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Abstract 

Genomics and epidemiology of SARS-CoV-2 in Brazil 
Darlan da Silva Candido, Merton College, University of Oxford 

A thesis submitted for the degree of Doctor of Philosophy, Hilary, 2022 

As of the 24th January 2021, it is estimated that the coronavirus disease 2019 

(COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), has led to over 350 million reported cases and over 5.6 million deaths 

worldwide. Brazil has the third highest case count, over 24 million, and the second highest 

death count, over 623,000. In this thesis, I apply genomic and epidemiological approaches 

to describe and understand SARS-CoV-2 importation, transmission, spread, evolution and 

response during the first year of the COVID-19 pandemic in Brazil. 

Chapter 2 provides and overview of the early importation, spread and response. I 

start by identifying the probable air routes for SARS-CoV-2 importation into Brazil.  I also 

provide a description of the first SARS-CoV-2 cases reported in Latin America, followed 

by epidemiological estimates of the basic reproduction number for the most affected 

Brazilian states. This chapter ends with a description of the implementation and easing of 

non-pharmaceutical interventions (NPIs) in 72.3% of the Brazilian municipalities. 

In Chapter 3, I couple genomic insights obtained from a novel representative dataset 

of 427 SARS-CoV-2 genomes from Brazil with human mobility data to describe SARS-

CoV-2 importation and genomic diversity, reconstruct SARS-CoV-2 nationwide spatial 

spread and investigate the impact of NPIs implemented in Brazil. 

Chapter 4 covers the application of genomic epidemiology approaches to the 

identification and description of new SARS-CoV-2 variants of concern (VOCs). I describe 

the first two cases of the Alpha VOC in Brazil and provide a genomic characterization of 

the first cases of the Gamma VOC in Manaus, north Brazil. 

Finally, I apply epidemiological and genomic approaches to uncover the dynamics 

of hospital-associated transmission in the largest hospital complex in Latin America. 

Chapter 5 shows evidence for SARS-CoV-2 within-hospital transmission to be higher in 

non-COVID-19 hospitals.  



Preface 

As with any piece of epidemiological work, the next pages you are about to read are 

full of complicated mathematics and difficult biological terms. However, they attempt to 

describe and understand one of the worst moments in humankind history. As of 24th January 

2021, the COVID-19 pandemic has taken at least 5.6 million lives, not to mention the 

numerous people who will suffer with the consequences of long-COVID, economic 

depression and mental health issues. Please, also look at this piece of work as a snapshot of 

the history of the pandemic in Brazil, of those directly affected, and of those who devoted 

their time and skills to study and respond to it, while also going through the same struggles. 

There is more in these pages than just science.  

That being said, there is also hope. In less than one year of pandemic, global 

scientific efforts have been able to develop several vaccines effective against SARS-CoV-

2, which is unheard of in vaccine history. It is estimated by the WHO Regional Office for 

Europe that at least 470,000 lives have already been saved in the region by such vaccines in 

those aged 60 years and over only. Science has also been able to save lives through the 

implementation of masks, discovery of effective drugs for mitigating symptoms and the use 

of monoclonal antibodies. Scientific advances have also led to the highest genomic output 

of any outbreak in history with over 7 million genomes made publicly available on GISAID 

to date. So please, do also see these pages as a testament of what science can do in our lives 

and how important it is. But also see beyond that. 
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Chapter 1 

Introduction 

The rapid increase in human mobility, population size and density in urban areas, 

land use, migration accompanied by climate change, natural disasters and civil conflicts 

have been some of the major drivers of the emergence and re-emergence of infectious 

diseases (1-4). A review published in 2008 concluded that most of the 1,399 known human 

pathogens are bacteria (38.67%), fungi (23.2%), helminths (20.4%) and viruses (13.5%). 

However, viruses disproportionally account for most of the recently described human 

pathogens (from 1980 onwards),  66.7% (58/87), which mostly emerged in human 

populations from spill over events from animal reservoirs (1). Most of these new pathogenic 

viruses, 76.3% (45/58), are single-stranded RNA viruses, e.g. the Human Immunodeficiency 

Viruses type 1 and type 2 (HIV-1 and HIV-2), Cote d’Ivoire and Reston Ebola viruses, 

coronaviruses such as HKU1, NL63 and the severe acute respiratory syndrome virus (SARS) 

(1).  

Several zoonotic viruses have achieved pandemic spread and affected 

thousands/millions of people worldwide. The HIV-1 pandemic has taken approximately 32 

million lives; SARS in 2002 caused 8096 cases and 774 deaths, and the pandemic A(H1N1) 

2009 influenza virus caused between 151,700-575,400 deaths (5). We have also seen the re-

emergence and international spread of previously described viruses, such as the 

chikungunya and Zika epidemics in the Americas from 2013 (6) and 2015 (7), which 

occurred in tandem with endemic circulation of dengue virus (8). More recently, the world 

has been facing the biggest public health threat of the century – the emergence and pandemic 
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spread of a new human coronavirus, the severe acute respiratory syndrome virus 

coronavirus-2 (SARS-CoV-2), causative agent of the coronavirus disease 2019 (COVID-

19) (9). Since its emergence in late 2019 (9), and as of 24th January 2022, SARS-CoV-2

spread globally and has caused at least 350 million cases and 5.6 million deaths (10). 

Understanding virus transmission, spread, evolution and its application to public health has 

never been timelier in an increasingly connected world.   

Epidemiology can be defined as “the study of the distribution and determinants of 

health-related states or events in specified populations, and the application of this study to 

the prevention and control of health problems” (11). In its broader definition, epidemiology 

does not only concern infectious/communicable diseases, however several epidemiological 

contributions to public health are infectious disease-related, especially viral epidemiology; 

for instance, the eradication of smallpox in the 1980’s after a massive global campaign led 

by the WHO. Another example is the identification of risk factors, transmission routes, and 

effective interventions capable of reducing the spread and increasing the life expectancy and 

quality of life of people living with HIV (PLWH) (11). In this sense, viral epidemiology is 

not only interested in the distribution and determinants of diseases/health conditions caused 

by viruses but also in the dynamics of these viral infections in the population and the 

interaction between viruses and their hosts (12). Traditional virus epidemiology approaches 

rely on the description of where, when, who and how, mainly by investigating and 

documenting cases and their characteristics, while also using mathematical approaches to 

understand disease distribution, identify risk factors and model disease dynamics (12-14). 

However, although extremely important and informative, epidemiological methods of 

disease surveillance are inherently prone to several types of biases and other limitations, 

which may affect results and conclusions driven from this type of data and analysis (15). 

Such limitations include, but are not limited to, lack of information on pathogen biological 
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characteristics, heterogeneity of collected metadata quality within- and between-regions and 

contact tracing inherent biases (selection, recall and response) (15).  

Modern epidemiology relies on the integration of several scientific and technological 

advances to its traditional approaches to circumvent some of these ingrown obstacles and 

expand its ability to understand infectious disease dynamics. These advances span from the 

increased capacity of generation and analysis of laboratory surveillance and outbreak data, 

to computer sciences and digital health-related approaches (14). For instance, social media 

have been used to track and predict the spread and transmission of infectious diseases (16); 

anonymised human mobility data has been integrated into epidemiological models by using 

satellite and mobile phone data; and the advances in virus genome sequencing and genetic 

analysis now allow us to track the transmission and evolution of viral pandemics in near- to 

real-time (14). This thesis relies on the extensive use of genomic epidemiology coupled with 

traditional epidemiological methods and, when possible, the use of human mobility data to 

uncover and understand virus transmission, spread and evolution in Brazil. 

 

1.1 Traditional Epidemiology Approaches to Infectious Diseases 

 

Traditional epidemiology applies standard frequency measures and methods to 

understand disease distribution and association with population and environmental 

characteristics. To better understand disease distribution, the most basic measures are 

incidence, the number of new cases of an infection/disease in a population over a period of 

time and prevalence, the total number of cases of an infection/disease in a population at a 

certain point in time. Both measures can be highly informative of the dynamics of the 

measured outcome, especially when tracked over time (12).  
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However, the epidemiology of infectious diseases differs from that of non-

communicable diseases as events result from the transmission between individuals and, as 

such, are not independent from each other. Understanding transmission and how to control 

it are two of the main objectives of viral epidemiology. Several factors can influence virus 

transmission, including incidence, prevalence, mode of pathogen transmission, pathogen 

susceptibility, population density and mobility patterns (13). For this reason, mathematical 

models designed to understand and predict virus transmission within a population usually 

account for different key parameters for virus transmission and also individual infection 

status (compartments). The most common infection compartments are susceptible, exposed, 

infectious, recovered or immune. The SIR model is the simplest of all compartmental models 

as it only assumes 3 compartments: susceptible, infectious and recovered. In SIR models, 

individuals are assumed to become infected and infectious after contact with another 

infected individual and subsequently to become non-infectious (recovery) (17).  However, 

the type of infection compartments will vary according to the pathogen and type of 

transmission model (18). The transmission rate of a virus in a given population is also 

affected by biological factors derived from the contact with its host, such as (1) the latent 

infection period, defined as the time between infection and being infectious, (2) average 

infectiousness, defined by the average transmissibility and contact rate, (3) incubation 

period, the time between infection and symptom onset, and (4) the serial interval, defined as 

the time between symptom onset in a pair infector and infected (19).  

 The extent of transmission of a pathogen can be estimated through epidemiological 

parameters such as the basic reproduction number, R0. This represents the average number 

of secondary cases derived from one single infectious individual in a completely naïve and 

susceptible population. As such, an R0 > 1 means a growing epidemic, while an R0 < 1 means 

the epidemic is declining. It is often used to understand how fast a pathogen can spread in 

Chapter 1 - Introduction

4



specific populations, the magnitude an epidemic can reach and the extent of the mitigation 

strategies needed to control its spread (20). For instance, R0 can be used to estimate the 

proportion of a population who would need to acquire immunity to a pathogen so that the 

threshold in which transmission is interrupted, the so-called herd immunity, can be reached 

(21). This is a concept particularly useful in vaccinology to estimate the number of people 

who should be targeted by vaccination programs to prevent new outbreaks. This proportion 

can be estimated by the following equation: P= (1-1/R0) (20, 22). Thus, an R0 of 2 would 

require 50% of the population to be immune to a pathogen to stop its spread, while for R0 of 

3, 4, 5 and 10 this proportion would be  66.7%, 75%, 80% and 90%, respectively (22).  

Examples of currently known R0 are 14.5 for the 1960-68 measles epidemic in Ghana, 3.5 

for the 2002-2003 severe acute respiratory syndrome (SARS) epidemic, 1.51 for 2014 Ebola 

virus epidemic in Guinea, 1.51 for the pandemic A(H1N1) 2009 influenza virus in South 

Africa, and 6 for the 1955-1960 poliomyelitis epidemic in Europe (18).  

 R0 is usually calculated as a function of the probability of transmission between 

infected and susceptible individuals (β), the type and duration of contact (c), and the duration 

of the infectious period (D) (R0=βcD) (22). Although often considered a fixed biological 

measure for each pathogen, R0 is a measure of transmissibility that is influenced by the 

biological characteristics of a pathogen, the sociodemographic characteristics of the 

population in which it is spreading and the environment (23). It is usually calculated using 

individual-level data or population-level data. In theory, the simplest way of calculating R0 

is through epidemiological surveillance and contact tracing of all primary cases of an 

infection and the secondary cases linked to them. However, this often becomes impractical 

in large outbreaks (24). On the other hand, population-based models estimate R by applying 

ordinary differential equations to cumulative incidence data, while making assumptions on 

individual-level parameters, such as contact rate, duration of infectious period and 
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probability of infection upon contact (often named as infectivity and susceptibility) (25). 

However, R0 values achieved by individual and population-level data approaches cannot be 

compared, as the R0 obtained from population-level data represents the value of a threshold 

parameter, which governs whether an epidemic would occur, rather than the actual value of 

R0 (26). 

 As R0 is reported as an average and its 95% confidence interval, it will intrinsically 

fail to represent important local variation at different scales of analysis (27). For instance, 

R0 might be higher in regions with higher population density, human mobility or even given 

cultural factors, such as frequency and intensity of human contact and other practices (28, 

29). This is particularly important when R0 is used to inform public health interventions for 

pathogens for which superspreading events account for a large share of the transmission 

events, as these events will skew R0 towards higher levels (30), even though transmission 

might be low for most infected individuals. In fact, previously estimated R0, such as for 

measles, when R0 of 12-18 were estimated with data collected between 1912-1928 in the 

United States and 1944-1979 in the United Kingdom, have probably become obsolete as 

characteristics of our society and its organization have dramatically changed since they were 

first estimated (23).  

When estimated during ongoing epidemics rather than at their beginning, the 

reproduction number is then referred to as R effective (Re), as the pool of susceptible 

individuals decreases and the proportion of immune individuals increases through natural 

exposure or vaccine-mediated immunity, thus not representing a completely naïve 

population anymore. As an epidemic progresses, Re generally becomes lower than R0 as a 

result both of the implementation of public health interventions and of the depletion of 

susceptible individuals in the population (31). Re can also be estimated for specific moments 

in time, and as such, it is called instantaneous reproduction number or Rt. Rt has been used 
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to evaluate the effectiveness of public health interventions (e.g., vaccination, social 

distancing, isolation) in reducing pathogen epidemic spread in given populations (31-39). 

For instance, timeseries of basic epidemiological measures, incidence and prevalence, and 

Rt estimates were used to assess the impact of public health interventions during the SARS 

epidemic in Hong Kong in 2003 (31).  

 For relying on data usually collected through syndromic or disease-specific 

surveillance of infectious diseases, instantaneous measures of transmissibility such as Re or 

Rt are subject to the inherent limitations and biases faced by other traditional epidemiology 

estimates, especially in low- and middle-income countries (LMICs). Such limitations 

include lack of standardization, limited laboratory capacity for diagnostic resulting in 

underestimation of cases and limitations regarding data processing and sharing (40). When 

relying on data from contact tracing strategies for the reconstruction of transmission chains, 

traditional epidemiology approaches are also prone to response, selection and recall bias. 

Even when such biases can be circumvented, information regarding lineage specific 

dynamics, number of lineage introductions into specific populations, or adequately 

identifying pairs of infectors and infected individuals cannot be retrieved from traditional 

epidemiology sources (15). Fortunately, the development of new genomic sequencing 

technologies and their integration with traditional epidemiology have provided insightful 

venues to complement and maximize epidemiological insights.  

1.2 Genomic Epidemiology Approaches to Infectious Diseases 

 

 The 21st century, especially in the last decade, has seen an enormous growth in our 

capacity to perform whole genome sequencing (WGS) at increasingly faster pace and lower 

costs. Together with an increasing computational power to process and analyse such large 

amounts of genetic information, genome sequencing has been essential for the birth of a new 
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field of epidemiology. Genomic epidemiology can be defined as “the study of the 

transmission of infectious diseases through the use of pathogen genomes” (41). More so 

than only investigating pathogen genomic data, genomic epidemiology integrates genomic 

data generated during outbreaks with the associated epidemiological metadata to understand 

the dynamics of pathogen emergence, transmission and spread at different geographical and 

time scales. Some of the key objectives of genomic epidemiology studies can be: pathogen 

identification during an outbreak of infectious disease, identification of the origins of an 

outbreak or epidemic, investigate potential cross species transmission, understanding 

pathogen transmission and the key factors driving its spread, investigate transmission chains 

and tracking pathogen evolution at the within-host and population-level, and track the 

emergence of novel pathogen strains potentially associated with increased transmissibility, 

immune escape or disease severity (3). Genomic epidemiology relies on the analysis of 

pathogen genomic data using molecular phylogenetic tools to investigate the patterns of 

gene flow in pathogen epidemic histories.  

 Molecular phylogenetics is the field of biology that studies the evolutionary 

relationships between genetic or protein sequences and thereby their shared ancestry (42). 

The reconstruction of evolutionary relationships between biological entities (species, 

individuals, or genes) is usually depicted as a phylogenetic tree. Phylodynamics can be 

defined as “the study of how evolutionary, epidemiological and immunodynamic processes 

act and potentially interact to shape phylogenies” (43-45). Since its conception, the field has 

focused on understanding pathogen transmission dynamics and impact on diversity (43, 45). 

In turn, phylogeography focuses on the study of the principles and processes governing virus 

geographical spread through the analyses of spatial patterns across phylogenies (46).  

 Viruses are the ideal model organisms for understanding pathogen evolution, 

especially RNA viruses, given the fast pace at which their genomes undergo nucleotide 
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substitution and acquire new mutations, their short genomes and large population sizes (44, 

46). These characteristics allow for the study of microevolutionary changes, since mutation 

fixation in such populations occur at the same timescale as the epidemiological and 

ecological processes shaping them while leaving a footprint in their genomes (46). The 

epidemiological and evolutionary insights obtained from reconstructing evolutionary, 

spatial and temporal dynamics from virus genomes often obtained during outbreaks now 

constitutes a key part of outbreak response and public health interventions/response(47).  

 

1.2.1 Evolutionary Models 
 
 The reconstruction of viral evolutionary history through the inference of 

phylogenetic trees starts by the selection of an appropriate nucleotide substitution model. 

The simplest way of estimating the genetic distance between a pair of sequences is counting 

the number of nucleotide positions differing between them. However, such approach does 

not consider three important factors: (i) multiple nucleotide substitution events might have 

happened at the same site, (ii) rates of evolution might be different across different sites, and 

(iii) types of substitution differ in their rate of occurrence (48). For this reason, several 

mathematical models have been developed to reconstruct the nucleotide substitution process 

within a genetic sequence and thus adequately estimate genetic diversity and infer 

phylogenetic trees. Jukes Cantor 1969 (JC69) is the first and the simplest of these models 

and it assumes that rates of evolution across sites are equal, and that all types of nucleotide 

substitutions happen at the same rate and same frequency for all bases. Later, different rates 

of substitution for transitions and transversions were included in the Kimura 1980 (K80) 

model (49). Currently, the most complex and flexible nucleotide substitution model is the 

general time reversible model (GTR) which allows for different rates for all possible types 

of substitutions and different nucleotide frequencies (12 parameters) (50).  Substitution 
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models can be further optimised by considering a proportion of invariable sites (I) and rate 

variation across sites using a gamma distribution (G). Although more than 1600 nucleotide 

substitution model combinations have been developed, with different parameter 

combinations, more complex models, such as GTR + G + I tend to provide a better fit to 

nucleotide datasets. However, several statistical tools such as JModelTest (51) are available 

and can be used to identify the most appropriate nucleotide substitution model for a given 

dataset, as selection of inadequate models can affect phylogenetic inference by under 

parametrisation or can become computationally costly by over parametrisation(52).  

 
1.2.2 Population Dynamic Models 
 

One of the main advances in the study of genomic epidemiology is the integration 

of coalescent models to study pathogen population dynamics. In coalescent theory, the 

history of sampled individuals can be represented as a genealogy, in which the most recent 

common ancestors of sampled individuals are represented by coalescent events (internal 

nodes) based on the divergence of the linages descending from them. Thus, the coalescent 

travels backwards from the moment individuals were sampled (present), and coalescent 

events continue to occur until the common ancestor of all sampled individuals (root) is 

reached and only one lineage remains (53, 54). Population genetics models developed under 

the coalescent theory can be used to link ecological processes and phylogenetic structure, 

by assuming that the pattern of coalescent events across the tree can inform on the 

occurrence of transmission events and population-level processes through time (45, 55), 

such as population size, migration, recombination, and selection. In fact, such models have 

been commonly used to understand viral transmission dynamics (demographic history, e.g., 

population growth and decline) within a population (55, 56) and infer important 

epidemiological parameters from genetic data, including the effective population size (Ne), 

growth rate (r), the doubling-time (λ) and the basic reproduction number (R0) (46). RNA 
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viruses are ideal candidates for the application of coalescent-based models, given that their 

fast evolutionary rate often leads to well-resolved phylogenetic trees (46).  

Several phylodynamic coalescent-based methods have been developed since the 

coalescent theory was first proposed in 1982 by Kingman (57). Over time, models have 

become increasingly complex in terms of the population dynamics they consider. Initial 

parametric models focused on simple constant, exponential growth (56) and logistic growth 

population sizes, while providing maximum likelihood (58) or Bayesian frameworks for 

estimation of key parameters of interest (59, 60). However, such models are most useful 

when the populations under study are known to follow such population dynamics a priori 

(59, 61). More recent coalescent models use non-parametric approaches for estimation of 

Ne, such as Skyline (59), Skyride (62) and Skygrid (63). These models approximate Ne as a 

linear function of parametric functions and allow inference of flexible time-changing 

population dynamics from heterochronous sequences. More recent developments include 

the ability to test the association between Ne and temporal covariates under a generalised 

linear model (GLM) framework while considering the shared ancestry and phylogenetic 

uncertainty (64).  

Recently, birth-death (BD) models have been used as an alternative to coalescent 

methods for the inference of epidemiological parameters from genetic data. The rationale 

for using birth-death models comes from two limitations of coalescent-based methods, (i) 

not being able to differentiate between recovery and death, and (ii) assuming that only a 

small random proportion of cases have been sequenced (65). On the other hand, BD models 

estimate separate birth (transmission) and death rates, and explicitly consider sampling 

proportion as an additional parameter (65). For a completely susceptible population, these 

two rates can be used to estimate R0. BD models have also been extended to nonparametric 

models allowing for time-changing infection rates (66). Birth-death models have 
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successfully been applied to investigate population dynamics of different viruses such as 

HIV (67) and hepatitis C virus (HCV) (66).  

 

1.2.3 Molecular Clock Models 
 

To study the temporal dynamics of virus epidemics, molecular clock models are 

typically used to convert genetic divergence into calendar time units (45, 68). For this 

reason, the sampling (or collection) dates of biological samples used for genome sequencing 

have become an essential piece of metadata to estimate time-calibrated phylogenetic trees 

and to assist with adequate phylogenetic rooting (69, 70) . Molecular dating has become an 

important tool for the understanding of viral epidemics. It has been used to date the 

introduction of viruses or new lineages into a specific region (71), identify surveillance gaps 

and cryptic transmission (71-73), date spill over events (74, 75), reconstruct historical spread 

(71, 73, 75-77) and even estimate the date of infection in an individual patient (78). Finally, 

dated phylogenies often form the basis to estimate important epidemiological parameters 

over time, such as the reproduction number, the impact of interventions, and factors 

associated with spread over time (43, 67, 73, 76, 77, 79, 80).   

The earliest molecular clock models assumed that evolution occurred at a constant 

evolutionary rate across the phylogeny and were named as strict molecular clock models 

(81). This is a simplistic way of describing the relationship between divergence and time, 

and subsequent studies showed that strict molecular clock models did not often provide 

realistic descriptions of virus evolutionary histories (82-84). However, more recent models 

can account for variation in the evolutionary rate across different lineages in a phylogeny, 

and are named as relaxed molecular clock models (85). Examples of relaxed clock models 

include the local molecular clock models (86-88), autocorrelated molecular clock models 

(89, 90), uncorrelated-relaxed clock model (85) and the random local clock models (91). 
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The uncorrelated-relaxed clock model, in particular, has been an important improvement to 

previous approaches (local and autocorrelated) as it allows for co-estimation of phylogeny 

and divergence dates rather than requiring a fixed tree topology (85). The random local clock 

model, in turn, allows for a given number of evolutionary rates to be randomly assigned for 

specific subset of lineages from the tree, varying from 0 lineages (strict clock) to every single 

lineage in the phylogeny (uncorrelated-relaxed clock) (91).   

 

1.2.4 Phylogeographic Models 
 

As host population characteristics play a major role in shaping virus population 

structure, especially RNA viruses, initial phylogeographic analyses focused on 

understanding the information that phylogenetic tree topologies could provide on the 

geographical pattern of spread of different viruses (92). Accordingly, RNA virus 

phylogeographic dynamics can be divided into five patterns: (i) no clear structure, (ii) wave-

like transmission, (iii) source-sink or core-satellite, (iv) gravity-like, and (v) strong spatial 

subdivision. It is possible for the same virus to present with different dynamics depending 

on the spatial scale. Such dynamics reflect relative rates of virus gene flow, how long such 

viruses have been associated to human populations and their mode of transmission (92).  

Alongside population dynamics and dating of evolutionary events, advances in 

coalescent theory and molecular clock models have been fundamental for the development 

of tools for assessing the relationship between genetic evolution and spatial spread (92). 

Population structure can be investigated according to arbitrary discrete or continuous traits, 

such as geographic locations, body compartments, viral loads, host species, morphological 

characters, habitat preferences, antigenicity or cellular compartments (68). However, 

geographic locations are the most commonly used traits in phylodynamics and several 

statistical approaches have been developed for the analysis of geo-referenced datasets (68). 
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Most recent approaches rely on stochastic phylogenetic frameworks for inferring discrete 

and continuous diffusion under a suite of coalescent and molecular clock models (68, 93).  

Probabilistic models, especially Bayesian frameworks, allow for the integration of different 

evolutionary models and data sources, and offer increased flexibility in hypothesis testing 

compared to parsimonious approaches (64, 93, 94).  

Discrete trait phylogeographic approaches model spatial diffusion using continuous-

time Markov Chain (CTMC), initially introduced within a maximum likelihood framework 

by Pagel et al in 1999 (95), and later extended to Bayesian frameworks (96, 97). CTMCs 

are similar to common nucleotide, codon and amino acid substitutions models in its use of 

infinitesimal matrices of exchange rate between trait locations, which can be symmetrical 

or asymmetrical. Discrete trait phylogeographic analysis (DTA) is typically applied to infer 

spatial origins and spread patterns from virus genetic data with information on sampling 

location. The statistical performance of geographical DTA can be improved by applying a 

Bayesian stochastic search variable selection procedure (BSSVS), which allows location-

exchange rates to be zero with some probability and identifies those that are more likely to 

explain virus spatial diffusion patterns (47, 93). Markov jumps and rewards can also be used 

to estimate the expected number of transitions between specific levels of the traits and the 

time spent at each trait level along the tree (waiting times) (97-99). For instance, Markov 

jumps can be used to estimate the number of imports and exports between specific countries 

(100, 101).  

However, when fine-scale continuous geographical data is available, e.g., latitude 

and longitude of sample collection, continuous phylogeographic approaches may be 

preferred to discrete phylogeographic approaches. Continuous phylogeography assumes that 

traits evolve according to a Brownian motion process (random motion of particles suspended 

in a medium) and uses random walk models (succession of random steps) to infer 
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phylogeographic diffusion while also reconstructing evolutionary history (102). Such 

approaches have been recently used to reconstruct the continuous geographical diffusion of 

yellow fever virus in southeast Brazil (75) and rabies virus epidemic in North American 

racoons (102). Tools for the visualisation of discrete and continuous phylogeographic 

analysis have been recently developed, such as the program SpreaD3 (“Spatial Phylogenetic 

Reconstruction of Evolutionary Dynamics using Data-Driven Documents”) (103) and the R 

package “seraphim” (104).  

 
1.2.5 The Rise of Genomic Epidemiology 
 
 Although genomic epidemiology approaches have been applied to the study of 

several pathogens in the past decades, most of these investigations have been retrospectively 

performed, and near-real time or real-time applications have only recently been achieved. 

For instance, the 2002-2003 SARS-CoV epidemic was the first time genomic sequencing 

technologies were applied during an outbreak of international concern. However, within the 

first month after pathogen identification, only 3 sequences had been made available and 31 

sequences within the first 3 months (105). Although genomic data was useful to uncover 

information about SARS-CoV origins, genomic structure, evolution, host interaction, and 

guided the design of diagnostic molecular assays, limited sequencing capacity and delays in 

data generation and sharing limited its public health impact (105-110).  

 During the influenza A(H1N1) 2009 pandemic (H1N1pdm), which was first detected 

in April 2009, genetic data was used for the first time, together with traditional 

epidemiological analysis to assess virus transmission and to aid in public policy decisions 

(105). 23 hemagglutinin A sequences and 11 whole-genomes sequences were used to assess 

the pandemic’s potential by estimating its most recent common ancestor (TMRCA) around 

2 January 2009 [95% credible interval (CrI): 3 November 2008 to 2 March 2009], a doubling 

time of 10 days (95% CrI: 4.5 to 37.5 days) and an R0 of 1.22; 95% CrI: 1.05 to 1.60, similar 
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to the values found with epidemiological data and comparable to those of previous influenza 

pandemics (79). Such results were essential to understand the extent of mitigation measures 

needed for public health control. Further studies used larger genomic data to investigate 

H1N1pdm origins (111), revealing at least 3 months of cryptic transmission between the 

first detection and estimated TMRCA (72). Unfortunately, given limitations in sampling 

influenza in swine populations, the origins of H1N1pdm remained unknown until very 

recently, when a study published in 2016 suggested an origin in Central Mexico (112). The 

rapid sharing of H1N1pdm genetic data on the then recently created Global Initiative on 

Sharing Avian Influenza Data (GISAID) online platform was a key factor for early analyses 

and subsequent responses to the curb pandemic spread (113, 114).  

 Although useful for the study of SARS-CoV, H1N1pdm, and the Middle Eastern 

Respiratory Syndrome (MERS), it was during the 2013-2016 Ebola Virus (EBOV) Makona 

epidemic in Guinea, Liberia, Sierra Leone that genomic epidemiology was first conducted 

in real-time (115). Most early genomic epidemiological studies had been performed on tens 

to few hundreds of sequences, while much larger EBOV virus genome datasets were 

generated during the epidemic, representing 5% of all reported cases (115).  

 Phylogenetic analysis of EBOV Makona revealed important aspects about its 

zoonotic origins and transmission dynamics. Firstly, analyses of genomic data revealed that 

the EBOV epidemic was the result of a novel and independent cross-species transmission 

event into the human population (69, 116) and new lineages emerging during the outbreak 

descended from earlier ones rather than from new spill-over events from a zoonotic reservoir 

species. Phylogenetic analysis also estimated the EBOV epidemic to have started around 

December 2013, that EBOV Makona only diverged from other EBOV lineages about a 

decade before the outbreak ignited, and that all EBOV lineages share a common ancestor 

that dates back to around 1975, consistent with the first reported EBOV cases in 1976 (70, 
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73, 115). Continued virus genome sequencing and analysis during the epidemic was also 

crucial to clarify the evolutionary rate of EBOV Makona, which was debated across the 

scientific community and the media (115). Early estimates suggested evolutionary rates that 

were twice as fast compared to those estimated for previous EBOV outbreaks. However, 

later analyses showed that such results were related to the time-dependency of evolutionary 

rates, given that mildly deleterious variants would not have been eliminated yet by genetic 

drift (115, 117). Secondly, although no formal assessment of the phenotypic impact of amino 

acid mutations was performed at the time, genomic sequencing identified the first mutation 

on the EBOV glycoprotein receptor-binding domain, A82V (115, 118), later shown to carry 

increased in-vitro infectivity potentially associated with increased membrane fusion (119). 

Thirdly, genomic epidemiology studies also revealed a previously unknown role of sexual 

transmission in the spread of EBOV (115, 120-124).  

 Most importantly, this was the first instance genomic epidemiology was used in real-

time to identify transmission chains and inform public health strategies for epidemic control 

(115).  Phylogenetic analyses were used to uncover virus spread at different geographical 

and temporal scales, revealing frequent transmission events within and between countries 

(125, 126), as well as providing important information about transmission networks and 

virus persistence at localized scales (127). Genomic epidemiology approaches were also 

used to estimate EBOV Makona’s R0, ranging between 1.65-2.18, and its potential for 

epidemic spread (128). Combined, these contributions were essential to reveal gaps in 

epidemiological surveillance, track virus spread at regional and local scales, identify 

transmission hotspots and design more effective infectious disease control measures (115). 

The EBOV Makona epidemic also revolutionized the use of portable genome 

sequencing for real-time generation of pathogen genome sequences in the field (126).  In a 

seminal paper by Quick and colleagues at the time describing the use of the recently 
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developed Oxford Nanopore MinION portable sequencer, together with necessary reagents, 

were transported in a suitcase from the United Kingdom to European Mobile Laboratory 

located at the Donka Hospital in Conakry, Guinea. A total of 142 EBOV genomes were 

generated on-site between March and October 2015, aiding the detection of local 

transmission chains in the country (126). This approach would be later on deployed during 

the following public health emergency of international concern (PHEIC) caused by the Zika 

virus (71, 129), and subsequent epidemics caused by Chikungunya virus (16, 130, 131), 

dengue virus (DENV) (132) and yellow fever virus (YFV) (75) in Brazil. The ZiBRA project 

(Zika in Brazil Real Time Analysis) used portable genome sequencing in Brazil for the first 

time during the Zika virus PHEIC in 2015-2016, when a minivan was converted into a 

mobile laboratory and researchers travelled between 6 public health laboratories in 

Northeast Brazil tested over 1200 samples and sequencing the first large dataset of ZIKV 

genomes (133). The study revealed that the ZIKV Asian genotype was introduced from 

French Polynesia to Brazil 18 months before its first detection in the country (71). More 

recently, portable genome sequencing was used to confirm that human YFV cases in 

Southeast Brazil were being sustained by frequent spill over events from non-human 

primates to humans mediated by sylvatic mosquito vectors in forested areas, rather than via 

human-to-human transmission (75). And finally, portable sequencing was also used to 

identify the replacement of the CHIKV Asian by the CHIKV East-Central-South-African 

genotype in North Brazil (16) and the introduction of a novel DENV serotype 2 genotype 

associated with a large epidemic in 2019 in Southeast Brazil (132). Building such human 

and technological capacity on genome sequencing, especially portable genome sequencing, 

would prove crucial for the early and rapid response to SARS-CoV-2 in Brazil. 
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1.3 SARS-CoV-2 Evolutionary Origins and Global Spread  

1.3.1 Coronavirus Family 
 
 Coronaviruses are a large family of viruses which circulate mostly in mammals (e.g. 

bats, camels, humans, etc) and birds. They are causative agents of gastrointestinal infections 

in animals and respiratory illness in humans. They are part of the realm Riboviria, order 

Nidovirales, suborder Cornidovirineae and family Coronaviridae which includes 2 

subfamilies (Coronavirinae and Torovirinae), 5 genera, 27 subgenera and 39 species (134). 

Viruses from the Coronaviridae family are the largest RNA viruses described to date, with 

polyadenylated and capped genomes ranging between 25-32 kb. They are enveloped, single-

stranded, positive-sense RNA viruses and their virions are spherical with a large 

glycoprotein, Spike (S), which extends from the envelope, resulting in its crown-like shape 

(135). Nucleocapsids can be flexible (Coronavirinae) or helical and doughnut shaped 

(Torovirinae). Viruses from the Coronavirinae subfamily are categorised into 4 genera: 

alphacoronaviruses, betacoronaviruses, gamacoronaviruses, and deltacoronaviruses (134, 

135). While alpha and betacoronaviruses infect mammals, gamma and delta coronaviruses 

mostly infect birds, but also some mammals. Humans are primarily infected by alpha and 

betacoronaviruses (136, 137). 

To date, seven human coronaviruses (HCoVs) have been described (138). 

Commonly acquired human coronaviruses (HCoV-229E, HCoV-NL63, HCoV-OC43, 

HCoV-HKU1) are endemic and mostly cause mild respiratory disease (137-139). However, 

3 betacoronaviruses are highly pathogenic, causing severe respiratory infections in humans 

and having been linked to severe global outbreaks: the severe acute respiratory syndrome 

virus (SARS-CoV), the Middle Eastern respiratory syndrome virus (MERS-CoV) and the 

severe acute respiratory syndrome virus 2 (SARS-CoV-2), the causative agent of the current 

global pandemic (9, 136, 140).  

Chapter 1 - Introduction

19



1.3.2 Highly-pathogenic human coronaviruses 
 
 In November and December 2002, the first cases of a new upper respiratory tract 

infection rapidly evolving to severe pneumonia and potentially death were reported in 

province of Guangdong, China (141, 142). The disease was named as severe acute 

respiratory syndrome (SARS) and its causative agent was later described as the first highly 

pathogenic human coronavirus (SARS-CoV). To that date, coronaviruses were only known 

to cause mild respiratory diseases in humans (136). Approximately two thirds of the initial 

SARS-CoV cases were linked to workers handling live animals/food, suggesting that 

zoonotic spillover events in wildlife markets could explain the origins of the outbreak in 

humans (142). However, it is now believed that bats may be the natural hosts of SARS-CoV, 

while civets (143, 144) would be intermediate hosts between bats and humans (136). In 

February 2003, a traveller from Guangdong infected multiple people while staying in a hotel 

in Hong Kong. Some of these individuals were also travellers, which in turn infected 

multiple people when returning to other countries, including Canada, Vietnam, and 

Singapore (145). It is estimated that SARS-CoV caused over 8000 SARS cases and 700 

deaths in at least 26 countries worldwide, figuring as the first pandemic of the 21st century 

and the first in history to be caused by a coronavirus (141, 146). SARS-CoV is transmitted 

by mucosal contact with respiratory droplets or fomites from infected individuals. Given the 

close contact with SARS patients and the higher risk imposed by aerosol-generating 

procedures, cases were mostly reported in hospital settings (141, 147), with outbreaks 

sometimes involving more than 100 individuals (147-149). Cases have also been linked to 

superspreading events (142, 150).  

 The first Middle Eastern respiratory syndrome (MERS) case was described in June 

2012 in Saudi Arabia in a patient presenting an unusual pneumonia, multiple organ failure 

and subsequent death (151). As of October 2021, a total of 2578 MERS cases and 888 deaths 
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have been reported, equating to a case fatality ratio of 34.4%. Cases have been reported in 

27 countries worldwide, with 2178 (84.5%) being reported in Saudi Arabia (152, 153). 

Individuals aged 50-59 are at the highest risk for primary infection (presumably camel-to-

human), while individuals aged 30-39 are at highest risk for secondary infection (human-to-

human transmission) (152, 153). Mortality is higher with increased age (153). Information 

from some case reports, serological surveys and genome sequencing studies suggest 

frequent spillover through direct contact between humans and camels (154-158). Recent 

phylodynamic analysis of MERS-CoV genomes from humans and camels has revealed 

camels to be MERS-CoV main reservoirs and responsible for the MERS-CoV long-term 

evolution, while humans are only transient and final hosts, with large clusters of 

transmission happening in specific environments, such as household contact and healthcare 

setting (74). These results confirm previous hypotheses that outbreaks in humans are 

dependent from contact with and spillover events from camels, and that MERS-CoV is 

unlikely to become endemic in the human population, as human-to-human transmission is 

not sustainable and clusters are more likely to die out (74). Most affected countries have 

implemented important and strong control measures which have resulted both in a massive 

decrease in the number of reported cases since the largest 2014-2015 MERS-CoV outbreak 

and in a reduction of its global spread (159).  

 These SARS-CoV and the MERS-CoV international epidemics have encouraged the 

scientific international community to investigate highly pathogenic coronaviruses and for 

countries to learn from their previous experiences and prepare for a possible future 

coronavirus pandemic (160, 161). Since then, several new coronaviruses have been 

described in bats and in other animals, suggesting that spillover of new coronaviruses to 

human populations are very likely to occur in the future. Fortunately, advances were also 

made regarding our understanding of the biology and control of highly pathogenic 
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coronaviruses, including novel vaccines and treatments (162). These advances would be 

essential for the response to first coronavirus pandemic in history. 

 

1.3.3 Timeline of SARS-CoV-2 Early Cases 
 

SARS-CoV-2 is a novel betacoronavirus and it is the aetiological agent of the 

coronavirus disease 2019 (COVID-19) (163). The first cases of COVID-19 were reported 

on the 31st of December 2019 by the WHO China Country Office, initially as a cluster of 

cases of a severe pneumonia of unknown aetiology in Wuhan, Hubei province (164). Cases 

were initially linked to the Huanan Seafood Market, where most of the patients worked or 

had recently visited (165, 166). By the 4th of January 2020, a total of 44 patients had been 

reported, mostly presenting fever. However, 11 patients presented severe symptoms such as 

difficulty in breathing and invasive lung lesions (164). The next few days were followed by 

several measures and initial communications by the WHO on the novel outbreak, including 

guidelines on how other countries could detect and handle new cases (167). On the 7th of 

January 2020, Chinese scientists reported having identified a new beta coronavirus from 

bronchoalveolar lavage fluid collected on the 26 of December 2019? from a patient residing 

in Wuhan. This new virus, suspected to be the causative agent of the Wuhan new pneumonia 

cases (9, 165, 166), was then named as 2019-nCoV. On the 11th of January 2020, China 

reported the first death associated to the new pneumonia from a 61-year old man who was a 

regular customer at the Huanan Market in Wuhan. Chinese scientists shared the first 

genomic sequence of the new coronavirus on the 10th of January 2020 (168). Early sharing 

of the virus complete genome was considered a turning point in the management of the 

outbreak as it allowed the rapid development of diagnostic tests, vaccines and treatments. 

Soon after, reports of clusters amongst family members and within-hospital transmission 
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suggested that human-to-human transmission was the main transmission mode of the novel 

2019-nCoV (169-171).   

While the cases increased in Wuhan and 2019-nCoV spread across other Chinese 

provinces, on the 13th of January 2020, Thailand officials reported a returning traveller from 

Wuhan to be the first COVID-19 case outside of China (172). This report was followed by 

other imported cases in Japan and in North Korea on the 15th and 20th of January 2020, 

respectively. On the 21st of January 2020, the first COVID-19 case outside of the Asia was 

confirmed by the Center for Disease Control and Prevention, CDC in a Washington State 

resident who had returned from Wuhan on the 15th of January 2020 (173).  

To prevent further national and international spread of COVID-19 cases, on the 23rd 

January 2020, the Chinese government isolated the city of Wuhan by prohibiting any 

movement in or out of the city, in addition to raising the national public health emergency 

response to level 4, its highest. A day later, Wuhan restrictions were expanded to the 

Province of Hubei (174). However, by the 30th of January, a total of 7818 cases had been 

reported globally, 7,736 of them within China and 82 cases in 18 countries across 4 different 

continents. The exponential growth of the 2019-nCoV Chinese epidemic and the rapid 

global spread of 2019-nCoV outside of China led the WHO Emergency Committee to 

declare the COVID-19 epidemic a Public Health Emergency of International Concern 

(PHEIC) on the 30th January 2020 (167, 175).   

The months of February and March 2020 were marked by the first deaths outside 

China, worldwide spread and by a change of the novel PHEIC epicenter. On the 2nd of 

February 2020 (176), the first COVID-19 death outside China was reported in the 

Philippines, followed by a death in Japan on the 14th of February 2020 (177). The first death 

outside of Asia was reported in France on the 16th of February 2020 (178). By the 11th of 

March 2020, 118,319 cases and 4,292 deaths had been reported across 113 
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countries/areas/territories worldwide and COVID-19 was officially declared a pandemic by 

the WHO (179). Two days later, Europe was declared the new epicenter of the COVID-19 

epidemic, with Italy and Spain being the worst hit countries (180). Given the upsurge of 

cases and deaths, the Italian government enforced strict containment measures, including 

social distancing and severe movement restrictions, to a national level, which would only be 

removed 2 months later, on the 4th of May 2020 (181). By the lifting of restrictions, Italy 

had recorded 210,000 cases and almost 29,000 deaths, much higher numbers than China, 

the initial epicenter of the pandemic, that reported 84,400 cases and 4,643 deaths during the 

same period (182). Spain, the second most affected European country, at the time, reached 

its peak reporting of daily new cases on 1st April 2020, with a total of 8,195 cases (10).   

By then, Europe had become the new global epicentre of the pandemic, with the 

United States (US) reporting an increasing number of COVID-19 cases in New York city 

(183). By the end of March 2020, the US recorded some of the highest daily number of cases 

worldwide and accounted for 1 in each 5 cases globally (184).  This would be followed by 

a largely fragmented response to the pandemic with politically motivated public health 

decisions being made at the state level (185). 

The first COVID-19 case in Latin America was reported on 26th of February 2020 in 

São Paulo, Brazil (186) followed by reports from Mexico on the 28th of February 2020 (187) 

and Ecuador on the following day (188). By the 10th of March 2020, other 10 Latin American 

countries/territories had reported at least one COVID-19 case (189). The first COVID-19 

death in Latin America was reported on the 7th of March in Argentina (190). The global 

shortage of testing and personal protective equipment (PPE), lack of preparedness and 

uncoordinated responses, in addition to the decades of failing socio-political systems and 

struggles with high indices of inequality, low access to health services and poverty led Latin 

America into a turmoil (191-194).  Only 4% of the Latin American demand for medical 
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supplies required to reduce exposure and mortality, including PPE, ventilators and test kits, 

were met by local production, making the region highly vulnerable to shortages and 

dependent on the production from foreign nations, which were already suffering with their 

own internal demands and implementing export restrictions (195, 196). Moreover, Latin 

America had recently gone through major epidemics caused by DENV, CHIKV, ZIKV, and 

YFV which strained the local public health systems and population resilience (197). Amidst 

reports of people dying on the streets in Ecuador (198) and mass grave yards in Manaus, 

Brazil, Latin America became the new epicenter of pandemic on the 22nd of May 2020 (199). 

By then, Brazil was the second worst-hit country by the SARS-CoV-2 pandemic in the world 

and the epicentre of the epidemic in Latin America with 291,579 cases and 18,859 deaths 

(200). However, due to the scarcity of available testing supplies, underreporting of SARS-

CoV-2 cases is high in Latin America and the true number of cases are likely much larger 

than the reported numbers (201, 202).  

 

1.3.5 SARS-CoV-2 Variants 
 
 Several processes impact and shape the evolution of viral genomes such as 

polymerase error during replication, host enzymes, spontaneous chemical reactions and 

mutagen agents found in the environment (203). Although exceptions to the rule exist, RNA 

viruses tend to have higher mutation rates than DNA viruses. This faster evolutionary rate 

can be partially explained by a less effective proof-reading replication system which uses 

low fidelity RNA polymerases. While most RNA viruses have mutation rates at the scale of 

10-3 substitution/per site/year, variations within the group also exist and evolutionary rates 

can range between 10-2 and 10-5 substitution/per site/year (203). For instance, reverse 

transcriptases (RT) used for replication by retroviruses such as the human 

immunodeficiency virus (HIV) have much higher fidelity than that of RNA-dependent RNA 
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polymerases (RdRp) from other RNA viruses, and thus lead to lower mutation rates (203, 

204). However, DNA viruses lacking exonuclease proofreading have similar fidelity rates 

to RdRp RNA viruses, suggesting that the lack of proofreading mechanisms is likely the 

main driver for the more error-prone replication process of RNA viruses, rather than lower 

polymerase fidelity by itself (205). The evolution of RNA viruses is likely constrained at a 

range to allow for the emergency of enough diversity and fast adaption, but also to ensure 

genome stability as most random mutations are deleterious and could result in lower fitness 

(205-208). Controlling of replication fidelity has been used as a mechanism to produce new 

RNA virus vaccines (209).   

 In fact, large RNA viruses belonging to the Nidovirales order and Coronaviridae and 

Roniviridae families with genomes >20,000 base pairs (bp) such as coronaviruses have been 

shown to harbour proofreading systems to improve polymerase fidelity and reduce mutation 

rates (210). These mechanisms would be essential to maintain the integrity of such large 

genomes, which are much larger than the average 10,000 bp of most RNA viruses (211, 

212). Examples of such mechanisms would be the presence of 3′→5′ exoribonuclease 

activity associated to the Non-structural protein 14 (nsp14-ExoN) and endoribonuclease 

activity of nsp15 of coronaviruses (213). nsp14-ExoN can proofread single 3’ mismatched 

nucleotides (214, 215) and abolishment of its activity reduces coronavirus replication 

fidelity by up to 20-fold (216). Such proofreading mechanisms have led coronaviruses to 

present evolutionary rates which can be 10-fold lower compared to seasonal influenza A 

virus (217). However, nsp14 has also been shown to be required for coronavirus 

recombination (218).  

 SARS-CoV-2 has an estimated evolutionary rate ranging from 0.8 to 2 x 10-3 

substitutions per site per year (s/s/y) (219-221). This equates to approximately 1 mutation 

every two weeks or 2-3 mutations a month. Given this slow evolutionary rate, classification 

Chapter 1 - Introduction

26



of new lineages and their association to specific geographic locations have been challenging 

tasks as lineages often differ by a single nucleotide change (217). Early studies analysing 

the population structure of SARS-CoV-2 phylogenies identified two large SARS-CoV-2 

lineages, A and B, which co-circulated since the beginning of the outbreak in Wuhan, 

suggesting that at least two multiple independent spillover events may have happened. 

Lineage B sequences differ at two nucleotide positions (8,782 in ORF1ab and 28,144 in 

ORF8) from the closest sequences of known bat viruses (RaTG13 and RmYN02), while 

lineage A viruses have these positions conserved, suggesting lineage A to be the closest 

common ancestor to the human circulating SARS-CoV-2 strains (217, 222, 223). The first 

SARS-CoV-2 publicly available genomes belonged to SARS-CoV-2 lineage B and were 

linked to exposure to the Huanan seafood market while the earliest SARS-CoV-2 lineage A 

sequences have been linked to other wet markets, and to unrelated cases in Wuhan and other 

parts of China (9, 166, 224, 225).  

 Although both SARS-CoV-2 lineages A and B spread globally, lineage B soon 

became dominant worldwide. This early dominance of B lineages has been associated with 

the acquisition of one amino acid substitution in the spike protein, D614G, which was passed 

down to subsequent B lineages. The fact that 614G strains were associated to potentially 

higher virus loads and infectious titers raised the question of whether D614G had increased 

SARS-CoV-2 fitness and transmissibility (226).  Later studies showed that D614G increases 

the stability and infectivity of SARS-CoV-2 virions, thus enhancing its capacity of 

replicating in human airway cells and tissues, and leading to higher infectious titers in the 

trachea of infected hamsters (227-229). Recent animal studies have also shown 614G to 

increase transmission in 20% compared to wild-type and thus representing a competitive 

advantage in the transmission process (230, 231).  Phylodynamic analysis using 25,000 

SARS-CoV-2 sequences from the United Kingdom concluded that the overtake of 614G 
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variants is consistent with a selective advantage and that 614G is associated to lower Ct 

levels and younger age, but not with increased disease severity (232). D614G figures as the 

first observation of an evolutionary selectively adapted mutation in SARS-CoV-2 pandemic 

genomes. 

 Since then, other mutations in the Spike protein have been associated to the 

emergence of lineages of potential public health interest. Such lineages are currently 

separated into three different categories according to their epidemiological characteristics: 

variant of concern (VOC), variant of interest (VOI) and variant under monitoring (VUM) 

(233). A VOI is a new SARS-CoV-2 lineage presenting (1) mutations predicted or proven 

to alter epidemiologically relevant virus characteristics (e.g., transmissibility, severity, 

diagnostic or escape to therapy), with (2) preliminary data suggesting to increasing 

prevalence across multiple populations (233, 234).  A VOC presents the same characteristics 

of a VOI with the addition that one or more altered characteristics have been confirmed 

through comparative studies to happen at the level of global public health significance: 

increased transmissibility, or increased virulence or altered disease presentation, or 

decreased effectiveness of public health measures, diagnostics, therapeutics or vaccines. In 

turn, VUMs are variants harbouring mutations which might potentially pose a public health 

risk in the future, but lack current evidence of its impact (233). SARS-CoV-2 VOC, VOI 

and VUMs are currently named according to a WHO-defined Greek alphabet nomenclature 

system considering the order in which these new variants have been first identified. This 

new nomenclature was developed to provide easy-to-pronounce and non-stigmatising 

variant names for the general public, and complement three other nomenclatures frequently 

used by the scientific community (Pango lineage, GISAID clades, NextStrain clades) (222, 

233, 235).  
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 Currently, the WHO recognizes 5 VOCs: Alpha (B.1.1.7, GRY, 20I/V1), Beta 

(B.1.351, GH/501Y.V2, 20H/V2, Gamma (P.1, GR/501Y.V3, 20J/V3), Delta (B.1.617.2, 

G/478K.V1/ 21A, 21I, 21J), and Omicron (B.1.1.529/ GRA/ 21K, 21L, 21M). The first 

variant of concern, Alpha, was described on the 18th of December 2020 by the COVID-19 

Genomics UK Consortium (COG-UK) (236) and designated as a VOC by Public Health 

England (PHE). Retrospective investigations were able to trace the earliest Alpha cases back 

to the 20th of September 2020 in samples from Kent, south-eastern England, and Greater 

London areas. By December 2020, Alpha had spread across different regions of the UK and 

was rapidly increasing in frequency (236), even during the UK’s second lockdown, 

suggesting increased selective advantage and transmissibility fitness. Considering SARS-

CoV-2’s relatively slow evolutionary rate, Alpha called attention for harbouring an array of 

lineage defining mutations: 14 non-synonymous mutations, 3 nucleotide deletions and 6 

synonymous mutations (236). It has been hypothesized that the fast accumulation of lineage-

defining mutations may be associated to chronically-infected SARS-CoV-2 patients who are 

immunosuppressed or immunodeficient. Such patients would undergo extensive therapy 

with convalescent sera, which can increase selective pressures over specific variants through 

direct selection and genetic hitchhiking (236-239). Most of Alpha’s non-synonymous 

mutations and deletions, 47% (8/17), were present in the Spike protein. The most important 

of these mutations is N501Y, which lies in the receptor binding domain (RBD) and has been 

shown to increase the binding affinity of SARS-CoV-2 spike protein to hACE2 receptors, 

potentially affecting virus transmissibility and neutralization (240). Studies have estimated 

Alpha to be 50-100% more transmissible compared to wild-type and the hazard of death 

associated to an infection with an alpha strain virus to be 61% (42-82%) higher than that of 

previously circulating lineages (241, 242). Although reduced neutralization of Alpha has 

been shown, no evidence for significant impact in immune protection, naturally or vaccine-
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mediated, has been found (234, 240). Given its increased transmissibility, Alpha swiftly 

spread outside the UK and became the main circulating lineage, especially in Europe, North 

America and Middle East, causing large second/third waves of cases and deaths (243, 244).  

 Shortly after the description of Alpha by the UK government, 2 new VOCs were 

identified in South Africa and in Brazil, both presenting a constellation of lineage-defining 

mutations, including N501Y. Beta was also first described in December 2020. It was first 

detected in samples from 8th October 2020 and followed by a rapid second wave in South 

Africa characterized by an exponential increase in the number of cases and deaths, which 

would later on surpass the burden of South Africa’s COVID-19 first wave (245). Its 

emergence was dated back to early August 2020 in Nelson Mandela Bay (245). Beta’s Spike 

protein harbours 9 amino acid changes: 8 non-synonymous mutations and 1 deletion. Three 

of the non-synonymous mutations are located in the RBD region of spike protein (N501Y, 

E484K and K417N). Mutations N501Y and E484K have been shown to increase spike’s 

binding affinity to hACE2 receptors, individually and further when combined (246). 

Epidemiological studies have shown that Beta is 1.50 times (95% CrI: 1.20-2.13) more 

transmissible and is also associated with increased severity compared to previously 

circulating lineages (247, 248). However, differently from Alpha, Beta’s mutation array, 

especially E484K, has been associated with significant evasion of both natural and vaccine-

mediated immunity (249, 250).  

 The Gamma VOC was first reported on the 10th of January 2021 after its detection 

in samples from Japanese travellers returning from Manaus, Brazil (251). This initial report 

was followed by two preliminary studies pointing to the circulation of Gamma in Manaus 

and to its exponential increase in just a few weeks after its first detection (252, 253). Due to 

Gamma’s emergence, Manaus experienced a second wave of an unprecedent magnitude of 

cases and deaths (254). Similarly to Alpha and Beta, Gamma also acquired a constellation 
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of lineage-defining mutations compared to its precursor, Pango lineage B.1.1.28: 15 non-

synonymous mutations, 1 insertion, 1 deletion, and 6 synonymous mutations. Gamma’s 

spike protein harbours 10 amino acid changes, from which 3 are located in the RBD: N501Y, 

E484K and K417T. As previously mentioned, mutations in these sites are associated to 

increased transmissibility, severity and immune evasion (252). Gamma has since been 

shown to present increased transmissibility, to evade partially evade natural and vaccine-

mediated immune response and to lead to more severe disease (247, 255, 256). Since its 

emergence in Manaus, Gamma has spread to all other Brazilian states, leading to daily 

records of cases and deaths of 115,228 and 4,249, respectively (10). Gamma has also spread 

to several other countries, becoming the dominant circulating lineage in the region in South 

America (244).  The early detection and transmission of Gamma is described in more detail 

in Chapter 3 of this thesis. 

 In March 2021, India saw a swift increase in the number of COVID-19 cases leading 

to a hard-hitting second wave in the following weeks. Initially thought to be caused by 

multiple newly circulating lineages, including Alpha introduced from the UK, the new 

lineage Delta, first detected in Maharashtra, rapidly surpassed the number of cases caused 

by other circulating lineages (257). This observation suggested that Delta was more 

transmissible than other lineages, including other VOCs. Delta is characterised by spike 

mutations T19R, Δ157-158, L452R, T478K, D614G, P681R, and D950N. Some of these 

mutations have been shown to impact virus replication and/or transmission, such as P681R 

which is located at the S1-S2 spike subunits cleave site and lead to increased replication and 

transmission (258, 259). Delta has been estimated to be 40-60% more transmissible than 

Alpha (260), and hospitalization is twice as likely for individuals infected with Delta when 

compared to Alpha (261). Although reduced, effectiveness of two doses of SARS-CoV-2 

vaccines against Delta is almost the same as that against Alpha. However, immunity 
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mediated by one dose-only is dramatically reduced from 48.7% to 30.7% (Alpha vs Delta) 

(262). These findings led many governments to reduce the interval between the first and 

second dose of COVID-19 from 12 to 8 weeks with the aim of slowing the spread of Delta 

and avoiding the increase in hospitalisations and deaths. Given these characteristics, delta 

rapidly spread globally and became the dominant lineage even in countries where other 

VOCs were already established (263-265). As of 4th January 2022, Delta has spread to at 

least 180 countries worldwide (265). 

 Omicron was first reported by a South African scientist on the 24th November 2021 

and classified as a VOC by the WHO only 2 days later (266). The new variant drew attention 

for its rapid spread after its first detection in Tshwane, Gauteng Province, South Africa on 

9 November 2021, and for the extensive set of newly acquired mutations, especially in the 

Spike protein (267). Omicron presents 45-52 amino acid across its genome, 26-32 of which 

are located in the Spike protein, including the ∆69-70 deletion, which leads to failure of 

some PCR tests targeting the Spike gene (S-gene target failure). Several Spike mutations 

can be found in immunogenic regions such as the RBD and the N-terminal Domain (NTD), 

as well as mutations around the furin cleavage site (267). This array of new mutations has 

been shown to decrease vaccine-mediated efficacy to approximately 30% against 

symptomatic disease, resulting in breakthrough infections (268, 269). However, vaccine-

mediated immunity seems to be restored by a booster dose to over 70% (269). There is 

currently a large debate on the severity of Omicron cases as early data seems to point to 

lower risk for hospitalisation and severe disease (270, 271). However, Omicron transmits 

much faster than previous variants, potentially associated with a combination of its immune 

evasion capacity and of an increased ability to preferably infect the upper rather than the 

lower respiratory tract (272, 273). Omicron’s global spread has been met with the highest 

daily number of cases in many countries and also globally (10).  Such combination of 
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transmissibility and disease severity is likely to lead to a significant number of deaths and 

straining of public health systems. As of 4th January 2021, Omicron has been detected in at 

least 91 countries worldwide (265).  

1.4 Brazil in the Context of Infectious Diseases 

 

 With an estimated total population of over 213 million people and a territory of over 

8.5 million km2 (274), Brazil is the largest country in Latin America and the 5th largest in 

the world both in population and in territory. It has the 12th largest economy in the world, 

the 4th amongst developing nations (275). It has a Human Development Index (HDI) of 

0.765, 84th in the world. It is geopolitically organized into 5 regions (North, Northeast, 

Center-West, South and Southeast), 26 federal states and 1 federal district, the country’s 

capital Brasília. Brazilian states are further subdivided into a total of 5.568 municipalities 

(equivalent to towns or cities) (274). With a national Gini index of 53.4 (276), Brazil is one 

of the countries with the most unequal income distribution worldwide. Brazilian regions, 

states and municipalities are highly unequal in terms of population size, economy, education, 

poverty, access to health care and other socioeconomic indicators (277, 278). Human 

development index for Brazilian States in 2017 varied between 0.683 and 0.850, but 

generally following a North/South divide.  

