
Understanding Representation Learning
for Deep Reinforcement Learning

Charline Le Lan
Jesus College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2023

To my parents.

Acknowledgements

This thesis is the result of an immense support I received from many brilliant and
caring people who made my time as a PhD student a truly outstanding journey. I
am deeply grateful to my supervisors, mentors, collaborators, friends and family for
their constant guidance and encouragement over the years. Without them, there
is no denying that this thesis would not have been possible.

First, I would like to thank Marc G. Bellemare and Yee Whye Teh for advising
me throughout this PhD.

Marc is an outstanding supervisor and I am forever grateful to him for his
invaluable support. Four years ago I knew very little about reinforcement learning.
Still Marc generously gave me the wonderful opportunity to work with him and
patiently guided me through every step of this DPhil. He taught me how to frame
suitable research questions, how to read and write papers and how to do good
science. When working on research, I often found myself wondering "What would
Marc do here?". Marc is also an extraordinary researcher. I have always admired his
vision, ideas and analysis. While I often came to our meetings with confusions and
issues, I always left with a clear understanding and direction, thrilled to dig into a
new result. He also has this ability for linking concepts that are usually considered
distinct which was a constant source of inspiration during my DPhil. I was also
truly impressed by the care and time he devotes to his students and his dedication
to training the best possible researchers. On top of this, Marc truly is a great
person. He created many exciting research opportunities for me, I whole-heartily
thank him for this. Marc, it was an honor to be your student. Thank you for
believing in me and for your kindness! Our memories of doing research together
and your passion will stay with me for a long time.

Yee Whye Teh enabled me to enter the field of machine learning research
when I first reached out to him four years ago. Despite not having any prior
research experience, he took a chance on me and provided me with the tremendous
opportunity to work in his group at Oxford. This had a significant impact on my
life. I am also grateful for his kindness and experience and for supporting me in
achieving my career goals. Thank you for giving me the research freedom and time
to find my own direction, research agenda and style.

I am extremely grateful to have had the opportunity to collaborate with so
many wonderful collaborators: Rishabh Agarwal, Stephen Tu, Pablo Samuel Castro,
Laurent Dinh, Mark Rowland, Will Dabney, Jesse Farebrother, Joshua Greaves,
Fabian Pedregosa, Anna Harutyunyan, Ross Goroshin, Adam Oberman, Emile
Mathieu and Ryota Tomioka.

Rishabh has been a fantastic colleague and friend over the course of my PhD.
It was always fascinating to chat about research with him. I am impressed by the
breath of his knowledge and thankful for all he kindly taught me about deep
reinforcement learning.

Stephen taught me so much about learning theory, matrices and probability
while we were working together. He was always eager to engage with problems I
was stuck on and provided me with the tools I needed to develop my research. I
feel indebted for all the time he generously offered to me.

Pablo has been an amazing mentor, especially at the beginning of my PhD. He
offered me the exciting opportunity to host me at Google Brain in 2019 and taught
me a lot while we worked together on our bisimulation project which became my first
first-author paper. I also admire Pablo as a person, he is very generous and kind.

Laurent has been very supportive at the beginning of my PhD journey, even
when I had no clear research path at times. He shared with me his ideas, taught
me how to organize a paper and how to give talks. I am deeply thankful for his
expertise, compassion and humanity.

It was a joy working with Mark and Will on the last paper of this DPhil. They
brought new perspectives to me both in terms of ideas and ways of doing research
and I am very appreciative of that.

By working with Joshua Greaves, Jesse Farebrother and Pablo Samuel Castro,
my programming skills have significantly improved, I am very grateful to them.

I had the good fortune of visiting several institutions during my DPhil, Google
Brain, MILA and DeepMind.

I was very fortunate to meet Adrien Ali Taiga, Max Schwarzer, Linda Petrini,
Harley Wiltzer, Nathan U. Rahn, Pierluca D’Oro, Jacob Buckman and Johan
Obando Céron. Thank you for your friendship and many stimulating discussions.

My time at Google has significantly influenced the direction of my research. I
feel so privileged to have been part of such a wonderful research group. Many thanks
to all the individuals who enriched my time there, created exciting opportunities
for me and always made me feel welcome, among them Hugo Larochelle, Olivier
Pietquin, Danny Tarlow, Robert Dadashi, Liam Fedus, Vincent Dumoulin, Marlos
Machado, Matthieu Geist, Dale Schuurman, Hanie Sedghi, Damien Vincent, Nino
Vieillard, Leonard Hussenot, Johan Ferret, Chris Dann, Mathieu Blondel, Marcin
Andrychowicz and Nicolas Le Roux. I would also like to thank my fellow interns,

John D. Martin, Ahmed Touati, Saurabh Kumar, Carles Gelada, Erin Grant, Eleni
Triantafillou and Khimya Khetarpal, who made my internship even more enjoyable.

I would like to thank the numerous individuals I had the opportunity to interact
with at DeepMind, including Yunhao Tang, Bernardo Avila Pires, Daniel Guo, David
Abel, Shantanu Thakoor, Remi Munos, Diana Borsa, Mo Azar, Georg Ostrovski
and Zeyu Zheng. I also had many fruitful discussions with Theophane Weber, Bilal
Piot, Evgenii Nikishin, David Parkes, Chris Grimm, Andre Barreto, Angelos Filos,
Hado Van Hasselt, Tom Schaul, Ian Gemp, Abbas Abdolmaleki and Akhil Bagaria.

I would also like to acknowledge Shimon Whiteson and the students from
the WhiRL lab for offering valuable discussions and letting me selectively join
their reading group.

I extend my heartfelt thanks to Martha White and Patrick Rebeschini for
examining my thesis.

I also appreciated the support of Francois-Xavier Briol and Mark Girolami who
mentored me during my master’s thesis at Imperial College London.

Thank you to Clare Lyle, Sephora Madjiheurem and Laura Toni with whom
I enjoyed many stimulating conversations about representation learning and re-
inforcement learning.

My colleagues and friends at the Department of Satistics have greatly enhanced
my life in Oxford. In particular, I appreciated the support of Emilien Dupont, Jean-
Francois Ton, Jin Xu, Sheheryar Zaidi, Adam Kosiorek, Hyunjik Kim, Giuseppe Di
Benedetto, Qinyi Zhang, Frauke Harms and Xiaoyu Lu who were all awesome office
mates. Many thanks also go to Emile Mathieu, Adam Foster, Chris Maddison, Bobby
He, Dominic Richards, Bryn Elesedy, Adam Golinski, Michael Hutchinson, Tim
Rudner, Joost van Amersfoort, Aidan Gomez, Cong Lu, Faaiz Taufiq, Tom Rainforth,
Bradley Gram-Hansen, Xenia Miscouridou, Yuan Zhou, Tomas Vaskevicius, Deborah
Sulem, Serte Donderwinkel, Ian Letter, Amartya Sanyal and Luisa Zintgraf.

Thanks also go to Mark Brooke, Robin Wang and Ella Butcherine for being the
best flatmates and making me feel at home in the beautiful city of Oxford.

I have been very lucky to have had the great company of several friends both in
and outside Oxford. I would like to express my special thanks to my peers from
prepa. I am indebted to Alexandre Poka for his many years of friendship, Léo Aparisi
de Lannoy who in some sense inspired me to pursue this DPhil, Benoît Pit-Claudel,
Hortense Jamet, Julie Zhang and Cedric Oppé. I am also thankful to Benjamin

Levai for keeping up with me and for all the joyful conversations. Together with my
childhood friends Marie-Astrid and Charles-Edouard Sevilla, we have experienced
so much and I look forward to many more memorable trips in the years to come.

I want to particularly thank Marietta Almasy for giving me the opportunity
to pursue my hobby outside of research. Marietta has always been a source of
inspiration and her passion and success have motivated me over the years. Thank
you also to Cecile Taleux, Aurore Voisin, France Mentre, Isabelle Nobile, Anna
Brunel and Franck Prazan for creating a vibrant community around this hobby.

Finally, my deepest gratitude goes towards my family. I am thankful to my
brother, Nicolas, for his encouragements and unwavering help, even in difficult
times. My parents, Karine and Jean-Claude, have been my pillar of support. Thank
you for all the sacrifices you made for me and for letting me pursue interests
of my own. You were always here to cheer me up when I was doubting myself
and celebrate in moments of success. Words cannot express how thankful I am
for your unconditional love.

Thank you.

Abstract

Representation learning is essential to practical success of reinforcement learning.
Through a state representation, an agent can describe its environment to efficiently
explore the state space, generalize to new states and perform credit assignment from
delayed feedback. These representations may be state abstractions, hand-engineered
or fixed features or implied by a neural network. In this thesis, we investigate
several desirable theoretical properties of state representations and, using this
categorization, design novel principled RL algorithms aiming at learning these state
representations at scale through deep learning.

First, we consider state abstractions induced by behavioral metrics and their
generalization properties. We show that supporting the continuity of the value
function is central to generalization in reinforcement learning. Together with this
formalization, we provide an empirical evaluation comparing various metrics and
demonstrating the importance of the choice of a neighborhood in RL algorithms.

Then, we draw on statistical learning theory to characterize what it means
for arbitrary state features to generalize in RL. We introduce a new notion called
effective dimension of a representation that drives the generalization to unseen
states and demonstrate its usefulness for value-based deep reinforcement learning
in Atari games.

The third contribution of this dissertation is a scalable algorithm to learn a state
representation from a very large number of auxiliary tasks through deep learning.
It is a stochastic gradient descent method to learn the principal components of a
target matrix by means of a neural network from a handful of entries.

Finally, the last part presents our findings on how the state representation
in reinforcement learning influences the quality of an agent’s predictions but is
also shaped by these predictions. We provide a formal mathematical model for
studying this phenomenon and show how these theoretical results can be leveraged
to improve the quality of the learning process.

Contents

List of Figures xv

List of Tables xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline . 2
1.3 Publications . 5

2 Background and Related Work 7
2.1 Reinforcement Learning . 7
2.2 Representation Learning . 9

2.2.1 Feature Engineering in Classical Reinforcement Learning . . 9
2.2.2 You Are What You Predict: Representation Learning in Deep

Reinforcement Learning . 11
2.2.3 Representations Matter . 13

3 Metrics and Continuity in Reinforcement Learning 17
3.1 Introduction . 20
3.2 Overview . 21
3.3 Background . 22

3.3.1 Metrics, Topologies, and Continuity 24
3.3.2 Prior Metrics and Abstractions 25

3.4 Continuity Relationships . 28
3.5 Taxonomy of Metrics . 29

3.5.1 Continuity: Prior Metrics 29
3.5.2 Value-Based Metrics . 31
3.5.3 Categorizing Metrics, Continuity and Complexity 32

3.6 Empirical Evaluation . 33
3.6.1 Generalizing the Value Function V ∗ 34
3.6.2 Generalizing the Q-function Q∗ 35
3.6.3 Approximate Value Iteration 35

3.7 Discussion . 36

xi

xii Contents

3.8 Broader Impact . 37
3.A Proofs for Section 3.4 . 38
3.B Proofs for Section 3.5 . 47
3.C Formal Definition of Bisimulation Metrics 55
3.D Additional Empirical Evaluations 56

4 On the Generalization of Representations in Reinforcement Learn-
ing 59
4.1 Introduction . 62
4.2 Background . 64

4.2.1 Statistical Learning Theory 65
4.2.2 The Successor Representation 66

4.3 Characterizing Excess Risk . 67
4.3.1 Illustrative Examples . 70

4.4 Generalization for the Successor Representation 71
4.4.1 Approximation Error: ∥P⊥

Φ V
π∥2

S,2 71
4.4.2 Effect of Transition Structure 73
4.4.3 Analysis of the One-dimensional Torus 75

4.5 Experiments . 76
4.5.1 Comparing State Representations 76
4.5.2 Deep Reinforcement Learning 77

4.6 Conclusion . 79
4.A Proofs for Section 4.3 . 80
4.B Proofs for Section 4.4 . 86
4.C Empirical Evaluation: Additionnal Details 89

4.C.1 Graphical Structures . 89
4.C.2 Full Atari Results . 93

4.D Societal Impact . 98

5 A Novel Stochastic Gradient Descent Algorithm for Learning
Principal Subspaces 101
5.1 Introduction . 104
5.2 Background . 105

5.2.1 Problem Statement . 105
5.3 PCA from Samples . 107

5.3.1 An Improved Gradient Estimate 109
5.3.2 Estimate of the Weight Vector W ∗

Φ,t 110
5.3.3 Algorithm Based on LISSA 112

5.4 Related Work . 114
5.5 Experiments . 115

Contents xiii

5.5.1 Synthetic Matrices . 116
5.5.2 MNIST Dataset . 118
5.5.3 Learning the Successor Measure 119

5.6 Discussion & Conclusion . 121
5.A Proofs for Section 5.2 . 122
5.B Proofs for Section 5.3 . 123
5.C Additional Experimental Results 126

5.C.1 Synthetic Matrices . 126
5.C.2 MNIST . 127
5.C.3 Puddle World . 127

6 Bootstrapped Representations in Reinforcement Learning 131
6.1 Introduction . 134
6.2 Background . 136

6.2.1 Auxiliary Tasks . 137
6.2.2 Monte Carlo Representations 138
6.2.3 Temporal Difference Learning with a Deep Network 139

6.3 Bootstrapped Representations . 140
6.4 Representations for Policy Evaluation 144

6.4.1 TD and Monte Carlo Need Different Cumulants 146
6.4.2 A Deeper Analysis of Random Cumulants 147

6.5 Empirical Analysis . 148
6.5.1 Synthetic Matrices . 148
6.5.2 Effectiveness of Random Cumulants 149
6.5.3 Offline Pre-training . 150

6.6 Related Work . 152
6.7 Conclusion . 153
6.A Additional Empirical Results . 154

6.A.1 Additional Details for Subsection 6.5.1 154
6.A.2 Additional Details for Subsection 6.5.2 154
6.A.3 Additional Details for Subsection 6.5.3 155

6.B Proofs for Section 6.2 . 157
6.C Proofs for Section 6.3 . 158
6.D Proofs for Section 6.4 . 164
6.E Proofs for Subsection 6.4.1 . 167
6.F Proofs for Subsection 6.4.2 . 170

6.F.1 Notations . 170
6.F.2 Approximate Matrix Decompositions 171
6.F.3 Analysis . 173

xiv Contents

7 Discussion 177
7.1 Conclusion . 177
7.2 Future Directions . 178

7.2.1 Further Theoretical Analysis of Representation Learning
Schemes . 178

7.2.2 Benchmarks . 180
7.2.3 Pre-training Representations and Reincarnating Reinforce-

ment Learning . 181

Bibliography 183

List of Figures

2.1 The Markov decision process model [Sutton and Barto, 2018]. . . . 7
2.2 A deep RL architecture reproduced from Bellemare et al. [2023] . . 11

3.1 A simple five-state MDP (top) with the neighbourhoods induced by
three metrics: an identity metric which isolates each state (d1); a
metric which captures behavioral proximity (d2); and a metric which
is not able to distinguish states (d3). The yellow circles represent
ϵ-balls in the corresponding metric spaces. The bottom row indicates
the V ∗ values for each state. 20

3.2 Errors when approximating the optimal value function (left) and
optimal Q-function (center) via nearest-neighbours and errors when
performing value iteration on aggregated states (right). Curves for
e∼ and e∼lax are covering each other on all of the plots. Averaged over
100 Garnet MDPs with 200 states and 5 actions, with 50 independent
runs for each (to account for subsampling differences). Confidence
intervals were very tiny due to the large number of runs so were not
included. 34

3.3 Four Rooms domain with a single goal state in green (left). Optimal
values for each cell (right). 56

3.4 The top row illustrates the distances from the top-left cell to every
other cell (note the color scales are shifted for each metric for easier
differentiation between states). The bottom row displays d(s, t) −
|V ∗(s)− V ∗(t)|, where s is the top-left cell, illustrating how tight an
upper bound the metrics yield on the difference in optimal values. . 57

3.5 State clusters produced by the different metrics when targeting 11
aggregate states. There is no color correlation across metrics. . . . 57

4.1 A deep RL architecture seen as a deep representation ϕ and a value
prediction V̂ϕ,w. 62

xv

xvi List of Figures

4.2 Singular values of the successor representation Ψπ, in decreasing order
and for different graphical structures. Note that the fully connected
and star graphs’ spectra overlap (top left). Effective dimension of the
representation Φk = Fk (top right). Median empirical excess risk over
10 runs, with 95% CIs as shaded regions, and theoretical excess risk,
respectively, for the open room, torus, and fully connected graphs
(bottom left and right). 73

4.3 The Four Rooms domain (left). Median empirical excess risk (middle)
and effective dimension (right) as a function of approximation error
for the top k left singular vectors of the SR, random features, the
Krylov basis and the bisimulation metric matrix in the Four rooms
domain. 76

4.4 Interquartile mean (IQM) [Agarwal et al., 2021b] for the effective
dimension, normalized by the batch size used N = 215 (left). In-
terquartile mean (IQM) for human-normalized scores over the course
of training across 60 Atari games (right). IQM measures the mean on
the middle 50% of the data points combined across all runs and games.
These statistics are over 5 independent runs and shading gives 95%
stratified bootstrap confidence intervals based on Rliable [Agarwal
et al., 2021b]. 77

4.5 Effective dimension, normalized by the batch size N = 215 and
performance of IQN and IQN with feature regularization Lϕ on 17
Atari games in the offline RL setting. 78

4.6 Different graphical structures with S = 5 states from left to right,
Star, Chain, Torus1d, Disconnected, Fullyconnected (top). Two-
dimensional graphical structures with S = 9 states: from left to right,
Openroom and Torus2d (bottom). 89

4.7 Approximation error ∥PFk
V π∥ given a one-hot, all-ones and Gaussian

reward vector and for MDPs with different graphical structures
(left). Median empirical excess risk E(VFk,ŵ) given a one-hot, all-ones
and Gaussian reward vector (middle). Theoretical excess risk for a
representation Φk = Fk and a one-hot, all-ones and Gaussian reward
vector (right). The median is over 5 random seeds and shading gives
95% confidence intervals. 92

4.8 Sweeping over various values of α when adding the auxiliary loss Lϕ

to IQN. 93
4.9 Average estimate (darker color) of the effective dimension normalized

by the batch size used N = 215 on DQN(Nature), DQN(Adam),
Rainbow, IQN and M-IQN on all 60 Atari games computed using 5
independent runs. Individual runs are shown with a lighter color. . 94

List of Figures xvii

4.10 Per-game learning curves of IQN and IQN with feature regularization
Lϕ on 17 Atari games in the offline RL setting. 95

4.11 Per-game effective dimension normalized by the batch size N = 215

of IQN and IQN with feature regularization Lϕ on 17 Atari games in
the offline RL setting, using 5 independent runs. Individual runs are
shown with a lighter color. 96

4.12 Per-game rank of IQN and IQN with feature regularization Lϕ

computed with a batch size N = 215 on 17 Atari games in the
offline RL setting, using 5 independent runs. Individual runs are
shown with a lighter color. 97

4.13 Interquartile mean (IQM) [Agarwal et al., 2021b] for the rank of
representations induced by IQN and IQN with feature regularization
Lϕ computed with a batch size N = 215 on 17 Atari games in the
offline setting. 98

5.1 Subspace distance over the course of training LISSA for different
dimensions (left, L = 25, J = M = N = 5) and for different total
number of samples per update (right, d = 10) on synthetic matrices
with a spectrum decaying linearly and exponentially, averaged over
30 seeds. Shaded areas represent estimates of 95% confidence intervals.116

5.2 Subspace distance (d = 10) after 106 training steps according to
the method used to estimate the loss gradient. Here, the x axis
represents the total number of row samples L from the Φ matrix
with J = M = N (L = 2J + 2M + N for the Danskin methods,
J +M +N for the naive method). Shaded areas represent estimates
of 95% confidence intervals. Note that because we are sampling with
replacement, the gradient estimate for L = 250 still differs from the
gradient given in Lemma 12. (The naive method diverges for very
small values of L). 117

5.3 Training curves for LISSA on MNIST (d = 16) that updates only a
subset of pixels at a time (left). ∗: see main text. Reconstruction on
MNIST test images (right). First row show samples from test images.
Second are images reconstructed from the true principal components
of Ψ and third row are images reconstructed from the principal
components learnt by Danskin-LISSA (N = 64). Reconstruction
MSE errors for true components and Danskin-LISSA are 21.46 and
21.53 respectively. 118

xviii List of Figures

5.4 The Puddle World domain [Sutton, 1995], with the shaded area
indicating regions where the agent moves slowly (left). In our
experiments, each grid cell is associated with a column of the implied
data matrix. Subspace distance as a function of the dimension d

after 108 gradient steps for three methods: Danskin-LISSA, Explicit,
and the Large Batch baseline (right). 120

5.5 Subspace distance after 106 training steps of the LISSA algorithm
for different κ0 . 126

5.6 Subspace distance over the course of training LISSA for different
dimensions on synthetic matrices with a spectrum decaying linearly
and exponentially, averaged over 30 seeds. The total number of
samples used is 50. Shaded areas represent 95% confidence intervals. 127

5.7 First 10 principal components of the successor measure of the Puddle
World domain. 128

6.1 In deep RL, we see the penultimate layer of the network as the
representation ϕ which is linearly transformed into a value prediction
V̂ϕ,w and auxiliary predictions Ψ(x) by bootstrapping methods. . . . 134

6.2 A simple 3-state MDP (left). Five subspaces, each represented by a
circle, spanned by Φ during the last training steps of gradient descent
on LTD

aux for d = 2 (right). 142
6.3 MC (left) and TD (right) approximation errors as a function of the

misalignment of the top left and right singular vector of the SR
induced by greedifying the policy. Trained with LMC

aux, LTD
aux, G = I,

d = 1 on a 4-state room. 145
6.4 Subspace distance between Φ and the top-d left singular vectors

of the SR on the left (resp. and a top-d P π-invariant subspace in
the middle over the course of training LTD

aux,LMC
aux and Lres

aux for 105

steps, averaged over 30 seeds (d = 3). MDPs with real diagonalisable
(left, middle) and symmetric (right) transition matrices are randomly
generated. Shaded areas represent 95% confidence intervals. 149

6.5 Subspace distance after 5× 105 training steps and averaged over 30
seeds (d = 5) between Φ learnt with LMC

aux and the top left singular
vectors of the SR (left) and between Φ learnt with LTD

aux and the top
invariant subspaces of the SR (right) for different random cumulants,
on the Four Rooms domain. Shaded areas represent estimates of
95% confidence intervals . 150

6.6 Comparing effects of offline pre-training on the Four Rooms (left)
and sparse Mountain Car (right) domains for different cumulant
generation methods. Results are averages over three seeds. 151

List of Figures xix

6.7 Monte Carlo and TD approximation errors after 5.105 training steps
on the learning rules LMC

aux (on the left column) and LTD
aux (on the

right column) in the Four Rooms domain for different distributions of
cumulant, averaged over 30 seeds, for d = 5. Shaded areas represent
estimates of 95% confidence intervals. 154

6.8 Example for ExactSVD of the learned cumulants (first two rows) and
value functions (last two rows) during offline pre-training in Four
Rooms under the uniform random policy. 156

6.9 Example for Normal of the learned cumulants (first two rows) and
value functions (last two rows) during offline pre-training in Four
Rooms under the uniform random policy. 156

6.10 Example for CCR of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in Four Rooms
under the uniform random policy. 157

6.11 Example for RNI of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in Four Rooms
under the uniform random policy. 157

6.12 Example for ExactSVD of the learned cumulants (first two rows) and
value functions (last two rows) during offline pre-training in sparse
Mountain Car under the uniform random policy. 158

6.13 Example for Normal of the learned cumulants (first two rows) and
value functions (last two rows) during offline pre-training in sparse
Mountain Car under the uniform random policy. 158

6.14 Example for CCR of the learned cumulants (first two rows) and
value functions (last two rows) during offline pre-training in sparse
Mountain Car under the uniform random policy. 159

6.15 Example for RNI of the learned cumulants (first two rows) and
value functions (last two rows) during offline pre-training in sparse
Mountain Car under the uniform random policy. 159

xx

List of Tables

3.1 Different types of state abstractions. 26
3.2 Categorization of state metrics, their continuity implications, and

their complexity (when known). The notation {y}S denotes any
function h : S → Y that is constant, Y S refers to all functions
h : S → Y . B(Y S) (resp. BL(Y S)) is a bounded (resp. locally
bounded) function h : S → Y . “-” denotes an absence of LC, UC,
ULC and LLC. In the complexity column, δ is the desired accuracy. 32

3.3 RL functions with their respective domains and ranges. 38

6.1 Different types of representation loss and their induced representa-
tions. The supervised targets Ψ ∈ RS×T are (I−γP π)−1G. SVD(M)
denotes the top-d left singular vectors of M, Inv(M) the top-d
invariant subspace of M and Σd ∈ Rd×d the diagonal matrix with the
top-d singular values of (I − γP π)−1 on its diagonal. 144

xxi

xxii

1
Introduction

1.1 Motivation

The idea of interaction is central to intelligence and all theories for learning. In

reinforcement learning (RL), an agent interacts with its environment by taking

actions and receives a real-valued reward as a form of delayed feedback. The goal

is to turn data into decisions to maximize this numerical reward signal. Unlike

supervised learning which is concerned with learning from a dataset of labeled

examples, reinforcement learning fundamentally aims at learning to act from data.

Reinforcement learning achieved a number of notable achievements such as play-

ing games [Silver et al., 2016], flying stratospheric balloons [Bellemare et al., 2020],

designing hardware chips [Mirhoseini et al., 2021], discovering matrix multiplication

algorithms [Fawzi et al., 2022] and finetuning large language models [Christiano

et al., 2017, Ouyang et al., 2022, OpenAI, 2023]. These recent successes can be

attributed to deep reinforcement learning, that is the combination of reinforcement

learning algorithms with deep neural networks. In deep reinforcement learning,

the network learns the mapping from perceptual inputs such as raw pixels to an

output vector encoding each action and needs to figure out how those low-level

inputs are related. These algorithms help represent inputs in a way that captures

1

2 1.2. Thesis Outline

the relevant information needed for the agent to make good decisions, a process

called representation learning.

Understanding how the choice of a representation affects the performance of deep

RL agents, summarised by the sum of discounted rewards they receive, remains

poorly understood. Representation learning in reinforcement learning is quite

different from representation learning in supervised learning. In RL, an agent

interacts with the environment in a temporal fashion. Hence, an advantage is that

there is structure built into the decision making system that we can actually learn

from. Images that occur in succession are more related than images that are far

apart which relates to the problem of decisions: we should take the same decisions

in similar situations. However, unlike supervised learning, in the control setting,

the agent faces a succession of value prediction problems making representation

learning more difficult.

