and SER results are not presented for the 2-D case.

VI. CONCLUSION

We have focused on a finite dimensional continuous antenna
system and performed MF at the receiver. We considered both
the one-dimensional case as well as the two-dimensional case.
We have considered a channel model that takes into account
the spatial channel correlation across the continuous antenna.
Leveraging the gamma approximation, we have also provided
analytical expressions for the achievable rate, an upper bound
on the achievable rate and the average symbol error rate
for M -ary phase shift keying. Our results for 4G and 5G
frequency bands show that the gamma approximation for the
SNR distribution leads to an extremely accurate performance
analysis in terms of both rate and SER.
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