 The Southeast and South are Brazil's most developed regions (278). Southeast Brazil 

is home to the 3 largest metropolitan areas in the country (São Paulo, Rio de Janeiro and 

Belo Horizonte), and 4 of the country’s 5 busiest airports, making it the most connected 

region nationally and internationally (279). In 2018, São Paulo state had the highest HDI in 

the country, 0.783, and its GDP accounted for 32% of Brazil’s GDP, making it the wealthiest 

unity in the Federation (280). The São Paulo Metropolitan Area is one the largest 

conurbations in the world with an estimate population of approximately 22 million people 
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and a population density of 2,714,45 hab./km² (274). It is the largest economic centre in the 

country, home to the largest hospital complex in Latin America (281), the Hospital das 

Clínicas at the Faculty of Medicine from the University of Sao Paulo (HC-FMUSP), and 

two of the busiest airports in Brazil (Guarulhos and Congonhas), making it the main human 

mobility hub in the country and in Latin America (279).  

On the other hand, the Brazilian North and Northeast regions are the poorest regions 

in the country with comparably some of the worst socioeconomic indicators, especially the 

North, where the Brazilian Amazon can be found. Amazonas is territorially the largest state 

is Brazil accounting for 18.3% of its territory (274). It is home to the largest indigenous 

population in Brazil, to most of the Amazon tropical rainforest and to the largest river in the 

world, Amazonas (274, 282). Human mobility patterns in the Amazon are complex and 

mostly driven by fluvial movement and air travel (282). The Amazonas state has an 

estimated population of approximately 4.3, 52.8% of which resides in its capital, Manaus, 

the largest urban centre in North Brazil and the 7th in the county (274). Most of its economy 

is driven by the creation of the Manaus Free Zone in 1957 “with the objective of creating in 

the Amazon Region an industrial, commercial and agricultural centre under economic 

conditions that allow its development” (283, 284). For this reason, Manaus has the only high 

HDI, 0.737, in a state dominated by municipalities with medium and low HDI (285).  

 

1.4.1 The Brazilian Public Health System  
 

According to article 196 of the Brazilian Constitution in 1988, “Health is a right of 

all and a duty of the State and shall be guaranteed by means of social and economic policies 

(…), universal and equal access to actions and services for [health] promotion, protection 

and recovery.” This same constitution introduced great public health reforms and formally 

created the Sistema Único de Saúde (SUS– Brazilian Unified Health System), the largest of 
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its kind in the world (286). The SUS has 3 major principles: universal, equal and integral 

access to healthcare. Some of the SUS’s main public health achievements have been the 

creation of a Programa Nacional de Imunização (PNI–National immunization Programme), 

which provides universal and free access to vaccines to the Brazilian population since 1973, 

and the creation of the Estratégia Saúde da Família (ESF–Family Health Strategy). 

Together with the restructuring of the health system and its universality, such programs have 

led to powerful achievements such as the reduction of the burden of communicable diseases 

in the country (287) and the reduction of child mortality, with a shift increase in the 

proportion of deaths towards older ages and non-communicable diseases (288). However, 

SUS has recently faced major challenges amid the political crisis and democratic 

instabilities, and an increasingly strong focus on privatization of healthcare.  

The HIV/AIDS pandemic was the first major infectious disease threat requiring an 

urgent response by SUS, and the Brazilian National AIDS programme is internationally 

recognized for its successful outcomes in a developing country (289, 290). A report from 

the WHO in 2004 estimated HIV rates of infection to be much lower than what had been 

projected for the country, with a reduction of 50% in deaths due to HIV infection and 

reduction of 70% in duration of hospitalization (291). Such accomplishments were made 

possible by funding from the Brazilian Federal government and the WHO, and a response 

rooted in the use of scientific knowledge to launch an integrated response aiming to increase 

disease awareness, prevention, diagnosis and treatment, with free access to antiretrovirals 

starting from 1996. The Brazilian response also included major campaigns focused on the 

use of condoms and the de-stigmatization of HIV/AIDS (290) and the creation of a 

nationwide effort for genome sequencing of the HIV-1 strains circulating in the country, the 

Brazilian Network for HIV-1 Isolation and Characterization (292). 
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1.4.2 Brazil’s Genome Sequencing Capacity 
 

To contextualise the capacity of viral genome sequencing in Brazil, I performed an 

analysis on data available on NCBI GenBank. As SARS-CoV-2 genomes are mostly 

deposited on GISAID, SARS-CoV-2 metadata is not included in this analysis. As of 5th 

December 2021, there were 56,074 virus genetic sequence entries available on GenBank 

collected in Brazil (Figure 1A). Most sequences are viral genetic fragments shorter than 

5,000 bp (96.4%), with a median length of 903 bp (range 53 bp to 1.5Mb). Only 2.6% of 

viral sequences from Brazil have a length above 8Kb. Encouragingly, there has been a 

substantial increase in the number of virus genetic sequences with length above 8Kb from 

Brazil in the last decade, with most data (72.6%) being submitted from 2016 onwards 

(Figure 1A). The median turnaround times between sample collection and GenBank 

submission for Brazilian genomes is 3.5 years (range 0.05-89.4 years) when considering all 

entries (Figure 1B). This median is reduced to 2.7 years (range 0.05-9.98 years) when time 

gaps >10 years are excluded to decrease potential biases introduced by sequencing of 

historical samples. However, there has been a considerable reduction of such time gaps 

across the years and since 2017 the median time between collection and submission has 

ranged between 1.3 and 2.6 years. The increase in median length and decrease in turnaround 

times coincides with the CHIKV, ZIKV and YFV epidemics and DENV outbreaks in the 

country (Figure 1C) and the first use of portable genome sequencing technologies in Brazil.  
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Figure 1.1. Overview of Brazil viral genome submissions on GenBank across time. All 
metadata for viral genetic sequence entries from Brazil (n=56,074), regardless of their size, 
were downloaded from NCBI GenBank using rentrez and gbfetch R packages. (A) 
Timeseries plot of all Brazil viral genetic sequences in NCBI GenBank stratified by 
sequence length: <5Kb (red), >5Kb and <8Kb (blue), and >8Kb (green). Sequence length 
groups were determined based on a bimodal distribution of sequence lengths identified on 
histogram plot analysis, with most submissions falling into <5Kb and >8Kb. Inset shows an 
expanded view of the area around the dotted line: groups >5Kb and <8Kb (blue), and >8Kb 
(green). (B) Time between date of sample collection and date of NCBI GenBank submission. 
As historical sequences have commonly been submitted, time gap has been restricted to up 
to 10 years in plot B. (C) Time series of viral genome submission from Brazil with length 
>8Kb (segmented viruses not included) coloured according to organism: chikungunya virus 
(CHIKV), dengue virus (DENV), human immunodeficiency virus (HIV), respiratory 
syncytial virus (RSV), human T-lymphotropic virus type 1 (HTLV-1), rabies lyssavirus 
(Rabies), yellow fever virus (YFV), zika virus (ZIKV).  
 
 

Out of all virus submissions to GenBank, arboviruses are the largest group of viruses 

with near-complete/complete genomes from Brazil (Figure 2C). Figure 3 gives a context of 

sequencing capacity in Brazil when compared to the other top 20 countries in terms of 

arbovirus sequencing. Since 2015 Brazil has been facing a triple epidemic of DENV, ZIKV 

and CHIKV with occasional outbreaks of YFV (293). It is estimated that Brazil accounts for 
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55% of all DENV cases reported in the Americas in the period between 1995-2015 (294), 

and is also the country reporting the highest number of DENV cases worldwide (295).  

However, Brazil is only the 6th country in terms of DENV sequence submissions to GenBank 

and the 4th when considering only sequences >8Kb, with irregular submission patterns. For 

CHIKV, although Brazil figures as the third country with regards to the number of total viral 

sequences deposited in GenBank, Brazil leads in the total number of available genomes with 

length >8Kb. Finally, Brazil also leads when it comes to ZIKV and YFV genomes. However, 

even though Brazil might be doing better when compared to other developing nations 

experiencing similar epidemics in absolute terms, the median number of sequences with 

length >8Kb submitted per year is still very low for a country reporting millions of arbovirus 

cases a year (296, 297). In addition, turnaround times of around two years is remarkably 

slow specially when considering recent improvements in genomic capacity during the 

SARS-CoV-2 pandemic, with turnaround times of only 48h reported by our team (298).  
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Figure 1.2. Overview of GenBank submissions for the main circulating arboviruses in 
Brazil. Each panel presents data for a different arbovirus, as follows, (A) DENV, (B) 
CHIKV, (C) ZIKV and (D) YFV. Panels include one timeseries of all global sequences 
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submitted to GenBank, top 20 countries in absolute number of submissions and timeseries 
of genomes submitted from Brazil. Entries have been stratified according to sequence 
length: <5Kb (red), >5Kb and <8Kb (blue), and >8Kb (green). Arrows on sequence 
distribution per country plots highlight Brazilian data. 
 
 

1.5 Thesis Outline 

 
 
In this thesis, I explore the different applications of genomic epidemiology to guide our 

understanding during the first year of the SARS-CoV-2 pandemic in Brazil. I describe the 

SARS-CoV-2 introduction in the country, its initial nationwide spread, identify and describe 

a new SARS-CoV-2 VOC and investigate the within-hospital transmission in the largest 

hospital complex in Latin America. This thesis travels through different timings of analyses 

(real-time, near real-time and retrospective) and different geographic scales (nationwide, 

state, city and hospital complex). It also draws on traditional epidemiology analysis and 

multiple sources of data to maximise our understanding of SARS-CoV-2 spread in Brazil 

and the country’s response to it. 

In Chapter 2, I describe the early stages of  SARS-CoV-2 in Brazil, including the 

country’s early response to the pandemic. I start by anticipating which air travel journeys 

would be the main roots for SARS-CoV-2 importation in the country by using flight data 

and SARS-CoV-2 incidence. Next, I use real-time portable genome sequencing and 

phylogenetic analysis to show that the first imported SARS-CoV-2 cases in Brazil likely 

came from Italy. I then use traditional epidemiology approaches to contextualise SARS-

CoV-2 initial spread by estimating the reproduction number of the 5 most affected Brazilian 

states and compare them to the reproduction number of other countries. Finally, I use data 

on 72% of all Brazilian municipalities to uncover the temporal history of adoption and 

easing of non-pharmaceutical interventions (NPIs) and reveal the fragmentation of the 

Brazilian response. 
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In Chapter 3, I analyse 427 newly generated genomes from 18 Brazilian states. I use 

discrete and continuous trait phylogeographic approaches to reconstruct SARS-CoV-2’s 

introduction into Brazil and its geographical and temporal nationwide spread during its first 

2 months of circulation. I also use nationwide human air travel mobility to explore the 

different stages of SARS-CoV-2 spread in the country, human mobile phone data and case 

counts to investigate the impact of NPIs in mitigating the SARS-CoV-2 spread at the city 

level. This is, to date, the largest study investigating the early stages of SARS-CoV-2 spread 

in Brazil.  

Chapter 4 explores the importance of real-time genomic epidemiology and 

surveillance to track virus evolution and identify newly emergent and circulating lineages. 

This chapter is composed by my contributions to two published articles. I start by providing 

the first evidence for the circulation of a new VOC in Manaus, P.1/gamma, and for a faster 

evolutionary rate leading to its emergence. This investigation was performed in real-time 

while Manaus was experiencing a critical second wave of COVID-19 cases, despite 

estimates of high attack rates in the city. I also describe the first two introductions of VOC 

B.1.1.7/alpha in Brazil. 

While I explore large geographical scales in chapters 2, 3 and 4, in Chapter 5, I focus 

on understanding within-hospital SARS-CoV-2 transmission in the largest hospital complex 

in Latin America. In this chapter, I use traditional epidemiology and phylogenetic analysis 

to uncover SARS-CoV-2 nosocomial transmission and reveal that SARS-CoV-2 

transmission was higher in non-COVID hospitals than in the one COVID-only hospital in 

the complex, despite universal masking. Such results might be linked to risk perception and 

reveal important aspects of healthcare worker (HCW) behaviour, which can be very essential 

for the hospital-management of future outbreaks. 
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Chapter 2 

Overview of SARS-COV-2 importation, 

initial spread and response in Brazil 

When the first cases of a new pneumonia outbreak in Wuhan were reported to the 

WHO in 31st December 2019, later on spreading to other countries, our genome sequencing 

work in Brazil was focused on arboviruses and occasionally febrile disease of unknown 

aetiology. However, we soon started preparing for the likely importation of SARS-CoV-2 

into Brazil by updating techniques and protocols, stocking reagents and capacitating our 

human resources. Soon, our team was engaging in daily meetings with scientists from 

Brazil, the UK and across the globe.  

This chapter focuses on my contributions to some of the publications which resulted 

from the articulation of this scientific taskforce to rapidly respond to Brazil’s public health 

crisis within the first pandemic of the 21st century. Here, I provide an overview to some of 

the key aspects of the SARS-CoV-2 pandemic in Brazil, serving as a background to what is 

presented in chapters 3, 4 and 5. As the findings presented here have been published in 

different studies, this chapter has been organized into four subchapters. 

I started working on Chapter 2.1, “Routes for COVID-19 importation in Brazil”, 

just before the first COVID-19 cases were confirmed in Brazil. This chapter’s conception 

lies in the need to inform Brazilian public Health authorities, scientific and health 

communities of the likely routes through which SARS-CoV-2 would enter the country. At 
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that point, there were no such analyses integrating case counts and air travel flow to inform 

public health responses in Brazil. I was responsible for all aspects of this work and it is 

included in this thesis in full. This work was made available as a preprint on MedRxiv on 

the 18th of March 2020 and published in the Journal of Travel Medicine. 

 

Candido DDS, Watts A, Abade L, Kraemer MUG, Pybus OG, Croda J, et al. Routes 

for COVID-19 importation in Brazil. J Travel Med. 2020 May 18;27(3). 

 

 Chapter 2.2, “Importation and early local transmission of COVID-19 in Brazil, 

2020”, resulted from an expansion of CADDE’s 48-hour report on the sequencing of the 

first detected SARS-CoV-2 cases in Brazil and Latin America. It presents an 

epidemiological and genomic overview of the first imported cases and highlights the first 

cases of local transmission in Brazil. This work was made available published in the Revista 

do Instituto de Medicina Tropical de São Paulo and is also included in full in this thesis. 

Jesus JG de*, Sacchi C*, Candido D da S*, Claro IM, Sales FCS, Manuli ER, et al. 

Importation and early local transmission of COVID-19 in Brazil, 2020. Rev Inst Med 

Trop Sao Paulo. 2020 May 11;62:e30. 

Chapter 2.3, “Epidemiological and clinical characteristics of the COVID-19 epidemic 

in Brazil”, is a result of a major collaboration between CADDE researchers during the first 

few months of SARS-CoV-2 epidemic spread in Brazil. Led by William de Souza, this 

works is composed by the contributions of multiple shared-first authors. For this reason, this 

work is only partially included in this thesis, as my main contribution to this work was the 

estimation of the basic reproduction numbers for four Brazilian states (Amazonas, Ceará, 

Rio de Janeiro and São Paulo) and to five countries (Brazil, Italy, France, Spain and UK), 
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together with Alexander Zarebski. These estimates are interpreted in the context of the NPIs 

taken in different location and figures as an assessment of the early spread of SARS-CoV-2 

in Brazil. This work as made available as a preprint on MedRxiv on the 29th April 2020 and 

was subsequently published in Nature Human Behaviour. 

 

de Souza WM*, Buss LF*, Candido D da S*, Carrera J-P*, Li S*, Zarebski AE, et al. 

Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil. Nat 

Hum Behav. 2020 Aug;4(8):856–65. 

 

 Finally, Chapter 2.4, “Dataset on SARS-CoV-2 non-pharmaceutical interventions 

in Brazilian municipalities”, was generated from a survey independently conducted by the 

Brazilian Confederation of Municipalities (Confederação Nacional de Municípios – CNM). 

This is the largest dataset to date on NPI’s in Brazil and it figures as an important overview 

of the epi-political aspects of the Brazilian response to SARS-CoV-2 spread. This 

manuscript is presented here in full. It was first made available as a report and it was 

published in Scientific Data. 

 

de Souza Santos AA*, Candido D da S*, de Souza WM*, Buss L, Li SL, Pereira RHM, 

et al. Dataset on SARS-CoV-2 non-pharmaceutical interventions in Brazilian 

municipalities. Sci Data. 2021 Mar 4;8(1):73. 

 

 
“This pandemic has magnified every existing inequality in our society – like systemic 

racism, gender inequality, and poverty” 

Melinda Gates 
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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV2)
was first detected in Wuhan, Hubei province, China, on
8 December 2019. SARS-CoV-2 infection can cause coronavirus
disease (COVID-19) and can lead to acute respiratory syndrome,
hospitalization and death.1 As of 12 March 2020, the global
SARS-CoV-2 outbreak has been declared a pandemic, with
125 048 cases, and 4613 deaths have been notified by the
World Health Organization (WHO) in 117 countries/territo-
ries or areas worldwide (who.int/emergencies/diseases/novel-
coronavirus-2019/situation-reports). The first case in Latin
America was confirmed on 26 February 2020, in the São Paulo
metropolis, the most populous city in the Southern hemisphere
(∼11 million people, Instituto Brasileiro de Geografia e
Estatística, www.ibge.gov.br). Self-declared travel history and
subsequent genetic analyses confirmed that the first detected
infection was acquired via importation of the virus from
Northern Italy.2 Since then, Brazil has reported the largest
number of cases in Latin America (n = 34, as of 10 March 2020).
SARS-CoV-2 has been now detected in 7 (26%) of the 27 federal
states of Brazil. So far, the transmission of SARS-CoV-2 appears
to be primarily sporadic (85.3%, 29/34 are imported cases).
Here, we analyze data on airline travellers to Brazil in 2019,
who departed from countries that had reported local cases of
COVID-19 transmission by 5 March 2020. This information

provides insights into which Brazilian cities are most at risk for
SARS-CoV-2 importation.

We used travel data on all air journeys that had a Brazilian
city as their final destination during February and March 2019
as a proxy for flight density during the 2020 COVID-2019
outbreak (see Supplementary data). We focused on the data for
29 countries that had reported SARS-CoV-2 cases by 5 March
2020. We collated the total number of passengers flying to
Brazilian airports during this period, country population size
for 2019 from the United Nations World Population Prospects
2019 database, and the WHO-reported number of COVID-19
cases (as of 5 March 2020). We used these values to estimate the
proportion of infected travellers potentially arriving in Brazilian
cities from each country and for each route (additional infor-
mation can be found in Supplementary data). No air passenger
data from Iran and Portugal to Brazil were available for our
analysis.

Between February and March 2019, Brazil received 841 302
international passengers in a total of 84 cities across the country
(Figure 1). São Paulo, the largest city in the country, was the final
destination of nearly half (46.1%) of the passengers arriving to
Brazil, followed by Rio de Janeiro (21%) and Belo Horizonte
(4.1%). More than half of the international passengers started
their journey in the USA (50.8%) followed by France (7.9%) and
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Figure 1. Potential for COVID-19 importation in Brazil. (A) Map of Brazilian federal states and federal district coloured according to COVID-19

notification status (as of 10 March 2020). Circles correspond to the estimated proportion of arrivals from the top 29 destinations (except Iran and

Portugal) that had reported local COVID-19 by 5 March 2020. (B) Percentage of passengers for the top-20 routes to Brazilian airports from countries

that had reported COVID-19 cases by 5 March 2020. (C) Estimated percentage of importations for the top-20 routes from countries that had reported

local COVID-19 by 5 March 2020.

Italy (7.5%). The air-travel routes to airports in Brazil with most
passengers were USA–São Paulo (23.3%), USA–Rio de Janeiro
(9.8%) and Italy–São Paulo (3.4%).

To better understand the potential for SARS-CoV-2 intro-
ductions to Brazil, we estimate the relative risk of COVID-19
introduction to Brazilian cities by taking into account SARS-
CoV-2 incidence per international traveller arriving at an airport
in Brazil. We estimate that 54.8% of all imported cases would
be expected to come from travellers infected in Italy and 9.3%
and 8.3% of the cases would be from travellers infected in
China and France, respectively. The route Italy–São Paulo was
estimated to comprise 24.9% of total infected travellers flying
to Brazil during this period. Moreover, we estimate that Italy
has been the source location for five of the top 10 importation
routes for infected travellers into Brazil based on the current
epidemiological scenario (Supplementary data). Consistent with
this, at least 48% (n = 14/29) of the reported imported cases
in Brazil have a history of travelling to Italy prior to onset of
symptoms, as of 9 March 2020. Six (23.1%) of the confirmed
cases that acquired the virus in Italy have been identified in São
Paulo (Supplementary data).

We found that the proportion of estimated imported cases
by city of destination is highly correlated with the proportion
of detected imported cases. Our study has several limitations.
Unfortunately, data from Iran and Portugal were not available
for this analysis. Moreover, our analysis relies on incidence
data, and thus, the risk of importation will follow changes in
epidemic sizes at source locations. In fact, with the reduction in
the number of flights leaving from Italy and 51% of flights to

Brazil departing from airports in the USA, we should anticipate
an increasing proportion of infected travellers arriving from the
USA. Moreover, the estimated risk of importation from China
is likely an overestimate as recent measures have extensively
decreased the flights to Brazil.

At a time when the number of SARS-CoV-2 cases is steadily
growing in Brazil, our findings highlight the high potential
for the introduction of new cases in several cities of Brazil,
especially in São Paulo and Rio de Janeiro metropolises. Rapid
identification of locations where clusters of local transmission
might first ignite is critical to better coordinate preparedness,
readiness and response actions.3 ,4 There is a critical need for epi-
demiological, human mobility and genetic data5 to understand
virus transmission dynamics at local, regional and global scales.
Continued integration of these data streams should help guide
the deployment of resources to mitigate COVID-19 transmission.

Supplementary data

Supplementary data are available at JTM online.
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ABSTRACT

We conducted the genome sequencing and analysis of the first confirmed COVID-19 

infections in Brazil. Rapid sequencing coupled with phylogenetic analyses in the context 

of travel history corroborate multiple independent importations from Italy and local spread 

during the initial stage of COVID-19 transmission in Brazil.

KEYWORDS: Public health surveillance. COVID-19. SARS-CoV-2.

INTRODUCTION 

The severe acute respiratory syndrome 2 (SARS-CoV-2) was first identified in 
Wuhan, Central China, in early December 2019, and reported to the World Health 
Organization (WHO) country office in China on December 31, 20191. SARS-CoV-2 
infection causes coronavirus-associated acute respiratory disease in humans, a 
disease named corona virus disease 19 (COVID-19)2. COVID-19 is the third 
documented spill over of a coronavirus from an animal reservoir to humans in the 
last two decades to have caused a serious public health threat3. 

On January 30, 2020, COVID-19 was declared a Public Health Emergency of 
International Concern. On March 16, 2020, WHO reported 153,517 confirmed cases 
across the globe, and 5,735 confirmed deaths in 143 countries, territories or areas. 
Within Latin America, Brazil is the country with the largest number of confirmed 
cases. The country has reported 234 cases across 15 federal States; Sao Paulo, Rio 
de Janeiro and Bahia States have confirmed local transmission4.

During the early stages of an epidemic disease, molecular surveillance can inform 
on the tracking and control of the virus spread across the global and at local scales. 
Moreover, viral genomes can help to design effective molecular diagnostics, improve 
vaccine design and complement the contact tracking5,6. However, the resolution of 
the transmission networks reconstructed from genetic data will depend on the rate 
at which genetic changes accumulate across viral genomes. Within outbreaks, short 
timescales mean that not all the observed changes will become fixed at the population 
level7. To investigate the early transmission dynamics of imported and local cases in 

64

Chapter 2.2 - Importation and early transmission

mailto:nuno.faria%40zoo.ox.ac.uk?subject=
https://orcid.org/0000-0002-5404-272X
https://orcid.org/0000-0002-5080-3130
https://orcid.org/0000-0001-8637-2910
https://orcid.org/0000-0002-9048-0030
https://orcid.org/0000-0003-2376-8488
https://orcid.org/0000-0002-2995-2596
https://orcid.org/0000-0001-8317-0539
https://orcid.org/0000-0001-6376-871X
https://orcid.org/0000-0003-4337-3707
https://orcid.org/0000-0002-8797-2667
https://orcid.org/0000-0002-9843-8988
https://orcid.org/0000-0003-2623-5126
https://orcid.org/0000-0002-9747-8822


de Jesus et al.

Rev Inst Med Trop São Paulo. 2020;62:e30Page 2 of 5

Brazil, we set up a genomic observatory in Sao Paulo where 
we sequenced and analysed two complete SARS-CoV-2 
genomes in less than 48 h after the cases confirmation. Here 
we investigate the transmission patterns from phylogenetic 
analysis of the earliest six SARS-CoV-2 cases in Brazil.

MATERIALS AND METHODS 

Samples from suspected SARS-CoV-2 cases underwent 
confirmatory diagnostic real-time RT-PCR testing8 at 
the Instituto Adolfo Lutz (IAL), the regional reference 
laboratory for SARS-CoV-2 detection in Sao Paulo State, 
Southeast Brazil. Samples obtained from the Reference 
Centre for Arbovirus of Sao Paulo, Adolfo Lutz Institute 
(IAL) have been processed in agreement with routine 
surveillance activities from the Brazilian Ministry of Health.

We used the open COVID-19 sequencing available 
and the bioinformatics protocols developed by the ARTIC 
network. Sequencing protocols, multiplex PCR primers, 
and bioinformatic pipelines are described in detail at https://
artic.network/ncov-2019. In brief, cDNA synthesis was 
conducted in duplicate for each sample and the concentration 
of PCR products was measured using a Qubit dsDNA 
High Sensitivity kit on a Qubit 3.0 fluorometer (Thermo 
Fisher Scientific, Waltham, USA). Library preparation 
was conducted without a barcoding step and libraries 
were sequenced on an R9.4.1 flow cell using MinKNOW 
version 19.10.1 (Oxford Nanopore Technologies, Oxford, 
UK) for over 12 h. The open-source software RAMPART 
version 10.5 was used to assign and map reads in real-time. 
Raw files were base-called with Guppy, demultiplexed 
and trimmed with Porechop (https://github.com/rrwick/
Porechop) and mapped against reference sequence Wuhan-
Hu-1 (GenBank Accession Number MN908947). Variants 
were called using nanopolish 0.11.3. Low coverage regions 
were masked with N characters. Coverage for the SPBR1 
and SPBR2 was 96.9 and 99.6%, with 552730 and 3461754 
mapped reads, respectively (Table S1). Raw read data 
for SPBR1 is available for inspection from https://cadde.
s3.climb.ac.uk/covid-19/BR1.sorted.bam. 

We investigated the transmission dynamics of the early 
COVID-19 cases in Brazil (SPBR1 to SPBR6) by analysing 
genetic changes among the early genomes from Brazil 
belonging to imported and local cases, and by estimating a 
maximum likelihood phylogenetic tree together with a set 
of global reference sequences. We added the SBPBR1 and 
SPBR2 consensus sequences from Sao Paulo to a curated 
dataset of complete genomes available from GISAID that 
included four additional sequences from Brazil (available 
on GISAID of 15th March 2020). A multiple sequence 
alignment comprising 347 complete genomes from several 

countries was generated using MAFFT9 and manually 
edited. A maximum likelihood (ML) phylogenetic tree was 
estimated using PhyML version 3.010 using a Hasegawa-
Kishino-Yano nucleotide substitution model with a gamma-
distributed rate variation across sites.

RESULTS

Four of the six patients self-reported travelling from 
European countries to Sao Paulo city (SPBR1 to SPBR4) 
(Table S1). Two patients (SPBR5 and SPBR6) reported 
direct contact with SPBR1 and no travel outside Brazil. 
Patient SPBR1 (60-65 year old male) self-reported arriving 
from Italy on the February 21, 2020he started symptoms on 
the February 24 and tested positive two days later. Patients 
SPBR5 and SPBR6 were in direct contact with patient SPBR1 
on February 22, and tested positive on February 29, 2020. 
Figure 1 shows the clade containing Brazilian sequences 
along with location of infection (squares) and reporting 
(circles). Our analyses show that the SPBR1 genome is 
identical to the SPBR5 and SPBR6 contacts (illustrated by 
zero branch lengths in Figure 1; detailed tree with annotated 
tips and travel history information for the clade containing 
Brazilian sequences can be found in the Figure S1).

We found that the SPBR1, SPBR5 and SPBR6 are 
identical to several other genomes circulating in Italy 
and elsewhere collected between February 20 and 
March 2, 2020 (Figure 1). The lack of changes among 
SARS-CoV-2 genomes collected during this period 
is not surprising given the evolutionary rate of the 
virus that results in an average of 1 to 2 mutations per 
month11. These data highlight the critical importance 
of contextualizing phylogenetic information with travel 
history when investigating early transmission dynamics 
of SARS-CoV-2. As no epidemiological information was 
available for SPBR5 and SPBR6, one could not exclude 
an alternative scenario based on sequencing data alone 
that would suggest additional independent introductions 
from Italy or elsewhere. 

Patients SPBR2, SPBR3 and SPBR4 all reported 
travelling to Italy, where the of incidence of COVID-19 
has been the highest outside Wuhan in China12. Consistent 
with the travel history, sequences from these patients 
are found interspersed in the tree in agreement with the 
multiple independent introductions of SARS-CoV-2 to 
Sao Paulo from Italy. This finding highlights the key role 
of human mobility in the early stages of the pandemic and 
is in line with a recent analysis on the risk of importation 
of COVID-19 based on the history of air traveling data and 
the incidence data13. Given that the air traveling to Brazil 
from Italy has reduced, it is possible that the proportion 
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of SARS-CoV-2 imported cases from other countries, 
particularly the USA, may increase13.

DISCUSSION

Our study provides a snapshot of the early establishment 
of the COVID-19 pandemic in Brazil, characterized by 
multiple independent introductions from Italy, followed by 
local transmission of the virus in Sao Paulo. Phylogenetic 
analyses are broadly consistent with the patients’ self-
reported traveling histories. We show that the two genomes 
associated with local transmission are linked to a patient 
infected in Italy and are identical to other Italian genomes 
collected in the same time window. Given the within-
outbreak rate of evolutionary change estimated for SARS-
CoV-211, we caution against inferring directionality of 
transmission based on genetic data alone. Such inferences 

can further be overshadowed by incomplete sampling due 
to delays, reflecting the lack of equitable access to diagnosis 
and genomic sequencing. 

CONCLUSION

Given the findings of the present study, we conclude 
that phylogenetic data from the pandemic needs to be 
contextualized with appropriate metadata, including basic 
demographics, symptoms onset date, the sample collection 
date, the country of reporting and the self-reported travel 
history. Joint epidemiological and genomic surveillance 
of COVID-19 cases will be critical to rapidly identify 
possible clusters of local transmission in Brazil and in other 
countries, and to better understand and help mitigating the 
transmission in the community.

Figure 1 - Maximum likelihood phylogeny (n=88) including Brazilian SARS-CoV-2 genomes from the first confirmed cases in 
Brazil. Squares and circles are coloured according to the place of infection and the place of reporting, respectively. Local cases 
are highlighted with a grey background, imported cases are highlighted with a black background. A full tree (n=347) can be found 
in the Supplementary Material (Figure S1).
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Table S1 - Sequencing statistics for the Brazilian SARS-COV-2 genomes from this study. 

Isolate
Mapped 
Reads

Average 
depth coverage

Bases 
covered >10x

Bases 
covered >25x

Reference 
covered (%)

SPBR1 552730 3622.14 29426 29106 96.8966
SPBR2 3461754 5117.28 29849 29845 99.5954
We gratefully acknowledge the authors, originating and submitting laboratories of the sequences from GISAID’s EpiFlu™ Database 
on which this research is based. The list is detailed on Supplementary Table 2, which is available on GitHub (https://github.com/
CADDE-CENTRE/REPOSITORY/blob/master/First%20genomes%20from%20Americas.docx). All submitters of data may be 
contacted directly via www.gisaid.org.

Figure S1 - SARS-CoV-2 phylogeny of the first confirmed Brazilian cases. A) Global SARS-CoV-2 Maximum Likelihood phylogeny 
including the six first genomes from Brazil. The tree was estimated using all available sequences in GISAID database (n=347) as 
of the 10th of March 2020. Tips are coloured according to the location of collection. B) Expansion of the clades containing the six 
Brazilian SARS-CoV-2 genomes (n=88). Tips are coloured according to the location of collection and only approximate likelihood 
ratio node supports > 0.80 are shown. Tips were labelled according to sequence name, GISAID accession number, place and 
date of collection.

SUPPLEMENTARY MATERIAL

68

Chapter 2.2 - Importation and early transmission

https://github.com/CADDE-CENTRE/REPOSITORY/blob/master/First%20genomes%20from%20Americas.docx
https://github.com/CADDE-CENTRE/REPOSITORY/blob/master/First%20genomes%20from%20Americas.docx
http://www.gisaid.org


Articles
https://doi.org/10.1038/s41562-020-0928-4

COVID-19 is a severe acute respiratory infection (SARI) that 
emerged in early December 2019 in Wuhan, China1. The 
outbreak was declared a public health emergency of inter-

national concern by the World Health Organization on 30 January 
2020. COVID-19 is caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), an enveloped, single-stranded 
positive-sense RNA virus that belongs to the Betacoronavirus genus 
and Coronaviridae family2. SARS-CoV-2 is closely related geneti-
cally to bat-derived SARS-like coronaviruses3. Human-to-human 
transmission occurs primarily via respiratory droplets and direct 
contact, similar to human influenza viruses, SARS-CoV and Middle 
East respiratory syndrome coronavirus4. The most commonly 
reported clinical symptoms are fever, dry cough, fatigue, dyspnoea, 
anosmia, ageusia, or some combination of these1,4,5. As of 16 June 
2020, more than 7.9 million cases have been confirmed worldwide, 
resulting in 434,796 deaths6.

Brazil declared COVID-19 a national public health emergency 
on 3 February 20207. After the development of a national emergency 
plan and the early establishment of molecular diagnostic facilities 
across Brazil’s network of public health laboratories, the country 

reported its first confirmed COVID-19 case on 25 February 2020, in 
a traveller returning to São Paulo from northern Italy8. São Paulo is 
the largest city in South America and no other Brazilian city receives 
a greater proportion of international flights9. Currently, Brazil has 
one of the fastest-growing COVID-19 epidemics in the world, now 
accounting for 1,864,681 cases and 72,100 deaths, comprising over 
55% of the total number of reported cases in Latin America and 
the Caribbean (as of 14 July 2020)6. About 21% of Latin American  
and Caribbean populations are estimated to be at risk of severe 
COVID-19 illness10. The region has been experiencing large out-
breaks, with growing epidemics in Brazil, Peru, Mexico, Chile, 
Colombia, Panama and possibly Venezuela and Nicaragua, amid 
growing concerns about testing capacity for COVID-19 (refs. 11–14). 
Preparedness for laboratory surveillance of SARS-CoV-2 in Latin 
America is centred around a network of national reference influenza 
surveillance laboratories that is facing several challenges, including 
a shortage of reagents and equipment15.

Conscious of the challenges associated with surveillance since 
the beginning of the epidemic in Brazil, here we focus on two 
main objectives. First, we contextualize the Brazilian SARS-CoV-2 
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The first case of COVID-19 was detected in Brazil on 25 February 2020. We report and contextualize epidemiological, demo-
graphic and clinical findings for COVID-19 cases during the first 3 months of the epidemic. By 31 May 2020, 514,200 COVID-19 
cases, including 29,314 deaths, had been reported in 75.3% (4,196 of 5,570) of municipalities across all five administrative 
regions of Brazil. The R0 value for Brazil was estimated at 3.1 (95% Bayesian credible interval = 2.4–5.5), with a higher median 
but overlapping credible intervals compared with some other seriously affected countries. A positive association between 
higher per-capita income and COVID-19 diagnosis was identified. Furthermore, the severe acute respiratory infection cases 
with unknown aetiology were associated with lower per-capita income. Co-circulation of six respiratory viruses was detected 
but at very low levels. These findings provide a comprehensive description of the ongoing COVID-19 epidemic in Brazil and may 
help to guide subsequent measures to control virus transmission.
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epidemic by comparing local transmission dynamics with those 
observed in other selected countries. Second, we use geospatial 
data related to confirmed COVID-19 cases and SARI cases with 
unknown aetiology to evaluate the relationship between socioeco-
nomic factors and COVID-19 distribution.

Results
Contextualizing COVID-19 data reporting systems in Brazil. 
On 22 January 2020—more than 1 month before the first case in 
Brazil—the Brazilian Ministry of Health implemented the REDCap 
platform to report prospective suspected, probable and confirmed 
COVID-19 cases (see Methods for case definitions), as part of an 
early response to the pandemic16. By 27 March 2020, the REDCap 
system was discontinued (Fig. 1). Since then, mild COVID-19 
cases started to be reported on e-SUS Vigilância Epidemiológica 
(e-SUS-VE), a new national COVID-19 reporting system, and hos-
pitalized COVID-19 cases started to be recorded on a pre-existing 
Sistema de Informação de Vigilância Epidemiológica da Gripe 
(SIVEP-Gripe) system. The SIVEP-Gripe system has been in use 
since 2009 (having been implemented in response to the 2009 
influenza H1N1 pandemic) and has since centralized the report-
ing of respiratory viruses and SARI for the Brazilian Ministry of 
Health (Fig. 1). Both e-SUS-VE and SIVEP-Gripe include suspected 
and confirmed COVID-19 cases as reported by public health and 
private services (primary and emergency care). These two report-
ing systems (e-SUS-VE and SIVEP-Gripe) are inter-related on the 
Portal do COVID-19 website (https://covid.saude.gov.br/), which 
summarizes daily the aggregated counts from both platforms.

SARS-CoV-2 reporting in Brazil. We analysed a total of 514,200 
SARS-CoV-2 cases from the Portal do COVID-19 website 
(SIVEP-Gripe and e-SUS-VE databases combined) that were con-
firmed by molecular diagnostic and clinical epidemiological criteria 
by 31 May 2020 (see Methods). Cases were reported in 75.3% (4,196 
of 5,570) of municipalities across all five administrative regions of 
Brazil and included 206,555 (40.2%) recovered patients and 29,314 
fatal (17.5%) COVID-19 cases (Fig. 2a). We further analysed a 
total of 1,468 confirmed cases from the REDCap system, includ-
ing 342 imported cases with associated travel history information. 
After excluding individuals who travelled to multiple countries 
before entering Brazil (n = 56) and who had an unknown country 
of origin (n = 16), the self-reported countries of infection for cases 

acquired abroad until 19 March 2020 were the United States (28.6%; 
n = 76), Italy (24.4%; n = 65), the United Kingdom (10.5%; n = 28) 
and Spain (8.3%; n = 22) (Extended Data Fig. 1). The first reported 
case (SPBR1) was reported on 25 February 2020 in the municipal-
ity of São Paulo, the fourth most populous urban area worldwide. 
Following the first reports of COVID-19 in Brazil’s largest popu-
lation centres, SARS-CoV-2 subsequently spread to municipalities 
with smaller population sizes (Fig. 2b). Until 31 May 2020, most 
confirmed cases and deaths were reported in the states of São Paulo 
(109,698 cases and 7,615 deaths), Rio de Janeiro (53,388 cases and 
5,344 deaths), Ceará (48,489 cases and 3,010 deaths) and Amazonas 
(41,378 cases and 2,052 deaths), which together account for 49.2% 
of all cases and 61.5% of deaths in Brazil (Fig. 2c).

Basic reproduction number of SARS-CoV-2 in Brazil and com-
parison countries. To estimate the basic reproduction number (R0) 
of SARS-CoV-2 in Brazil, daily confirmed cases in São Paulo, Rio de 
Janeiro, Ceará and Amazonas states were compiled from Ministry 
of Health data (for specification of the time windows used in the 
analyses, see Extended Data Fig. 2). For comparison, we compiled 
time series of confirmed cases in several European countries from 
the Johns Hopkins Coronavirus Resource Center (https://corona-
virus.jhu.edu/; see also Extended Data Fig. 3). We found that São 
Paulo, Rio de Janeiro and Amazonas were characterized by similar 
R0 values of 2.9 (95% Bayesian credible interval (BCI) = 2.2–5.1), 
2.9 (95% BCI = 2.2–4.9) and 2.6 (95% BCI = 2.0–4.5), respectively. 
However, for Ceará, the estimated R0 was considerably lower at 1.9 
(95% BCI = 1.5–3.0) (Fig. 3 and Extended Data Fig. 1). This finding 
could be a result of the small window between the first reported 
cases and the early implementation of non-pharmaceutical inter-
ventions (NPIs) in this state (Supplementary Table 1 and Extended 
Data Fig. 2). On a national scale, the estimated R0 for Brazil was 
slightly higher than that of the Brazilian states considered in this 
study, with a median of 3.1 (95% BCI = 2.4–5.5), and also slightly 
higher than R0 values estimated for other severely affected countries: 
Spain (2.6; 95% BCI = 2.0–4.6); France (2.5; 95% BCI = 1.9–4.4); 
the United Kingdom (2.6; 95% BCI = 2.0–5.1); and Italy (2.5; 95% 
BCI = 2.0–4.4) (Fig. 3). While the incidence curves for European 
countries have consistently flattened and declined since the imple-
mentation of NPIs (suggesting that the R0 value has fallen below 1), 
Brazil’s daily incidence curve has continued to increase (Fig. 2a and 
Extended Data Fig. 4).

REDCap

SIVEP-Gripe

1 Mar 1 Apr 1 May 1 Jun22 Jan

Changes in guidelines
(only severe cases)

Change of
notification systems

Notification of all COVID-19 cases Notification of mild COVID-19 cases

Notification of respiratory
viruses and SARI

Previous notifications plus the severe COVID-19 cases and
mild COVID-19 cases from sentinel flu surveillance units

Date in 2020

e-SUS-VE

Fig. 1 | Timeline of national COVID-19 reporting systems in Brazil. the REDCap system operated between late January and 25 March 2020. Aggregated 
numbers from e-sus-VE and sIVEP-gripe data for mild and hospitalized COVID-19 cases, respectively, are updated on a daily basis on the Portal do 
COVID-19 website (https://covid.saude.gov.br/).
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SARIs mostly reflect COVID-19 cases. In the early phase of the 
COVID-19 epidemic in Brazil, we analysed the results for other 
respiratory pathogens tested in Brazil as part of a differential 
diagnosis by the Central Public Health Laboratories and National 
Influenza Centres (Brazilian Ministry of Health), obtained from 
a REDCap platform17 designed for COVID-19. The respiratory 
viruses most frequently identified between 7 January 2020 and 27 
March 2020, in patients with a suspected but negative diagnosis 
of COVID-19, were influenza A virus (347 (14.3%) of 2,429 tested 
cases), influenza B virus (251 (10.3%) of 2,429) and human rhino-
virus (136 (5.6%) of 2,429). We found co-detection of SARS-CoV-2 
with six other respiratory viruses, the most frequent of which were 
influenza A (11 (0.5%) of 2,429) and human rhinovirus (6 (0.2%) of 
2,429) (Extended Data Fig. 7).

The SIVEP-Gripe system started reporting hospitalized  
COVID-19 cases in early March 2020 (epidemiological week 10) 
(Fig. 4). In this system, the number of tested cases is unavailable. We 
found that the peak of influenza confirmed cases (n = 447) occurred 
at epidemiological week 12 (15–21 March 2020). During the same 
week 12, we detected an 8.5-fold increase in total cases attributed 
to SARS-CoV-2 (n = 3,789) and a 9.9-fold increase in total cases 
reported as SARI with unknown aetiology (n = 4,424) (Fig. 4). 
From 2 January to 31 May 2020, a total of 2,136 influenza cases and 
272 cases caused by other respiratory pathogens, including human 
respiratory syncytial virus, human rhinovirus, adenovirus and 
metapneumovirus, were reported in the SIVEP-Gripe database. The 
low observed incidence of influenza and other respiratory viruses 
may have been influenced by limited testing for these viruses during 
this period. Although NPIs may have an impact in reducing influ-
enza virus transmission, this does not necessarily reflect a lower 
co-circulation of other respiratory viruses18.

Socioeconomic differences are associated with COVID-19 diag-
nosis. Until 31 May 2020, a total of 73,648 COVID-19 confirmed 
cases and 168,001 SARI cases with unknown aetiology were reported 
in the SIVEP-Gripe system. We hypothesized that the 2.3-fold 

increase of SARI cases with unknown aetiology was associated with 
differential access to healthcare due to socioeconomic factors.

We focused on the Metropolitan Region of São Paulo (MRSP), 
which has a population of 23 million inhabitants across six 
sub-regions (Central, West, North, East, Southeast and Southwest) 
and 39 municipalities (Fig. 5a). To test this hypothesis, we obtained 
per-capita income at the census tract level (typically 150–300 
households) in the MRSP, based on the residential address of 
each case. We then linked this information to each patient’s final 
diagnosis outcome: confirmed case of COVID-19 or SARI with 
unknown aetiology. While the income distribution of SARI cases 
with unknown aetiology was similar to that of all residents of the 
MRSP over the whole period (Fig. 5b), we observed that the income 
distribution of individuals with COVID-19 confirmed by labora-
tory and clinical criteria was initially higher than that of all MRSP 
residents and decreased over time towards similar levels by epide-
miological week 21 (Fig. 5b). Importantly, we found that the log 
odds of one or more confirmed COVID-19 cases per census tract 
increased with per-capita income in epidemiological weeks 12 and 
22 (likelihood ratio test P value < 0.001; Fig. 5b and Supplementary 
Table 2). This provides statistical evidence of an association 
between confirmed COVID-19 diagnosis and per-capita income, 
suggesting a socioeconomic difference in access to COVID-19 
diagnosis in the MRSP. For reference, we also provide a map of 
per-capita income (Fig. 5a) and population density in each census 
tract (Extended Data Fig. 8).

We conducted a geospatial analysis to understand the distribu-
tion of relative risk of observing a COVID-19 case or SARI case 
with unknown aetiology in the MRSP, using a Bayesian method and 
adjusted for spatial and non-spatial effects as defined by the Besag–
York–Mollié model19 (Fig. 5). Our estimates show an increase in the 
relative risk of COVID-19 diagnosis in higher-income census tracts 
between epidemiological weeks 12 and 21, especially in the central 
region of the MRSP (Fig. 5a,c). We observed a similar trend in the rel-
ative risk of SARI cases with unknown aetiology among residents of 
the central region. However, there was also an increased probability  
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of SARI cases with unknown aetiology in the southwest, west, north 
and south sub-regions, where income per capita is typically lower. 
Overall, the relative risk of SARI cases with unknown aetiology 
is more spatially widespread in the MRSP than that of confirmed 
COVID-19 cases (Fig. 5c).

The relative risk of SARI cases with unknown aetiology com-
pared with confirmed COVID-19 cases in the central region  
of the MRSP decreased through time, probably as a response to 
several NPIs implemented throughout the state of São Paulo (see 
Supplementary Table 1). By week 16 (1 month after the start of 
the NPIs in São Paulo), we detected an increased risk particularly 
of SARI cases with unknown aetiology outside the central region 
of the MRSP, especially in the southwest region. SARI cases with 
unknown aetiology risk were also high in the east region. By week 
21, the risk remained high throughout the central region and the 
risk of SARI cases with unknown aetiology decreased in the east 
region, possibly as a result of interventions targeting the reduction 
of SARS-CoV-2 transmission.

Demographics and characteristics of COVID-19 hospitalized 
and fatal cases in Brazil. Analysis of the age–sex structure of 67,180 
confirmed COVID-19 cases reported on the SIVEP-Gripe system 
revealed a high proportion (44,027 (65.5%) of 67,180) of con-
firmed COVID-19 infections in middle- or older-aged individuals 
(≥50 years of age) and a lower proportion (1,454 (2.2%) of 67,180) 
in younger age groups (≤20 years of age) (Fig. 6a). The median age 
was 59 years (interquartile range = 44–72). The majority (38,654 
(57.5%) of 67,180) were male. Similarly, 59% (14,498 of 24,519) of 
COVID-19 deaths were in men, and 85% (20,916 of 24,519) were in 
people aged ≥50 years. A total of 2.95% (1,983 of 67,180) cases were 
reported as nosocomial transmission, defined as a COVID-19 case 
acquired after hospitalization. Overall, 116 newborns (≤1 month 
old), 381 infants (≥1–12 months old), 518 children (≥1–12 years 
old) and 258 adolescents (≥12–17 years of age) were diagnosed with 
COVID-19. In addition, 740 patients were pregnant (61 in the first 
trimester, 172 in the second trimester, 447 in the third trimester and 
60 with missing gestational age).

By 31 May 2020, 91% (67,042 of 73,649) of patients with  
COVID-19 reported in the SIVEP-Gripe system had been hospital-
ized. Of these, 30.3% (22,332 of 73,649) were admitted to an inten-
sive care unit (ICU). The median length of ICU stay for patients with 
COVID-19 was 5 d (interquartile range = 2–10 d; range = 0–65 d), 
based on the ICU admission and discharge dates of 8,240 con-
firmed cases. Most symptoms reported by patients with COVID-19 

were a cough (56,681 (85.2%) of 66,514 without missing data), fever 
(51,312 (79.6%) of 65,310) and dyspnoea (51,312 (76.6%) of 65,310) 
(Fig. 6b). These three symptoms comprise part of the case definition 
of SARI in Brazil. In addition, 68% (40,806 of 60,400) of individuals 
with COVID-19 were hypoxic (O2 saturation < 95%), reflecting the 
overall severity of cases reported on SIVEP-Gripe (as shown in Fig. 1).  
The most prevalent comorbidities were cardiovascular disease 
(23,085 (66.5%) of 34,693 without missing data) and diabetes (17,271 
(54.5%) of 31,672) (Fig. 6a). Among the patients with COVID-19, 
older age groups tended to have a higher proportion of comor-
bidities than younger age groups in different outcomes (Fig. 6c).  
The proportions of the general Brazilian population with cardiovas-
cular disease and diabetes are 4.2 and 6.2%, respectively20. A total of 
83.7% (17,921 of 21,414 with complete comorbidity information) of 
individuals with confirmed COVID-19 had at least one comorbidity 
(see Supplementary Table 2 for information on data completeness).

Discussion
While the COVID-19 epidemic in Brazil continues to grow, details 
of its transmission potential and clinical and epidemiological char-
acteristics remains poorly understood. We estimate a higher median 
transmission potential (R0) of SARS-CoV-2 of 3.1 (2.4–5.5) in Brazil 
compared with Italy, the United Kingdom, France, and Spain, which 
have point estimates of R0 varying from 2.5–2.6; however, the cred-
ible intervals overlap substantially. We have also observed rapid 
spread of COVID-19 through the country, with more populated and 
better-connected municipalities being affected earlier, and less pop-
ulated municipalities being affected at a later stage of the epidemic. 
In the São Paulo metropolitan region, we found a higher risk of 
diagnosed COVID-19 cases in census tracts with higher per-capita 
income during the early phase of the COVID-19 epidemic but also 
as the weeks progressed. This contrasts with the wider spread of 
SARI cases among sub-regions with lower per-capita income. Our 
results provide new insights into the Brazilian COVID-19 epidemic 
and highlight the high transmission potential of SARS-CoV-2 in the 
country, the role of its large urban centres and the lack of lockdown 
and the challenges in reporting and non-equitable access to testing/
diagnostics as factors potentially contributing to the rapid and sus-
tained spread of the epidemic in Brazil.

Recent estimates of R0 at the beginning of the COVID-19 epi-
demic in Brazil have suggested that an infected individual would 
infect on average three or four others21. The credible intervals of 
our estimates broadly overlap with these observations and are lower 
compared with previously published estimates for Brazil22. As a 

0

2

4

6

Amazonas Ceará Rio de Janeiro São Paulo

B
as

ic
 r

ep
ro

du
ct

io
n 

nu
m

be
r 

(R
0)

0

2

4

6

Brazil France Italy Spain United
Kingdom

B
as

ic
 r

ep
ro

du
ct

io
n 

nu
m

be
r 

(R
0)

a b

Fig. 3 | Estimated R0 values for four Brazilian states and selected countries. Left: R0 values for the Amazonas, Ceará, Rio de Janeiro and são Paulo states. 
Right: R0 for Brazil, France, Italy, spain and the united Kingdom. Violin plots of posterior samples for the basic reproduction number, the box plots show the 
median, first, and third quartiles. the whiskers extend to the most extreme value less than 1.5 times the interquartile range beyond the quartile. the daily 
numbers of infections used in each analysis can be found in Extended Data Figs. 3 and 4. Daily numbers of infections and prior distributions can be found 
in Extended Data Figs. 5 and 6.

NATURE HUMAN BEHAVIOUR | VOL 4 | August 2020 | 856–865 | www.nature.com/nathumbehav 85972

Chapter 2.3 - Epidemiological and clinical characteristics

http://www.nature.com/nathumbehav


Articles Nature HumaN BeHaviour

comparison, the reproduction number in Peru has been estimated 
at around 2.3 (2.0–2.5)23. Since the start of the epidemic in Brazil, 
several types of NPI have been adopted with varied success by the 
country’s 27 federal units and 5,596 municipalities. Virus transmis-
sion seems to have dropped substantially in most affected states21 
and also in the city of São Paulo24. However, the estimated repro-
duction number remains above 1 (refs. 21,24). Thus, only mitigation 
(and not suppression) of the epidemic has been achieved so far, 
which has been linked to substantial excess deaths due to poorer 
healthcare available25,26. Closer surveillance of viral transmission at 
the local scales and an assessment of the impact of the different con-
trol measures on COVID-19 transmission will help to determine 
an optimal mitigation strategy to minimize infections and reduce 
healthcare demand in Brazil. Moreover, continued monitoring of 
the genetic diversity of the virus lineages circulating in Brazil24 will 
be important, as recent data suggest that virus diversity may play a 
role in virus transmissibility27,28.

We found that 65.5% of reports in the SIVEP-Gripe system, 
which includes most severe COVID-19 cases, are from patients 
aged ≥50 years of age. This observation is remarkably similar to 
current estimates for Latin America10, where 65% of the individu-
als ≥50 years of age have been estimated to be at high risk of severe 
COVID-19, defined as individuals with at least one condition who 
would require hospitalization if infected. Moreover, we found that 
57 and 59% of the severe COVID-19 cases and deaths (respectively) 
reported in SIVEP-Gripe were male, and that the most frequent 
comorbidities were cardiovascular disease and diabetes. Overall, 
84% of SIVEP-Gripe reports had at least one underlying condition. 
Of these, 21% (n = 9,471/45,480) were included in the working age 
bracket (16–65 years of age). Moreover, only 2.6% (n = 1,892/73,673) 
of the COVID-19 confirmed cases reported in the SIVEP-Gripe 

system included occupation information. Information on socio-
economic determinants, as well as occupation and race/ethnicity, 
are critical29 as this allows the prioritization of control efforts; for 
example, towards healthcare workers and patients attending hospi-
tals30 or work settings31.

Our data uncover a socioeconomic bias in testing and diagnos-
tics in current surveillance guidelines and suggest that the number 
of reported confirmed case counts may substantially underesti-
mate the number of cases in the general population, particularly in 
regions of lower socioeconomic status. Socioeconomic differences 
are associated with access to healthcare32 and should be taken into 
account when designing targeted interventions. We found that the 
proportion of SARI cases with unknown aetiology versus con-
firmed COVID-19 cases has increased across the entire country (as 
of 15 June 2020, the number of reported SARI cases with unknown 
aetiology was nearly twofold greater than the number of confirmed 
COVID-19 cases). Based on clinical and epidemiological grounds, 
it is likely that many SARI cases with unknown aetiology are caused 
by SARS-CoV-2. In order to rigorously establish the contribution 
of non-SARS-CoV-2 infections to the SARI cases, we would need 
additional denominator data to understand the level of testing for 
these viruses (that is, the negative test results). Our findings with 
regards to socioeconomic bias are likely to apply to other states and 
regions of Brazil and highlight the importance of scaling up sur-
veillance and laboratory capacity within Latin America. Indeed, the 
largest Brazilian serosurvey conducted to date suggests that unde-
tected cases may be seven times higher than reported cases33.

We further show that SARI cases with unknown aetiology are 
associated with lower socioeconomic status in the MRSP. The socio-
economic disparities observed here were particularly evident at the 
beginning of the outbreak (Fig. 5b). This can be explained in part 
by: (1) the high proportion of early cases in returning travellers with 
higher income and better access to private laboratories for diagnos-
tics; and (2) the more limited access to freely available diagnostic 
screening. For example, between 25 February and 18 March 2020, 
two-thirds (586 (66.9%) of 876) of diagnostic tests were performed 
in private medical laboratories where costs varied typically between 
300 and 690 Brazilian Reais (for context, the current minimum 
monthly salary is 1,045 Brazilian Reais). Thus, the true burden of 
the epidemic in lower-income neighbourhoods is probably under-
estimated. In New York City, for example, poorer neighbourhoods 
have been found to have a higher disease burden, which is driven in 
part by the movement of essential workers using public transport 
during the pandemic34. Data-driven analyses are urgently needed 
to help tackle health inequities during the ongoing epidemic in 
Brazil. Strategies to evaluate and control transmission should con-
sider differential assess to COVID-19 diagnosis for lower-income 
populations, changes in reporting systems and delays in reporting, 
which are key to accurately determining rates of epidemic growth35. 
Innovative infectious disease surveillance approaches such as those 
obtained from aggregated mobility data, when used properly, 
could help support public health actions across the COVID-19 
epidemic36–39.

Epidemics of COVID-19 and influenza seem to have occurred 
simultaneously in Brazil (Fig. 4 and Extended Data Fig. 7) and symp-
toms overlap between the two infections. We detected co-circulation 
of eight other respiratory viruses, the most common of which were 
influenza A and B and human rhinovirus. We also detected multiple 
co-detection of SARS-CoV-2 with other respiratory viruses, such as 
influenza A and B and human metapneumovirus, which have also 
been reported elsewhere40,41. Although, co-infections with other 
respiratory viruses have been reported in other countries40,42,43, no 
difference in clinical disease severity between cases with and without 
viral co-infection has been observed thus far44. The co-circulation of 
other respiratory pathogens highlights the need to scale up labora-
tory and molecular screening of SARS-CoV-2 and other respiratory 
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viruses in public laboratories across Brazil15. Continued molecular 
and genomic surveillance will be important to determine patterns 
of virus transmission and to guide public health measures in forth-
coming phases of the epidemic24,45–47.

There are several limitations to this study. First, detailed 
individual-level data were only available for the REDCap and 
SIVEP-Gripe systems, in which many cases had incomplete docu-
mentation, particularly regarding comorbidities. Second, our socio-
economic analysis was based partially on ecological inference, using 
the per-capita income in the census tract of residence (rather than the 
actual income of the patients), and assuming the same denominator 
for each census tract (~300 households). We emphasize that our spa-
tial analysis is prone to methodological constraints caused by ecolog-
ical fallacy and the modifiable areal unit problem. These constraints 
are inherent to any spatial analysis of aggregated data. Despite the 
above-mentioned limitation, census tracts correspond to small areas 
of analysis, of no more than 300 households but often fewer than that. 
Social science literature on Brazil not only highlights the country’s 
socioeconomic inequality but also how it is spatially pronounced.  

For this reason, census tracts remain a useful tool with which to infer 
per-capita income in the absence of individual-level data. In addi-
tion, our databases were predominantly composed of hospitalized 
patients with COVID-19, and we were unable to evaluate the rate of 
hospitalization among the different socioeconomic statuses. In the 
future, robust modelling of the relationships between socioeconomic 
factors and disease severity will require a data collection system with 
detailed information on symptoms/signs and comorbidities both in 
severe and non-severe cases. Finally, our retrospective study focused 
predominantly on symptomatic patients who presented or were 
referred to health services for testing. Therefore, we are unable (and 
do not attempt) to describe the full spectrum of disease, nor can we 
describe the full epidemiological picture of this epidemic.

In conclusion, we have provided a comprehensive assessment 
of COVID-19 reporting and transmission in Brazil. Our findings 
provide important context for diagnostic screening and healthcare 
planning, and for future precision studies focusing on the impacts 
of non-pharmaceutical and pharmaceutical interventions, and the 
effects of social health determinants on COVID-19 transmission.
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Methods
Ethical approval and case definitions. This retrospective national study was 
supported by the Brazilian Ministry of Health and ethical approval was provided 
by the national ethical review board (Comissão Nacional de Ética em Pesquisa; 
protocol number CAAE 30127020.0.0000.0068).