In this thesis, we analyse what makes a good representation for reinforcement

learning. In particular, we provide evidence of the need to take advantage of the

structure of the interactions between the agent and its environment into a compact

representation. More generally, our work unifies theoretical reinforcement learning

with practical deep-learning-based algorithms and also provides the ground for

principled deep reinforcement learning agents.

1.2 Thesis Outline

The research question behind this thesis is

How can we choose and learn a state representation to improve the quality of

the learning process and its resulting solution in reinforcement learning?

This thesis answers this question by the following statement.

Thesis statement.
By leveraging insights from topology, statistical learning and control theory, we
identify several theoretical properties for useful state representations leading to
novel, efficient and principled reinforcement learning algorithms.

1. Introduction 3

To support this thesis, we consider three desiderata according to which we

evaluate representations for reinforcement learning. A representation should

be easy to learn, cheaply generalize to newly encountered states while making

accurate predictions about the value function. We study the characteristics of state

representations under this lens through four contributions.

Chapter 3 studies state abstractions induced by behavioral metrics in which

similar states are assigned similar predictions. State similarity metrics can support

the continuity of RL functions to various degrees and induce different kinds of

topologies on the state space. The main insight of this chapter is that generalizing

well within a neighborhood requires having a representation that supports the

continuity of the function of interest, as summarised by Table 3.2, and a topology

as coarse as possible enabling a cheap generalization to new states as shown

by Theorem 2. We also provide results comparing the computational cost of

these metrics. Relying on our taxonomy, we show that metrics frequently found

in the literature are not appropriate for algorithms that convert representations

into values. Following this observation, we present new metrics to address this

gap. We also provide empirical evidence supporting our taxonomy of metrics

and showing the benefit of the state abstractions introduced to generalize values

within a neighborhood.

Chapter 4 investigates how the choice of a representation affects the gener-

alization of value functions in an algorithmic context. Theorem 6 provides a

generalization bound for Monte Carlo value function estimation with fixed features.

We demonstrate that our bound is useful by applying it to the special case of

the successor representation for various environment structures. We find that a

quantity that we call effective dimension of a representation informs its generalization

capacity. Finally, we show that our theory makes useful predictions about which

representations are desirable on the Arcade Learning Environment [Bellemare

et al., 2013]. Our experiments highlight a strong correlation between the effective

dimension of the representations implied by deep RL agents and their performance

4 1.2. Thesis Outline

in the online setting. We exploit this tight connection to design a new auxiliary

loss presenting encouraging improvements in the offline deep RL setting.

Chapter 5 tackles learning a representation at scale from a possibly infinite

number of predictions. It is motivated by a commonly held belief that the more

an agent learns about the world additionally to learning a value function, the

better its representation and resulting performance. We propose a gradient-based

algorithm which applies beyond the setting of reinforcement learning and recovers

the principal components of a possibly infinite dimensional data matrix by means of

a neural network from a small number of entries. It consists in expressing a per-task

weight vector implicitly rather than in memory and constructing an estimate of a

loss function which minimizer is the desired principal subspace. Empirically, we

demonstrate on tabular and continuous domains that the representation parame-

terized by a neural network effectively converges towards to the desired principal

components of the matrix of interest.

Chapter 6 addresses the problem of designing a set of cumulants given a fixed

computational budget. To answer this question, we first rely on theoretical tools

from the study of dynamical systems to analyse the representations learnt by

training auxiliary tasks. We also formalize mathematically why a collection of

cumulants spanning the whole state space leads to rich representations, as has been

suggested by Sutton et al. [2011] and show that learning the same representation

from a smaller set of cumulants requires them to depend on the dynamics of the

environment. We demonstrate empirically that our theoretical results make useful

predictions about what happens in deep RL and which representations are useful

in the control setting as verified in experiments in Subsection 6.5.3.

Together these contributions advance the study of representation learning in

reinforcement learning by providing the tools to analyse the features learnt by

state-of-the art RL algorithms, moving ahead with a formalization of why they

are helpful in the learning process of the value function and concluding with the

derivation of new auxiliary-task based algorithms.

1. Introduction 5

1.3 Publications

Most chapters of this integrated thesis correspond to papers published in conference

proceedings [Le Lan et al., 2021, 2022, 2023a] or presented at a workshop [Le Lan

et al., 2023b]. We detail the contributions of each author at the end of each

corresponding chapter.

• Charline Le Lan, Marc G. Bellemare, Pablo Samuel Castro. Metrics and

continuity in reinforcement learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, 2021

• Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc G.

Bellemare. On the generalization of representations in reinforcement learning.

In Proceedings of the International Conference on Artificial Intelligence and

Statistics, 2022

• Charline Le Lan, Joshua Greaves, Jesse Farebrother, Mark Rowland, Fabian

Pedregosa, Rishabh Agarwal, Marc G. Bellemare. A novel stochastic gradient

descent algorithm for learning principal subspaces. In Proceedings of the

International Conference on Artificial Intelligence and Statistics, 2023

• Charline Le Lan, Stephen Tu, Mark Rowland, Anna Harutyunyan, Rishabh

Agarwal, Marc G. Bellemare, Will Dabney. Bootstrapped representations in

reinforcement learning. In Reincarnating RL Workshop at ICLR 2023

For completeness, we list in reverse chronological order below other publications

conducted during the time of this DPhil. Some of them are discussed as related

work [Le Lan and Agarwal, 2023, Farebrother et al., 2023, Tang et al., 2023] while

others are omitted from this thesis [Le Lan and Dinh, 2021, Hutchinson, Le Lan,

Zaidi et al., 2021, Mathieu et al., 2019]. ∗ denotes joint first authorship.

• Charline Le Lan, Rishabh Agarwal. Revisiting bisimulation: a sampling-based

state similarity pseudo-metric. In Submission at the International Conference

on Learning Representation, Tiny paper track, 2023

6 1.3. Publications

• Jesse Farebrother∗, Joshua Greaves∗, Rishabh Agarwal, Charline Le Lan, Ross

Ghoroshin, Pablo Samuel Castro, Marc G. Bellemare. Proto-value networks:

scaling representation learning with auxiliary tasks. In Proceedings of the

International Conference on Learning Representations, 2023

• Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond, Bernardo Avila

Pires, Yash Chandak, Remi Munos, Mark Rowland, Mohammad Gheshlaghi

Azar, Charline Le Lan, Clare Lyle, Andras Gyorgy, Shantanu Thakoor, Will

Dabney, Bilal Piot, Daniele Calandriello, Michal Valko. Understanding

self-predictive learning for reinforcement learning. In Submission at the

International Conference on Machine Learning, 2023

• Charline Le Lan, Laurent Dinh. Perfect density models cannot guarantee

anomaly detection. In Entropy, 2021. Also Entropic Award at the I Can’t

Believe It’s Not Better! Workshop at NeurIPS, 2020

• Michael Hutchinson∗, Charline Le Lan∗, Sheheryar Zaidi∗, Emilien Dupont,

Yee Whye Teh, Hyunjik Kim. Lietransformer: equivariant self-attention for lie

groups. In Proceedings of the International Conference on Machine Learning,

2021

• Emile Mathieu, Charline Le Lan, Chris Maddison, Ryota Tomioka, Yee Whye

Teh. Continuous hierarchical representations with poincaré variational auto-

encoders. In Advances in Neural Information Processing Systems, 2019

2
Background and Related Work

We start by reviewing two areas central to this work: reinforcement learning and

representation learning. This chapter describes some background material that

will be necessary for the understanding of the following chapters. For convenience,

some of these concepts are also recalled at the beginning of each subsequent

chapter, where necessary.

2.1 Reinforcement Learning

In reinforcement learning, an agent interacts with an environment modeled as

a discrete-time Markov Decision Process (MDP). Fomally, an MDP is a tuple

M = ⟨S,A,R,P , γ⟩ [Puterman, 1994] with state space S, set of actions A,

transition kernel P : S ×A →P(S), deterministic reward function R : S ×A →

[−Rmax, Rmax], and discount factor γ ∈ [0, 1) which reflects that is is preferable to

Figure 2.1: The Markov decision process model [Sutton and Barto, 2018].

7

8 2.1. Reinforcement Learning

receive rewards sooner than later. Figure 2.1 illustrates this model.

The agent starts in an inital state S0 ∼ ξ0 where ξ0 ∈ P(S) is a probability

distribution on S. At each time step, the agent takes an action At ∈ A, receives

feedback in terms of a real-valued reward Rt ∼ R(St, At) and transitions to a new

state St+1 ∼ P(St, At). The random return is the discounted cumulative sum of

rewards received by the agent from the initial state onwards

Gt =
∞∑

t=0
γtRt.

A stationary Markov policy π : S → P(A) is a mapping from states to

distributions over actions, describing a particular way of interacting with the

environment such that

At ∼ π(· |St).

We denote the set of all policies by Π. The quality of a policy is measured

by the its expected return

Eπ

[∞∑
t=0

γtRt

]
.

For any policy π ∈ Π, the value function V π(s) measures the expected return

received when starting from an initial state s ∈ S and acting according to π:

V π(s) := Eπ

[∞∑
t=0

γtRt |S0 = s

]
.

The upper-bound value is Vmax := Rmax
1−γ

. Importantly, the value function of a state

can be expressed with the immediate action A0, reward R0 and the next state S1.

This recursive relationship is called Bellman’s equation [Bellman, 1957]

V π(s) = Eπ [R0 + γV π (S1) | S0 = s] .

Similarly, the action-value function of a state s ∈ S and action a ∈ A is defined as

Qπ(s, a) := Eπ

[∞∑
t=0

γtRt |S0 = s, A0 = a

]
.

Throughout this thesis, we will find it convenient to express these equations in

vector notation [Puterman, 1994].

2. Background and Related Work 9

In the control setting, we are interested in finding an optimal policy π∗, that

is which maximizes the expected return at every state

V π∗(s) ⩾ V π(s) for all s ∈ S.

Following Bellman’s principle of optimality, the optimal action-value function Q∗,

corresponding to the optimal policy π∗, also satisfies Bellman’s equation

Q∗(s, a) = Eπ

[
R0 + γmax

a′∈A
Q∗ (S1, a

′) | S0 = s, A0 = a
]

Learning Q∗ is at the heart of value-based methods, algorithms on which we

focus in this thesis.

2.2 Representation Learning

In large scale or continuous reinforcement learning problems, it is not possible to

rely on a tabular representation of the value function and dynamic programming

methods. Instead, it is common to use a structured representation of the state space

from which we can express the value function in a more informative way. It allows

to parametrize the value function with few parameters shared across states and also

to generalize value predictions to new states. The quality of policies learnt through

value function approximation depends on the choice of this state representation.

2.2.1 Feature Engineering in Classical Reinforcement Learn-
ing

Prior work on representation learning mainly focused on encoding a fairly exhaustive

list of features and feeding these directly to the RL agent.

Linear value function approximation is a common function approximation

approach [Tsitsiklis and Van Roy, 1996, Boyan, 2002, Sutton et al., 2008] that

consists in representing the value function as a linear combination of basis functions,

also referred to as features. It can be easily implemented, is interpretable and offers

10 2.2. Representation Learning

many theoretical guarantees [see e.g. Sutton and Barto, 1998]. Given a mapping

ϕ : S → Rd, a linear value function approximation Vϕ,w is defined by

Vϕ,w(s) = ϕ(s)⊤w,

where w ∈ Rd is a weight vector. In general, we are interested in the setting where

the number of features is much less than the number of states d ≪ |S|.

In early applications, the weights w ∈ Rd were learnt from data by approximate

dynamic programming [De Farias, 2003, Guestrin et al., 2003], temporal difference

learning [Sutton and Barto, 1998, Tsitsiklis and Van Roy, 1996] or linear least

square temporal difference [Bradtke and Barto, 1996] but the feature vectors ϕ(s)

were usually hand-engineered [Samuel, 1959]. Designing these features is usually

domain-specific and time-consuming, hence the resulting basis functions do not

scale to large complex environments.

State abstraction is a simple way to construct binary state features by aggregating

states according to some notion of similarity [Li et al., 2006]. The underlying idea is

that a useful representation should ignore task-irrelevant information. Bisimulation

[Givan et al., 2003, Ferns et al., 2004] is an example of a state abstraction where

states are clustered together when they agree on immediate rewards and transition

to groups of states also judged similar.

Examples of common parametric families of basis functions that have been used

include radial basis functions [RBF; Lagoudakis and Parr, 2003] and polynomials

or Fourier basis [Konidaris et al., 2011]. The representation capacity can also be

improved by exhaustively generating features and then performing dimensionality

reduction. Tile coding is an example of this approach [Sutton, 1996]. However, these

methods encounter challenges in accurately approximating some value functions

because of their non linearities. For instance, Dayan [1993] showed on simple

grid worlds that states that are close under a euclidean metric may have very

different values. In contrast, linear approximation architectures such as RBFs

assume a Euclidean geometry of the state space and do not make a distinction

between reachable and unreachable states.

2. Background and Related Work 11

.
Figure 2.2: A deep RL architecture reproduced from Bellemare et al. [2023]

To overcome these limitations, a number of methods focused on learning basis

functions automatically. Kretchmar and Anderson [1999] rely on a notion of temporal

neighborhood to form new parametric basis functions. Menache et al. [2005], Kveton

and Hauskrecht [2006] tune the parameters of parametric basis functions during

the learning process by gradient descent or the Cross Entropy method. Keller et al.

[2006], Petrik [2007], Parr et al. [2008] generate basis functions using the Bellman

error of a current value function approximation. In these approaches, the basis

functions depend on the reward function of the MDP.

Several approaches used the underlying dynamics of the MDP to build state

representations. The successor representation [Dayan, 1993] is a time-based repre-

sentation that encodes the temporal proximity of states given the agent’s policy.

Proto-value functions [Mahadevan and Maggioni, 2007] are non-parametric basis

functions built from an eigendecomposition of the graph Laplacian induced by

the state transitions of the MDP. These representations reflect the geometry of

the environment and are reward-agnostic making them for instance appealing for

transfer learning across MDPs.

2.2.2 You Are What You Predict: Representation Learning
in Deep Reinforcement Learning

Deep learning is today’s method of choice to learn a state representation. A

particularity of deep learning applied to reinforcement learning is that we start

12 2.2. Representation Learning

from raw inputs or perceptual inputs that we feed through a number of layers in the

deep neural network to learn some structure. This eventually becomes prediction

of the value function or policy telling which action the agent should take. For

instance, the DQN algorithm [Deep Q-Networks, Mnih et al., 2015] applies the

tools of deep reinforcement learning to learn an agent that outperforms humans at

playing Atari 2600 video games. It leverages a deep neural networks to approximate

the action-value function in combination with a semi-gradient Q-learning update

rule. In Figure 2.2, four preprocessed images from some Atari games are successively

transformed by three convolutional neural networks [LeCun et al., 1995] and a

fully-connected layer that applies both a linear transformation and a non-linear

activation function to the output of the last convolutional layer. This results in a

512-dimensional vector that we call representation ϕ. This vector is then linearly

transformed by some weights w ∈ R512 into a value function for each action.

Under this view of deep RL [Yu and Bertsekas, 2009, Levine et al., 2017,

Bellemare et al., 2019], we can then write the value function approximation at

a state s ∈ S as

Vϕ,w(s) = ϕ(s)⊤w.

In contrast with pre-deep learning feature engineering, the mapping ϕ : S → Rd,

parameterized by all the stacks of layers after the image but before the actual

prediction, is jointly learnt together with the weights w ∈ Rd of the last layer. It

has also been shown that making additional predictions along the value function

led to better performance empirically [Jaderberg et al., 2017, Bellemare et al.,

2017, Dabney et al., 2021]. In practice, a gradient step is performed with respect

to the network’s parameters towards minimising a combination of the DQN loss

and the auxiliary loss. A hypothesis is that these auxiliary tasks lead to richer

representations by predicting many aspects of the world. We now discuss some

examples of auxiliary tasks that have been used in the literature.

The UNREAL algorithm makes auxiliary predictions about future pixel values

[Jaderberg et al., 2017]. In addition, it also predicts future reward signals, similarly

to Liu et al. [2021].

2. Background and Related Work 13

C51 [Bellemare et al., 2017], QR-DQN [Dabney et al., 2018b] and IQN [Dabney

et al., 2018a] rely on distributional RL and predict the return distribution instead

of the expected return.

Recent works predict one’s own latent state representation multiple steps in

the future [François-Lavet et al., 2019, Gelada et al., 2019, Schwarzer et al., 2021].

They demonstrate significant empirical improvements and better sample-efficiency

on Atari games.

Bellemare et al. [2019] propose adversarial value functions (AVFs), a class of

auxiliary tasks which aim to minimize the approximation error of any value function.

The method builds on insights from Dadashi et al. [2019] who highlighted that

the value function space is a polytope.

Finally, a line of work focuses on state similarity and consists in training a

network on auxiliary predictions such that the distance between two latent states

corresponds to a behavioral metric, for instance the π-bisimulation metric [Castro,

2020, Zhang et al., 2020, Agarwal et al., 2021a] or the MiCo distance [Castro et al.,

2021, Le Lan and Agarwal, 2023]. Some benefits of these approaches include the

interesting theoretical properties they induce on the latent state space such as

the Lipschitz continuity of the value function.

2.2.3 Representations Matter

With the observations from the previous section, it is now clear that the repre-

sentation that RL agents use or learn matters a lot. This motivates the need to

understand what a good representation for RL is.

As a first order approximation, consider an agent acting according to a policy

π and the problem of estimating its value function by batch Monte Carlo. We

are given a training dataset consisting of pairs of states and their value D =

{(s1, V
π(s1)) , . . . , (sn, V

π(sn))} ∈ (S × R)n and want to learn an approximation of

the true value function V π. Under the deep RL model described in Subsection 2.2.2,

the aim is to solve the following optimization problem

min
ϕ

min
w∈Rd

Es∼ξ

[(
ϕ(s)⊤w − V π(s)

)2
]
. (2.1)

14 2.2. Representation Learning

Here, ϕ is parameterized by means of a neural network and jointly learnt together

with the weights w ∈ Rd.

A one-dimensional trivial "value-as-feature" representation performs very well

on this problem, assuming the network is other unconstrained. Indeed, the choice

ϕ(s) = V π(s) for all states s ∈ S and w = 1 achieves zero error.

Now, at the other extreme, consider a tabular representation ϕ(s) =
[
I[s=s′]

]
s′∈S

where every state gets assigned a one hot encoding. From the perspective of

minimising the error Equation (2.1) above, this representation is exactly equivalent

to the "value-as-feature" representation, as there exists a weight vector such that

it achieves zero error.

Yet, these two representations are very different. It is intuitive that they are not

very satisfying and induce different behaviors in (deep) reinforcement learning. This

leads us to look at state representations with quantities other than the approximation

error from Equation (2.1). This example also suggests that, even if the value function

is the same, the state feature plays a major role in adjacent things to learning

the value function itself. The nature of a good representation in RL has been

characterized from different perspectives in the literature.

Quality of approximation. Bellemare et al. [2019] consider the quality of

approximation of the value function for all stationary policies given an MDP.

They call a representation optimal when a solution to the following representation

learning problem

min
ϕ∈R

max
π∈P

∥∥∥V̂ π
ϕ − V π

∥∥∥2

2
.

Learning dynamics. Ghosh and Bellemare [2020] investigate representation

learning under the lens of stability. They find that the Schur decomposition of the

transition matrix guarantees the stability of TD(0) with linear value approximation.

This representation can be learnt by a neural network using stochastic gradient

descent on an auxiliary task update rule.

2. Background and Related Work 15

Transfer to other policies. Dabney et al. [2021] argue that a good representation

allows for the good approximation error of the value function of a set of interesting

policies. In particular, it transfers well to policies along the value improvement path.

Exploration. In the problem of exploration, agents should visit sates that are

reachable but have rarely been visited. Machado et al. [2018] demonstrate the

usefulness of time-based state representation as a learning signal, to explore complex,

sparse reward environments. In particular, they introduce an algorithm for option-

based and count-based exploration relying on the successor representation. Burda

et al. [2018] propose an exploration bonus which is the error predicting the learnt

representation.

16

3
Metrics and Continuity in Reinforcement

Learning

17

18

Abstract

In most practical applications of reinforcement learning, it is untenable to maintain
direct estimates for individual states; in continuous-state systems, it is impossible.
Instead, researchers often leverage state similarity (whether explicitly or implicitly)
to build models that can generalize well from a limited set of samples. The
notion of state similarity used, and the neighbourhoods and topologies they induce,
is thus of crucial importance, as it will directly affect the performance of the
algorithms. Indeed, a number of recent works introduce algorithms assuming the
existence of “well-behaved” neighbourhoods, but leave the full specification of such
topologies for future work. In this paper we introduce a unified formalism for
defining these topologies through the lens of metrics. We establish a hierarchy
amongst these metrics and demonstrate their theoretical implications on the Markov
Decision Process specifying the reinforcement learning problem. We complement
our theoretical results with empirical evaluations showcasing the differences between
the metrics considered.

3.1 Introduction

Figure 3.1: A simple five-state MDP (top) with the neighbourhoods induced by three
metrics: an identity metric which isolates each state (d1); a metric which captures
behavioral proximity (d2); and a metric which is not able to distinguish states (d3). The
yellow circles represent ϵ-balls in the corresponding metric spaces. The bottom row
indicates the V ∗ values for each state.

A simple principle to generalization in reinforcement learning is to require that

similar states be assigned similar predictions. State aggregation implements a coarse

version of this principle, by using a notion of similarity to group states together. A

finer implementation is to use the similarity in an adaptive fashion, for example

by means of a nearest neighbour scheme over representative states. This approach

is classically employed in the design of algorithms for continuous state spaces,

where the fundamental assumption is the existence of a metric characterizing the

real-valued distance between states.

To illustrate this idea, consider the three similarity metrics depicted in Figure 3.1.

The metric d1 isolates each state, the metric d3 groups together all states, while

the metric d2 aggregates states based on the similarity in their long-term dynamics.

In terms of generalization, d1 would not be expected to generalize well as new

states cannot leverage knowledge from previous states; d3 can cheaply generalize

to new states, but at the expense of accuracy; on the other hand, d2 seems to

strike a good balance between the two extremes.

3. Metrics and Continuity in Reinforcement Learning 21

In this paper we study the effectiveness of behavioural metrics at providing a

good notion of state similarity. We call behavioural metrics the class of metrics

derived from properties of the environment, typically measuring differences in reward

and transition functions. Since the introduction of bisimulation metrics [Ferns et al.,

2004, 2005], a number of behavioural metrics have emerged with additional desirable

properties, including lax bisimulation [Taylor et al., 2009, Castro and Precup, 2010]

and π-bisimulation metrics [Castro, 2020]. Behavioural metrics are of particular

interest in the context of understanding generalization, since they directly encode

the differences in action-conditional outcomes between states, and hence allow us

to make meaningful statements about the relationship between these states.

We focus on the interplay between behavioural metrics and the continuity

properties they induce on various functions of interest in reinforcement learning.

Returning to our example, V ∗ is only continuous with respect to d1 and d2. The

continuity of a set of functions (with respect to a given metric) is assumed in most

theoretical results for continuous state spaces, such as uniform continuity of the

transition function [Kakade et al., 2003]; Lipschitz continuity of all Q-functions of

policies [Pazis and Parr, 2013], Lipschitz continuity of the rewards and transitions

[Zhao and Zhu, 2014, Ok et al., 2018] or of the optimal Q-function [Song and

Sun, 2019, Touati et al., 2020, Sinclair et al., 2019]. We find that behavioural

metrics support these algorithms to varying degrees: the original bisimulation

metric, for example, provides fewer guarantees than what is required by some near-

optimal exploration algorithms [Pazis and Parr, 2013]. These results are particularly

significant given that behavioural metrics form a relatively privileged group: any

metric that enables generalization must in some sense reflect the structure of

interactions within the environment and hence, act like a behavioural metric.

3.2 Overview

Our aim is to unify representations of state spaces and the notion of continuity

via a taxonomy of metrics.

22 3.3. Background

Our first contribution is a general result about the continuity relationships of

different functions of the MDP (Theorem 1). While Gelada et al. [2019] (resp.

Norets [2010]) proved the uniform Lipschitz continuity of the optimal action-value

function (resp. local continuity of the optimal value function) given the uniform

Lipschitz continuity (resp. local continuity) of the reward and transition functions

and Rachelson and Lagoudakis [2010] showed the uniform Lipschitz continuity

of the value function given the uniform Lipschitz continuity of the action-value

function in the case of deterministic policies, Theorem 1 is a more comprehensive

result about the different components of the MDP (reward and transition functions,

value and action value functions), for a spectrum of continuity notions (local

and uniform continuity, local and uniform Lipschitz continuity) and applicable

with stochastic policies, also providing counterexamples demonstrating that these

relationships are only implication results.

Our second contribution is to demonstrate that different metrics lead to different

notions of continuity for different classes of functions (Subsection 3.5.1, Subsec-

tion 3.5.2 and Table 3.2). We first study metrics that have been introduced in the

literature (presented in Subsection 3.3.2). While Li et al. [2006] provide a unified

treatment of some of these metrics, they do not analyse these abstractions through

the lens of continuity. Using our taxonomy, we find that most commonly discussed

metrics are actually poorly suited for algorithms that convert representations into

values, so we introduce new metrics to overcome this shortcoming (Subsection 3.5.2).

We also analyse the relationships between the topologies induced by all the metrics

in our taxonomy (Theorem 2).

Finally, we present an empirical evaluation that supports our taxonomy and

shows the importance of the choice of a neighbourhood in reinforcement learning

algorithms (Section 3.6).

3.3 Background

We consider an agent interacting with an environment, modelled as a Markov

Decision Process (MDP) M = ⟨S,A,R,P , γ⟩ [Puterman, 1994]. Here S is a

3. Metrics and Continuity in Reinforcement Learning 23

continuous state space with Borel σ-algebra Σ and A a discrete set of actions.

Denoting ∆(X) to mean the probability distribution over X, we also have that

P : S × A → ∆(S) is the transition function, R : S × A → [0, Rmax] is the

measurable reward function, and γ ∈ [0, 1) is the discount factor. We write Pa
s

to denote the next-state distribution over S resulting from selecting action a in

s and write Ra
s for the corresponding reward.

A stationary policy π : S → ∆(A) is a mapping from states to distributions

over actions, describing a particular way of interacting with the environment. We

denote the set of all policies by Π. For any policy π ∈ Π, the value function

V π(s) measures the expected discounted sum of rewards received when starting

from state s ∈ S and acting according to π:

V π(s) := E
[∑

t⩾0
γtRAt

St
; S0 = s, At ∼ π(· |St)

]
.

The maximum attainable value is Vmax := Rmax
1−γ

. The value function satisfies

Bellman’s equation:

V π(s) = E
A∼π(· | s)

[RA
s + γ E

S′∼PA
s

V π(S ′)].

The state-action value function or Q-function Qπ describes the expected discounted

sum of rewards when action a ∈ A is selected from the starting state s, and

satisfies the recurrence

Qπ(s, a) = Ra
s + γ E

S′∼Pa
s

V π(S ′).

A policy π is said to be optimal if it maximizes the value function at all states:

V π(s) = max
π′∈Π

V π′(s) for all s ∈ S.

The existence of an optimal policy is guaranteed in both finite and infinite state

spaces. We will denote this policy π∗ ∈ Π. The corresponding value function and

Q-function are denoted respectively V ∗ and Q∗.

24 3.3. Background

3.3.1 Metrics, Topologies, and Continuity

We begin by recalling standard definitions regarding metrics and continuity, two

concepts central to our work.

Definition 1 (Royden, 1968). A metric space ⟨X, d⟩ is a nonempty set X of

elements (called points) together with a real-valued function d defined on X ×X

such that for all x, y, and z in X: d(x, y) ⩾ 0; d(x, y) = 0 if and only if x = y;

d(x, y) = d(y, x) and d(x, y) ⩽ d(x, z) + d(z, y). The function d is called a metric.

A pseudo-metric d is a metric with the second condition replaced by the weaker

condition x = y =⇒ d(x, y) = 0.

In what follows, we will often use metric to stand for pseudo-metric for brevity.

A metric d is useful for our purpose as it quantifies, in a real-valued sense, the

relationship between states of the environment. Given a state s, a natural question is:

What other states are similar to it? The notion of a topology gives a formal answer.

Definition 2 (Sutherland, 2009). A metric space ⟨X, d⟩ induces a topology (X, Td)

defined as the collection of open subsets of X; specifically, the subsets U ⊂ X

that satisfy the property that for each x ∈ U , there exists ϵ > 0 such that the

ϵ-neighbourhood Bd(x, ϵ) = {y ∈ X|d(y, x) < ϵ} ⊂ U .

Let (X, T) and (X, T ′) be two topologies on the same space X. We say that T is

coarser than T ′, or equivalently that T ′ is finer than T , if T ⊂ T ′.

Given two similar states under a metric d, we are interested in knowing how

functions of these states behave. In the introductory example, we asked specifically:

how does the optimal value function behave for similar states? This leads us to

the notion of functional continuity. Given f : X → Y a function between a metric

space (X, dX) and a metric space (Y, dY),

• Local continuity (LC): f is locally continuous at x ∈ X if for any ϵ > 0, there

exists a δx,ϵ > 0 such that for all x′ ∈ X, dX(x, x′) < δx,ϵ =⇒ dY (f(x), f(x′)) <

ϵ. f is said to be locally continuous on X if it is continuous at every point x ∈ X.

3. Metrics and Continuity in Reinforcement Learning 25

• Uniform continuity (UC): f is uniformly continuous on X when given any

ϵ > 0, there exists δϵ > 0 such that for all x, x′ ∈ X, dX(x, x′) < δϵ =⇒

dY (f(x), f(x′)) < ϵ.

• Local Lipschitz continuity (LLC): f is locally Lipschitz continuous at

x ∈ X if there exists δx > 0, Kx > 0 such that for all x′, x′′ ∈ BdX
(x, δx),

dY (f(x′), f(x′′)) ⩽ KxdX(x′, x′′).

• Uniform Lipschitz continuity (ULC): f is uniformly Lipschitz continuous

if there exist K > 0 such that for all x, x′ ∈ X we have dY (f(x), f(x′)) ⩽

KdX(x, x′).

The relationship between these different forms of continuity is summarized

by the following diagram:

UC ULC

LC LLC

(3.1)

where an arrow indicates implication; for example, any function that is ULC is also

UC.

Here, we are interested in functions of states and state-action pairs. Knowing

whether a particular function f possesses some continuity property p under a metric

d informs us on how well we can extrapolate the value f(s) to other states; in other

words, it informs us on the generalization properties of d.

3.3.2 Prior Metrics and Abstractions

The simplest structure is to associate states to distinct groups, what is often called

state aggregation [Bertsekas, 2011]. This gives rise to an equivalence relation, which

we interpret as a discrete pseudo-metric, that is a metric taking a countable

range of values.

Definition 3. An equivalence relation E ⊆ X ×X induces a discrete pseudo-

metric eE where eE(x, x′) = 0 if (x, y) ∈ E, and 1 otherwise.

26 3.3. Background

f ϕf,η

Q∗ approximate Q function abstraction (η ⩾ 0) / Q∗-irrelavance (η = 0)
R and P approximate model abstraction (η ⩾ 0) / Model-irrelevance (η = 0)

Qπ Qπ-irrelevance abstraction (η = 0)
max

A
Q∗ a∗-irrelevance abstraction (η = 0)

Table 3.1: Different types of state abstractions.

Throughout the text, we will use e to denote discrete pseudo-metrics. Two

extremal examples of metrics are the identity metric eI : S ×S → {0, 1}, induced

by the identity relation I = {(s, t) ∈ S × S|s = t} (e.g. d1 in Figure 3.1),

and the trivial metric eT : S × S → {0} that collapses all states together

(e.g. d3 in Figure 3.1).

In-between these extremes, η-abstractions [Li et al., 2006, Abel et al., 2016]

are functions ϕ : S → Ŝ that aggregates states which are mapped close to each

other by a function f . That is, given a threshold η ⩾ 0 and f : S × A → R,

ϕf,η(s) = ϕf,η(t) =⇒ |f(s, a)− f(t, a)| ⩽ η. We list a few choices for f along with

the name of the abstraction we will refer to throughout this text in Table 3.1.

η-abstractions are defined in terms of a particular function of direct relevance

to the agent. However, it is not immediately clear whether these abstractions are

descriptive, and, more specifically, the kind of continuity properties they support.

An alternative is to relate states based on the outcomes that arise from different

choices, starting in these states. These are bisimulation relations [Givan et al., 2003].

Definition 4. An equivalence relation E ⊆ S × S with SE the quotient space and

Σ(E) the Σ measurable sets closed under E, if whenever (s, t) ∈ E we have:

• Bisimulation relation[Givan et al., 2003].

Behavioral indistinguishability under equal actions; namely, for any action a ∈ A,

Ra
s = Ra

t , and Pa
s (X) = Pa

t (X) for all X ∈ Σ(E). We call E a bisimulation

relation. We denote the largest bisimulation relation as ∼, and its corresponding

discrete metric as e∼.

3. Metrics and Continuity in Reinforcement Learning 27

• Lax-bisimulation relation [Taylor et al., 2009].

Behavioral indistinguishability under matching actions; namely, for any action

a ∈ A from state s there is an action b ∈ A from state t such that Ra
s = Rb

t,

and Pa
s (X) = Pb

t (X) for all X ∈ Σ(E), and vice-versa, we call E a lax-

bisimulation relation. We denote the largest lax-bisimulation relation as ∼lax,

and its corresponding discrete metric as e∼lax.

• π-bisimulation relation [Castro, 2020]. Behavioral indistinguishability under

a fixed policy; namely, given a policy π ∈ Π, ∑a∈A π(a|s)Ra
s = ∑

a∈A π(a|t)Ra
t ,

and ∑
a∈A π(a|s)Pa

s (X) = ∑
a∈A π(a|s)Pb

t (X) for all X ∈ Σ(E). We call E a

π-bisimulation relation. We denote the largest bisimulation relation as ∼π,

and its corresponding discrete metric as e∼π .

A bisimulation metric is the continous generalization of a bisimulation relation.

Formally, d is a bisimulation metric if its kernel is equivalent to the bisimulation

relation. The canonical bisimulation metric [Ferns et al., 2005] is constructed from

the Wasserstein distance between probability distributions.

Definition 5. Let (Y, dY) be a metric space with Borel σ-algebra Σ. The Wasserstein

distance [Villani, 2008] between two probability measures P and Q on Y , under a

given metric dY is given by WdY
(P,Q) = infλ∈Γ(P,Q) E(x,y)∼λ[dY (x, y)], where Γ(P,Q)

is the set of couplings between P and Q.

Lemma 1 (Ferns et al., 2005). LetM be the space of state pseudo-metrics and define

the functional F :M→M as F (d)(x, y) = maxa∈A
(
|Ra

x −Ra
y|+ γWd(Pa

x ,Pa
y)
)
.

Then F has a least fixed point d∼ and d∼ is a bisimulation metric.

In words, bisimulation metrics arise as the fixed points of an operator on the

space of pseudo-metrics. Lax bisimulation metrics d∼lax and a π-bisimulation

metrics d∼π can be defined in an analogous fashion; for succinctness, their formal

definitions are included in Appendix 3.C.

28 3.4. Continuity Relationships

3.4 Continuity Relationships

Our first result characterizes the continuity relationships between key functions of

the MDP. The theorem considers different forms of continuity and relates how the

continuity of one function implies another. While the particular case of uniform

Lipschitz continuity of Q∗ (resp. local continuity of V ∗) from P + R has been

remarked on before by Gelada et al. [2019] (resp. Norets [2010]) as well as the

case of uniform Lipschitz continuity of V π given the uniform Lipschitz continuity

of Qπ for stochastic policies π [Rachelson and Lagoudakis, 2010], to the best of

our knowledge this is the first comprehensive treatment of the topic, in particular

providing counterexamples.

Theorem 1. If we decompose the Cartesian product S ×A as: dS×A(s, a, s′, a′) =

dS(s, s′) + dA(a, a′) with dA the identity metric, the LC, UC and LLC relationships

between P, R, V π, V ∗, Qπ and Q∗ functions are given by diagram 3.2. A directed

arrow f → g indicates that function g is continuous whenever f is continuous.

Labels on arrows indicate conditions that are necessary for that implication to hold.

P +R is meant to stand for both P and R continuity; π-cont indicates continuity

of π : S → ∆(A). An absence of a directed arrow indicates that there exists a

counter-example proving that the implication does not exist. In the ULC case, the

previous relationships also hold with the following additional assumptions: γLP < 1

for P +R → Q∗ and γLP(1 + Lπ) < 1 for P +R π-cont−−−→ Qπ where LP and Lπ are

the Lipschitz constants of P and π, respectively.

Qπ V π

P +R

Q∗ V ∗

π-cont

π-cont

(3.2)

Proof. All proofs and counterexamples are provided in Appendix 3.A.

3. Metrics and Continuity in Reinforcement Learning 29

The arrows are transitive and apply for all forms of continuity illustrated in

diagram 3.1; for example, if we have ULC for Q∗, this implies we have LC for V ∗.

This diagram is useful when evaluating metrics as they clarify the strongest (or

weakest) form of continuity one can demonstrate. When considering deterministic

policies, we can notice that the π-continuity mentioned in Theorem 1 is very

restrictive, as the following lemma shows.

Lemma 2. If a deterministic policy π : S → A is continuous, S is connected1 and

A is discrete, then π is globally constant.

3.5 Taxonomy of Metrics

We now study how different metrics support the continuity of functions relevant

to reinforcement learning and the relationship between their induced topologies.

While the taxonomy we present here is of independent interest, it also provides a

clear theoretical foundation on which to build results regarding metric-respecting

embeddings [Gelada et al., 2019, Zhang et al., 2020].

3.5.1 Continuity: Prior Metrics

We begin the exposition by considering the continuity induced by discrete metrics.

These enable us to analyze the properties of some representations found in the

literature. The extremes of our metric hierarchy are the identity metric eI and

trivial metric eT, which respectively support all and one continuous functions, and

were represented by d1 and d3 in the introductory example.

Lemma 3 (Identity metric). eI induces the finest topology on S, made of all possible

subsets of S. Let (Y, dY) be any metric space. Any function h (resp. Any bounded

h) : (S, eI)→ (Y, dY) is LC and UC (resp. ULC).

1A connected space is topological space that cannot be represented as the union of two or more
disjoint non-empty open subsets.

30 3.5. Taxonomy of Metrics

Lemma 4 (Trivial metric). eT induces the coarsest topology on S, consisting solely

of {∅,S}. Let (Y, dY) be any metric space. Any function h : (S, eI) → (Y, dY) is

LC, UC and ULC iff h is constant.

We can also construct a discrete metric from any state aggregation ϕ : S → Ŝ

as eϕ(s, t) = eI(ϕ(s), ϕ(t)) = 0 if ϕ(s) = ϕ(t), and 1 otherwise. However, as

stated below, η-abstractions do not guarantee continuity except in the trivial

case where η = 0.

Lemma 5. If η = 0, then any function f (resp. bounded function f): (S, dS) →

(Y, dY) is LC and UC (resp. ULC) with respect to the pseudometric eϕf,η . However,

given a function f and η > 0, there exists an η-abstraction ϕf,η such that f is not

continuous with respect to eϕf,η .

Unlike the discrete metrics defined by η-abstractions, both bisimulation metrics

and the metric induced by the bisimulation relation support continuity of the

optimal value function.

Lemma 6. Q∗ (resp. Qπ) is ULC with Lipschitz constant 1 with respect to d∼

(resp. d∼π).

Corollary 1. Q∗ (resp. Qπ) is ULC with Lipschitz constant Vmax with respect to

e∼ (resp. e∼π).

We note that Ferns et al. [2004] proved a weaker statement involving V ∗ (resp.

Castro et al. [2009], V π). To summarize, metrics that are too coarse may fail to

provide the requisite continuity of reinforcement learning functions. Bisimulation

metrics are particularly desirable as they achieve both a certain degree of coarseness,

while preserving continuity. In practice, however, Ferns et al.’s bisimulation metric

is difficult to compute and estimate, and tends to be conservative – as long as two

states can be distinguished by action sequences, bisimulation will keep them apart.

3. Metrics and Continuity in Reinforcement Learning 31

3.5.2 Value-Based Metrics

As an alternative to bisimulation metrics, we consider simple metrics constructed

from value functions and study their continuity offerings. These metrics are simple

in that they are defined in terms of differences between values, or functions of values,

at the states being compared. The last metric, d∆∀ , is particularly appealing as

it can be approximated, as we describe below. Under this metric, all Q-functions

are Lipschitz continuous, supporting some of the more demanding continuous-state

exploration algorithms [Pazis and Parr, 2013].

Lemma 7. For a given MDP, let Qπ be the Q-function of policy π, and Q∗ the

optimal Q-function. The following are continuous pseudo-metrics:

1. d∆∗(s, s′) = max
a∈A
|Q∗(s, a)−Q∗(s′, a)|

2. d∆π(s, s′) = max
a∈A
|Qπ(s, a)−Qπ(s′, a)|

3. d∆∀(s, s′) = max
π∈Π,a∈A

|Qπ(s, a)−Qπ(s′, a)|

Q∗ (resp. Qπ) is ULC with Lipschitz constant 1 wrt to d∆∗ (resp. d∆π). Qπ is ULC

with Lipschitz constant 1 wrt to d∆∀ for any π ∈ Π.

Remark. When S is finite, the number of policies to consider to compute d∆∀ is

finite: d∆∀(s, s′) = max
π∈Π,a∈A

|Qπ(s, a)−Qπ(s′, a)| = max
π∈ΠAVF,a∈A

|Qπ(s, a)−Qπ(s′, a)|,

where ΠAV F is the finite set of extremal policies corresponding to Adversarial Value

Functions (AVFs) [Bellemare et al., 2019].

d∆∀ provides strong continuity of the value-function for all policies contrary

to any other metric that has been used in the literature. Since computing d∆∀ is

computationally expensive, we will approximate it by the pseudometric dÃVF(n) =

max
π∈ΠÃVF(n),a∈A

|Qπ(s, a) − Qπ(s′, a)|, where ΠÃVF(n) are n samples from the set of

extremal policies ΠAVF.

32 3.5. Taxonomy of Metrics

Metric LC UC ULC LLC Complexity

Discrete metric eI Y S Y S B(Y S) BL(Y S) O(|S|)
Trivial metric eT {y}S {y}S {y}S {y}S O(1)
Model-irrelevance P, R P, R P, R P, R

Qπ-irrelevance Qπ Qπ Qπ Qπ

Q∗-irrelevance Q∗ Q∗ Q∗ Q∗

a∗-irrelevance Q∗ Q∗ Q∗ Q∗

Approx. abstraction - - - -
e∼ Q∗ Q∗ Q∗ Q∗ O(|A||S|3)
d∼ Q∗ Q∗ Q∗ Q∗ O

(
|A||S|5 log |S| ln δ

ln γ

)
e∼π Qπ Qπ Qπ Qπ O(|S|3)
d∼π Qπ Qπ Qπ Qπ O

(
|S|5 log |S| ln δ

ln γ

)
e∼lax V ∗ V ∗ V ∗ V ∗ O(|A|2|S|3)
d∼lax V ∗ V ∗ V ∗ V ∗ O

(
|A|2|S|5 log |S| ln δ

ln γ

)
d∆∗ Q∗ Q∗ Q∗ Q∗ O

(
|S|2|A| log(R−1

maxδ(1−γ))
log(γ)

)
d∆π

Qπ Qπ Qπ Qπ O
(

|S|2|A| log(R−1
maxδ(1−γ))
log(γ)

)
d∆∀ Qπ , ∀π ∈ Π Qπ , ∀π ∈ Π Qπ , ∀π ∈ Π Qπ , ∀π ∈ Π NP-hard?

Table 3.2: Categorization of state metrics, their continuity implications, and their
complexity (when known). The notation {y}S denotes any function h : S → Y that is
constant, Y S refers to all functions h : S → Y . B(Y S) (resp. BL(Y S)) is a bounded
(resp. locally bounded) function h : S → Y . “-” denotes an absence of LC, UC, ULC and
LLC. In the complexity column, δ is the desired accuracy.

3.5.3 Categorizing Metrics, Continuity and Complexity

We now formally present in Theorem 2 the topological relationships between the

different metrics. This hierarchy is important for generalization purposes as it

provides a comparison between the shapes of different neighbourhoods which serve

as a basis for RL algorithms on continuous state spaces.

Theorem 2. The relationships between the topologies induced by the metrics in

Table 3.2 are given by the following diagram. We denote by d1 → d2 when Td1 ⊂ Td2,

that is, when Td1 is coarser than Td2. Here d denotes any arbitrary metric.

e∼lax d∼lax dÃVF(n) d eI

e∼ d∼ d∆∗ d∆∀ d∆π

d eT e∼π d∼π

Proof. All proofs can be found in Appendix 3.B. The relation d∼lax → d∼ was shown

by Taylor et al. [2009] but not expressed in topological terms.

3. Metrics and Continuity in Reinforcement Learning 33

We summarize in Table 3.2 our continuity results mentioned throughout this

section and supplement them with the continuity of the lax-bisimulation metric

proven in Taylor et al. [2009]. To avoid over-cluttering the table, we only specify the

strongest form of functional continuity according to Theorem 1. As an additional

key differentiator, we also note the complexity of computing these metrics from a

full model of the environment, which gives some indication about the difficulty of

performing state abstraction. Proofs are provided in Appendix 3.B.

From a computational point of view, all continuous metrics can be approximated

using deep learning techniques which makes them even more attractive to build

representations. Atari 2600 experiments by Castro [2020] show that π-bisimulation

metrics do perform well in larger domains. This is also supported by [Zhang et al.,

2020] who use an encoder architecture to learn a representation that respects

the bisimulation metric.

3.6 Empirical Evaluation

We now conduct an empirical evaluation to quantify the magnitude of the effects

studied in the previous sections. Specifically, we are interested in how approximations

derived from different metrics impact the performance of basic reinforcement learning

procedures. We consider two kinds of approximations: state aggregation and

nearest neighbour, which we combine with six representative metrics: e∼, e∼lax ,

d∼, d∼lax , d∆∗ , and dÃVF(50).

We conduct our experiments on Garnet MDPs, which are a class of randomly

generated MDPs [Archibald et al., 1995, Piot et al., 2014]. Specifically, a Garnet

MDP Garnet(nS , nA) is parameterized by two values: the number of states nS and

the number of actions nA, and is generated as follows: 1. The branching factor bs,a

of each transition Pa
s is sampled uniformly from [1 : nS]. 2. bs,a states are picked

uniformly randomly from S and assigned a random value in [0, 1]; these values

are then normalized to produce a proper distribution Pa
s . 3. Each Ra

s is sampled

uniformly in [0, 1]. The use of Garnet MDPs grants us a less-biased comparison of

34 3.6. Empirical Evaluation

0 25 50 75 100 125 150 175 200

Number of known states
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
g.

 E
rro

r

d ∼ lax

d ∼

d ̂AVF(50)
dΔ *

e ∼ lax

e ∼

0 25 50 75 100 125 150 175 200

Number of known states
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 E
rro

r

0 25 50 75 100 125 150 175 200

Number of aggregate states
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g.

 E
rro

r

Figure 3.2: Errors when approximating the optimal value function (left) and optimal
Q-function (center) via nearest-neighbours and errors when performing value iteration
on aggregated states (right). Curves for e∼ and e∼lax are covering each other on all
of the plots. Averaged over 100 Garnet MDPs with 200 states and 5 actions, with 50
independent runs for each (to account for subsampling differences). Confidence intervals
were very tiny due to the large number of runs so were not included.

the different metrics than if we were to pick a few specific MDPs. Nonetheless, we

do provide extra experiments on a set of GridWorld tasks in Appendix 3.D.

3.6.1 Generalizing the Value Function V ∗

We begin by studying the approximation error that arises when extrapolating the

optimal value function V ∗ from a subset of states. Specifically, given a subsampling

fraction f ∈ [0, 1], we sample ⌈|S| × f⌉ states and call this set κ. For each

unknown state s ∈ S \ κ, we find its nearest known neighbour according to metric

d: NN(s) = arg mint∈κ d(s, t). We then define the optimal value function as

V̂ ∗(s) = V ∗(NN(s)), and report the approximation error in Figure 3.2 (left).

This experiment gives us insights into how amenable the different metrics are for

transferring value estimates across states; effectively, their generalization capabilities.

According to Theorem 2, the two discrete metrics e∼ and e∼lax induce finer

topologies than their four continuous counterparts. Most of the states being isolated

from each other in these two representations, e∼ and e∼lax perform poorly. The

three continuous metrics d∼, d∼lax and d∆∗ all guarantee Lipschitz continuity of V ∗

while dÃVF(50) is approximately V ∗ Lipschitz continuous. However, d∼lax (resp. d∆∗)

produce coarser (resp. approximately coarser) topologies than d∼ (resp. dÃVF(50))

(see Theorem 2). This is reflected in their better generalization error compared to

the latter two metrics. Additionally, the lax bisimulation metric d∼lax outperforms

3. Metrics and Continuity in Reinforcement Learning 35

d∆∗ substantially, which can be explained by noting that d∼lax measures distances

between two states under independent action choices, contrary to all other metrics.

3.6.2 Generalizing the Q-function Q∗

We now illustrate the continuity (or absence thereof) of Q∗ with respect to the

different metrics. In Figure 3.2 (center), we perform a similar experiment as the

previous one, still using a 1-nearest neighbour scheme but now extrapolating Q∗.

As expected, we find that metrics that do not support Q∗ continuity, including

d∼lax , cannot generalize from a subset of states, and their average error decreases

linearly. In contrast, the three other metrics are able to generalize. Naturally,

d∆∗ , which aggregates states based on Q∗, performs particularly well. However, we

note that d∆∀ also outperforms the bisimulation metric d∼, highlighting the latter’s

conservativeness, which tends to separate states more. By our earlier argument

regarding d∼lax , this suggests there may be a class of functions, not represented

in Table 3.2, which is continuous under d∼ but not dÃVF(50).

3.6.3 Approximate Value Iteration

As a final experiment, we perform approximate value iteration using a state

aggregation ϕ derived from one of the metrics. For each metric, we perform

10 different aggregations using a k-median algorithm, ranging from one aggregate

state to 200 aggregate states. For a given aggregate state c, let Q(c, a) stand for

its associated Q-value. The approximation value iteration update is

Q̂k(c, a)← 1
|c|

∑
s|ϕ(s)=c

[
Ra

s + γES′∼Pa
s

max
a∈A

Q̂k(ϕ(S ′))
]

We can then measure the error induced by our aggregation via

max
a∈A

1
|S|

∑
s∈S
|Q∗(s, a)− Q̂k(ϕ(s), a)|,

which we display in the rightmost panel of Figure 3.2.

As in our second experiment, the metrics that do not support Q∗-continuity well

fail to give good abstractions for approximate value iteration. As for e∼, the topology

36 3.7. Discussion

induced by this metric is too fine (Theorem 2) leading to poor generalisation results.

The performance of d∆∗ is consistent with Theorem 2, which states that it induces

the coarsest topology. However, although it is known that Q∗-continuity is sufficient

for approximate value iteration [Li et al., 2006], it is somewhat surprising that

it outperforms dÃVF(50), since dÃVF(50) is an approximant of d∆∀ that is designed

to provide continuity with respect to all policies, so it may be expected to yield

better approximations at intermediate iterations. Despite this, d∆∀ still serves as

an interesting and tractable surrogate metric to d∆∗ .

3.7 Discussion

Behavioral metrics are important both to evaluate the goodness of a given state

representation and to learn such a representation. We saw that approximate

abstractions and equivalence relations are insufficient for continuous-state RL

problems, because they do not support the continuity of common RL functions or

induce very fine representations on the state space leading to poor generalization.

Continuous behavioural metrics go one step further by considering the structure

of the MDP in their construction and inducing coarser topologies than their discrete

counterparts; however, within that class we still find that not all metrics are equally

useful. The original bisimulation metric of Ferns et al. [2004], for example, is too

conservative and has a rather fine topology. This is confirmed by our experiments in

Figure 3.2, where it performs poorly overall. The lax bisimulation metric guarantees

the continuity of V ∗ which makes it suitable for transferring optimal values between

states but fails to preserve continuity of Q∗. Together with our analysis, the d∆∗ and

d∆∀ metrics seem interesting candidates when generalising within a neighbourhood.

d∆∀ is useful when we do not know the value improvement path the algorithm

will be following [Dabney et al., 2021]. Despite being approximated from a finite

number of policies, the performance of dÃVF(n), reflects the fact that it respects, in

some sense, the entire space of policies that are spanned by policy iteration and

makes it useful in practice. One advantage of this metric is that it is built from

value functions, which are defined on a per-state basis; this makes it amenable to

3. Metrics and Continuity in Reinforcement Learning 37

online approximations. In contrast, bisimulation metrics are only defined for pairs

of states, which makes it difficult to approximate in an online fashion, specifically

due to the difficulty of estimating the Wasserstein metric on every update.

Finally, continuing our analysis on partially observable systems is an interesting

area for future work. Although Castro et al. [2009] proposed various equivalence

relations for partially observable systems, there has been little work in defining

proper metrics for these systems.