A patient presenting with an acute respiratory syndrome (fever and at least 
one sign/symptom of respiratory illness) and: (1) a history of travel to a location 
with community transmission of COVID-19; or (2) contact with a confirmed or 
probable COVID-19 case in the 14 d preceding symptom onset; or (3) absence of 
an alternative diagnosis that completely explained the clinical presentation6 was 
considered to have suspected COVID-19.

Initially, a traveller was suspected to have COVID-19 only when arriving 
from China, although the definition of suspected cases associated with travel later 
included Japan, Singapore, South Korea, North Korea, Thailand, Vietnam and 
Cambodia (21 February 2020), then also Italy, Germany, Australia, the United Arab 
Emirates, the Philippines, France, Iran and Malaysia (25 February 2020), then also 
the United States, Canada, Switzerland, the United Kingdom and four additional 
countries (3 March 2020). From 9 March 2020 onwards, the Ministry of Health 
decided to start testing all hospitalized patients with severe respiratory symptoms, 
regardless of their travel history.

Contact with a confirmed or probable COVID-19 case was defined as 
face-to-face or direct contact with someone known to have COVID-19, or  
direct contact in a healthcare setting. Moreover, patients reporting travel  
to an affected country in the preceding 14 d were considered imported  

cases. Cases not meeting this criterion were considered to be due to local 
transmission.

Suspected COVID-19 cases were confirmed by laboratory testing (that 
is, molecular diagnostics with real-time quantitative PCR), or by clinical 
epidemiological criteria. In the latter case, the classification was used when 
laboratory testing was inconclusive or unavailable, as recommended by the 
Brazilian Ministry of Health guidelines dated 6 April 202048, and by the World 
Health Organization interim guidance dated 25 March 202049.

Individual-level reporting of COVID-19 and SARI cases with unknown 
aetiology from Brazil. To investigate individual-level diagnostic and 
demographic data, self-reported travel history, place of residence and  
likely place of infection, differential diagnoses for other respiratory pathogens, 
as well as clinical details, including comorbidities, we collected three 
epidemiological data sources: (1) n = 67,344 suspected and n = 1,468 confirmed 
cases reported to the REDCap database from 25 February to 25 March 2020; 
(2) n = 73,637 confirmed SIVEP-Gripe cases from 1 March to 31 May 2020 
(available at http://shiny.hmg.saude.gov.br/dataset); and (3) n = 514,200
confirmed cases from aggregated data released daily at the Portal do COVID-
19 (Brazilian Health Ministry) from 25 February to 31 May 2020 (available at 
https://covid.saude.gov.br). The SIVEP-Gripe system reports cases of SARI, 
which can be defined as an acute respiratory infection with onset, within 
the past 10 d, of fever (≥38 °C) and cough, and typically requires hospitalization 
(see also Fig. 1a).
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Basic reproduction number estimation. We estimated the basic reproduction 
number (R0) for SARS-CoV-2 using time series of confirmed COVID-19 cases 
at the national and state (São Paulo, Rio de Janeiro, Ceará and Amazonas) level 
(Extended Data Fig. 1). To avoid the impact of NPIs on R0 estimates, only data 
points up to 14 d after the implementation of the strictest interventions were used. 
As lockdown was not imposed in Brazil, the strictest measure was considered to 
be the closure of non-essential commerce. For European countries, the date of 
lockdown was used as the NPI date. NPI dates for Brazilian states were collected 
from state decrees. For Brazil as a whole, the NPI date for São Paulo state was used, 
as by that point most states in Brazil had already closed non-essential commerce. 
For the European countries, lockdown dates were collected from https://www.
covid19healthsystem.org/mainpage.aspx.

To test the estimation routine and provide international context, this analysis 
was replicated on equivalent time series from Italy, Spain, France and the United 
Kingdom. Aggregated epidemiological data from the United States and China were 
not included due to possible heterogeneity within each country. Daily counts of 
confirmed cases were modelled with a negative binomial distribution with a mean 
equal to a fixed portion, ρ, of the total daily number of cases in an exponential 
model of incidence. The functional form of the incidence model is ρR0γi0eðR0�1Þγt

I
, 

where ρ is the probability of an infection being counted in the time series, R0 is the 
basic reproduction number, γ is the rate at which individuals cease to be infectious. 
and i0 is the proportion of the population that was infectious at the start of the 
observations. We assume that the observed number of cases on day n was drawn 
from a negative binomial observation where the mean is μ(𝑛) and the variance 
σ = μ + μ2/𝑘, with fixed size parameter 𝑘 (dispersion parameter). The product 
of ρ and 𝑖0 is denoted ξ. Since the probability of being observed and the initial 
condition only appear as the product ξ in the likelihood, there is an identifiability 
problem preventing the estimation of ρ and i0 individually, and consequently we 
only consider their product, ξ. Although in this model it is theoretically possible to 
estimate both R0 and γ, in practice this is difficult, so we use an informative prior to 
constrain γ to a priori plausible values. The factor of ρR0γ accounts for the partial 
observation of the incidence. In this analysis, the delay between infection and 
reporting was not accounted for.

Since ρ and i0 only appear together, they were unidentifiable, and we combine 
them into a single parameter, ξ. This identifiability issue prevents us from 
estimating the prevalence without additional information to inform either i0 or ρ.  
The analysis was carried out in a Bayesian framework with an uninformative 
prior distribution on R0 and an informative prior on the removal rate. All other 
parameters had weakly informative prior distributions (see Supplementary 
Information). The informative prior ensures that an individual is infectious for  
an average of 5–14 d (ref. 50) (Supplementary Information and Figs. 5 and 6).  
Standard diagnostics were used to check whether the Markov chain Monte Carlo 
samples were satisfactory. Full details of the model used, the estimation process 
and convergence of Markov chain Monte Carlo chains can be found in the 
Supplementary Information.

Geospatial analysis of COVID-19 cases and socioeconomic status. The average 
household per-capita income for the MRSP was retrieved at the census tract 
level from the 2010 census (https://censo2010.ibge.gov.br/). We geocoded 24,063 
COVID-19 cases and 32,914 SARI cases with unknown aetiology from MRSP, 
which were reported until 28 May 2020. The geocoding was based on self-reported 
residential addresses or postal codes using the Galileo algorithm51 and coordinates 
were confirmed using Google API.

To elucidate the distribution of COVID-19 cases and SARI cases with unknown 
aetiology, we mapped the mean relative risk of COVID-19 and SARI with 
unknown aetiology at the census tract level for MRSP for three epidemiological 
weeks (12, 16 and 21) (Extended Data Fig. 9). As the observation process was 
a confounding process and without additional assumptions (for example, 
covariates), we cannot disentangle an increase in prevalence from an increase in 
case ascertainment. The cumulative number of cases in each tract was modelled as 
a Poisson random variable with a mean specified by the expected number of cases 
under a null model adjusted by tract specific risk due to spatial and non-spatial 
effects: the Besag–York–Mollié model19. Estimates of the risk of COVID-19 
diagnosis or SARI cases with unknown aetiology were obtained using approximate 
Bayesian methods (integrated nested Laplace approximation). A complete 
specification of the model and the computational methodology can be found in the 
Supplementary Information.

The association between final diagnostic category (COVID-19 or SARI with 
unknown aetiology) and socioeconomic status in the subset of cases in the MRSP 
with geocoded residential information was evaluated using logistic regression 
models. We focused on the cases in epidemiological weeks 12, 16 and 22. Within 
each of those weeks, if a census tract reported any COVID-19 or SARI with 
unknown aetiology, we calculated the proportion of the number of COVID-19 
cases. Since most census tracts reported only one case each week, the proportion of 
COVID-19 cases for each census tract was mostly either 0 or 1 in a given week. For 
this reason, we defined two categories: (1) the census tract only reported SARI of 
unknown aetiology (that is, no COVID-19 cases); or (2) the census tract reported 
at least one COVID-19 case during the week. We used these two categories as the 
binary response, and applied logistic regression models to investigate whether 
income per capita was associated with this response. The analyses were adjusted 

by the logarithm of the population sizes and the longitude and latitude coordinates 
of the census tracts. The analyses were performed individually for each of 
epidemiological weeks 12, 16 and 22. Further analysis details can be found in the 
Supplementary Information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Datasets of clinical and laboratory data presented in the current study from the 
SIVEP-Gripe/Portal do COVID-19 database are available at https://datadryad.org/
stash/share/xj7kX8675lwvLzrnnPn9ebEfJNoOB38aXBTTQqfGBhE. The REDCap 
database and geolocation information are available from the corresponding authors 
upon request and ethical approval.

Code availability
The custom code used in this study is available at https://datadryad.org/stash/
share/xj7kX8675lwvLzrnnPn9ebEfJNoOB38aXBTTQqfGBhE.
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Extended Data Fig. 1 | Imported cases by self-reported country of infection from REDCap database. Percentage indicates proportion of cases acquired 
outside of Brazil between 25 February and 19 March (n = 342) by unambiguously identified country of infection as recorded in REDCap database  
(see also Fig. 1).
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Extended Data Fig. 2 | Non-pharmaceutical interventions taken during the first three months of the epidemic in Brazil. time of implementation of 
measures for COVID-19 control in Brazil. PHE = declaration of Public Health Emergency of International Concern. MoH=Ministry of Health. Data on 
non-pharmaceutical interventions compiled from state official decrees can be found in supplementary table 1.
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Extended Data Fig. 3 | Daily number of infections used for the R0 estimations of confirmed cases of Brazil and European countries (France, Italy, 
Spain, and United Kingdom). the dashed vertical line indicates when the non-pharmaceutical intervention (NPI) was implemented. the dark blue dots 
were used to estimate R0. the shaded region is the model fit for those data points. the light blue dots included how the time series continued. they were 
included to show the effects of NPI.
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Extended Data Fig. 4 | Daily number of infections used for the R0 estimations of confirmed cases in states of Amazonas, Ceará, Rio de Janeiro, and São 
Paulo. the dashed vertical line indicates when the NPI was implemented. the dark blue dots were used to estimate R0. the shaded region is the model fit 
for those data points. the light blue dots included how the time series continued. they were included to show the effects of NPI.
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Extended Data Fig. 5 | The prior/posterior plots for the different parameters in the analysis of the time series from all of Brazil, and states of São Paulo, 
Rio de Janeiro, Amazonas, and Ceará. the histogram is of the posterior samples and the solid line shows the prior density about those values. From top to 
bottom, they are basic reproduction number, the log of the size of the negative binomial distribution, ξ, and removal rate.
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Extended Data Fig. 6 | The prior/posterior plots for the different parameters in the analysis of the time series of Brazil, Italy, the United Kingdom, 
France, and Spain. the histogram is of the posterior samples and the solid line shows the prior density about those values. From top to bottom, they are 
basic reproduction number, the log of the size of the negative binomial distribution, ξ, and removal rate.
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Extended Data Fig. 7 | Diagnosis of other respiratory viruses in 2,429 suspected COVID-19 cases reported to Brazilian Ministry of Health between 
February 25 to March 25, 2020. influenza A virus (FLuAV), influenza B virus (FLuBV), human rhinovirus (HRV), human respiratory syncytial virus 
(HRsV), human metapneumovirus (hMPV), human adenovirus (HAdV), human parainfluenza viruses 1-4 (HPIV), and CoVs (that is, human coronavirus 
229E, OC43, NL63 and HKu1).
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Extended Data Fig. 8 | Map of the population density in each census tract in the Metropolitan Region of São Paulo. NA=not applicable.

NATURE HUMAN BEHAVIOUR | www.nature.com/nathumbehav 86

Chapter 2.3 - Epidemiological and clinical characteristics

http://www.nature.com/nathumbehav


Articles Nature HumaN BeHaviourArticles Nature HumaN BeHaviour

Extended Data Fig. 9 | COVID-19 diagnosis and socio-economic factors in the Metropolitan Region of São Paulo. Posterior probability of elevated 
relative risk of COVID-19 for confirmed diagnosis (upper panels) and sARI cases with unknown aetiology (lower panels) for epidemiological weeks 
12 (pre-implementation of non-pharmaceutical interventions in são Paulo state, and weeks 16 and 21 (post-implementation of non-pharmaceutical 
interventions in são Paulo state).
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Dataset on SARS-CoV-2  
non-pharmaceutical interventions 
in Brazilian municipalities
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Lewis Buss4, Sabrina L. Li  5, Rafael H. M. Pereira  6, Chieh-Hsi Wu7, Ester C. Sabino4 & 
Nuno R. Faria  2,4,8

Brazil has one of the fastest-growing COVID-19 epidemics worldwide. Non-pharmaceutical 
interventions (NPIs) have been adopted at the municipal level with asynchronous actions taken across 
5,568 municipalities and the Federal District. This paper systematises the fragmented information 
on NPIs reporting on a novel dataset with survey responses from 4,027 mayors, covering 72.3% of 
all municipalities in the country. This dataset responds to the urgency to track and share findings on 
fragmented policies during the COVID-19 pandemic. Quantifying NPIs can help to assess the role of 
interventions in reducing transmission. We offer spatial and temporal details for a range of measures 
aimed at implementing social distancing and the dates when these measures were relaxed by local 
governments.

Background & Summary
Brazil has seen one of the highest case numbers of COVID-19 in the world. As of 6 December 2020, Brazil 
recorded over 6,577,177 million cases and more than 176,628 deaths (https://covid19.who.int). SARS-CoV-2 was 
introduced at least 100 times in Brazil1. Non-pharmaceutical interventions (NPIs), although unequal in date of 
implementation and duration, reduced virus transmission1,2. Several factors including changes to the national 
COVID-19 notification system3 and uncoordinated implementation of public health measures may have contrib-
uted to rapid epidemic spread across the country. Here, we describe the complexity of asynchronous adoption and 
easing of NPIs in Brazilian municipalities.

Our data were gathered in a continuous municipal-level survey conducted by the Brazilian Confederation 
of Municipalities (Confederação Nacional de Municípios – CNM). Despite the existing examination of national 
and state-level NPI strategies4, a city-level assessment of NPI’s beyond capitals and second cities5 is still missing. 
Local-level data collection is a challenge because of the number of municipalities in Brazil (5,568 municipali-
ties and the Federal District), and each municipality passed a number of decrees related to COVID-19 control 
measures. This dataset offers a unique fine-grained understanding of local-level policies in Brazil, aiding future 
examination on the roles of NPIs on the increase, spread, and duration of local outbreaks.

Data Sources
The CNM interviewed 4,027 (72.3%) of 5,568 mayors and the Federal District’s government on the implemen-
tation and relaxation of NPIs between 13 May and 31 July 2020. Response rates varied by region: North (29.1% 
of 450 municipalities), Northeast (50.5% of 1,793 municipalities), Centre-West (71.7% of 466 municipalities), 
Southeast (90.2% of 1,668 municipalities) and South (96.6% of 1,191 municipalities). This difference was attrib-
uted to municipal infrastructure and the starting region of the survey, moving South to North.

1Oxford School of Global and Area Studies, University of Oxford, Oxford, UK. 2Department of Zoology, University 
of Oxford, Oxford, UK. 3Virology Research centre, Ribeirão Preto Medical School, University of São Paulo, 
Ribeirão Preto, Brazil. 4instituto de Medicina tropical, faculdade de Medicina da Universidade de São Paulo, São 
Paulo, Brazil. 5School of Geography and the environment, University of Oxford, Oxford, UK. 6institute for Applied 
economic Research, Brasília, Brazil. 7Mathematical Sciences, University of Southampton, Southampton, UK. 8MRc 
Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK. ✉e-mail: andreza.
desouzasantos@lac.ox.ac.uk
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In March, a number of municipalities closed non-essential services (2,237), prohibited large gatherings 
(2,932), reduced public transportation (999), and implemented cordon sanitaires (930), with a rapid uptake by 
mid-March (Fig. 1a). At that time, COVID-19 cases were restricted to a few highly populated state capitals, with 
cases mostly associated with overseas travel6. Of the total of 3,958 mayors that responded to the question on 
implementing social isolation (closure of all non-essential services), 3,062 municipalities adopted the measure 
and among those, 2,738 (89.4%) implemented the measure before the first reported case in their municipality 
(Fig. 1b). Despite an early uptake and comprehensive NPI adoption, in only two months, SARS-CoV-2 spread 
from 296 municipalities (5.3%), on 31 March 2020, to 4,196 municipalities (75.3%), as of 31 May 2020 (Fig. 1a).

In other countries, implementations of NPI have been associated with fewer and delayed cases7; while a lack of 
coordination has been associated with disease spread and resurgence8. Although distancing measures were adopted 
across Brazil early in the pandemic, easing of these measures began as early as the end of March (Fig. 1c), often dis-
regarding decisions by neighbouring municipalities, as illustrated in Fig. 1d for the state of Minas Gerais. We chose 
Minas Gerais to illustrate our dataset because of the high response rate to the survey. Of a total of 853 mayors in that 
state, only between 38–47 mayors failed to respond to specific NPI questions. We represented data absence with the 
colour white in Fig. 1d. We also chose to detail Minas Gerais because almost one-sixth of all Brazilian municipali-
ties are located in that state. Municipal borders do not limit the flow for shopping trips or work commuting across 
towns9,10. Nevertheless, as Fig. 1c,d shows, decisions to ease NPIs were not coordinated between bordering cities.

Contributions and Recommendations
When the Brazilian Supreme Court ruled on 15 April 2020 that mayors and governors were autonomous in their 
decisions related to the pandemic11, collecting local data on the management of the pandemic became urgent. 
With declining willingness of national and regional governments to impose national/regional lockdowns, the role 
of local measures to control the pandemic becomes increasingly important to understand transmission patterns 
at finer geographic scales. This high-resolution dataset on the NPIs in Brazil is an important contribution that also 
highlights challenges. Early and cohesive closure of non-essential activities was short-lived in Brazil, and munici-
palities are lifting distancing measures in an uncoordinated manner, starting as early as late March.

The easing of NPIs needs to be examined in relation to reductions in confirmed cases, hospital and testing 
capacities, mitigation policies such as compulsory use of face coverings, and the potential impact of local policies 
on neighbouring towns. City borders are porous and cities that have maintained strict social distancing policies 
may face a growing number of cases because of external decisions. Policy evaluation of Brazil’s management of 
the pandemic will need to account for the uneven duration of control measures through NPIs – which include 
personal (physical distancing, isolation quarantine, hand hygiene, and face covering), environmental (surface 

Fig. 1 (a) Prohibition of non-essential services in the country (red bars) and the cumulative number of 
municipalities reporting at least one case (black line). (b) Density plots showing dates of adoption and easing 
of NPIs by municipalities in Brazil. (c) Starting month for easing of NPIs across municipalities in Brazil. (d) 
Starting month for easing of NPIs in the state of Minas Gerais (MG). NA - not applicable.
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cleaning and ventilation) and social (travel restrictions, school and workplace closures, restriction on mass gath-
erings) – across the country12. This dataset allows for this assessment, aiding future research and policymaking.

Methods
Data collection. In order to collect these data, we started a specific collaboration with the Brazilian 
Confederation of Municipalities (CNM). The CNM is a non-partisan and non-profit organisation that works with 
mayors in Brazil, especially those that manage municipalities under 100,000 inhabitants, a focus that corresponds 
to 94% of Brazil’s municipalities. As the largest municipal association in Brazil, CNM possesses contact details of 
Brazilian elected mayors. The capillarity of that organisation makes it an ideal partner for such large-scale data 
collection. When the COVID-19 outbreak started and the CNM conducted the survey, we formed a partnership 
to analyse and deposit the dataset and thus expand access to these data. There were no shared financial responsi-
bilities between researchers and the surveying institution.

The details of this cooperation were established through a meeting followed by a written agreement signed by 
the first and last authors of this paper with CNM on 9 April 2020. The partnership was established because of the 
need to understand the impact of decentralized measures in Brazil and what decentralisation causes to the spread 
of infectious diseases. Upon establishing this collaboration, CNM added further questions to the questionnaire 
for their monitoring of municipalities, such as budgetary information possibly affected by the pandemic. CNM 
had already designed and conducted a previous survey independently13, but upon our feedback, they added dates 
of implementation of NPIs to the survey questionnaire that we report on.

Mayors were contacted through a call centre. The CNM’s call centre is independently run; they contact mayors 
regularly on different policy themes. The phone-based survey collected information on local NPI policies related 
to COVID-19, Mayors had the option to receive a protected password to respond to the questionnaire online at a 
later time. When mayors were unable to respond to the survey questions, they suggested an alternative respond-
ent, such as the municipal health secretary.

Mayors and representatives that responded to the survey had the option of updating previous answers: they 
were contacted by phone multiple times and they could use a protected password to update online. This method-
ology acknowledged cases when municipalities, in the course of data collection, could have relaxed NPIs to later 
re-establish social distancing. The questionnaire aimed at the first date of NPI implementation and the current 
state of easing NPIs. Short-lived decisions on NPIs during the course of the survey were not captured in the ques-
tionnaire. However, call centre operators wrote an observation on the limited cases when municipalities reported 
erratic NPIs lifting. A total of 144 municipalities (2.58% of the total) described having re-opened non-essential 
services due to local businesses’ and inhabitants’ pressure, and/or because of reduced number of confirmed cases, 
and/or they followed the state governor. However, in those 144 cases, they soon decided to re-establish social dis-
tancing when the number of confirmed cases increased. We detailed such municipalities in Online-only Table 1.

In total, the questionnaire had 47 questions; our database has 5 columns related to the identification of the 
municipality and 13 of the 47 questions that were part of our collaboration to document NPI policy strategies: 6 
thematic questions with respective 6 dates of implementation and 1 question pertaining to percentage.

Data classification. In summary, our dataset includes: (1) adoption of cordon sanitaire, (2) prohibition of 
agglomeration, (3) closure of all but essential services, (4) compulsory use of face covering, (5) reduction in public 
transportation services and if so, the percentage of the reduction, and (6) whether easing of the above measures 
were applied.

We had uniform data entry for all survey data. The dataset has information for the majority but not all munici-
palities in Brazil (4,027 of 5,568 municipalities and the Federal District). Below we offer a breakdown of the number 
of answers for each question: (Q1) adoption of cordon sanitaire: 3,976, (Q2) prohibition of agglomeration: 3,965, 
(Q3) closure of all but essential services: 3,958, (Q4) compulsory use of face covering: 3,952 (Q5) reduction in public 
transportation offer: 3,908, and (Q6) if there was already any easing of the above distancing measures, 3,947. When 
the answer to the above questions was yes, the column related to date of implementation was also populated.

We collected information on policies adapting a classification system on the 20 most frequent categories of 
NPIs to control the spread of COVID-194. Considering the list of frequently adopted NPIs, we focused on the ones 
that would have a direct impact on the spatial mobility of residents. These measures were associated with a specific 
date of implementation. Adapting an international NPI classification to Brazil’s municipal reality requires some 
explanation. We did not report on closure of education institutions because such measures were implemented at 
the state level3. Similarly, we did not report on airport restrictions because such policies are not a municipal duty; 
on the other hand, the implementation of cordon sanitaire was a local decision and we report on those.

We reported on mass gathering cancellations (such as discotheques and sport events) and small gatherings restric-
tions (the closure of all but essential services). Reduction in public transportation services was not among the 20 most 
frequent NPIs categories4. However, this measure was frequently implemented, and potentially causing unintended 
consequences. Reductions in public transport services combined with low levels of social isolation can result in over-
crowding of transport stations and vehicles. We invite further examination of transportation reduction and mobility 
patterns in Brazilian municipalities. Finally, we included a question on the compulsory use of face covering, as the 
compulsory use of masks is usually related to the re-opening of non-essential services and decrees were locally passed. 
For all NPIs, we also ask the date of implementation, and that field was populated in the format DD/MM/YYYY 
(Table 1). We also adapted the naming of NPIs to the Brazilian context, with mass gathering cancellation being named 
as “prohibition of agglomeration”, and small gathering cancellation as “closure of non-essential services”.

During the 45 days of data collection (13 May to 31 July 2020), the CNM staff and the authors had access to a 
summary containing the total number of responses, which were classified as (1) complete, 3,174 interviews; (2) 
ongoing, 853 interviews; (3) pending, 1,536 interviews; or (4) without response, 6 interviews. We also received a 
partial dataset on the 13 of July.
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Finally, for mapping NPIs (Fig. 1), we used the official spatial datasets with the administrative boundaries of 
states and municipalities organized by the Brazilian Institute of Geography and Statistics (IBGE).

Data Records
The latest version of the data was updated on the 31 July 2020. We explain the time lapse between finishing the 
survey and making it available online below, which included budgeting time for validation. The dataset is available 
online (https://doi.org/10.5061/dryad.vdncjsxs2)14. An additional data report and a description of the project (con-
taining all 47 survey questions) are available online15. We describe the dataset fields that pertain to our cooperation 
in detail below. We have kept the dataset in its original language, Portuguese, to increase the usage by health profes-
sionals and scholars in Brazil. We offer a translation to English to make these data of international use:

Main dataset. IBGE (unique_id): unique id for each municipality defined according to IBGE (Brazilian 
Institute for Geography and Statistics).

Município (Name of the municipality)

UF (State Acronym), defined as follows:
Acre – AC; Alagoas – AL; Amapá – AP; Amazonas – AM; Bahia – BA; Ceará – CE; Goiás – GO; Espírito Santo – ES;  
Maranhão – MA; Mato Grosso – MT; Mato Grosso do Sul – MS; Minas Gerais – MG; Pará – PA; Paraíba – PB; 
Paraná – PR; Pernambuco – PE; Piauí – PI; Rio de Janeiro – RJ; Rio Grande do Norte – RN; Rio Grande do Sul – 
RS; Rondônia – RO; Roraima – RR; São Paulo – SP; Santa Catarina – SC; Sergipe – SE; Tocantins – TO; Distrito 
Federal – DF;

Capital, dropdown option: sim (yes); não (no);

Região (Region), dropdown options as follows: Centro-Oeste (Centre-West); Norte (North), Sul (South), 
Nordeste (Northeast), Sudeste (Southeast);

Q1. Barreiras sanitárias - posto de monitoramento de entrada e saída de pessoas no Município - (Cordon Sanitaire -  
monitoring of entrance and exit of people in the municipality);
Q1. Data Início (Q1. Start date)
Q2. Medidas restritivas para diminuição da circulação/aglomeração de pessoas (Restrictions to avoid circulation/ 
agglomeration of people);
Q2. Data Início (Q2. Start date);
Q3. Medidas de isolamento social, permitindo APENAS serviços essenciais (Measures of social isolation, allow-
ing ONLY essential services);
Q3. Data Início (Q3. Start date);
Q4. Uso obrigatório de máscaras faciais (Compulsory use of face covers);
Q4. Data Início (Q4. Start date);
Q5. Foram adotadas medidas de redução na oferta de transporte público? (Were any measures implemented to 
reduce the offer of public transportation?);

Column names (in Portuguese) Column names (in English) Number of records

IBGE Unique Id 5569

Município Municipality 5569

UF State Acronym 27

Capitais Capitals Sim (27) / Não (5542)

Região Region 5

Q1. Barreiras sanitárias (posto de monitoramento 
de entrada e saída de pessoas no Município)

Q1. Cordon Sanitaire (monitoring of entrance 
and exit of people in the municipality) 3976

Q1. Data Início (se sim) Q1. Start date (if yes) 2021

Q2. Medidas restritivas para diminuição da 
circulação/aglomeração de pessoas.

Q2. Restrictions to avoid circulation/ 
agglomeration of people 3965

Q2. Data Início (se sim) Q2. Start date (if yes) 3707

Q3. Medidas de isolamento social, permitindo 
APENAS serviços essenciais.

Q3. Measures of social isolation, allowing ONLY 
essential services 3958

Q3. Data Início (se sim) Q3. Start date (if yes) 2901

Q4. Uso obrigatório de máscaras faciais. Q4. Compulsory use of face covering 3952

Q4. Data Início (se sim) Q4. Start date (if yes) 3588

Q5. Foram adotadas medidas de redução na oferta 
de transporte público?

Q5. Were any measures implemented to reduce 
the offer of public transportation? 3908

Q5. Qual foi a porcentagem de redução Q5. What was the percentage of reduction? 1647

Q5. Data Início (se sim) Q5. Start date (if yes) 1590

Q6. Houve flexibilização das medidas restritivas e 
de isolamento social.

Q6. Were measures of restriction and social 
isolation eased? 3947

Q6. Data Início (se sim) Q6. Start date (if yes) 2319

Table 1. Column names and data summary.
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Q5. Qual foi a porcentagem de redução? (What was the percentage of reduction?);
Q5. Data Início (Q5. Start date)
Q6. Houve flexibilização das medidas restritivas e de isolamento social? (Were measures of restriction and social 
isolation eased?);
Q6. Data Início (Q6. Start date)

technical Validation
Interviewing mayors and health secretaries offers an important aspect of interpretation of laws and validation of 
dates related to non-pharmaceutical interventions. Even though decrees restricting physical contact or relaxing 
social distancing measures are available online, there were multiple laws on similar issues (e.g., a decree closing 
non-essential services followed by another one defining non-essential services, with a third one deciding on the 
duration of such activity). For that reason, consolidated information coming from those at the policy-making 
side increases precision.

To verify the correctness of received answers, we compared our dataset with existing information on adoption 
of NPIs on a city-level, which is mostly available for state-capitals. The eight capital cities for which we had data 
(Curitiba, Florianopólis, Fortaleza, Goiânia, João Pessoa, Manaus, Teresina, and Vitória), home to approximately 
5% of the Brazilian population and distributed across all five Brazilian regions, offered answers and dates that are 
compatible with those collected by independent scholars looking at decrees5.

In addition to comparison with other datasets, we checked our data for possible erroneous entries, such as 
municipalities that eased NPIs before having implemented them. Five municipalities (Ajuricaba/RS; Estiva Gerbi/
SP; Paiçandu/PR; São Lourenço/MG; Senador Cortes/MG) added 01/03/2020 as dates when they relaxed NPIs, 
which is equal or earlier than the date they implemented social distancing measures. These dates of NPI relaxation 
are likely to be erroneous.

During data collection, call centre operators detailed a limited number of municipalities that adopted NPIs, 
eased those, and later re-implemented distancing measures (as detailed in Online-only Table 1). The limited num-
ber of municipalities describing such behaviour corresponds with findings from other independently collected 
data on NPIs5. Researchers looking at capitals and second large cities found out that between NPIs implemen-
tation and easing, variations usually refer to capacity of specific services (e.g., restaurants or public transport) 
with cases of re-opening followed by a new set of distancing policies being still relatively rare. The reasons for 
such stable behaviour can vary and require further examination. This may be connected with the political costs 
of changing policies frequently, especially in a year of municipal elections. In addition to that, Brazil only signif-
icantly reduced its infection rate in October and at the time of writing, the country goes through an increase in 
number of infections. A new round of NPIs could potentially happen in the near future.

Finally, our multi-faceted data validation process also included broadly reporting on the data. On 9 September 
2020, the CNM made public its summary report15 and we waited for two-weeks after that launch before submit-
ting a first version of this dataset description. In this time period, no mayor requested revision of the data entered. 
Despite a lack of contestations from mayors to date, and the low number of possible erroneous data, omissions 
exist, and we invite users to complement this dataset using published decrees and media sources. The possibility 
of new lockdowns potentially followed by a new easing of NPIs would require a future survey.

Below we include examples of how these data could be used to allow for the continuity of policy surveys and 
guarantee a high level of cooperation between mayors and research units.

Usage Notes
This database offers an opportunity for researchers and policymakers to examine the potential impacts of NPIs 
on COVID-19 transmission and control in Brazil. This is a unique dataset as it collates responses for the majority 
of all Brazilian cities, while previous datasets have mainly focused on capital cities, states, or have looked at a 
national level4,5. Because these data were collected through a survey, answers given by municipal authorities may 
be inaccurate. Unfortunately, even the scrutiny of laws also allows for a level of inaccuracy in interpretation and 
discrepancies on the exact date of policy implementation may be disputed in some cases. We have mitigated this 
problem with early and well-broadcasted release of a report on this dataset and technical validation included 
comparing our dataset with existing others on capital cities, we also looked for erroneous entries in our database. 
We invite researchers to use the dataset as it is. If significant inaccuracies are found, we will update our dataset and 
will describe such an update when it takes place.

This dataset represents a baseline for further research as it describes how COVID-19 response took place in a 
continental country such as Brazil. Because not all municipal authorities answered to all questions, particularly in 
the North region of Brazil, we suggest users to consider additional sources of information to document missing 
policy implementation, preferably using official sources such as local decrees. However, as decrees are not always 
available online, secondary sources such as media reports may need to be consulted.

A significant contribution of this dataset comes from the ‘release of NPIs’ column. At the time of writing, 
agglomerations (e.g., football stadiums) remain prohibited in most cities in Brazil. The easing of NPIs therefore 
mainly relates to the re-opening of non-essential services. Given that re-opening was asynchronous, researchers 
trying to retrieve exact dates on the easing of NPIs do not have a target period and searching for laws can be tire-
some, especially when considering the total number of municipalities in Brazil. Finally, decrees that established 
the re-opening of shops and restaurants were often modified a few days later, such modifications especially related 
to capacity of small gatherings. The amendment of decrees makes NPI dates particularly susceptible to errors, 
potentially over or underestimating the date of easing of social distancing. A survey with mayors and health 
authorities is thus a fundamental tool as it allows us to listen to those on the frontline to describe when was the 
pivotal date for the reopening of services in town, information otherwise blurred in different decrees across time.
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Scholars using our dataset could investigate whether easing of NPIs preceded increases in population mobility 
levels, or if adherence to NPIs was already low when NPIs were still in place. The connection between easing of 
NPIs and the compulsory use of face covering also invites further examination on the potential mitigation effects 
of masks. As the pandemic progresses and as Brazil is a highly affected country, we invite researchers to use the 
data to understand the pandemic and support health policymakers in their efforts.
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Chapter 3 

Evolution and epidemic spread of SARS-

CoV-2 in Brazil 

This chapter is, to date, the largest peer-reviewed genomic epidemiology study on 

the early spread of SARS-CoV-2 in Brazil. It results from an outstanding logistical and 

genome sequencing effort to rapidly build and analyse a genomic dataset representative of 

the epidemiological situation in Brazil during the first two months of SARS-CoV-2 spread. 

It provides the first evidence for several importation events, genetic diversity and routes of 

national spread of the virus. This work was first made available on MedRxiv as a preprint 

on the 23rd June 2020 and published in Science in July 2020 and it is presented here in full. 

Candido DS*, Claro IM*, de Jesus JG*, Souza WM*, Moreira FRR*, Dellicour S*, 

et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science. 2020 Sep 

4;369(6508):1255–60. 

"Be fast, have no regrets... If you need to be right before you move, you will never win” 

Dr Michael J Ryan 

“Everything that happens twice will surely happen a third time” 

Paulo Coelho — The Alchemist 

96

Chapter 3 - Evolution and epidemic spread



CORONAVIRUS

Evolution and epidemic spread of SARS-CoV-2 in Brazil
Darlan S. Candido1,2*, Ingra M. Claro2,3*, Jaqueline G. de Jesus2,3*, William M. Souza4*,
Filipe R. R. Moreira5*, Simon Dellicour6,7*, Thomas A. Mellan8*, Louis du Plessis1,
Rafael H. M. Pereira9, Flavia C. S. Sales2,3, Erika R. Manuli2,3, Julien Thézé10, Luiz Almeida11,
Mariane T. Menezes5, Carolina M. Voloch5, Marcilio J. Fumagalli4, Thaís M. Coletti2,3,
Camila A. M. da Silva2,3, Mariana S. Ramundo2,3, Mariene R. Amorim12, Henrique H. Hoeltgebaum13,
Swapnil Mishra8, Mandev S. Gill7, Luiz M. Carvalho14, Lewis F. Buss2, Carlos A. Prete Jr.15,
Jordan Ashworth16, Helder I. Nakaya17, Pedro S. Peixoto18, Oliver J. Brady19,20, Samuel M. Nicholls21,
Amilcar Tanuri5, Átila D. Rossi5, Carlos K. V. Braga9, Alexandra L. Gerber11, Ana Paula de C. Guimarães11,
Nelson Gaburo Jr.22, Cecila Salete Alencar23, Alessandro C. S. Ferreira24, Cristiano X. Lima25,26,
José Eduardo Levi27, Celso Granato28, Giulia M. Ferreira29, Ronaldo S. Francisco Jr.11,
Fabiana Granja12,30, Marcia T. Garcia31, Maria Luiza Moretti31, Mauricio W. Perroud Jr.32,
Terezinha M. P. P. Castiñeiras33, Carolina S. Lazari34, Sarah C. Hill1,35, Andreza Aruska de Souza Santos36,
Camila L. Simeoni12, Julia Forato12, Andrei C. Sposito37, Angelica Z. Schreiber38, Magnun N. N. Santos38,
Camila Zolini de Sá39, Renan P. Souza39, Luciana C. Resende-Moreira40, Mauro M.Teixeira41, Josy Hubner42,
Patricia A. F. Leme43, Rennan G. Moreira44, Maurício L. Nogueira45, Brazil-UK Centre for Arbovirus Discovery,
Diagnosis, Genomics and Epidemiology (CADDE) Genomic Network, Neil M. Ferguson8,
Silvia F. Costa2,3, José Luiz Proenca-Modena12, Ana Tereza R. Vasconcelos11, Samir Bhatt8,
Philippe Lemey7, Chieh-Hsi Wu46, Andrew Rambaut47, Nick J. Loman21, Renato S. Aguiar39,
Oliver G. Pybus1, Ester C. Sabino2,3†, Nuno Rodrigues Faria1,2,8†

Brazil currently has one of the fastest-growing severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) epidemics in the world. Because of limited available data, assessments of the
impact of nonpharmaceutical interventions (NPIs) on this virus spread remain challenging. Using a
mobility-driven transmission model, we show that NPIs reduced the reproduction number from >3 to
1 to 1.6 in São Paulo and Rio de Janeiro. Sequencing of 427 new genomes and analysis of a
geographically representative genomic dataset identified >100 international virus introductions in
Brazil. We estimate that most (76%) of the Brazilian strains fell in three clades that were introduced
from Europe between 22 February and 11 March 2020. During the early epidemic phase, we found
that SARS-CoV-2 spread mostly locally and within state borders. After this period, despite sharp
decreases in air travel, we estimated multiple exportations from large urban centers that coincided
with a 25% increase in average traveled distances in national flights. This study sheds new light on
the epidemic transmission and evolutionary trajectories of SARS-CoV-2 lineages in Brazil and
provides evidence that current interventions remain insufficient to keep virus transmission under
control in this country.

S
evere acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) is a novel beta-
coronavirus with a 30-kb genome that
was first reported in December 2019
in Wuhan, China (1, 2). SARS-CoV-2

was declared a public health emergency of
international concern on 30 January 2020.
As of 12 July 2020, there were >12.5 million
cases of coronavirus disease 2019 (COVID-
19) and 561,000 deaths globally (3). The virus
can be classified into two main phyloge-
netic lineages, A and B, which spread from
Wuhan before strict travel restrictions were
enacted (4, 5) and now cocirculate around
the world (6). The case fatality ratio of SARS-
CoV-2 infection has been estimated at be-
tween 1.2 and 1.6% (7–9), with substantially
higher ratios in those >60 years of age (8).
Some estimates suggest that 18 to 56% of
SARS-CoV-2 transmission is from asymp-
tomatic or presymptomatic individuals
(10–13), complicating epidemiological assess-
ments and public health efforts to curb the
pandemic.

Challenges of real-time assessment
of transmission
Although the SARS-CoV-2 epidemics in several
countries, including China, Italy, and Spain,
have been brought under control through non-
pharmaceutical interventions (NPIs) (3), the
number of SARS-CoV-2 cases and deaths in
Brazil continues to increase (14) (Fig. 1A). As of
12 July 2020, Brazil had reported 1,800,827
SARS-CoV-2 cases, the second-largest num-
ber in the world, and 70,398 deaths. More
than one-third of the cases (34%) in Brazil
are concentrated in the southeast region,
which includes São Paulo city (Fig. 1B), the
world’s fourth-largest conurbation, where the
first case in Latin America was reported on
25 February 2020 (15). Diagnostic assays for
SARS-CoV-2 molecular detection were widely
distributed across the regional reference cen-
ters of the national public health laboratory
network from 21 February 2020 on (16, 17).
However, several factors, including delays in
reporting, changes in notification, and heter-
ogeneous access to testing across populations,

obfuscate the real-time assessment of virus
transmission using SARS-CoV-2 case counts
(15). Consequently, a more accurate measure
of SARS-CoV-2 transmission in Brazil is the
number of reported deaths caused by severe
acute respiratory infections (SARIs), which
is provided by the Sistema Único de Saúde
(SUS) (18). Changes in the opportunity for
SARS-CoV-2 transmission are strongly asso-
ciated with changes in averagemobility (18–20)
and can typically be measured by calculating
the effective reproduction number, R, defined
as the average number of secondary infections
caused by an infected person. R > 1 indicates a
growing epidemic, whereas R < 1 is needed to
achieve a decrease in transmission.
We used a Bayesian semimechanistic model

(21, 22) to analyze SARI mortality statistics
and human mobility data to estimate daily
changes in R in São Paulo city (12.2 million
inhabitants) and Rio de Janeiro city (6.7 mil-
lion inhabitants), the largest urban metro-
poles in Brazil (Fig. 1, C and D). NPIs in Brazil
consisted of school closures implemented be-
tween 12 and 23 March 2020 across the
country’s 27 federal units/states and store
closures implemented between 13 and 23March
2020. In São Paulo city, schools started closing
on 16March 2020 and stores closed 4 days later.
At the start of the epidemics, we found R > 3 in
São Paulo and Rio de Janeiro and, concurrent
with the timing of state-mandated NPIs, R
values fell close to 1.

Mobility-driven changes in R

Analysis of R values after NPI implementation
highlights several notable mobility-driven fea-
tures. There was a period immediately after
NPIs, between 21 and 31 March 2020, when
R was consistently <1 in São Paulo city (Fig.
1C). However, after this initial decrease, the R
value for São Paulo rose to >1 and increased
through time, a trend associatedwith increased
population mobility. This can be seen in the
Google transit stations index, which rose from
–60 to –52%, and by a decrease in the social
isolation index from 54 to 47%. By 4May 2020,
we estimate R = 1.3 [95% Bayesian credible
interval (BCI): 1.0 to 1.6] in both São Paulo and
Rio de Janeiro cities (table S1). However, we
note that there were instances in the previous
7 days when the 95% credible intervals for R
included values <1, drawing attention to the
fluctuations and uncertainty in the estimated
R for both cities.
Early sharing of genomic sequences, includ-

ing the first SARS-CoV-2 genome, Wuhan-
Hu-1, released on 10 January (23), has enabled
unprecedented global levels of molecular test-
ing for an emerging virus (24, 25). However,
despite the thousands of virus genomes de-
posited on public access databases, there is a
lack of consistent sampling structure and there
are limited data from Brazil (26–28), which
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hampers accurate reconstructions of virus
movement and transmission using phylo-
genetic analyses. To investigate how SARS-
CoV-2 became established in the country,
and to quantify the impact of NPIs on virus

spatiotemporal spread, we tested a total of
26,732 samples from public and private lab-
oratories using real-time quantitative poly-
merase chain reaction (RT-qPCR) assays and
found 7944 (29%) to be positive for SARS-

CoV-2. We then focused our sequencing ef-
forts on generating a large and spatially rep-
resentative genomic dataset with curated
metadata to maximize the association be-
tween the number of sequences and the
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Fig. 1. SARS-CoV-2 epidemiology and epidemic spread in Brazil.
(A) Cumulative number of SARS-CoV-2 reported cases (blue) and deaths
(gray) in Brazil. (B) States are colored according to the number of cumulative
confirmed cases by 30 April 2020. (C and D) R over time for the cities of
São Paulo (C) and Rio de Janeiro (D). R values were estimated using a
Bayesian approach incorporating the daily number of deaths and four
variables related to mobility data (a social isolation index from Brazilian

geolocation company InLoco and Google mobility indices for time spent
in transit stations, parks, and the average between groceries and pharmacies,
retail and recreational, and workspaces). Dashed horizontal line indicates
R = 1. Gray area and geometric symbols show the times at which NPIs
were implemented. BCIs of 50 and 95% are shown as shaded areas. The
two-letter ISO 3166-1 codes for the 27 federal units in Brazil are provided in
the supplementary materials.
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number of SARS-CoV-2 confirmed cases per
state.

Spatially representative sequencing efforts

We generated 427 new SARS-CoV-2 genomes
with >75% genome coverage from Brazilian
samples collected between 5 March and
30 April 2020 (figs. S1 to S3 and data S1). For
each state, the time between the date of the
first reported case and the collection date of the
first sequence analyzed in that state was only
4.5 days on average (Fig. 2A). For eight federal
states, genomes were obtained from samples
collected up to 6 days before the first case no-
tifications. The genomes generated here were

collected in 85 municipalities across 18 of
27 federal units spanning all regions in Brazil
(Fig. 2A and fig. S2). Sequenced genomes were
obtained from samples collected 4 days on
average (median, range: 0 to 29 days) after
the onset of symptoms and were generated
in three laboratories using harmonized se-
quencing and bioinformatic protocols (table
S2). When we include 63 additional available
sequences from Brazil deposited in GISAID
(29) (see data S1 and S2), we found the dataset
to be representative of the spatial heterogeneity
of theBrazilian epidemic. Specifically, the num-
ber of genomes per state strongly correlated
with SARI SARS-CoV-2 confirmed cases and

SARI cases with unknown etiology per state
(n = 490 sequences from 21 states, Spearman’s
correlation, r = 0.83; Fig. 2A). This correlation
varied from 0.70 to 0.83 when considering
SARI cases and deaths caused by SARS-CoV-2
and SARI cases and deaths from unknown
etiology (fig. S4). Most (n = 485/490) Brazilian
sequences belong to SARS-CoV-2 lineage B,
with only five strains belonging to lineage A
(two from Amazonas, one from Rio Grande
do Sul, one fromMinas Gerais, and one from
Rio de Janeiro; data S1 and fig. S5 show de-
tailed lineage information for each sequence).
Moreover, we used an in silico assessment of
diagnostic assay specificity for Brazilian strains
(n = 490) to identify potential mismatches in
some assays targeting these strains. We found
that the forward primers of the Chinese CDC
and Hong Kong University nucleoprotein-
targeting RT-qPCRmay be less appropriate for
use in Brazil than other diagnostic assays, for
which few or no mismatches were identified
(fig. S6 and table S3). The impact of these
mismatches on the sensitivity of these assays
should be confirmed experimentally. If sen-
sitivity is affected, then the use of duplex
RT-qPCR assays that concurrently target dif-
ferent genomic regions may help in the detec-
tion of viruses with variants in primer- or
probe-binding regions.

Phylogenetic analyses and
international introductions

We estimated maximum likelihood and mo-
lecular clock phylogenies for a global dataset
with a total of 1182 genomes sampled from
24 December 2019 to 30 April 2020 (root-to-
tip genetic distance correlation with sampling
dates, r2 = 0.53; Fig. 3A and fig. S7). We in-
ferred amedian evolutionary rate of 1.13 × 10−3

(95% BCI: 1.03 to 1.23 × 10−3) substitutions per
site per year using an exponential growth co-
alescent model, equating to 33 changes per
year on average across the virus genome. This
is within the range of evolutionary rates esti-
mated for other human coronaviruses (30–33).
We estimate the date of the common ances-
tor (TMRCA) of the SARS-CoV-2 pandemic
to around mid-November 2019 (median =
19 November 2019, 95% BCI: 26 October 2019
to 6 December 2019), which is consistent with
recent findings (34, 35).
Phylogenetic analysis revealed that the ma-

jority of the Brazilian genomes (76%, n = 370/
490) fell into three clades, hereafter referred
to as Clade 1 (n = 186/490, 38% of Brazilian
strains), Clade 2 (n = 166, 34%), and Clade 3
(n = 18/490, 4%) (Fig. 3A and figs. S8 and S9),
which were largely in agreement with those
identified in a phylogenetic analysis using
13,833 global genomes. The most recent com-
mon ancestors of the three main Brazilian clades
(Clades 1 to 3) were dated from 28 February
(21 February to 4 March 2020) (Clade 1),
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Fig. 2. Spatially representative genomic sampling. (A) Dumbbell plot showing the time intervals between
date of collection of sampled genomes, notification of first cases, and first deaths in each state. Red lines
indicate the lag between the date of collection of first genome sequence and first reported case. The key for
the two-letter ISO 3166-1 codes for Brazilian federal units (or states) are provided in the supplementary
materials. (B) Spearman’s rank correlation between the number of SARI SARS-CoV-2 confirmed and SARI
cases with unknown etiology against the number of sequences for each of the 21 Brazilian states included
in this study (see also fig. S4). Circle sizes are proportional to the number of sequences for each federal unit.
(C) Interval between the date of symptom onset and the date of sample collection for the sequences
generated in this study.
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22 February (17 to 24 February 2020) (Clade 2),
to 11 March (9 to 12 March 2020) (Clade 3)
(Fig. 3A and fig. S10). This indicates that
community-driven transmission was already
established in Brazil by early March, suggest-
ing that international travel restrictions ini-
tiated after this period would have had limited
impact. Brazilian Clade 1 is characterized by
a nucleotide substitution in the spike protein
(G25088T, numbering relative to GenBank
reference NC_045512.2) and circulates pre-
dominantly in São Paulo state (n = 159, 85.4%;
figs. S9 and S11). Clade 2 is defined by two
nucleotide substitutions in ORF6 (T27299C)
and nucleoprotein (T29148C); this is the most
spatially widespread lineage, with sequences
from a total of 16 states in Brazil. Clade 3 is
concentrated in Ceará state (n = 16, 89%) and
falls in a global cluster with sequences mainly
from Europe. In the Amazon region, where
the epidemic is expanding rapidly (14, 22),
we found evidence for multiple national and
international introductions, with 37% (n = 7/19)
of sequences from Pará and Amazonas states
clustering in Clade 1 and 32% (n = 6/19) in
Clade 2.
Time-measured phylogeographic analyses

revealed at least 102 (95% BCI: 95 to 109) in-
ternational introductions of SARS-CoV-2 in
Brazil (Fig. 3A and figs. S8 and S12). This
represents an underestimate of the real num-
ber of introductions because we sequenced,

on average, only one out of 200 confirmed
cases. Most of these estimated introductions
were directed to internationally well-connected
states (36) such as São Paulo (36% of all im-
ports), Minas Gerais (24%), Ceará (10%), and
Rio de Janeiro (8%) (fig. S12). We further
assessed the contribution of international
versus national virus lineage movement events
through time (Fig. 3B). In the first phase of the
epidemic, we found an increasing number of
international introductions until 10 March 2020
(Fig. 2B). Limited available travel history data
(15) suggested that these early cases were pre-
dominantly acquired from Italy (26%, n = 70
of 266 unambiguously identified country of
infection) and the United States (28%, n = 76
of 266). After this initial phase, we found that
the estimated number of international imports
decreased concomitantly with the decline in the
number of international passengers traveling
to Brazil (Fig. 3, B and C, and S13). By con-
trast, despite the declines in the number of
passengers traveling on national flights (Fig.
3C), we detected an increase in virus lineage
movement events between Brazilian regions
at least until early April 2020.

Modeling spatiotemporal spread within Brazil

To better understand virus spread across
spatiotemporal scales within Brazil, we used a
continuous phylogeographic model that maps
phylogenetic nodes to their inferred origin loca-

tions (37) (Fig. 4). We distinguished branches
that remainwithin a state versus those that cross
a state to infer the proportion of within-state
versus between-state observed virusmovement.
We estimate that during the first epidemic

phase, SARS-CoV-2 spread mostly locally and
within state borders. By contrast, the second
phase was characterized by long-distancemove-
ment events and the ignition of the epidemic
outside of the southeast region of Brazil (Fig.
4A). Throughout the epidemic, we found that
within-state virus lineage movement was, on
average, 5.1-fold more frequent than between-
state movement. Moreover, our data suggest
that within-state virus spread and, to a lesser
extent, between-state virus spread decreased
after the implementation of NPIs (Fig. 4B).
However, the more limited sampling after
6 April 2020 (see fig. S2) decreased inferred
virus lineage movement to the present (Figs.
3B and 4B).
We found that the average route length

traveled by passenger increased by 25% during
the second phase of the epidemic (Fig. 4C)
despite a concomitant reduction in the num-
ber of passengers flying within Brazil (Fig. 3C).
The increase in the average route length after
NPI implementation resulted from a larger
reduction in the number of air passengers
flying on shorter-distance journeys compared
with those flying on longer-distance journeys.
For example, we found an 8.8-fold reduction in
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Fig. 3. Evolution and spread of SARS-CoV-2 in Brazil. (A) Time-resolved
maximum clade credibility phylogeny of 1182 SARS-CoV-2 sequences, 490 of which
are from Brazil (salmon) and 692 from outside of Brazil (blue). The largest Brazilian
clades are highlighted by gray boxes (Clade 1, Clade 2, and Clade 3). Inset shows a
root-to-tip regression of genetic divergence against dates of sample collection. Red
tip corresponds to the first reported case in Brazil. (B) Dynamics of SARS-CoV-2
import events in Brazil. Dates of international and national (between federal states)

migration events were estimated from virus genomes using a phylogeographic
approach. The first phase was dominated by virus migrations from outside of Brazil,
whereas the second phase was marked by virus spread within Brazil. Dashed vertical
lines correspond to the mean posterior estimate for migration events from outside
of Brazil (blue) and within Brazil (red). (C) Locally estimated scatterplot smoothing
of the daily number of international (blue) and national (red) air passengers in Brazil in
2020. T0, date of first reported case in Brazil (25 February 2020).
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the number of passengers flying in flight legs
<1000 km, compared with a 4.4-fold reduction
in those flying >2000 km (fig. S15). These find-
ings emphasize the roles ofwithin- and between-
state mobility as a key driver of both local and
interregional virus spread, with highly popu-
lated and well-connected urban conurbations
in the southeast regionactingas themainsources
of virus exports within the country (fig. S12).

Discussion

Weprovide a comprehensive analysis of SARS-
CoV-2 spread in Brazil showing the importance

of community- and nation-wide measures to
control the COVID-19 epidemic in Brazil. Al-
though NPIs initially reduced virus transmis-
sion and spread, the continued increase in
the number of cases and deaths in Brazil
highlights the urgent need to prevent future
virus transmission by implementing rapid and
accessible diagnostic screening, contact tracing,
quarantining of new cases, and coordinated
social and physical distancingmeasures across
the country (38). With the recent relaxation of
NPIs in Brazil and elsewhere, continued mo-
lecular, immunological, and genomic surveil-

lance are required for real-time data-driven
decisions. Our analysis shows how changes in
mobility may affect global and local transmis-
sion of SARS-CoV-2 and demonstrates how
combining genomic andmobility data can com-
plement traditional surveillance approaches.
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the spread of Brazilian SARS-CoV-2 clusters containing more than two
sequences during the first (left) and the second (right) epidemic phase (Fig. 3B).
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phylogeographic estimates for each node. Solid curved lines denote the links
between nodes and the directionality of movement. Sequences belonging to
clusters with fewer than three sequences were also plotted on the map with no

lines connecting them. Background population density for each municipality was
obtained from the Brazilian Institute of Geography (https://www.ibge.gov.br/).
See fig. S14 for details of virus spread in the southeast region. (B) Estimated
number of within-state (or within a given federal unit) and between-state (or
between federal units) virus migrations over time. Dashed lines indicate
estimates obtained during the period of limited sampling (fig. S2). (C) Average
distance in kilometers traveled by an air passenger per day in Brazil. The
number of daily air passengers is shown in Fig. 3B. Light gray boxes indicate the
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The spread of SARS-CoV-2 in Brazil
Brazil has been hard-hit by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Candido
et al. combined genomic and epidemiological analyses to investigate the impact of nonpharmaceutical interventions
(NPIs) in the country. By setting up a network of genomic laboratories using harmonized protocols, the researchers
found a 29% positive rate for SARS-CoV-2 among collected samples. More than 100 international introductions
of SARS-CoV-2 into Brazil were identified, including three clades introduced from Europe that were already well
established before the implementation of NPIs and travel bans. The virus spread from urban centers to the rest of the
country, along with a 25% increase in the average distance traveled by air passengers before travel bans, despite an
overall drop in short-haul travel. Unfortunately, the evidence confirms that current interventions remain insufficient to
keep virus transmission under control in Brazil.
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Chapter 4 
 
Genomic epidemiology of variants of 

concern (VOCs) in Brazil 

 December and January 2020 were marked by the identification of the first VOCs 

(Alpha in the UK, Beta in South Africa and Gamma in Brazil) followed by a global increase 

the incidence of SARS-CoV-2 cases and deaths. This chapter covers two publications on 

two of these new variants. Chapter 4.1 describes genomic and epidemiological aspects of 

the first confirmed cases of the Alpha VOC in Brazil. It was first made available as a 

virological.org post on the 31st December 2020 and published in the Journal of Emerging 

Infectious Diseases. It is presented here fully. Chapter 4.2 resulted from an incredible 

collaborative effort to describe and understand the emergence of the Gamma VOC in 

Manaus, Brazil, amidst an upsurge of cases in the region. I was responsible/involved in all 

aspects of the genomic epidemiology of this paper, and, as such, it is only partly presented 

in this thesis. It was first made available as a preprint on MedRxiv on the 3rd of March 2021 

and subsequently published in Science. 

 

Claro IM, da Silva Sales FC, Ramundo MS, Candido DS, Silva CAM, de Jesus JG, et 

al. Local Transmission of SARS-CoV-2 Lineage B.1.1.7, Brazil, December 2020. 

Emerging Infect Dis. 2021 Mar;27(3):970–2. 

Faria NR*, Mellan TA*, Whittaker C*, Claro IM*, Candido D da S*, Mishra S*, et 

al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. 
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SARS-CoV-2 Lineage B.1.1.7, 
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Camila A.M. Silva, Jaqueline Goes de Jesus,  
Erika R. Manuli, Cristina Mendes de Oliveira, 
Luciano Scarpelli, Gustavo Campana,  
Oliver G. Pybus, Ester Cerdeira Sabino,2  
Nuno Rodrigues Faria,2 José Eduardo Levi2

Author affiliations: University of São Paulo, São Paulo, Brazil  
(I.M. Claro, F.C.S. Sales, M.S. Ramundo, D.S. Candido,  
C.A.M. Silva, J.G. de Jesus, E.R. Manuli, E.C. Sabino, N.R. Faria, 
J.E. Levi); University of Oxford, Oxford, UK (D.S. Candido, 
O.G. Pybus, N.R. Faria); Diagnósticos da América SA (DASA), 
Baueri, Brazil (C.M. de Oliveira, L. Scarpelli, G. Campana,  
J.E. Levi); Imperial College London, London, UK (N.R. Faria)

DOI: https://doi.org/10.3201/eid2703.210038

Genomic sequencing and analysis during the se-
vere acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) pandemic have led to identification of 
≈800 distinct SARS-CoV-2 lineages worldwide. A new 
phylogenetic cluster, B.1.1.7 lineage or variant of con-
cern 202012/01, is characterized by 17 unique muta-
tions and was first detected in southeastern England 
in late September 2020 (A. Rambaut et al., unpub. data, 
https://virological.org/t/preliminary-genomic-char-
acterisation-of-an-emergent-sars-cov-2-lineage-in-the-
uk-defined-by-a-novel-set-of-spike-mutations/563). As 
of January 17, 2021, this lineage had been confirmed 
in 38 countries (https://cov-lineages.org/global_
report_B.1.1.7.html). Epidemiologic and phylogenetic 
studies suggest that the rapid epidemic growth of B.1.1.7 
in the United Kingdom is caused by its higher transmis-
sibility (E. Volz et al., unpub. data, https://www.me-
drxiv.org/content/10.1101/2020.12.30.20249034v2; N. 
Davies, unpub. data, https://cmmid.github.io/topics/
covid19/uk-novel-variant.html), which could lead to in-
creased incidence and higher peaks in hospitalizations 

and deaths (N. Davies, unpub. data, https://cmmid.
github.io/topics/covid19/uk-novel-variant.html).