Acknowledgements

The authors would like to thank Sheheryar Zaidi, Adam Foster and Abe Ng for

insightful discussions about topology and functional analysis, Carles Gelada, John D.

Martin, Dibya Ghosh, Ahmed Touati, Rishabh Agarwal, Marlos Machado and the

whole Google Brain team in Montreal for helpful discussions, and Robert Dadashi

for a conversation about polytopes. We also thank Lihong Li and the anonymous

reviewers for useful feedback on this paper.

We would also like to thank the Python community [Van Rossum and Drake Jr,

1995, Oliphant, 2007] and in particular NumPy [Oliphant, 2006, Walt et al.,

2011, Harris et al., 2020], Tensorflow [Abadi et al., 2016], SciPy [Jones et al.,

2001], Matplotlib [Hunter, 2007] and Gin-Config (https://github.com/google/gin-

configGin-Config).

3.8 Broader Impact

This work lies in the realm of “foundational RL” in that it contributes to the

fundamental understanding and development of reinforcement learning algorithms

and theory. As such, despite us agreeing in the importance of this discussion, our

work is quite far removed from ethical issues and potential societal consequences.

38 3.A. Proofs for Section 3.4

Function(s) Domain Range
P S ×A Σ→ [0, 1]
R S ×A [0, Rmax] ⊂ R

V π, V ∗ S [0, Vmax] ⊂ R
Qπ, Q∗ S ×A [0, Vmax] ⊂ R
π S ∆(A)

Table 3.3: RL functions with their respective domains and ranges.

3.A Proofs for Section 3.4

We begin by proving the first main theorem in the paper, Theorem 1. We report

in Table 3.3 the domains and ranges of the different RL functions mentioned in

Theorem 1 that will be used throughout the proof. Before proving this result,

we introduce the following necessary lemma.

Lemma A. Choosing the discrete topology on the finite space A and assuming the

product metric dS×A = dS + dA, the function Qπ : (S ×A, dS×A)→ R is continuous

if and only if

1. The function Qπ : (S × {a}, dS×A)→ R is continuous for all a ∈ A.

2. The function Qπ(·, a) : (S, dS)→ R is continuous for all a ∈ A.

Proof. To understand better the notion of continuity on the space A endowed with

the discrete topology, we refer the reader to Lemma 3.

We begin with the first equivalence.

(=⇒) : For LC, UC, LLC and ULC, this result follows from the fact that the

function on S×{a} is a restriction of the function on S×A. For instance in the case

of LC, suppose Qπ is LC on S ×A. Let ϵ > 0. Then, for all (s, a), (s′, a′) ∈ S ×A

there exists δ > 0 such that, dS×A((s, a), (s′, a′)) ⩽ δ =⇒ |Qπ(s, a)−Qπ(s′, a′)| ⩽ ϵ.

In particular, this is true for a = a′ so Qπ is LC on S × {a} for all a ∈ A.

(⇐=) : Qπ is LC on S × {a} for all a ∈ A. So for all a ∈ A, the limit of

Q(sn, a) as the sequence sn ∈ S converges to s ∈ S exists and is equal to Q(s, a),

that is sn → s =⇒ Q(sn, a) → Q(s, a). Moreover, (sn, an) → (s, a0) implies

that an = a0 for all n big enough because A has the discrete metric. So for

3. Metrics and Continuity in Reinforcement Learning 39

n > N ∈ N, Q(sn, an) = Q(sn, a0) → Q(s, a0). Hence, Qπ : (S × {a}, dS×A) →

R is LC for all a ∈ A =⇒ Qπ : (S ×A, dS×A)→ R is LC.

Now, in the UC case, Qπ is UC on S×{a} for all a ∈ A, so we have: ∀a ∈ A,∀ϵ >

0, ∃δϵ,a > 0, such that for all s, s′ ∈ S, dS×A((s, a), (s′, a)) ⩽ δϵ,a =⇒ |Qπ(s, a) −

Qπ(s′, a)| < ϵ. The spaceA being finite, min
a∈A

δϵ,a exists and is positive. Hence, ∀ϵ > 0,

there exists δ1 = min {min
a∈A

δϵ,a, 1/2} > 0, such that for all (s, a), (s′, a′) ∈ S × A,

if dS×A((s, a), (s′, a′)) ⩽ δ1 < 1/2, then a = a′ since dA(a, a′) can only take values

0 or 1. Applying UC of Qπ(·, a), we get dS×A((s, a), (s′, a′)) ⩽ δ1 ⩽ δϵ,a =⇒

|Qπ(s, a)−Qπ(s′, a′)| ⩽ ϵ. We can conclude that Qπ is UC on S ×A.

In the ULC case, Qπ is ULC on S×{a} for all a ∈ A, so we have: ∀a ∈ A,∃La >

0, such that for all s, s′ ∈ S, |Qπ(s, a) − Qπ(s′, a)| ⩽ LadS×A((s, a), (s′, a)). So, as

Qπ is bounded by Vmax, there exists L = max{max
a∈A

La, Vmax} ⩾ 0, such that

for all (s, a), (s′, a′) ∈ S × A, |Qπ(s, a) − Qπ(s′, a′)| ⩽ LdS×A((s, a), (s′, a′)) =

L(dS(s, s′) + dA(a, a′)).

In the LLC case, Qπ is LLC on S × {a} for all a ∈ A. So for all (s, a) ∈ S ×A,

there exists a neighbourhood U of S ×A induced by dS×A such that Qπ restricted

to U is ULC. We conclude by the same argument as in the ULC case above.

The second equivalence is true because, for any a ∈ A, the relabelling map

s 7→ (s, a) is an isometry of metric spaces (S × {a}, dS×A) and (S, dS). Isometric

metric spaces are "equivalent" and hence have the same properties.

Theorem 1. If we decompose the Cartesian product S ×A as: dS×A(s, a, s′, a′) =

dS(s, s′) + dA(a, a′) with dA the identity metric, the LC, UC and LLC relationships

between P, R, V π, V ∗, Qπ and Q∗ functions are given by diagram 3.2. A directed

arrow f → g indicates that function g is continuous whenever f is continuous.

Labels on arrows indicate conditions that are necessary for that implication to hold.

P +R is meant to stand for both P and R continuity; π-cont indicates continuity

of π : S → ∆(A). An absence of a directed arrow indicates that there exists a

counter-example proving that the implication does not exist. In the ULC case, the

previous relationships also hold with the following additional assumptions: γLP < 1

40 3.A. Proofs for Section 3.4

for P +R → Q∗ and γLP(1 + Lπ) < 1 for P +R π-cont−−−→ Qπ where LP and Lπ are

the Lipschitz constants of P and π, respectively.

Qπ V π

P +R

Q∗ V ∗

π-cont

π-cont

(3.2)

The proof itself will be made up of a series of lemmas for each of the arrows

(or lack thereof) in the diagram.

Lemma B. If Q∗ : (S × A, dS×A) → R is continuous, then V ∗ : S → R is

continuous.

By definition of the optimal value function,

V ∗(s) = max
a∈A

Q∗(s, a).

A being a finite set of discrete actions and the max function being a non-expanding

(that is, 1-Lipschitz) map, it results that if Q∗ is LC (resp. UC, resp. ULC, resp.

LLC) then V ∗ is LC (resp. UC, resp. ULC, resp. LLC).

In more details, let’s assume Q∗ is LC. Let a ∈ A and ϵ > 0. By definition

of LC of Q∗, there exists δs,ϵ such that for all s′ ∈ S, dS(s, s′) ⩽ δs,ϵ =⇒

|Q∗(s, a) − Q∗(s′, a)| ⩽ ϵ.

|V ∗(s1)− V ∗(s2)| = |max
a∈A

Q∗(s1, a)−max
a∈A

Q∗(s2, a)|

⩽ max
a∈A
|Q∗(s1, a)−Q∗(s2, a)| as max is a non expansion.

⩽ max
a∈A

ϵ as Q∗ is LC.

⩽ ϵ

3. Metrics and Continuity in Reinforcement Learning 41

Hence, V ∗ is LC. The proof for the UC case is similar.

Now, in the ULC case: Let s1, s2 ∈ S,

|V ∗(s1)− V ∗(s2)| = |max
a∈A

Q∗(s1, a)−max
a∈A

Q∗(s2, a)|

⩽ max
a∈A
|Q∗(s1, a)−Q∗(s2, a)| as max is a non expansion.

⩽ max
a∈A

Lad(s1, s2) as Q∗ is ULC.

⩽ Ld(s1, s2).

We can thus conclude that V ∗ is also ULC. The LLC case is similar to the ULC

proof.

The reverse implication is not true as shows the following counter-example. Suppose

S = R, A = {1, 2} and Q(s, 1) = 1 for all s. And suppose Q(s, 2) is some

discontinuous function that is always less than 1. Let’s for instance choose:

Q∗(s, 2) =
{

0 if s ⩽ s0, s0 ∈ R
0.5 if s > s0.

(3.3)

Then V ∗(s) = Q∗(s, 1) which is continuous but Q∗(s, a) is not continuous

at s0 for a = 2.

Lemma C. If Qπ : (S × A, dS×A) → R and π : S → ∆(A) are continuous, then

V π is continuous.

The value function V π is defined as follows:

V π(s) =
∑
a∈A

π(a|s)Qπ(s, a).

In the LC case: let’s assume Qπ is LC. Let a ∈ A and ϵ > 0. By definition

of LC of Qπ, there exists δs,ϵ such that for all s′ ∈ S, dS(s, s′) ⩽ δs,ϵ =⇒

|Qπ(s, a) − Qπ(s′, a)| ⩽ ϵ. We also assume the policy is LC, that is, there exists

δ
′
s,ϵ such that for all s′ ∈ S, dS(s, s′) ⩽ δ

′
s,ϵ =⇒ WdA(π(·|s) − π(·|s′))| ⩽ ϵ. For

42 3.A. Proofs for Section 3.4

all s′ ∈ S such that dS(s, s′) ⩽ min(δ′
s,ϵ, δs,ϵ), we have

|V π(s)− V π(s′)| = |Ea∼π(·|s)Q
π(s, a)− Ea∼π(·|s′)Q

π(s′, a)|

= |Ea∼π(·|s)Q
π(s, a)− Ea∼π(·|s′)Q

π(s, a)

+ Ea∼π(·|s′)Q
π(s, a)− Ea∼π(·|s′)Q

π(s′, a)|

⩽ |Ea∼π(·|s)Q
π(s, a)− Ea∼π(·|s′)Q

π(s, a)|

+ |Ea∼π(·|s′)Q
π(s, a)− Ea∼π(·|s′)Q

π(s′, a)|

⩽ |VmaxWdA(π(·|s)− π(·|s′))|

+ Ea∼π(·|s′)|Qπ(s, a)−Qπ(s′, a)| by definition of the Wasserstein

⩽ (Vmax + 1)ϵ

So V π is LC. The proof is similar in the UC case.

In the ULC case: let s, s′ ∈ S,

|V π(s)− V π(s′)| = |Ea∼π(·|s)Q
π(s, a)− Ea∼π(·|s′)Q

π(s′, a)|

= |Ea∼π(·|s)Q
π(s, a)− Ea∼π(·|s′)Q

π(s, a)

+ Ea∼π(·|s′)Q
π(s, a)− Ea∼π(·|s′)Q

π(s′, a)|

⩽ |Ea∼π(·|s)Q
π(s, a)− Ea∼π(·|s′)Q

π(s, a)|

+ |Ea∼π(·|s′)Q
π(s, a)− Ea∼π(·|s′)Q

π(s′, a)|

⩽ |VmaxWdA(π(·|s)− π(·|s′))|

+ Ea∼π(·|s′)|Qπ(s, a)−Qπ(s′, a)| by definition of the Wasserstein

⩽ VmaxLπd(s, s′) + Ea∼π(·|s′) max
a∈A

Lad(s, s′)

as the policy and Q-functions are ULC

⩽ (VmaxLπ + max
a∈A

La)d(s, s′)

We can thus conclude that V π is also ULC with Lipschitz constant (VmaxLπ +

maxa∈A La). The same reasoning applies in the LLC case.

We emphasize that the continuity assumption of π is important, as the following

example shows. Let’s assume S = R and A = {1, 2}. Imagine we have the

3. Metrics and Continuity in Reinforcement Learning 43

following discontinuous policy:

π(a|s) =
{
δ0 if s < 0
δ1 if s ⩾ 0. (3.4)

where:

δx0(A) =
{

1 if x0 ∈ A
0 else. (3.5)

and the following value function:

Qπ(s, a) =
{
s if a = 0
s+ 1 if a = 1. (3.6)

Then, V π is discontinuous at 0.

V π(s) =
{
s if s < 0
s+ 1 if if s ⩾ 0. (3.7)

It is clear that continuity of V π does not imply continuity of Qπ: take the

deterministic constant constant policy π(a|s) = 1 so that V π(s) = Qπ(s, 1). As

previously, we can have any discontinuous function for Qπ(s, 1).

Lemma 2. If a deterministic policy π : S → A is continuous, S is connected2 and

A is discrete, then π is globally constant.

Proof. π is continuous at s iff for all ϵ > 0, there exists δϵ,s > 0 such that for all

s′ ∈ S, d(s, s′) ⩽ δϵ,s implies dA(π(s) − π(s′)) ⩽ ϵ. In particular, choosing ϵ = 1
2

implies that π(s) = π(s′). π it thus locally constant. Supposing S is connected

implies π is globally constant.

While our proof above is valid for stochastic policies, we note that the proof

of Lemma C in the ULC case with deterministic policies is provided by Rachelson

and Lagoudakis [2010]:

Corollary 2 (Rachelson and Lagoudakis, 2010). If Qπ is ULC with Lipschitz

constant LQ and the policy π is ULC with Lipschitz constant Lπ, then V π is ULC

with Lipschitz constant LQ(1 + Lπ).
2A connected space is topological space that cannot be represented as the union of two or more

disjoint non-empty open subsets.

44 3.A. Proofs for Section 3.4

Lemma D. We assume that the next state probability measure Pa
s admits a density

pa
s : S → [0,∞) with respect to the Lebesgue measure. If s′ 7→ pa

s(s′) is bounded and

R : S ×A → R and s 7→ pa
s(s′) are LC, then Q∗ : S ×A → R is LC.

We start by recalling the dominated convergence theorem:

Theorem 3. (Lebesgue’s Dominated Convergence Theorem)

Let {fn} be a sequence of complex-valued measurable functions on a measure space

(S,Σ, µ). Suppose that:

1. the sequence {fn} converges pointwise to a function f

2. the sequence {fn} is dominated by some integrable function g, that is, ∀n ∈

N,∀x ∈ S, |fn(x)| ⩽ g(x)

Then, f is integrable and limn→∞
∫

S fn(dµ) =
∫

S fdµ.

Let’s define the following sequence: Q0(s, a) = 0 and Qn+1(s, a) = R(s, a) +

γ Es′∼P(·|s,a)[maxa′∈A Qn(s′, a′)] for all s ∈ S, a ∈ A.

Q0 is constant and thus continuous on S × A.

To show that the continuity of Qn implies the continuity of Qn+1, let’s apply

the dominated convergence theorem.

1. s 7→ pa
s(s′) being continuous, sm tends to s ∈ S implies that

max
a′∈A

[Qn(s′, a′)]pa
sm

(s′) tends to max
a′∈A

[Qn(s′, a′)]pa
s(s′).

2. For all s′ ∈ S, |max
a′

Qn(s′, a′)| < Vmax by assumption. We fix a ∈ A. pa
s is

bounded so there exists a function ha ∈ L1(S) such that pa
s(s′) ⩽ ha(s′) for

all s′, s.

By the dominated convergence theorem,

lim
m→∞

∫
S

max
a′∈A

[Qn(s′, a′)]pa
sm

(s′)ds′ =
∫

S
max
a′∈A

[Qn(s′, a′)]pa
s(s′)ds′.

If sm → s, then Es′∼P(·|sm,a)[maxa′∈A Qn(s′, a′)] → Es′∼P(·|s,a)[maxa′∈A Qn(s′, a′)].

The reward function being LC by assumption, Qn+1 is LC.

3. Metrics and Continuity in Reinforcement Learning 45

Let’s now show that Q∗ = limn→∞Qn is LC. Let T : (C(S ×A), || · ||∞) →

(C(S ×A), || · ||∞), where C(S × A) = X is the space of LC functions on S × A

and || · ||∞ = sup(s,a)∈S×A, be defined by:

(Tf)(s, a) = R(s, a) + γ E
s′∼P(·|s,a)

[max
a′∈A

f(s′, a′)].

It is known that ||Tf − Tg||∞ ⩽ γ||f − g||∞. The contraction mapping theorem

implies that TQn = Qn+1 → Q∗ in X (sup norm), so Q∗ ∈ X , that is Q∗ is LC.

The previous result can be stated more generally as follows:

Corollary 3. We assume that for each a ∈ A, Pa
s is (weakly) continuous as a

function of s, that is, if sn converges to s ∈ S then for every bounded continuous

function f : S → R,
∫
fdPa

sn
tends to

∫
fdPa

s . If R : S × A → R is LC then

Q∗ : S ×A → R is LC.

The proof of this result is similar as above but does not involve the Domi-

nated Convergence Theorem as the continuity of Es′∼P(·|s,a)[maxa′∈A Qn(s′, a′)] as

a function of s is ensured by the assumption of weakly continuity of Pa
s .

We note that the assumption of weakly continuity of Pa
s is weaker than the

one on the existence of a density pa
s as above. Indeed, if s 7→ pa

s is continuous,

then s 7→ Pa
s is weakly continuous by Scheffé’s lemma.

For the ULC case, the conditions and proof under which the implication "P +

R =⇒ Q∗" hold are stated by in Gelada et al. [2019]:

Corollary 4 (Gelada et al., 2019). If R and P are ULC with Lipschitz constant

LR and LP and γLP < 1, then Q∗ is ULC with Lipschitz constant LR
1−γLP

.

The reverse implication "Q∗ =⇒ R + P" is not true as shows the following

counter-example. Let’s suppose S = R and A = {1, 2}. Let R(s, 1) = 1 and let

R(s, 2) be any discontinuous function, for instance:

R∗(s, 2) =
{

0 if s ⩽ s0, s0 ∈ R
0.5 if s > s0.

(3.8)

This leads to Q∗(s, a) = 1
1−γ

which is continuous but R(s, 2) is discontinuous.

46 3.A. Proofs for Section 3.4

Lemma E. We assume that the next state probability measure Pa
s admits a density

pa
s : S → [0,∞) with respect to the Lebesgue measure. If s′ 7→ pa

s(s′) is bounded and

R : S × A → R, π : S → ∆(A) and s 7→ pa
s(s′) are LC, then Qπ : S × A → R is

LC.

Similarly, we proceed by induction and consider the following sequence:

Qπ
0 (s, a) = 0

Qπ
n+1(s, a) = R(s, a) + γ E

S′∼Pa
s

V π
n (S ′)

As above, Qπ
0 is continuous and we then proceed by induction and apply the

dominated convergence theorem.

We assume that Qπ
n is continuous. Assuming π-continuous, we have shown that

this also implies that V π
n is continuous.

1. s 7→ pa
s(s′) being continuous, sm tends to s ∈ S implies that pa

sm
(s′)V π

n (s′)

tends to pa
s(s′)V π

n (s′).

2. For all s′ ∈ S, |V π(s′)| < Vmax by assumption.

We fix a ∈ A. pa
s is bounded so there exists a function ha ∈ L1(S) such that

pa
s(s′) ⩽ ha(s′) for all s′, s.

By the dominated convergence theorem,

lim
m→∞

∫
S
pa

sm
(s′)V π

n (s′)ds′ =
∫

S
pa

s(s′)V π
n (s′)ds′.

Hence, if sm → s, then Es′∼P(·|sm,a) V
π

n (s′)→ Es′∼P(·|s,a) V
π

n (s′). The reward function

being LC by assumption, Qπ
n+1 is LC.

As shown above, Qπ
n converges to Qπ in sup norm, so Qπ is continuous.

Corollary 5. We assume that for each a ∈ A, Pa
s is (weakly) continuous as a

function of s, that is, if sn converges to s ∈ S then for every bounded continuous

function f : S → R,
∫
fdPa

sn
tends to

∫
fdPa

s . If R : S×A → R and π : S → ∆(A)

are LC then Qπ : S ×A → R is LC.

3. Metrics and Continuity in Reinforcement Learning 47

The proof of this result is similar as above but does not involve the Dominated

Convergence Theorem as the continuity of ES′∼P(·|s,a) V
π(S ′) as a function of s is

ensured by the assumption of weakly continuity of Pa
s .

For the ULC case, the conditions and proof under which the implication "P+R =⇒

Qπ" hold are stated by in Rachelson and Lagoudakis [2010]:

Lemma F (Rachelson and Lagoudakis, 2010). If R, P and π are ULC with

Lipschitz constant LR, LP and Lπ, and if γLP(1 + Lπ) < 1, then Qπ is ULC with

Lipschitz constant LR
1−γLP (1+Lπ) .

We note that the reverse implication "Qπ =⇒ R + P" is not true as there

exists a class of policies (the optimal policy is one element of this class) for which

the implication does not hold.

3.B Proofs for Section 3.5

Lemma 3 (Identity metric). eI induces the finest topology on S, made of all possible

subsets of S. Let (Y, dY) be any metric space. Any function h (resp. Any bounded

h) : (S, eI)→ (Y, dY) is LC and UC (resp. ULC).

Proof. Recall that for any (pseudo-)metric space (X, d), a set U ⊆ X is open if for

any x ∈ U , there exists r > 0 such that the open ball Bd(x, r) of radius r centered

at x is a subset of U .

Suppose U ⊆ S is a non-empty open set of S. Then for any x ∈ U , there exists

r > 0 such that BeI(x, r) = {y ∈ S|eI(x, y) < r} ⊆ U . If r > 1, BeI(x, r) = S and

U = S. Hence, S ⊂ TeI . Else, BeI(x, r) = {x} and {x} ⊂ U . This is true for all

x ∈ U so ∪x∈U{x} ⊂ TeI . Hence, TeI is the collection of all open subsets of S, that

is, it is the discrete topology on S.

Let (Y, dY) be any metric space.

• We first show that any function h : (S, eI)→ (Y, dY) is LC and UC.

48 3.B. Proofs for Section 3.5

Let ϵ > 0. We choose δ = 1
2 . Then, for all x, y ∈ S,

eI(x, y) < δ =⇒ eI(x, y) = 0 as eI : S × S → {0, 1}.

=⇒ x = y as eI is a proper metric.

=⇒ dY (h(x), h(y)) = 0 as dY is a pseudometric.

=⇒ dY (h(x), h(y)) < ϵ.

This shows that any h is UC and thus LC.

• We now show that any bounded function h : (S, eI)→ (Y, dY) is ULC.

h is ULC if there exist K > 0 such that for all x, x′ ∈ X we have

dY (h(x), h(x′)) ⩽ KdS(s, s′).

If s = s′, then dS(s, s′) = 0 by definition of eI and h(s) = h(s′) which implies

dY (h(s), h(s′)) = 0. Hence, h is ULC.

Else, eI(s, s′) = 1. h is bounded so h(S) is a bounded subset of Y , that is for

all s, s′ ∈ S, dY (h(s), h(s′)) ⩽ c for some c > 0. Hence, h is Lipschitz.

Lemma 4 (Trivial metric). eT induces the coarsest topology on S, consisting solely

of {∅,S}. Let (Y, dY) be any metric space. Any function h : (S, eI) → (Y, dY) is

LC, UC and ULC iff h is constant.

Proof. For eT, suppose U ⊆ S is a non-empty open set of S. Then for any x ∈ U ,

there exists r > 0 such that BeT(x, r) ⊆ U . But observe that, for all r > 0, x ∈ S,

we have BeT(x, r) = S by definition of the trivial pseudo-metric eT. Hence U = S

and (S, eT) has the trivial topology.

Let (Y, dY) be any metric space. Any function h : (S, eT)→ (Y, dY) is LC (resp

UC, resp ULC) iff h is constant.

(⇐=) : Suppose h is constant taking value y ∈ Y . Recall that eT : S ×S → {0, 1}.

It is clear that h must be Lipschitz continuous, and thus uniformally and locally

continuous, because any K > 0 satisfies for all s, s′ ∈ S, dY (h(s), h(s′)) = dY (y, y) =

3. Metrics and Continuity in Reinforcement Learning 49

0 ⩽ Ket(x, y) = 0

(=⇒) : Suppose for sake of contradiction that h : S → Y is LC but not constant.

Then there exist s1, s2 ∈ S such that h(s1) ̸= h(s2). This means that there exists

ϵ0 > 0 such that dY (h(x)− h(y)) > ϵ0. Because we are using the trivial metric on

S, d(x, y) = 0 < δ for all δ > 0. This contradicts the LC assumption of h. Hence, h

LC implies that h is constant. This reasoning also holds for UC (resp ULC) as a

function that cannot be LC cannot be UC (resp. ULC) (since ULC =⇒ UC =⇒

LC).

Lemma 5. If η = 0, then any function f (resp. bounded function f): (S, dS) →

(Y, dY) is LC and UC (resp. ULC) with respect to the pseudometric eϕf,η . However,

given a function f and η > 0, there exists an η-abstraction ϕf,η such that f is not

continuous with respect to eϕf,η .

As a byproduct, we can note that the metric eϕ induces the finest topology

on Ŝ. Indeed, by definition, eϕ : S → {0, 1} is equal to the discrete pseudometric

eI : Ŝ → {0, 1}. Thanks to Lemma 3, we can deduce that eϕ induces the discrete

topology on Ŝ.

Proof. • We first show that any function f : (S, dS)→ (Y, dY) is UC (and thus

LC) with respect to the metric eϕf,0 .

Let ϵ > 0. We choose δ = 1
2 . Then, for all s, t ∈ S, eϕf,0(s, t)(s, t) < δ =⇒

eϕf,0(s, t) = 0 =⇒ ϕ(s) = ϕ(t) =⇒ f(s) = f(t) =⇒ |f(s)− f(t)| ⩽ ϵ.

• Then, the fact that any function f : (S, dS)→ (Y, dY) is ULC with respect to

the pseudometric eϕf,0 iff f is bounded is a consequence of Lemma 3

• Finally, if η > 0, there is no continuity garantee about f : (S, dS)→ (Y, dY)

with respect to the metric eϕf,η .

Let ϵ > 0. We choose δ = 1
2 . Then, eϕf,η(s, t) < δ =⇒ eϕf,η(s, t) = 0 =⇒

ϕ(s) = ϕ(s′) =⇒ |f(s)− f(s′)| ⩽ η.

If ϵ ⩾ η, then the continuity definition is respected.