We confirm 2 cases of infection with SARS-
CoV-2 B.1.1.7 lineage in Latin America. On Decem-
ber 30, 2020, we received saliva samples from 2 pa-
tients for genomic sequencing as part of research 
surveillance activities. Patient 1 was a woman 20–
30 years of age residing in São Paulo, Brazil, who 
reported no travel outside of Brazil. Her symptoms 
began on December 21, and testing was conducted 
the next day. Patient 2 was a man 30–40 years of 
age who was tested in São Paulo on December 22 
after having traveled from London on December 
19. Ethics approval for this study was confirmed 
by the national ethics review board (Comissão Na-
cional de Ética em Pesquisa, protocol no. CAAE 
30127020.0.0000.0068). 

PCR testing (TaqPath COVID-19 PCR; Thermo-
Fisher Scientific, https://www.thermofisher.com) 
performed as previously described (1) indicated that 
patient 1 was positive for the open reading frame 1ab 
(cycle threshold [Ct] 25.8) and nucleoprotein (Ct 24.5) 
gene targets and patient 2 was positive for open read-
ing frame 1ab (Ct 28.1) and nucleoprotein (Ct 27.29), 
but both were negative for the spike gene target. The 
2 spike-gene dropout samples were identified among 
400 samples collected during November 4–December 
25, 2020. 

For each sample, we conducted nanopore sequenc-
ing in duplicate by using the ARTIC protocol (https://
www.protocols.io/view/ncov-2019-sequencing-pro-
tocol-bbmuik6w). Concentrations of double-stranded 
DNA for the library-negative controls were below 
detection levels, indicating no contamination. We con-
ducted whole-genome sequencing of SARS-CoV-2 by 
using the MinION platform (Oxford Nanopore Tech-
nologies, https://nanoporetech.com). By December 
31, sequencing statistics revealed 56,565 mapped reads 
for patient 1 and 51,761 for patient 2. Consequently, 
28,023 bases for patient 1 and 26,339 for patient 2 were 
covered at >25× depth. Consensus sequences covered 
92.4% of the Wuhan Hu-1 reference genome (GenBank 
accession no. MN908947.3) for patient 1 and 87.1% for 
patient 2. For the 2 newly generated genome sequenc-
es, we identified the B.1.1.7 lineage (assignment prob-
ability = 1.0) by using the pangolin COVID-19 Lineage 
Assigner version 2.1.6 (2) (https://pangolin.cog-uk.
io). The 2 genomes were made publicly available on 
GISAID (http://www.gisaid.org) on December 31, 
2020 (identification nos. EPI_ISL_754236 for patient 1 
and EPI_ISL_754237 for patient 2).

We next estimated a rapid maximum-likelihood 
phylogenetic tree (3,4) for a multiple sequence align-
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In December 2020, research surveillance detected the 
B.1.1.7 lineage of severe acute respiratory syndrome 
coronavirus 2 in São Paulo, Brazil. Rapid genomic se-
quencing and phylogenetic analysis revealed 2 distinct 
introductions of the lineage. One patient reported no in-
ternational travel. There may be more infections with this 
lineage in Brazil than reported. 

1These first authors contributed equally to this article.
2These senior authors contributed equally to this article.
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ment (5) with the new sequences and 127 publicly 
available B.1.1.7 genomes from around the world 
available on GISAID (6) as of December 31, 2020 
(https://github.com/CADDE-CENTRE/VOC-
Lineage-Brazil). The virus genome recovered from 
patient 1 grouped within a well-supported cluster 
(bootstrap 85%) of 10 sequences (60% from the Unit-
ed Kingdom) (Figure). This finding is consistent with 
the travel history of an asymptomatic family member 
who was positive for SARS-CoV-2 (according to a rap-
id test performed on December 23, 2020), who arrived 
in São Paulo on December 17 after traveling from Ita-
ly to the United Kingdom and, after a short stay, from 
London to São Paulo, and who was in close contact 
with patient 1. The sequence from patient 2 clustered 
with good statistical support (bootstrap 79.4%) with 
a sequence collected in the United Kingdom on No-
vember 27. Patient 2 had traveled from London to São 

Paulo on December 19 and was symptomatic when 
saliva was collected on December 22. Phylogenetic 
analysis suggests that this infection represents a sec-
ond, independent introduction of the B.1.1.7 lineage 
from the United Kingdom to Brazil; patient 2 was not 
epidemiologically linked to patient 1.

Because information about this lineage from lo-
cations outside the United Kingdom is limited, our 
interpretations based on phylogenetic data might be 
biased by the different numbers of available genome 
sequences shared around the globe. Moreover, the 
samples that we analyzed were selected from only 
2 cases confirmed by reverse transcription PCR in 
São Paulo; thus, our genomes were obtained from 
a small fraction of targeted spike-gene failure, and 
frequency of detection in our nonrandom sample 
does not represent prevalence of this lineage at the 
population level.

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 27, No. 3, March 2021 971
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Figure. Phylogenetic context of 
novel severe acute respiratory 
syndrome coronavirus 2 B.1.1.7 
genomes isolated from 2 patients 
in Brazil (labeled on figure), 
December 2020. Downsampling 
for the phylogenetic analysis 
of the B.1.1.7 SARS-CoV-2 
variant (n = 4,693, December 
31, 2020) was performed by 
selecting 1 sequence per 
country per day. As outgroups, 
we included 2 B.1.1 sequences 
from the United Kingdom 
that were closely related to 
the lineage of interest and 
sequence WH04 from Wuhan, 
China (GISAID identification no. 
EPI_ISL_406801; http://www.
gisaid.org). Details on multiple 
alignment and phylogenetic tree 
reconstruction are described 
elsewhere (4). Tree file, aligned 
sequences, and GISAID 
acknowledgment tables are 
available at https://github.com/
CADDE-CENTRE/VOC-Lineage-
Brazil. Scale bar indicates 
nucleotide substitutions per site. 
VOC, variant of concern.
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Despite temporary suspension of all flights to or 
from Brazil from or through the United Kingdom as 
of December 25, 2020 (http://www.gov.uk/foreign-
travel-advice/brazil), it is likely that the number of 
SARS-CoV-2 lineage B.1.1.7 infections in Brazil is 
higher than that reported. Increasing genomic sur-
veillance of B.1.1.7 and other variants of concern that 
carry mutations of potential biological significance 
(e.g., E484K in the spike protein; C.M. Voloch, un-
pub data, https://www.medrxiv.org/content/10.1
101/2020.12.23.20248598v1) is imperative for moni-
toring vaccination effectiveness and contextualizing 
the epidemiology and evolution of SARS-CoV-2 in 
Latin America.
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In Algeria, interpreting tuberculosis (TB) incidence, 
estimated at 53–88 cases/100,000 population in 

2017 (1), is limited by the fact that the diagnosis relies 
on microscopic examination of clinical samples. Iso-
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We analyzed 98 Mycobacterium tuberculosis complex 
isolates collected in 2 regions of Algeria in 2015–2018 
from 93 cases of pulmonary tuberculosis. We identified 
93/98 isolates as M. tuberculosis lineage 4 and 1 isolate 
as M. tuberculosis lineage 2 (Beijing). We confirmed 4 
isolates as M. bovis by whole-genome sequencing.
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Genomics and epidemiology of the P.1 SARS-CoV-2
lineage in Manaus, Brazil
Nuno R. Faria1,2,3,4*†, Thomas A. Mellan1,2†, Charles Whittaker1,2†, Ingra M. Claro3,5†,
Darlan da S. Candido3,4†, Swapnil Mishra1,2†, Myuki A. E. Crispim6,7, Flavia C. S. Sales3,5,
Iwona Hawryluk1,2, John T. McCrone8, Ruben J. G. Hulswit9, Lucas A. M. Franco3,5,
Mariana S. Ramundo3,5, Jaqueline G. de Jesus3,5, Pamela S. Andrade10, Thais M. Coletti3,5,
Giulia M. Ferreira11, Camila A. M. Silva3,5, Erika R. Manuli3,5, Rafael H. M. Pereira12, Pedro S. Peixoto13,
Moritz U. G. Kraemer4, Nelson Gaburo Jr.14, Cecilia da C. Camilo14, Henrique Hoeltgebaum15,
William M. Souza16, Esmenia C. Rocha3,5, Leandro M. de Souza3,5, Mariana C. de Pinho3,5,
Leonardo J. T. Araujo17, Frederico S. V. Malta18, Aline B. de Lima18, Joice do P. Silva18,
Danielle A. G. Zauli18, Alessandro C. de S. Ferreira18, Ricardo P. Schnekenberg19, Daniel J. Laydon1,2,
Patrick G. T. Walker1,2, Hannah M. Schlüter15, Ana L. P. dos Santos20, Maria S. Vidal20,
Valentina S. Del Caro20, Rosinaldo M. F. Filho20, Helem M. dos Santos20, Renato S. Aguiar21,
José L. Proença-Modena22, Bruce Nelson23, James A. Hay24,25, Mélodie Monod15, Xenia Miscouridou15,
Helen Coupland1,2, Raphael Sonabend1,2, Michaela Vollmer1,2, Axel Gandy15, Carlos A. Prete Jr.26,
Vitor H. Nascimento26, Marc A. Suchard27, Thomas A. Bowden9, Sergei L. K. Pond28, Chieh-Hsi Wu29,
Oliver Ratmann15, Neil M. Ferguson1,2, Christopher Dye4, Nick J. Loman30, Philippe Lemey31,
Andrew Rambaut8, Nelson A. Fraiji6,32, Maria do P. S. S. Carvalho6,33, Oliver G. Pybus4,34‡,
Seth Flaxman15‡, Samir Bhatt1,2,35*‡, Ester C. Sabino3,5*‡

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil,
resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled
in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a
novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the
spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2
(angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence
occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using
a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1
may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of
the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global
genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune
evasion, is critical to accelerate pandemic responsiveness.

B
razil has experienced high mortality
during the COVID-19 pandemic, record-
ing >300,000 deaths and >13 million
reported cases, as of March 2021. Severe
acute respiratory syndrome coronavirus

2 (SARS-CoV-2) infection and disease burden
have been highly variable across the country,
with the state of Amazonas in north Brazil
being the worst-affected region (1). Serological

surveillance of blood donors in Manaus, the
capital city of Amazonas and the largest city
in the Amazon region, has suggested >67%
cumulative attack rates by October 2020 (2).
Similar but slightly lower seroprevalences have
also been reported for cities in neighboring
regions (3, 4). However, the level of previous
infection in Manaus was clearly not sufficient
to prevent a rapid resurgence in SARS-CoV-2

transmission and mortality there during late
2020 and early 2021 (5), which has placed sub-
stantial pressure on the city’s health care system.
Here, we show that the second wave of in-

fection in Manaus was associated with the
emergence and rapid spread of a new SARS-
CoV-2 lineage of concern, named lineage P.1.
The lineage carries a distinctive constellation
of mutations (table S1), including several that
have been previously determined to be of vi-
rological importance (6–10) and that are lo-
cated in the spike protein receptor binding
domain (RBD), the region of the virus involved
in recognition of the angiotensin-converting
enzyme-2 (ACE2) cell surface receptor (11). Using
genomic data, structure-basedmapping of mu-
tations of interest onto the spike protein, and
dynamical epidemiology modeling of genomic
and mortality data, we investigated the emer-
gence of the P.1 lineage and explored epi-
demiological explanations for the resurgence
of COVID-19 in Manaus.

Identification and nomenclature of the P.1
lineage in Manaus

In late 2020, two SARS-CoV-2 lineages of con-
cern were discovered through genomic sur-
veillance, both characterized by sets of notable
mutations: lineage B.1.351, first reported in
South Africa (12), and lineage B.1.1.7, detected
in the UK (13). Both variants have transmitted
rapidly in the countries where they were dis-
covered and spread to other regions (14, 15).
Analyses indicate that B.1.1.7 has higher
transmissibility and causes more severe illness
as compared with those of previously circu-
lating lineages in the UK (1, 16, 17).
After a rapid increase in hospitalizations

in Manaus caused by severe acute respiratory
infection (SARI) in December 2020 (Fig. 1A),
we focused ongoing SARS-CoV-2 genomic
surveillance (2, 18–22) on recently collected
samples from the city (supplementary mate-
rials, materials and methods, and table S2).
Before this, only seven SARS-CoV-2 genome
sequences fromAmazonas were publicly avail-
able (SARS-CoV-2 was first detected in Manaus
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on 13March2020) (19, 23).We sequenced SARS-
CoV-2 genomes from 184 samples frompatients
seeking COVID-19 testing in two diagnostic
laboratories inManaus betweenNovember and
December 2020, using the ARTIC V3 multi-
plexed amplicon scheme (24) and theMinION
sequencing platform. Because partial genome
sequences can provide useful epidemiological
information, particularly regarding virus ge-
netic diversity and lineage composition (25),
we harnessed information from partial (n =
41 viral sequences, 25 to 75% genome coverage),
as well as near-complete (n= 95 viral sequences,
75 to 95%) and complete (n=48 viral sequences,
≥95%) sequences from Manaus (figs. S1 to S4),
together with other available and published ge-
nomes fromBrazil for context. Viral lineages were
classified by using the Pangolin (26) software tool
(http://pangolin.cog-uk.io), nextclade (https://clades.
nextstrain.org), and standard phylogenetic analy-
sis using complete reference genomes.
Our early data indicated the presence of a

novel SARS-CoV-2 lineage in Manaus that
contained 17 amino acid changes (including
10 in the spike protein), three deletions, four
synonymous mutations, and a four–base-pair
nucleotide insertion compared with the most
closely related available sequence (GISAID ID:

EPI_ISL_722052) (Fig. 1B; lineage-definingmu-
tations can be found in table S1) (27). This
lineage was given a new designation, P.1, on
the basis that (i) it is phylogenetically and
genetically distinct from ancestral viruses,
(ii) associated with rapid spread in a new area,
and (iii) carries a constellation of mutations
that may have phenotypic relevance (26). Phy-
logenetic analysis indicated that P.1—and an-
other lineage, P.2 (19)—were descendants of
lineage B.1.1.28 that was first detected in Brazil
in early March 2020 (Fig. 1B). Our preliminary
resultswere sharedwith local teams on 10 January
2021 andpublished online on 12 January 2021 (27).
Concurrently, cases of SARS-CoV-2 P.1 infec-
tion were reported in Japan in travelers from
Amazonas (28). As of 24 February 2021, P.1
had been confirmed in six Brazilian states,
which in total received >92,000 air passengers
fromManaus in November 2020 (Fig. 1C). Ge-
nomic surveillance first detected lineage P.1
on 6 December 2020 (Fig. 1A), after which
the frequency of P.1 relative to other lineages
increased rapidly in the tested samples from
Manaus (Fig. 1D; lineage frequency informa-
tion can be found in fig. S5). Retrospective ge-
nome sequencing might be able to recover
earlier P.1 genomes. Between 2 November

2020 and 9 January 2021, we observed 7137
SARI cases and 3144 SARI deaths in Manaus
(Fig. 1A). We generated a total of 182 SARS-
CoV-2 sequences fromManaus during this pe-
riod. This corresponds to one genome for each
39 SARI cases in Manaus, and this ratio is
>100-fold higher as compared with the aver-
age number of shared genomes per reported
case during the same period in Brazil.

Dating the emergence of the P.1 lineage

We used molecular-clock phylogenetics to un-
derstand the emergence and evolution of
lineage P.1 (25). We first regressed root-to-tip
genetic distances against sequence sampling
dates (29) for the P.1, P.2, and B.1.1.28 lineages
separately (figs. S6 to S8). This exploratory
analysis revealed similar evolutionary rates
within each lineage but greater root-to-tip dis-
tances for P.1 compared with B.1.1.28 (fig. S8),
suggesting that the emergence of P.1 was pre-
ceded by a period of fastermolecular evolution.
The B.1.1.7 lineage exhibits similar evolution-
ary characteristics (13), which was hypothesized
to have occurred in a chronically infected or
immunocompromised patient (30, 31).
To date the emergence of P.1, while ac-

counting for a faster evolutionary rate along

Faria et al., Science 372, 815–821 (2021) 21 May 2021 2 of 7

Fig. 1. SARS-CoV-2 epide-
miological, diagnostic,
genomic, and mobility
data from Manaus.
(A) Dark solid line shows
the 7-day rolling average of
the COVID-19 confirmed
and suspected daily time
series of hospitalizations in
Manaus. Admissions in
Manaus are from Fundação
de Vigilância em Saúde
do Amazonas (66). Green
dots indicate daily severe
acute respiratory mortality
records from the SIVEP-
Gripe (Sistema de Informação
de Vigilância Epidemiológica
da Gripe) database (67). Red
dots indicate excess burial
records based on data from
Manaus Mayor’s office for
comparison (supplementary
materials, materials and
methods). The arrow indicates
6 December 2020, the date of
the first P.1 case identified in
Manaus by our study. (B) Maximum likelihood tree (n = 962 viral genomes) with
B.1.1.28, P.1, and P.2 sequences, with collapsed views of P.1 and P.2 clusters and
highlighting other sequences from Amazonas state, Brazil. Ancestral branches leading
to P.1 and P.2 are shown as dashed lines. A more detailed phylogeny is available
in fig. S3. Scale bar is shown in units of nucleotide substitutions per site (s/s).
(C) Number of air travel passengers from Manaus to all states in Brazil was obtained

from National Civil Aviation Agency of Brazil (www.gov.br/anac). The ISO 3166-2:BR
codes of the states with genomic reports of P.1 [GISAID (68), as of 24 February 2021],
are shown in bold. An updated list of GISAID genomes and reports of P.1 worldwide is
available at https://cov-lineages.org/global_report_P.1.html. (D) Number of genome
sequences from Manaus belonging to lineages of interest (supplementary materials,
materials and methods). Spike mutations of interest are denoted.
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its ancestral branch, we used a local molecular
clockmodel (32) with a flexible nonparametric
demographic tree prior (33). Using this ap-
proach, we estimated the date of the com-
mon ancestor of the P.1 lineage to be around
15 November 2020 [median, 95%Bayesian cred-
ible interval (BCI), 6 October to 24 November
2020; mean, 9 November 2020] (fig. S9). This
is only 3 to 4 weeks before the resurgence in
SARS-CoV-2 confirmed cases inManaus (Figs. 1A
and 2 and fig. S9). The P.1 sequences formed a
single well-supported group (posterior proba-
bility = 1.00) that clustered most closely with
B.1.1.28 sequences fromManaus (Fig. 2, “AM”),
suggesting that P.1 emerged there. The earliest
P.1 samples were detected inManaus (34). The
first known travel-related cases were detected
in Japan (28) and São Paulo (table S3) and were
both linked to travel from Manaus. Further-
more, the local clock model statistically con-
firmed a higher evolutionary rate for the branch
immediately ancestral to lineage P.1 compared
with lineage B.1.1.28 as a whole [Bayes factor
(BF) = 6.04].
Our data indicate multiple introductions

of the P.1 lineage from Amazonas to Brazil’s
southeastern states (Fig. 2). We also detected
seven small well-supported clusters of P.2 se-
quences from Amazonas (two to six sequences,
posterior probability = 1.00). Virus exchange
between Amazonas state and the urban me-
tropolises in southeast Brazil largely follows

patterns of national air travel mobility (Fig.
1D and fig. S10).

Infection with P.1 and sample viral loads

We analyzed all quantitative reverse transcrip-
tion polymerase chain reaction (RT-PCR) SARS-
CoV-2–positive results from a laboratory that
has provided testing inManaus sinceMay 2020
(Fig. 1A and data file S1), with the aim of ex-
ploring trends in sample quantitative RT-PCR
cycle threshold (Ct) values, which are inversely
related to sample virus loads and transmis-
sibility (35). By focusing on data from a single
laboratory, we reduced instrument and pro-
cess variation that can affect Ct measurements.
We analyzed a set of quantitative RT-PCR

positive cases for which virus genome sequenc-
ing and lineage classification had been under-
taken (n = 147 samples). Using a logistic function
(Fig. 3A), we found that the fraction of samples
classified as P.1 increased from 0 to 87% in
around 7 weeks (table S4), quantifying the
trend shown in Fig. 1C. We found a small but
statistically significant association between
P.1 infection and lower Ct values, for both the
E gene (lognormal regression, P = 0.029, n =
128 samples, 65 of which were P.1) and N gene
(P = 0.01, n = 129 samples, 65 of which were
P.1), with Ct values lowered by 1.43 [0.17 to
2.60, 95% confidence interval (CI)] and 1.91
(0.49 to 3.23) cycles in the P.1 lineage on av-
erage, respectively (Fig. 3B).

Using a larger sample of 942 Ct values (in-
cluding an additional 795 samples for which
no lineage information was available), we in-
vestigated Ct values across three time periods
characterized by increasing P.1 relative abun-
dance. Average Ct values for both the E and
N genes declined through time, as both case
numbers and the fraction of P.1 infections
increased, with Ct values significantly lower
in period 3 as compared with period 1 (E gene,
P = 0.12 and P < 0.001 for comparison of time
periods 2 and 3 to period 1; N gene, P = 0.14
and P < 0.001, respectively) (Fig. 3C). Analy-
ses of Ct values for samples from a different
laboratory, also based in Manaus, showed sim-
ilarly significant declines between the first
and third time periods defined here (P <
0.0001 for both E and N genes) (fig. S11 and
data file S3).
However, population-level Ct distributions

are sensitive to changes in the average time
since infection when samples are taken, so
that median Ct values can decrease during
epidemic growth periods and increase dur-
ing epidemic decline (36). To account for this
effect, we assessed the association between P.1
infection and Ct levels while controlling for
the delay between symptom onset and sample
collection. Statistical significance was lost for
both data sets (E gene, P = 0.15, n = 42 samples,
22 of which were P.1; N gene, P = 0.12, n = 42
samples, 22 of which were P.1). Owing to this

Faria et al., Science 372, 815–821 (2021) 21 May 2021 3 of 7

Mar-20 May-20 Aug-20 Oct-20 Dec-20

P.2

Amazonas
Other location

P.1

Fig. 2. Visualization of the time-calibrated maximum clade credibility tree reconstruction for B.1.1.28, P.1, and P.2 lineages in Brazil. Terminal branches and
tips of Amazonas state are colored in brown, and those from other locations are colored in green (n = 962 viral genomes). Nodes with posterior probabilities of
<0.5 have been collapsed into polytomies, and their range of divergence dates are illustrated as shaded expanses.
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confounding factor, we cannot distinguish
whether P.1 infection is associated with in-
creased viral loads (37) or a longer duration
of infection (38).

Mathematical modeling of lineage P.1
epidemiological characteristics

We next explored epidemiological scenarios
that might explain the recent resurgence of
transmission in Manaus (39). To do this, we
extended a semimechanistic Bayesian model
of SARS-CoV-2 transmissibility and mortal-
ity (40–42) to include two categories of virus
(“P.1” and “non-P.1”) and to account for in-
fection severity, transmissibility, and pro-
pensity for reinfection to vary between the
categories. It also integrates information on
the timing of P.1 emergence in Manaus using
our molecular clock results (Fig. 2). The model
explicitly incorporates waning of immune pro-
tection after infection, parameterized on the
basis of dynamics observed in recent studies
(16, 43), to explore the competing hypothesis
that waning of prior immunity might explain
the observed resurgence (42). We used the
model to evaluate the statistical support that
P.1 possesses altered epidemiological charac-
teristics compared with local non-P.1 lineages.
Epidemiological model details and sensitiv-
ity analyses (tables S5 to S10) can be found
in the supplementary materials. The model
is fitted to both COVID-19mortality data [with
a correction for systematic reporting delays

(44, 45)] and the estimated increase through
time in the proportion of infections due to
P.1 derived from genomic data (table S4). We
assumed that within-category immunity wanes
over time (50% wane within a year, although
sensitivity analyses varying the rapidity of
waning are presented in table S7) and that
cross-immunity (the degree to which previous
infectionwith a virus belonging to one category
protects against subsequent infection with the
other) is symmetric between categories.
Our results suggest that the epidemiological

characteristics of P.1 are different from those of
previously circulating local SARS-CoV-2 lineages,
but the results also highlight substantial un-
certainty in the extent and nature of this dif-
ference. Plausible values of transmissibility
and cross-immunity exist in a limited area
but are correlated (Fig. 4A, with the extent of
immune evasion defined as 1 minus the in-
ferred cross-immunity). This is expectedbecause
in themodel, a higher degree of cross-immunity
means that greater transmissibility of P.1 is
required to generate a second epidemic. Within
this plausible region of parameter space, P.1 can
be between 1.7 and 2.4 times more transmis-
sible (50% BCI, 2.0 median, with a 99% poste-
rior probability of being >1) than local non-
P1 lineages and can evade 21 to 46% (50% BCI,
32% median, with a 95% posterior probability
of being able to evade at least 10%) of pro-
tective immunity elicited by previous infection
with non-P.1 lineages, corresponding to 54 to

79% (50% BCI, 68% median) cross-immunity
(Fig. 4A). The joint-posterior distribution is
inconsistent with a combination of highly in-
creased transmissibility and low cross-immunity
and, conversely, also with near-complete cross-
immunity but only a small increase in transmis-
sibility (Fig. 4A). Moreover, our results further
show that natural immunity waning alone is
unlikely to explain the observed dynamics in
Manaus, with support for P.1 possessing altered
epidemiological characteristics robust to a range
of values assumed for the date of the lineage’s
emergence and the rate of natural immunity
waning (tables S5 and S7). We caution that
these results are not generalizable to other set-
tings; more detailed and direct data are needed
to identify the exact degree and nature of the
changes to the epidemiological characteris-
tics of P.1 compared with previously circulat-
ing lineages.
We estimate that infections are 1.2 to 1.9

times more likely (50% BCI, median 1.5, 90%
posterior probability of being >1) to result in
mortality in the period after the emergence of
P.1, compared with before, although posterior
estimates of this relative risk are also corre-
lated with inferred cross-immunity (Fig. 4B).
More broadly, the recent epidemic in Manaus
has strained the city’s health care system, lead-
ing to inadequate access to medical care (46).
We therefore cannot determine whether the
estimated increase in relative mortality risk is
due to P.1 infection, stresses on the Manaus
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Fig. 3. Temporal variation in the
proportion of sequenced gen-
omes belonging to P.1, and
trends in quantitative RT-PCR
Ct values for COVID-19 infec-
tions in Manaus. (A) Logistic
function fitting to the proportion
of genomes in sequenced infec-
tions that have been classified
as P.1 (black circles, size indicating
number of infections sequenced),
divided up into time periods when
the predicted proportion of infec-
tions that are due to P.1 is <1/3
(light brown), between 1/3 and 2/3
(green), and greater than 2/3
(gray). For the model fit, the darker
ribbon indicates the 50% credible
interval, and the lighter ribbon
indicates the 95% credible interval.
For the data points, the gray
thick line is the 50% exact bino-
mial CI, and the thinner line
is the 95% exact binomial CI.
(B) Ct values for genes E and N in
a sample of symptomatic cases
presenting for testing at a health care facility in Manaus (laboratory A), stratified according to the period defined in (A) in which the oropharyngeal and nasal swab
collections occurred. (C) Ct values for genes E and N in a subsample of 184 infections included in (B) that had their genomes sequenced (dataset A).
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health care system, or both. Detailed clinical
investigations of P.1 infections are needed.
Our model makes the assumption of a homo-
geneously mixed population and therefore
ignores heterogeneities in contact patterns (dif-
ferences in private versus public hospitals are
provided in fig. S13). This is an important area
for future research. The model fits observed
time series data from Manaus on COVID-19
mortality (Fig. 4C) and the relative frequency
of P.1 infections (Fig. 4D) and also captures
previously estimated trends in cumulative sero-
positivity in the city (Fig. 4E). We estimate the
reproduction number (Rt) on 7 February 2021
to be 0.1 (median, 50% BCI, 0.04 to 0.2) for
non-P.1 and 0.5 (median, 50% BCI, 0.4 to 0.6)
for P.1 (Fig. 4F).

Characterization and adaptation of a constellation
of spike protein mutations

Lineage P.1 contains 10 lineage-defining amino
acidmutations in the virus spike protein (L18F,

T20N, P26S, D138Y, R190S, K417T, E484K,
N501Y, H655Y, and T1027I) compared with
its immediate ancestor (B.1.1.28). In addition
to the possible increase in the rate of molec-
ular evolution during the emergence of P.1, we
found by use of molecular selection analyses
(47) evidence that eight of these 10 mutations
are under diversifying positive selection (table
S1 and fig. S14). (Single-letter abbreviations for
the amino acid residues are as follows: A, Ala;
C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His;
I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro;
Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp;
and Y, Tyr. In the mutants, other amino acids
were substituted at certain locations; for ex-
ample, K417T indicates that lysine at position
417 was replaced by threonine.)
Three key mutations present in P.1—N501Y,

K417T, and E484K—are in the spike protein
RBD. The former two interact with human
ACE2 (hACE2) (11), whereas E484K is located
in a loop region outside the direct hACE2 in-

terface (fig. S14). The same three residues are
mutated with the B.1.351 variant of concern,
andN501Y is also present in the B.1.1.7 lineage.
The independent emergence of the same con-
stellation of mutations in geographically dis-
tinct lineages indicates a process of convergent
molecular adaptation. Similar to SARS-CoV-1
(48–50), mutations in the RBD may increase
affinity of the virus for host ACE2 and conse-
quently influence host cell entry and virus trans-
mission. Recentmolecular analysis of B.1.351 (51)
indicates that the three P.1 RBDmutations may
similarly enhance hACE2 engagement, provid-
ing a plausible hypothesis for an increase in
transmissibility of the P.1 lineage. Moreover,
E484K is associated with reduced antibody
neutralization (6, 9, 52, 53). RBD-presented epi-
topes account for ~90% of the neutralizing ac-
tivity of sera from individuals previously infected
with SARS-CoV-2 (54); thus, tighter binding of
P.1 viruses to hACE2 may further reduce the
effectiveness of neutralizing antibodies.
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Fig. 4. Estimates of the epidemiological characteristics of P.1 inferred from a
multicategory Bayesian transmission model fitted to data from Manaus,
Brazil. (A) Joint posterior distribution of the cross-immunity and transmissibility
increase inferred through fitting the model to mortality and genomic data. Gray
contours indicate posterior density intervals ranging from the 95 and 50% isoclines.
Marginal posterior distributions for each parameter shown along each axis. (B) As
for (A), but showing the joint-posterior distribution of cross-immunity and the
inferred relative risk of mortality in the period after emergence of P.1 compared with
the period prior. (C) Daily incidence of COVID-19 mortality. Points indicate severe
acute respiratory mortality records from the SIVEP-Gripe database (67, 69). Brown
and green ribbons indicate model fit for COVID-19 mortality incidence, disaggregated

by mortality attributable to non-P.1 lineages (brown) and the P.1 lineage (green).
(D) Estimate of the proportion of P.1 infections through time in Manaus. Black data
points with error bars are the empirical proportion observed in genomically
sequenced cases (Fig. 3A), and green ribbons (dark = 50% BCI, light = 95% BCI) are
the model fit to the data. (E) Estimated cumulative infection incidence for the
P.1 and non-P.1 categories. Black data points with error bars are reversion-corrected
estimates of seroprevalence from blood donors in Manaus (2). Colored ribbons are
the model predictions of cumulative infection incidence for non-P.1 lineages
(brown) and P.1 lineages (green). These points are shown for reference only and
were not used to fit the model. (F) Bayesian posterior estimates of trends in
reproduction number Rt for the P.1 and non-P.1 categories.
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Conclusion

Weshow that P.1most likely emerged inManaus
inmid-November, where high attack rates have
been previously reported.High rates ofmutation
accumulation over short time periods have
been reported in chronically infected or im-
munocompromised patients (13). Given a
sustained generalized epidemic in Manaus,
we believe that this is a potential scenario
for P.1 emergence. Genomic surveillance and
early data sharing by teams worldwide have
led to the rapid detection and characteriza-
tion of SARS-CoV-2 and new variants of con-
cern (VOCs) (25), yet such surveillance is still
limited in many settings. The P.1 lineage is
spreading rapidly across Brazil (55), and this
lineage has now been detected in >36 coun-
tries (56). But existing virus genome sampling
strategies are often inadequate for determin-
ing the true extent of VOCs in Brazil, andmore
detailed data are needed to address the im-
pact of different epidemiological and evolution-
ary processes in their emergence. Sustainable
genomic surveillance efforts to track variant
frequency [for example, (57–59)] coupled with
analytical tools to quantify lineage dynamics
[for example, (60, 61)] and anonymized epide-
miological surveillance data (62, 63) could
enable enhanced real-time surveillance of
VOCs worldwide. Studies to evaluate real-
world vaccine efficacy in response to P.1 are
urgently needed. Neutralization titers repre-
sent only one component of the elicited re-
sponse to vaccines, and minimal reduction of
neutralization titers relative to earlier cir-
culating strains is not uncommon. Until an
equitable allocation and access to effective
vaccines is available to all, nonpharmaceut-
ical interventions should continue to play an
important role in reducing the emergence of
new variants.
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Chapter 5 
 
SARS-CoV-2 hospital-associated 

transmission dynamics in São Paulo, 

Brazil: a retrospective genomic 

surveillance study 

  

This chapter presents the first genomic epidemiology study assessing the within- and 

between- hospital SARS-CoV-2 transmission dynamics in Brazil. It was developed 

retrospectively with epidemiological and sequence data from the largest hospital complex 

in Latin America, the Hospital das Clínicas of the São Paulo University Medical School, in 

which an interesting set up was in place during the first wave of SARS-CoV-2 spread in 

Brazil. Only one medical institute of the complex was dedicated to treating COVID-19 

patients, while all other institutes were considered “COVID-free”.  This shows evidence for 

SARS-CoV-2 within-hospital transmission to be higher in non-COVID-19 hospitals. This 

work has recently been submitted for publication in The Lancet Infectious Diseases and it 

is presented here in full. 

 

“Be safe, be smart, be kind” 

Dr. Tedros Adhanom Ghebreyesus 
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Abstract 

Background: Brazil reported its first SARS-CoV-2 case on 26 February 2020 in an international 

traveler returning to São Paulo, Brazil. By 10 June 2020, 3,898 healthcare workers (HCW) and patients 

at the Hospital das Clínicas (HC) in São Paulo, the largest hospital complex in Latin America, had 

tested positive for SARS-CoV-2 RNA. We aimed to provide insight into the transmission of SARS-

CoV-2 in healthcare workers and patients, and within and between HC institutes during the early phase 

of the epidemic in Brazil. 

Methods: We analyzed epidemiological data from SARS-CoV-2 RT-PCR confirmed cases between 

13 March to 10 June 2020. A total of 340 SARS-CoV-2 genomes were generated from healthcare 

workers and patients from two HC institutes not receiving COVID-19 patients (institutes A and C) and 

one institute receiving exclusively COVID-19 patients (institute B). Within- and between-institute 

transmission clusters were identified and within-cluster transmission dynamics was assessed using 

logistic regression analysis and a suite of phylogenetic genetic analyses.  

Results: SARS-CoV-2 weekly incidence in healthcare workers was highest in institutes not receiving 

COVID-19 patients, and decreased by 75%, 54%, 48% for institutes C, A, B, respectively, after 

universal masking was adopted. We found a total of 86 hospital-acquired patient infections in HC 

during the study period, 81.4% (n=70) in institute C. Of these, 74.3% of these reported after mandatory 

universal masking. The average cluster size and cluster duration were larger in non-COVID institutes. 

Sequences from non-COVID institutes were more likely to cluster together than sequences from 

institute B (odds ratio, OR=4.17 and OR=3.48, for C and A institutes). The proportion of estimated 

viral importation events from outside the HC complex to the different HC institutes was highest for 

institute B (83.64%) compared to institute A (67.85%), and C (57.70%). The statistical support for 

virus migration from non-COVID institutes A and C to institute B was strong (Bayes factor = 113.7 

and 84.4, respectively).  

Interpretation: The hospital-associated SARS-CoV-2 transmission was higher in non-COVID-19 

healthcare institutes compared to a COVID-19 healthcare institute during the first epidemic wave in 
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São Paulo, with our data supporting virus infection non-COVID-19 institutes as a source of infection 

in a COVID-19 institute, suggesting that risk perception and compliance was lower in non-COVID 

institutes.  
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Research in Context  

On 5 October 2020, we searched PUBMED for studies including the following search terms: ("SARS-

CoV-2" OR "COVID-19" OR "coronavirus disease 2019") AND ("genom*" OR "sequenc*" OR 

"WGS") AND ("nosocomial transmission" OR "hospital outbreak" OR "hospital-acquired" OR 

"healthcare-associated" OR "health-care associated"). No search restrictions were applied. Our search 

retrieved 62 studies, out of which only 25 applied genomic epidemiology to uncover hospital-

associated SARS-CoV-2 transmission, 23 original works, and 2 reviews. Most studies covered the 

early stages of the pandemic (14, 61%), focused in a single hospital (17, 74%), presented evidence for 

hospital-associated SARS-CoV-2 transmission (20, 87%), and focused on describing individual 

clusters rather than general transmission patterns (18, 78%, median sample size= 44, range 3–764). 

There is a general consensus over the importance of universal masking and genomic epidemiology for 

hospital-associated outbreak control. Studies looking at general transmission patterns show evidence 

for most cases being linked to super spreading events and highlight the role of healthcare workers in 

hospital-associated transmission, although patients might be more likely infected by other patients. No 

studies used genetic data to investigate transmission patterns and dynamics between and within non-

COVID and COVID hospitals. 

 

Added-value of this study 

We aimed to understand the transmission patterns within and between non-COVID-19 and COVID-19 

only institutes that are part of the largest hospital complex in Latin America. We show that hospital-

associated SARS-CoV-2 transmission was higher in non-COVID institutes, driven by larger clusters 

and of longer duration, even after mandatory universal masking. We also uncover between-hospital 

transmission events and temporal patterns of hospital-associated transmission. 

Implications of all the available evidence 
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While separating COVID-19 from non- COVID-19 patients in different wards/hospitals and mandatory 

universal masking reduce HCW cases and prevent larger within-hospital outbreaks, adequate HCW 

risk perception and adherence are extremely important for the effectiveness of these policies. In times 

of COVID-19 fatigue, hospitals should work closely with HCW to increase awareness and compliance 

within and outside of the hospital environment.    
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Introduction 

Brazil reported the first confirmed case of SARS-CoV-2 on 26 February 2020 (1), and has since 

experienced two large continuous COVID-19 waves. As of 13 January 2021, 22,724,232 SARS-CoV-2 

cases and 620,641 deaths attributed to SARS-CoV-2 have been reported in Brazil, the highest numbers 

in Latin America (2). During this period, the State of São Paulo reported 20% of all cases in Brazil 

(4,298,180), with 1,422,413 reported cases in the city of São Paulo alone.  

Studies conducted during the early stages of the COVID-19 pandemic testing for viral RNA or 

antibodies have reported variable prevalence of SARS-CoV-2 (1.1% to 9.8%) amongst HCW across 

different countries (3–10). In a university hospital in the United Kingdom, HCW infection rates were 

higher amongst HCW from COVID-19-dedicated units (22.6%) compared to those working in non–

COVID-19 units (8.6%) or working in multiple wards (11.2%) (11). A retrospective analysis of 435 

cases amongst inpatients in a hospital in London found that 66 (15%) were definitely or probably 

acquired at the hospital (12). 

Asymptomatic and pre-symptomatic HCW can become inadvertent vehicles of transmission to 

other HCW and non-COVID patients (13). However, identifying SARS-CoV-2 transmission clusters 

remains a challenging task in part because of unidentified asymptomatic cases that may be missed 

during contact tracing, and in part, because consensus virus genome sequences from a transmission 

cluster are often identical due to the virus’ relatively slow evolutionary rate. These limitations can 

partly be overcome when epidemiological and genomic data are analyzed jointly (14–17). To date, 

most studies using genomic epidemiological approaches to identify SARS-CoV-2 within-hospital 

transmission have focused on the identification and description of specific transmission clusters, rather 

than understanding dynamics of epidemiologically-linked clusters of transmission (12,18–23). 

Moreover, analyses comparing the dynamics between and within different hospital units in large 

hospital complexes remain scarce, particularly in Latin America where the SARS-CoV-2 pandemic hit 

hardest. 
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Understanding SARS-CoV-2 hospital-associated transmission in the early stages of an 

epidemic is of great importance to improve healthcare response and preparedness for future outbreaks. 

Here we investigate the patterns of SARS-CoV-2 early transmission in HC São Paulo, the largest 

hospital complex in Latin America, where all COVID-19 patients were hospitalized in a dedicated 

building, by combining insights from epidemiological data, genome sequencing, and phylogenetic 

analysis.  
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Methods 

Epidemiological context  

We performed a retrospective study at a large reference teaching tertiary healthcare complex 

specialized in high complexity cases called Hospital das Clínicas (HC), affiliated with the University 

of São Paulo, Brazil. The HC complex has approximately 2,200-beds and 22,000 healthcare workers 

directly involved in patient care offered in nine specialized institutes. From 30 April 2020 to 02 

September 2020, one institute was designated as an exclusive COVID-19 hospital (from here on 

referred to as Institute B). The other institutes were designated for non-COVID-19 patients. HCW 

were not allowed to move between buildings. Patients with suspected SARS-CoV-2 infection from 

non-COVID-19 institutes were maintained in individual rooms until RT-PCR confirmation when they 

would be transferred to the COVID-19 only institute. Universal masking, here defined as mandatory 

masking to all hospital staff, was adopted at different epidemiological weeks across the institutes: 

week 15 (institute A), week 17 (institute C), and week 19 (COVID Institute B and other institutes). 

Detailed information on COVID measures taken across the 3 institutes can be seen in Appendix p 1-3. 

 

Study overview: clinical samples and metadata collection 

This study was approved by the national research ethics commission (Comissão Nacional de Ética em 

Pesquisa) under protocol number CAAE 30127020.0.0000.0068. Patient and HCW SARS-CoV-2 

testing were done at the Hospital Central Clinical Laboratory using real-time quantitative polymerase 

chain reaction (RT-qPCR) on naso-oropharyngeal swabs (Corman et al., 2020; Waggoner et al., 

2020). All individuals with RT-qPCR positive samples collected between 13 March to 10 June 2020 

were included in this study and results from subsequent tests after the first RT-qPCR positive result 

were excluded. Clinical and epidemiological data collection included age, sex, home address, 

occupation, unit of work within the hospital, date of onset of symptoms, symptoms, need for 

hospitalization, and clinical outcome. Geocoding of residential Zip codes of patients and staff was 

done by using Google Maps via the geocode function implemented in the R package ggmap. 
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Additional information such as the complete medical history of patients while in the hospital was 

retrieved only for clustered patients and health workers. 

Patient classification 

To classify patients according to the time in days between symptom onset and hospitalization, we 

adapted the Public Health England (PHE) guidelines (24,25). The PHE classification system considers 

a 14-day period between a SARS-CoV-2 exposure and COVID-19 symptoms, with an average of five 

days. Patients were classified into one of four groups: Group 1 (community): symptom onset before 

hospital admission or up to 2 days after hospital admission; Group 2 (Indeterminate hospital-

associated): symptom onset between 3-7 days after hospital admission; Group 3 (Suspected hospital-

associated): symptom onset between 8-14 days after hospital admission; Group 4 (Hospital-

associated): symptom onset >14 days after hospital admission. 

Genome Sequencing 

Of a total of 3,898 positive individuals, 454 (12%) samples from Institutes A, B, and C were 

selected for virus genomic sequencing which was performed at the Institute of Tropical Medicine, 

University of São Paulo, Brazil. Information on the number of samples sequenced per institute can be 

seen in appendix p 13. Genome amplification was performed using the n-CoV-2019 Artic protocol 

(https://artic.network/ncov-2019) (see supplementary material) and libraries were sequenced using the 

Oxford Nanopore Technologies portable genome sequencer, MinION. A genome reference-based 

assembly pipeline was used for consensus sequence generation with a minimum coverage depth of 

20x. See appendix p 3-4. 
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Analysis

SARS-CoV-2 sequences from Brazil with collection date up to the 20th May 2020 (most 

recent date in our HCW dataset) (n=1860) were downloaded from GISAID (26–28) and appended to a 

previously described global dataset of 1,182 viral genomes. The resulting dataset was aligned to the 

reference NC_045512.2 using MAFFT v 7.450 (29) and manually edited using AliView. As 

previously described (30), we further filtered down our dataset by maintaining only sequences with at 

least 75% consensus sequence coverage. TempEst v.1.5.3 (31) analyses and visual inspection of the 

alignment in AliView were used to identify and remove sequences with unusual divergence. No 

recombination signal was found using RDP 4 (32). Three final datasets were generated: Dataset 1 

consisted of 2,550 sequences, including 340 sequences from this study; Dataset 2, sequences with 

>90% coverage 

(n=2259); and Dataset 3, a reduced version of Dataset 2, including all HCFMUSP sequences with 

coverage >90% (n=234) (see supplementary material). Pangolin version V3.1.11 (33) was used for 

lineage assignment. 

Maximum likelihood phylogenies was inferred using IQ-TREE v.2.0 (34) under the best 

substitution model as determined by ModelFinder (35) implemented in the IQ-TREE pipeline. 

Bayesian time-rooted phylogenies for Dataset 3 were estimated using BEAST v1.10.4 (36) running 

with BEAGLE (37) and a discrete phylogeographic approach was used to understand the temporal 

dynamic of hospital-associated SARS-CoV-2 transmission. Hospital-associated clusters were defined 

according to the content of HC sequences (sequences from this study) and according to the statistical 

support obtained from the phylogenetic analysis. Compartmentalization analysis was perfomed using 

Simmond’s Association Index implemented in the Hypothesis Testing Using Phylogenies (HYPHY) 

(38), and a binomial logistic regression analyses was performed to identify patient characteristics 

associated with clustering of genomic sequences. Results were reported as the odds ratio (OR) over 

the baseline variables and p values <0.05 were considered statistically significant. For the household 

geographical distances analysis, a Mann-Whitney U test was performed in R Studio 1.2.1335. See 

appendix p 4-9. 
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Results 

Epidemiological context 

From 25 February 2020 to 8 June 2020, the municipality of São Paulo, Brazil reported a total of 75,699 

COVID-19 cases (Figure 1a). The first SARS-CoV-2 positive cases from HC-FMUSP were reported 

on epidemiological week 11 (from 9 March 2020), with HCW cases across all nine different institutes. 

In the following week, the first COVID-19 patient from HC, a community-acquired case, was 

hospitalized. On 30 March 2020, Institute B was converted into a COVID-19-only institute, while the 

other institutes were required to transfer COVID-19 patients to Institute B (Figures 1a and 1b).  

A total of 12,134 SARS-CoV-2  tests were performed on samples from patients and symptomatic 

HCW working at the HC-FMUSP hospital complex, of which 3,933 (32%) were positive (appendix p 

10). 3,898 SARS-CoV-2 positive individuals were included in this study, 2,008 (51.5%) patients and 

1,890 (48.5%) HCW (Figures 1a). A flowchart with the complete study design can be seen in appendix 

p 10. Given that 91.8% (3,578) of cases from HC were reported by only three institutes - Institute B 

(2,159 cases, 55.4%), Institute C (716 cases, 18.4%), and Institute A (703 cases, 18%) - we explored 

the potential differences in the COVID-19 transmission dynamics between non-COVID-19 and 

COVID-19 institutes (Figure 1B and appendix p 11). A summary of epidemiological and 

sociodemographic characteristics from all cases in this study can be seen in appendix p 29.  
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Figure 1. Epidemiological context of HC SARS-CoV-2 hospital-associated transmission. (A) Time 
series of COVID-19 positive cases across all institutes from Hospital das Clínicas (HC-FMUSP) and 
cumulative COVID-19 cases for the municipality of São Paulo. Colors depict whether cases occurred 
in HCW (red) or patients (blue). The dotted line marks the date of adoption of universal masking. (B) 
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Proportion of cases from A, B, and C institutes stratified by HCW/patient. (C) Incidence of HCW 
COVID-19 cases from Institute A (red), Institute B (green), and Institute C (blue) per epidemiological 
week. The dotted line marks the epidemiological week of adoption of universal masking in each 
institute. Percentages represent the reduction in the incidence of HCW COVID-19 cases for each 
institute at week 23, having week 18 as a reference (the week before universal masking was 
implemented). Percentage colors follow the pattern for line colors and represent the different institutes. 
(D) Proportion of patients according to time between the onset of symptoms and hospitalization. 
Patients were discretized into four groups: group 1 (community-acquired), group 2 (indeterminate 
acquisition), group 3 (suspected hospital transmission), group 4 (hospital-acquired) (see methods).  
 

Epidemiological evidence for hospital-associated transmission 

 

Most COVID-19 cases in non-COVID-19 institutes occurred in HCW, 61.7% in Institute A and 70% 

in Institute C; in contrast to 32% in Institute B (Figure 1b). Incidence of HCW cases was also higher 

amongst non-COVID-19 institutes in most epidemiological weeks before the enforcement of universal 

masking, especially for Institute C, reaching a peak incidence of 3,033/100,000 HCW (Figure 1D). 

Incidence of HCW cases decreased by 70% in Institute A, 64% in Institute C, and 38% in Institute B, 

after 7, 5, and 3 weeks of the implementation of universal masking, respectively - note that universal 

masking was adopted at different epidemiological weeks: 15 (A), 17 (C) and 19 (B) (Figure 1C). 

 

We used the time gap between symptom onset and patient hospitalization as a proxy for SARS-CoV-2 

hospital transmission and categorized patients into four groups (see methods). A total of 167 patients 

(8.55 %, total of 1,952 patients) from the three institutes had symptom onset >2 days after 

hospitalization (groups 2-4) and were possibly linked to hospital-associated transmission (Figure 1d 

and S3a): 27 (16.2%) belonged to group 2 (indeterminate acquisition), 54 (32.3%) to group 3 

(suspected hospital transmission), and 86 (51.5%) to group 4 (hospital-acquired). The majority of 

group 4 COVID-19 cases occurred at Institute C, 70 (81.4%), while 15 (17.4%) occurred at Institute A, 

and one at Institute B (1.2%) (Figure 2a, appendix p 32). 52 (74.3%) group 4 cases from Institute C 

were reported after universal masking was already mandatory (Fig. 1D). The time between 
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hospitalization and symptom onset for group 4 patients ranged from 15 to 175 days (mean=42.5 days, 

median=27.5 days) (appendix p 12).  

 

Hospital-associated SARS-CoV-2 genetic diversity and clustering 

 

To further support the epidemiological evidence of hospital-associated transmission and characterize 

its dynamics, we randomly selected 454 SARS-CoV-2 positive samples (hospital workers and 

patients). From those, we obtained a total of 340 SARS-CoV-2 genomes with coverage >75%, 

approximately 10% of all reported cases (67 new GISAID submissions, appendix p 13 and 34-45). 

Most sequences from the three institutes belonged to lineage B.1.1.28, followed by lineages B.1.1.33, 

B.1 and B.1.1, the main lineages circulating in São Paulo at the time (appendix p 14).  

 

Using datasets B and C (>90% coverage sequences), we were able to identify 16 clusters potentially 

associated with hospital transmission in the three institutes, comprised by a total of 73 sequences 

(Figure 2 and appendix p 46). Cluster size ranged from 2-12 sequences from this study, with an 

average cluster size of 4.6 sequences (median=3.5) (Figures 3a and b, appendix p 47). Within-cluster 

diversity was on average 1.22 SNPs (median=1, range 0-6 SNPs) (Figure 3D). We have also found 

maximum within-cluster pairwise diversity to be correlated to cluster duration (days), R2=0.6, and 

Spearman's rho = 0.56 (Figure 2B). Most clusters, 12 (75%), were defined by one single mutation 

(appendix p 49). 

131

Chapter 5: Hospital-associated transmission



 

 

Figure 2. Hospital-associated SARS-CoV-2 transmission clusters. Time-stamped maximum clade 

credibility phylogeny inferred from dataset 3 (841 sequences), including 234 HC sequences (see 

methods). Regression of root-to-tip genetic divergence against sampling dates retrieved an R2 of 0.57 

(appendix p 15). Tips are colored according to hospital-associated transmission clusters and branches 

are colored according to inferred node location (Institutes A, B and C, São Paulo state, and Other). 
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Heatmaps depict the institute of collection for each HC sample and information on whether a sample 

belonged to an HCW or a patient. An expanded version of Figure 2 can be found in appendix 2. 

 

Most clusters, 13 (81.25%), were mostly composed (≥70%) by sequences from a single institute 

(Figure 3C). Most clustered sequences belonged to HCW, 50 (68.5%) (figure 3D). Half of the clusters 

contained only sequences from HCW, while no clusters consisted of sequences from patients only. We 

also observe that only 19.7% of the sequences from Institute B are clustered; this proportion was 

43.4% and 50% for Institute A and Institute C, respectively (Figure 4C). Moreover, despite presenting 

the largest number of clusters (n=6), Institute B clusters had the smallest average size, 2.5 sequences 

(median=2, range 2-4 sequences), and duration, 2.8 days (median=1.5 days, range 0-7 days), while 

Institute C had the smallest number of clusters (n=3), but the highest average cluster size (median=7, 

range 2-12 sequences), and the longest average duration, 23.7 days (median=27 days, range 4-40 

days). Other cluster characteristics can be seen in appendix p 17 and 47.
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Figure 3. Characteristics of the 16 phylogenetic clusters potentially associated with hospital 

transmission. (A) Pairwise genetic distances of sequences in each cluster. (B) Correlation between 

cluster maximum pairwise genetic divergence and cluster duration. (C) Frequency of sequences in each 

cluster according to the institute of origin. (D) Frequency of sequences in each cluster according to 

occupation. (E) Proportion of sequences per institute according to clustering status. Proportion was 

calculated considering a total of 234 sequences with coverage >90% used for cluster analysis. 

 

Factors linked to hospital-associated clustering  

 

To explore the differences between clustered (n=72) and non-clustered sequences (n=162) across the 

three institutes, we used logistic regression models to assess predictors that would best explain such 

patterns. Model 1 revealed that sequences from non-COVID-19 Institutes C and A were at greater odds 

for clustering than sequences from Institute B (COVID-only) (OR=4.46; and OR=3.59, respectively) 

(Table 1). HCW from both Institutes A and C were nine times more likely to cluster than patients from 

Institute B (OR=9.92; OR=9.21, model 2), while Institute B HCW have a non-significant tendency for 

higher odds of clustering (OR=2.72, p=0.08). Across all institutes, medical residents were the only 

occupation at greater odds for clustering compared to patients (OR=4.10, p=0.0007, appendix p 51-53, 

model 3). OR for different occupations in each institute can be seen in appendix p 51-53.  
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Table 1. Age and Sex-adjusted Odds ratio and p-values for clustering logistic models 1 and 2 

Logistic Model Parameters Level aOdds Ratio p-value 

Model 1:    

Variables: Institute + HCW/patient 

+     

Age + Sex    

Base level: Institute B; Patient (Intercept) 0.17 0.002 

 Institute A 3.48 0.00074 

 Institute C 4.17 0.0002 

 HCW 1.63 0.21 

Model 2:    

Variables: HCW/patient per 

Institute     

+ Age + Sex    

 

Base level: Patient.Institute B* (Intercept) 0.11 0.0034 

 HCW.Institute A 7.95 0.0033 

 HCW.Institute B* 2.36 0.017 

 HCW.Institute C 7.49 0.0043 

 Patient.Institute A 4.45 0.027 
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 Patient.Institute C 7.43 0.0050 

HCW: healthcare worker; * Institute B was COVID-19-only. 

 

To assess the degree of compartmentalization of clustered sequences given different traits, we used the 

tree-based method Simmonds Association Index (AI). When the analysis was performed on all 

clustered sequences (n=72), a compartmentalization signal was identified for the trait institute (AI 

=0.45, BS=1000). Although all institutes are contributing to the signal, Institute A (AI= 0.37, 

BS=1000) and Institute C (AI=0.44, BS=999) have higher degrees of population structure when 

compared to Institute B (AI= 0.56, BS=998). However, analysis of sequences from each institute 

separately revealed a compartmentalization signal for traits HCW vs Patients (AI =0.36, BS=999) and 

occupation (AI =0.42, BS= 1000) for Institute A sequences only (appendix p 54).  

 

Dynamics of hospital-associated SARS-CoV-2 transmission 

 

We next used genomic data to infer the proportion of imported cases from each Institute, and 

in turn, infer the extent to which hospital-associated transmission happened within each institute. 

Time-measured phylogeographic analysis performed on dataset 3 revealed that Institute B had the 

highest proportion of import-associated cases (from São Paulo, international or other institutes), 

83.64% (BCI: 76.64 to 92.70%), followed by Institute A, 67.85% (BCI: 60.38% to 71.70%), and 

Institute C, 57.70% (BCI: 52.23% to 63.63%) (Figure 4a). These data also imply that Institute A , and 

especially Institute C, would have had a higher degree of hospital-associated SARS-CoV-2 

transmission than Institute B. To validate our results and take potential sampling bias into account, we 

also estimated the expected percent of imports for each institute by randomly reshuffling the institute 

assigned to each sequence. Averages for ten simulations and individual runs are shown in appendix p 

18-19, and confirm that the expected average percent of imports for Institute C and Institute A should 
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be higher than the observed while that of Institute ? should be lower. Similar results are observed when 

sequences were discretized as from a HCW or patient (appendix p 20-22).  

We also identified the location transition rates with strongest statistical support (Bayes Factor 

> 10) (39). Interestingly, strong statistical support was found for transitions from non-COVID 

institutes A and C to Institute B (Bayes factor = 113.7 and 84.4, respectively) (Figure 4b). Information 

on all location transition counts, rates, and Bayes factors can be found in appendix p 55. Temporally, 

transitions from institutes A and B into institute C peaked 3 weeks after the peak of São Paulo imports 

into these institutes (Figure 4C). Similar results can be observed for transitions between HCW and 

patients (Figure 4D). 
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Figure 4. Proportion of SARS-CoV-2 imported cases in HC institutes and inferred transitions into and 

between institutes. (A) Proportion (%) of inferred total imports to Institutes A, B, and C. (B) Location 

transition counts (Markov jumps) for transition rates with strong statistical support (BF>10). Alluvial 

plots are proportional to the Markov jumps counts for each specific location transition. Colors identify 

the location of origin for each transition: Institute A (red), Institute B (green), non-COVID-B (blue), 

Other (purple), São Paulo (orange). (C) Inferred transitions (Markov Jumps) from São Paulo to each 

139

Chapter 5: Hospital-associated transmission



 
 

institute over time (up) and between institutes (down). (D) Inferred total imported HCW and patient 

cases (up) and between HCW and Patients (down). 

 

Epidemiological links of hospital-associated transmission clusters  

 

We categorized the epidemiological link for each individual as strong, possible, and unclear (see 

methods). We find that 31 (42.5%) of the individuals had a strong epidemiological link with at least 

one other individual from the cluster, 31 (42.5%) had a possible link, and 11 (15%) had an unclear link 

(appendix p 23 and 47). Full information on epidemiological links for each cluster can be seen in 

appendix p 24-27. To exclude household interaction between clustered individuals, we used the 

pairwise distance between sequences in the same cluster and compared it to non-clustered sequences. 

Clustered sequences tended to come from cases residing in slightly more distant households 

(median=18.26 km) compared to non-clustered sequences (median= 16.2 km) (p-value=0.07, Mann-

Whitney test) - (appendix p 28 and 47-50). 
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Discussion 

While most COVID-19 hospital-associated transmission studies have focused on single hospitals or on 

mixed hospital data, we provide the first comparison of SARS-CoV-2 transmission across COVID-19 

and non-COVID-19 hospitals during the early stages of the pandemic. We provide evidence of higher 

hospital-associated SARS-CoV-2 transmission in non-COVID-19 hospitals compared to a COVID-19-

only hospital using different types of data and analyses. First, we suggest that universal masking was 

effective in decreasing infections across HCW but not hospital-acquired patient cases in non-COVID-

19 institutes. Secondly, we show that positive cases from non-COVID-19 institutes in general and of 

HCW-only are more likely to be part of a transmission cluster than those from the COVID-19-only 

hospital. In addition, we estimate that a smaller proportion of the cases in non-COVID-19 institutes 

were acquired outside of the hospital. Finally, our genetic analyses further identified some level of 

virus transmission from non-COVID-19 institutes to the COVID-19-only.  

 

Several studies have shown that HCW are at higher risk of COVID-19 infection than the broader 

community (38,40–43) and have an important role in seeding and amplifying nosocomial SARS-CoV-

2 outbreaks to other HCW and patients (44). However, most of this evidence was generated prior to 

implementation of universal masking, which is effective in reducing the HCW risk of SARS-CoV-2 

hospital-acquired infection (45). In turn, our study period includes the early stages of the pandemic and 

overlaps the progressive implementation of universal masking. We find that incidence amongst HCW 

was much higher in non-COVID-19 institutes, especially institute C. Considering that universal 

masking was implemented first at non-COVID institutes (A and C), and assuming that outside work 

exposure was the same for HCW from the three institutes, these differences could be explained by 

differences in behavior and risk perception of SARS-CoV-2 among HCW. Adherence to protective 

measures is correlated to risk perception and HCW tend to associate a higher risk of exposure to 

contact with infected patients rather than other HCW (46) (47). However, two studies conducted in São 

Paulo concluded that HCW who directly provided care to COVID-19 patients were not at higher risk 
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of infection (48,49). During the first COVID-19 wave in the UK, transmission between HCW was the 

most common form of nosocomial COVID-19 infection (50). Evidence suggests that after the 

implementation of universal masking, most of the HCW COVID-19 cases were associated with 

transmission between HCW rather than contact with an infected patient (50) (51). Thus, one of the 

possible explanations to our findings is that risk perception was higher amongst HCW from institute B, 

given the awareness of dealing with COVID-19 patients.  

 

Although universal masking was effective in reducing infection amongst HCW, hospital-associated 

patient cases were still common in institutes A and C. This suggests that patient-to-patient transmission 

might have also played a role in the nosocomial transmission dynamics. In fact, evidence suggests that 

patients with hospital-acquired COVID-19 infections are more likely to get infected through contact 

with other patients in super-spreading events rather than through contact with HCW (52), especially if 

contacts also had hospital-acquired infections (53). Moreover, the proportion of patient-to-patient 

transmission almost doubled in the second wave in the UK and became the most common form of 

COVID-19 nosocomial transmission (50).  

 

Given that Institute B was a COVID-19-only institute, drawing any conclusions on COVID-19 

transmission from epidemiological data alone would be challenging, as patients from this institute 

were already infected at hospitalization and HCW could have been infected outside the hospital. To 

overcome this limitation, we used SARS-CoV-2 genome sequences from patients and HCW to infer 

SARS-CoV-2 transmission dynamics. Transmission clusters were larger in the non-COVID-19 

institutes, suggesting that transmission in non-COVID-19 institutes involved sustained onward 

transmission for longer periods. We also showed that individuals from non-COVID-19 institutes were 

more likely to be part of a transmission cluster, especially if they were HCW. These findings most 

likely reflect the within-hospital interactions of HCW, but potentially the social interactions outside 

work as well. Lunch and smoking breaks are common situations in which unprotected interaction 
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between HCW has been documented (51,54). HCW cases have also been shown to result from 

unprotected interactions with other HCW in the community (55). Interestingly, our genetic analysis 

supports these findings when showing that a higher proportion of cases in non-COVID institutes 

should be associated with hospital transmission. These differences were observed for both HCW and 

patients.  

 

While evidence for compartmentalization was observed at the institute level, significant links from 

non-COVID institutes to institute B were inferred from our genetic analysis. Since HCW could not 

transit between institutes, these inter-institute transmission events could be explained by patients from 

Institute A and C being transferred to Institute B and/or by HCW potentially interacting with HCW 

from other institutes outside of the hospital setting. Transportation of patients from non-COVID-19 

hospitals to COVID-19 hospitals is critical and specific protocols should be in place to ensure patient 

and HCW safety (56,57).  

 

Our study has several limitations. Firstly, this is a retrospective study and, as such, it faced limitations 

regarding access to samples and full metadata patients and sequences. Secondly, 6.5% (n=234, >90% 

coverage) of all cases were used for cluster analysis to reduce the chances of poor phylogenetic 

placement. Although this number represents one in every 15 cases, we have likely missed some 

transmission clusters, especially smaller ones, and intermediate transmission events. In addition, 

SARS-CoV-2 has a relatively low mutation rate (30) and it is possible that some phylogenetically 

related sequences might not be an immediate part of the same transmission chain, especially in clusters 

to which no epidemiological link could be observed. Finally, given that most of our sequencing 

sampling dates back to before universal masking was implemented, we were not able to assess the 

impact of universal masking using genomic data. 
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By integrating genomic and epidemiological surveillance, hospitals can identify and understand 

outbreaks and inform targeted infection control interventions. At a time in which new variants are 

constantly arising and inaccurate risk perception and COVID fatigue become increasingly relevant 

issues, it is important to emphasize that HCW can become vectors of transmission to other HCW and 

to non-COVID-19 patients; therefore, interventions towards improving compliance to protective 

measures should be implemented.  Masks should be worn at all times when social distancing is not 

possible, not only when in contact with COVID-19 patients, including outside and on the way to the 

hospital. Finally, tighter protective measures (e.g., continuous HCW testing, restriction of visitors, 

immediate isolation of suspected patients) should also be enforced in non-COVID-19 hospitals, as 

community introductions can easily become within-hospital outbreaks. 
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Chapter 6 

 
Discussion 

 
 The main aim of this thesis was to apply genomic and traditional epidemiology 

approaches to describe and understand the spread and evolution of SARS-CoV-2 in Brazil. 

This thesis builds upon the recent developments in high-throughput sequencing 

technologies, especially portable genomic sequencing, and in phylodynamic models to 

generate real-time insights to guide the COVID-19 pandemic response in Brazil. As such, 

this thesis is structured according to the different phases of the SARS-CoV-2 epidemic in 

Brazil: introduction and early response of SARS-CoV-2 (Chapter 1), nationwide spread and 

genomic diversity in the country’s largest population hubs (Chapter 2), identification of the 

Alpha and Gamma variants of concern in Brazil (Chapter 3), and a retrospective high-

resolution investigation of within-hospital transmission in the largest hospital complex in 

Latin America (Chapter 4). 

 I will start by summarising the main findings of each Chapter, while also discussing 

their main strengths and limitations, as well as their public health impact. I will then expand 

towards a more general discussion of the Brazilian response to the COVID-19 pandemic and 

the role played by genomic surveillance and epidemiology.   
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Figure 6.1. Overview of epidemiological scenario and timing of publication for the 
chapters presented in this thesis. Timeseries of Brazilian COVID-19 cases according to 
date of reporting. Boxes and arrows indicate the date in which Chapters of this thesis were 
submitted or published. 
 
 
6.1 Chapter Summary: Strengths and Limitations 
 
6.1.1. Chapter 2: SARS-CoV-2 importation, initial spread and response in Brazil 
 
 Chapter 2 is composed by my contributions to four publications investigating 

SARS-CoV-2 importation, initial spread and public health response in Brazil. Together with 

Chapter 3, it offers a valuable overview of the first months of the SARS-CoV-2 epidemic in 

the country.  

In Chapter 2.1, “Routes for COVID-19 importation in Brazil”, I show that most 

imported SARS-CoV-2 cases would be expected to come from Italy, China and France. In 

fact, Italy would be the origin location of five of the top 10 SARS-CoV-2 importation routes 

to Brazil, including the route Italy-São Paulo accounting for approximately one fourth of all 

potential SARS-CoV-2 imported cases. This manuscript was submitted for publication 

within 14 days of the first confirmed SARS-CoV-2 cases in Brazil and published 9 days 

later (Figure 6.1). By doing so, this analysis became the first source of information for health 
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authorities from all government levels to guide public health policy and response, including 

priority testing and quarantine of returning travellers from specific countries.  

Despite its timeliness and early impact, this analysis has some important limitations 

especially related to data availability and the limited testing capacity at the early stages of 

the pandemic. To identify potential routes for SARS-CoV-2 importation in early 2020, data 

from the International Air Transport Association (IATA) on air travel from 19 countries to 

all Brazilian airports during February and March 2019 was used. By doing so, I captured the 

seasonal air travel changes associated with that time of the year, but I also assumed that 

passenger intensity and proportion would have been similar to pre-COVID-19 times. In 

addition, air travel data for Portugal, one of Brazil’s main air travel corridors was not 

available, which likely resulted in an overestimation of the proportion of imports from other 

countries. In fact, some countries, e.g. China, had already limited inbound and outbound air 

travel from Wuhan since the 23rd January 2020 and several international flight cancelations 

nationwide from early February 2020 (1, 2).  

Moreover, this analysis also relied on SARS-CoV-2 confirmed case counts. 

However, the limited capacity for SARS-CoV-2 testing and surveillance in many countries 

likely introduced a bias towards nations with greater surveillance systems. For example, 

although the United States accounted for more than half of the air passenger flow into Brazil, 

the US had an initially limited testing capacity (3), which resulted in it being only the 8th 

ranked country in terms of expected imports. Finally, subsequent analyses from our group 

investigating the travel history of the first confirmed cases during the first month of SARS-

CoV-2 circulation in Brazil, confirmed that at first, most of the imported cases came from 

Italy, but revealed that the US surpassed Italy’s proportion of imported cases by mid-March 

(4). This highlights the everchanging dynamics of virus outbreaks and public health 

interventions (including travel bans) during a pandemic, and how such risk importation 
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analyses should be used for improving early detection of the virus, e.g. by allocating 

molecular surveillance resources, instead of a prediction of the routes of variant importation 

throughout the different phases of the pandemic. Moving forward, such limitations could be 

overcome by refining mathematical models to account for time-changing testing capacity 

and/or using more reliable data sources such as daily deaths, excess deaths or severe acute 

respiratory infection (SARI) cases when available. Analyses should also be continuously 

updated with real-time flight data to provide more realistic measures of human mobility.  

Similar analyses were subsequently used to generate an estimated importation intensity (EII) 

measure in the UK and its temporal dynamics have been shown to follow that of imports 

estimated using genomic data (5-7).   

Chapter 2.2 describes the first six genomes of SARS-CoV-2 in Brazil. This Chapter 

highlighted the importance of collecting travel history early in the pandemic to identify 

source location of cases and to accurately access local versus imported transmission.  SARS-

CoV-2’s evolutionary rate leads to an average of 2 to 3 substitutions in every month, making 

it challenging to disentangle phylogenetic relationships between sequences derived from 

clinical samples collected just a few days apart. All the four returning travellers described 

in this Chapter reported travelling to Italy, further reinforcing the findings from Chapter 2.1. 

Part of this work was first published as a report on virological.org and figured as the first 

sequenced SARS-CoV-2 cases form Latin America. Such work was also a defining moment 

for Brazilian science and the Brazilian response to the SARS-CoV-2 pandemic, as genome 

sequences and virological.org report were available only 48 hours after sample collection, 

in a time when the average GISAID submission turnaround time was of 2 weeks (Figure 

6.1). The impact of this work extended beyond the impact of the scientific discoveries being 

reported, as Dr Ester Sabino, Dr Jaqueline Góes de Jesus, several other team members and 

I represented the national response against SARS-CoV-2 in numerous media outlets. This 
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has increased communication and information transfer between scientists and general 

population as new findings and measures could be explained in near-real time to the 

Brazilian population.  

The analyses highlighted in Chapter 2.3 aimed to quantify SARS-CoV-2 

transmission prior to the implementation of NPIs in four of the Brazilian states initially most 

affected by SARS-CoV-2 spread, according to the case count data. This was achieved by 

estimating the basic reproduction number, R0, for these four states and Brazil, while putting 

such transmission into perspective against that of four European countries. In this Chapter, 

I described how basic transmission levels were very similar across the four Brazilian states 

from different parts of the country and how transmission in Brazil showed an initial tendency 

to be slightly higher than that observed in European countries, although with highly 

overlapping confidence intervals. Such analyses face important limitations. (i) SARS-CoV-

2 surveillance in Brazil at the very beginning of the pandemic was very limited, with 

massively restricted access to molecular diagnostics and potentially delays in reports. Such 

limitations might partially explain the lower R0 estimated for Ceará state, together with (ii) 

limited time points before the implementation of NPIs. (iii) The model used also assumes 

that delays in notification and testing capacity is the same between different locations, which 

is clearly a violated assumption. For future analysis, some of these limitations can be 

overcome by using deaths, excess deaths or SARI cases, rather than absolute case counts 

and by accounting for different average notification delays and different testing rates. 

However, even with such limitations, these estimates were similar to other R0 estimates 

published at the time (8-12), including more comprehensive analysis performed by the 

Imperial College London in which a semi-mechanistic Bayesian hierarchical model is used 

to infer R from death counts and human mobility data from Google, while also accounting 

for underreporting (13).  
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Chapter 2.4 finishes the overview of COVID-19 in Brazil by providing an initial 

analysis to the largest and most comprehensive dataset on the adoption and easing of NPIs 

across the country, to date. This Chapter shows that NPIs were uniformly adopted across 

most Brazilian municipalities very early on in the pandemic, March 2020, and even before 

the detection of the first COVID-19 case in most Brazilian municipalities. However, such 

uniformity was followed by great fragmentation in the time of easing of NPIs, with 

neighbouring municipalities presenting completely different easing patterns. Such 

differences might mean that neighbour cities in Brazil were either experiencing COVID-19 

epidemics at very different points in time or that the approaches taken in response to 

COVID-19 introduction and epidemic spread differed significantly even between 

municipalities in the same area. In fact, on 15th April 2020 Brazilian mayors and governors 

were ruled to be autonomous on their response to the COVID-19 pandemic by the Brazilian 

Supreme Court (14). This decision followed the lack of a clear national response 

orchestrated by the Brazilian Federal government and preceded the politicisation and 

polarisation of the COVID-19 response in Brazil, as reviewed by Borges and Renó (15). 

Brazil’s president, Jair Bolsonaro, was internationally infamously recognised as one of the 

five presidents to downplay COVID-19 and the critical situation their own nations faced. 

Soon enough, the Brazilian response to COVID-19 was roughly divided between mayors 

and governors who were Bolsonaro’s supporters and as such tended not to follow WHO 

recommendations and the rest of the country (15). However, it has been shown that regions 

with strong economic ties and, thus, human mobility connectivity are severely affected by 

the transmission happening in other regions, supporting the idea that decisions need to be 

made at central and local levels considering “within” and “between” aspects of transmission 

patterns (16).  The main limitation of this Chapter is its very simple and descriptive analysis. 

In the future, data on human mobility, cases, deaths, hospitalisations and economic impact 
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of COVID-19 must be investigated in light of the data presented on this Chapter to 

understand the overall impact of the fragmented response observed in Brazil.  

 

6.1.2 Chapter 3: Evolution and epidemic spread of SARS-CoV-2 in Brazil 
 
 This Chapter was built upon some of the main findings and methodologies presented 

in Chapter 2 and provided the largest, most comprehensive and the first near-real time 

published countrywide genomic and epidemiological assessment of SARS-CoV-2 

transmission in Brazil. This Chapter used two separate approaches. (i) A semi-mechanistic 

Bayesian model was used to estimate Rt in the two largest cities in Brazil, São Paulo and Rio 

de Janeiro, from death counts and human mobility data. It showed that, although SARS-

CoV-2 transmission in these cities was dramatically reduced after the implementation of 

NPIs, transmission levels in both cities plateaued at an Rt consistently >1, indicating 

insufficiency of the adopted measures to fully control SARS-CoV-2 transmission. (ii) To 

reconstruct SARS-CoV-2 spread in Brazil and provide insights into its genetic diversity and 

evolution in the country, this Chapter also applied both discrete and continuous 

phylogeograpic approaches to what, at the time, was the largest dataset of SARS-CoV-2 

complete and near-complete genomes from Brazil, 427 sequences. These analyses revealed 

that Brazil experienced more than 100 SARS-CoV-2 introductions during the first two 

months after the first case was reported. From these introductions, three main transmission 

lineages were identified representing the geographical spread across different areas of the 

country: clade 1 (B.1.1.28) revealed the spread in the state of São Paulo; clade 2 (B.1.1.33) 

spread across all states in southeast Brazil and to other regions of the country; and clade 3 

spread mostly in the state of Ceará. SARS-CoV-2 introduction across the three clades was 

timed between late-February and early-march 2020, in line with the reporting of the first 

cases on 26th February 2020.   This Chapter also uncovered different stages of national 
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spread, with initial transmission events characterising as within-state events, followed by an 

increase in between-state and between-region transmission events. Such transmission 

patterns seemed to be linked to the effectiveness of NPIs in reducing within-state spread and 

the ununiform reduction in flights and air passengers across journeys of different durations: 

longer journeys were less affected than shorter ones, increasing the average distance 

travelled per passenger.  

 The planning and execution of this Chapter proved to be a massive logistic effort 

and involved several research institutions and collaborators from Brazil and beyond. 

Analyses, interpretation and writing were performed in real-time as our collaborators at the 

Universidade de São Paulo, Universidade de Campinas, Universidade Federal de Minas 

Gerais, Universidade Federal do Rio de Janeiro and Laboratório Nacional de Computação 

Científica received and sequenced SARS-CoV-2 positive samples from across the country 

and datasets were updated.  

Such large-scale work incurred at least two main challenges. Firstly, creating a 

dataset which was representative of the transmission happening nationally but also locally 

was extremely difficult as access to samples from different states was limited and also given 

the logistical limitations of transporting such samples to the sequencing laboratories based 

in southeast Brazil.  The proportion of SARI cases per state was used as a guide for the 

number of samples to be sequenced from each state to avoid over and under geographical 

representation. Although a great strategy on a nationwide basis, the large difference in the 

case counts of different states, meant that some states were represented by very few 

sequences, limiting our understanding of the genetic diversity and virus transmission to a 

more granular level. In fact, this work was followed by other important local studies 

describing additional international introductions and genetic diversity previously 

unidentified by the work presented in this Chapter (17-21). However, a recently published 
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pre-print analysing over 17,000 genome sequences from Brazil between February 2020 and 

June 2021 found similar results to the ones presented in this Chapter, further validating its 

results even when using almost 40 times more genomes (22). The study estimated 114 

international SARS-CoV-2 introductions into Brazil to have happened by April 2020 and 

largely coming from Europe. These findings agree with the 102 introductions estimated by 

in Chapter using genomes collected by the end of April 2020 (22). The pre-print also found 

most of the between-region movement to have happened from the Southeast (over 40%), 

similar to the pattern of spread observed in this Chapter (22).  

Secondly, the amount of genomic data being produced in response to the SARS-

CoV-2 pandemic is the largest ever seen and working with such large datasets required 

having access to increased computational power. To overcome this challenge, this work was 

performed by downsampling SARS-CoV-2 genetic diversity from across the globe, which 

has been the core approach used for all other SARS-CoV-2 genomic epidemiology studies 

(23). In addition to the challenges listed above, the analysis in this Chapter could have been 

further improved by formally assessing potential drivers of virus lineage movement across 

the country and by attempting to infer population dynamics parameters from genomic data 

as a complementary approach to understand the impact of NPIs on virus lineage movement. 

Since its publication, this study has become the main reference literature for 

understanding the introduction and initial spread of SARS-CoV-2 in Brazil. The timing of 

publication was also an extremely important factor for the impact and success of this study, 

as the initial pre-print was made available in early June 2020 and the final version was 

published in Science in late July of the same year (Figure 6.1), in a time when very few 

sequences from Brazil were available.  

 

 

159

Chapter 6 - Discussion



 

6.1.3 Chapter 4: SARS-CoV-2 variants of concern in brazil 
 
 While Chapter 3 described the first two months of SARS-Cov-2 spread in Brazil, the 

sustained transmission of SARS-CoV-2 in the country and worldwide maintained the 

necessary conditions for new SARS-CoV-2 lineages to emerge, some of which were later 

on identified as VOIs and VOCs.  Chapter 4 constituted my contributions to two scientific 

publications on the identification of VOCs in Brazil and was subdivided into two other 

Chapters.  

Chapter 4.1, “Local Transmission of SARS-CoV-2 Lineage B.1.1.7, Brazil, 

December 2020”, presented a very simple and short phylogenetic analysis focusing on the 

sequencing of the first 2 Alpha (B.1.1.7) variant cases from Brazil and identified its cryptic 

local transmission.  While both samples were not genetically related to each other, one of 

the patients reported no international travel, but contact with a relative which had recently 

been abroad and tested positive for SARS-CoV-2 at the time of return. Much like Chapter 

2.2, this Chapter highlights the importance of epidemiological data for contextualising 

genomic findings. Although Alpha was subsequently reported in at least 17 of the 27 

Brazilian Federal units (24), Alpha’s introduction in Brazil was met by the simultaneous 

emergence and spread of Gamma VOC in Manaus and subsequently across the entire 

country. Alpha would never become the dominant lineage in Brazil, as opposed to what 

happened in most of the globe (25-28). 

In Chapter 4.2, “Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in 

Manaus, Brazil”, I presented comprehensive genomic and epidemiological analyses on the 

identification, emergence and spread of the new VOC P.1/Gamma in Manaus Brazil. 

Gamma’s identification occurred right after Manaus started experiencing a major second 

wave of SARS-CoV-2 cases in December 2020 (29), and following the identification of the 

first VOCs, B.1.1.7/Alpha in the UK (30) and B.1.351/Beta in South Africa (31), just a few 
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weeks earlier. Gamma acquired 17 new amino acid mutations, 10 of which were located in 

the SARS-CoV-2 spike protein and 3 in its receptor binding domain. Given the large number 

of mutations acquired in a short period of time and the lack of evidence for a higher 

evolutionary rate within Gamma, this Chapter employed a Bayesian approach to test the 

hypothesis of a higher evolutionary rate along the branch leading to Gamma’s emergence.  

This VOC was estimated to have emerged around mid-November 2020. Discrete 

phylogeographic analyses showed that Gamma emerged in Manaus and spread to other 

Brazilian metropolitan areas in similar pattern to that observed for air travel destinations 

from Manaus.  

There were two main challenges associated with the detection of the first Gamma 

cases in Manaus, Amazonas state. First, by the 12 January 2021 only 6 genomes were 

available from the Amazonas state, five of them reported by our team. The lack of continued 

and consistent genomic surveillance in Brazil and especially in the north region, including 

Manaus, greatly limited our early understanding of Gamma’s emergence. In addition, the 

large number of new mutations in Gamma’s sequence meant that existing sequencing 

primers had mismatches in key primer-binding regions, which ultimately led to the 

generation of a substantial proportion of SARS-CoV-2 genomes with <75% genome 

coverage. However, we found that our lower coverage genomes could still provide useful 

information on the frequency of the Gamma VOC over time. Thus, we maximized the 

information derived our sequence data by using both low coverage datasets (for VOC 

frequency assessments) and high coverage datasets (for VOC frequency assessment 

confirmation and Bayesian phylogenetic analysis).  

Chapter 4.2 was firstly published on virological.org on the 12th of January 2021 (32), 

and preliminary analysis where shared earlier with the Secretary of Health in Manaus and 

Pan American Health Organization (10th January) and WHO (11th January 2021). Also on 
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the 10th January, Japanese authorities released on GISAID the first Gamma genomes from 

travellers returning from Manaus (33). By early January 2021, eight months after its first 

epidemic wave which infected nearly three-quarters of Manaus’ population (29, 34), Manaus 

was experiencing a second epidemic wave characterized by a rapid surge of COVID-19 

hospitalizations and deaths. Together with independent laboratory assessment of 

neutralization data associated with spike mutations present in the Gamma VOC, our findings 

were critical to hypothesize that a significant proportion of cases in Manaus’ second wave 

were being caused by a more transmissibility variant associated with immune escape (29). 

This was later confirmed by several reports of reinfections caused by the Gamma VOC (35-

37). More generally, the rapid identification of Gamma’s epidemic growth in Manaus, the 

identification of its mutations and the assessment of its potential for international spread 

were crucial for pandemic preparedness nationally and internationally. For example, on the 

12 February 2021, after the UK Government become aware of our findings related to 

Gamma’s early spread in Manaus, Boris Johnson implemented travel bans to several Latin 

American countries.  

 Subsequent work by researchers from the Oswaldo Cruz Foundation (FioCruz) 

further contributed to our understanding of the evolutionary history of SARS-CoV-2 in 

Manaus. For example, retrospective sequencing revealed that the first epidemic wave in 

Manaus was mainly caused by lineage B.1.195, which was later replaced by lineages 

B.1.1.28 and B.1.1.33 (18). The Gamma VOC then spread from the Amazonas state to all 

other Brazilian regions and caused a large second wave in Brazil. According to data from 

the FioCruz Rede Genômica Dashboard enabled by data available on GISAID (38), Gamma 

was the dominant lineage nationwide for 6 months, from February (59.7%) to July (87.6%) 

2021, when a staggering total of 12.9 million new cases and 401,978 deaths were reported 

in Brazil. To put it into perspective, in the 12 months prior to Gamma’s emergence (February 
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2020 to January 2021), Brazil reported  9.2 million cases and 154,392 deaths (39). Gamma 

was subsequently detected in 74 countries in the world, including most South American 

countries, where it also became the dominant circulating lineage (40, 41). A recent pre-print 

estimated that the North region seeded 47% of the Gamma infections nationwide and that 

Brazil exported Gamma on at least 316 occasions, mostly to other South American countries 

(65%), but also to Europe (14%) and Asia (11%) (22). Several Gamma-descendent lineages 

were also described during its circulation in Brazil and South America (40).  

Since August 2021, Gamma was replaced by Delta and its descendent variants in 

Brazil and South America.  As opposed to Gamma, which emerged before mass COVID-19 

vaccination effectively kicked off in Brazil, Delta encountered a population with a different 

immunity profile, facing a greater proportion of individuals with some level of naturally or 

vaccine-mediated immunity. COVID-19 vaccination in Brazil started slowly between 

January and April 2021, and was characterised by a combination of factors, including lack 

of action from the Brazilian Federal government in securing sufficient and fast delivery of 

COVID-19 vaccines which resulted in vaccine delivery delays from the suppliers, and the 

politicisation of COVID-19 vaccines and upsurge of fake news regarding their efficacy and 

safety (42-45). However, by July 2021, with roughly 50% and 20% of the population 

vaccinated with one and two doses respectively, the epidemiological situation in Brazil 

started to change with cases consistently falling from an average of 70,000 to 3,000 new 

case notifications per day (46).  

Encouragingly, mass vaccination may have started reducing death counts in April 

2021, decreasing from a 7-day rolling average of over 3,000 daily deaths to as low as 58 

deaths in December 2021 (46). At the time of writing, Omicron is the main lineage 

circulating in Brazil (38). Despite high vaccination rates, daily case count in Brazil are 
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increased with over 200,000 cases a day, in line with what has been seen in other countries 

across the globe (46). 

 

6.1.4 Chapter 5: The dynamics of within-hospital SARS-CoV-2 transmission 
 
 While the other Chapters in this thesis focused on investigating SARS-CoV-2 spread 

and transmission at larger spatial scales, from municipality-level to countrywide, Chapter 5 

presented analyses with finer spatial granularity. It provided the first comprehensive 

investigation of hospital-associated SARS-CoV-2 transmission in the early stages of its 

spread in Brazil. To the best of my knowledge, this is the first investigation of SARS-CoV-

2 transmission dynamics between institutes from the same hospitals complex. Here, I 

provided epidemiological and genomic evidence of more pronounced SARS-CoV-2 

transmission in non-COVID-19 institutes compared to COVID-19 institutes, even when 

mandatory universal masking was the rule across COVID-19 and non- COVID-19 institutes. 

Phylogenetic analysis further revealed that hospital-associated transmission clusters from 

non-COVID-19 institutes were larger and of longer duration compared to those from 

COVID institutes; and suggested that HCW and patients from non-COVID-19 institutes 

were at higher risk of being part of hospital-associated transmission clusters. 

 Although this analysis is being submitted for publication after almost 2 years from 

the early stages of the pandemic in Brazil, its findings remain extremely relevant. Despite 

of COVID-19 vaccines being now widely available in several countries, vaccination 

hesitancy amongst HCW ranges between 27.7% to 91.7% across different studies (47-58), 

and sometimes higher hesitancy rates amongst HCW that are more frequently exposed to 

COVID-19 and/or at higher risk for severe disease (56). This scenario is also aggravated by 

the emergence of new VOCs with high capacity of immune evasion, including Omicron 

(59). It has been estimated that effectiveness against symptomatic disease following a 2-
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dose regimen of Pfizer or Astra Zeneca COVID-19 vaccines is reduced to around 30% when 

challenged against Omicron exposure (60, 61). Thus, adequate risk perception and proper 

use of PPE by HCW remains essential to avoid within-hospital outbreaks, shortage of HCW 

and to prevent exposure of at-risk patients and their families. In fact, several countries have 

been reporting shortage of HCW in hospitals resulting from the high transmission capacity 

of Omicron (62-64). Such scenario has pushed governments to reduce isolation duration for 

HCW so health systems can better cope with the large number of Omicron positive cases 

(65).  

This study faced limitations regarding availability of standardised clinical and 

demographic metadata that was extracted from the hospital data database for this study. In 

addition, during the early stages of the pandemic, SARS-CoV-2 genome sequencing in 

Brazil, 39.6% (180/454) of the sequences had <90% genome coverage and were removed 

from the cluster analysis. However, to understand the impact of sequence removal and 

investigate the robustness of our findings, I found similar phylogenetic results when 

analysing datasets comprised by all sequences with genome coverage >75%. Existing 

clusters became larger, but no new clusters with adequate statistical support were observed 

(data not shown).  

Finally, given the relatively low genetic diversity observed in SARS-CoV-2 datasets 

obtained during short periods of sampling collection and the relatively low genomic 

sequencing coverage of SARS-CoV-2 infected HCW and patients, the analysis in this 

Chapter was focused on general transmission patterns and characteristics of clusters across 

different institutes, rather than trying to determine infector and infected pairs. An analysis 

of such granularity could be achieved using a probabilistic framework such as the one used 

by Illingworth et al (66, 67) with data collected from a prospective study such as the one 

described by Meredith et al (68) or a retrospective study in a well-structured research-driven 
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hospital environment. A cohort where testing is routinely conducted in all symptomatic 

cases and their contacts, with standardised metadata collection and virus sequencing of all 

individuals identified by contact tracing could provide increased resolution and disentangle 

transmission within and between healthcare institutes at a finer resolution. In fact, it is 

possible that some of the clusters observed in this Chapter are not necessarily direct clusters 

of transmission, meaning direct pairs of infectors and infected, but rather transmission 

lineages which circulated in the institutes, and are represented by only a fraction of randomly 

sequenced cases involved in long chains of transmission. Such limitations also prevented us 

from investigating the transmission hotspots in each institute and directionality of 

transmission between different hospital occupations. In the future, prospective studies 

should be designed to further expand our understanding of SARS-CoV-2 associated hospital 

transmission. 

 

6.2 The Brazilian response to SARS-CoV-2 and future steps 
 
 
 Brazil has been internationally recognized as one of the leading developing countries 

when it comes to responding to public health threats for its response against HIV/AIDS (69), 

for its world-renowned national vaccination programme (70), and being the only country 

with population >100 million to have a universal and free of charge health care system (71). 

However, Brazil has recently been facing an increasing economic instability and political 

turmoil. Health, education and research in Brazil have experienced major budget cuts, 

resulting in the lack of essential research and human resources, including the cancellation of 

several ongoing research scholarships, freezing of academic positions in Federal institutions 

and a diaspora of academic minds of unprecedented levels (72). Such a debilitating political 

and research scenario has had limited resources to tackle large epidemics caused by Zika, 

chikungunya, dengue and yellow fever viruses, and the SARS-CoV-2 pandemic.  
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The COVID-19 pandemic response in Brazil was led by a federal government 

leadership which undermines science and lacks a clear centralized strategy to mitigate virus 

spread and its toll on Brazil’s public health system (73, 74). This led to a fragmented 

response at the state and municipality levels (75-77), as shown in Chapter 2.4. Brazil’s 

president has been reported to undermine the severity of the disease by calling it a “little 

cold” (73), publicly arguing with the Minister of Health against the adoption of NPIs, 

ignoring scientists (73, 78), spreading fake news (76), not sharing data transparently (77, 

79) and encouraging the use of scientifically proved ineffective therapies, such as 

hydroxychloroquine, while discouraging the administration of vaccines (80, 81).  

Despite the vulnerable scenario for research and health, Brazilian scientists were able 

to very rapidly detect SARS-CoV-2 local circulation within just 48 hours of first cases, and 

swiftly identify new variants of concern in the country, as shown in Chapters 2.2, Chapter 3 

and Chapter 4. For comparison, ZIKV circulated cryptically for up to 18 months before it 

was first detected in Northeast Brazil (82). As highlighted in Chapter 2.4, although the 

adoption of NPIs often occurred before most Brazilian municipalities had even identified 

their first cases, our data shows strong discoordination in the easing of NPI’s even in 

municipalities within the same state and within the same region, despite unrestricted 

movement between Brazilian states during this period (71). Interestingly, COVID-19 deaths 

were found to geographically cluster approximately 1 month before the geographical 

clustering of cases became apparent, suggesting that case detection was limited by 

insufficient diagnostic capacity (71). Inequalities in access to COVID-19 diagnosis, 

vaccination and treatment have also been highlighted in other studies (4, 83). For example, 

a study built upon the results described in Chapter 2.3 found an association between higher 

income and access to COVID-19 diagnosis in the metropolitan area of São Paulo (4). Low-

income and non-white populations from São Paulo were found more likely to be hospitalised 
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and die, and patients hospitalised in public hospitals were also more likely to die than 

patients hospitalised in private hospitals (83).  

Work by Castro et al. published in April 2021 showed that the duration of SARS-

CoV-2 clusters of cases and deaths did not reduce over time (71), indicating limited 

effectiveness of mitigation strategies countrywide. This is in line our findings on epidemic 

transmission in São Paulo and Rio de Janeiro cities (Chapter 3) and with an independent 

report from the Imperial College London (13). São Paulo was identified as the main super 

spreader city in Brazil accounting for 85% of the importations in the entire country (84), and 

that transmission of COVID-19 became more intense in the north and northeast regions after 

the first cases were reported in São Paulo (71). Such spatial trend is consistent with my 

phylogenetic analysis published in September 2020 (see Chapter 3), in which we showed an 

increase in between-state and between-region virus lineage movements after a short period 

dominated by within-state lineage transitions. Most of the long-distance virus migrations 

were originating from southeast Brazil region, which includes São Paulo and Rio de Janeiro 

states, the most populated and well-connected hubs in the country.  

As of 28th January 2022, Brazil reported over 24.8 million cases and 625 thousand 

deaths, rendering it the third highest ranked country in number of cases and second in 

number of deaths globally (46). Currently, 69% of its population has received the 2-dose 

vaccine regime (85). According to the Global Health Security (GHS) Index 2019, Brazil was 

one of the best placed countries in terms of preparedness for responding to a biological 

threat. Out of 195 countries evaluated, Brazil was placed number 22nd in the overall score 

and top 20 in three of the six categories in which the index is organised: 16th in prevention 

of the emergence or release of pathogens, 12nd for early detection & reporting for epidemics 

of potential international concern and 9th in rapid response to and mitigation of the spread 

of an epidemic (86). In 2021, GHS ranked Brazil as number 43, after increasing its previous 
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overall score by 0.2, while losing 8.5 points in the “rapid response” category. However, 

assessment of the COVID-19 response of 98 countries performed by the Lowy Institute, as 

of January 2021, placed the Brazilian response as the worst in the world (98th) (87). In fact, 

studies have found GHS not to predict COVID-19 response and vaccine rollout (88-90). 

While the association of variables measured by the GHS index changed over time, COVID-

19 outcomes were significantly associated to variables not directly measured by the index 

such as social cohesion, reduction in social polarisation and reduced perceptions of 

corruption. Future versions of such indexes must consider the inclusion of other 

sociodemographic, political and governance variables. 

6.2.1 Metasurveillance of SARS-CoV-2 genomic sequencing in Brazil 

To better understand diversity of SARS-CoV-2 viral lineages and contextualize the 

role of genomic surveillance in the response to the COVID-19 pandemic in Brazil, I present 

and discuss a preliminary analysis on 87,324 Brazilian genomes available on GISAID 

(available as of the 23rd of December 2021). In 2020, only 1,809 genomes were made 

available, with a median of 94 genomes/month (range 1-615). These numbers massively 

increased in 2021 with a total of 85,522 published genomes and a median of 6,699 genomes 

a month (range 631-20,381) (Figure 6.2 A). Most genomes belonged to samples collected 

in Southeast Brazil (58,060, 66.5%), especially from the states of São Paulo (44,834, 51.3% 

of Brazilian sequences) and Rio de Janeiro (10,405, 11.9%) (Figure 6.2 A and B). Although 

Southeast, North and Northeast Brazil figure as the regions with the highest sequencing rates 

(number of genomes sequences per 100,000 cases), when disaggregated by federal states, 

sequencing capacity in absolute numbers is positively correlated with state GDP (Figure 6.2 

B, Rho = 0.8, p-value = 0.91, as recently seen worldwide (91). The median sequencing 

coverage per state in Brazil is 170.7 sequences/100,000 cases or 0.17%. São Paulo is the 
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state with the highest sequencing rate 1,007.5 sequences/100,000 cases or 1% of all cases, 

while Piauí has the lowest sequencing rate, 53.3 or 0.05%. Overall, sequencing rate in Brazil 

was 392.9 sequences/100,000 cases [excluding February 2020 when only 2 cases and 1 

sequence (see Chapter 2.2) were reported], or 0.4% of all cases.   

The median turnaround time, defined as the number of days between sample 

collection and GISAID submission, was 58 days (range 1-632). There was a non-statistically 

significant negative correlation tendency between GDP and turnaround times per states 

(Pearson rho = -0.34, p-value = 0.08796), with some states with higher GDP, e.g. Minas 

Gerais and Distrito Federal, performing worse than states with lower GDP, e.g. Alagoas, 

Paraíba and Pará (data not shown). The transition from 2020 to 2021 also saw a statistically 

significant decrease in the turnaround times (p-value < 2.2 x 10-16), with a reduction in the 

median turnaround time from approximately 118 to 57 days, respectively (Figure 6.2 C). In 

fact, there was a constant increase in the median turnaround time per month all throughout 

the year of 2020, reaching a peak of approximately 222 days in December (2020 range 3-

288 days), which was followed by a major reduction to a median of 95 days in January 2021 

(range 1-632 days) and a nadir of 39 days in April of the same year (Figure 6.2 D).  Such 

reduction was accompanied by an increase in the proportion of sequenced cases from July 

2021 onwards, when COVID-19 incidence in Brazil started to decline, reaching a peak of 

8,080 sequences/100,000 cases or 8% in December 2021(Figure 6.2 D). When 

disaggregated by year, the median sequencing rate increased 26-fold between 2020 and 

2021, increasing from 15.3 (range 0.5-612) to 391 sequences/100,000 cases per month 

(range 41.3-8081) (Figure 6.2 D).  
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Figure 6.2. Overview of Brazil’s SARS-COV-2 genomic surveillance performance. 
Metadata for all SARS-CoV-2 genome sequence GISAID entries from Brazil (n=87,324), 
regardless of their size, were downloaded on the 23rd December 2021. Case count data was 
downloaded from Brazil.io and Our World In Data on the 23rd December 2020. (A) 
Timeseries of all Brazil SARS-CoV-2 genome sequences according to submission date and 
stratified by Brazilian region of sample collection: Centre-West (red), North (yellow), 
Northeast (green), South (blue) and Southeast (pink). Inset shows genome sequencing effort 
per Brazilian region as per genomes/100,000 cases. Region are coloured coded similarly to 
the main figure. (B) Correlation between genomes sequenced and gross domestic product 
(GDP) by Brazilian Federative Unit (states). Inset shows a similar correlation plot excluding 
the states of São Paulo and Rio de Janeiro. Colours are coded according to figure XB. Circles 
are sized according to number of genome sequences. (C) Turnaround times per year of 
sequence submission (time between date of sample collection and date of GISAID 
submission). (D) Time series of turnaround times and sequencing efforts 
(sequences/100,000 cases) in Brazil according to month of sequence submission. 
 
 

The descriptive analyses presented in Chapter 1 showed limited genome sequencing 

in Brazil across the last two decades, with a generation of <300 genome sequences/year (or 
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<25 per month) when not accounting for the pandemic years of 2020 and 2021, and a 

turnaround time ranging between 1.3 and 2.6 years since 2016. In comparison to the pre-

pandemic scenario, Brazil produced over 285 times more viral genome sequences in 2021 

alone. In addition, turnaround times were reduced by at least 8 times in 2021 when compared 

to the lowest yearly pre-pandemic median, in 2016. From this perspective, Brazilian research 

and surveillance made an incredible effort and demonstrated an impressive capacity to adapt 

and respond while the country was going through not only a global public health emergency, 

but also a period of great economic, social and political instability.  

 On the other hand, despite the huge improvements in genome sequencing capacity 

when compared to the country’s own historical numbers, COVID-19 sequencing efforts in 

Brazil can be considered less than optimal when put into global perspective. A recent pre-

print has found that the number of sequenced genomes is highly correlated to the number of 

lineages identified in each location (91). This finding shows the impact that limited genome 

sequencing can have in the identification of new SARS-CoV-2 lineages, especially VOCs, 

which are lineages with higher transmissibility and/or immune escape. This study also 

estimated that a sequencing proportion of 0.5% of all COVID-19 cases with a turnaround 

time of 21 days would lead to a 20% probability of early identification of a newly circulating 

variant (before reaching 100 cases) and would be a good benchmark to guide sequencing 

efforts (91). Considering such estimates as the ideal minimum target for adequate COVID-

19 genomic surveillance, Brazil would have only met the target sequencing proportion at 

the very beginning of the pandemic and from August 2021 onwards, when the number of 

COVID-19 cases were declining (< 1 million cases a month). As for the target turnaround 

time of 21 days, it was only met at the very beginning of the pandemic, in March 2020. 

Median turnaround times in the following months were at least 2 times higher than the target, 

but as high as 10 times higher in December 2020, for example.   
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At the state-level, only São Paulo, Rio de Janeiro, Amazonas and Alagoas have met 

the 0.5% sequencing proportion target when considering the total number of sequences and 

cases to date. No states have met the median turnaround time target of 21 days. Moreover, 

the regional disparities in sequencing capacity are also a major concern to be considered, as 

such target estimates assume weekly random sampling across the country, rather than 

selectively sequencing larger proportion of cases in higher income states, especially São 

Paulo, which accounts for over half of the sequences from Brazil. States such as Piauí and 

Mato Grosso, two of the states with the lowest sequencing rates and turnaround times, would 

have a probability of detecting a newly circulating lineage before reaching 100 cases of less 

than 2.6%, according to the same pre-print study. For instance, by 11th January 2021, when 

Gamma was first reported, there were only 7 genomes from Manaus available on GISAID 

(32), 6 of which had been published as part of Chapter 3 of this thesis. In fact, Gamma was 

first reported in returning travelers in Japan that had visited Manaus (33, 92), although 

Brazilian studies describing the lineage followed in the next couple of days (32). The state 

of Amazonas, to which Manaus is the capital, is now the 4th in total number of sequences 

and the third in sequencing rate. Most of this increase in sequencing capacity was likely 

encouraged by the discovery of Gamma and the targeted sequencing of samples from 

Amazonas to investigate Gamma’s emergence, local spread and characteristics. A 

considerable share of these samples was probably not sequenced locally. However, other 

states in North Brazil have much lower sequencing rates, which limits our understanding of 

the evolution and spread of new variants in the region (93). The emergence of Gamma is 

also likely to have influenced the increase in sequencing and decrease in turnaround times 

observed nationwide in 2021 when compared to 2020, similar to what occurred globally 

after the discovery Alpha and Beta (91).  
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 However, Brazil is far from being the only country in a suboptimal genomic 

surveillance situation (Figure xxx). Only 16 countries worldwide have been able to generate 

genomes of 5% or more of its COVID-19 cases (91). Some of the barriers faced by LMICs 

include: (i) genome sequencing might become an additional and a lower priority expense 

for countries which are already struggling with medical care and diagnostics (91); (ii) 

reagents and equipment for genome sequencing are usually not locally produced and 

importation can take a long time and be very expensive, as it has been shown for diagnostics 

(94, 95) – for example,  importation process in Brazil can take more than 3 months between 

order placement and arrival of reagents; (iii) lack of local specialized human resources, 

especially when it comes to bioinformatics (96, 97); (iv)  use of older sequencing 

technologies that allow for lower throughput (98); (v) overly centralized sequencing systems 

(98), (vi) the need to stablish new collaborations and arrangements to strengthen sequencing 

(99), (vi) the hesitancy of publishing data prior to it been published (100), (vii) and fear of 

the consequences of finding new VOIs and VOCs (101). In Brazil, this is further aggravated 

when considering sample transportation limitations. For example, in the Amazon region 

human mobility is highly fluvial in this area which presents challenges for the conservation 

of RNA in biological samples. However, even if some of these problems are primarily faced 

by LMIC countries, virus spread does not respect geopolitical borders, which means VOC 

emerging in poorly connected regions in the Amazon region may rapidly become a global 

issue. “To be as effective as possible, surveillance needs to be widespread, standardized and 

embedded in national pandemic-prevention programmes” (102). 

Limitations regarding genome sequencing capacity and submission turnaround times 

have encouraged nations across the globe to create initiatives to ramp up their sequencing 

performances (98, 102). This includes the COVID-19 Genomics UK Consortium (COG-

UK) in United Kingdom (103), the Indian SARS-CoV-2 Genomic Consortia (INSA-COG) 
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in India, the Network For Genomic Surveillance In South Africa (NGS-SA) in South Africa, 

the Canadian COVID Genomics Network (CanCOGeN) in Canada, and the SARS-CoV-2 

Sequencing for Public Health Emergency Response, Epidemiology, and Surveillance 

(SPHERES) in the United States (98). In Latin America, the Pan America Association of 

Health (PAHO) led the creation of a continent-wide network for local support of SARS-

CoV-2 genome sequencing, COVID-19 Genomic Surveillance Regional Network 

(COVGEN). The network is composed by countries which can perform genome sequencing 

locally and two regional centers which receive samples from countries without local 

sequencing capacity, Fundação Oswaldo Cruz/FIOCRUZ - Brazil and Instituto de Salud 

Publica/ISPCH-Chile (40).  

In Brazil, several important nationwide initiatives were created to increase genome 

sequencing capacity in the country. The Rede Genômica FioCruz was created by the 

Oswaldo Cruz Foundation (FioCruz) and includes 12 local branches of FioCruz across 

Brazil and the Instituto Adolf Lutz in São Paulo. It performs genomic surveillance, 

capacitation and technical support for the entire country and also to other nations in Latin 

America. It also provides technical reports and updates an online dashboard on the spread 

of SARS-CoV-2 variants across Brazil (38). The Rede Corona-Ômica BR MCTI from the 

Brazilian Ministry of Science, Technology and Innovation is a national network for 

genomics, transcriptomics and exomics of SARS-CoV-2 and it includes specialists from 

several research institutions across Brazil (104). The Rede Nacional de Sequenciamento 

Genético from the Brazilian Ministry of Health was created in February 2021 and includes 

all Central Laboratories for public health (LACENS) of each state in Brazil (105). Some of 

these initiatives were timed with the emergence of Gamma in Brazil and certainly 

contributed the massive increase in genome sequencing capacity in Brazil from early 2021 

onwards. Following WHO guidelines for SARS-CoV-2 sequencing in early January 2021 
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(106), Brazil released a national guideline for SARS-CoV-2 sequencing to strengthen 

SARS-CoV-2 genome sequencing in the country (107).  

Although not specifically created in response to the COVID-19 pandemic, the 

Brazil-UK Centre for (Arbo)virus Discovery, Diagnosis, Genomics and Epidemiology 

(CADDE) has been one of the main research and surveillance initiatives on COVID-19 

genomics and epidemiology in Brazil. CADDE was founded in 2019 following the success 

of the Zika in Brazil Real Time Analysis (ZiBRA), which travelled between LACENS in 

Northeast Brazil in a mobile laboratory in 2016 and generated ZIKV genomes using portable 

genome sequencing for the first time in Brazil (82). Since then, ZiBRA has also been 

responsible for capacity building in genome sequencing and phylogenetics across Brazil and 

for generating genomic data on some of the major virus outbreaks in Brazil, including the 

large 2016–2019 yellow fever outbreak in Southeast Brazil (108). Although initially focused 

on arbovirus research, CADDE was responsible for the generation of the first Latin 

American SARS-CoV-2 genomes and phylogenetic analysis in only 48 hours and for the 

earliest identification of the Gamma variant in Manaus, as presented on Chapters 2, 3 and 4 

of this thesis.  

 

6.2.2 Future directions for genomic sequencing and epidemiology  
 
 The improvement of sequencing capacity and the reduction of turnaround times will 

be essential for the future of genome surveillance programmes across Brazil. However, fast 

interpretation and contextualisation of well characterized genomic data, as well as data 

sharing and accurate and concise communication of research findings, are also critical to 

inform public health responses (109, 110). Such challenges could be ameliorated by 

strengthening local capacity, employing representative sampling strategies, and by collating 

and sharing appropriate metadata associated with clinical or environmental samples (111).  
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One of key limitations for genomic epidemiological studies is the availability and 

the quality of the metadata associated with sequenced samples. According to the WHO 

Guidance for surveillance of SARS-CoV-2 variants, there are three tiers of metadata for 

genomic surveillance based on their collection priority (111). Highest priority metadata 

includes the basic information needed for tracking virus movement, time and place of 

collection, and information on laboratories collecting and processing samples and 

sequencing. The second priority metadata includes patient and epidemiological 

characteristics such as age, gender, race and ethnicity, date of exposure and onset. Finally, 

the third tier includes information relevant to characterise the potential public health impact 

of new variants such as cycle threshold (Ct) values, travel history, vaccination status, clinical 

severity, hospitalisation status, outcome and etc (111).  

Databases for metadata associated with clinical samples and patients are usually not 

interconnected in Brazil. In addition, testing facilities usually do not often collect relevant 

metadata such as recent travel history, race and ethnicity, comorbidities or vaccination 

status. Centralizing complete metadata would optimize human resources and speed up 

sequencing analysis and data sharing. Issues surrounding metadata collection, sharing and 

quality are a longstanding global problem, as highlighted by the Genomics Standards 

Consortium (112). Guidelines on which metadata is necessary and important to be shared 

improved include the use of MIxS (Minimum Information about any (x) Sequence) 

checklists, MIxS records and the FAIR sharing principles. However, a pre-print analysis 

showed that out of 75,000 GISAID entries, 68.81% had unknown gender information, 

69.12% had unknow age information, with >10,000 and >1,000 missing entries regarding 

specimen source and country fields, respectively (113). Misspelling errors were also found 

to be fairly common in fields such as originating and submitting lab, 9.8% and 11.6%, 

respectively (114).  These findings highlight an pressing need for understanding why 
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collection and/or sharing of genomic metadata have been so often neglected during the 

COVID19 response. Implementation of mechanisms that can increase metadata collection, 

standardisation, sharing and quality assurance will be essential to improve our understanding 

of virus spread and the emergence of new variants and their potential to cause severe disease 

globally (112).  

Sampling strategy is also an important aspect of genome surveillance, as different 

research questions will be better answered by specific sampling strategies to avoid the 

introduction of sampling biases. For example, unbalanced sampling strategies can result into 

locations being over or underrepresented in internal nodes of phylogeographic analysis, and 

lead to biased conclusions on virus geographical origins and movement, overly-sized 

transmission clades and incorrect diffusion rates (23, 115). In such cases, downsampling 

strategies may be used to reduce sampling bias, although such approaches may sometimes 

be less efficient and costlier than employing adequate sampling at first (23). 

International guidelines for genomic surveillance recognise two general categories 

of sampling: representative sampling from surveillance systems and targeted sampling in 

specific settings or populations (111). Representative sampling should include criteria such 

as geographical and temporal distribution, age, sex and clinical spectrum. As per sample 

size, strategies may include sequencing of a fixed proportion of cases or of a fixed number 

of cases. The former will result in increased sensitivity for the detection of new variants but 

can become demanding and impractical in periods of high virus transmission and incidence 

(111). The latter is more feasible as sequencing capacity does not need to be changed 

according to current incidence, however, it presents lower sensitivity. Targeted sampling 

strategies can be used to identify new variants or understanding virus diversity and spread 

in specific scenarios and populations (111). Common examples of targeted-sampling 

strategies are based on specimen characteristics (e.g. Ct values or failure of detection in 
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specific assays), individual characteristics (disease outcome, breakthrough infections, etc), 

environment characteristics (wastewater studies) or outbreak characteristics (outbreak 

surveillance) (111). In fact, GISAID has recently include a new nonmandatory “sampling 

strategy” field, which could be of great importance in reducing sampling bias in future 

SARS-CoV-2 analysis, including correct assessments of VOC frequency (116). 

In Brazil, as probably in most countries, genome sequencing started using a 

convenience sampling strategy given the limited sample access and sequencing capacity. 

Once sequencing capacity improved and genomic surveillance increased, sampling 

strategies likely shifted towards a more representative sampling strategy nationally, varying 

between fixed proportion and fixed number approaches as it can be seen in Figure  6.2. 

Targeted sampling has also been used to understanding vaccine breakthrough infections, 

spread in specific populations and characterisation of new variants. In Chapter 3, given the 

aim to understand virus introduction and spread at a countrywide level, I used a 

representative sampling using a number of genomes proportional to the number of SRAG 

cases per state to characterise geographical and temporal spread across the country. Such 

approach was likely very effective in its attempt of understanding countrywide introduction 

and spread, however of limited effectiveness for understanding local spread in some 

Brazilian regions given the small number of samples. For Chapters 4.1, 4.2 and 5, targeted 

sampling was used for the identification and characterisation of new variants and to 

understanding virus spread within and between HCW and hospital patients. In Chapter 4.1, 

two samples positive for SARS-CoV-2 infection but presenting S-gene negative PCR results 

were sequenced under the suspicion of Alpha variant infection. For Chapter 4.2, samples 

from Manaus with collection date between November 2020 and January 2021 were 

sequenced to understand the potential causes of the case upsurge in Manaus and to 

characterise the newly emerging Gamma variant. In Chapter 5, a specific proportion of 
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SARS-CoV-2 positive samples from three specific medical institutes from the same hospital 

complex were sequenced to provide insights on within- and between-hospital SARS-CoV-

2 transmission. 

Globally, the fast increase in the availability of SARS-CoV-2 genome sequences and 

the development of novel methods and technologies have increased the depth in which 

genome sequences can be used to inform and evaluate public health responses during 

epidemics.  For instance, travel histories, human mobility and epidemiological data can be 

integrated to phylodynamic frameworks to overcome limitations regarding unsampled 

locations, sampling biases and low inference accuracy (5, 117-119). Moreover, genomic 

data can also been used to estimate SARS-CoV-2 population-level epidemiological 

parameters such as R0, Rt and the overdispersion parameter k, and to assess the impact of 

interventions in virus spread (120-125). Covariates can also be input into phylogenetic 

generalised linear models (GLMs) to identify potential factors associated with virus spread 

(126-128). In Brazilian SARS-CoV-2 studies, some of these approaches have rarely if ever 

been used (129, 130), and most Brazilian publications rely on the description of newly 

generated sequences, evolutionary description of new variants, genomic diversity, or 

phylogeographic reconstruction of virus spread (25, 26, 131-138). Although genomic 

surveillance in Brazil remains uncoordinated and highly unbalanced at the national level, 

the state of São Paulo has been able to generate a large number of viral sequences during 

the ongoing COVID-19 pandemic. Such datasets could be used to understand factors 

affecting virus spread, the impact of NPIs and vaccination in the largest interconnected 

urban area of the Southern hemisphere. In addition, it will also be important to integrate 

population structure data to genomic analysis, including time-changing vaccination rates 

and spatially heterogenous contact networks. 
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6.3. Concluding remarks 
 
 
 This thesis provided invaluable information on the early SARS-CoV-2 importation 

routes and transmission, and importantly, informed on the early identification and 

characterization of newly circulating VOCs in Brazil. The work presented here highlights 

the public health impact of real-time and retrospective genomic surveillance across distinct 

temporal and geographical scales during a global epidemic threat in a LMIC. This thesis 

also provided evidence for limited effectivity of short-lived NPIs implemented across Brazil. 

On a smaller geographical scale, this thesis also showed that SARS-CoV-2 hospital 

transmission in the largest hospital complex in Brazil was higher in institutes believed to be 

SARS-CoV-2-free, such as non-COVID-19 hospitals and wards. This is of special 

importance in the context of the emergence on novel immunity-evading variants, such as 

Omicron. Overall, this thesis represents an overview of the main aspects of SARS-CoV-2 

importation, spread, evolution and public health response in Brazil. 

 The findings presented here also highlight the challenges and limitations faced by 

the genomic surveillance community in Brazil and other LMIC, and their impact in 

sequencing rates and turnaround times. Although Brazil has made an impressive effort and 

achieved great genomic surveillance capacity in the second year of the pandemic, there is 

still an urgent need for increasing surveillance capacity, especially in the most deprived 

regions of the country, and to standardise metadata collection. Lack of reagents, 

technological-dependency on developed countries and limited local human resources in 

LMIC are only some of the challenges that need to be globally addressed for genomic 

surveillance to be truly universal, COVID-19 variant tracking and public health response to 

be timely and effective, and for humanity to be prepared for the next pandemic Disease X.  
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Historical air travel data 

Historical air travel data was obtained for 29 of the countries with the highest number of 

SARS-Cov-2 cases as of 5th March 2010 (see list below). Data from the International Air 

Transport Association (IATA) was used to estimate the number of international travellers 

departing from each of the 29 countries and having Brazil as a final destination. IATA data 

corresponds to 90% of all worldwide trips on commercial flights from February to March 

2019, and market intelligence was used to model the remaining data for the same period1. 

No information on possibly interrupted journeys was available.  

SARS-CoV-2 Incidence  

SARS-CoV-2 incidence for each of the 29 of the countries was calculated using the 

confirmed SARS-CoV-2 number of cases reported by World Health Organization as of 9th 

March 20202 and the total population for each country for 2019 from the United Nations 
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World Population Prospects 2019 database {UN, 2019 #4876}. A total of 29 countries 

used in this study: Algeria, Australia, Canada, China, Croatia, Denmark, Ecuador, Finland, 

France, Germany, Greece, Indonesia, Israel, Italy, Japan, Lebanon, Malaysia, Netherlands, 

Norway, Singapore, South Korea, Spain, Sweden, Switzerland, Thailand, United Arab 

Emirates, United Kingdom, United States of America, Viet Nam. 

SARS-CoV-2 importation estimates 

Estimates on the proportion of expected importations (E) for each air travel route were 

calculated using the incidence for each route (i) and the number of passengers (p) 

(historical air travel data) following 𝐸 = 𝑖 ∗ 𝑝/∑ 𝑖 *100. The expected proportion of 

importations per country of origin (e.g. Italy) was calculated as the sum of (E) for all 

routes for starting at that specific country. Finally, the expected proportion of importations 

per Brazilian destination (e.g. Sao Paulo) was estimated as the sum of (E) for all routes 

ending at that specific destination, regardless of the country of origin. 

Correlation between estimation and cases 

To assess the accuracy of our estimates, we ran a correlation analysis between the 

estimated number of imported cases per final destination in Brazil (e.g. Sao Paulo) and the 

actual number of imported cases as reported by the Brazilian Ministry of Health on the 9th 

of March 2020.  We fitted a simple linear regression model using RStudio Version 

1.2.1335. 
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Figure S1. Correlation between the estimated proportion of imported COVID-19 cases per 

Brazilian city and the proportion of COVID importations reported Brazilian Ministry of 

Health (as of 9th March 2020). Circles are coloured according to location in Brazil and 

sized according to the number of COVID-19 imported cases reported Brazilian Ministry of 

Health (as of 9th March 2020). A linear regression model was fitted to the data using 

RStudio Version 1.2.1335. 
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Supplementary information   

Geospatial analysis  

We adopted a Bayesian hierarchical model to compute relative risk for each census tract, due 
to the following reasons: (i) there is a large number of census tracts (n=30,815), (ii) there is 
substantial heterogeneity in the size of census tracts, and (iii) small counts in each tract obscure the 
spatial distribution of observed cases.  The number of observed cases in census tract 𝑖  is modelled 
using a Poisson distribution 𝑌! = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆!  with mean 𝜆! = 𝐸!  𝜇! where 𝐸! is the expected number 
of cases under a null model in which cases are uniformly distributed among the population. For 
example, the total number of cases in the MRSP multiplied by the proportion of the population in the 

census tract 𝐸!" = !!!
!"!! !