But when ϵ < η, we cannot conclude anything.

50 3.B. Proofs for Section 3.5

Lemma 6. Q∗ (resp. Qπ) is ULC with Lipschitz constant 1 with respect to d∼

(resp. d∼π).

Proof. Take any s, t ∈ S and a ∈ A.

|Q∗(s, a)−Q∗(t, a)| =
∣∣∣∣∣∣Ra

s + γ
∑
s′∈S
Pa

s (s′)V ∗(s′)−
Ra

t + γ
∑
t′∈S
Pa

t (t′)V ∗(t′)
∣∣∣∣∣∣

=
∣∣∣∣∣∣Ra

s −Ra
t + γ

∑
s′∈S

V ∗(s′)(Pa
s (s′)− Pa

t (s′))
∣∣∣∣∣∣

⩽ |Ra
s −Ra

t |+ γ

∣∣∣∣∣∣
∑
s′∈S

V ∗(s′)(Pa
s (s′)− Pa

t (s′))
∣∣∣∣∣∣

⩽ |Ra
s −Ra

t |+ γW(d∼)(Pa
s (s′),Pa

t (s′))

⩽ max
a∈A
{|Ra

s −Ra
t |+ γW(d∼)(Pa

s (s′),Pa
t (s′))}

= d∼(s, t)

We can show the result for Qπ similarly.

Corollary 1. Q∗ (resp. Qπ) is ULC with Lipschitz constant Vmax with respect to

e∼ (resp. e∼π).

Proof. This is a consequence of Lemma 6, the normalization coming from the fact

that the bisimulation metric d∼ is bounded by Rmax
1−γ

.

Lemma 7. For a given MDP, let Qπ be the Q-function of policy π, and Q∗ the

optimal Q-function. The following are continuous pseudo-metrics:

1. d∆∗(s, s′) = max
a∈A
|Q∗(s, a)−Q∗(s′, a)|

2. d∆π(s, s′) = max
a∈A
|Qπ(s, a)−Qπ(s′, a)|

3. d∆∀(s, s′) = max
π∈Π,a∈A

|Qπ(s, a)−Qπ(s′, a)|

Q∗ (resp. Qπ) is ULC with Lipschitz constant 1 wrt to d∆∗ (resp. d∆π). Qπ is ULC

with Lipschitz constant 1 wrt to d∆∀ for any π ∈ Π.

3. Metrics and Continuity in Reinforcement Learning 51

Proof. Let’s show that these functions are pseudometrics.

First, d∆∗(s, s) = 0. Second, d∆∗(s, s′) = d∆∗(s′, s) by symmetry of the graph of the

absolute value function. Finally,

d∆∗(s1, s2) = max
A
|Q∗(s1, a)−Q∗(s3, a) +Q∗(s3, a)−Q∗(s2, a)|

⩽ max
A

(|Q∗(s1, a)−Q∗(s3, a)|+ |Q∗(s3, a)−Q∗(s2, a)|)

⩽ max
A
|Q∗(s1, a)−Q∗(s3, a)|) + max

A
|Q∗(s3, a)−Q∗(s2, a)|

= d∆∗(s1, s2) + d∆∗(s1, s2),

where in the second line we apply the triangle inequality. Hence, d∆∗ satisfies the

triangle inequality. We can thus conclude that d∆∗ is a pseudometric. Similarly, we

prove that d∆π and d∆∀ are pseudometrics.

We now prove the continuity properties given by these three metrics.

• Let s, t ∈ S. As above, we fix a ∈ A. Then, |Q∗(s, a) − Q∗(t, a)| ⩽

max
a∈A
|Q∗(s, a)− Q∗(t, a)| = d∆∗(s, t). Thus, Q∗ is Lipschtiz continuous with

respect to d∆∗ .

• Let s, t ∈ S and let π ∈ Π. As before, let’s fix a ∈ A. |Qπ(s, a)−Qπ(t, a)| ⩽

max
a∈A
|Qπ(s, a)−Qπ(t, a)| = d∆π(s, t). Thus, Qπ (resp.Q∗) is Lipschtiz contin-

uous with respect to d∆π (resp. d∆π∗).

• Let s, t ∈ S and let π ∈ Π. As before, let’s fix a ∈ A. |Qπ(s, a)−Qπ(t, a)| ⩽

max
π∈Π
|Qπ(s, a)−Qπ(t, a)| ⩽ max

a∈A,π∈Π
|Qπ(s, a)−Qπ(t, a)| = d∆π(s, t).

This in particular true for any π ∈ Π, hence for any policy π, Qπ is Lipschtiz

continuous with respect to d∆∀ .

We now formalize in Lemma G and Lemma H the results from Taylor et al.

[2009] that we added to Table 3.2.

Lemma G. ∀s, s′ ∈ S, |V ∗(s)− V ∗(s′)| ⩽ d∼lax(s, s′)

Proof. The proof of this result can be found in [Taylor et al., 2009].

52 3.B. Proofs for Section 3.5

Lemma H. ∀s, s′ ∈ S, 1−γ
Rmax
|V ∗(s)− V ∗(s′)| ⩽ e∼lax(s, s′)

Proof. This result is a consequence of Lemma G. The normalization comes from

the fact that the lax bisimulation metric d∼lax is bounded by Rmax
1−γ

.

Remark. When S is finite, the number of policies to consider to compute d∆∀ is

finite: d∆∀(s, s′) = max
π∈Π,a∈A

|Qπ(s, a)−Qπ(s′, a)| = max
π∈ΠAVF,a∈A

|Qπ(s, a)−Qπ(s′, a)|,

where ΠAV F is the finite set of extremal policies corresponding to Adversarial Value

Functions (AVFs) [Bellemare et al., 2019].

Proof. The space of value functions {V π|π ∈ Π} is a polytope [Dadashi et al., 2019]

and Bellemare et al. [2019] considered the finite set of policies ΠAVF corresponding

to extremal verticies of this polytope {V π|π ∈ ΠAVF}

As noted by Dabney et al. [2021], the space of action value functions {Qπ|π ∈ Π}

is also polytope since polytopes are invariant by translations (reward Ra
s term) and

linear transformations (γT a
s term). Additionally, extremal vertices of {Qπ|π ∈ Π}

and {V π|π ∈ Π} are reached for the same policies as extremal points of a polytope

are invariant by affine transformations. Hence, the set of extremal vertices of

{Qπ|π ∈ Π} is {Qπ|π ∈ ΠAVF}. The maximum between two elements of this

polytope is reached at two extremal vertices of the polytope, hence the result.

Now, when approximating the metric d∆∀ by dÃVF(n) = max
π∈ΠÃVF(n),a∈A

|Qπ(s, a)−

Qπ(s′, a)|, where ΠÃVF(n) are n samples from the set of extremal policies ΠAVF, it

follows that dÃVF(n) ⩽ d∆∀ .

Theorem 2. The relationships between the topologies induced by the metrics in

Table 3.2 are given by the following diagram. We denote by d1 → d2 when Td1 ⊂ Td2,

that is, when Td1 is coarser than Td2. Here d denotes any arbitrary metric.

e∼lax d∼lax d eI

e∼ d∼ d∆∗ d∆∀ d∆π

d eT e∼π d∼π

3. Metrics and Continuity in Reinforcement Learning 53

We now prove the second theorem of our paper, Theorem 2. The proof itself

will be made up of a series of lemmas for each of the arrows in the diagram. We

first start by proving a necessary lemma.

Lemma I. Given two metrics d1 and d2 on S, if there exists α > 0 such that

d1(s, t) ⩽ αd2(s, t) for all s, t ∈ S, then Td1 is coarser than Td2, that is Td1 ⊂ Td2 .

Proof. Let ϵ > 0 and x ∈ S. Suppose x′ ∈ Bd2(x, ϵ). By definition, this means

that d2(x, x′) ⩽ ϵ. It implies 1
α
d1(x, x′) ⩽ d2(x, x′) ⩽ ϵ by assumption and then

x′ ∈ Bd1(x, αϵ). Hence, Bd2(x, ϵ) ⊂ Bd1(x, αϵ).

Now, suppose U ⊂ S is a non-empty open set of S.Then ∀x ∈ U ,there exists r > 0

such that Bd1(x, r) ⊂ U . We have shown that Bd2(x, ϵ) ⊂ Bd1(x, αϵ) for all ϵ > 0.

So we also have Bd2(x, r
α
) ⊂ U . By definition a topology on S is a collection of

open subsets on S so we can conclude that Td1 ⊂ Td2 .

Lemma J. For all s, t ∈ S, eT(s, t) ⩽ eI(s, t) and TeT ⊂ TeI.

Proof. This comes directly from the definitions of the trivial metric eT and discrete

metric eI. Moreover, as mentioned in Lemma 3 and Lemma 4, the discrete metric

induces the finest topology on S while the trivial metric induces the coarsest

topology.

Lemma K. For all s, t ∈ S, d∆∗(s, t) ⩽ d∆(s, t) and d∆π(s, t) ⩽ d∆(s, t).

Proof. By definition, for all s, s′ ∈ S, d∆∗(s, s′) = max
a∈A
|Q∗(s, a) − Q∗(s′, a)| ⩽

max
π∈Π,a∈A

|Qπ(s, a)−Qπ(s′, a)| so d∆∗(s, t) ⩽ d∆(s, t).

The proof is similar for d∆π

Lemma L. For all s, t ∈ S, there exists α > 0 such that d∼(s, t) ⩽ αe∼(s, t) and

d∼lax(s, t) ⩽ αe∼lax(s, t) and d∼π(s, t) ⩽ αe∼π(s, t).

Proof. Let s, t ∈ S.

If e∼(s, t) = 0, then s ∼ t and d∼(s, t) = 0.

If e∼(s, t) = 1, then d∼(s, t) ̸= 0. Moreover, by construction of the bisimulation

metric, d∼(s, t) ∈ [0, Rmax
1−γ

] for all s, t ∈ S. Hence, d∼(s, t) ⩽ Rmax
1−γ

e∼(s, t). Choosing

54 3.B. Proofs for Section 3.5

α = Rmax
1−γ

, we get d∼(s, t) ⩽ αe∼(s, t).

The proof is similar for the two other inequalities.

Lemma M. For all s, t ∈ S, e∼lax(s, t) ⩽ e∼(s, t) and d∼lax(s, t) ⩽ d∼(s, t).

Proof. Let s, t ∈ S.

If e∼lax(s, t) = 0 then the inequality is verified by postivity of any metric.

If e∼lax(s, t) = 1, it means there exists a ∈ A such that for all b ∈ A, Ra
s ̸= Rb

s

and there exists X ∈ Σ(E) such that Pa
s (X) ̸= Pa

b (X). This is in particular true

when b = a which means that the conditions to be a bisimulation relation are not

satisfied. Hence, e∼(s, t) = 1.

The second inequality is proven in Taylor et al. [2009].

Complexity results

We now provide details explaining the complexity results from Table 3.2.

The discrete identity metric eI compares all pairs of states which results in a

complexity O(|S|). The complexity of the trivial metric eT is independent of the

number of states and hence constant.

The discrete bisimulation metric can be computed by finding the bisimulation

equivalence classes. This can be done by starting with a single equivalence class that

gets iteratively split into smaller equivalence classes when one of the bisimulation

conditions is violated; this process is repeated until stability. Each iteration of this

process is O(|A||S|2), since we are performing an update for all actions and pairs of

states. Since there can be at most |S| splits, this yields the complexity of O(|A||S|3).

The bisimulation metric can be computed by iteratively applying ⌊ ln δ
ln γ
⌋ times

the operator F from Lemma 1 [Ferns et al., 2004], for each action and each pair

of states. We note that the time complexity for solving an optimal flow problem

as originally presented by Ferns et al. [2004] is incorrect and off by a factor of |S|:

it should be O(|S|3 log |S|). Thus, the complexity they present for computing the

bisimulation metric is also off by a factor of |S|; the corrected time complexity is

O
(
|A||S|5 log |S| ln δ

ln γ

)
, as we presented in Table 3.1. The π-bisimulation metrics do

3. Metrics and Continuity in Reinforcement Learning 55

not require a loop over the action space as the matching is under a fixed policy.

Therefore their complexity is the one of the bisimulation metrics off by a factor |A|.

The time complexity of computing d∆π and d∆∗ is the same as the complexity

of policy evaluation and value iteration, plus an extra O(|S2|) term for computing

the resulting metric; this last term is dominated by the policy/value iteration

complexity, which is what we have included in the table.

3.C Formal Definition of Bisimulation Metrics

We will also define a metric between probability functions that is used by some of

the state metrics considered in this paper. Let (Y, dY) be a metric space with

Borel σ-algebra Σ.

Definition 6. The Wasserstein distance [Villani, 2008] between two probability

measures P and Q on Y , under a given metric dY is given by WdY
(P,Q) =

infλ∈Γ(P,Q) E(x,y)∼λ[dY (x, y)], where Γ(P,Q) is the set of couplings between P and

Q.

The Wasserstein distance can be understood as the minimum cost of transporting

P into Q where the cost of moving a unit mass from the point x to the point

y is given by d(x, y).

Theorem 4. Define Fπ :M→M by Fπ(d)(s, t) = |Rπ
s −Rπ

t |+ γW1(d)(Pπ
s ,Pπ

t),

then Fπ has a least fixed point dπ
∼, and dπ

∼ is a π-bisimulation metric.

Definition 7. Given a 1-bounded pseudometric d ∈M, the metric δ(d) : S ×A →

[0, 1] is defined as follows:

δ(d)((s, a), (t, b)) = |R(s, a)−R(t, b)|+ γW(d)(P(s, a),P(t, b))

Definition 8. Given a finite 1-bounded metric space (M, d) let C(M) be the set

of compact spaces (e.g. closed and bounded in R). The Hausdorff metric H(d) :

C(M)× C(M)→ [0, 1] is defined as:

H(d)(X, Y) = max
(

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
)

56 3.D. Additional Empirical Evaluations

Definition 9. Denote Xs = {(s, a)|a ∈ A}. We define the operator F : M→M as:

F (d)(s, t) = H(δ(d))(Xs, Xt)

Theorem 5. F is monotonic and has a least fixed point d∼lax in which d∼lax(s, t) = 0

iff s ∼lax t.

3.D Additional Empirical Evaluations

In this section we conduct an empirical evaluation to complement the theoretical

analyses performed above. We conduct these experiments on the well-known Four

Rooms domain [Sutton et al., 1999, Solway et al., 2014, Machado et al., 2017,

Bellemare et al., 2019] for all our experiments, which is illustrated in Figure 3.3.

This domain enables clear visualization and ensures that we can compute a metric

defined over the entirety of the state space. These experiments aim to showcase 1) the

qualitative difference in the state-wise distances produced by the different metrics;

2) visualize the differences in abstract states that the different metrics produce when

used for state aggregation. Results are showcased in Figure 3.4 and Figure 3.5.

The dynamics of the environment are as follows. There are four actions (up,

down, left, right), transitions are deterministic, there is a reward of +1 upon

entering the non-absorbing goal state, there is a penalty of −1 for running into a

wall, and we use a discount factor γ = 0.9. We will conduct our experiments on

four representative metrics: d∼, d∼lax , d∆∗ , and d∆. Since the maximization over all

policies required for d∆ is in general intractable, we instead sample 50 adversarial

value functions (AVFs) [Bellemare et al., 2019] as a proxy for the set of all policies.

Figure 3.3: Four Rooms domain with a single goal state in green (left). Optimal values
for each cell (right).

3. Metrics and Continuity in Reinforcement Learning 57

Figure 3.4: The top row illustrates the distances from the top-left cell to every other cell
(note the color scales are shifted for each metric for easier differentiation between states).
The bottom row displays d(s, t)− |V ∗(s)− V ∗(t)|, where s is the top-left cell, illustrating
how tight an upper bound the metrics yield on the difference in optimal values.

Figure 3.5: State clusters produced by the different metrics when targeting 11 aggregate
states. There is no color correlation across metrics.

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis

publications. For each publication there should exist a complete statement that is to be filled out and signed by the

candidate and supervisor (only required where there isn’t already a statement of contribution within the paper
itself).

Title of Paper

Metrics and continuity in reinforcement learning

Publication Status

 □Published □ Accepted for Publication

 □Submitted for Publication □Unpublished and unsubmitted work written

 in a manuscript style

Publication Details

Charline Le Lan, Marc G. Bellemare, Pablo Samuel Castro. Metrics and

continuity in reinforcement learning. In AAAI Conference on Artificial
Intelligence (AAAI) 2021.

Student Confirmation

Student Name:

Charline Le Lan

Contribution to the
Paper

I led the project, proved most theoretical results, wrote the first version of the codebase
and paper, ran experiments and generated the plots included in the paper. Marc
suggested to compare different metrics through the lens of continuity. Pablo wrote a
second version of the codebase building on my implementation.

Marc and Pablo advised the project, provided feedback and edits on the paper.

Signature

Date

March 23, 2023

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the

publication, and that the description described above is accurate.

Supervisor name and title: Professor Marc G. Bellemare

Supervisor comments

Signature

Date

This completed form should be included in the thesis, at the end of the relevant chapter.

13/04/23

An excellent piece of work that set the stage for further discoveries.

58

4
On the Generalization of Representations

in Reinforcement Learning

59

60

Abstract

In reinforcement learning, state representations are used to tractably deal with large
problem spaces. State representations serve both to approximate the value function
with few parameters, but also to generalize to newly encountered states. Their
features may be learned implicitly (as part of a neural network) or explicitly (for
example, the successor representation of Dayan [1993]). While the approximation
properties of representations are reasonably well-understood, a precise characteriza-
tion of how and when these representations generalize is lacking. In this work, we
address this gap and provide an informative bound on the generalization error arising
from a specific state representation. This bound is based on the notion of effective
dimension which measures the degree to which knowing the value at one state
informs the value at other states. Our bound applies to any state representation and
quantifies the natural tension between representations that generalize well and those
that approximate well. We complement our theoretical results with an empirical
survey of classic representation learning methods from the literature and results
on the Arcade Learning Environment, and find that the generalization behaviour
of learned representations is well-explained by their effective dimension.

4.1 Introduction

Figure 4.1: A deep RL architecture seen as a deep representation ϕ and a value prediction
V̂ϕ,w.

At the heart of reinforcement learning (RL) is the problem of predicting the

expected return that can be obtained from different states. In most practical

situations, these predictions are made on the basis of parametric function approxi-

mation, needed in order to make accurate predictions on the basis of limited samples –

technically speaking, to estimate the value function [Sutton and Barto, 2018]. Linear

function approximation, for example, estimates the value function using a fixed state

representation ϕ which maps states to vectors in Rk; general-purpose algorithms

for constructing state representations include tile coding [Sutton, 1996], the Fourier

basis [Konidaris et al., 2011], local basis functions [Ratitch and Precup, 2004], and

methods based on properties of the transition function [Mahadevan and Maggioni,

2007, Ghosh and Bellemare, 2020]. Common deep RL network architectures such

as DQN [Mnih et al., 2015] use multiple layers of nonlinear transformations to

map perceptual inputs to a final layer which is linearly transformed into a value

function prediction (Figure 4.1); accordingly, we may also view this final layer as a

(time-varying) state representation ϕ [Levine et al., 2017, Chung et al., 2018].

It is generally believed that auxiliary tasks, known to improve performance

in deep reinforcement learning [Jaderberg et al., 2017, Bellemare et al., 2017],

4. On the Generalization of Representations in Reinforcement Learning 63

play an important role in shaping the learned state representation [Bellemare

et al., 2019, Dabney et al., 2021, Lyle et al., 2021]. This motivates the need to

understand how representation learning impacts policy evaluation. In this paper,

we give a theoretical characterization of the generalization properties of a given

or learned representation. While there are a number of results characterizing the

approximation error due to a representation [Petrik, 2007, Parr et al., 2008], its

effect on statistical error is relatively unknown.

Our first contribution is a bound on the generalization error (approximation +

estimation) that arises when performing Monte Carlo value function estimation with

a given k-dimensional representation ϕ (Section 4.3). Critically, this bound depends

on the (in)coherence of the feature matrix Φ [Candès and Recht, 2009], which in

turns defines the effective dimension of the representation. This effective dimension

determines how many samples are needed to obtain a good generalization of the

value function with the chosen representation; it may be as low as k, indicating that

generalization is as good as possible, or as high as |S|, the number of states, indicating

no generalization at all. The bound applies more broadly to the generalization

error incurred in least-squares regression problems where a subset of a larger

set of points is observed.

In Section 4.4, we demonstrate the usefulness of our bound by specializing it

to study the generalization properties of the successor representation (SR) [Dayan,

1993]. Specifically, we consider the state representation constructed from the

top k singular vectors of the SR [Stachenfeld et al., 2014, Machado et al., 2017,

Behzadian and Petrik, 2018]. Empirically, we find that the effective dimension

of this representation – and consequently its generalization characteristics – can

vary substantially according to the transition structure of the environment. We

also show empirically that the effective dimension is important to determine the

generalization capacity of different theoretically-motivated representations in the

Four Rooms domain [Sutton et al., 1999].

In an empirical study on the Arcade Learning Environment [Bellemare et al.,

2013], we find that the notions of incoherence and effective dimension correlate with

64 4.2. Background

the observed empirical performance of existing value-based deep RL agents (Sub-

section 4.5.2). Furthermore, we find that a simple auxiliary loss motivated by our

bound shows promising gains in the offline deep RL setting.

4.2 Background

We consider a Markov Decision Process (MDP) M = ⟨S,A,R,P , γ⟩ [Puterman,

1994] with finite state space S, discrete set of actions A, transition kernel P :

S × A → P(S), deterministic reward function R : S × A → [−Rmax, Rmax], and

discount factor γ ∈ [0, 1). For simplicity, we make the correspondence S = {1, ..., S}.

We write Pa
s to denote the next-state distribution over S resulting from selecting

action a in s and write Ra
s for the corresponding reward.

A stationary policy π : S → P(A) is a mapping from states to distributions

over actions, describing a particular way of interacting with the environment. We

denote the set of all policies by Π. For any policy π ∈ Π, the value function

V π(s) measures the expected discounted sum of rewards received when starting

from state s ∈ S and acting according to π:

V π(s) := E
π,P

[∞∑
t=0

γtRAt
St
|S0 = s, At ∼ π(· |St)

]
.

The upper-bound value is Vmax := Rmax
1−γ

. In vector notation [Puterman, 1994],

let rπ ∈ RS denote the vector of expected rewards, and let Pπ ∈ RS×S be the

transition matrix whose entries are

Pπ(s, s′) =
∑
a∈A
Pa

s (s′)π(a | s).

We then have

V π =
∞∑

t=0
(γPπ)trπ = (I − γPπ)−1rπ.

In this paper we consider approximating the value function V π using a linear

combination of features. We call the map ϕ : S → Rk a k-dimensional state

4. On the Generalization of Representations in Reinforcement Learning 65

representation; ϕ(s) is the feature vector for a state s ∈ S. In general, we will be

interested in the setting where k ≪ S. The value function approximation at s is

Vϕ,w(s) = ϕ(s)⊤w,

where w ∈ Rk is a weight vector. We collect the per-state feature vectors into

a feature matrix Φ ∈ RS×k. For simplicity, we assume Φ has full column rank.

In vector form, the value function approximation (a S-dimensional vector) is

more directly expressed as

Vϕ,w = Φw.

4.2.1 Statistical Learning Theory

We consider the batch Monte Carlo policy evaluation setting, in which we are given

a sample of training examples D = {(s1, y1), . . . , (sn, yn)} ∈ (S × R)n and wish to

determine a good linear approximation to V π on the basis of this sample. Here,

si is a state and yi is a realisation of the random return Gπ(si) [Bellemare et al.,

2017, Sutton and Barto, 2018], defined by the random-variable equation

Gπ(s) =
∞∑

t=0
γtRat

st
, s0 = s, at ∼ π(· | st).

We assume that si is drawn uniformly at random from S.1 The batch Monte Carlo

setting obviates some of the technical challenges in analyzing iterative methods such

as least-squares TD (LSTD) but still allows us to provide practically-relevant

theoretical guarantees.

We measure the quality of a linear approximation Vϕ,w in terms of the ex-

pected squared error

R(Vϕ,w) = 1
S

∑
s∈S

E
y∼Gπ(s)

(
Vϕ,w(s)− y

)2
. (4.1)

For a value function V , we express this error and related quantities in terms of

the uniformly-weighted L2 norm

∥V ∥S,2 =
√√√√ 1
S

∑
s∈S

(
V (s)

)2
.

1Results for a larger class of distributions are given in Appendix 4.A

66 4.2. Background

Following terminology from statistical learning theory [Vapnik, 1995], we call

R(Vϕ,w) the population risk of Vϕ,w. One can verify that R(Vϕ,w) is minimized

when Vϕ,w = V π.

Given the dataset D and a fixed state representation ϕ, least-squares regression

determines the weight vector ŵ minimizing the empirical risk function

R̂(Vϕ,w) = 1
n

n∑
i=1

(Vϕ,w(si)− yi)2.

Notice that R̂ is a random function as it depends on the training sample D.

We are interested in the performance of the least-squares approximation Vϕ,ŵ

compared to the true value function V π. Let us denote by Vϕ,w∗ the linear

approximation minimizing the population risk, such that

w∗ = arg min
w∈Rk

R(Vϕ,w).

For clarity of exposition, we will assume this approximation is unique. The excess

risk E(Vϕ,ŵ) = R(Vϕ,ŵ) − R(V π) measures the additional error suffered by the

approximation Vϕ,ŵ compared to the true value function. We decompose it into an

estimation error term, measuring the performance gap with the best-in-class, and an

approximation error term arising from considering a restricted set of k-dimensional

value function approximations:

E(Vϕ,ŵ) = R(Vϕ,ŵ)−R(Vϕ,w∗)︸ ︷︷ ︸
estimation error

+R(Vϕ,w∗)−R(V π)︸ ︷︷ ︸
approximation error

.

4.2.2 The Successor Representation

The successor representation [Dayan, 1993] describes a state in terms of the

frequency at which it visits future states; it is also related to the fundamental

matrix in the study of Markov chains see Kemeny and Snell [1961], Brémaud

[2013], Grinstead and Snell [2012].

4. On the Generalization of Representations in Reinforcement Learning 67

Definition 10. The successor representation (SR) with respect to a policy π for

a state s ∈ S is the expected discounted sum of future occupancies for each state

s′ ∈ S. Specifically, ψπ(s) = (ψπ(s, s′))s′∈S , where

ψπ(s, s′) = E
π,P

[∞∑
t=0

γtI [st = s′] | s0 = s

]
.

Expressed as a matrix Ψπ ∈ RS×S, the successor representation can be written as:

Ψπ = (I − γPπ)−1 .

As a consequence of the Bellman equation, we can express the value function

in terms of the successor representation as follows:

V π = Ψπrπ.

This makes it a particularly appealing candidate to use as a state representation. In

particular, it is well-established that the top eigenvectors [Mahadevan and Maggioni,

2007] or singular vectors [Behzadian and Petrik, 2018] of the successor representation

form a useful representation [Stachenfeld et al., 2014]. Petrik [2007] derived an

analytical bound on the approximation error for linear value function approximation

for a representation made of the top eigenvectors of Ψπ in the particular setting

where Pπ is symmetric. By contrast, in this paper, we consider the more general

setting of an arbitrary transition matrix Pπ and consider a generalization bound

that accounts for the statistical nature of the learning process.

4.3 Characterizing Excess Risk

Our first result characterizes how the choice of representation affects the general-

ization of value functions. Theorem 6 applies beyond the setting of reinforcement

learning, and more generally characterizes the excess risk of a broad class of

least-squares regression problems.

To begin, we assume that the labels y1, . . . , yn satisfy

yi = V (si) + ηi,

68 4.3. Characterizing Excess Risk

where V : S → R and ηi is i.i.d. zero mean σ-sub-Gaussian noise [Vershynin,

2010]. This includes the batch Monte Carlo setting, in which case V = V π and

ηi
D= Gπ(si) − V π(si), where Gπ(si) is the random return from si.

For a feature matrix Φ, we write PΦ for the orthogonal projector onto its column

space, and P⊥
Φ for the orthogonal projector onto the corresponding nullspace. We

have

PΦ = Φ(ΦTΦ)−1ΦT P⊥
Φ = IS − PΦ.

In particular, the approximation error for a given state representation ϕ is

R(Vϕ,w∗)−R(V) = ∥P⊥
Φ V ∥2

S,2.

A key quantity in our analysis is the notion of the effective dimension of a state

representation, which dictates the number of samples required to achieve a low

estimation error.

Definition 11 (Effective dimension). Let Φ ∈ RS×k be a feature matrix. The

effective dimension of Φ (vis-a-vis the standard basis (ei)) is defined as the quantity

deff(Φ) := S max
i=1,...,S

∥PΦei∥2
2,

where PΦ is the orthogonal projector onto the column space of Φ.

It is simple to check that the effective dimension is only a function of the

column space of Φ and that deff(Φ) satisfies

rank(Φ) ⩽ deff(Φ) ⩽ S.

Our notion of effective dimension is derived from the coherence of Φ, defined as

µ(Φ) = deff

rank(Φ) .

The notion of coherence is from Candès and Recht [2009], who demonstrate that

coherence can be used to characterize the feasibility of low-rank matrix recovery.

Informally, µ(Φ) (and deff(Φ)) measure the (lack of) sparsity of the column space

of Φ. At one extreme, if Φ ∈ RS×1 is the all-ones vector, then deff(Φ) = rank(Φ),

4. On the Generalization of Representations in Reinforcement Learning 69

saturating the lower bound. On the other hand, if Φ = ei for some i ∈ {1, . . . , S}

then deff(Φ) = S, saturating the upper bound. As we now show, the effective

dimension of Φ can be used to bound the excess risk of least-squares regression

applied to the state representation ϕ.

Theorem 6 (Excess risk). Fix any δ ∈ (0, 1). Suppose that n ⩾ 8deff(Φ) log(6k/δ).

With probability at least 1− δ, the empirical risk minimizer Vϕ,ŵ satisfies:

E(Vϕ,ŵ) ⩽ ∥P⊥
Φ V ∥2

S,2 + 384cdeff(Φ)
n
∥P⊥

Φ V ∥2
S,2 + 48σ2 2k + 3c

n

+ 64
3
deff(Φ)
n2 ∥P⊥

Φ V ∥2
∞c

2,

where c = log(3/δ) and ∥·∥∞ denotes the usual supremum norm.

Proof. The proof is given in Appendix 4.A, and follows arguments for the analysis

of random design linear least-squares problems [Hsu et al., 2014] and matrix

concentration inequalities [Tropp, 2015]. The result can also be obtained by

instantiating Theorem 1 of Hsu et al. [2014] to our setting, at the cost of added

complexity.

In Theorem 6, the term ∥P⊥
Φ V ∥2

S,2 is the approximation error and reflects the

error due to using a k-dimensional linear approximation. The remainder of the

bound corresponds to the estimation error. The theorem demonstrates that the

ability of a representation to generalize is quantified not only by the approximation

error but also the effective dimension deff(Φ). Not only does deff(Φ) appear in the

bound, but it also dictates a minimum number of samples needed to obtain a high

probability bound: when deff(Φ) is small, the bound holds for fewer samples.

In the specific context of batch Monte Carlo policy evaluation, Theorem 6 holds

as-is with V = V π. Additionally, the noise variance σ2 can be bounded as

σ2 ⩽
V 2

max
4 .

The term ∥PΦei∥2
2 that drives the effective dimension of Φ differs (for non

orthogonal representations Φ) from the quantity maxi ∥ϕ(si)∥2
2 that appears in

Rademacher complexity bounds for regression in the case of a family of linear

70 4.3. Characterizing Excess Risk

predictors [Mohri et al., 2018] (see also Maillard and Munos [2009]). Compared

to such bounds, Theorem 6 is also sharper for all representations as it offers a

O(1/n) dependency rather than O(1/
√
n). In subsequent sections, we will provide

empirical evidence illustrating how the effective dimension plays a critical role in

determining the generalization capability of ϕ.

4.3.1 Illustrative Examples

To understand how the bound is instantiated in particular settings, consider first the

scenario in which Φ = IS is the tabular representation. This corresponds to using the

feature vector ei ∈ RS for the i-th state. In this case, the approximation error is 0

and the estimation error reduces to the classic σ2S/n rate for least-squares regression:

R(Vϕ,ŵ)−R(V) ≲ σ2(S + log(1/δ))
n

.

With this choice of features, good generalization requires a number of samples

n linear in S.

At the other extreme, it is possible to improve the sample complexity to avoid

the dependency on S. In the ideal case, deff(Φ) = k. In the next section we

will demonstrate that, in environments with a particular transition structure,

representations derived from the successor representation achieve this bound.

To make this argument more concrete, suppose that we have a family (ϕk)S
k=1 of

representations (resp. matrices (Φk)) whose effective dimension satisfies deff(Φk) ≈ k.

Furthermore, assume that the approximation error ∥P⊥
Φk
V ∥2

S,2 scales as ψ(k), where

ψ(k) is a monotonically decreasing function of k. Fix ε > 0 and define k̄ = k̄(ε) :=

min{k : ψ(k) ⩽ ε}, and let w̄ be the weight vector found by least-squares regression

applied with ϕk̄. Observe that as long as n satisfies:

n ≳ max
{

max
{
σ2

ε
, 1
}
k̄(ε) log k̄(ε)

δ
,
√
k̄(ε)S log 1

δ

}
,

then we have E(Vϕk̄,w̄) ⩽ 4ε. As a particular example, let ψ(k) = ρk for some

ρ ∈ (0, 1). Then k̄(ε) ⩽ ⌈ 1
1−ρ

log
(

1
ε

)
⌉, in which case the sample complexity

only depends sublinearly on S.

4. On the Generalization of Representations in Reinforcement Learning 71

4.4 Generalization for the Successor Represen-
tation

An effective approach for constructing a family of representations is to take the k

singular vectors of the successor representation (SR) whose singular values are the

greatest. For a given policy π, let Ψπ be the successor representation for π. We write

Ψπ = FΣB⊤,

where F,B ∈ RS×S are matrices whose columns are orthogonal and have unit

norm. Additionally, Σ = diag(σ1, ..., σS) where σi are the singular values of Ψ

sorted in decreasing order.

For a fixed integer k satisfying 1 ⩽ k ⩽ S, let us partition F into two matrices,

Fk ∈ RS×k and F⊥
k , which respectively contains the top k and bottom S − k

columns of F . Correspondingly, we partition Σ into Σk ∈ Rk×k and Σ⊥
k and B

into Bk and B⊥
k . With this notation, we obtain the family of state representations

(expressed as feature matrices) Φk = Fk.

4.4.1 Approximation Error: ∥P⊥Φ V π∥2
S,2

Given a reward vector rπ ∈ RS, the value function V π ∈ RS is given by V π =

Ψπrπ. As demonstrated by Theorem 6, the first key quantity that appears in the

generalization bound is the approximation error ∥P⊥
Fk
V π∥2

S,2. With the successor

representation, we can write:

∥P⊥
Fk
V π∥2

S,2 = ∥P⊥
Fk

Ψπrπ∥2
S,2 = ∥F⊥

k Σ⊥
k (B⊥

k)Trπ∥2
S,2.

Following the argument from Petrik [2007] for the specific case of proto-value

functions [Mahadevan and Maggioni, 2007], the worst-case unit-norm reward

vector rπ in this case approximately corresponds to the (k + 1)-th vector bk+1.

This is because

F⊥
k Σ⊥

k (B⊥
k)Tbk+1 = fk+1σk+1,

72 4.4. Generalization for the Successor Representation

and the fact that σk+1 ⩾ σk+i, for all i ⩾ 1. To make the bound comparable for

different k and MDPs, let us fix Rmax and write

rπ = bk+1Rmax

∥bk+1∥∞
. (4.2)

In this case, since ∥fk+1∥2
2 = 1, we have that

∥P⊥
Fk
V π∥2

S,2 ⩽
σ2

k+1R
2
max

S∥bk+1∥2
∞

⩽ σ2
k+1R

2
max.

The dependence on ∥bk+1∥∞ relates to the operator norm of Ψ from L2 to L∞, and

illustrates how bk+1 is only approximately the worst-case reward vector.

A frequent scenario in reinforcement learning occurs when the reward is nonzero

in a single state. Suppose that the reward vector rπ is rπ = Rmaxei for some

i ∈ {i, . . . , S}. Then we have that:

∥P⊥
Fk
V π∥2

S,2 = R2
maxtr((Σ⊥

k)2)∥(B⊥
k)⊤ei∥2

2
S

⩽
σ2

k+1R
2
maxdeff(B⊥

k)
S

.

When the effective dimension of B⊥
k is O(S − k), the approximation error may be a

factor S−k
S

smaller than the error for the worst-case reward vector (Equation (4.2)).

These arguments show that the generalization quality of a given family of

representations can be partially quantified in terms of its spectrum (σi)S
i=1. When the

transition matrix is symmetric, we can bound the spectrum (σi)S
i=1 in terms of the ef-

fective horizon implied by the discount factor. This is given by the following lemma.

Lemma 8. Let P ∈ R|S|×|S| be a symmetric row stochastic matrix, and let γ ∈ (0, 1).

Let σ(·) denote the set of singular values of a matrix. We have that:

σ((I − γP)−1) ⊆
[

1
1+γ

, 1
1−γ

]
.

Because the value function is generally of magnitude Vmax = Rmax
1−γ

, an approx-

imation error of order 1
1+γ

is quite small, suggesting that the corresponding basis

functions may be safely omitted from the representation.

Intuitively (and as supported by the analysis above), choosing a representation

with a larger number of features k reduces the approximation error. However, as

will see in the next section, a larger k necessarily increases the effective dimension,

often in a manner that is superlinear in k.

4. On the Generalization of Representations in Reinforcement Learning 73

Disconnected Fully connected 2d Torus Star Openroom

1 50 100 150 200 250 300 350 400
Number of features

10
−1

10
0

10
1

10
2

10
3

Si
ng

ul
ar

 v
al

ue
s

1 50 100 150 200 250 300 350 400
Number of features

0

100

200

300

400

Ef
fe

ct
iv

e
di

m
en

si
on

1 20 40 60 80 100 120
Number of features

10
0

10
1

Em
pi

ric
al

 e
xc

es
s

ris
k

1 20 40 60 80 100 120
Number of features

0

1

2

3

Th
eo

re
tic

al
 e

xc
es

s
ris

k

Figure 4.2: Singular values of the successor representation Ψπ, in decreasing order and
for different graphical structures. Note that the fully connected and star graphs’ spectra
overlap (top left). Effective dimension of the representation Φk = Fk (top right). Median
empirical excess risk over 10 runs, with 95% CIs as shaded regions, and theoretical excess
risk, respectively, for the open room, torus, and fully connected graphs (bottom left and
right).

4.4.2 Effect of Transition Structure

We next study characteristics of families of representations induced by the SVD of the

successor representation for different environment transition structures. To this end,

we consider different types of graphs over which we define a uniform random walk;

the resulting representations are specifically proto-value functions [PVF, Mahadevan

and Maggioni, 2007]. We consider the two key quantities identified above: the

spectrum of the representation, which informs us on the profile of the approximation

error ∥P⊤
Fk
V π∥2

S,2 for different Fk, and the effective dimension of Fk as a function of k.

We consider five graphical structures, each with S = 400 states (illustrations

of these structures as well as results for additional structures are given in the

appendix): a fully-connected graph, Baird’s star graph [Baird, 1995], a disconnected

graph (on which each node self-transitions), a 20×20 grid, and a 20×20 torus. The

torus has the same “shape” as the grid but allows transitions from one edge to its

74 4.4. Generalization for the Successor Representation

opposite, while the fully-connected graph is similar to the star graph in that both

mix quickly. These graph were chosen to illustrate the diversity in generalization

profiles arising from different transition structures. In all cases, γ = 0.99.

Figure 4.2, top left illustrates three types of spectra. The fully-connected and

star structures have a flat spectrum, both with an important first component but

with a last component that is much smaller in the case of the star structure (see

Appendix 4.B for a closed-form description of the spectrum of the star graph). By

contrast, the grid and torus exhibit a decaying spectrum, suggesting that attaining a

low approximation error may require many features. As expected, the disconnected

graph produces a flat spectrum with values σi = (1 − γ)−1.

Figure 4.2, top right shows the effective dimension as a function of the number

of features k, and paints a relatively different picture. Here, both star and fully-

connected graphs exhibit a high effective dimension, despite having relatively simple

structure. This is because effective dimension reflects in some sense the degree to

which a single sample might give misleading information about the value at other

states. Because the first singular vectors capture most of the symmetry in these

graphs, additional features must in some sense be misleading. On the other hand,

the open room and torus, despite an almost-identical spectrum, exhibit notedly

different profiles: while the torus achieves the lower bound deff(Fk) ≈ k, the grid

results in generally poor features for k large.

To understand the consequences of these characteristic differences, we performed

least-squares regression to estimate value functions in three of these structures

(fully-connected, grid, and torus). In all cases, we sampled a reward function

by assigning rewards to each state-action pair from a normal distribution (see

Section 4.C). We then sampled n = 300 states with replacement and performed a

Monte Carlo rollout to obtain the sample return (yi)n
i=1. We measured the excess

risk of the linear approximation found by the least-squares procedure. For each

graph structure, we repeated the experiment 10 times.

Figure 4.2, bottom depicts the outcome of this experiment. Experimentally,

the PVF of the torus generalizes significantly better than the PVF of the grid

4. On the Generalization of Representations in Reinforcement Learning 75

(left panel). This is reflected in a heuristic calculation of the theoretical bound

(right panel), given more explicitly by the formula

∥P⊥
Fk
V π∥2

S,2 + deff(Fk)
n

+ deff(F)
n2 ∥P⊥

Fk
V π∥2

∞.

The number of features k minimizing the empirical and theoretical excess risk

differ, but follow the same qualitative pattern: for small k, the open room PVF

generalizes poorly, while the minimum is achieved in the fully-connected graph by

k = 1, highlighting again its high degree of symmetry.

4.4.3 Analysis of the One-dimensional Torus

As evidenced by the experiments of the previous section, the proto-value functions

of the two-dimensional torus have particularly appealing generalization charac-

teristics. Analytically, similarly good generalization can be demonstrated on the

one-dimensional torus, as we now show.

The one-dimensional torus consists in S states arranged on a chain, such

that si connects to si−1, si+1 mod S. As such, the random walk on this torus

induces a transition function Pπ described by a circulant matrix. Since Pπ is

symmetric, we may write2

(I − γPπ)−1 = USΣU∗
S.

Following Gray et al. [2006], the k-th singular value of (I − γPπ)−1 is given by

σk = 1
1− γ cos(2π

S
⌈k−1

2 ⌉)

for k = 1, ..., S.3 and we have that US = 1√
S
F ∗

S , with (FS)j,k = exp(−2πijk/S)

the discrete Fourier transform matrix in dimension S. From this we deduce that

each entry of US has modulus 1/
√
S, and therefore any orthogonal matrix formed

from any k distinct columns of US will have coherence 1 and effective dimension

k. This shows that the proto-value functions of the one-dimensional torus give

in some sense an ideal state representation.
2We ignore the issue of real diagonalizable versus complex diagonalizable.
3The spectrum of the torus is briefly mentioned in Blier et al. [2021].

76 4.5. Experiments

0.00 0.02 0.04
Approximation error

10
−2

10
−1

10
0

Em
pi

ric
al

 e
xc

es
s

ris
k

0.00 0.02 0.04
Approximation error

0

50

100

Ef
fe

ct
iv

e
D

im
en

si
on

SR Random Features Krylov Basis Bisimulation

Figure 4.3: The Four Rooms domain (left). Median empirical excess risk (middle) and
effective dimension (right) as a function of approximation error for the top k left singular
vectors of the SR, random features, the Krylov basis and the bisimulation metric matrix
in the Four rooms domain.

4.5 Experiments

4.5.1 Comparing State Representations

We now compare the Successor Representation to other theoretically-motivated

representations: the bisimulation metric matrix (Ferns et al., 2004), the Krylov

basis (Petrik, 2007) and some random features, in terms of effective dimension

and excess risk, in the setting of Section 4.2. Figure 4.3 shows some of these

results on the Four Rooms domain [Sutton et al., 1999, Solway et al., 2014]. These

give further weight to the idea that effective dimension plays an important role in

determining the usefulness of a representation, as for a given approximation error

better effective dimension corresponds to better excess risk.

The SR of the Four Rooms domain is fairly well-studied and have been shown

to give rise to effective representations [Machado et al., 2017, Bellemare et al.,

2019]. It generalizes well but has worse approximation error compared to the

Krylov basis or the Bisimulation metric which take into account the reward. For

small approximation errors, the krylov basis has smaller effective dimension and

is performing best. Finally, random features which are agnostic to the structure

of the MDP have very high approximation error making them unappealing.

4. On the Generalization of Representations in Reinforcement Learning 77

DQN(Adam) Rainbow DQN(Nature) IQN M-IQN

0 50 100 150 200
Number of Frames (in millions)

0.2

0.4

0.6

0.8

1.0
Ef

fe
ct

iv
e

D
im

en
si

on
 /

N

 (I
nt

er
qu

ar
til

e
M

ea
n)

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

IQ
M

 H
um

an
 N

or
m

al
ize

d
Sc

or
e

Figure 4.4: Interquartile mean (IQM) [Agarwal et al., 2021b] for the effective dimension,
normalized by the batch size used N = 215 (left). Interquartile mean (IQM) for
human-normalized scores over the course of training across 60 Atari games (right). IQM
measures the mean on the middle 50% of the data points combined across all runs and
games. These statistics are over 5 independent runs and shading gives 95% stratified
bootstrap confidence intervals based on Rliable [Agarwal et al., 2021b].

4.5.2 Deep Reinforcement Learning

We conclude with an empirical evaluation demonstrating the usefulness of our

results in characterizing generalization in a larger setting. Specifically, we measure

the effective dimensions of a representation ϕ implied by a deep neural network. We

consider the hidden layer of 512 rectified linear units learnt by five deep RL agents,

namely DQN [Mnih et al., 2015], DQN with Adam optimizer, Rainbow [Hessel

et al., 2018], IQN [Dabney et al., 2018a], and Munchausen-IQN (M-IQN) [Vieillard

et al., 2020]. We are interested in how the notion of effective dimension explains

the relative performance of these deep RL agents aggregated across 60 Atari

2600 games [Bellemare et al., 2013] and at different points in training until 200M

environment frames [Castro et al., 2018].

We compare estimates of the effective dimension of these representations through-

out training and reported results in Figure 4.4 (Left) (see per game comparison in

Appendix 4.C.2). When computing such estimates, we use a large batch size (=215),

sampled uniformly from the offline Atari-replay datasets [Agarwal et al., 2020], as a

proxy for the ambient dimension S used in the definition of the effective dimension.

We observe that higher performance on a game typically correlates with lower

effective dimension. The relative ordering of effective dimension (Figure 4.4, left)

78 4.5. Experiments

IQN IQN + Feature Reg.

0 50 100 150 200
Gradient Updates (x 62.5k)

0.2

0.4

0.6

0.8

1.0
Ef

fe
ct

iv
e

D
im

en
si

on
 /

N

 (I
nt

er
qu

ar
til

e
M

ea
n)

0 50 100 150 200
Gradient Updates (x 62.5k)

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

 S
co

re

 (I
nt

er
qu

ar
til

e
M

ea
n)

Figure 4.5: Effective dimension, normalized by the batch size N = 215 and performance
of IQN and IQN with feature regularization Lϕ on 17 Atari games in the offline RL
setting.

matches the performance ranking of different agents(Figure 4.4, right). Furthermore,

we can notice a rise in the effective dimension from iteration 50 which suggests

an overfitting of the representation to the current value function, in line with the

evidence of late-training overfitting found by Dabney et al. [2021].

To further corroborate that low effective dimension corresponds to better

generalization, we investigate whether optimizing an auxiliary loss Lϕ, motivated by

the idea of reducing the effective dimension of the learned representation, improves

performance. To do so, we use Lϕ = log∑i exp(∥ϕ(si)∥2
2) for states si in a randomly

sampled mini-batch of size 32. To avoid confounding effects from exploration,

we study the offline RL setting [Levine et al., 2020]. Specifically, we use the 5%

Atari-replay dataset [Agarwal et al., 2020] on 17 games and evaluate IQN, one of the

top performing agents on the offline Atari dataset [Gulcehre et al., 2020]. As shown

in Figure 4.5, right, combining IQN with the loss Lϕ results in significantly higher

average returns compared to IQN on all 17 games. We also compare estimates

of the effective dimension of the representations induced by these two agents in

Figure 4.5, left, and find the auxiliary loss Lϕ results in lower effective dimension

during the first 80 iterations. Surprisingly, we also notice that IQN with feature

regularization prevents the substantial loss in rank of the feature matrix observed

previously by Kumar et al. [2021, 2022] (see Figure 4.13 and Figure 4.12), making

it hard to disentangle between approximation and estimation error effects. Further

study of this phenomenon would be an interesting direction for future work.

4. On the Generalization of Representations in Reinforcement Learning 79

4.6 Conclusion

In this paper we provided a theoretical characterisation of how a given representation

affects generalization in reinforcement learning. While we focused here on the batch

Monte Carlo setting for simplicity, a similar but more involved analysis can in

theory also be performed to analyze algorithms such as LSTD.

Providing fresh evidence regarding the benefits of successor representations in

shaping an agent’s representation, both our analysis and experiments on synthetic

environments demonstrate that indeed, the left-singular vectors of SRs generally

provide good generalization. While natural given the successor representation’s

close relationship with the value function, one surprising result is that the effective

dimension of such a representation is relatively sensitive to the particular transition

structure, as illustrated by the differences between the torus and open room

representations. In addition, the effective dimension of this representation does

not immediately correlate with mixing time, as one might have expected. These

findings suggest that it should be possible to devise algorithms inspired by the same

principles, but that work well across a variety of transition structures, for example

by leveraging contrastive graph representations [Madjiheurem and Toni, 2019].

Our analysis of Atari 2600-playing agents gives further evidence of the important

role played by the representation in deep reinforcement learning. While not a

surprise in itself, we find a strong correlation between effective dimension and

performance, this suggests that generalization is key to explaining many performance

improvements. In particular, it is by now well-understood that auxiliary tasks

[Jaderberg et al., 2017, Bellemare et al., 2017] shape the learned representation of

the agent, and under ideal conditions cause it to match the SVD of an auxiliary

task matrix [Bellemare et al., 2019, Lyle et al., 2021]. Controlling the bound of

Theorem 6 by means of such tasks or deep learning mechanisms such as hindsight

experience replay [Andrychowicz et al., 2017] may provide further performance

improvements. Our results also suggest that it may be possible to derive theoretical

80 4.A. Proofs for Section 4.3

guarantees regarding transfer between policies or MDPs [Taylor and Stone, 2009],

in particular with a learned representation [Agarwal et al., 2021a].

Acknowledgements

The authors would like to thank Matthieu Geist, Mark Rowland, Pablo Samuel

Castro, Ahmed Touati, Marlos Machado, Dale Schuurmans, Robert Dadashi, Tomas

Vaskevicius, Olivier Pietquin, Martha White, Hanie Sedghi, Damien Vincent,

Dominic Richards, Nino Vieillard, Leonard Hussenot, Amartya Sanyal, Sephora

Madjiheurem, Laura Toni and the anonymous reviewers for useful discussions

and feedback on this paper.

We also thank the Python community [Van Rossum and Drake Jr, 1995, Oliphant,

2007] for developing tools that enabled this work, including NumPy [Oliphant, 2006,

Walt et al., 2011, Harris et al., 2020], SciPy [Jones et al., 2001], Matplotlib [Hunter,

2007] and JAX [Bradbury et al., 2018].

4.A Proofs for Section 4.3

This section is dedicated to proving the main theorem on the paper, Theorem 6.

Before that, we introduce and prove a more general result from which Theorem 6

can be deduced as a corollary.

Let s1, ..., sn denote iid draws from an arbitrary distribution ν ∈ P(S) and

(ei)S
i=1 ⊂ RS the standard basis.

Assumption 1. We assume that ν(s) > 0 for all state state s ∈ {1, ..., S}.

Let N := Ei∼ν [eie
T
i], and let ∥x∥ν,2 := ∥N1/2x∥2 for x ∈ RS. Put ν :=

mini=1,...,S νi > 0. Let w∗ := (ΦTNΦ)−1ΦTNV , and also define Ξ := ΦTNΦ. Ξ is

the steady-state feature covariance matrix. w∗ represents the best k-dimensional

model. Since we assume that ν > 0, we have that Ξ is positive definite.

The excess risk E(Vϕ,w) of a hypothesis Vϕ,w : S → R is defined as:

E(Vϕ,w) := Esi∼ν(Vϕ,w(si)− V (si))2.

4. On the Generalization of Representations in Reinforcement Learning 81

For any ŵ ∈ Rk, we have the decomposition:

E(Vϕ,ŵ) = ∥Φŵ − V ∥2
ν,2 = ∥Φ(ŵ − w∗)∥2

ν,2 + ∥Φw∗ − V ∥2
ν,2.

Note we have the identity:

∥Φw∗ − V ∥2
ν,2 = ∥P⊥

N1/2ΦN
1/2V ∥2

2.