× 𝑝𝑜𝑝!. The factor of 𝜇!  describes tract specific risk and models the 

additional variation in the observation process1. A log-linear model is used to estimate the relative risk 
𝜇!. For example, the log relative risk is expressed as a sum of an intercept 𝛼, which represents the 
overall relative risk (in our case, the global relative risk is zero), and random effects (𝑍!):  

 

log (𝜇!) = 𝛼 + 𝑍! 

 

We used a Besag-York-Mollié model (BYM)2 to separate the random effects into a spatially 
structured 𝑈!, and independent random effects, 𝑉!, so (𝑍! = 𝑈! + 𝑉!). In the BYM model, a conditional 
autoregressive (CAR) process is used to introduce correlation among the  𝑈! for each tract. Given the 
𝑈! of neighbouring tracts, the 𝑈! has a normal distribution with mean equal to the average of the 

neighbours’ 𝑈!, and variance   𝑠!! =
!

#!(!)!!
 where #𝑁(𝑖) is the number of tracts that share boundaries 

with tract 𝑖 and 𝜏! is a precision parameter. The random effect, 𝑉!  follows a zero mean normal 
distribution with unknown precision, 𝜏!= !

!!!
 (where 𝜎!! is the variance). Both random effects in the 

model capture extra-Poisson variability, and were expressed as the following:   

 
    𝑈!| 𝑈!!!~𝑁𝑜𝑟𝑚𝑎𝑙 𝑚! , 𝑠!! ,    𝑉!  ~ 𝑁(0,𝜎!!) 

𝑚! =
𝑈!!∈! !

#𝑁(𝑖)
  ,    𝑠!! =

𝜎!!

#𝑁(𝑖)
=

1
#𝑁(𝑖)𝜏!

  

 

The log of the precision parameters, 𝜏!  and 𝜏! , follows a gamma distribution with shape 1 and rate 
0.0005. These are the default priors used by R-INLA and are minimally informative3. The prior 
default distributions in R-INLA were used for the precision parameters of both 𝑈! and 𝑉!. These are 
minimally informative and are the recommended settings 4.  
 

To quantify the uncertainty in the point estimates of the mean relative risk estimates, we 
mapped the posterior probability of elevated relative risk in each census tract (Extended Data Fig. 9). 
This is the posterior probability, which a tract has an elevated risk of observing cases, formally, this is  
Prob(𝜇! > 1| data). For instance, a probability of 0.6 in a census tract indicates a 60% chance that this 
census tract is at greater risk of observing cases relative to the rest of the MRSP.  
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Analysis of the relationship between income per capita and final diagnostic category in the 
Metropolitan Region of Sao Paulo (MRSP) 

We evaluated the relationship between final diagnostic category (COVID-19 or SARI cases 
with unknown aetiology) and socioeconomic status in the subset of cases in the MRSP with geocoded 
residential information. We focused on the cases in epidemiological weeks 12, 16 and 22, where the 
census tracts that reported cases varied across weeks. In each of the three weeks, if a census tract 
reported any COVID-19 or SARI cases with unknown aetiology with unknown aetiology, we 
calculated the proportion of the number of COVID-19 cases. Since most census tracts reported only 
one case each week, the proportion of COVID-19 of each census tract were mostly either 0 or 1 in a 
given week. Based on this observation and let i index the census tracts, we subsequently defined the 
binary outcome Yi of census tract i, where (i) Yi  =  0 if census tract i only reported SARI cases with 
unknown aetiology with unknown aetiology, i.e. no COVID-19 cases, (ii) Yi  =  1 if census tract i 
reported at least one COVID-19 case in the week. Logistic regression models were applied to 
investigate the association between this binary outcome and the log(X+1) transformed income per 
capita.  The analyses were adjusted by the logarithm of the population sizes. In addition, the census 
tracts were grouped by their geographic locations using cluster analysis, and the groupings were used 
as the random effect in the logistic regressions to account for potential spatial autocorrelation. The 
number of clusters was chosen based on the AIC/BIC values of the logistic regression models.  The 
analysis was performed individually for each of epidemiological weeks 12, 16 and 22.  

A likelihood ratio test (LRT) is applied to each analysis to examine whether the log(X+1) 
transformed income per capita provides information in addition to the information from the log 
population size and the random effects. The regression coefficients and LRT P-values of income are 
presented in (Supplementary Table S3). 

 

Estimating basic reproduction number (R0) 

Since SARS-CoV-2 is a novel virus, and we are subsetting data to avoid the impact of either 
non-pharmaceutical interventions or depletion of the susceptible pool, we deemed it reasonable to 
model the incidence of infection with an exponential approximation to the early behaviour of an SIR 
model, i.e., the incidence grows exponentially 5. This model makes several strong assumptions about 
the dynamics of the epidemic: (i) the populations under consideration mix homogeneously, (ii) the 
proportion of the population that is susceptible stays close to 100%, (ii) the proportion of infections 
that are observed, and the basic reproduction number are constant throughout time, and (iv) the delay 
between infection, and notification is a constant. Although there are obvious violations of these 
assumptions, they provide a convenient starting point for estimating the basic reproduction number. 
Ignoring the delay between infection and observation will on average only translate the results in time 
by the incubation period and the delay from infection to diagnosis. 

Under the assumptions outlined above, the expected number of daily cases, 𝜇(𝑛) on day 𝑛 is 

given by the following equation: 𝜇(𝑛) = 𝜌R0𝛾𝑖0𝑒(R0−1)𝛾.𝑛 where 𝜌 is the probability of an infection being 

counted in the time series, R0, is the basic reproduction number, 𝛾 is the rate at which individuals 

cease to be infectious and i0, is the proportion of the population that was infectious at the start of the 
observations. We assume that the observed number of cases on day n was drawn from a negative 
binomial observation where the mean is 𝜇(𝑛) and the variance, 𝜎 = 𝜇 + 𝜇2/𝑘, with fixed size 

parameter, 𝑘 (dispersion parameter). The product of 𝜌 and 𝑖0 is denoted ξ. Since the probability of 
being observed and the initial condition only appear as the product ξ in the likelihood, there is an 
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identifiability problem preventing the estimation of 𝜌 and 𝑖0 individually, consequently we only 

consider their product, ξ. Although in this model it is theoretically possible to estimate both R0 and 𝛾, 

in practice this is difficult so we will use an informative prior to constrain 𝛾 to a priori plausible 

values. 

Regarding prior distributions, for R0 we used a uniform prior over values from 1 to 10. The 
removal rate, 𝛾, was given an informative prior distribution: a normal distribution with mean (1/5 + 

1/14) / 2 = 0.1357, leading to an average duration 7.4 days during which an individual is infectious. 
Moreover, the average duration of infectivity is constrained to be between the extremes of 5 and 14 
days. These values for the infective duration were found in the literature 6,7. The standard deviation of 
the prior distribution for 𝛾 is (1/5 - 1/14) / 4 = 0.03124, this ensures that 95% of the prior probability 

lay within these bounds. For the parameter ξ, we used a log-normal prior with a log mean of 0.0 and a 
log standard deviation of 1.0. For the size parameter of the negative binomial, k, a log-normal 
distribution was used with a log-mean of 0.0 and log-standard deviation of 1.0 to enable this 
parameter to have a large range of values. 

Samples from the posterior distribution were obtained using MCMC running 4 chains from 
random initial conditions using the mcmc library available on CRAN2 and using coda for 
diagnostics8,9. Trace plots of the posterior samples suggested that the chain had converged and mixed, 
and there was an effective size of at least several hundred for each of the 4 parameters of this model. 
The prior and posterior distributions were checked to ensure that (beyond the removal rate) each 
parameter was being informed by the data. Each data set: Brazil and Europena countries (Italy, the 
United Kingdom, France, and Spain) or Brazilian states (São Paulo, Rio de Janeiro, Amazonas, and 
Ceará) were run as independent analyses, the model fit from the point estimate along with the 
corresponding trace plots and prior/posterior comparisons is shown in Extended Data Figs. 5 and 6. 
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Materials and Methods 

Ethical statement 

Residual nasopharyngeal, tracheal and bronchial aspirate samples testing positive for 

SARS-CoV-2 by RT-qPCR were obtained from public health and private medical diagnostics 

laboratories (Table S1). All samples were de-identified before receipt by the researchers. Ethical 

approval for this study was confirmed by the national ethical review board (Comissão Nacional 

de Ética em Pesquisa), protocol number CAAE 30127020.0.0000.0068. 

 

Epidemiological data 

We analysed case counts and deaths from the Sistema de Informação da Vigilância 

Epidemiológica da Gripe (SIVEP-Gripe). The SIVEP-Gripe was created in 2009 for the H1N1 

influenza pandemic and centralizes the notification of severe acute respiratory infection (SARI) 

cases for the Brazilian Ministry of Health. This database contains mostly hospitalized cases, 

while the non-hospitalized cases are mostly notified in the e-Sistema Único de Saúde (eSUS) 

Vigilância Epidemiológica database that is not available for public consultation. The SARI case 

definition used since 2012 includes hospitalized patients of any age, with a flu-like syndrome 

(fever and cough or throat pain) that present dyspnoea or O2 saturation <95% or respiratory 

discomfort. Registered deaths due to SARI are also included independent of hospitalization. The 

SARI database has been made publicly available on a daily basis and can be retrieved at 

https://opendatasus.saude.gov.br/dataset/bd-srag-2020 (accessed 1 June 2020). COVID-19 daily 

case counts for confirmed cases and deaths were downloaded from the official database of the 

Brazilian Ministry of Health (https://covid.saude.gov.br/). The 2-letter ISO 3166-1 codes for the 

27 federal units in Brazil (26 federal states and 1 federal district) are as follows: AC=Acre, 

AL=Alagoas, AM=Amazonas, AP=Amapá, BA=Bahia, CE=Ceará, ES=Espírito Santo, 

DF=Distrito Federal, GO=Goiás, MA=Maranhão, MG=Minas Gerais, MS=Mato Grosso do Sul, 

MT=Mato Grosso, PA=Pará, PB=Paraíba, PE=Pernambuco, PI=Piauí, PR=Paraná, RJ=Rio de 

Janeiro, RN=Rio Grande do Norte, RO=Rondônia, RR=Roraima,  RS=Rio Grande do Sul, 

SC=Santa Catarina, SE=Sergipe, SP=São Paulo, and TO=Tocantins. 

 

Estimates of human mobility flows  

Openly-available Google Community Mobility Reports for São Paulo and Rio de Janeiro 

city were used to obtain an aggregated estimate of daily percent changes in mobility and include 

changes in visits to places compared to baseline values for a 5-week period between 3 January to 

6 February, 2020 (available at: https://www.google.com/covid19/mobility/) (41). We compare 

the Google Community Mobility Reports to temporally-aggregated anonymised mobile phone 

mobility data that is freely provided by the Brazilian company InLoco which gathers data from 

more than 60 million mobile devices spread in all areas of Brazil (available at: 

https://mapabrasileirodacovid.inloco.com.br/pt/) (42). Data consists of pairs of origin-destination 

trips within and between states of Brazil, with approximately 10 to 12 million trip records of 

more than 1km per day (42). Data was anonymized and pre-processed by the company, which 

has wide national coverage across Brazil, sampling approximately one fourth of the Brazilian 

population, focused on smartphone users, as previously described (18, 42, 43). In this case, daily 

population-level mobility was measured for São Paulo and Rio de Janeiro from 1 January to 30 

April 2020 (baseline 1 January to 29 February).  
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Reproduction number using epidemiological and mobility data 

A Bayesian semi-mechanistic model was used to estimate transmission intensity and attack 

rates of COVID-19 conditional on the reported number of deaths (available at  

https://opendatasus.saude.gov.br/dataset/bd-srag-2020). Considering both Rio de Janeiro and São 

Paulo cities, four covariates related to mobility are considered. These describe the reduction or 

increase in mobility in parks (𝑘 = 1), transit stations (𝑘 = 2) and the average of groceries and 

pharmacies, retail and recreational areas, and workplaces (𝑘 = 3). Their average was calculated 

because these variables are collinear. 

In addition, a social isolation index provided by InLoco geolocation company and recorded 

at city level (42, 43) (see previous section) was also introduced in the model as an additional 

covariate (𝑘 = 4). The time-varying reproduction number R (or 𝑅𝑡) is modelled as a function of 

Google mobility variables and the city isolation index. The approach is similar to that described 

by Mellan et al. (22) but replaces the Google mobility residential covariate with the InLoco 

isolation index, on the basis that a city level index is preferred over state level to model deaths at 

city level. In the end, we observed that the choice of using the InLoco isolation index over the 

Google residential index has a marginal effect on the 𝑅𝑡 predictions (not shown). 

Furthermore, to account for residual variation beyond that included in the mobility 

parameterization of 𝑅𝑡, a second order autoregressive (AR2) random process was included in the 

model. The AR2 process accounts for residual correlation structure fitting random effects on a 

weekly basis, from the start of the epidemic in each city, up to the three weeks before the final 

time reported. For further details on implementation, see (20). Model parameters were jointly 

estimated for both cities using partial pooling. Denote 𝐼𝑘,𝑡,𝑚 as the 𝑘-th Google mobility 

indicator, at time 𝑡 for city 𝑚. The time-varying reproduction number for city 𝑚, 𝑅𝑡,𝑚, is 

modelled by: 

 

𝑅𝑡,𝑚 = 𝑅0,𝑚 ∙ 2𝜆−1 (−∑(𝛼𝑘 + 𝛽𝑚,𝑘)(𝐼𝑘,𝑡,𝑚 + 𝐵𝑘) − 𝜀𝑚,𝑤𝑚(𝑡)

4

𝑘=1

) 

 

 

where 𝜆−1 denotes the logistic function, 𝛼𝑘 the effects shared between 𝑀 cities and 𝛽𝑚,𝑘 

city-specific effects. 𝜀𝑚,𝑤𝑚(𝑡) denotes a weekly (AR2) process that accounts for fitting extra 

variation not captured by the designated covariates. 𝐵𝑘 denotes noise in the baseline and is set to 

𝐵𝑘 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,0.25). Prior distributions for the partial pooling model were set as: 

 
 

𝛼𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,0.5) 
 

𝛽𝑚,𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛾), with 𝛾 ∼ 𝑁(0,0.5) 
 

 

while the prior distribution for 𝑅0,𝑚 was chosen to be: 

 

𝑅0,𝑚 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(3.28, |𝜅|) 
𝜅 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,0.5) 
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with 𝜅 being the same between both cities to share information about the variability of 𝑅0,𝑚. 

The value of 3.28 was used in (21, 22) based on (44).  

We note that identifying the outcome NPI relaxation is inherently challenging due to the 

asymmetric nature of the changes in population behaviour that NPIs affect - typically an initial 

step-like response followed by slow release. For example, mobility indicators suggest a non-

negligible fraction of the population began to relax their behaviour almost shortly after the 

interventions (that were not implemented strictly), as evidenced by the slight upward trend in R 

for São Paulo (see Fig. 1C, Table S1), while a substantial proportion of the population 

effectively continues to observe mandated NPIs even after relaxation. 

 

Sample and metadata collection 

SARS-CoV-2 convenience samples were collected between March 5 and April 30, 2020, 

from patients residing in 18 of the 27 Brazilian federal states. Positive samples were provided for 

diagnostic, confirmatory testing or genome sequencing purposes by public and private 

laboratories. SARS-CoV-2 diagnosis was performed using the Charité and/or the Centre for 

Disease Control real-time quantitative polymerase chain reaction (RT-qPCR) assays (24, 45). 

Residual samples were processed for genome sequencing at the Institute of Tropical Medicine- 

University of São Paulo, National Laboratory for Scientific Computation and University of 

Campinas (Table S1). Minimum metadata for processed samples included date of sample 

collection (day, month and year), sex, age, municipality and state of residence in Brazil. To guide 

our sequencing efforts and to maximize data representativity, the number of new samples 

processed per state was selected to maximize its correlation with cumulative number of 

confirmed cases per state, according to up to date case count information (see section on 

Epidemiological Data). 

 

Virus multiplex PCR amplification 

SARS-CoV-2 positive samples were sequenced using a targeted multiplex PCR amplicon 

approach with the MinION sequencing platform (Oxford Nanopore Technologies, ONT, UK). 

RNA was converted to cDNA using the Protoscript II First Strand cDNA synthesis Kit (New 

England Biolabs, UK) and random hexamers or SuperScriptIV First-Strand Synthesis System 

(Thermo Fisher Scientific, USA). Whole-genome amplification was performed with multiplex 

PCR amplification using the SARS-CoV-2 primer scheme (V1 to V3) and Q5 High-Fidelity 

DNA polymerase (New England Biolabs, UK) (46) (https://artic.network/ncov-2019). PCR 

products were cleaned-up using AmpureXP purification beads (Beckman Coulter, United 

Kingdom) and quantified using fluorimetry with the Qubit dsDNA High Sensitivity assay on the 

Qubit 3.0 instrument (Life Technologies, USA). Amplicons from each sample were normalised 

and pooled in an equimolar fashion and barcoded using the EXP-NBD104 (1–12) and EXP-

NBD114 (13–24) Native Barcoding Kits (Oxford Nanopore Technologies, UK).  

 

Whole genome sequencing and genome assembly 

Sequencing libraries were generated using the SQK-LSK109 Kit (ONT, UK) and were 

loaded onto an R9.4.1 flow-cell (ONT, UK). RAMPART software from the ARTIC Network 

(https://artic.network/ncov-2019) was used to monitor the sequencing run in real-time to estimate 

the depth of coverage (target of 200-fold) across the genome for each barcoded sample 

(https://artic.network/rampart) and samples were sequenced between 8 to 48 hours. After the 

completion of the sequencing runs, fast5 files were basecalled, demultiplexed, and trimmed 
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using Guppy software v2.2.7 (ONT, UK). The consensus genomes were obtained by the 

mapping of fastq files to the reference genome of SARS-CoV-2 isolate Wuhan-Hu 1 (GenBank 

Accession Number MN908947) using minimap2 v2.28.0 and converted to a sorted BAM file 

using SAMtools (47). Length filtering and the quality test was performed for each barcode using 

ARTIC guppyplex (https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html). The 

genome statistics were obtained from SAMtools and the Tablet viewer (48) and to recover 

consensus sequences, called variants were detected with nanopolish. Individual nanopore 

sequencing statistics can be found in Data S1. Genome regions with a depth of <20-fold were 

not included in final consensus sequences, and these positions are represented with N characters. 

 

Quality control of genome consensus sequences 

To ensure the quality of our downstream analyses, we undertook stringent quality control 

steps on a total of 499 genomes generated for this study. Firstly, only sequences with genome 

coverage above a given cut-off were included to guarantee the highest possible phylogenetic 

accuracy of the resulting datasets. Given the current lack of genome coverage thresholds for 

SARS-CoV-2 phylogenetic studies, we used a conservative cut-off of 75.0% to guarantee 

phylogenetic accuracy. Thus, we removed 72 partial genomes (mean genome coverage of 46.9%, 

range 0.1 to 74.6%) from our data. We used MAFFT automatic algorithm to build a multiple 

sequence alignment of the resulting dataset (49). We estimated maximum likelihood phylogenies 

using an alignment of 427 near-complete and complete genomes using a Hasegawa-Kishino-

Yano (HKY + Γ) nucleotide substitution model (50) with a gamma distribution to describe 

among-site variation in the rate of nucleotide substitution (51) in IQTree v.2 (52). We then 

regressed root-to-tip genetic divergence against sampling dates to investigate the temporal signal 

of our datasets and to identify sequences with low data quality (e.g. with assembling issues, 

sequencing and alignment errors, data annotation errors and sample contamination) (53). No 

obvious outliers were identified in this step. Finally, we assessed genome sequence quality 

through quality control scores and identified virus lineages using Pangolin 

(https://github.com/cov-lineages/pangolin) (6) and CoV-GLUE (cov-glue.cvr.gla.ac.uk/) (54). 

All sequences passed the quality control steps.   

 

Collation of SARS-CoV-2 global datasets  

Our genome dataset contains 427 near-complete and complete new genomes from 18 out of 

27 Brazilian states. We appended this data to 63 other Brazilian genomes available in GISAID 

(29) until May 5, 2020 (https://www.gisaid.org), generating a dataset of 490 Brazilian genomes 

that covers 21 out of the 27 Brazilian states. Sampling collection dates of Brazilian sequences 

ranged from February 25 2020 [first reported case in Brazil (55)] to 30 April 2020. The Brazilian 

datasets represent approximately 1 sequence for every 200 cases (0.5%) notified up to April 30, 

2020; including 3.6% of all cases notified in the city of São Paulo as of 5 April 2020 (the day of 

our most recent sequence from São Paulo), 1.27% of all cases notified in the city of Rio de 

Janeiro as of 24 April 2020 and 3.13% of all cases notified in the city Fortaleza as of 6 April 

2020 (the day of our most recent sequence from Fortaleza). Representativity of the genome data 

with regards to the number of cumulative SARS-CoV-2 cases in each state up until the date of 

the last sequenced sample (30 April 2020) can be found in Fig. 2A and Fig. S2. We appended 

Brazilian data to two global datasets prepared from genome data deposited in GISAID 

(https://www.gisaid.org). The first global dataset contains 710 subsampled sequences to include 

one genome per country per day (based on sample collection day) available until April 24, 2020 
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(named hereafter as “subsampled dataset”). The second dataset (“full dataset”) contains 13,406 

sequences made available until May 5, 2020.  

 

In silico analysis of molecular diagnostic assays   

The presence of frequently identified mismatches in several diagnostic RT-qPCR assays 

suggests that certain assays may be less appropriate for use in Brazil than other diagnostic assays 

in which no mismatches were identified. We used a custom Python script to analyse mismatches 

between sequences of Brazilian SARS-CoV-2 genomes to sequences of primers and probes used 

in 13 common assays (24, 56-61).The relevant binding site sequence in every genome was 

compared to each primer or probe sequence, and the position and bases of any mismatching sites 

were recorded. If any unknown bases (i.e., Ns) were present in the binding site sequence, that 

genomic sequence was excluded in analyses of the relevant primer or probe. If other (i.e., non-N) 

ambiguous bases were present in the primer or probe or within the genomic binding site, the 

genome was not excluded. In such cases, a mismatch is recorded if the set of bases allowable by 

the primer/probe sequence does not intersect with the set of bases allowable by the genomic 

binding site sequence. For each primer, we plotted the proportion of mismatching bases at each 

site in the genomes considered from the alignment, and coloured by the mismatching base in the 

Brazilian sequence (Fig. S5). 

 

Phylogenetic analysis of SARS-CoV-2 in Brazil 

Maximum likelihood phylogenies were estimated for the global subsampled and full 

datasets in IQTree v.2 (52) using an HKY + Γ (50, 51) as described above. As recombination is a 

relatively frequent evolutionary mechanism in coronaviruses, we screened our datasets for 

recombination using the Phi-test approach (62) in SplitsTree (63) and all available methods in 

RDP4 (64). No evidence of recombination was found in either datasets. Dated phylogenies were 

estimated under HKY + Γ nucleotide substitution model and a strict molecular clock in BEAST 

v.1.10.4 (65) that assumes constant evolutionary rates throughout the phylogeny. Bayesian 

analyses were run using BEAGLE (66) in duplicate for a length of 250 million Markov chain 

Monte Carlo (MCMC) steps using both a parametric exponential growth tree prior and a non-

parametric skygrid tree prior (67). For the skygrid model we used 24 grid points that 

corresponded to the approximate number of weeks between the x-intercept in the root-to-tip 

distance correlation with sampling dates obtained from the ML tree of the global subsampled 

dataset. A non-informative continuous time Markov Chain (CTMC) prior (68) was used for the 

clock rate. Convergence of the MCMC chains was inspected using Tracer v.1.7.1 (69). After 

removal of 10% burn-in, log and tree files were combined and resampled using LogCombiner 

v.1.10.4. (65) to obtain a posterior sample of 1,000 dated phylogenetic trees. Maximum clade 

credibility (MCC) summary trees were generated using TreeAnnotator v.1.10.4 (65). Brazilian 

clades were defined as clades identified in the Bayesian MCC trees with three or more sequences 

sampled in Brazil falling in the same clade with >75% of the sequences in that clade collected in 

Brazil (Fig. S10). Clade ages were obtained directly from MCC trees.  

 

Temporal phylogeography 

To reconstruct geographic history of SARS-CoV-2 in Brazil we modelled instantaneous 

transitions between locations in the global subsampled dataset using a discrete asymmetric 

phylogeographic approach (70). To enhance computational time, analyses were run on an 

empirical distribution posterior dated trees as previously described (71). We considered several 
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discretization schemes. First, taxa were assigned to two locations, “Brazil” and “Others” (k=2, 

scheme A). Second, taxa were assigned to the following locations: “North America”, “Europe”, 

“Asia”, “Oceania”, “Africa”, and to the five Brazilian regions of “Southeast”, “Northeast”, 

“North”, “Centre-West”, “South” (k=10, scheme B). Thirdly, we considered movement across 

states in Brazil (k=21, scheme C). We then estimated the number of migration events over time 

on a branch-by-branch basis using a Markov jumps (72-74) approach implemented in BEAST 

v.1.10.4 (65). Discretization scheme A was used to quantify the number of virus lineage 

introductions in Brazil (see annotated tree in Fig. 3A and Fig. S9). To count the number of 

migrations (i) from locations outside Brazil to any Brazilian location and (ii) from one Brazilian 

location to another Brazilian location, relative to the total number of transitions during the same 

time interval we used scheme B (Fig. 3B and Fig. S11). Finally, to investigate source-sink 

dynamics of virus spread within Brazil, we estimate the number of transitions into and out of 

each state considering locations discretized as in scheme C (Fig. S10).  

To model phylogenetic diffusion of Brazilian lineages across the country, we used a flexible 

relaxed random walk (RRW) diffusion model that accommodates branch-specific variation in 

rates of dispersal with a Cauchy distribution (75). We focus on Brazilian clades with three or 

more strains as inferred in our discrete phylogeographic analysis. To enhance computational 

time, we use a fixed time-georeferenced MCC tree and we estimate the evolution of number of 

virus lineage movements within a given federal unit and between federal units in Brazil across its 

evolutionary history, as described recently (37). In brief, for each sequence, latitude and 

longitude were attributed to a point randomly sampled within the patient’s municipality of 

residence (samples were derived from a total of 100 municipalities out of the 5,570 

municipalities in Brazil, Data S1). MCMC chains were run for >10 million generations and 

sampled every 1000th step, with convergence assessed using Tracer v1.7 (68). We used the R 

package “seraphim” (76, 77) to extract and map spatiotemporal information embedded in 

posterior trees.  

 

Air travel mobility data 

Data on air passenger flows were analysed using public data produced by Brazil’s Civil 

Aviation Agency (ANAC). These data provided detailed information, including the number of 

passengers and connections, for every international flight to and from Brazil, as well as national 

flights within the country. The data set is available at https://www.anac.gov.br/assuntos/setor-

regulado/empresas/envio-de-informacoes/base-de-dados-estatisticos-do-transporte-aereo. Using 

ANAC’s data, we calculated the daily number of passengers who disembarked or had a national 

connection in each Brazilian city between January and April in 2019 and 2020 disaggregated by 

airport and country of origin. When aggregating international passenger flows, we considered the 

final destination where they disembarked whenever this information was available. Information 

was missing for 23,254 (60%) international flights that arrived in Brazil between January and 

March of 2019 and 2020. As a result, the numbers of passengers arriving in international airport 

hubs in Brazil might be overestimated. A related limitation of this database is that it does not 

track individual trajectories. Consequently, passengers who make connections on flights with 

different numbers are counted in the origin-destination pair of the last leg of the trip. 
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Fig. S1 

Sequencing statistics. (A) Average coverage depth, (B) number of bases whose coverage is 

above 25x, (C) genomic distribution of the number of mapped reads and (D) percentage of 

covered bases for sequences generated by this study.  
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Fig. S2 

Distribution of Brazilian SARS-CoV-2 genomes (n=427) by state and collection date. (A) 

SARS-CoV-2 genomes are grouped according to federal state of sample collection. Sampling per 

state was proportional to the number of severe acute respiratory illness (SARI) cases for each 

state. (B) Date of SARS-CoV-2 genomes grouped according to federal state of collection. 

Colours represent federal state of origin. Dates range from the 25 February (first reported 

Brazilian case) to the 30 April 2020.  
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Fig. S3 

Genome coverage plotted against RT-qPCR cycle threshold value. Each circle corresponds to a 

sequenced genome with 20-fold coverage >75%. Each sample is coloured by the number of days 

between onset of symptoms (red to blue) to date of sample collection. Circles with no colour 

indicate samples for which information on onset of symptoms was unavailable. 
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Fig. S4 

Spatial representativity of the genome data generated in this study (n=427) and publicly available 

sequences from Brazil available in GISAID (n=63). SARI cases (A) and deaths (B) of SARS-

CoV-2 confirmed cases plus cases with unknown aetiology (excluding those cases that tested 

positive for other respiratory pathogens). SARS-CoV-2 SARI cases (C) and deaths (D) 

correspond to cases and deaths confirmed to be SARS-CoV-2 positive using molecular, clinical 

and epidemiological criteria. Epidemiological data is available at 

https://opendatasus.saude.gov.br/dataset/bd-srag-2020. Cumulative cases until the 30 April 2020 

(date of the most recent genome sequence) were used for the correlation analysis. 
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Fig. S5 

Distribution of SARS-CoV-2 lineages per Brazilian state. SARS-CoV-2 lineage identification for 

490 Brazilian genomes was performed using Pangolin (github.com/hCoV-2019/pangolin) (6) and 

CoV-GLUE (cov-glue.cvr.gla.ac.uk/) (54) tools. States are defined by their 2-letter ISO 3166-1 

codes. 
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Fig. S6 

In silico analysis of primer/probe mismatches to Brazilian strains. Proportion of Brazilian SARS-

CoV-2 genomes used on this study that are not exactly complementary to primer/probe bases for 

each primer/probe site. The number of genomes considered here is variable for each primer or 

probe because genomes with Ns in primer or probe binding sites were excluded from analyses 

(as detailed in Materials and Methods). This number, and the sequence information for each 

primer or probe, is given in Table S2. Site positions are given relative to the primer/probe 

sequence (5’ to 3’). Colours represent bases in the Brazilian SARS-CoV-2 genomes that do not 

match the primer/probe sequence. Note that the number of positions displayed on the x-axis for 

each assay is given as the length of the longest primer or probe in that assay, and therefore not all 

marked site positions with lack of mismatches displayed are relevant.  
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Fig. S7 

Maximum likelihood phylogenies estimated using the global subsampled dataset (n=1,182) were 

coloured according to two schemes: (A) “Brazil” (n=490) and “Others” (n=692) (k=2, scheme 

A) and (B) “CADDE study” (n=427) and “Other studies” (n=755) (k=2).  
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Fig. S8 (separate PDF file) 

Detailed annotated maximum clade phylogenetic tree. Time-resolved maximum clade credibility 

phylogeny of 1,182 SARS-CoV-2 sequences, 490 from Brazil (red) and 692 from outside Brazil 

(blue). The largest Brazilian clusters are highlighted in grey (Clade 1, Clade 2 and Clade 3). 

States are defined by their 2-letter ISO 3166-1 codes. The MCC tree can be found at our Dryad 

repository (see Data Availability). 
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Fig. S9 

Detailed view of main Brazilian phylogenetic clades. Maximum clade credibility tree was 

generated from 490 Brazilian genomes plus 692 genomes from other countries under a 

phylogeographic discrete trait analysis implemented in BEAST v1.10.14 (65) (for details, see 

Methods section). Colours are assigned according to Brazilian state. Black colour was assigned 

to branches with high location uncertainty. States are defined by their 2-letter ISO 3166-1 codes. 

The phylogeographic MCC tree can be found in our Dryad repository (see Data Availability). 
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Fig. S10 

Estimated dates of emergence of SARS-CoV-2 main clades in Brazil were summarized from 

MCC trees (median and 95% BCIs) estimated using a parametric exponential growth (left), a 

non-parametric Skygrid model (centre) and a discrete trait analysis (DTA) as presented in fig. 3A 

(right). Dated phylogenies were estimated under HKY + Γ nucleotide substitution model and a 

strict molecular clock that assumes constant evolutionary rates throughout the phylogeny. XMLs 

used for the Bayesian analyses can be found in our Dryad repository (see Data Availability). 
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Fig. S11 

Geographic distribution of Brazilian SARS-CoV-2 clusters. 490 SARS-CoV-2 Brazilian 

sequences were grouped according to Brazilian state of collection and SARS-CoV-2 

phylogenetic cluster as identified from the Maximum Clade Credibility (MCC) tree generated 

under a Bayesian phylogenetic approach using BEAST v1.10.14 (65) (for details see methods 

section). States are defined by their 2-letter ISO 3166-1 codes. 
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Fig. S12 

Estimated proportions of geographic transition events for each Brazilian state. Transitions have 

been estimated using a phylogeographic approach with Markov jumps implemented in BEAST 

v1.10.14 (65) (see methods for details). For each state the proportion of international (imports 

and exports) and national (imports and exports) were calculated from the total estimated for each 

event type. Blue denotes international events, while pink denotes national events. The XMLs 

used for these analyses can be found at our Dryad repository (see Data Availability). 

 

 

  

216

Appendix - Chapter 3Appendix



 

 

 

Fig. S13 

Impact of the COVID-19 epidemic on international travel to Brazil. Number of inbound 

international passengers flying to Brazil for the top countries of origin as made available by the 

National Civil Aviation Agency of Brazil (ANAC). Dark grey dots represent the daily number of 

passengers in 2019. Coloured plots and lines represent the number of passengers and the trend 

line for 2020, respectively. Dotted grey line shows the day of the first confirmed case in Brazil. 
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Fig. S14 

SARS-CoV-2 spread in southeast Brazil before (left) and after (right) 21 March 2020. This is an 

expanded version of the maps in fig. 4A of main text. Circles represent nodes of the MCC 

phylogeny and are coloured according to their inferred time of occurrence. Shaded areas 

represent the 80% high posterior density (HPD) interval and depict the uncertainty of the 

phylogeographic estimates for each node. Solid curved lines denote the links between sequences 

and the directionality of movement. In addition to the clusters included in the continuous 

analysis, sequences belonging to clusters with less than 3 sequences were also plotted in the map 

with no lines connecting them.  
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Fig. S15 

Impact of the COVID-19 epidemic in domestic air travel in Brazil. Fold change was calculated 

using the number of domestic flights and passengers before and after 15 March as made 

available by the National Civil Aviation Agency of Brazil (ANAC). Data was grouped according 

to flight distance.   
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Table S1.  

City-level estimates of time-varying reproduction number R for São Paulo and Rio de Janeiro 

based on deaths reported in the SARI SARS-CoV-2 dataset (available at 

https://opendatasus.saude.gov.br/dataset/bd-srag-2020, accessed 1 June 2020). R is estimated on 

4 May 2020 with 95% Bayesian Credible Intervals (BCIs). 7-day mean values are also given 

from 27 April 2020 to 4 May 2020. 

 

 

 

City R 95% BCI R 95% BCI 7-day average 

São Paulo 1.3 (1.0, 1.6) 1.2 (0.9, 1.7) 

Rio de Janeiro 1.3 (1.0, 1.6) 1.2 (0.9, 1.5) 
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Table S2.  

Genomic laboratories and protocols involved in this study. Ct = real-time quantitative 

polymerase chain reaction (RT-qPCR) cycle threshold. No. = number. Individual sample level 

information on sequenced data can be found in Data S1. See also Table S2 for detailed 

information on the assays used here for molecular diagnostic.  

 

 

Sequencing 

Institution 

Sample  

Type 

Diagnostic 

Protocol 

Sequencing 

Protocol 

No. generated 

genomes 

IMT-USP NPS/BAL (n=32), NPS 

(n=112), NPS/OPS 

(n=21), OPS (n=3), 

TS (n=6) 

Charité 

ARTIC V1 

(n=7), V2 

(n=210) and 

V3 (n=56) 

273 

UFRJ-LNCC 
NPS (n=36), 

NPS/OPS (n=52) 

Charité 

and CDC 

USA 

ARTIC V3 

(n=88) 
88 

UNICAMP BAL (n=1), NPS 

(n=64), TA (n=1) 
Charité 

ARTIC V3 

(n=66) 
66 
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Table S3.  

Assay, and sequence information for each primer and probe included in the in-silico analysis. N 

represents the number of Brazilian sequences (total of 490) with sufficient information at given 

primer of probe binding sites. 

 
Assay Primer/probe Sequence N 

2019-nCoV_N1 2019-nCoV_N1-F GACCCCAAAATCAGCGAAAT 479 

2019-nCoV_N1 2019-nCoV_N1-P ACCCCGCATTACGTTTGGTGGACC 478 

2019-nCoV_N1 2019-nCoV_N1-R TCTGGTTACTGCCAGTTGAATCTG 478 

2019-nCoV_N2 2019-nCoV_N2-F TTACAAACATTGGCCGCAAA 435 

2019-nCoV_N2 2019-nCoV_N2-P ACAATTTGCCCCCAGCGCTTCAG 434 

2019-nCoV_N2 2019-nCoV_N2-R GCGCGACATTCCGAAGAA 434 

2019-nCoV_N3 2019-nCoV_N3-F GGGAGCCTTGAATACACCAAAA 473 

2019-nCoV_N3 2019-nCoV_N3-P AYCACATTGGCACCCGCAATCCTG 478 

2019-nCoV_N3 2019-nCoV_N3-R TGTAGCACGATTGCAGCATTG 478 

E_Sarbeco E_Sarbeco_F1 ACAGGTACGTTAATAGTTAATAGCGT 489 

E_Sarbeco E_Sarbeco_P1 ACACTAGCCATCCTTACTGCGCTTCG 479 

E_Sarbeco E_Sarbeco_R2 ATATTGCAGCAGTACGCACACA 479 

HKU_N HKU-NF TAATCAGACAAGGAACTGATTA 434 

HKU_N HKU-NP GCAAATTGTGCAATTTGCGG 435 

HKU_N HKU-NR CGAAGGTGTGACTTCCATG 434 

HKU_ORF1b-nsp14 HKU-ORF1b-nsp14F TGGGGYTTTACRGGTAACCT 481 

HKU_ORF1b-nsp14 HKU-ORF1b-nsp14P TAGTTGTGATGCWATCATGACTAG 484 

HKU_ORF1b-nsp14 HKU-ORF1b-nsp14R AACRCGCTTAACAAAGCACTC 485 

N N_F GGGGAACTTCTCCTGCTAGAAT 463 

N N_P TTGCTGCTGCTTGACAGATT 470 

N N_R CAGACATTTTGCTCTCAAGCTG 460 

N_Sarbeco N_Sarbeco_F1 CACATTGGCACCCGCAATC 478 

N_Sarbeco N_Sarbeco_P1 ACTTCCTCAAGGAACAACATTGCCA 466 

N_Sarbeco N_Sarbeco_R1 GAGGAACGAGAAGAGGCTTG 471 

NIID_2019-nCOV_N NIID_2019-nCOV_N_F2 AAATTTTGGGGACCAGGAAC 436 

NIID_2019-nCOV_N NIID_2019-nCOV_N_P2 ATGTCGCGCATTGGCATGGA 435 

NIID_2019-nCOV_N NIID_2019-nCOV_N_R2 TGGCAGCTGTGTAGGTCAAC 438 

ORF1ab ORF1ab_F CCCTGTGGGTTTTACACTTAA 488 

ORF1ab ORF1ab_P CCGTCTGCGGTATGTGGAAAGGTTATG

G 

298 

ORF1ab ORF1ab_R ACGATTGTGCATCAGCTGA 295 

RdRP_SARSr RdRP_SARSr-F GTGARATGGTCATGTGTGGCGG 490 
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RdRP_SARSr RdRP_SARSr-P2 CAGGTGGAACCTCATCAGGAGATGC 490 

RdRP_SARSr RdRP_SARSr-R CARATGTTAAAWACACTATTAGCATA 490 

WH-NICN WH-NICN-F CGTTTGGTGGACCCTCAGAT 478 

WH-NICN WH-NICN-P CAACTGGCAGTAACCA 478 

WH-NICN WH-NICN-R CCCCACTGCGTTCTCCATT 477 

Wuhan-TM2020 Wuhan-TM2020For TCGTGCTACAACTTCCTCAAG 467 

Wuhan-TM2020 Wuhan-TM2020Probe CCGCCTCTGCTCCCTTCTGC 470 

Wuhan-TM2020 Wuhan-TM2020Rev CTGCCWGGAGTTGAATTTCTTG 471 
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Data S1 (separate CSV file) 

Detailed metadata on all 1,182 sequences used in this study. File contains information on 

epidemiology, demography, location, diagnostics, sequencing statistics and evolution of 427 

SARS-CoV-2 sequences generated in this study and 755 sequences downloaded from GISAID. 

Data S2 (separate Excel file) 

Acknowledgment GISAID table. File contains Accession ID, collection date, originating and 

submitting lab and authors, from https://www.gisaid.org.  
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Members of the Brazil-UK Centre for Arbovirus Discovery, Diagnosis, Genomics and 

Epidemiology (CADDE) Genomic-Network 

Cynthia Chester Cardoso, Orlando da Costa Ferreira Jr., Rodrigo Moraes Brindeiro, Diana 

Mariani, Alice Laschuk Herlinger, André Felipe Andrade dos Santos, Anna Carla Pinto 

Castineiras, Camila de Almeida Velozo, Camila Nacif, Camille Victoria Leal Correia da Silva, 

Caroline Macedo Nascimento, Cassia Cristina Alves Gonçalves, Cíntia Policarpo, Débora Souza 

Faffe, Ekaterine Simões Goudoris, Elaine Sobral, Elisangela Costa da Silva, Érica Ramos dos 

Santos Nascimento, Fabio Hecht Castro Medeiros, Fábio Luís Lima Monteiro, Fernando Luz de 

Castro, Francine Bittencourt Schiffler, Guilherme Sant'Anna de Lira, Helena Keito Toma, Huang 

Ling Fang, Ingrid Camelo da Silva, Isabela de Carvalho Labarba, Isabela de Carvalho Leitão, 

Jessica Maciel de Almeida, Joissy Aprigio de Oliveira, Juliana Cazarin de Menezes, Juliana 

Tiemi Sato Fortuna, Karyne Ferreira Monteiro, Lendel Correia da Costa, Lídia Theodoro 

Boullosa, Liliane Tavares de Faria Cavalcante, Lucas Matos Millioni, Luciana Jesus da Costa, 

Marcelo Calado de Paula Tôrres, Matheus Augusto Calvano Cosentino, Mayla Gabryele 

Miranda de Melo, Mirela D'arc Ferreira da Costa, Pedro Henrique Costa da Paz, Pedro Telles 

Calil, Rafael de Mello Galliez, Richard Araujo Maia, Sergio Lisboa Machado, Thamiris dos 

Santos Miranda, Victor Akira Ota, Viviane Guimarães Gomes, Gislaine Celestino Dutra Silva, 

Marilia Mazzi Moraes, Danielle Alves Gomes Zauli, Joice do Prado Silva, Ana Carolina Fialho 

Dias, Anna Sara Shafferman Levin, Harrison James Westgarth. 
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Materials and Methods 

Ethics 

Residual oropharyngeal and nasal swab collections from Manaus residents testing 

positive for SARS-CoV-2 RT-qPCR between 1 November 2020 and 9 January 2021 were 

obtained from two private clinical laboratories in Manaus. Metadata associated with positive 

SARS-CoV-2 RT-qPCR results in Manaus residents testing between 1 July 2020 and 15 

January 2021 were obtained from a third private clinical laboratory in Manaus. All samples 

were de-identified before receipt by the researchers. Ethical approval for this study was 

confirmed by the national ethical review board (Comissão Nacional de Ética em Pesquisa), 

protocol number CAAE 30127020.0.0000.0068. 

 

Sampling and Metadata Collection  

A total of 436 SARS-CoV-2 samples RT-qPCR confirmed or suspected were collected 

for genomic sequencing between 1 November 2020 and 9 January 2021. Samples were 

provided for confirmatory testing and genome sequencing. For clinical laboratory A (n=37 

RT-qPCR positive cases with sampling dates from 15 to 23 December 2020), SARS-CoV-2 

diagnosis was performed using the Allplex 2019-nCoV Assay (Seegene, South Korea) assay 

that detects the RNA-dependent RNA polymerase (RdRP), nucleocapsid (N) specific genes 

for SARS-CoV-2 and the E gene for all Sarbecovirus subgenus, including SARS-CoV-2 (70, 

71). For clinical laboratory B, 399 RT-qPCR positive or suspected cases [representing 73% 

of all 548 samples with a RT-qPCR positive (n=545) or inconclusive (n=3) results between 2 

November and 9 January 2021] were processed for genome sequencing. In this case, RT-

qPCR was determined using the Xpert Xpress SARS-CoV-2 platform (GeneXpert) that 

detects the N viral target specific for SARS-CoV-2 and the E viral target of Sarbecovirus 

subgenus including SARS-CoV-2 (Cepheid, USA). Samples were shipped in dry ice to the 

Institute of Tropical Medicine, University of São Paulo, Brazil, for genome sequencing. RT-

qPCR cycle threshold values and associated metadata (patient age and sex, date of onset 

symptom, date of RT-qPCR test, data of sample collection when available, cycle threshold, 

Ct, values for E and N viral targets) were recorded for 1,084 RT-qPCR positive and 16 

inconclusive results from laboratory B in Manaus between 18 May 2020 and 27 January 2021 

(Data S1). Line-list metadata (patient age and sex, date sampling collection, cycle threshold 

values) from a third clinical in Manaus (laboratory C) was obtained for RT-qPCR positive 

samples tested using the TaqPath COVD-19 Combo kit (ThermoFisher-Applied Biosystems, 

United Kingdom) that detects the N, S, and ORF1ab viral targets (Data S3).  

 

PCR Amplification and Virus Nanopore Sequencing 

Viral RNA was isolated from 200-μl SARS-CoV-2-suspected samples using the QIAamp 

Viral RNA Mini kit (QIAGEN, Hilden, Germany) according to the manufacturer’s 

instructions. Virus genome sequencing was carried out on all positive samples regardless of 

laboratory reported RT-qPCR cycle threshold values using a combination of targeted 

multiplex-PCR amplification and portable nanopore sequencing MinION platform (Oxford 

Nanopore Technologies, ONT, UK).  

cDNA synthesis was performed from the extracted RNA using random hexamers, and 

the Protoscript II First Strand cDNA synthesis Kit (New England Biolabs, UK). 

Subsequently, the ARTIC network SARS-CoV-2 V3 primer scheme and Q5 High-Fidelity 

DNA polymerase (New England Biolabs, UK) were used for SARS-CoV-2 whole-genome 

multiplex-PCR amplification (24). AmpureXP beads (Beckman Coulter, United Kingdom) 

were used for PCR product purification and fluorimetry-based quantification was carried out 

using the Qubit dsDNA High Sensitivity assay on the Qubit 3.0 (Life Technologies, USA). 
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To ensure uniform sequencing of samples, equimolar normalisation of 10 ng per sample was 

performed followed by barcoding using the EXP-NBD104 (1–12) and EXP-NBD114 (13–24) 

Native Barcoding Kits (Oxford Nanopore Technologies, UK). Finally, barcoded samples 

were pooled followed by library preparation using the SQK-LSK109 Kit (Oxford Nanopore 

Technologies, UK). 

Nanopore sequencing libraries were loaded onto an R9.4.1 flow-cell (Oxford Nanopore 

Technologies, UK) and sequenced using MinKNOW version 20.10.3 (Oxford Nanopore 

Technologies, UK). FAST5 files containing the raw signal data were basecalled, 

demultiplexed, and trimmed using Guppy v4.4.1 (Oxford Nanopore Technologies, UK). The 

process reads were aligned against the reference genome Wuhan-Hu-1 (GenBank: 

MN908947.3) using minimap2 v2.17.r941 and converted to a sorted BAM file using 

SAMtools (72). Length filtering, quality test and primmer trimming was performed for each 

barcode using artic guppyplex and variant calling and consensus sequences using artic minion 

with Nanopolish and Medaka versions from ARTIC bioinformatics pipeline ( 

https://github.com/artic-network/fieldbioinformatics). Genome regions with a depth of <20-

fold were represented with N characters. The genome statistics were obtained from SAMtools 

and the Tablet viewer (73). Any runs suspected to have any level of contamination were 

discarded. We analysed intra-host sequencing data by reference to variant allele frequency 

measurements at P.1 lineage-defining positions of the genome by reference to the underlying 

sequence read alignment files. Lineage-defining mutations (table S1) were highly stable 

across the genomes (fig. S15). Limited evidence of mixed infections was observed, with only 

one genome demonstrating coverage patterns suggestive of mixed infection (sample 

CD1721). Recombination is unlikely but difficult to formally exclude with existing datasets. 

Individual nanopore sequencing statistics for each sequence generated in this study can be 

found in Data S2.  

 

Genome Datasets  

Genome coverage of 184 generated sequences obtained from clinical samples varied 

from 27 to 99% of the virus SARS-CoV-2 genome. Of these, 35 sequences (average Ct of 

21.78, range 14.5–29.2) had a virus genome coverage between 25–75%. However, even 

partial sequences can provide important information about changes in SARS-CoV-2 lineage 

structure (25).  

We compiled three genome datasets from Manaus from data generated in this study: 

dataset A included 184 sequences with >25% virus genome coverage (37 from laboratory A 

and 147 from laboratory B) and was used to estimate virus lineage frequency in Manaus over 

time; dataset B included 143 near-complete genome sequences with >75% of the virus 

genome coverage (31 from laboratory A, 112 from laboratory B); and dataset C included 48 

sequences with >95% of the virus genome complete (n=17 from laboratory A, n=31 from 

laboratory B).  

For datasets A, B and C, a reference genome sequence Wuhan-Hu-1 (GenBank: 

MN908947.3) was appended before multiple sequence alignment using MAFFTv.7 (74). For 

dataset A, lineage classification was conducted using manual phylogenetic analysis. 

Sequences with genome coverage between 25% and 75% were appended to dataset C and 

assigned to B.1.1.28, P.2 and P.1 lineages based on monophyletic clustering of each sequence 

within each of these lineages (fig. S2). Manual phylogenetic subtyping and PANGO lineage 

classification using the latest pangolin version (v.2.2.1, 6 February 2021) (26; 

http://pangolin.cog-uk.io/) was conducted for dataset B and dataset C (figs. S3-S5). Date of 

sample collection, age, sex, RT-qPCR CT values, lineage assignment and sequencing 

statistics for 184 sequences generated in this study from Manaus can be found in Data S2. 
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We downloaded all sequences publicly available in GISAID (up to 14-01-2021) and 

selected for analysis those that were published in PubMed, MedRxiv, BioRxiv or Preprint 

repositories. Specifically, dataset B and dataset C from Manaus were appended to (i) B1.1.28 

genome sequences with >95% virus genome coverage from the Brazilian Amazon (75), 

Minas Gerais (76), Pernambuco (77), Rio de Janeiro (78,79), Rio Grande do Sul (80) and to 

data from an early country-wide study of SARS-CoV-2 diversity in Brazil (19). Datasets B 

and C were also appended to (ii) P.2 genome sequences with >95% virus genome coverage  

from Rio de Janeiro (79), Rio Grande do Sul (80, 81). Exceptionally, written permission was 

obtained from the reference laboratory in São Paulo, Institute Adolfo Lutz, to use P.1 

complete genome sequences shared in GISAID (up to 19-01-2021) as part of their 

surveillance activities. Duplicate sequences were removed from the alignments, 5’ and 3’ 

untranslated regions from each genome were discarded. Sequence CD1721 

(EPI_ISL_1060918) was identified as potential mixed infection (Fig. S15) and removed from 

phylogenetic analysis. A table describing GISAID IDs, authors, originating and submitting 

laboratory for all publicly available data used in dataset B’ and dataset C’ (with data from 

this study and publicly available data) can be found in Data S4.  

 

Maximum Likelihood Tree Reconstruction  

Fast and efficient maximum likelihood (ML) phylogenetic trees were reconstructed using 

IQTREE 2 (82) for dataset A’ (n=988) (used for lineage classification of >25 and <75% virus 

genome coverage samples from Manaus, Data S2), and for the B.1.28, P.1 and P.2-specific 

dataset B’ and dataset C’ (ML trees can be found in figs. S2-S4). Briefly, a Jukes Cantor (83) 

DNA substitution model assuming equal substitution rates and equal base frequencies. Near 

zero branches were collapsed so that the final tree could be multifurcating to account for the 

many polytomies observed in SARS-CoV-2 phylogenetic trees. To explore temporal structure 

of dataset B’ and dataset C’, root-to-tip genetic distances (d) were regressed against sampling 

dates (yyyy-mm-dd) using TempEst v.1.5.3 (29). Two sequences showed incongruent genetic 

diversity compared with its sampling date (SP-322 EPI_ISL_693197 and AM-1061 

EPI_ISL_940616) and were discarded from subsequent analyses. Strong and identical 

correlations between d and sequence sampling dates were observed for dataset B’ (n=962, 

r2=0.82) (fig. S6) and dataset C’ (n=871, r2=0.81) (fig. S7). Therefore, we used dataset B’ for 

subsequent phylogenetic analyses. Regressions between root-to-tip distances and sampling 

dates in dataset B’ were also fit separately for B.1.1.28, P.2, and P.1 lineages in R v.3.6.2 

(84). These showed no obvious difference in evolutionary rates and suggested that P.2 and 

P.1 show a tendency to fall over the regression line of B.1.1.28 (fig. S8). This supports an 

increased evolutionary rate on the ancestral branches leading to P.1 and P.2 compared to 

B.1.1.28 evolutionary rate, an evolutionary scenario that seems to be characteristic of SARS-

CoV-2 lineages of concern (13).  

 

Bayesian Coalescent Inference 

Next, we used a fully probabilistic Bayesian framework to reconstruct molecular clock 

phylogenies and estimate growth rates directly from time-stamped genome sequence data. 

Substitution rates were modelled according to a HKY with 4 gamma categories to account for 

among site rate variation (84, 86). The B.1.1.28 lineage has been circulating in Brazil since 

late February-early March (19). P.1 and P.2 lineages are phylogenetically nested within the 

more diverse and older B.1.1.28 strains and form separate monophyletic clades (see figs. S2-

S5). 

To account for rate differences in ancestral branches leading to P.1 and P.2, we estimate 

molecular clock trees using a local clock implementation in a Bayesian framework (32) that 

explicitly allows for distinct evolutionary rates on the ancestral branch leading to P.1 and P.2. 
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Local clock models allow different rates along distinct lineages of a single phylogeny (32), 

which may be particularly suitable to estimate dates of emergence of P.1 and P.2 because 

they can take into account higher rates of mutation accumulation over short periods of time 

that could to be linked to selective pressures associated with the emergence of lineages of 

concern (13). Five independent analyses were performed using a flexible non-parametric 

skygrid tree prior (33) for 200 million MCMC steps using BEAST version 1.10.4 (87) with 

BEAGLE library v3.1.0 for accelerated likelihood evaluation (88). Parameters and trees were 

sampled every 25,000 steps and convergence of MCMC chains was inspected with Tracer 

v1.7.1 (89). Posterior probability distributions for the most recent common ancestor of the 

P.1 and P.2 clade are shown in fig. S9. 

We also used a nested coalescent model (90) to estimate viral growth rates for B.1.1.28, 

P.1 and P.2. We fit a constant demographic model to the phylogeny excluding the P.1 and P.2 

clades. Two separate logistic growth models were then fitted to P.1 and P.2 clades. For the 

logistic growth coalescent models, a lognormal prior with mean 1.0 and a standard deviation 

of 10.0 were used for the population size; for the growth rate, we used a Laplace prior with a 

mean of 0 and a scale of 10. For the local clock model, we use a normal prior with mean -7.0 

and standard deviation of 5.0 on the background rate in log space and a normal prior with 

mean 0 and standard deviation of 0.5 for the log effect sizes on the branches for which the 

rates are allowed to deviate from the background rate (91). All other priors used for 

phylogenetic inference were kept at default settings. Posterior probability distributions for the 

most recent common ancestor of the P.1 and P.2 clade according to the constant-logistic-

logistic model and corresponding growth rate and doubling time parameters are show as fig. 

S9 and fig. S10.  

To quantify the support for both the rate differences in the local clock model and the 

growth rates in the nested coalescent model, we conduct Bayes Factor (BF) tests. For this 

purpose, we employ posterior indicator functions that allow estimating the posterior 

probability that a specific substitution rate (the rate on the branch ancestral to P.1 or P.2) is 

larger than another rate (the background rate for B.1.1.28) and that one growth rate (for P.1) 

is larger than another growth rate (for P.2). We use these posterior probabilities to calculate 

the BF as the ratio of the posterior odds over the prior odds that substitution rates or growth 

rates are different, assuming that the prior probabilities for these differences are 0.5 (in line 

with our prior specification on these parameters). 

 

Adaptive Evolution of P.1 lineage  

We investigated the extent of selective forces acting on P.1 and P.2 SARS-CoV-2 

lineages using HyPhy v2.5.27 (48). We analyzed a median of 5 unique P.1 haplotypes per 

gene/peptide in the context of a median of 79 reference sequences, and a median of 9 

unique P.2 haplotypes per gene/peptide in the context of a median of 70 reference 

sequences. The summary of P.1 lineage-defining sites subject to episodic diversifying 

selection (p≤0.05) identified using MEME (92) is shown in table S1. In addition to 

individual sites under selection, we also recorded instances of putative convergence, i.e., 

substitutions to the same amino-acid at the same site in both lineages; there were only 2 

such events (S/484K and ORF1A/318L). The evolutionary “credibility” of target 

residues was estimated using the PRIME method (92) based on a bat/pangolin 

Sarbecovirus alignment (93) and results can be visualized at 

https://hackmd.io/7hFvRdJdSVSONv_wW40_Rg.  

 

Structural Analysis of P.1 lineage 

Lineage defining mutations were mapped onto a previously reported cryoEM structure of 

the cleaved trimeric SARS-CoV-2 S ectodomain [PDB: 6ZGI, (94)] with PyMOL v 2.4.0 
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(95) (fig. S14). Substituted residues are indicated as spheres and coloured by type of selection 

according to MEME support table S1). Similarly, SARS-CoV-2 S RBD-hACE2 contact 

residues were mapped as observed in the RBD-hACE2 complex crystal structure [PDB: 

6MOJ, (11)] together with RBD-resident substitutions specific to the P.1 lineage (fig. S14). 

N-linked glycans are omitted for clarity. 

 

Air Travel and Mobile Geolocation Data 

To better contextualize the spread of P.1 lineage within Brazil, we investigate two 

different mobility data sources. First, we analysed monthly air passenger travel data produced 

by Brazil’s Civil Aviation Agency (ANAC) which is publicly available at 

https://www.anac.gov.br/assuntos/setorregulado/empresas/envio-de-informacoes/base-de-

dados-estatisticos-do-transporte-aereo. This includes the number of passengers and 

connections for international flights to and from Brazil, as well as domestic flights within the 

country. Using this data, we calculated the total number of passengers who travelled from 

Manaus between November and December 2020 disaggregated by state of origin and 

destination (Fig. 1D, fig. S10). 

State-level mobility where the origin of the trip was the municipality of Manaus were  

calculated from approximately 5 million trips aggregated from anonymized cell phone data 

users in the month of November 2020 (96) (fig. S10). Data was obtained from In Loco 

(mapabrasileirodacovid.inloco.com.br), a company that provides geolocation services for a 

broad range of mobile applications and covers ~20% of the mobile devices in the country. 

Anonymized cell-phone shows a similar pattern to air travel data but shows travel from 

Manaus to other municipalities in the Amazonas states being even more important than with 

flights. Numbers of recorded state-level movements from and to Amazonas state, as well as 

city-level movements from and to Manaus municipality, are available as Data S5 and Data 

S6, respectively. 