Theorem 7. Fix any δ ∈ (0, 1). Suppose that n ⩾ 8deff(Φ) log(6k/δ). Under

Assumption 1, with probability at least 1 − δ, the empirical risk minimizer Vϕ,ŵ

satisfies:

E(Vϕ,ŵ) ⩽ ∥P⊥
N1/2ΦN

1/2V ∥2
2 + 384deff(Φ)

νnS
∥P⊥

N1/2ΦN
1/2V ∥2

2 log(3/δ)

+ 48σ
2

n
[2k + 3 log(3/δ)] + 64

3
deff(Φ)
νn2S

∥N−1/2P⊥
N1/2ΦN

1/2V ∥2
∞ log2(3/δ),

where ∥·∥∞ denotes the usual supremum norm.

Proof. The empirical risk minimizer ŵ ∈ Rk is defined as the random vector

ŵ = (EnΦ)†Y . Next, we write:

N1/2Φ(ŵ − w∗) = N1/2Φ(EnΦ)†(EnV + η)−N1/2Φw∗

Therefore, assuming EnΦ has full column rank (which will be the case by Lemma 9),

N1/2Φ(EnΦ)†EnV −N1/2Φw∗

= N1/2Φ(EnΦ)†EnV − PN1/2ΦN
1/2V

= N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnV − PN1/2ΦN
1/2V

= N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnN
−1/2(PN1/2Φ + P⊥

N1/2Φ)N1/2V − PN1/2ΦN
1/2V

= N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnN
−1/2P⊥

N1/2ΦN
1/2V

+N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnN
−1/2PN1/2ΦN

1/2V − PN1/2ΦN
1/2V

= N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnN
−1/2P⊥

N1/2ΦN
1/2V

= N1/2ΦΞ−1/2(Ξ−1/2ΦTET
nEnΦΞ−1/2)−1Ξ−1/2ΦTET

nEnN
−1/2P⊥

N1/2ΦN
1/2V.

82 4.A. Proofs for Section 4.3

Similarly,

N1/2Φ(EnΦ)†η = N1/2Φ(ΦTET
nEnΦ)−1ΦTET

n η

= N1/2ΦΞ−1/2(Ξ−1/2ΦTET
nEnΦΞ−1/2)−1Ξ−1/2ΦTET

n η.

We first claim that ∥N1/2ΦΞ−1/2∥op ⩽ 1. To see this, observe that:

∥N1/2ΦΞ−1/2∥2
op = λmax(N1/2Φ(ΦTNΦ)−1ΦTN1/2) = λmax(PN1/2Φ) ⩽ 1.

Hence:

∥N1/2Φ(EnΦ)†EnV −N1/2Φw∗∥2 ⩽
∥Ξ−1/2ΦTET

nEnN
−1/2P⊥

N1/2ΦN
1/2V ∥2

λmin(Ξ−1/2ΦTET
nEnΦΞ−1/2) ,

and similarly

∥N1/2Φ(EnΦ)†η∥2 ⩽
∥Ξ−1/2ΦTET

n η∥2

λmin(Ξ−1/2ΦTET
nEnΦΞ−1/2) .

Therefore,

∥N1/2Φ(ŵ − w∗)∥2 ⩽
[∥Ξ−1/2ΦTET

nEnN
−1/2P⊥

N1/2ΦN
1/2V ∥2 + ∥Ξ−1/2ΦTET

n η∥2]
λmin(Ξ−1/2ΦTET

nEnΦΞ−1/2)

By Lemma 9, as long as n ⩾ 8deff(Φ)
νS

log(6k/δ), then with probability at least 1−δ/3,

n

2 Ik ≼ Ξ−1/2ΦTET
nEnΦΞ−1/2 ≼ 4nIk.

Furthermore, by Lemma 10, with probability at least 1− δ/3,

∥Ξ−1/2ΦTET
nEnN

−1/2P⊥
N1/2ΦN

1/2V ∥2 ⩽ 2
√

8ndeff(Φ)
νS

∥P⊥
N1/2ΦN

1/2V ∥2
2 log

(3
δ

)

+ 4
3

√
deff(Φ)
νS

∥N−1/2P⊥
N1/2ΦN

1/2V ∥∞ log
(3
δ

)

Finally, by Lemma 11, with probability at least 1− δ/3,

1
{
Ξ−1/2ΦTET

nEnΦΞ−1/2 ≼ 4nIk

}
· ∥Ξ−1/2ΦTET

n η∥2 ⩽
√
σ2n[8k + 12 log(3/δ)].

4. On the Generalization of Representations in Reinforcement Learning 83

Therefore, by a union bound, with probability at least 1− δ,

∥N1/2Φ(ŵ − w∗)∥2 ⩽
2
n

2
√

8ndeff(Φ)
νS

∥P⊥
N1/2ΦN

1/2V ∥2
2 log

(3
δ

)
+ 2
n

4
3

√
deff(Φ)
νS

∥N−1/2P⊥
N1/2ΦN

1/2V ∥∞ log
(3
δ

)
+ 2
n

[√
σ2n[8k + 12 log(3/δ)]

]

= 4
√

8
√
deff(Φ)
νnS

log(3/δ)∥P⊥
N1/2ΦN

1/2V ∥2

+ 4
√
σ2

n
[2k + 3 log(3/δ)]

+ 8
3

√
deff(Φ)

νS

n
∥N−1/2P⊥

N1/2ΦN
1/2V ∥∞ log

(3
δ

)
.

Now, from the inequality (a+b+c)2 ⩽ 3 (a2 + b2 + c2) for any a, b, c ∈ R, it follows

that

E(Vϕ,ŵ) = ∥P⊥
N1/2ΦN

1/2V ∥2
2 + 384deff(Φ)

νnS
∥P⊥

N1/2ΦN
1/2V ∥2

2 log(3/δ)

+ 48σ
2

n
[2k + 3 log(3/δ)] + 64

3
deff(Φ)
νn2S

∥N−1/2P⊥
N1/2ΦN

1/2V ∥2
∞ log2(3/δ).

Lemma 9. Let Φ ∈ RS×k. Let ν denote a distribution over {1, ..., S} satisfying

Assumption 1 and (ei)S
i=1 ⊂ RS the standard basis. Let s1, ..., sn denote iid draws

from ν. Define Yn ∈ Rk×k as:

Yn =
n∑

i=1
Ξ−1/2ΦTesi

eT
si

ΦΞ−1/2.

Fix any δ ∈ (0, 1). As long as n ⩾ 8deff(Φ)
νS

log(2k/δ), with probability at least 1− δ,

n

2 Ik ≼ Yn ≼ 4nIk.

where for two symmetric matrices, A ≼ B means that the matrice B −A is positive

semi-definite.

84 4.A. Proofs for Section 4.3

Proof. This is an application of the Matrix Chernoff inequality. First, we see that

E[Yn] = nIk. Next, we have:

max
i=1,...,S

λmax(Ξ−1/2ΦTeie
T
i ΦΞ−1/2) = max

i=1,...,S
∥Ξ−1/2ΦTei∥2

2

= max
i=1,...,S

∥(ΦTNΦ)−1/2ΦTei∥2
2

⩽
1
ν

max
i=1,...,S

∥PΦei∥2
2

⩽
deff(Φ)
νS

.

We now make two applications of the Matrix Chernoff inequality (see Theorem 5.1.1

in Tropp [2015]). Denoting e as Euler’s number, for the upper tail, we have that

for any t ⩾ e,

P(λmax(Yn) ⩾ tn) ⩽ k(e/t)tnνS/deff(Φ).

Setting t = 4, we conclude that as long as n ⩾ 1
4 log(4/e)

deff(Φ)
νS

log(2k/δ), then we

have that with probability at least 1− δ/2, λmax(Yn) ⩽ 4n. For the lower tail, we

have that for any t ∈ (0, 1),

P(λmin(Yn) ⩽ tn) ⩽ k exp
(
−(1− t)2n

2
νS

deff(Φ)

)
.

Setting t = 0.5, we see that as long as n ⩾ 8deff(Φ)
νS

log(2k/δ), then λmin(Yn) ⩾ n/2

with probability at least 1− δ/2. Taking a union bound yields the claim.

Lemma 10. Put zn := Ξ−1/2ΦTET
nEnN

−1/2P⊥
N1/2ΦN

1/2V . Fix any δ ∈ (0, e−1/8).

With probability at least 1− δ,

∥zn∥2 ⩽ 2
√

8ndeff(Φ)
νS

∥P⊥
N1/2ΦN

1/2V ∥2

√
log(1/δ)

+ 4
3

√
deff(Φ)
νS

∥N−1/2P⊥
N1/2ΦN

1/2V ∥∞ log(1/δ).

Proof. Define qi := Ξ−1/2ΦTesi
eT

si
N−1/2P⊥

N1/2ΦN
1/2V . We have that E[qi] = 0. Next,

E[∥qi∥2
2] = E[∥Ξ−1/2ΦTesi

∥2
2⟨esi

, N−1/2P⊥
N1/2ΦN

1/2V ⟩2]

⩽
deff(Φ)
νS

E[⟨esi
, N−1/2P⊥

N1/2ΦN
1/2V ⟩2]

= deff(Φ)
νS

∥P⊥
N1/2ΦN

1/2V ∥2
2.

4. On the Generalization of Representations in Reinforcement Learning 85

Finally, we have the following almost sure bound:

∥qi∥2 ⩽

√
deff(Φ)
νS

∥N−1/2P⊥
N1/2ΦN

1/2V ∥∞.

Put zn := ∑n
i=1 qi. By the vector Bernstein inequality, for all t > 0,

P (∥zn∥2 > Zt) ⩽ e−t.

where Zt =
√

ndeff(Φ)
νS
∥P⊥

N1/2ΦN
1/2V ∥2

2(1 +
√

8t) + 4
3

√
deff(Φ)

νS
∥N−1/2P⊥

N1/2ΦN
1/2V ∥∞t.

The claim now follows by setting t = log(1/δ).

Lemma 11. Let G be the event:

G :=
{
Ξ−1/2ΦTET

nEnΦΞ−1/2 ≼ 4nIk

}
With probability at least 1− δ, we have:

1{G} · ∥Ξ−1/2ΦTET
n η∥2

2 ⩽ σ2n[8k + 12 log(1/δ)].

Proof. Put M := 1{G} ·EnΦΞ−1ΦTET
n . Because η is assumed to be independent of

En, we can condition on En and apply the Hanson-Wright inequality [Hsu et al.,

2012] to conclude that for any t > 0,

P(ηTMη > σ2(tr(M) + 2
√

tr(M2)t+ 2∥M∥opt)) | En) ⩽ e−t.

We now compute upper bounds on tr(M), tr(M2), and ∥M∥op. First, we have:

tr(M) = 1{G} tr(EnΦΞ−1ΦTET
n) = 1{G} tr(Ξ−1/2ΦTET

nEnΦΞ−1/2) ⩽ 4nk.

Next,

tr(M2) = 1{G} tr(EnΦΞ−1ΦTET
nEnΦΞ−1ΦTET

n)

= 1{G} tr(Ξ−1/2ΦTET
nEnΦΞ−1/2 · Ξ−1/2ΦTET

nEnΦΞ−1/2)
(a)
⩽ 1{G} tr(Ξ−1/2ΦTET

nEnΞ−1/2Φ)∥Ξ−1/2ΦTET
nEnΦΞ−1/2∥op

⩽ 4nk · 4n = 16n2k.

Above, (a) follows from Hölder’s inequality. Finally,

∥M∥op = 1{G}∥EnΦΞ−1ΦTET
n ∥op = 1{G}∥Ξ−1/2ΦTET

nEnΦΞ−1/2∥op ⩽ 4n.

86 4.B. Proofs for Section 4.4

We now plug these bounds in along with the choice of t = log(1/δ), which tells us

that conditioned on En, with probability at least 1− δ,

ηTMη ⩽ σ2
[
4nk + 8n

√
k log(1/δ) + 8n log(1/δ)

]
⩽ σ2 [8nk + 12n log(1/δ)]

= σ2n [8k + 12 log(1/δ)] .

We now remove the conditioning on En. Let t̄ := σ2n [8k + 12 log(1/δ)]. By the

tower property,

P(ηTMη ⩾ t̄) = E[1{ηTMη ⩾ t̄}] = E[E[1{ηTMη ⩾ t̄} | En]]

= E[P(ηTMη ⩾ t̄ | En)] ⩽ E[δ] = δ.

Theorem 6 is a corollary of Theorem 7 in the case where the distribution

ν is uniform.

Theorem 6 (Excess risk). Fix any δ ∈ (0, 1). Suppose that n ⩾ 8deff(Φ) log(6k/δ).

With probability at least 1− δ, the empirical risk minimizer Vϕ,ŵ satisfies:

E(Vϕ,ŵ) ⩽ ∥P⊥
Φ V ∥2

S,2 + 384cdeff(Φ)
n
∥P⊥

Φ V ∥2
S,2 + 48σ2 2k + 3c

n

+ 64
3
deff(Φ)
n2 ∥P⊥

Φ V ∥2
∞c

2,

where c = log(3/δ) and ∥·∥∞ denotes the usual supremum norm.

Proof. ν being uniform, we have ν = S. The result follows by plugging ν in

Theorem 7.

4.B Proofs for Section 4.4

Lemma 8. Let P ∈ R|S|×|S| be a symmetric row stochastic matrix, and let γ ∈ (0, 1).

Let σ(·) denote the set of singular values of a matrix. We have that:

σ((I − γP)−1) ⊆
[

1
1+γ

, 1
1−γ

]
.

4. On the Generalization of Representations in Reinforcement Learning 87

Proof. Let λ(·) denote the eigenvalues of a matrix. Because P is symmetric, we

have that:

σ((I − γP)−1) =
{

1
1− γλ : λ ∈ λ(P)

}
.

Because P is a row stochastic matrix, we have that the spectral radius of P satisfies

ρ(P) = 1, and therefore λ(P) ⊆ [−1, 1]. Hence:

1
1− γλ ∈ [1/(1 + γ), 1/(1− γ)].

Eigenstructure of the Star Graph (Subsection 4.4.2)

A random walk on the Star graph induces a rank-two transition matrix Pπ ∈ RS.

We may write Pπ = v1e
T
S + eSvT

S−1 where v is an all-ones vector except on its last

coordinate where it takes value 0 and eS a one-hot vector taking value 1 on its

last coordinate. It is easy to prove by induction that

• for any k ⩾ 1, P 2k
π = vvT

S−1 + eSe
T
S

• for any k ⩾ 0, P 2k+1
π = Pπ

From this, it follows that

(I − γPπ)−1 = I +
∞∑

t=1
(γPπ)t

= I +
∑

2k⩾2
γ2kP 2k

π +
∑

2k+1⩾1
γ2k+1(Pπ)2k+1

= I +
∑

2k⩾2
γ2k(vvT

S − 1 + eSe
T
S) +

∑
2k+1⩾1

γ2k+1Pπ

= I + γ2

1− γ2 (vvT

S − 1 + eSe
T
S) + γ

1− γ2Pπ.

Define η := γ
1−γ2 . The non-zero singular values of (I − γPπ)−1 are the square roots

of the eigenvalues of A = (I − γPπ)−1 ((I − γPπ)−1)T. We have

A = (I − γPπ)−1
(
(I − γPπ)−1

)T
=
(
I + γηP 2

π + ηPπ

) (
I + γη(P 2

π)T + ηPT
π

)
= I +B,

88 4.B. Proofs for Section 4.4

where B := avvT + beSe
T
S + c(eSv

T + veT
S) with a = 2ηγ+η2γ2

S−1 + η2, b = 2ηγ + η2γ2 +
η2

S−1 and c = (η + η2γ) S
S−1 .

Moreover, if {λ1, ..., λk} are the eigenvalues of B then the eigenvalues of A

are {1 + λ1, ..., 1 + λk}.

Consider the basis {eS, v}. For any a1, a2,

B(a1eS + a2v) = avvT(a1eS + a2v) + beSe
T
S(a1eS + a2v)

+ c(eSv
T + veT

S)(a1eS + a2v)

= a1a⟨v, eS⟩v + a2a∥v∥2
2v + a1beS + a2b⟨v, eS⟩eS + c(a1⟨v, eS⟩eS

+ a1v + a2∥v∥2
2eS + a2⟨v, eS⟩v)

= (a1b+ ca1⟨v, eS⟩+ a2b⟨v, eS⟩+ a2c∥v∥2
2)eS + (a1a⟨v, eS⟩+ ca1

+ a2⟨v, eS⟩+ a2a∥v∥2
2)v.

Since ∥v∥2
2 = S − 1 and ⟨v, eS⟩ = 0, B has the representation in {eS, v} as:

[
b c(S − 1)
c a(S − 1)

]
=
[
2ηγ + η2γ2 + η2

S−1 (η + η2γ)S
(η + η2γ) S

S−1 2ηγ + η2γ2 + η2(S − 1)

]

=
[

η2

S−1 (η + η2γ)S
(η + η2γ) S

S−1 η2(S − 1)

]
+ (2ηγ + η2γ2)I

= C + (2ηγ + η2γ2)I

Hence, the eigenvalues λ± of C are given by

1
2

η2
(

(S − 1) + 1
S − 1

)
±
√
η4
(

(S − 1) + 1
S − 1

)2
+ 4(η + η2γ)2 S2

S − 1 − 4η4

 .
The non-zero singular values of (I − γPπ)−1 are thus 1 with multiplicity S − 2

and
√
λ± + 2ηγ + η2γ2 + 1. For γ = 0.99 and S = 400, we can check numerically

that the two extreme singular values are equal to 996 and 0.05 respectively which

matches the spectrum obtained for the Star graph in Figure 4.2.

4. On the Generalization of Representations in Reinforcement Learning 89

4.C Empirical Evaluation: Additionnal Details

4.C.1 Graphical Structures

Figure 4.6: Different graphical structures with S = 5 states from left to right, Star, Chain,
Torus1d, Disconnected, Fullyconnected (top). Two-dimensional graphical structures with
S = 9 states: from left to right, Openroom and Torus2d (bottom).

In this section, we study the generalization characteristics of the representations

induced by the SVD of the successor representation for several environment transition

structures. We illustrate the different graphs over which we define a random walk,

studied in Subsection 4.4.2 as well as some new ones, in Figure 4.6.

Our experiment consists in evaluating the value function on these different

transition structures when S = 400 states. We consider three different reward

vectors rπ ∈ RS: the all ones vector, the one-hot feature vector eS, and a vector

whose entries are drawn from zero-mean Gaussian distribution and normalized such

that ∥rπ∥∞ = 1. We then sampled a dataset D of n = 300 pairs (si, yi) where we

performed a Monte Carlo rollout to obtain the returns (yi)n
i=1. The targets are

the value functions induced by the random walk.

We are interested in comparing our generalization bound to the empirical excess

risk on these domains. Our bound looks at the regime n ⩾ deff(Fk). We choose k ⩽ n
2

as an heuristic way of achieving this. We report in Figure 4.7 the approximation

error (Figure 4.7 Left), the empirical excess risk (Figure 4.7 Middle) and the

theoretical excess risk (Figure 4.7 Right) obtained when using the representation

ϕ = Fk on these different graph structures.

90 4.C. Empirical Evaluation: Additionnal Details

Star: Baird’s star graph [Baird, 1995] consists in S − 1 states which are the

star corners and a state S which is the star center. A random walk on this star

graph induces a transition function such that all star corners transition to the

star center and the star center goes to the star corners. There are two extreme

cases in terms of rewards: either the reward is the same for all si, i ̸= S, (e.g.

the all ones reward vector or the one-hot vector eS) or not. If the reward is the

same for all si, i ≠ S, then this is effectively a 2 state structure, so we only really

need 1 feature to distinguish between the value of the star corners and the value

of the star center. However, if the reward is different for all si(i ̸= S) then we

effectively have (S − 1) tuples (si, sS) which can be thought of as independent

graphical structures and we thus expect to need all the features to distinguish

between their values. We can see this in Figure 4.7 that for the all ones reward

vector and the one-hot reward vector eS, the error with k = 1 is very good but

for the Gaussian reward, the error with k = 1 is high.

Chain: This is a S-state connected graph with 2 pendant states and (n− 2)

states of degree two. The shapes of the curves are similar to the Torus1d but we

can notice that the errors are larger for each feature dimension k. This is intuitive

as for instance in the case of an all ones reward vector, the values are not the same

for each state due to the two end states of the chain, implying that more than

one feature is needed to generalize the value function.

Openroom: This is a two-dimensional grid with S states. States strictly

inside the grid have four neighbours. States belonging to one (reps. two) edges

are of degree three (resp. two). As we observed in Figure 4.2, the Openroom

domain does not generalizes as well as the Torus2d which can be explained by

their difference in effective dimension.

Torus1d: This is a wrap-around version of the Chain. State i transitions to

state (i+ 1) mod S and state (i− 1) mod S. We can see that the curve showing

the empirical excess risk (Middle) corresponding to the Gaussian reward vector

has a sweet spot which is also predicted by our theory. Moreover, when all states

have the same reward, their values are identical. Hence, in that case, only one

4. On the Generalization of Representations in Reinforcement Learning 91

feature is enough to have very low error which is shown both empirically and by

our theoretical bound on Figure 4.7.

Torus2d: It is a wrap-around version of the Openroom domain such that each

state has four different neighbors. We can see in Figure 4.2 that the Torus1d

and Torus2d have similar effective dimension but the decay of the singular values

is faster in the case of Torus2d translating into smaller approximation errors in

Figure 4.7 (Middle). This results in overall lower excess risk for the Torus2d

indicating it generalizes in general better than its one-dimensional counterpart.

Just like for the Torus1d, in the case of the Gaussian reward vector, there is a

non trivial optimal number of features k minimizing the excess risk, which we

can notice is smaller than for the Torus1d.

Disconnected: This graph consists of S states that self-transition. We do

not expect the successor representation to generalize well within this MDP as we

cannot leverage knowledge from one feature state to another. This idea was already

captured by the effective dimension shown in Figure 4.2. The plots in Figure 4.7

corroborates this both empirically and theoretically showing that its excess risk

is indeed the highest across all transition structures considered.

Fullyconnected: This is a connected graph of S states where each state can

transition to (S − 1) states. The first singular vector, which is the constant vector,

is very good in terms of effective dimension but the second vector has high effective

dimension. When the rewards are the same in each state, their values are identical.

In that case, one feature is enough to distinguish between the S states leading to

good generalization in that case. Additional features must be misleading as the

excess risks rises significantly from a number of features k = 2.

92 4.C. Empirical Evaluation: Additionnal Details

1 50 100 150 200 250 300 350
Number of features

0.00

0.02

0.04

0.06

0.08

Ap
pr

ox
im

at
io

n
er

ro
r

S=400, MDP=StarMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−3

10−2

10−1

100

101

102

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=StarMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

St
yl

ize
d

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=StarMDP, gamma=0.99

all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0

10

20

30

40

50

Ap
pr

ox
im

at
io

n
er

ro
r

S=400, MDP=Torus1dMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−3

10−1

101

103

105

107

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=Torus1dMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0

10

20

30

40

50

St
yl

ize
d

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=Torus1dMDP, gamma=0.99
all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ap
pr

ox
im

at
io

n
er

ro
r

S=400, MDP=Torus2dMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−4

10−3

10−2

10−1

100

101

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=Torus2dMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

St
yl

ize
d

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=Torus2dMDP, gamma=0.99
all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0

10

20

30

40

Ap
pr

ox
im

at
io

n
er

ro
r

S=400, MDP=ChainMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−3

10−1

101

103

105

107

109

1011

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=ChainMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0

10

20

30

40
St

yl
ize

d
ex

ce
ss

 ri
sk

 e
rro

r
n=300, S=400, MDP=ChainMDP, gamma=0.99

all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0

500

1000

1500

2000

2500

3000

3500

Ap
pr

ox
im

at
io

n
er

ro
r

S=400, MDP=openroom, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−1

100

101

102

103

104

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=openroom, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0

500

1000

1500

2000

2500

3000

3500

St
yl

ize
d

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=openroom, gamma=0.99
all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0

2000

4000

6000

8000

10000

Ap
pr

ox
im

at
io

n
er

ro
r

S=400, MDP=DisconnectedMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

104

108

1012

1016

1020

1024

1028

1032

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=DisconnectedMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0

2000

4000

6000

8000

10000

St
yl

ize
d

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=DisconnectedMDP, gamma=0.99

all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0.00

0.02

0.04

0.06

0.08

Ap
pr

ox
im

at
io

n
er

ro
r

S=400, MDP=FullyConnectedMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−2

10−1

100

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=FullyConnectedMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

St
yl

ize
d

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=FullyConnectedMDP, gamma=0.99

all_ones
one_hot
gaussian

Figure 4.7: Approximation error ∥PFk
V π∥ given a one-hot, all-ones and Gaussian reward

vector and for MDPs with different graphical structures (left). Median empirical excess
risk E(VFk,ŵ) given a one-hot, all-ones and Gaussian reward vector (middle). Theoretical
excess risk for a representation Φk = Fk and a one-hot, all-ones and Gaussian reward
vector (right). The median is over 5 random seeds and shading gives 95% confidence
intervals.

4. On the Generalization of Representations in Reinforcement Learning 93

4.C.2 Full Atari Results

For all experiments, we used the hyperparameters provided by Dopamine [Cas-

tro et al., 2018].

Compute. For our experiments on Atari, we used Tesla V100 GPUs and P100

for all runs. To obtain the pretrained deep representations for each deep RL agent,

we ran a total of 5 runs / game × 60 games / algorithm × 5 algorithms = 1500

runs. Each of these runs takes around 5 days. Additionally, for the auxiliary loss

experiment, we ran a total of 5 runs / game × 5 games / algorithm × 2 algorithms

= 50 runs. In this setting, each run takes around 1 day. Overall, the amount

of compute is of 7050 days of GPU training.

We provide a per-game comparison of the effective dimension of the represen-

tations induced by DQN, DQN (Adam), Rainbow, IQN and M-IQN throughout

training in Figure 4.9 for all 60 Atari games in the online setting to complement

the results presented in Figure 4.4 in the main part of the paper.

For the offline experiment presented in Figure 4.5, we use the same mini-batch

sampled for the temporal-difference loss LTD for computing the auxiliary loss Lϕ.

Our combined loss is then Lα = (1−α)LTD +αLϕ. We ran a hyperparameter sweep

over α on the five games displayed in Figure 4.8 and found that a value of α = 0.1

worked well. We provide per-game training curves for IQN agents for 17 Atari

games in Figure 4.10 as well as the effective dimension (see Figure 4.11) of their

induced representations computed with a batch size of 215. We also complement

these results with the rank of these representations as a function of training in

Figure 4.12 and Figure 4.13 as a proxy for the approximation error.