 

Logistic Function Fitting to P.1 Genome Fraction  

We fitted a logistic function to the time-varying fraction of sequenced genomes 

belonging to P.1 from a single laboratory (laboratory B), binned according to the week 

sampling had occurred in. The form of the logistic function is as follows: 

 

𝑓(𝑡)  =
𝐿

1 +  𝑒−𝑘(𝑡−𝑡2)+𝜎𝑖
 

 

where 𝐿 = maximum value of the logistic function, 𝑘 = logistic growth rate, 𝑡 = time since 

P.1’s emergence,𝑡2 is the (inferred) time at which half of the genomes in sequenced cases 

belong to P.1 and 𝜎𝑖 is independently and identically distributed gaussian noise added to 

account for overdispersion. Model fitting was carried out using a Bayesian framework, 

written in the probabilistic programming language STAN and implemented in the statistical 

software R (Version 4.0.2) using the package rStan (Version 2.19.03). Three chains of 5000 

iterations each were run, with the 1st 2500 samples from each discarded as burn-in and the 

remaining 2500 (for each chain, 7500 samples total) retained for inference.  

We note that the proportion of P.1 cases used for epidemiological modelling was derived 

from clinical samples obtained from a single laboratory which used the same RT-PCR assay 

over the course of the pandemic, as well as consistent methods of specimen collection, 

handling of sample and test interpretation. We also note that sequencing was attempted in all 

clinical samples regardless of cycle threshold values to ensure further minimal impact in 

selection biases when assessing proportion of P.1 cases during the study period. Nevertheless, 

we cannot exclude the possibility that the representativity of samples used here might have 

(1) 
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changed through time as no random population surveillance was being attempted during the 

study period under investigation.  

 

Description of the Epidemiological Model  

We utilised a Bayesian semi-mechanistic model of SARS-CoV-2 spread and mortality 

based on a renewal-process equation (40, 41, 97) and extended to include i) multiple SARS-

CoV-2 lineages introduced at different points in time; ii) the possibility for these different 

lineages to possess distinct epidemiological characteristics (such as severity, transmissibility 

and immune evasion); and iii) waning of natural immunity due to prior infection - 

parameterised from the results of the recent Public Health England SIREN study - a 

longitudinal cohort study tracking (re)infection in healthcare workers in the United Kingdom 

(43).  

Here, we modeled two different SARS-CoV-2 lineages, hereafter referred to as P.1 and 

non-P.1, with the timing of P.1’s emergence based on the phylogenetic analyses described 

previously. A full mathematical description of the model and its associated parameters are 

available in Supplementary Text. We ran a number of model scenarios in order to evaluate 

support for P.1 possessing distinct epidemiological characteristics, specifically running 

multiple models that varied in their assumption surrounding timing of P.1 emergence.  

Estimates of tMRCA are built from genetic sequence data that is not population 

representative, but rather are estimated based on a limited subset of sequences and therefore 

are expected to suffer from systematic biases. For this reason, it is important to note that 

tMRCA and the date of first infection are, in general, not necessarily expected to be exactly 

the same and we would expect the date of first infection to be before tMRCA. For the results 

of the epidemiological modelling presented in the main text we assume the mean estimate of 

tMRCA (9th November 2020) and the date of first infection are the same. We acknowledge 

that this assumption is likely to change given more representative data. To address these 

limitations, we have conducted a comprehensive sensitivity analysis (summarised in table 

S5) where we vary tMRCA to cover the entire 95% BCI of the estimated tMRCA 

distribution. This sensitivity analysis showed that our main conclusions around altered 

epidemiological characteristics were robust to assumptions regarding the timing of P.1 

emergence.  

We also varied our assumptions surrounding the duration of protective immunity 

following infection (i.e. the rate at which natural immunity elicited by prior SARS-CoV-2 

infection declines).  

The model was fitted to two sources of data. Mortality data from the SIVEP-Gripe 

(Sistema de Informação de Vigilância Epidemiológica da Gripe ) SARI (severe acute 

respiratory infections) hospitalisation database (67, 69), including both class 4 and 5 death 

records (corresponding to confirmed and suspected COVID-19 deaths), consistent with 

earlier analyses (2) and corrected for known delays in mortality reporting using a Gaussian 

process nowcasting based framework (44, 45). In addition to COVID-19 mortality data, we 

also integrate genomic data from the sequenced samples, fitting the model to the fraction of 

sequenced genomes each week that belong to P.1 described in table S4. 

Model fitting was carried out using a Bayesian framework, written in the probabilistic 

programming language STAN and implemented in the statistical software R (Version 4.0.2) 

using the package rStan (Version 2.19.03). Hamiltonian Monte Carlo with 3 chains of 1000 

iterations each were ran, with half the samples discarded as burnin and the remaining retained 

for inference. In every instance chains mixing was satisfactory, with traditional rhat statistics 

(for assessing convergence) less than 1.02. All code used for inference and plotting is 

available at https://github.com/CADDE-CENTRE. 
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Data sharing and code availability  

Preliminary genome sequences generated from samples obtained from laboratory A were 

shared on GISAID on 12 January 2021. Findings were shared with representatives from the 

World Health Organization, Pan American Health Organization, Secretary of Health 

Amazonas, and FioCruz Manaus on 11 January 2021. Preliminary report describing first P.1 

genomes from Manaus was shared on 12 January 2021 (27). Epidemiological data and 

epidemiological model code, together with BEAST XML files, tree files, log files are 

archived at https://github.com/CADDE-CENTRE and Zenodo (DOI: 

https://zenodo.org/record/4676853). GISAID IDs for the SARS-CoV-2 Manaus sequences 

(>50% virus genome coverage) can be found in Data S1. All consensus sequences generated 

by this study can be found at https://github.com/CADDE-CENTRE.  
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Supplementary Text 

Epidemiological Model  

This work builds on a previously published mathematical model of SARS-CoV-2 

transmission introduced in Flaxman et al, 2020 (41). Specifically, we extend this semi-

mechanistic Bayesian model to include multiple SARS-CoV-2 strains and the possibility for 

these strains to possess distinct, strain-specific epidemiological characteristics (such as 

transmissibility, ability to evade prior immunity, and severity of COVID-19 disease elicited). 

Although any number of strains are possible within a framework of this type, we 

consider only two strains here, defined as 𝑠 ∈ {1,2}. For strain 1, the population-unadjusted 

reproduction number is defined as follows: 

 

𝑅𝑠=1,𝑡 = 𝜇02𝜎(𝑋𝑡) 

 

where 𝜇0 is a scale parameter (3.3), 𝜎 is a logistic function, and 𝑋𝑡 is a second-order 

autoregressive process with weekly time innovations, as specified in earlier work (40). The 

population-unadjusted reproduction number of the second strain is modelled as: 

 
𝑅𝑠=2,𝑡 = 𝜌𝟏[𝑡2 ,∞)𝑅1,𝑡

𝜌 ∼ Normal (1,1) ∈ [0, ∞)
 

 

where 𝜌 is a parameter defining the relative transmissibility of strain 2 compared to strain 1, 

and 𝟏[𝑡2,∞) is an indicator function taking the value of 0 prior to 𝑡2, and 1 thereafter, 

highlighting that strain 2 does not contribute to the observed evolution of the epidemic before 

its emergence. Introduction of the second strain at time 𝑡2 is informed through our local 

molecular clock analysis (see Fig. 2, fig. S9). We note that the reproduction number estimates 

take into account the effect of population-level immunity and behavioural changes (modelled 

using a latent stochastic process). For the purposes of the primary results presented in the 

main text, it is assumed 𝑡2= 9 Nov 2020, though four additional scenarios are presented 

varying the assumed date of P.1 emergence (see table S5). As in earlier models (41), we 

make the assumption of a homogeneously mixed population, and therefore ignore 

heterogeneites in transmission. This is an important area for future research. 

Infections arise for each strain according to a discrete renewal process (98, 99): 

 

𝑖𝑠,𝑡 = (1 −
𝑛𝑠,𝑡

𝑁
) 𝑅𝑠,𝑡 ∑ 𝑖𝑠,𝜏𝑔𝑡−𝜏  

𝜏<𝑡

 

 

where 𝑁 is the total population size, 𝑛𝑠,𝑡 is the total extent of population immunity to strain 𝑠 

present at time 𝑡 (accounting for the cumulative number of infections with strain 𝑠, the extent 

to which immunity from these infections has waned, and the degree of cross-protection 

infections with other strains provide, all of which are described in more detail below). The 

generation of infections is then determined by the fraction of the population susceptible and 

available to be infected, as well as the time-varying reproduction numbers of each strain 𝑅𝑠,𝑡 

and generation time distribution 𝑔 from ref. (41). 

For the original strain, infections are seeded for six days as: 

 
𝑖1,𝑡1..6

∼  Exponential(1/𝜏)

𝜏 ∼  Exponential(0.03)
 

 

and the second strain for 1 day (𝑡2) as: 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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𝑖2,𝑡2
∼ Normal(1,1) ∈ [1, ∞) 

 

The susceptible depletion term for strain 𝑠 is modelled as: 

 

𝑛𝑠,𝑡 = ∑  

𝜏<𝑡

𝑖𝑠,𝜏𝑊𝑡−𝜏 + 𝛽𝑠(1 − 𝛼𝑠,𝑡) ∑  

𝜏<𝑡

𝑖∖𝑠,𝜏𝑊𝑡−𝜏 

 

The first term describes the contribution of prior infections with strain 𝑠 to population-level 

immunity for 𝑠. The second term describes the contribution of prior infections with not strain 

𝑠 (i. e. \𝑠), which is a function of the assumed cross-immunity, 𝛽𝑠 ϵ [0,1]. With this 

formulation, 𝛽 = 0  indicates no cross-protection between infections caused by different 

strains and 𝛽 = 1 indicates complete cross-protection between infections caused by different 

strains. In practice we only consider symmetric cross-immunity 𝛽𝑠 = 𝛽, which is given the 

prior: 

 

𝛽~Beta(2,1) 

 
This choice of prior reflects the need to maintain a null hypothesis of no change in cross-

immunity while also capturing our uncertainty in the plausible range of immunity conferred 

by prior infections against the P.1 variant. A range of other choices from Beta(1,1) to 

Beta(4,1) are shown in fig. S16, where in each instance the posterior contracts toward partial 

cross-immunity greater than one half but less than complete cross-immunity. Additional prior 

sensitivity analyses assessing the choice of cross-immunity prior on other inferred quantities 

is presented in table S6. 

We emphasize that the representation of cross-immunity included in the model does 

not distinguish between protection against severe disease and protection against infection. It 

is however possible that the extent of protection from severe disease and protection from 

infection may be different. This is an important distinction that should be explored in more 

sophisticated models in future research. 

We also define 𝑊𝑡−𝜏 as the time-dependent waning of immunity elicited by previous 

infection, which is modelled as a Rayleigh survival-type function. Recent results (16, 43) 

suggest that immunity is robust to waning over 8 months, and so for the results presented in 

the main text we use a Rayleigh parameter of 𝜎 = 310, which produces 50% of individuals 

still immune after 1 year. Estimates of the duration of protection elicited by prior infection 

remain uncertain however, and so we consider a range of different scenarios that vary the rate 

at which immunity wanes, the results of which are presented in table S7. 

The cross-immunity susceptible term 𝛼𝑠,𝑡 is then modelled as: 

 

𝛼𝑠,𝑡 =
(1 − 𝛽𝑠)

𝑁
∑  

𝜏<𝑡

𝑖𝑠,𝜏𝑊𝑡−𝜏 

 

And describes the proportion of infections with variant \𝑠 expected to occur in individuals 

who have been previously infected with variant 𝑠 – itself a function of both cross-immunity 

(𝛽) and the proportion of the population previously infected with 𝑠.  

Infections in the model generate deaths via the following mechanistic relationship: 

 

(8) 

(9) 

(10)) 

(11) 

(12) 
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𝑑𝑡 = ∑  ifr𝑠

𝑠∈{1,2}

∑  

𝜏<𝑡

𝑖𝑠,𝜏𝜋𝑡−𝜏 

 

with infection fatality ratio priors: 

 

ifr1 ~ Normal(0.32, 0.12) ∈ [0,100], 
 

based on results from (28), adjusted for the age structure of the population of Manaus and: 

 

ifr2 ~ RR ∙ ifr1, 

RR ~ LogNormal(0,0.5) ∈ [0, ∞), 

 

where RR denotes relative risk. We note that other work has shown that the degree of 

transmission advantage exhibited by the B.1.1.7 can vary over time as a function of control 

interventions and behavior (17).  

The infection-to-death distribution 𝜋 is composed of infection-to-onset and onset-to-

death contributions as in previous work (97), with adaptations to take into account the most 

likely onset-to-death distribution in Amazonas state based on hospitalization distributions 

obtained by ref. (100). 

The observation model uses two sources of data. In the first likelihood, the expected 

deaths 𝐷𝑡 are modelled as negative-binomially distributed: 

 

𝐷𝑡 ∼ NegativeBinomial (𝑑𝑡, 𝑑𝑡 +
𝑑𝑡

2

𝜙
) 

 

with mortality data 𝑑𝑡  and dispersion prior: 

 

𝜙 ∼ Normal(0,52) ∈ [0, ∞). 
 

The deaths data source is based on class 4 and 5 SARI COVID-19 deaths (67, 69), from 

the SIVEP-Gripe database for Manaus city, that have been amended with Gaussian Process 

nowcasting to correct for known delays between deaths occurring and being recorded in the 

dataset (43, 45). 

The second likelihood is based on genomic data from symptomatic individuals 

presenting for testing and who had both a positive PCR diagnosis and the infecting SARS-

CoV-2 genome sequenced. Specifically, the proportion of sequenced genomes identified as 

P.1 lineage at time 𝑡 are modelled with a binomial likelihood: 

 

𝐺𝑡
+ ∼ Binomial(𝐺𝑡

+ + 𝐺𝑡
−, 𝜃𝑡) 

 

with positive counts for P.1 denoted 𝐺𝑡
+ and counts for lineages not belonging to P.1 recorded 

as 𝐺𝑡
−. The success probability for P.1 positivity is modelled as the infection ratio: 

 

𝜃𝑡 =
𝑖̃2,𝑡

𝑖1̃,𝑡 + 𝑖̃2,𝑡
 

 

where 𝑖̃𝑠,𝑡 is given by: 

 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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𝑖̃𝑠,𝑡 = ∑  

𝜏≤𝑡

𝑖𝑠,𝜏𝜅𝑡−𝜏 

 

to account for the time varying PCR positivity displayed over the natural course of a COVID-

19 infection. The distribution 𝜅 describes the probability of being PCR positive over time 

following infection, and is based on ref. (101). 

Serological data is not explicitly used in our modelling framework but rather is used 

for external validation of the model outputs. For purposes of comparison with previously 

published, and independent, serological data, we also calculate: 

 

∑  

𝜏≤𝑡

𝑖𝑠,𝜏𝐶𝑡−𝜏  

 

where 𝐶𝑡−𝜏 is the cumulative probability of an individual infected on day τ having 

seroconverted by time 𝑡. This distribution is empirical and based on ref. (32). 

 

 

 

  

(21) 
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Figure S1.  

Number of genome sequences from Manaus grouped by sequence coverage and study (see 

also Materials and Methods). 
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Figure S2.  

Maximum likelihood tree estimated for dataset A’ (n=988). This dataset was used to confirm 

lineage assignment for all sequences generated in this study regardless of genome coverage 

(see also fig. S1). s/s=nucleotide substitutions per site.   
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Figure S3.  

Maximum likelihood tree estimated for dataset B’ (n=962). s/s=nucleotide substitutions per 

site. This phylogeny includes only publicly available and published sequences classified as 

B.1.1.28, P.1 and P.2 lineages.  
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Figure S4.  

Maximum likelihood tree estimated for dataset C’ (n=871). s/s=nucleotide substitutions per 

site. This phylogeny includes only publicly available and published sequences classified as 

B.1.1.28, P.1 and P.2 lineages.   
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Figure S5.  

Pango lineages identified in Manaus among our 184 sequences samples and publicly 

available genomes in GISAID between 24 March and 10 November 2020 (left panel) and 

between 11 November and 15 January 2020 (right panel). Duplicate sequences and sequences 

with no date or location of sample collection were removed. Coloured bars correspond to 

lineages that represent >10% of sequenced samples during each time period. 
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Figure S6.  

Regression of root-to-tip genetic distances and sampling dates for dataset B’ estimated using 

TempEst v.1.5.3 (29). Circles corresponds to the tips of the maximum likelihood 

phylogenetic tree show in fig. S3.  
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Figure S7.  

Regression of root-to-tip genetic distances and sampling dates for dataset C’ estimated using 

TempEst v.1.5.3 (29). Circles corresponds to the tips of the maximum likelihood 

phylogenetic tree show in fig. S4.  
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Figure S8.  

Regression of root-to-tip genetic distances and sampling dates for dataset B’ estimated using 

TempEst v.1.5.3 (29), with separate regression lines for B.1.1.28 and P.1 lineages computed 

in R v 3.6.2 (84). Circles corresponds to the tips of the maximum likelihood phylogenetic tree 

show in fig. S3. 
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Figure S9.  

Posterior estimates of the time of the most recent common ancestor of P.1 (dark green) and 

P.2 (light green) lineages estimated using a flexible non-parametric skygrid coalescent model 

(33). Dashed lines show the posterior estimates for the same evolutionary parameters but 

estimated using a constant-logistic-logistic model (see Materials and Methods for details). 

Both coalescent models are implemented in BEAST v.1.10 (87). 
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Figure S10.  

Number of movements from Manaus to federal units in Brazil obtained from ANAC flight 

data (A and B) and from anonymized cell phone data (C and D). X-axis of panels B and D are 

shown in log10 units. The ISO 3166-2:BR codes of the states AC–Acre, AL–Alagoas, AP–

Amapá, AM–Amazonas, BA–Bahia, CE–Ceará, DF–Distrito Federal, ES–Espírito Santo, 

GO–Goiás, MA–Maranhão, MT–Mato Grosso, MS–Mato Grosso do Sul, MG–Minas Gerais, 

PA–Pará, PB–Paraíba, PR–Paraná, PE–Pernambuco, PI–Piauí, RJ–Rio de Janeiro, RN–Rio 

Grande do Norte, RS–Rio Grande do Sul, RO–Rondônia, RR–Roraima, SC–Santa Catarina, 

SP–São Paulo, SE–Sergipe, TO–Tocantins.  
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Figure S11.  

Trends in RT-qPCR Ct values for COVID-19 infections in Manaus (laboratory C). Ct values 

for genes N, ORF1ab, and S in a sample of symptomatic cases presenting for testing at a 

healthcare facility in Manaus, stratified according to the period defined in Fig. 2 (see main 

text). Line-list data can be found in Data S3.  
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Figure S12.  

Coalescent growth rates for P.1 and P.2 lineages estimated using a constant-logistic-logistic 

approach implemented in BEAST v.1.10 (87). (A) Light and dark green posterior probability 

distributions show virus lineage population growth (r) for P.2 and P.1, respectively. Inset 

shows posterior probability estimates for the ratio of epidemic growth rates between P.1 and 

P.2 (B) Light and dark green posterior probability distributions of the estimated doubling 

times for P.2 and P.1 lineage, respectively. Inset shows posterior probability estimates for the 

ratio of doubling times between P.1 and P.2. 
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Figure S13.  

Daily number of cases (A) and deaths (B) attending public or private hospitals in Manaus. 

Dark solid lines show the 7-day rolling average. Data was obtained from the SIVEP-Gripe 

dataset described in Materials and Methods. SARI = severe acute respiratory infections. 
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Figure S14.  

Mapping of adaptive substitutions onto the structure of SARS-COV-2 S. (A) Lineage 

defining mutations within the S protein of the P.1 lineage are mapped onto the spike 

glycoprotein structure of SARS-CoV-2 (93) (NSMB; PDB: 6ZGI). Cartoon representation of 

one protomer of the trimeric S ectodomain structure with the different domains and subunits 

indicated by color: S1A (wheat), S1B (RBD, teal), S1C (orange), S1D (blue), S2 subunit (grey). 

Residues under selection are shown as spheres with associated mutations indicated and 

colored according to the respective type of selection as analyzed under MEME (92) and 

supported for at least one branch (red) or not supported (yellow). The positively selected 

residue V1176F was not resolved in the cryoEM map of the SARS-CoV-2 S ectodomain used 

here. The inset panels reflect the same presentation in the trimeric context of the S protein in 

a side (upper panel) and top-down view (lower panel). N-linked glycans are omitted for 

clarity. (B) Surface representation of the SARS-CoV-2 S RBD-hACE2 contact interface with 

residues mutated in the RBD of P.1 highlighted. Contact residues as observed in the SARS-

CoV-2 S RBD (deep teal) in complex with hACE2 (11) (PDB: 6MOJ) are colored red with 

side chains shown as sticks. Residues mutated in lineage P.1 that are part of the contact 

interface (K417 and N501) are colored light blue. A nearby residue that is observed to be 

mutated in P.1 that is not part of the direct contact interface (E484) is colored grey with side 

chains shown as sticks. 
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Figure S15.  

Intra-host sequencing data by reference to variant allele frequency measurements at P.1 

lineage-defining positions. The analysis shows that lineage-defining mutations are highly 

stable across genomes taking into account the underlying sequence read error rate at Oxford 

Nanopore sequencing, which limits the level of detection of mixed species to a minimum 

relative abundance of 5-10%. One genome demonstrates coverage patterns suggestive of 

mixed infection (CD1721) and excluded from phylodynamic analysis. 
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Figure S16. Cross-immunity prior and posterior distributions for a range of Beta priors. The 

red bars represent the prior, and the blue bars the resultant posterior. Contraction of the 

posterior toward partial cross-immunity greater than 0.5 but less than complete cross-

immunity is consistently observed. 
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Table S1.  

P.1 lineage-defining mutations. These have been defined based on the genomic datasets 

analysed in this study, which included 95 P.1 isolates. None of the mutations was observed in 

other isolates in the lineage B.1.1.28 analysed in this study. 1One isolate (ID: CD2241) did 

not present the 12778C>T; 2One isolate (ID: CD2293) did not present the 21614C>T; 3One 

isolate (ID: CD2293) did not present the 21638C>T; 4One isolate (ID: CD1721) did not 

present the 22132G>T; 5Fourty-five percent of P.1 isolates sequenced here did not acquire 

this insertion, which is located in the intergenic region between ORF8 and N genes. The last 

column indicates positively selected sites in P.1 lineage-defining mutations with statistical 

support (MEME p 0.05). 

 

 

 

 

 

 

 

 

 

Gene Amino acid Nucleotide change dN/dS>1 

ORF1ab - 733T>C  

- 2749C>T  

S1188L 3828C>T Yes 

K1795Q 5648A>C Yes 

- del11288-11296 (3675-3677)  

- 12778C>T1  

- 13860C>T  

E5662D 17259G>T  

Spike L18F 21614C>T2 Yes 

T20N 21621C>A Yes 

P26S 21638C>T3 Yes 

D138Y 21974G>T  

R190S 22132G>T4 Yes 

K417T 22812A>C Yes 

E484K 23012G>A Yes 

N501Y 23063A>T Yes 

H655Y 23525C>T  

T1027I 24642C>T Yes 

ORF8 E92K 28167G>A  

- 28263insAACA5  

N P80R 28512C>G Yes 

- 28877A>T  

- 28878G>C  

263

Appendix - Chapter 4.2Appendix



 

 

Table S2.  

Overview of the P.1 sequences used in this study. N = Number; Ct = cycle threshold (RT-

PCR); LDM = lineage defining mutations (see definition in table S1); no. = number. Line-list 

information for the sequence data generated by this study can be found in Data S2.  

 

Genome 

coverage  

N Primary use in 

this study 

Lab 

source 

Ct values Mean no. P.1 

LDM (range) 

>25 to <75% 25 Epidemiological 

(Epi) Modelling 

Lab A E: 20.2 (13.3–28.8) 

N: 23.6 (15.2–41)  

11  

(5–18) 

>75 to <95% 47 Phylodynamic and 

Epi Modelling  

Lab A, 

B 

E: 18.9 (12.9–30.6) 

N: 21.1 (7–43) 

19  

(14–23) 

>95% 23 Phylodynamic and 

Epi Modelling 

Lab A, 

B 

E: 17.6 (13.6–23.4) 

N: 18.4 (9–30) 

22  

(18–23) 
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Table S3.  

Epidemiological information regarding P.1 sequences from GISAID used for 

phylodynamics analyses. *Federal unit corresponding to municipality of sampling is São 

Paulo state, except for Teresina (Piauí state). N. A. = Not available. 

 

GISAI ID 
Collection 

date 
Age Sex 

Municipality 

of residence 

Municipality of 

sampling* 

Travel 

history 

EPI_ISL_906075 2021-01-19 83 M Manaus Sao Paulo No 

EPI_ISL_906069 2021-01-15 45 M Manaus Aguas Lindonia No 

EPI_ISL_906076 2021-01-19 52 M Manaus Sao Caetano Sul No 

EPI_ISL_906077 2021-01-19 49 F Manaus Sao Caetano Sul No 

EPI_ISL_906080 2021-01-22 74 M Manaus Sao Paulo No 

EPI_ISL_906081 2021-01-22 69 M Manaus Sao Paulo No 

EPI_ISL_940614 2021-01-19 57 F Manaus Teresina (PI) No 

EPI_ISL_940615 2021-01-19 38 F Manaus Teresina (PI) No 

EPI_ISL_906071 2021-01-19 59 M Manaus Teresina (PI) No 

EPI_ISL_940617 2021-01-19 30 F Manaus Teresina (PI) No 

EPI_ISL_940618 2021-01-19 46 F Manaus Teresina (PI) No 

EPI_ISL_940620 2021-01-14 46 M Manaus Sao Paulo No 

EPI_ISL_940623 2021-01-08 64 F Manaus Sao Paulo No 

EPI_ISL_940624 2021-01-15 29 M Manaus Sao Paulo No 

EPI_ISL_940626 2021-01-21 78 M Manaus Sao Caetano Sul No 

EPI_ISL_940627 2021-01-22 64 M Manaus Sao Caetano Sul No 

EPI_ISL_833169 2020-12-23 N.A. N.A. N.A. N.A. N.A. 

EPI_ISL_940630 2021-01-25 40 M Rio Janeiro Sao Paulo Roraima 

EPI_ISL_875689 2021-01-15 65 F Sao Paulo Sao Paulo Manaus 

EPI_ISL_872191 2021-01-15 51 F Sao Paulo Sao Paulo Manaus 

EPI_ISL_872192 2021-01-18 49 F Sao Paulo Sao Paulo Manaus 

EPI_ISL_940619 2021-01-15 84 F Sao Paulo Sao Paulo Manaus 

EPI_ISL_940621 2021-01-14 40 F Manaus Sao Paulo N.A. 

EPI_ISL_940622 2021-01-15 48 M Sao Paulo Sao Paulo Manaus 

EPI_ISL_940625 2021-01-19 81 F Sao Paulo Sao Paulo Manaus 

EPI_ISL_875688 2021-01-04 49 M Sao Paulo Sao Paulo Manaus 
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Table S4.  

Proportion of P.1 cases in Manaus. Note that week commencing on 30 Nov 2020 includes the 

date of the first P.1 case detected in our study (6 Dec 2020). 

 

Date (Week Commencing) No. Sequenced No. P.1 Proportion 

2 November 2020 9 0 0 

9 November 2020 2 0 0 

16 November 2020 4 0 0 

23 November 2020 NA NA NA 

30 November 2020 2 1 50% 

7 December 2020 7 1 14% 

14 December 2020 24 7 29% 

21 December 2020 37 20 54% 

28 December 2020 14 8 57% 

4 January 2021 46 40 87% 
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Table S5. 

Inferred changes in epidemiological characteristics of P.1, depending on the timing of P.1 

emergence assumed. The central estimate (derived from phylogenetic molecular clock 

analyses) used is the 9th November. Sensitivity results are shown for this date plus or minus 1 

week, as well as for the 95% Bayesian Credible Interval of the most recent common ancestor 

of the P.1 lineage (6th October and 24th November). The results presented are the mean, with 

the Bayesian 95% quartiles in brackets. 

 

 

 Epidemiological Characteristic 

Timing of P.1 

Emergence 

Degree of Cross-

Immunity 

Transmissibility 

Increase 

Relative Risk of 

Mortality 

6 Oct 2020 0.71 (0.35-0.94) 1.38 (0.82-2.05) 1.88 (0.99-3.11) 

2 Nov 2020 0.69 (0.33-0.93) 1.89 (1.13-2.82) 1.72 (0.95-2.86) 

9 Nov 2020 0.65 (0.28-0.90) 2.09 (1.26-3.10) 1.59 (0.90-2.51) 

16 Nov 2020 0.57 (0.23-0.83) 2.34 (1.50-3.37) 1.34 (0.82-2.10) 

24 Nov 2020 0.42 (0.13-0.69) 2.75 (1.94-3.78) 1.12 (0.73-1.77) 
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Table S6. 

Inferred changes in epidemiological characteristics of P.1, depending on cross-immunity 

prior assumptions. Sensitivity results presented are the mean, with the Bayesian 95% 

quartiles in brackets. 

 

 

 
Epidemiological Characteristic 

Degree of Cross-

Immunity prior 

Degree of Cross-

Immunity 

Transmissibility 

Increase 

Relative Risk of 

Mortality 

Beta(1,1) 0.55 (0.09–0.87) 1.90 (1.10-2.95) 1.42 (0.77-2.38) 

Beta(2,1) 0.65 (0.28-0.90) 2.09 (1.26-3.10) 1.59 (0.90-2.51) 

Beta(3,1) 0.70 (0.39-0.91) 2.19 (1.41-3.10) 1.67 (0.97-2.62) 

Beta(4,1) 0.73 (0.46-0.92) 2.31 (1.49-3.27) 1.74 (1.06-264) 

Complete immune-

escape 

0 1.07 (0.82-1.39) 0.99 (0.65-1.68) 

Complete cross-

immunity 

1 3.89 (3.52-4.26) 2.72 (1.54-3.88) 
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Table S7. 

Inferred changes in epidemiological characteristics of P.1, depending on the rate of natural 

immunity waning assumed (for an emergence date of 9 Nov 2020). Sensitivity results 

presented are the mean, with the Bayesian 95% quartiles in brackets. 

 

 

 Epidemiological Characteristic 

Duration of 

Immunity Assumed 

Degree of Cross-

Immunity 

Transmissibility 

Increase 

Relative Risk of 

Mortality 

50% waning over 6-

month period 
0.48 (0.13-0.82) 2.25 (1.60-3.16) 1.35 (0.98-1.89) 

50% waning over 8-

month period 
0.56 (0.19-0.86) 1.92 (1.19-2.91) 1.54 (0.99-2.34) 

50% waning over 1-

year period 
0.65 (0.28-0.90) 2.09 (1.26-3.10) 1.59 (0.90-2.51) 

50% waning over 

1.5-year period 
0.69 (0.35-0.91) 2.17 (1.36-3.11) 1.61 (0.86-2.65) 

50% waning over 2-

year period 
0.71 (0.39-0.92) 2.24 (1.41-3.17) 1.65 (0.84-2.71) 
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Table S8. 

Inferred changes in epidemiological characteristics of P.1, depending on non-P.1 infection 

fatality ratio (IFR) prior assumptions. Sensitivity results presented are the mean, with the 

Bayesian 95% quartiles in brackets. 

 

 

 Epidemiological Characteristic 

Non-P.1 IFR prior  Degree of Cross-

Immunity 

Transmissibility 

Increase 

Relative Risk of 

Mortality 

Normal+(0.24,0.01) 0.65 (0.28-0.90) 2.06 (1.29-3.03) 1.61 (0.92-2.57) 

Normal+(0.32,0.01) 0.65 (0.28-0.90) 2.09 (1.26-3.10) 1.59 (0.90-2.51) 

Normal+(0.48,0.01) 0.63 (0.25-0.90) 2.11 (1.28-3.12) 1.46 (0.80-2.36) 

Gamma(3.2,10) 0.65 (0.29-0.89) 2.07 (1.25-3.08) 1.58 (0.88-2.50) 
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Table S9. 

Inferred changes in epidemiological characteristics of P.1, depending on relatively risk of 

mortality prior assumptions. Sensitivity results presented are the mean, with the Bayesian 

95% quartiles in brackets. 

 

 

 
Epidemiological Characteristic 

Relative Risk of 

Mortality prior 

Degree of Cross-

Immunity 

Transmissibility 

Increase 

Relative Risk of 

Mortality 

LogNormal(0,0.25) 0.54 (0.21–0.80) 1.83 (1.16-2.66) 1.23 (0.85-1.75) 

LogNormal(0,0.5) 0.65 (0.28-0.90) 2.09 (1.26-3.10) 1.59 (0.90-2.51) 

LogNormal(0,0.75) 0.69 (0.34-0.92) 2.21 (1.31-3.27) 1.74 (0.95-2.89) 
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Table S10. 

Inferred changes in epidemiological characteristics of P.1, depending on prior assumptions 

for the increase in transmissibility of P.1 compared to non-P.1. Sensitivity results presented 

are the mean, with the Bayesian 95% quartiles in brackets. 

 

 

 

Epidemiological Characteristic 

Transmissibility 

increase prior 

Degree of Cross-

Immunity 

Transmissibility 

Increase 

Relative Risk of 

Mortality 

Normal+(2,1) 0.75 (0.43–0.95) 2.46 (1.49-3.54) 1.77 (0.99-2.78) 

Normal+(1,1) 0.65 (0.28-0.90) 2.09 (1.26-3.10) 1.59 (0.90-2.51) 

Gamma(2.2,0.5) 0.62 (0.25-0.89) 2.01 (1.21-3.06) 1.51 (0.86-2.52) 
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Data S1. (separate file) 

Metadata for 1084 SARS-CoV-2 samples from Manaus (laboratory B). 

 

Data S2. (separate file) 

Metadata and GISAID IDs for 184 sequenced samples from Manaus. 

 

Data S3. (separate file) 

Metadata for 8542 SARS-CoV-2 samples from Manaus (laboratory C).  

 

Data S4. (separate file) 

GISAID Acknowledgment table (used for datasets B and C).  

 

Data S5. (separate file) 

Flight mobility data from Manaus (state level). 

 

Data S6. (separate file) 

Cell-phone derived mobility data from Manaus (municipality level). 
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Supplementary Methods 
 

Epidemiological Context 

The HCFMUSP is composed of nine medical specialty institutes: Central Institute (ICHC), Heart 

Institute (InCor), Cancer Institute (ICESP), Children’s Institute (ICr), Radiology Institute (InRad), 

Psychiatry Institute (IPq), Physical Medicine and Rehabilitation Institute (IMREA), Orthopaedics and 

Traumatology Institute (IOT), and Long-term auxiliary Hospital (HAS). 

Institute B became an institute dedicated to the care of COVID patients. Patients began to be transferred 

to other institutes and structures were created to receive 300 ICU beds and 300 ward beds, with 

approximately 6000 HCW. A crisis committee was created and external assistance teams of doctors, 

nurses and physiotherapists came to help in patient care. All were trained in the correct use of PPE, 

which included private clothing, N95 masks, gloves and aprons, hats and face shields, and clothing and 

de-dressing techniques. 

Personal protective equipment (PPE) was made available to all HCW. HCW who provided direct patient 

care to COVID-19 patients wore N95 respirators and scrubs during their entire shifts. When examining 

or touching patients they added disposable gloves and a gown. During aerosol-generating procedures, 

they used N95 respirators, a gown, gloves, and eye protection (face shield or goggles). HCW used the 

same N95 respirator between patients and these were reused by the same HCW for seven shifts or until 

damaged or soiled. The cleaning staff wore N95 respirators during their entire shift. HCW were trained 

to don and doff PPE in face-to-face sessions and with videos and posters. All symptomatic HCW were 

evaluated at a dedicated health service (located in a separate building) and, if indicated, oro-

nasopharyngeal swabs were collected. If COVID-19 was confirmed, the HCW received paid leave for 

14 days from the onset of symptoms. Clinical and epidemiological data collection (age, sex, home 

address, occupation, unit of work within the hospital, date of onset of symptoms, symptoms, need for 
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hospitalization, and clinical outcome) involved the collaboration of several teams that matched sample 

identification numbers to medical records from patients and health workers on each institute’s electronic 

system. 

 

Supplementary Panel 1 – COVID-19 response measures taken by each institute from the HCFMUSP 
according to epidemiological week. 
 

Epil week Institute A Institute B Institute C 

Week 10 
(07/03/2020 
- 
13/03/2020)  

COVID and non-COVID areas; 
HCW were not allowed to move 
between areas; For aerosol 
forming procedures: N95 + 
glasses + face shield; Triage of 
patients, HCW and carers 
(temperature and symptoms) 

 
  

Week 11 
(14/03/2020 
- 
20/03/2020) 

Restriction of in person events 
and meetings; 
No visitors allowed in COVID 
areas and limited in all other 
areas; 

 Entrance areas, elevators, 
pantries, cafeterias were 
separated to ensure the 
safety of health 
professionals.  

  

Week 12 
21/03/2020 
- 
27/03/2020) 

 
Outpatient care was 
suspended 

COVID and non-COVID 
areas 

Week 13 
(28/03/2020 
- 
06/04/2020) 

 
Became COVID-only. 
Guideline use of PPE 
available for all HCW 

 

Week 15 
(04/04/2020 
- 
10/04/2020) 

Mandatory masking. 
Surgical masks for all HCW; 
administrative workers could 
wear cloth masks. 

 Focus on identifying 
symptomatic healthcare 
workers and immediate 
leave 

HCW servicing patients - 
surgical masks in inpatient 
wards and N95 in ICUs;1 
visitor per patient per day 

Week 16 
(11/04/2020 
- 
17/04/2020) 

 
HCW not allowed to transit 
between institutes. 
Professionals were dedicated 
exclusively to Institute B 
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Week 17 
(18/04/2020 
- 
24/04/2020) 

 
Training on the use of PPE 
for multidisciplinary teams 
such as nutritionists, hygiene 
staff, maintenance 
engineering, psychologists, 
social workers 

Universal masking 
mandatory 
(surgical mask) 

Week 18 
(25/04/2020 
- 
01/05/2020) 

N95 for all critical emergency 
areas, ICUs and surgical centre 

Training on the use of PPE 
for administrative personnel 
due to an outbreak 

5 Covid-19 transmission 
measures; 
Daily audits until 10/05 

Week 19 
(02/05/2020 
- 
08/05/2020) 

 
Mandatory use of surgical 
masks for all professionals, 
including administrative 
personnel.  

 

 

SARS-CoV-2 genome amplification 

For SARS-CoV-2 whole-genome sequencing, we used a tilling-amplicon multiplex PCR technique as 

previously described (3–5). First, the cDNA was synthesized from positive RNA samples using the 

ProtoScript II First-Strand cDNA synthesis kit (New England Biolabs, UK) and random primers or 

SuperScriptIV First-Strand Synthesis System (Thermo Fisher Scientific, USA). Subsequently, cDNA 

was subjected to amplification using the V2 ARTIC scheme (https://artic.network/ncov-2019) and Q5 

High-Fidelity DNA polymerase (New England Biolabs, UK). After amplification, the AmpureXP 

purification beads (Beckman Coulter, United Kingdom) were used for product purification and the Qubit 

dsDNA High Sensitivity Assay on the Qubit 3.0 instrument (Life Technologies, USA) to quantify the 

amplicons.  

 

Library preparation and whole-genome sequencing 

Sequencing libraries were prepared using a total input of 100ng. The normalized amplicons were 

submitted to barcode ligation using the EXP-NBD 104 (1–12) and EXP NBD 114 (13–24) Native 

Barcoding Kits (Oxford Nanopore Technologies, UK). Sequencing libraries were generated using the 

SQK-LSK109 Kit (Oxford Nanopore Technologies, UK). Finally, 20ng of the library, containing 23 

288

Appendix - Chapter 5Appendix



 
 

4 

samples and one negative control, were loaded onto an R9.4.1 flow-cell on the MinION device and 

sequenced using MinKNOW 1.15.1 (Oxford Nanopore Technologies, UK). 

 

Bioinformatic analysis 

Guppy software v2.2.7 (Oxford Nanopore Technologies, UK) was used to basecall, demultiplex, and 

trim the FAST5 files. FASTQ files were mapped to the reference genome of SARS-CoV-2 isolate 

Wuhan-Hu 1 (GenBank Accession Number MN908947) using minimap2 v.2.28.0 to generate the 

consensus genomes and SAMtools to convert to a sorted BAM file (Li et al., 2009). 

Length filtering and the quality test was performed for each barcode using artic guppyplex 

(https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html). The genome statistics were 

obtained from SAMtools and Tablet viewer (Milne et al., 2010). To recover consensus sequences, called 

variants were detected with Nanopolish. Genome regions with a depth of <20-fold were not included in 

final consensus sequences, and these positions are represented with N characters. Runs with negative 

control presenting any contamination were discarded. 

 

Collation of genomic datasets and sequence quality control 

SARS-CoV-2 sequences from Brazil with collection date up to the 20th May 2020 (oldest collection 

date in our HCW dataset) (n=1860) were downloaded from GISAID (6–8) and appended to a previously 

described global dataset of 1,182 viral genomes (4). As previously described (4), we further filtered 

down our dataset by maintaining only sequences with at least 75% consensus sequence coverage. The 

resulting dataset was aligned to the reference NC_045512.2 using MAFFT v 7.450 (9) and manually 

edited using AliView. 3’ and 5’ untranslated regions of each sequence were discarded. 

 A Maximum likelihood tree was inferred using IQ-TREE v.2.0 (10) under the best substitution model 

as determined by ModelFinder (34) implemented in the IQ-TREE pipeline. TempEst v.1.5.3 (35) 

analyses and visual inspection of the alignment in Aliview were used to identify and remove sequences 

with unusual divergence for a given date of collection and/or long stretches of polymorphisms. Our final 

289

Appendix - Chapter 5Appendix



 
 

5 

dataset consisted of 2,550 sequences, including 340 sequences from HCFMUSP,  67 novel genomes and 

273 previous GISAID submissions from our group (dataset 1). Pangolin version V3.1.11 (36) was used 

for lineage assignment. For accurate cluster identification, sequences with >90% coverage (n=2259) 

were maintained for subsequent phylogenetic analysis and initial cluster identification, including 234 

sequences from this study. Finally, for Bayesian phylogenetic analysis, dataset B was subsampled to 

include 200 randomly selected sequences from other countries, all sequences from Sao Paulo state 

(n=407), and all sequences from this study with coverage >90% (n=234) (dataset 3, n=841 sequences). 

Only sequences from Sao Paulo state were maintained given that all sequences from this study clustered 

amongst them.  

 

Phylogenetic and Phylogeographic analysis 

Maximum likelihood trees for all datasets were inferred using IQ-TREE v.2.0, with the best substitution 

model determined by ModelFinder implemented in the IQ-TREE pipeline: GTR+F+R2 (Datasets A and 

B), GTR+F+R3 (dataset 3). Sequences from this study were scanned for recombination using all methods 

available on RDP4 (37) and no recombination signal was found. Bayesian time-rooted phylogenies were 

estimated using Beast v1.10.4 (38) and BEAGLE (39), under an HKY+Γ nucleotide substitution model, 

a strict molecular clock and an exponential growth coalescent tree prior (40); (27). For population size, 

a log-normal prior with mu=1 and sigma=0 was used and for growth rate, a la place prior with mean=0 

and scale=100 was set. Analyses were run in triplicates for 200 million Markov Chain Monte Carlo 

(MCMC) steps. Run convergence was assessed using Tracer v.1.7.1 (41). Log and tree files were 

combined after removal of 10% burn-in from each run using LogCombiner v1.10.4 and summary 

Maximum Clade Credibility trees were generated from the combined tree files using TreeAnnotator 

v1.10.4. LogCombiner v1.10.4 was also used to generate a resampled distribution of 1,000 from the 

combined tree files, which was used for subsequent phylogeographic analysis. 

To understand the dynamics of SARS-CoV-2 spread across the institutes we used 4 different discrete 

trait schemes. For the first trait, location (k=5), sequences were assigned one of five locations (k=5): (I) 
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Institute A, (II) Institute B, (III) Institute C, (IV) São Paulo (other sequences from São Paulo state) or 

(V) Other (international sequences). For the discretization scheme two (k=3), location2, all institute 

sequences were assigned one single location (I) HC; while other sequences were assigned as (II) São 

Paulo and (III) Other To incorporate the transmission dynamics between HCW and patients, 

discretization scheme 3 (k=4) assigned sequences to either (I) HCW, (II) patient, (III) São Paulo, and 

(IV) Other (k=4). Finally, discretization scheme 4 (k=8) accounted for both the institute and 

HCW/Patient trait information by assigning sequences to either (I) Institute A_HCW (II) Institute 

A_patient, (III) Institute B_HCW, (IV) Institute B_patient, (V) Institute C_HCW, (VI) Institute 

C_Patient, (VII) São Paulo and (VIII) Other. The number of migration events between each location 

considered, as well as the total number of imports and exports for each location, were estimated using a 

Markov Jumps count approach (42) implemented on Beast v1.10.4, under an asymmetric CTMC model 

for discrete trait reconstruction (43). Migration rates were inferred on a separate run under the same 

asymmetric model with a Bayesian Stochastic Search Variable Selection procedure (BSSVS) (44), 

which identifies and limits the number of rates to only one that can actually explain the diffusion process. 

The proportion (%) of imports for each institute was estimated by considering the maximum number of 

imports for each trait as equal to the total number of sequences for each trait included in the analysis. By 

considering imports as any transition from another trait, the remaining proportion, adding up to 100%, 

would be the proportion of transmission happening within a particular trait (non-imports), and thus 

representing transmission within each institute or HCW/Patient. To estimate the expected proportion of 

imports and transitions in a scenario in which clustering was not related to the traits, locations for 

institute sequences in schemes 1 and 4 were randomly reordered ten times and ten independent 

simulations were run for each scheme, under the same evolutionary models described above. The 

average distribution for imports for each trait was estimated from the results of the ten simulations. 

 

Cluster analysis 
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Considering the relatively low evolutionary rate of SARS-CoV-2, which accumulates 2-3 mutations a 

month (27),(45) cluster analysis was performed on sequences with >90% coverage, in order to decrease 

the chances of incorrect assignment of sequences to transmission clusters. Initial identification of clusters 

was performed on dataset 2 under an ML phylogeny run on IQ-TREE v.2 (see methods). Clusters were 

confirmed on dataset 3 under both ML, Bayesian time-rooted trees and Bayesian trait-referenced time-

rooted trees. Clusters were defined according to the content of HC sequences (sequences from this study) 

and according to the statistical support obtained from phylogenetic analysis. HC clusters were considered 

when >75% of the sequences were from HC, when they were supported by a minimum SH-like 

approximate likelihood ratio test (SH-aLRT) support of 75, minimum fast bootstrap support of 90, a 

minimum node posterior support of 0.9, and had at least one defining mutation separating clustered 

sequences from the nearest sequences in the phylogenetic tree. Statistical support thresholds were 

defined considering the support thresholds recommended by IQ-TREE and the agreement between the 

different support statistics across different phylogenetic methods. 

The strength of the epidemiological link between clustered sequences was assessed using both hospital-

associated metadata and the geocoded residential addresses for patients and HCW. An “epidemiological 

link” was asssigned when individuals worked/were hospitalized in the same ward/floor at the time of 

symptom onset or when it involved HCWs from the same specialty/division. A “possible 

epidemiological link” was defined as being hospitalized/working in the same institute at the time of 

symptom onset, but not necessarily in the same ward/floor or being from the same division/specialty. 

Finally, an “unclear epidemiological link” was defined as individuals who worked/were hospitalized at 

different institutes at the time of symptom onset and no clear epidemiological link could be established.  

 

Compartmentalization analysis 

To investigate the association of specific traits and genetic diversity of SARS-CoV-2 in our dataset, we 

used Simmond’s Association Index implemented in the Hypothesis Testing Using Phylogenies 

(HYPHY) (46). AI calculates an association index for genetic diversity according to different 
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compartments (traits). It assesses population structure by weighting the contribution of each node while 

also running a bootstrap to provide support for the association index. In our analysis, we considered 

three separate sets of compartments: Institutes (Institute A, Institute B, Institute C), occupations (doctor, 

nurse, administration, other, and patient), and Patient/HCW. Doctors and nurses comprise all different 

levels of training of medical doctors and nursing professionals (including technicians). Analysis was 

performed in two datasets: (I) all HC sequences >90% coverage (n=234) and (I) clustered sequences 

only (n=73). Runs were performed under the following conditions: ten relabellings (default), 1000 

bootstraps, and a significance threshold of <⅔ (default). 

 

Statistical analysis 

Descriptive analyses are shown as arithmetic means, median, and range. To assess traits that may affect 

the clustering of genetic sequences, we performed binomial logistic regression analyses, having clustered 

or non-clustered as the outcome variable, and analyses were controlled for sex and age. For model 1, 

traits location (Institute A, Institute B, and Institute C) and HCW/patient were used. Baseline variables 

were Institute B and patient. For model 2, one single trait incorporating both location and HCW/patient 

was used: HCW.Institute A, patient.Institute A, HCW.Institute B, patient.Institute B, HCW.Institute C, 

patient.Institute C. Baseline variable was patient.Institute B. For model 3, traits location (Institute A, 

Institute B, and Institute C) and occupation (administration, doctor, medical resident, nurse, nurse 

technician, others, and patient. Baseline variables were Institute B and patient. Finally, model 4 

contained one single trait with all possible combinations of location and occupations used in model 3 

(k=21). The baseline variable was patient. Institute B. Results were reported as the odds ratio (OR) over 

the baseline variables and p values <0.05 were considered statistically significant. For the household 

geographical distances analysis, a Mann-Whitney U test was performed in R Studio 1.2.1335. 

 

Data sharing 
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Raw virus reads, and consensus sequences generated in this study can be found at 

https://github.com/CADDE-CENTRE/… XMLs GISAID IDs are available in Table S3. 
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Supplementary Figures 

 
 
Figure S1. Fluxogram contains information on the study design. Out of 3,933 SARS-CoV-2 
positive individuals from all HC institutes, minimum metadata was successfully collected for a total of 
3,898. Of these, 454 samples from Institute B, Institute A, and Institute Cwere randomly selected for 
nanopore genome sequencing using the ARTIC protocol. 340 samples passed our quality control 
analysis and were submitted to lineage assignment using Pangolin COVID-19 Lineage assigner. 234 
samples with coverage >90% were used for cluster analysis. For metadata collection and genome 
sequencing and quality control, see methods. 
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Figure S2. Time series of 3,898 HC COVID-19-positive cases by the institute of origin. Colors 
distinguish patients (blue) from HCW (red). The date of symptom onset was used for health workers 
and patients who were hospitalized before symptom onset. For community-acquired patients, the date 
of hospitalization was used (see methods). Institute A, Institute B, and Institute Cconcentrate 91.8% of 
all HC reported cases.  
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Fig S3. Classification of Covid-19 positive patients according to the gap between symptom onset 
and hospitalization. (A) Proportion of patients belonging to each category per institute. (B) 
Distribution of COVID-19 positive patients according to the time gap (in days) between hospitalization 
and symptom onset. Negative values mean that patients were hospitalized prior to symptom onset, 
while positive values mean that patients were hospitalized after symptom onset. Dotted lines mark 
patients from groups 3 (symptom onset >2 and <8 days after hospitalization) and 4 (symptom onset ≥8 
and <15 days after hospitalization), to which hospital-associated infection is suspected but 
inconclusive. 
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Fig S4. Time series of COVID-19 sequences with coverage >75% per week per institute of origin.  
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Fig. S5. Genetic diversity of HC SARS-CoV-2 samples. (A) Proportion of SARS-CoV-2 lineages 
per institute (n=340 sequences, >75% coverage) and São Paulo state (n=471 sequences). Lineage 
assignment was performed using Pangolin COVID-19 Lineage assigner. (B) Time series of lineages 
per institute/São Paulo per epidemiological week.  
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Fig S6. Regression of root-to-tip genetic diversity and sample collection dates for Dataset C. 
Dataset C is composed of 841 sequences, 234 sequences from HC, 407 sequences from the State of 
São Paulo in Brazil, and 200 international sequences (see methods). Circles are colored according to 
the location of collection: HC institutes (Institute A, Institute C, and Institute B), São Paulo State (SP, 
purple), international (white). 
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Fig. S7 (separate PDF file)  
Detailed annotated maximum clade phylogenetic tree. Time-resolved maximum clade credibility 
phylogeny of 1,182 SARS-CoV-2 sequences, 490 from Brazil (red) and 692 from outside Brazil (blue). 
The largest Brazilian clusters are highlighted in grey (Clade 1, Clade 2 and Clade 3). States are defined 
by their 2-letter ISO 3166-1 codes. The MCC tree can be found at our Dryad repository (see Data 
Availability).  
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Fig S8. Characteristics of 16 potential hospital-associated HC transmission clusters. (A) 
Frequency of HCW and patients per cluster. (B) Patient classification according to hospitalization per 
cluster. 
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Fig S9. Inferred proportion of cases of patients and HCWs from HC institutes caused by imports 
from outside each institute.  (A) Proportion (%) of inferred HCW imports to Institute A, Institute B, 
and Institute C. (B) Proportion (%) of inferred patient imports to Institute A, Institute B, and Institute 
C. Colours highlight boxplots from each institute Institute A (red), Institute B(green), Institute C(blue). 
Imports were inferred from a discrete trait analysis using Markov Jumps counts implemented on Beast 
v.1.10.4 (see methods for details).  
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Fig S10. Distribution of total SARS-CoV-2 import cases per HC institute. Imports were inferred 
from dataset C (841 sequences) and using a Markov jumps approach implemented in Beast 1.10.4. An 
import is considered as any jumps coming from outside the institute. Simulations were performed by 
reshuffling the institute trait assigned to each HC sequence (see methods). (A) Total Institute A 
imports. (B) Total Institute Bimports. (C) Total Institute Cimports. 
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Fig S11. Inferred proportion of cases of patients and HCWs from HC institutes caused by 
imports from outside each institute.  (A) Proportion (%) of inferred HCW imports to Institute A, 
Institute B, and Institute C. (B) Proportion (%) of inferred patient imports to Institute A, Institute B, 
and Institute C. Colours highlight boxplots from each institute Institute A (red), Institute B(green), 
Institute C(blue). Imports were inferred from a discrete trait analysis using Markov Jumps counts 
implemented on Beast v.1.10.4 (see methods for details). 
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Fig S12. Distribution of patient SARS-CoV-2 import cases per HC institute. Imports were inferred 
from dataset C (841 sequences) and using a Markov jumps approach implemented in Beast 1.10.4. An 
import is considered as any jumps coming from outside the institute. Simulations were performed by 
reshuffling the institute trait assigned to each HC sequence (see methods). (A) Institute A patient 
imports. (B) Institute Bpatient imports. (C) Institute Cpatient imports.  
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Fig S13. Distribution of HCW SARS-CoV-2 import cases per HC institute. Imports were inferred 
from dataset C (841 sequences) and using a Markov jumps approach implemented in Beast 1.10.4. An 
import is considered as any jumps coming from outside the institute. Simulations were performed by 
reshuffling the institute trait assigned to each HC sequence (see methods). (A) Institute A HCW 
imports. (B) Institute BHCW imports. (C) Institute CHCW imports. 
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Fig S14. Frequency of epidemiological link strength by phylogenetic cluster.  
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Fig S15. Maximum likelihood phylogenetic subtrees and epidemiological characteristics of 
samples in transmission clusters A, B, C, and D. Cluster subtrees were extracted from an ML tree 
inferred from Dataset C (see methods).  
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Fig S16. Maximum likelihood phylogenetic subtrees and epidemiological characteristics of 
samples in transmission clusters E, F, G, and H. Cluster subtrees were extracted from an ML tree 
inferred from Dataset C (see methods).  
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Fig S17. Maximum likelihood phylogenetic subtrees and epidemiological characteristics of 
samples in transmission clusters I, J, K, and L. Cluster subtrees were extracted from an ML tree 
inferred from Dataset C (see methods).  
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Fig S18. Maximum likelihood phylogenetic subtrees and epidemiological characteristics of 
samples in transmission clusters M, N, O, and P. Cluster subtrees were extracted from an ML tree 
inferred from Dataset C (see methods).  
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Fig S19. Comparison between pairwise geographical distances of households of clustered and 
non-clustered sequences. For clustered sequences, pairwise household geographical distances were 
estimated between sequences of the same cluster. For non-clustered sequences, pairwise household 
geographical distances were estimated between all sequences. 
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Table S1. Epidemiological and Demographic characteristics of all Hospital das Clínicas Complex (HC) and of Institute B, Institute C, Institute A, and other 
institutes. 

 

HC                                                                                                                        
(n = 

3898) 

   Inst B                                                                                                                        
(n = 

2159, 
55.4%) 

   Inst C                                                                                                                 
(n = 716, 
18.4%) 

   Inst A                                                                                                         
(n = 703, 

18%) 

   

  All Patients HW p-
value All Patients HCW   All Patients HCW   All Patients HCW   

  
  (n = 

2008) 
(n = 

1890) 
   (n = 

1468) (n = 691)     (n = 215) (n = 501)     (n = 269) (n = 
434)   

Age 
46  (0-
101) 

60 (0 - 
101) 

37 (17-
84) 

<0.0
001 52 (0-97) 60 (0-

101) 38 (17-71) <0.000
1 39 (0-93) 61 (0-93) 35 (20-67) <0.0001 42 (15-92) 64 (15-92) 37 (19-

66) 
<0.0001 

Sex                             

   Female 
2251  

(57.75%) 
921  

(45.9%) 
1330  

(70.4%) 
<0.0
001 

1112  
(51.5%) 

665  
(45.3%) 

447  
(64.7%)   456  (63.7%) 92  

(42.7%) 
364  

(72.65%) <0.0001 474  (67.4%) 140  
(52.0%) 

334  
(76.9%) <0.0001 

   Male 
1647  

(42.25%) 
1087  

(54.1%) 
560  

(29.6%) 
 1047  

(48.5%) 
803  

(54.7%) 
244  

(35.3%) 
 258  (36.3%) 123  

(57.2%) 
137  

(27.34%) 
 229  (32.6%) 129  

(48.0%) 
100 

(23.1%) 
 

 
Occupation                                 

   Nursing 
Technician               

557  
(14.3%) - 557  

(29.5%) - 172  
(8.0%) - 172  

(24.9%)   156  (21.8%) - 156  
(31.1%) - 171  (24.3%) - 171  

(39.4%) - 

   Doctor 
421  

(10.8%) - 421  
(22.3%) 

 188  
(8.7%) - 188  

(27.2%) 
 96  (13.4%) - 96  

(19.2%) 
 65  (9.2%) - 65  

(15.0%) 
 

   
Administrativ
e 

295  
(7.6%) - 295 

(15.6%) 

 130  
(6.0%) - 130  

(18.8%) 

 
64  (8.9%) - 64  

(12.8%) 

 
56  (8.0%) - 56  

(8.0%) 

 

   Nurse            
282  

(7.2%) - 282  
(14.9%) 

 70  (3.2%) - 70  
(10.1%) 

 95  (13.3%) - 95  
(19.0%) 

 81  (11.5%) - 81  
(18.7%) 

 

   
Physiotherapi
st      

44  (1.3%) - 44  
(2.3%) 

 
16  (0.7%) - 16  (2.3%) 

 
14  (1.9%) - 14  (2.8%) 

 
10  (1.4%) - 10  

(2.3%) 

 

   
KitchenMaid 

33  
(0.85%) - 33  

(1.7%) 
 13  (0.6%) - 13  (1.8%)  16  (2.2%) - 16  (2.8%)  4  (0.6%) - 4  

(0.9%) 
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   Cleaning           22  (0.6%) - 22  
(1.2%) 

 12  
(0.55%) - 12  (1.7%)  2  (0.3%) - 2  (0.4%)  0  (0.0%) - 0  

(0.0%) 
 

   
RadiologyTe
chnician               

22  (0.6%) - 22  
(1.2%) 

 
5  (0.2%) - 5  (0.7%) 

 
5  (0.7%) - 5  (1.0%) 

 
4  (0.6%) - 4  

(0.9%) 

 

   Others 
219  

(5.6%) - 219  
(10.4%) 

 76  (3.4%) - 76  
(10.6%) 

 51  (7.1%) - 51  
(10.2%) 

 42  (6.0%) - 42  
(9.7%) 

 

   Unknown 15  (0.4%) - 15  
(0.9%) 

 12  
(0.55%) - 12  (1.7%)  2  (0.3%) - 2  (0.4%)  1  (0.1%) - 1  

(0.2%) 
 

 
Sector                                 

 Inpatient 
1099  

(28.2%) 
933  

(46.5%) 
166  

(8.7%) 
<0.0
001 

815  
(37.7%) 

759  
(51.7%) 56  (8.1%)   144  (20.1%) 90  

(41.9%) 
54  

(10.8%) <0.0001 103  (14.6%) 62  
(23.0%) 

41  
(9.4%) <0.0001 

 IC
U 

713  
(18.3%) 

422  
(21.0%) 

291  
(15.4%) 

 406  
(18.8%) 

298  
(20.3%) 

165  
(15.6%) 

 197  (27.5%) 87  
(40.5%) 

110  
(21.9%) 

 90  (12.8%) 37  
(13.7%) 

53  
(12.2%) 

 

   Emergency  
471  

(12.1%) 
357  

(17.8%) 
114  

(6.0%) 
 230  

(10.65%) 
174  

(11.8%) 56  (8.1%)  40  (5.6%) 14  
(6.5%) 26  (5.2%)  185  (26.3%) 165  

(61.3%) 
20  

(4.6%) 
 

   
Administratio
n 

86  (2.2%) 0  (0.0%) 86  
(4.5%) 

 
54  (2.5%) 0  (0.0%) 54  (7.8%) 

 
11  (1.5%) 0  (0.0%) 11  (2.2%) 

 
12  (1.7%) 0  (0.0%) 12  

(2.8%) 

 

   Outpatient  
100  

(2.6%) 10 (0.5%) 90  
(4.8%) 

 60  (2.8%) 8  (0.5%) 39  (5.7%)  15  (2.1%) 2  (0.9%) 13  (2.6%)  5  (0.7%) 0  (0.0%) 11  
(2.5%) 

 

   Others 
589  

(15.1%) 
59  

(2.9%) 
530  

(28.0%) 
 180  

(8.4%) 
34  

(2.6%) 
165  

(23.9%) 
 156  (21.8%) 18  

(8.4%) 
138  

(27.5%) 
 153  (21.8%) 5  (1.8%) 148  

(34.1%) 
 

   Unknown 
840  

(21.5%) 
227  

(11.3%) 
613  

(32.4%) 
 414  

(19.2%) 
214  

(14.6%) 
200  

(28.9%) 
 153  (21.4%) 4  (1.9%) 149  

(29.7%) 
 149  (21.2%) 0  (0.0%) 149  

(34.3%) 
 

 
Outcome                                 

   Release 

2946 
(75.6%) 

1061  
(52.8%) 

1885  
(99.7%) 

<0.0
001 

1504  
(69.6%) 

814  
(55.4%) 

690  
(99.85%)   596  (83.2%) 98  

(45.6%) 
498  

(99.4%) <0.0001 543  (77.24%) 109  
(40.5%) 

434  
(100.0%

) 
<0.0001 

   Death 
577 

(14.8%) 
572  

(28.5%) 5  (0.3%)  356  
(16.5%) 

355  
(24.2%) 1  (0.15%)  78  (10.9%) 75  

(34.9%) 3  (0.6%)  131  (18.6%) 131  
(48.7%) 

0  
(0.0%) 
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   Transfer 36  (0.9%) 36  
(2.0%) 0  (0.0%)  27  (1.2%) 27  

(1.7%) 0  (0.0%)  5  (0.2%) 5  (2.2%) 0  (0.0%)  3  (0.4%) 3  (1.1%) 0  
(0.0%) 

 

   Unknown 
339  

(8.7%) 
339  

(16.9%) 0  (0.0%)  272  
(12.6%) 

272  
(18.5%) 0  (0.0%)  37  (5.2%) 37  

(17.2%) 0  (0.0%)  26  (3.7%) 26  (9.6%) 0  
(0.0%) 

 

 
Municipality                                 

   São Paulo      
City 

2568  
(65.9%) 

1352  
(67.3%) 

1216  
(64.3%) 

<0.0
001 

1534  
(71.0%) 

1017  
(69.3%) 

517  
(74.8%)   431  (60.2%) 135  

(62.8%) 
296  

(59.1%) 0.001 404  (57.5%) 157  
(58.4%) 

247  
(56.9%) 0.0008 

   Others 
1055  

(27.1%) 
656  

(32.7%) 
399  

(21.1%) 
 605  

(28.0%) 
451  

(30.7%) 
154  

(22.3%) 
 175  (24.4%) 80  

(37.2%) 
95  

(19.0%) 
 211  (30.0%) 112  

(41.6%) 
99  

(22.8%) 
 

   Unknown 
275  

(7.0%) 0  (0.0%) 275  
(14.6%) 

 20  (0.9%) 0  (0.0%) 20  (2.9%)  110  (15.4%) 0  (0.0%) 110  
(21.9%) 

 88  (12.5%) 0  (0.0%) 88  
(20.3%) 
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Table S2.  Epidemiological and demographic characteristics of groups 2, 3, and 4 patients from three HC 
complex institutes. 
  Patients (n = 167) p-value 

  3 - 7 days (n=27) 8 - 14 days (n=54) >14 days (n=86)  

 Group 2 Group 3 Group 4  

Age 64 (0 - 92) 63 (25 - 81) 60  (14 - 92) 0.16 

Sex         

   Female 10  (37.0%) 22  (40.7%) 42  (48.8%) 
0.45 

   Male 17  (63%) 32  (59.3%) 44  (51.2%) 

Institute         

   Inst B 0  (0.0%) 3  (5.5%) 1  (1.2%) - 

  Inst C 18  (66.7%) 30  (55.5%) 70  (81.4%)  

   Inst A 9  (33.3%) 21  (38.9%) 15  (17.4%)  

Sector         

  Inpatient unit 13  (48.1%) 29  (53.7%) 41  (47.7%) - 

   ICU 11  (40.7%) 18  (33.3%) 38  (44.2%)  

   Emergency Room 1  (4.0%) 4  (7.4%) 5  (5.8%)  

   Outpatients unit 0  (0.0%) 0  (0.0%) 2  (2.3%)  

   Others 2  (7.4%) 1  (1.8%) 0  (0.0%)  

   Unknown 0  (0.0%) 2  (3.7%) 0  (0.0%)  

Outcome         

Death 12  (44.5%) 25  (46.3%) 35  (40.7%) 0.93 
 

 Discharged 11  (40.7%) 19  (35.2%) 29  (33.7%)  

Transfer 0  (0.0%) 2  (3.7%) 4  (4.6%)  
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Unknown 4  (14.8%) 8  (14.8%) 18  (20.9%)  
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Table S3. Sequencing statistics for the Brazilian SARS-COV-2 genomes from this study (n=340). 

Isolate GISAID ID  New GISAID 
submission Municipality State Collection 

Date 
Mapped 
Reads 

Average 
depth 

coverage 

Bases 
covered 

>10x 

Bases 
covered 

>25x 

Reference 
covered (%) 

CD100 EPI_ISL_476449 No Sao Paulo SP 2020-03-24 57472 717.771 27974 27153 89.9 

CD1002 EPI_ISL_1172015 No Sao Paulo SP 2020-05-06 51838 645.976 26774 25293 81.8 

CD1003 EPI_ISL_4463722 Yes Sao Paulo SP 2020-05-06 59284 746.913 26275 24424 79.6 

CD1008 EPI_ISL_1172016 No Sao Paulo SP 2020-05-08 28954 361.532 26156 23357 79.2 

CD101 EPI_ISL_476450 No Sao Paulo SP 2020-03-23 71837 888.494 29758 28960 95.2 

CD1011 EPI_ISL_722006 No Sao Paulo SP 2020-05-09 63171 783.391 29222 29203 96.9 

CD1014 EPI_ISL_721995 No Sao Paulo SP 2020-05-09 52807 657.624 29196 29016 96.2 

CD1016 EPI_ISL_4463723 Yes Sao Paulo SP 2020-04-23 75669 941.732 29032 29019 96.1 

CD1020 EPI_ISL_4463724 Yes Sao Paulo SP 2020-05-11 57547 719.699 28007 27286 89.6 

CD1022 EPI_ISL_4463725 Yes Cotia SP 2020-05-11 131119 1622.29 29449 29209 97.0 

CD1023 EPI_ISL_4463726 Yes Sao Paulo SP 2020-05-11 103425 1288.57 29268 28537 94.4 

CD1025 EPI_ISL_4463727 Yes Sao Paulo SP 2020-04-27 86029 1068 26783 24805 85.4 

CD105 EPI_ISL_476452 No Sao Paulo SP 2020-03-21 20454 252.938 29431 28406 95.9 

CD106 EPI_ISL_476453 No Sao Paulo SP 2020-03-23 77578 959.98 29158 28215 93.5 

CD107 EPI_ISL_476454 No Sao Paulo SP 2020-03-23 65714 830.558 26697 25044 83.4 

CD109 EPI_ISL_476455 No Sao Paulo SP 2020-03-24 41571 523.947 26899 24987 81.8 

CD110 EPI_ISL_476456 No Sao Paulo SP 2020-03-23 54967 679.223 29177 28384 94.3 

CD111 EPI_ISL_476457 No Sao Paulo SP 2020-03-21 32555 406.751 27655 25681 87.3 

CD1129 EPI_ISL_4463728 Yes Poa SP 2020-05-04 212992 2381.59 29232 29028 96.3 

CD113 EPI_ISL_476459 No Sao Paulo SP 2020-03-20 43796 550.345 27191 25287 83.2 

CD1130 EPI_ISL_4463729 Yes Sao Paulo SP 2020-04-27 222158 1752.33 23615 22723 75.0 

CD1131 EPI_ISL_4297851 Yes Sao Paulo SP 2020-04-30 215848 1559.04 27664 25739 87.3 

CD1132 EPI_ISL_1171871 No Sao Paulo SP 2020-05-04 273611 2804.66 29276 29072 96.3 

CD1133 EPI_ISL_4297852 Yes Sao Paulo SP 2020-05-04 186352 2297.73 29286 29208 97.2 

CD1134 EPI_ISL_4297853 Yes Embu das Artes SP 2020-05-04 202136 2529.59 29466 29278 97.2 

CD1135 EPI_ISL_4297854 Yes Sao Paulo SP 2020-05-05 157917 1920.49 29238 29071 96.3 

CD114 EPI_ISL_476460 No Guarulhos SP 2020-03-20 41489 521.837 26433 24987 80.7 
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CD115 EPI_ISL_476461 No Sao Paulo SP 2020-03-23 67205 830.874 29834 29184 96074 

CD116 EPI_ISL_476462 No Sao Paulo SP 2020-03-23 65774 815.213 29615 28988 96.8 

CD118 EPI_ISL_476469 No Sao Paulo SP 2020-03-24 128482 1626.99 29836 29836 98.6 

CD121 EPI_ISL_476471 No Jandira SP 2020-03-17 104908 1326.95 29588 29384 96.9 

CD122 EPI_ISL_476472 No Sao Paulo SP 2020-03-19 178589 2139.45 29147 28704 95.3 

CD124 EPI_ISL_476473 No Sao Paulo SP 2020-03-23 181356 1898.82 27552 26950 89.1 

CD126 EPI_ISL_476475 No Sao Paulo SP 2020-03-24 177196 2017.32 28628 28352 92.7 

CD1261 EPI_ISL_4463730 Yes Guarulhos SP 2020-05-14 18289 226.612 29213 29206 96.9 

CD1262 EPI_ISL_4297855 Yes Sao Paulo SP 2020-05-14 22872 284.946 26814 25000 83.2 

CD1264 EPI_ISL_4297856 Yes Sao Paulo SP 2020-05-14 19422 241.971 25801 22681 75.7 

CD1265 EPI_ISL_4297857 Yes Sao Paulo SP 2020-05-14 12256 152.797 27388 24988 86.2 

CD1268 EPI_ISL_4297858 Yes Sao Paulo SP 2020-05-14 24900 311.296 27942 26239 87.0 

CD1269 EPI_ISL_4297859 Yes Santo Andre SP 2020-05-13 19845 244.974 29167 29094 96.4 

CD1276 EPI_ISL_4297860 Yes Sao Paulo SP 2020-05-12 9924 122.826 28702 27446 92.2 

CD1278 EPI_ISL_4297861 Yes Sao Paulo SP 2020-05-14 24601 303.813 29458 29457 98.0 

CD1279 EPI_ISL_4297862 Yes Franco da 
Rocha SP 2020-05-14 19482 246.765 25865 22679 77.4 

CD128 EPI_ISL_476477 No Sao Paulo SP 2020-03-23 116345 1473.48 28847 28564 93.5 

CD1283 EPI_ISL_4297863 Yes Sao Paulo SP 2020-05-15 34797 450.457 25431 22832 76.0 

CD1284 EPI_ISL_4297864 Yes Sao Paulo SP 2020-05-15 85433 1077.47 28014 26851 88.1 

CD1285 EPI_ISL_4297865 Yes Embu das Artes SP 2020-05-15 16228 202.795 29270 29003 97.1 

CD1287 EPI_ISL_4297866 Yes Sao Paulo SP 2020-05-15 110708 1384.22 28880 27227 89.6 

CD1288 EPI_ISL_4297867 Yes Carapicuiba SP 2020-05-15 70865 886.936 29039 29025 96.2 

CD1289 EPI_ISL_4297868 Yes Sao Paulo SP 2020-05-15 69833 869.803 26346 23972 80.3 

CD1292 EPI_ISL_4463731 Yes Sao Paulo SP 2020-05-14 32859 417.543 25827 23644 77.9 

CD1293 EPI_ISL_4297869 Yes Sao Paulo SP 2020-05-15 104135 1298.02 29458 29269 97.1 

CD1297 EPI_ISL_4297870 Yes Sao Paulo SP 2020-05-14 101437 1269.58 29274 28864 96.3 

CD1298 EPI_ISL_4297871 Yes Guarulhos SP 2020-05-15 98654 1234.54 29273 29254 97.1 

CD1300 EPI_ISL_4297872 Yes Diadema SP 2020-05-15 57045 705.346 29002 28100 94.0 

CD1303 EPI_ISL_4297873 Yes Sao Paulo SP 2020-05-14 73375 921.437 28821 27582 92.4 

CD1305 EPI_ISL_4297874 Yes Osasco SP 2020-05-17 76351 952.286 26871 25362 85.4 

CD1306 EPI_ISL_4297875 Yes Sao Paulo SP 2020-05-20 81809 1004.05 27076 25471 85.4 
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CD131 EPI_ISL_476479 No Sao Paulo SP 2020-03-19 59589 788.547 26108 24493 80.6 

CD1316 EPI_ISL_4297876 Yes Sao Paulo SP 2020-05-17 47548 595.197 27875 27049 89.0 

CD133 EPI_ISL_476480 No Taboao da 
Serra SP 2020-03-23 112350 1434.81 28401 26871 87.1 

CD134 EPI_ISL_476481 No Sao Paulo SP 2020-03-23 60637 766.611 28958 28353 92.7 

CD135 EPI_ISL_476482 No Sao Paulo SP 2020-03-24 70126 895.417 28290 27135 90.7 

CD139 EPI_ISL_476486 No Sao Paulo SP 2020-03-24 114744 1452.87 29408 28978 95.3 

CD231 EPI_ISL_476237 No Francisco 
Morato SP 2020-03-26 101131 1272.4 29053 28318 93.4 

CD232 EPI_ISL_476238 No Sao Paulo SP 2020-03-26 116552 1282.01 28367 26189 87.4 

CD234 EPI_ISL_476239 No Guarulhos SP 2020-03-26 83874 1050.7 28362 26806 89.8 

CD235 EPI_ISL_476240 No Santo Andre SP 2020-03-26 103474 1234.57 28585 26618 89.6 

CD236 EPI_ISL_476241 No Carapicuiba SP 2020-03-24 63095 679.685 26516 23297 78.8 

CD237 EPI_ISL_476242 No Osasco SP 2020-03-26 102358 1103.6 27206 25196 83.8 

CD239 EPI_ISL_476243 No Mogi das 
Cruzes SP 2020-03-23 91282 1159.16 29300 28991 95.3 

CD240 EPI_ISL_476244 No Sao Paulo SP 2020-03-26 66959 848.48 29675 29675 97.9 

CD241 EPI_ISL_476245 No Embu das Artes SP 2020-03-26 82197 1044.52 29371 28662 95.7 

CD242 EPI_ISL_476246 No Sao Paulo SP 2020-03-27 126660 1601.78 29675 29640 97.9 

CD243 EPI_ISL_476247 No Sao Paulo SP 2020-03-27 95802 1201.52 29046 28048 92.6 

CD246 EPI_ISL_476249 No Sao Paulo SP 2020-03-27 90130 1049.37 27902 26164 88.1 

CD250 EPI_ISL_476250 No Taboao da 
Serra SP 2020-03-25 52724 667.049 29486 29038 96.3 

CD252 EPI_ISL_476251 No Ferraz de 
Vasconcelos SP 2020-03-21 72855 784.277 25639 22858 75.8 

CD255 EPI_ISL_476252 No Sao Paulo SP 2020-03-27 69676 868.835 27424 25565 86.5 

CD257 EPI_ISL_476253 No Sao Paulo SP 2020-03-27 75996 976.113 29039 27664 93.6 

CD258 EPI_ISL_476254 No Sao Paulo SP 2020-03-27 71401 904.888 29490 29478 97.1 

CD260 EPI_ISL_476256 No Osasco SP 2020-03-27 58654 742.317 29674 29670 97.9 

CD262 EPI_ISL_476257 No Sao Paulo SP 2020-03-24 64287 807.039 27683 25098 85.3 

CD263 EPI_ISL_476258 No Sao Paulo SP 2020-03-27 54650 662.635 28553 27830 92.5 

CD265 EPI_ISL_476259 No Sao Paulo SP 2020-03-29 14932 178.592 29667 29363 97.9 

CD266 EPI_ISL_476260 No Sao Paulo SP 2020-03-27 41575 497.046 29367 28972 97.1 

CD267 EPI_ISL_476261 No Sao Paulo SP 2020-03-29 36392 434.083 29399 28329 95.3 

CD268 EPI_ISL_476262 No Sao Paulo SP 2020-03-29 38441 460.513 29668 29201 97.1 
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CD270 EPI_ISL_476263 No Sao Paulo SP 2020-03-30 41739 500.181 29379 28405 94.4 

CD271 EPI_ISL_476264 No Sao Paulo SP 2020-03-30 32654 400.351 26509 24127 81.2 

CD272 EPI_ISL_476265 No Sao Paulo SP 2020-03-30 38024 454.495 29673 29659 97.9 

CD273 EPI_ISL_476266 No Sao Paulo SP 2020-03-30 46695 559.593 29164 28698 96.0 

CD274 EPI_ISL_476267 No Franco da 
Rocha SP 2020-03-30 11820 141.811 29178 28727 96.9 

CD277 EPI_ISL_476269 No Sao Paulo SP 2020-03-31 7798 941.438 28663 26476 88.8 

CD278 EPI_ISL_476270 No Franco da 
Rocha SP 2020-03-30 33977 408.999 29118 28443 94.2 

CD280 EPI_ISL_476271 No Guaruja SP 2020-03-30 7473 903.933 28103 25610 88.1 

CD281 EPI_ISL_476272 No Sao Paulo SP 2020-03-30 38254 462.456 29001 28463 94.3 

CD282 EPI_ISL_476273 No Sao Paulo SP 2020-03-30 26792 321.717 28721 27563 93.4 

CD283 EPI_ISL_476274 No Embu das Artes SP 2020-03-30 48921 586.647 29434 28749 96.1 

CD284 EPI_ISL_476275 No Sao Paulo SP 2020-03-30 20633 250.424 27038 24094 81.1 

CD285 EPI_ISL_476276 No Embu das Artes SP 2020-03-30 19201 233.625 25884 22849 78.6 

CD286 EPI_ISL_476277 No Sao Paulo SP 2020-03-30 19110 228.81 29346 27597 92.9 

CD292 EPI_ISL_4297877 Yes Sao Paulo SP 2020-03-30 597600 3175.86 29446 29134 96.1 

CD293 EPI_ISL_4297878 Yes Sao Paulo SP 2020-03-26 519575 4319.42 29838 29689 97.9 

CD37 EPI_ISL_4297879 Yes Sao Paulo SP 2020-03-16 88136 1104.21 29605 29287 97.4 

CD38 EPI_ISL_476488 No Santana de 
Parnaiba SP 2020-03-16 47079 579.429 29515 28991 96.9 

CD39 EPI_ISL_4297880 Yes Sao Paulo SP 2020-03-16 98513 1230.56 29327 29078 97.4 

CD41 EPI_ISL_1084733 No Sao Paulo SP 2020-03-16 48675 603.222 29287 29040 97.4 

CD43 EPI_ISL_4297881 Yes Sao Paulo SP 2020-03-16 24035 303.04 29287 28888 96.5 

CD44 EPI_ISL_4297882 Yes Sao Paulo SP 2020-03-17 45850 573.558 26872 25549 82.9 

CD45 EPI_ISL_4297883 Yes Sao Paulo SP 2020-03-17 22577 279.997 29169 27716 94.6 

CD46 EPI_ISL_4297884 Yes Sao Paulo SP 2020-03-17 42829 533.776 28149 27170 89.3 

CD473 EPI_ISL_476372 No Sao Paulo SP 2020-04-01 76230 966.8 27332 25152 83.7 

CD474 EPI_ISL_476373 No Sao Paulo SP 2020-04-01 229448 2825.63 29622 29483 98.7 

CD475 EPI_ISL_476374 No Sao Paulo SP 2020-04-02 73561 932.902 29204 28712 96.1 

CD476 EPI_ISL_476375 No Osasco SP 2020-03-20 77453 972.914 29463 29457 97.9 

CD477 EPI_ISL_476376 No Cubatao SP 2020-04-01 100531 1265.78 29192 28564 95.2 

CD479 EPI_ISL_476377 No Sao Paulo SP 2020-04-01 137720 1666.51 28386 27507 92.7 

CD48 EPI_ISL_4348336 Yes Sao Paulo SP 2020-03-17 89974 1140.18 29044 29034 96.4 
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CD481 EPI_ISL_476378 No Ribeirao Preto SP 2020-04-01 73322 929.21 26710 24749 80.4 

CD483 EPI_ISL_476379 No Sao Paulo SP 2020-04-05 135173 1701.37 29460 29385 97.6 

CD484 EPI_ISL_476380 No Itaquaquecetub
a SP 2020-04-05 126972 1604.03 29467 29457 98.0 

CD485 EPI_ISL_476381 No Diadema SP 2020-04-05 123389 1536.73 27368 26279 86.3 

CD487 EPI_ISL_476383 No Sao Paulo SP 2020-04-04 137022 1728.5 29467 29458 98.0 

CD488 EPI_ISL_476384 No Santo Andre SP 2020-04-03 39061 487.111 29245 27570 95.6 

CD49 EPI_ISL_4348337 Yes Sao Paulo SP 2020-03-18 50478 634.468 29489 29070 96.5 

CD490 EPI_ISL_476386 No Sao Paulo SP 2020-04-06 140378 1755.94 29465 29038 97.9 

CD491 EPI_ISL_4297885 Yes Sao Paulo SP 2020-04-05 28197 342.312 29560 28505 95.2 

CD492 EPI_ISL_4297886 Yes Osasco SP 2020-04-05 16177 205.257 25995 23778 78.5 

CD495 EPI_ISL_4297887 Yes Sao Paulo SP 2020-04-03 11925 147.621 27027 23858 81.7 

CD496 EPI_ISL_4297888 Yes Francisco 
Morato SP 2020-04-06 24325 299.001 28565 27680 91.7 

CD497 EPI_ISL_4297889 Yes Sao Paulo SP 2020-04-07 33136 407.832 29432 28084 95.3 

CD498 EPI_ISL_4297890 Yes Sao Paulo SP 2020-04-07 16591 206.238 26124 23909 80.8 

CD499 EPI_ISL_4297891 Yes Sao Paulo SP 2020-04-07 30383 373.876 29567 28835 95.4 

CD501 EPI_ISL_4297892 Yes Sao Paulo SP 2020-04-07 8399 104.272 27820 24799 81.9 

CD502 EPI_ISL_4297893 Yes Sao Paulo SP 2020-04-07 39566 484.976 28399 26983 91.2 

CD503 EPI_ISL_4297894 Yes Sorocaba SP 2020-04-08 22631 277.592 29228 28746 95.2 

CD504 EPI_ISL_4297895 Yes Poa SP 2020-04-07 39593 487.6 29674 29657 98.9 

CD505 EPI_ISL_4297896 Yes Sao Paulo SP 2020-04-08 24050 297.846 27953 26564 88.2 

CD51 EPI_ISL_4468752 Yes Sao Paulo SP 2020-03-18 48029 609.5 27241 25667 85.6 

CD511 EPI_ISL_4297898 Yes Sao Paulo SP 2020-04-10 38607 474.391 28154 26303 88.2 

CD515 EPI_ISL_4297899 Yes Sao Paulo SP 2020-04-10 10191 122.774 25351 23254 77.2 

CD518 EPI_ISL_4297900 Yes Sao Paulo SP 2020-04-11 12660 151.008 26360 24008 79.0 

CD52 EPI_ISL_4348338 Yes Sao Paulo SP 2020-03-15 44635 554.686 29097 28600 96.6 

CD520 EPI_ISL_1084739 No Sao Paulo SP 2020-04-12 19540 240.413 27693 26564 87.6 

CD525 EPI_ISL_672687 No Sao Paulo SP 2020-04-11 109980 1380.34 29465 29461 97.9 

CD527 EPI_ISL_672688 No Sao Paulo SP 2020-04-14 87200 1101.11 29484 29229 97.9 

CD528 EPI_ISL_672689 No Sao Paulo SP 2020-04-10 77425 896.929 25683 24112 79.5 

CD529 EPI_ISL_672690 No Sao Paulo SP 2020-04-13 61332 769.405 29048 27807 93.4 

CD53 EPI_ISL_4297901 Yes Sao Paulo SP 2020-03-18 32518 421.449 26742 25640 84.2 
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CD530 EPI_ISL_672691 No Sao Paulo SP 2020-04-13 94341 1173.91 28787 27663 92.7 

CD532 EPI_ISL_672692 No Sao Paulo SP 2020-04-14 99021 1152.67 25130 22673 77.1 

CD533 EPI_ISL_672693 No Carapicuiba SP 2020-04-11 83537 1043.22 29220 28867 96.0 

CD534 EPI_ISL_672694 No Sao Paulo SP 2020-04-14 113237 1421.98 28798 27919 93.5 

CD537 EPI_ISL_672695 No Carapicuiba SP 2020-04-15 135664 1703.09 29455 29019 97.0 

CD538 EPI_ISL_672696 No Sao Paulo SP 2020-04-14 61630 777.989 29263 28951 96.1 

CD539 EPI_ISL_672697 No Sao Paulo SP 2020-04-15 83953 1053.95 28626 28473 94.4 

CD54 EPI_ISL_476428 No Taboao da 
Serra SP 2020-03-18 123850 1543.76 29245 28629 96.1 

CD540 EPI_ISL_672698 No Sao Paulo SP 2020-04-15 63383 807.511 27724 27514 90.1 

CD541 EPI_ISL_672699 No Carapicuiba SP 2020-04-15 88326 1117.95 29250 28782 96.2 

CD542 EPI_ISL_672722 No Sao Paulo SP 2020-04-16 111549 1412.65 29275 28997 96.2 

CD543 EPI_ISL_672723 No Sao Paulo SP 2020-04-16 96021 1222.33 27501 26754 88.3 

CD545 EPI_ISL_672724 No Sao Paulo SP 2020-04-17 127010 1563.7 28765 27769 91.7 

CD547 EPI_ISL_672725 No Sao Paulo SP 2020-04-17 113661 1421.56 29461 29456 97.8 

CD548 EPI_ISL_672726 No Sao Paulo SP 2020-04-16 147928 1623.33 28358 26902 90.7 

CD549 EPI_ISL_672727 No Fortaleza CE 2020-04-15 114951 1287.82 27184 24984 83.6 

CD550 EPI_ISL_672728 No Sao Paulo SP 2020-04-18 134753 1682.33 29612 29257 97.1 

CD551 EPI_ISL_672729 No Santo Andre SP 2020-04-18 44935 586.03 24853 23013 76.5 

CD553 EPI_ISL_672730 No Sao Paulo SP 2020-04-18 92380 1175.43 28421 27528 92.1 

CD554 EPI_ISL_672731 No Jandira SP 2020-04-16 111597 1394.08 29488 29460 97.9 

CD555 EPI_ISL_672732 No Guarulhos SP 2020-04-14 140320 1727.59 28869 28425 94.4 

CD556 EPI_ISL_672733 No Sao Paulo SP 2020-04-13 106419 1277.59 27768 25804 88.3 

CD557 EPI_ISL_672734 No Sao Paulo SP 2020-04-14 172160 2019.94 29461 29027 97.1 

CD558 EPI_ISL_672735 No Ferraz de 
Vasconcelos SP 2020-04-20 157736 1984.08 29461 29458 97.9 

CD559 EPI_ISL_672736 No Sao Paulo SP 2020-04-18 116739 1476.24 29435 29185 96.9 

CD56 EPI_ISL_1084735 No Sao Paulo SP 2020-03-18 23237 286.746 28809 26612 89.3 

CD561 EPI_ISL_672737 No Sao Paulo SP 2020-04-20 135627 1441.47 27196 25652 86.7 

CD564 EPI_ISL_672738 No Sao Paulo SP 2020-04-20 96139 1019.69 25985 24357 79.7 

CD565 EPI_ISL_672739 No Sao Paulo SP 2020-03-26 66925 848.104 29209 29207 97.0 

CD566 EPI_ISL_672740 No Sao Paulo SP 2020-04-21 131952 1664.68 29223 28368 93.5 

CD567 EPI_ISL_672669 No Sao Paulo SP 2020-04-20 134644 1535.12 27745 26550 89.0 
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CD568 EPI_ISL_672741 No Sao Paulo SP 2020-04-19 234778 2795.74 29466 29457 97.9 

CD57 EPI_ISL_476430 No Sao Paulo SP 2020-03-20 41754 535.563 25413 23064 76.8 

CD570 EPI_ISL_672742 No Sao Paulo SP 2020-04-22 158065 1932.58 29067 27974 93.6 

CD572 EPI_ISL_672743 No Sao Paulo SP 2020-04-23 96941 1221.04 27323 25921 86.5 

CD578 EPI_ISL_672745 No Guarulhos SP 2020-04-20 27160 341.853 28602 27367 91.7 

CD61 EPI_ISL_476431 No Sao Paulo SP 2020-03-21 73827 925.342 29049 28364 94.3 

CD623 EPI_ISL_672700 No Sao Paulo SP 2020-04-12 93599 1178.02 29204 28526 95.2 

CD63 EPI_ISL_476432 No Sao Paulo SP 2020-03-22 86292 1080.67 28981 28508 94.1 

CD65 EPI_ISL_476433 No Sao Paulo SP 2020-03-18 66129 827.86 28648 27076 91.5 

CD66 EPI_ISL_476434 No Sao Paulo SP 2020-03-25 108446 1370.37 28172 27686 90.0 

CD67 EPI_ISL_476435 No Sao Paulo SP 2020-03-19 206616 2584.53 29836 29835 98.7 

CD69 EPI_ISL_476436 No Sao Paulo SP 2020-03-23 77974 977.901 28569 27104 90.1 

CD70 EPI_ISL_476437 No Sao Paulo SP 2020-03-23 126712 1589.14 29209 28996 96.0 

CD71 EPI_ISL_476438 No Sao Paulo SP 2020-03-23 124416 1510.78 28105 27099 88.3 

CD72 EPI_ISL_476439 No Sao Paulo SP 2020-03-24 186287 2333 29836 29835 98.6 

CD73 EPI_ISL_476440 No Sao Paulo SP 2020-03-24 78479 1019.37 26043 23749 79.8 

CD74 EPI_ISL_476441 No Sao Paulo SP 2020-03-25 133179 1665.57 29815 29361 96.9 

CD75 EPI_ISL_476442 No Sao Paulo SP 2020-03-25 99343 1222.57 26806 24969 81.1 

CD76 EPI_ISL_476443 No Sao Paulo SP 2020-03-19 116959 1463.61 29833 29385 97.9 

CD788 EPI_ISL_722057 No Niteroi RJ 2020-04-02 58354 737.503 28131 27542 90.8 

CD789 EPI_ISL_722080 No Curitiba PR 2020-04-02 79447 997.21 29053 28143 93.5 

CD79 EPI_ISL_476445 No Sao Paulo SP 2020-03-23 93416 1181.27 28769 27609 90.0 

CD790 EPI_ISL_722108 No Sao Paulo SP 2020-04-02 42148 529.6 26583 24991 83.3 

CD791 EPI_ISL_722004 No Sao Paulo SP 2020-04-03 45349 569.229 29453 28808 96.8 

CD792 EPI_ISL_722078 No Taboao da 
Serra SP 2020-04-03 40231 503.691 28594 28166 93.5 

CD795 EPI_ISL_722079 No Sao Paulo SP 2020-04-03 59114 739.384 28831 27964 93.6 

CD797 EPI_ISL_722065 No Sao Paulo SP 29/03/2020 46821 592.291 28623 27888 91.8 

CD798 EPI_ISL_722023 No Sao Paulo SP 2020-04-03 53399 669.793 29458 28854 97.8 

CD800 EPI_ISL_722119 No Sao Paulo SP 2020-04-03 35556 444.949 27822 26197 86.6 

CD801 EPI_ISL_722012 No Sao Paulo SP 2020-04-03 44273 554.611 29452 28980 97.0 

CD802 EPI_ISL_722082 No Caierias SP 2020-04-06 35736 448.464 29298 28291 94.0 
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CD803 EPI_ISL_721987 No Sao Paulo SP 2020-04-06 20822 260.668 29457 28282 95.1 

CD806 EPI_ISL_722029 No Cruzeiro SP 2020-04-06 54086 672.156 29459 29436 97.9 

CD807 EPI_ISL_722122 No Sao Paulo SP 2020-04-06 30347 378.962 27571 25775 87.7 

CD81 EPI_ISL_476446 No Sao Paulo SP 2020-03-24 115174 1440.66 29836 29675 98.6 

CD812 EPI_ISL_722084 No Sao Paulo SP 2020-04-06 30509 383.491 29028 28567 94.4 

CD813 EPI_ISL_722063 No Sao Paulo SP 2020-04-06 42268 530.851 28099 26720 90.1 

CD814 EPI_ISL_722099 No Sao Paulo SP 2020-03-16 39044 496.104 26753 24608 81.5 

CD815 EPI_ISL_722067 No Sao Paulo SP 2020-04-08 34343 431.028 29163 28106 92.5 

CD816 EPI_ISL_722068 No Sao Paulo SP 2020-04-08 31183 390.924 28599 27360 92.5 

CD818 EPI_ISL_722030 No Sao Paulo SP 2020-04-08 93195 1166.59 29469 29457 98.0 

CD819 EPI_ISL_722031 No Sao Paulo SP 2020-04-08 85293 1074.33 29461 29453 98.0 

CD82 EPI_ISL_476447 No Sao Paulo SP 2020-03-24 118677 1483.26 29809 29182 96.0 

CD820 EPI_ISL_722055 No Sao Paulo SP 2020-04-08 60449 761.781 27968 27477 90.3 

CD822 EPI_ISL_722005 No Sao Paulo SP 2020-04-06 70936 893.995 29284 28978 96.9 

CD823 EPI_ISL_722000 No Guarulhos SP 2020-04-08 114662 1446.86 29085 29059 96.3 

CD825 EPI_ISL_722013 No Mogi das 
Cruzes SP 2020-04-09 65666 827.279 29457 29062 97.0 

CD827 EPI_ISL_722059 No Sao Paulo SP 2020-04-09 93612 1179.65 28447 27272 90.0 

CD828 EPI_ISL_722042 No Sao Paulo SP 2020-04-09 89017 1122.76 29463 29254 97.9 

CD829 EPI_ISL_1172014 No Sao Paulo SP 2020-04-09 119250 1501.91 29461 29446 98.0 

CD83 EPI_ISL_476448 No Sao Paulo SP 2020-03-24 42305 529.617 29455 28602 95.1 

CD830 EPI_ISL_722043 No Sao Paulo SP 2020-04-06 57666 725.969 29460 29456 97.9 

CD832 EPI_ISL_722018 No Sao Paulo SP 2020-04-08 84262 1064.81 29459 29260 97.1 

CD833 EPI_ISL_722075 No Mongagua SP 2020-04-09 71419 907.93 28650 27139 92.7 

CD834 EPI_ISL_722090 No Sao Paulo SP 2020-04-09 42274 550.586 25131 23123 74.7 

CD835 EPI_ISL_722087 No Sao Paulo SP 2020-04-24 98892 1248.82 29066 28410 94.5 

CD836 EPI_ISL_722032 No Sao Paulo SP 2020-04-13 109400 1379.24 29606 29459 97.9 

CD837 EPI_ISL_722044 No Sao Paulo SP 2020-04-24 92592 1171.59 29461 29184 98.0 

CD838 EPI_ISL_722054 No Embu das Artes SP 2020-04-14 113913 1422.86 28187 27051 90.1 

CD839 EPI_ISL_722033 No Carapicuiba SP 2020-04-14 142469 1802.65 29464 29458 97.9 

CD840 EPI_ISL_722045 No Sao Paulo SP 2020-04-15 104844 1318.98 29570 29461 98.0 

CD841 EPI_ISL_721992 No Sao Paulo SP 2020-04-15 79095 981.914 29008 28618 95.4 
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CD842 EPI_ISL_722127 No Sao Paulo SP 2020-04-15 86274 1065.42 28390 27236 89.1 

CD847 EPI_ISL_722083 No Sao Paulo SP 2020-04-16 49956 617.73 28793 28084 93.3 

CD848 EPI_ISL_722085 No Sao Paulo SP 2020-04-16 45678 566.059 28817 28592 94.4 

CD849 EPI_ISL_722034 No Vargem Grande 
Paulista SP 2020-04-16 70820 878.6 29615 29462 97.9 

CD851 EPI_ISL_722101 No Sao Paulo SP 2020-04-17 42820 531.941 26149 24430 81.5 

CD852 EPI_ISL_722014 No Sao Paulo SP 2020-04-17 46461 575.073 29445 29242 97.1 

CD853 EPI_ISL_722035 No Sao Paulo SP 2020-04-17 94658 1172.55 29595 29458 97.9 

CD854 EPI_ISL_722114 No Sao Paulo SP 2020-04-17 62519 785.366 27799 26314 85.5 

CD855 EPI_ISL_722072 No Itapevi SP 2020-04-22 65683 814.038 28746 27487 91.8 

CD856 EPI_ISL_722009 No Sao Paulo SP 2020-04-22 36582 447.696 29459 29215 97.0 

CD857 EPI_ISL_722003 No Sao Paulo SP 2020-04-22 75045 926.763 29072 29058 96.3 

CD858 EPI_ISL_722036 No Sao Paulo SP 2020-04-22 62722 771.889 29451 29209 97.0 

CD859 EPI_ISL_722025 No Sao Paulo SP 2020-04-22 27069 334.514 29459 29457 98.0 

CD86 EPI_ISL_476463 No Sao Paulo SP 2020-03-19 107501 1307.77 27651 25580 85.7 

CD860 EPI_ISL_722015 No Sao Paulo SP 2020-04-22 54638 674.279 29021 28588 96.1 

CD861 EPI_ISL_722053 No Santos SP 2020-04-22 49020 617.106 27943 26378 88.5 

CD862 EPI_ISL_722056 No Itapecerica da 
Serra SP 2020-04-22 24229 297.033 27983 26747 89.4 

CD863 EPI_ISL_722073 No Betim MG 2020-04-22 63248 787.19 28258 27941 91.8 

CD864 EPI_ISL_722088 No Taboao da 
Serra SP 2020-04-22 72866 902.116 28811 28388 93.6 

CD865 EPI_ISL_722052 No Sao Paulo SP 2020-04-22 19277 241.341 27845 26993 88.9 

CD867 EPI_ISL_722024 No Sao Paulo SP 2020-04-22 56958 698.706 29346 29022 97.0 

CD868 EPI_ISL_722112 No Sao Paulo SP 2020-04-22 33239 414.859 26864 25696 83.0 

CD869 EPI_ISL_722026 No Sao Paulo SP 2020-04-22 58877 727.822 29464 29459 97.9 

CD87 EPI_ISL_476464 No Franco da 
Rocha SP 2020-03-22 119209 1474.11 29660 29359 96.9 

CD870 EPI_ISL_722001 No Sao Paulo SP 2020-04-22 171146 2083.47 29098 29074 96.2 

CD872 EPI_ISL_4463732 Yes Sao Paulo SP 2020-04-22 167208 2078.27 29283 28732 95.3 

CD873 EPI_ISL_722046 No Carapicuiba SP 2020-04-23 100380 1261.42 29584 29457 98.0 

CD874 EPI_ISL_722021 No Mogi das 
Cruzes SP 2020-04-23 132896 1662.19 29461 29063 97.2 

CD875 EPI_ISL_722037 No Sao Paulo SP 2020-04-23 167929 2082.99 29486 29464 98.0 

CD876 EPI_ISL_722047 No Sao Paulo SP 2020-04-23 248441 3008.91 29472 29459 97.9 
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CD877 EPI_ISL_722048 No Sao Paulo SP 2020-04-23 108612 1366.6 29485 29471 97.9 

CD878 EPI_ISL_721989 No Sao Paulo SP 2020-04-23 153805 1892.97 29035 28247 95.3 

CD879 EPI_ISL_722027 No Guarulhos SP 2020-04-23 127196 1592.73 29458 29457 97.9 

CD88 EPI_ISL_476465 No Cotia SP 2020-03-23 58372 723.188 28909 28088 93.5 

CD880 EPI_ISL_722038 No Guarulhos SP 2020-04-23 160425 1979.84 29489 29475 98.0 

CD881 EPI_ISL_722129 No Ribeirao Pires SP 2020-04-23 205101 2523.22 29625 29463 98.7 

CD882 EPI_ISL_722028 No Sao Paulo SP 2020-04-23 58656 736.312 29443 29434 97.9 

CD883 EPI_ISL_722049 No Barueri SP 2020-04-23 121355 1522.82 29462 29456 97.9 

CD89 EPI_ISL_476466 No Osasco SP 2020-03-24 26016 324.992 28090 25963 88.2 

CD891 EPI_ISL_721996 No Sao Paulo SP 2020-04-24 46890 585.906 29271 29018 96.2 

CD892 EPI_ISL_721997 No Sao Paulo SP 2020-04-24 50420 631.056 29271 29018 96.2 

CD894 EPI_ISL_722110 No Sao Paulo SP 2020-04-24 16008 201.505 27307 24934 83.7 

CD895 EPI_ISL_722102 No Sao Paulo SP 2020-04-24 42099 530.277 27031 25288 82.0 

CD896 EPI_ISL_722091 No Carapicuiba SP 2020-04-24 22799 294.833 25057 23352 75.2 

CD898 EPI_ISL_722061 No Osasco SP 2020-04-24 60293 751.503 29013 26341 91.4 

CD899 EPI_ISL_721999 No Sao Paulo SP 2020-04-23 26940 338.261 29272 29018 96.2 

CD90 EPI_ISL_476489 No Sao Paulo SP 2020-03-24 81155 1026.92 29834 29673 97.9 

CD900 EPI_ISL_722039 No Sao Paulo SP 2020-04-14 53573 669.285 29461 29457 97.9 

CD901 EPI_ISL_722008 No Carapicuiba SP 2020-04-24 38875 485.618 29457 29204 97.0 

CD902 EPI_ISL_722051 No Sao Paulo SP 2020-04-24 24677 309.225 29459 29207 97.9 

CD905 EPI_ISL_722076 No Itapecerica da 
Serra SP 2020-04-20 38183 480.91 29051 28036 93.5 

CD907 EPI_ISL_4297902 Yes Franco da 
Rocha SP 2020-04-24 22528 286.073 25343 23500 76.8 

CD91 EPI_ISL_476490 No Sao Paulo SP 2020-03-24 75295 953.394 29836 29744 98.6 

CD910 EPI_ISL_722019 No Sao Paulo SP 2020-04-13 59049 738.823 29278 28999 97.1 

CD917 EPI_ISL_722124 No Sao Paulo SP 2020-04-27 31168 393.726 28312 26547 88.3 

CD918 EPI_ISL_722081 No Itapevi SP 2020-04-27 50142 629.492 29183 28061 93.5 

CD92 EPI_ISL_476203 No Sao Paulo SP 2020-03-24 98925 1246.21 27521 26976 88.3 

CD920 EPI_ISL_722109 No Sao Paulo SP 2020-04-27 33615 426.912 27836 25533 83.7 

CD921 EPI_ISL_722016 No Carapicuiba SP 2020-04-25 69007 854.987 29281 29264 97.1 

CD923 EPI_ISL_722060 No Sao Paulo SP 2020-04-27 101458 1256.98 28156 26849 91.0 
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CD924 EPI_ISL_722125 No Jandira SP 2020-04-28 52450 660.218 27756 26494 89.0 

CD926 EPI_ISL_722126 No Sao Paulo SP 2020-04-28 87786 1086.25 27998 26905 89.0 

CD927 EPI_ISL_722020 No Sao Paulo SP 2020-04-28 65734 810.487 29284 29273 97.1 

CD928 EPI_ISL_722071 No Sao Paulo SP 2020-04-27 82248 1026.99 28853 27425 92.6 

CD930 EPI_ISL_722064 No Sao Paulo SP 2020-04-29 66769 827.223 28360 27643 91.8 

CD931 EPI_ISL_722103 No Francisco 
Morato SP 2020-04-29 52672 662.221 26580 24364 82.0 

CD932 EPI_ISL_721993 No Sao Paulo SP 2020-04-29 122577 1493.13 28898 28861 95.4 

CD934 EPI_ISL_721994 No Sao Paulo SP 2020-04-29 98723 1214.15 29068 28857 95.4 

CD935 EPI_ISL_722116 No Sao Paulo SP 2020-04-29 51982 655.416 27557 25811 86.4 

CD937 EPI_ISL_722041 No Taboao da 
Serra SP 2020-04-29 59889 738.907 29451 29243 97.9 

CD939 EPI_ISL_721998 No Sao Paulo SP 2020-04-29 46828 578.545 29266 28995 96.2 

CD94 EPI_ISL_476205 No Sao Paulo SP 2020-03-19 107126 1355.36 28832 27759 94.3 

CD940 EPI_ISL_722094 No Sao Paulo SP 2020-04-29 25961 326.325 25629 23820 76.7 

CD941 EPI_ISL_722092 No Sao Paulo SP 2020-05-01 30014 383.3 25513 21950 75.3 

CD942 EPI_ISL_722086 No Sao Paulo SP 2020-04-30 54293 680.262 28846 28414 94.4 

CD943 EPI_ISL_722107 No Sao Paulo SP 2020-04-29 50676 635.477 26943 25040 83.6 

CD945 EPI_ISL_722062 No Sao Paulo SP 2020-04-30 78566 974.789 28325 27208 91.1 

CD952 EPI_ISL_722040 No Sao Paulo SP 2020-05-01 45297 561.732 29460 29457 97.9 

CD954 EPI_ISL_722117 No Sao Paulo SP 2020-05-01 47146 585.119 28070 26173 86.6 

CD957 EPI_ISL_722098 No Sao Paulo SP 2020-03-05 53716 691.788 26088 23803 79.9 

CD96 EPI_ISL_476207 No Sao Paulo SP 2020-03-21 121343 1517.52 27674 27049 88.3 

CD965 EPI_ISL_722022 No Sao Paulo SP 2020-04-30 70494 872.811 29429 29032 97.1 

CD97 EPI_ISL_476208 No Diadema SP 2020-03-23 123574 1522.68 27458 26318 86.2 

CD971 EPI_ISL_722120 No Sao Paulo SP 2020-05-05 94548 1186.08 27780 26518 87.2 

CD972 EPI_ISL_722095 No Aruja SP 2020-05-05 51812 671.907 24563 23071 76.0 

CD973 EPI_ISL_722097 No Sao Paulo SP 2020-05-05 50456 634.107 25404 23871 78.7 

CD975 EPI_ISL_722111 No Sao Paulo SP 2020-05-05 70510 882.501 27093 25595 83.4 

CD98 EPI_ISL_476467 No Sao Paulo SP 2020-03-23 92861 1154.77 29144 28115 95.2 

CD981 EPI_ISL_722093 No Sao Paulo SP 2020-05-07 46698 606.117 24757 22924 75.8 

CD986 EPI_ISL_722096 No Sao Paulo SP 2020-05-08 81399 950.075 25435 22492 76.1 

CD99 EPI_ISL_476468 No Sao Paulo SP 2020-03-24 18420 227.765 28908 27906 92.5 
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CD990 EPI_ISL_722077 No Sao Paulo SP 2020-05-04 117215 1457.34 29027 28143 92.6 

CD991 EPI_ISL_722105 No Sao Paulo SP 2020-05-04 75776 950.611 27264 25440 82.8 

CD992 EPI_ISL_722121 No Sao Paulo SP 2020-05-04 70923 889.795 27524 26012 87.3 

CD995 EPI_ISL_722113 No Franco da 
Rocha SP 2020-05-04 50108 630.562 27389 25525 83.5 

CD996 EPI_ISL_4463733 Yes Osasco SP 2020-05-05 47399 598.43 25368 22970 75.1 

CD997 EPI_ISL_1172017 No Sao Paulo SP 2020-05-05 76418 943.165 27850 26436 88.8 
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Table S4. Statistical support for 16 hospital-associated transmission clusters from HC complex. 
 

 Dataset B Dataset C 

Cluster alrt FB alrt_2 FB_2 alrt FB MCC MCC DTA MJ MCC DTA BSSVS 

A 78.4 100 84.8 100 86.5 98 0.9043 0.9015 0.9002 

B 78.2 100 85.9 100 75.7 100 0.9899 0.9922 0.9921 

C 90.2 99 88.2 100 89.1 99 1 1 1 

D 76.4 100 85.5 100 93.7 100 1 1 1 

E 75.9 100 78.6 100 79.1 99 0.9978 1 1 

F 91.5 100 90.5 100 93 99 1 1 1 

G 91.9 99 92.3 100 78.2 99 0.9906 0.9884 0.9892 

H 93.1 100 92.4 100 83 99 0.9996 1 1 

I 95 100 94.6 100 92.1 99 1 1 1 

J 85.5 100 85.4 100 87.1 100 0.9996 1 1 

K 92.4 100 92.2 100 85.6 100 0.9991 0.9988 0.9988 

L 84.9 100 90.9 100 92.6 100 0.9994 0.9997 0.9992 

M 92.2 100 90.4 99 93.4 100 1 1 1 

N 85.7 99 88.1 99 87.1 98 0.9962 0.9969 0.9966 

O 92 100 91.8 100 93.4 99 0.9999 1 1 

P 77.2 100 76 100 76.2 99 1 1 1 
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Table S5.  Summary of epidemiological and genetic characteristics of 16 hospital-associated transmission clusters from HC complex. 
 

  
Siz
e Institute  

Pairwise divergence 
(SNP) Collection date 

Pairwise geo 
distance Epidemiological link Patient classification 

Cluster n Main Mean Median Max Min Oldest  Youngest 
Duration 

(days) Median (m) Strong Possible Unclear Community >14 HW Others 

A 12 Institute C 2.39 2 6 0 21/03/2020 30/04/2020 40 29331 6 5 1 1 4 7 0 

B 10 Institute A 0.40 0 2 0 26/03/2020 01/05/2020 36 20702 3 6 1 2 0 7 1 

C 7 Institute C 1.10 1 3 0 16/04/2020 13/05/2020 27 18574 4 2 1 0 2 4 1 

D 7 Institute A 0.57 1 2 0 17/03/2020 26/03/2020 9 4574 4 2 1 0 0 7 0 

E 5 Mixed 0.67 1 2 0 14/04/2020 22/04/2020 8 10330 0 2 3 2 0 3 0 

F 6 Institute A 1.60 2 3 0 14/04/2020 29/04/2020 15 34590 2 3 1 3 0 1 2 

G 4 Institute B 0.00 0 0 0 04/05/2020 11/05/2020 7 25264 4 0 0 0 0 4 0 

H 4 Mixed 0.00 0 0 0 18/04/2020 29/04/2020 11 36230 2 2 0 1 0 3 0 

I 3 Institute B 0.67 1 1 0 22/04/2020 24/04/2020 2 12541 0 3 0 1 0 2 0 

J 2 Institute B 1.00 1 1 1 22/04/2020 22/04/2020 0 8410 0 0 2 0 0 2 0 

K 2 Institute C 0.00 0 0 0 19/03/2020 23/03/2020 4 14290 0 2 0 0 0 2 0 

L 2 Institute A 0.00 0 0 0 22/03/2020 24/03/2020 2 15633 0 2 0 0 0 2 0 

M 2 Mixed 1.00 1 1 1 14/04/2020 17/04/2020 3 6899 0 0 2 2 0 0 0 

N 2 Institute B 1.00 1 1 1 23/03/2020 23/03/2020 0 2750 2 0 0 0 0 2 0 
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O 2 Institute B 0.00 0 0 0 27/03/2020 03/04/2020 7 603 2 0 0 0 0 2 0 

P 2 Institute B 0.00 0 0 0 03/04/2020 06/04/2020 3 12317 2 0 0 0 0 2 0 
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Table S6. Defining mutations of 16 hospital-associated transmission clusters from HC complex. 
 
 

Cluster Nucleotide AA 

A C9733T - 

B G28681T N:E136D 

C 

C1912T - 

C9479T ORF1a:G3072C 

C14362T - 

D G27240T ORF:E13D 

E A1777G - 

F 

G19086T ORF1b:V1467I 

C24096T S:A845V 

G 
T9093C ORF1a:V2943A 

H C3293T ORF1a:P1010S 

I 

G17866A ORF1b:V1467I 

G29422T - 

J C1884T ORF1a:A540V 

K G18589T ORF1b:V1708F 

L C26456T E:P71L 

M 

C15738T - 

C23481T S:S640F 

N C3874T - 

O C7869T ORF1a:S2535L 

P C24023T - 
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Table S7. Summary of epidemiological and genetic characteristics of 16 hospital-associated transmission clusters from HC complex per 
institute. 
 

 Institute Clusters Cluster size Duration (days) Pairwise geographical distance (m) Epidemiological link (%) 

  n Mean Median Mean Median median Strong Possible Unclear 

Institute B 6.00 2.50 2.00 2.83 1.50 10363.40 37.04 40.74 22.22 

Institute A 4.00 6.25 6.50 15.50 12.00 18167.63 36.00 40.00 16.00 

Institute C 3.00 7.00 7.00 23.67 27.00 18574.48 52.17 43.48 4.35 
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Table S8. Logistic Regression Models for prediction of outcomes clustered vs non-clustered sequences 
of 234 HC SARS-CoV-2 positive individuals. 

Logistic Model Parameters Level aOdds Ratio p-value 

Model 1: 
   

Variables: Institute + HCW/patient  
   

+ Age + Sex 
   

Base level: Institute B; Patient 
(Intercept) 0.17 0.002 

 
Institute A 3.48 0.00074 

 
Institute C 4.17 0.0002 

 
HCW 1.63 0.2111 

Model 2: 
   

Variable: HW/PT per Institute + Age + 
   

Sex 
   

Base level: Patient.Institute B 
(Intercept) 0.11 0.0034 

 
HCW.Institute A 7.95 0.0033 

 
HCW.Institute B 2.36 0.01676 

 
HCW.Institute C 7.49 0.0043 

 
Patient.Institute A 4.45 0.0266 

 
Patient.Institute C 7.43 0.00498 

Model 3: 
   

Variables: Institute + Occupation 
   

+ Age + Sex 
   

Base level: Institute B; Patient 
(Intercept) 0.0757 0.0002 
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Institute A 4.4953 0.0002 

 
Institute C 5.1756 0.0001 

 
  0.0000 0.9892 

 
Administration 2.8086 0.0936 

 
Doctor 1.2141 0.7186 

 
Medical Resident 6.7498 0.0056 

 
Nurse 3.7721 0.1157 

 
Nurse Technician 1.3628 0.5404 

 
Other 1.1490 0.8479 

Model 4: 
   

Variable: Occupations per institute + 
   

Age + Sex  
   

Base level: Patient.Institute B 
(Intercept) 0.0468 0.0002 

 
Administration.Institute A 0.0000 0.9931 

 
Administration.Institute B 5.7929 0.0235 

 
Administration.Institute C 6.5012 0.2213 

 
Doctor.Institute A 22.4661 0.0012 

 
Doctor.Institute B 0.7448 0.8067 

 
Doctor.Institute C 3.8426 0.1848 

 
Medical Resident.Institute A 317509584 0.9935 

 
Medical Resident.Institute B 10.1226 0.0065 
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Medical Resident.Institute C 29.6604 0.0185 

 
Nurse.Institute A 10.4206 0.1323 

 
Nurse.Institute B 3.1991 0.3898 

 
Nurse.Institute C 107332973 0.9894 

 
Nurse Technician.Institute A 7.7753 0.0325 

 
Nurse Technician.Institute B 2.0146 0.3440 

 
Nurse Technician.Institute C 7.6647 0.0318 

 
Other.Institute A 6.4456 0.1067 

 
Other.Institute B 0.9923 0.9949 

 
Other.Institute C 10470286 0.9939 

 
Patient.Institute A 4.6535 0.0241 

 
Patient.Institute C 9.1490 0.0025 
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Table S9. Compartmentalization analysis results for 73 clustered sequences from HC complex 
according to different traits. 
 

Dataset n Trait AI* Bootstraps 

All clustered  
sequences 73 Institute 0.4517 1000 

  
HCW/patient 0.7699 993 

  
Occupation 0.7499 832 

  
Institute B vs Others 0.5583 998 

  
Institute A vs Others  0.3675 1000 

  
Institute C vs Others 0.439 999 

Institute A clustered 23 HCW/patient 0.36435 999 

  
Occupation 0.4203 1000 

Institute B clustered 27 HCW/patient 0.9275 433 

  
Occupation 0.8634 808 

Institute  C clustered 23 HCW/patient 0.862 540 

  
Occupation 0.92875  

*Simmond’s Association Index 
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Table S10. Marjov Jumps counts, BSSVS rates and Bayes factors for all Location trait  transitions. 
 

Origin Destination Counts Counts 95% BCI Rates Rates 95% BCI Bayes Factor 

Other SP 30.465 27, 34 2.231 0.8533, 3.7905 29353.794 

SP Institute A 29.107 23, 34 1.333 0.4798, 2.3163 29353.794 

SP Institute B 104.918 94, 113 4.359 1.7017, 7.2442 29353.794 

SP Institute C 20.761 17, 24 1.003 0.3523, 1.7782 29353.794 

Institute A Institute B 4.405 2, 8 0.765 0.02241, 7.1799 113.699 

Institute C Institute B 4.472 1, 7 0.828 0.0824, 1.7819 84.371 

Institute B SP 9.763 1, 19 1.381 0.1162, 2.9797 26.817 

Institute B Institute A 5.410 0, 10 0.856 2.8247E-3, 2.1398 7.112 

Other Institute C 2.150 1, 4 0.618 2.0054E-4, 2.3907 4.249 

Institute C SP 2.163 0, 5 0.844 1.2088E-3, 2.6343 3.248 

Institute C Other 0.722 0, 2 0.637 8.6213E-4, 2.2403 2.946 

Institute B Institute C 2.200 0, 5 0.872 9.9104E-4, 2.8171 1.677 

Institute C Institute A 1.034 0, 7 0.984 3.5649E-5, 3.2025 0.858 

Institute B Other 0.167 0, 1 1.015 9.4685E-4, 3.2935 0.551 

Institute A SP 0.766 0, 3 1.079 5.6372E-4, 3.3461 0.481 

SP Other 0.703 0, 2 1.072 1.8106E-4, 3.3926 0.343 

Institute A Institute C 0.311 0, 1 1.156 1.0516E-4, 3.5092 0.280 

Institute A Other 0.058 0, 1 1.123 4.0284E-4, 3.4349 0.270 

Other Institute A 0.423 0, 1 1.169 6.4777E-6, 3.483 0.172 

Other Institute B 0.821 0, 2 1.159 5.5896E-4, 11.3425 0.156 
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