α= 0.01 α= 0.1 α= 0.0 α= 0.03

0 20 40 60 80 100
Gradient Updates (x 62.5k)

1000

2000

3000

Av
er

ag
e

Sc
or

e

Asterix

0 20 40 60 80 100
Gradient Updates (x 62.5k)

0

20

40

60

Breakout

0 20 40 60 80 100
Gradient Updates (x 62.5k)

−20

−10

0

10

20
Pong

0 20 40 60 80 100
Gradient Updates (x 62.5k)

0

2500

5000

7500

10000

12500

Q*Bert

0 20 40 60 80 100
Gradient Updates (x 62.5k)

0

1000

2000

3000

4000

5000
Seaquest

Figure 4.8: Sweeping over various values of α when adding the auxiliary loss Lϕ to IQN.

94 4.C. Empirical Evaluation: Additionnal Details

DQN(Adam) Rainbow DQN(Nature) IQN M-IQN

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

AirRaid

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Alien

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Amidar

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Assault

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Asterix

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Asteroids

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Atlantis

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

BankHeist

0 50 100 150 200
Iterations

10
0

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

BattleZone

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

BeamRider

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Berzerk

0 50 100 150 200
Iterations

10
0

5 × 10
−1

6 × 10
−1

7 × 10
−1

8 × 10
−1

9 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Bowling

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Boxing

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Breakout

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Carnival

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Centipede

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

ChopperCommand

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

CrazyClimber

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

DemonAttack

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

DoubleDunk

0 50 100 150 200
Iterations

10
0

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

ElevatorAction

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Enduro

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

FishingDerby

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Freeway

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Frostbite

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Gopher

0 50 100 150 200
Iterations

10
0

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Gravitar

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Hero

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

IceHockey

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Jamesbond

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

JourneyEscape

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Kangaroo

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Krull

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

KungFuMaster

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

MontezumaRevenge

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

MsPacman

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

NameThisGame

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Phoenix

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Pitfall

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Pong

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Pooyan

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

PrivateEye

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Qbert

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Riverraid

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

RoadRunner

0 50 100 150 200
Iterations

10
0

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Robotank

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Seaquest

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Skiing

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Solaris

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

SpaceInvaders

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

StarGunner

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Tennis

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

TimePilot

0 50 100 150 200
Iterations

10
0

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Tutankham

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

UpNDown

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Venture

0 50 100 150 200
Iterations

10
0

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

VideoPinball

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

WizardOfWor

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

YarsRevenge

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Zaxxon

Figure 4.9: Average estimate (darker color) of the effective dimension normalized by the
batch size used N = 215 on DQN(Nature), DQN(Adam), Rainbow, IQN and M-IQN on
all 60 Atari games computed using 5 independent runs. Individual runs are shown with a
lighter color.

4. On the Generalization of Representations in Reinforcement Learning 95

0 50 100 150 200
Gradient Updates (x 62.5k)

1000

2000

3000

4000

Av
er

ag
e

Sc
or

e

Asterix

0 50 100 150 200
Gradient Updates (x 62.5k)

500

750

1000

1250

1500

Beam Rider

0 50 100 150 200
Gradient Updates (x 62.5k)

0

20

40

60
Breakout

0 50 100 150 200
Gradient Updates (x 62.5k)

0

1000

2000

3000

4000

Av
er

ag
e

Sc
or

e

Demon Attack

0 50 100 150 200
Gradient Updates (x 62.5k)

−25

−20

−15

−10
Double Dunk

0 50 100 150 200
Gradient Updates (x 62.5k)

0

250

500

750

1000

Enduro

0 50 100 150 200
Gradient Updates (x 62.5k)

−20

−15

−10

−5

Av
er

ag
e

Sc
or

e

Ice Hockey

0 50 100 150 200
Gradient Updates (x 62.5k)

0

100

200

300

400

James Bond

0 50 100 150 200
Gradient Updates (x 62.5k)

0

500

1000

1500

2000

2500

Ms. Pac-Man

0 50 100 150 200
Gradient Updates (x 62.5k)

−20

−10

0

10

20

Av
er

ag
e

Sc
or

e

Pong

0 50 100 150 200
Gradient Updates (x 62.5k)

0

5000

10000

15000
Q*Bert

0 50 100 150 200
Gradient Updates (x 62.5k)

0

10000

20000

30000

40000

Road Runner

0 50 100 150 200
Gradient Updates (x 62.5k)

0

1000

2000

3000

4000

5000

Av
er

ag
e

Sc
or

e

Seaquest

0 50 100 150 200
Gradient Updates (x 62.5k)

200

400

600

800

1000
Space Invaders

0 50 100 150 200
Gradient Updates (x 62.5k)

0

200

400

600

800
Wizard Of Wor

0 50 100 150 200
Gradient Updates (x 62.5k)

5000

10000

15000

20000

25000

Av
er

ag
e

Sc
or

e

Yars's Revenge

0 50 100 150 200
Gradient Updates (x 62.5k)

0

2000

4000

6000

8000
Zaxxon

IQN IQN + Feature Reg.

Figure 4.10: Per-game learning curves of IQN and IQN with feature regularization Lϕ

on 17 Atari games in the offline RL setting.

96 4.C. Empirical Evaluation: Additionnal Details

0 50 100 150 200
Iterations

10
−3

10
−2

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Asterix

0 50 100 150 200
Iterations

10
−4

10
−3

10
−2

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

BeamRider

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Breakout

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

DemonAttack

0 50 100 150 200
Iterations

10
−2

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

DoubleDunk

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Enduro

0 50 100 150 200
Iterations

10
−3

10
−2

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

IceHockey

0 50 100 150 200
Iterations

10
−2

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Jamesbond

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

MsPacman

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Pong

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Qbert

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

RoadRunner

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Seaquest

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

SpaceInvaders

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

WizardOfWor

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

YarsRevenge

0 50 100 150 200
Iterations

10
−2

10
−1

10
0

Ef
fe

ct
iv

e
D

im
en

si
on

 /
N

Zaxxon

IQN IQN+Feature Reg.

Figure 4.11: Per-game effective dimension normalized by the batch size N = 215 of IQN
and IQN with feature regularization Lϕ on 17 Atari games in the offline RL setting, using
5 independent runs. Individual runs are shown with a lighter color.

4. On the Generalization of Representations in Reinforcement Learning 97

0 50 100 150 200
Iterations

10
1

10
2

10
3

R
an

k

Asterix

0 50 100 150 200
Iterations

10
2R

an
k

Breakout

0 50 100 150 200
Iterations

10
2

R
an

k

Pong

0 50 100 150 200
Iterations

10
2R

an
k

Seaquest

0 50 100 150 200
Iterations

10
2

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

R
an

k
Qbert

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

SpaceInvaders

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

Zaxxon

0 50 100 150 200
Iterations

10
2

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

R
an

k

YarsRevenge

0 50 100 150 200
Iterations

10
2

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

R
an

k

RoadRunner

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

MsPacman

0 50 100 150 200
Iterations

10
−2

10
0

10
2

R
an

k

BeamRider

0 50 100 150 200
Iterations

10
1

10
2

10
3

R
an

k

Jamesbond

0 50 100 150 200
Iterations

10
2

R
an

k

Enduro

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

WizardOfWor

0 50 100 150 200
Iterations

10
1

10
2

10
3

R
an

k

IceHockey

0 50 100 150 200
Iterations

10
1

10
2

10
3

R
an

k

DoubleDunk

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

DemonAttack

IQN IQN + Feature Reg.

Figure 4.12: Per-game rank of IQN and IQN with feature regularization Lϕ computed
with a batch size N = 215 on 17 Atari games in the offline RL setting, using 5 independent
runs. Individual runs are shown with a lighter color.

98 4.D. Societal Impact

IQN IQN + Feature Reg.

0 50 100 150 200
Number of Frames (in millions)

100

200

300

400

500

R
an

k
 (I

nt
er

qu
ar

til
e

M
ea

n)

Figure 4.13: Interquartile mean (IQM) [Agarwal et al., 2021b] for the rank of
representations induced by IQN and IQN with feature regularization Lϕ computed
with a batch size N = 215 on 17 Atari games in the offline setting.

4.D Societal Impact

This paper contributes to the fundamental understanding of state representations,

characterizing their generalization capacity. Our work suggests that algorithms

making use of representations minimized by the excess risk bound from Theorem 6

can improve their performance. However, when making the choice of such a

representation, we did not focus on other important factors like the computa-

tional cost of learning these representations, their scalability or the biases these

representations can propagate resulting into possible discriminatory outcomes or

dangerous behaviours. We suggest that practitioners should not only consider our

generalization characterization of representations but also ethical deliberations.

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis
publications. For each publication there should exist a complete statement that is to be filled out and signed by the
candidate and supervisor (only required where there isn’t already a statement of contribution within the paper
itself).

Title of Paper

On the Generalization of Representations in Reinforcement Learning

Publication Status

 □Published □ Accepted for Publication

 □Submitted for Publication □Unpublished and unsubmitted work written
 in a manuscript style

Publication Details

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc G.
Bellemare. On the Generalization of Representations in Reinforcement
Learning. In International Conference on Artificial Intelligence and Statistics
(AISTATS) 2022

Student Confirmation

Student Name:

Charline Le Lan

Contribution to the
Paper

I led the project, wrote large parts of the paper, proved some theoretical results,
implemented and ran experiments on graphs and the four-room domain, generated the
deep RL plots for the paper. Stephen proved some theoretical results and contributed
to the writing of theoretical sections. Adam took part in some discussions during which
we defined the project with all other authors. Rishabh wrote code and ran some deep
RL experiments. Marc advised the project, contributed to writing and provided
feedback on the paper. All authors contributed to the development of the project
through discussions and all authors reviewed the manuscript.

Signature

Date

March 23, 2023

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Professor Marc G. Bellemare

Supervisor comments

Signature

Date

This completed form should be included in the thesis, at the end of the relevant chapter.

13/04/23

With this work Charline demonstrated a strong aptitude at integrating technical elements from
different fields, and changed the way we think about generalization in RL.

99

100

5
A Novel Stochastic Gradient Descent

Algorithm for Learning Principal
Subspaces

101

102

Abstract

Many machine learning problems encode their data as a matrix with a possibly very
large number of rows and columns. In several applications like neuroscience, image
compression or deep reinforcement learning, the principal subspace of such a matrix
provides a useful, low-dimensional representation of individual data. Here, we are
interested in determining the d-dimensional principal subspace of a given matrix
from sample entries, i.e. from small random submatrices. Although a number of
sample-based methods exist for this problem (e.g. Oja’s rule [Oja, 1982]), these
assume access to full columns of the matrix or particular matrix structure such as
symmetry and cannot be combined as-is with neural networks [Baldi and Hornik,
1989]. In this paper, we derive an algorithm that learns a principal subspace from
sample entries, can be applied when the approximate subspace is represented by
a neural network, and hence can be scaled to datasets with an effectively infinite
number of rows and columns. Our method consists in defining a loss function whose
minimizer is the desired principal subspace, and constructing a gradient estimate
of this loss whose bias can be controlled. We complement our theoretical analysis
with a series of experiments on synthetic matrices, the MNIST dataset [LeCun
et al., 2010] and the reinforcement learning domain PuddleWorld [Sutton, 1995]
demonstrating the usefulness of our approach.

5.1 Introduction

Learning compact representations of data while minimizing information loss is at

the heart of machine learning. A common approach for doing so is to learn a

d-dimensional principal subspace that explains most of the variation in the data,

what is known as principal component analysis (PCA). For small datasets, PCA

can be accomplished by computing the singular value decomposition of the relevant

data matrix. For sufficiently large datasets, however, this approach is impractical

and one must instead turn to a stochastic or sample-based procedure.

Streaming PCA algorithms learn an approximate principal subspace by sampling

columns from the data matrix Ψ and performing an incremental update that moves

their approximation closer to the true subspace [e.g. Krasulina, 1970, Oja, 1982,

Gemp et al., 2021, 2022]. Central to these methods is the computation of the inner

product between a full matrix column and the approximate subspace as well as a step

to normalize the basis vectors parametrizing this subspace, making these methods

most suited to problems where there are relatively few matrix rows. Another line of

work learns the principal subspace as the by-product of a low-rank linear regression

problem. In this case, the learner forms a product Φwt where Φ encodes the

approximate subspace and wt is a per-column weight vector; the aim is to minimize

the Euclidean distance between Φwt and the column Ψt [Srebro and Jaakkola, 2003,

Jin et al., 2016, Sun and Luo, 2016]. This approach has been effective for learning

state representations in reinforcement learning [Bellemare et al., 2019, Gelada et al.,

2019, Dabney et al., 2021, Lyle et al., 2021], but can only handle a small number

of columns, owing to the need to store an explicit weight vector for each.

In this paper, we consider the problem of learning a d-dimensional principal

subspace by means of a neural network. Following common usage, we view the

neural network as a mapping from the original input space to a d-dimensional vector

space. We propose a fully sample-based algorithm which exhibits the best of the

two classes of approaches above. Rather than maintain the weight vector wt in

memory, we instead estimate it on-the-fly from samples – effectively making the

5. A Novel Stochastic Gradient Descent Algorithm 105

weight vector implicit. We use the weight vector estimate to construct a gradient

of a suitable loss function, on which we perform stochastic gradient descent in

order to determine an approximation to the d-dimensional principal subspace. Key

to our approach is the derivation of the gradient in terms of Danskin’s theorem.

Although the naive plug-in gradient fails to be an unbiased estimate and can

perform quite poorly in practice, an unbiased estimate is obtained by constructing

two independent weight vector estimates. These estimates are derived from a

technique known as the LISSA (Linear (time) Stochastic Second-Order Algorithm,

see Agarwal et al. [2017]) that we apply to produce a sequence of asymptotically-

unbiased estimators of the inverse covariance matrix (Φ⊤Φ)†. Based on its origins,

we call the result the Danskin-LISSA algorithm.

In Section 5.5, we show that our algorithm can recover the principal subspace

of synthetic matrices and of MNIST images, while only observing a small subset

of the data matrix at each update. We further demonstrate the effectiveness of

our method for representation learning in reinforcement learning, specifically by

learning a neural network-based approximation to the principal subspace of the

successor measure [Blier et al., 2021] in the Puddle World domain [Sutton, 1995].

5.2 Background

5.2.1 Problem Statement

We consider a collection of column functions {ψt ∈ RS}t∈T where T is an index

set, and where each function ψt maps row indices to real values. For instance, ψt

can be one observation or one data point from the data matrix Ψ. We assume that

the column indices and the row indices are drawn i.i.d from a distribution λ on

T and ξ on S respectively 1. For a given integer d ∈ N and a row representation

ϕ : S → Rd, we define the representation loss

L(ϕ) = E
t∼λ

[
min

wt∈Rd
E

s∼ξ

[
(ϕ(s)⊤wt − ψt(s))2

]]
. (5.1)

1We assume that ξ(s) > 0 for all row indices s ∈ S and that λ(t) > 0 for all column indices
t ∈ T .

106 5.2. Background

The representation loss describes the approximation error incurred by fitting the

column function ψt with the d-dimensional linear approximation ϕ(s)⊤wt, on

average over draws from λ. Here, we are interested in determining a d-dimensional

representation ϕ that minimises L(ϕ) among all such representations.

For now, let us consider the case in which S and T are of finite sizes S and

T , respectively. In this case, we may write Φ ∈ RS×d for the feature matrix

whose rows are
(
ϕ(s)

)
s∈S

and Ψ ∈ RS×T for the data matrix whose columns

are
(
ψt

)
t∈T

. If additionally W ∈ Rd×T is a weight matrix, then finding the

function ϕ that minimizes Equation (5.1) is equivalent to jointly minimizing the

loss L(Φ,W) over Φ and W , where

L(Φ,W) = ∥Ξ1/2(ΦW −Ψ)Λ1/2∥2
F . (5.2)

Here, Ξ ∈ RS×S (resp. Λ ∈ RT ×T) is a diagonal matrix with entries {ξ(s) : s ∈ S}

(resp. {λ(t) : t ∈ T }) on the diagonal. For a given Φ, we write

W ∗
Φ ∈ arg min

W ∈Rd×T

L(Φ,W) L(ϕ) = L(Φ,W ∗
Φ). (5.3)

From standard linear algebra (see Lemma 14 in Appendix 5.A), in closed form we

have

W ∗
Φ = (Φ⊤ΞΦ)†Φ⊤ΞΨ. (5.4)

Note that this expression does not depend on the column distribution Λ. We will

use this matrix form to derive a gradient-based algorithm in the next section.

Equation (5.2) describes a weighted low-rank approximation problem [Srebro

and Jaakkola, 2003]. Its solutions are the set of matrices Φ whose columns span

the d-dimensional subspace of left singular vectors of Ψ with respect to the inner

product (x, y)Ξ = xTΞy (see Proposition 1 in Appendix 5.A for a proof). If in

addition the columns of Ψ have mean zero, this corresponds to determining the

subspace spanned by the d principal components of Ψ. Consequently, in the finite

case our objective is to find a state representation whose implied feature matrix has

5. A Novel Stochastic Gradient Descent Algorithm 107

columns that span this subspace. As we will see, one advantage of this objective

over the more usual Rayleigh quotient in the case d = 1,

E
s,s′∼ξ,t∼λ

[
ϕ(s)ψt(s)ψt(s′)ϕ(s′)],

is that its gradient incorporates an error term Es∼ξ,t∼λ[(ϕ(s)⊤wt − ψt(s))w⊤
t] that

is naturally zero at a minimizer.

5.3 PCA from Samples

We assume access to a model from which we may repeatedly sample row indices

according to the distribution ξ and the values taken on at those row indices by

column functions sampled from λ. We are interested in the setting in which it is

undesirable or impossible to sample the entire collection of column functions for

a given state, or an entire column function all at once. This is different from the

setting that approaches such as Oja’s method [Oja, 1982] or the recent EigenGame

[Gemp et al., 2021] have considered for their experiments, which in matrix terms

assume that it is possible to sample entire rows or columns from Ψ (for a longer

discussion on prior work, see Section 5.4).

Let us begin by expressing the gradient of the loss function L(Φ,W). In

matrix form, this is

∇ΦL(Φ,W) = 2Ξ(ΦW −Ψ)ΛW⊤ (5.5)

∇WL(Φ,W) = 2Φ⊤Ξ(ΦW −Ψ)Λ (5.6)

When the number of columns T is small, finding an optimal ϕ can be accomplished

by optimizing the loss function L(Φ,W) using a nested or two-timescale optimization

procedure based on unbiased estimates of these gradients. For example, the

pair of update rules

ϕ(s)← ϕ(s)− α(ϕ(s)⊤wt − ψi(s))wt

wt ← wt − βϕ(s)(ϕ(s)⊤wt − ψi(s)) (5.7)

108 5.3. PCA from Samples

finds an optimal representation ϕ under suitable conditions on the step-sizes α

and β. This is because the loss L(Φ,W) is convex in W when Φ is fixed and

the two-timescale algorithm allows us to approximately run gradient descent on

the objective we care about.

When T is large (or infinite), however, it may be expensive (or impossible) to

store a separate weight vector for each column. Instead, we rely on a form of the

gradient of the loss L(ϕ) in which the weight vector is implicit.

Lemma 12. Let β > 0 be a regularization parameter. The loss L : RS×d → R

defined by

L(Φ) = min
W ∈Rd×T

(
∥Ξ1/2(ΦW −Ψ)Λ1/2∥2

F + β∥W∥2
F

)
(5.8)

is continuously differentiable, with gradient

∇ΦL(Φ) = 2Ξ(ΦW ∗
Φ −Ψ)ΛW ∗

Φ
⊤ ,

where

W ∗
Φ = (Φ⊤ΞΦ + βI)−1Φ⊤ΞΨ . (5.9)

Proof. The proof is similar to the one of Danskin’s theorem [Danskin, 2012]. By

linear algebra, the unique minimizer W ∗
Φ in Equation (5.8) is given by Equation (5.9),

which is itself differentiable with respect to Φ. By the chain rule, we have

∇ΦL(Φ) = ∇ΦL(Φ,W ∗
Φ) +

(
∂W ∗

Φ
∂Φ

)⊤
∂

∂W ∗
Φ
L(Φ,W ∗

Φ).

Now, since W ∗
Φ is defined as the (unconstrained) minimizer of L(Φ,W ∗

Φ), its gradient

with respect to the second argument vanishes at W ∗
Φ, and so second term is zero.

The result then follows from the definition of ∇ΦL(Φ,W) in Equation (5.5).

The idea is to use an instantaneous estimate of W ∗
Φ to update the row repre-

sentation in the negative direction of the (estimated) gradient of L(ϕ). As we will

see, such an estimate can be obtained by sampling as little as a single column

5. A Novel Stochastic Gradient Descent Algorithm 109

and a small number of rows. In effect, given a sample row index s our goal is

to obtain a gradient estimate ĝ(s) such that

ϕ(s)← ϕ(s)− αĝ(s) (5.10)

should converge to an optimal representation under suitable conditions on the time-

varying step-size α. In Subsection 5.5.3, we will discuss how Equation (5.10) can

be applied to learn parametrized row representations such as those described

by neural networks.

Before describing our approach, it is worth noting that the procedure that

naively estimates W ∗
Φ from a subset of rows and columns results in a biased gradient

estimate. That is, suppose we are given the sample row indices s, s′, s1, . . . sn and

sample column t. If we write Φ̂ for the matrix whose rows are ϕ(s1), . . . , ϕ(sn) and

construct the empirical covariance matrix Ĉ = Φ̂⊤Φ̂, then we find that the estimate

ĝnaive(s) = ŵt

(
ϕ(s)⊤ŵt − ψt(s)

)
ŵt = Ĉ†ϕ(s′)ψt(s′) (5.11)

is not an unbiased estimate of ∇ϕ(s)L(Φ) because each factor is not independent

from each other. In fact, the bias can be quite substantial when n is small, as

we empirically show in Section 5.5.

5.3.1 An Improved Gradient Estimate

One issue with the estimate of Equation (5.11) is that the estimated weight vector

ŵt is itself a largely biased estimate of the optimal weight vector for column t (that

is, the tth column of W ∗
Φ, W ∗

Φ,t). Conversely, unbiasedness is obtained if ŵt satisfies

E[ŵt] = W ∗
Φ,t,

and if the term ŵ⊤
t is an independent, also unbiased estimate of W ∗

Φ,t
⊤ in Lemma 12.

To reduce the bias of the naive estimate, we will construct two low-biased estimates

of the inverse covariance matrix (Φ⊤Φ)†, Ĉ and Ĉ ′, from which we derive two

independent weight estimates ŵt and ŵ′
t.

110 5.3. PCA from Samples

Before we explain how to obtain these estimates, let us describe our algorithm

at a high level. We begin by drawing three row indices s, s′, s′′ and a column index

t. We then construct the weight estimates

ŵt = Ĉϕ(s′)ψt(s′) ŵ′
t = Ĉ ′ϕ(s′′)ψt(s′′),

and then the gradient estimate

ĝdl(s) = ŵ′
t

(
ϕ(s)⊤ŵt − ψt(s)

)
. (5.12)

which uses two LISSA estimators [Agarwal et al., 2017] to construct independent

weight estimates by application of Danskin’s theorem. In effect, using two separate

weight estimates effectively allows us to estimate the outer product W ∗
Φ,t

(
W ∗

Φ,t

)⊤

appearing in Lemma 12 with a very low bias and hence obtain a gradient estimate

that is overall low-biased, up to a multiplicative factor that we fold into the

step-size parameter.

Theorem 8. Let es ∈ RS denote a basis vector. Given two independent unbiased

estimates Ĉ and Ĉ ′ of the inverse covariance, for s ∼ ξ, the gradient estimate ĝDL(s)

given in Equation (5.12) satisfies

E[esĝdl(s)⊤] = Ξ(ΦW ∗
Φ −Ψ)ΛW ∗

Φ
⊤.

Note that the estimate ĝdl(s) does not require the set of columns T to be finite.

As such, our procedure can also be used to learn the principal components of infinite

sets of columns; we will demonstrate this point in Subsection 5.5.3.

5.3.2 Estimate of the Weight Vector W ∗
Φ,t

We begin by deriving a procedure which, given access to a stream of sample row

representations
(
ϕ(sj)

)∞

j=1
, asymptotically produces an unbiased estimate of the

optimal weight vector for a given column t.

Central to our procedure is an estimate Ĉ of the inverse covariance matrix

(Φ⊤ΞΦ)†. We construct this estimate by embedding what is known as the LISSA

estimator [Agarwal et al., 2017, originally used to estimate the Hessian inverse].

5. A Novel Stochastic Gradient Descent Algorithm 111

Our algorithm is parameterised by two scalars, κ and J , which trade off estimator

variance with sample complexity. All proofs can be found in Appendix 5.B.

To begin, consider an arbitrary matrix Φ ∈ RS×d and denote ∥·∥op the spectral

norm. For any 0 < κ < 2∥Φ⊤ΞΦ∥−1
op , the Moore-Penrose pseudo-inverse of (Φ⊤ΞΦ)†

has a Neumann series expansion of the form

(Φ⊤ΞΦ)† = κ
∞∑

i=0
(I − κΦ⊤ΞΦ)i. (5.13)

Here, κ is a scaling parameter that ensures the convergence of the series. Denoting

Sj the first j terms of the above series, we have that

Sj = κI + (I − κΦ⊤ΞΦ)Sj−1.

We use this observation to build an estimator of (Φ⊤ΞΦ)† with access to a finite

number of samples from S.

Definition 12 (LISSA estimator). Let Φ ∈ RS×d be a feature matrix. Let s1:J =

{s1, s2, ..., sJ} be J i.i.d. row indices sampled from ξ. Let κ0 ∈ (0, 2) and κ =

κ0/ sups1:J
∥ϕ(si)∥2

2. The j-LISSA estimator ∆̂j is recursively given by

∆̂0 = κI

∆̂j = κI + (I − κϕ(sj)ϕ(sj)⊤)∆̂j−1, 0 < j ⩽ J. (5.14)

Lemma 13 (Bias of LISSA). For 0 < κ < sups1:J
2∥ϕ(si)∥−2

2 , the bias of ∆̂j with

respect to (Φ⊤ΞΦ)† is given by

E(∆̂j)− (Φ⊤ΞΦ)† = −(Φ⊤ΞΦ)†(I − κΦ⊤ΞΦ)j+1

In particular, this bias asymptotically vanishes, in the sense that

lim
j→∞

E(∆̂j)− (Φ⊤ΞΦ)† = 0.

112 5.3. PCA from Samples

While for any finite value of J , the LISSA estimator ∆̂j is not an unbiased

estimate, Lemma 13 establishes that its bias can be made arbitrarily small with

enough samples. In our experiments, we will show that with few row samples

this results in substantially better convergence compared to a naive estimate

of the covariance matrix.

In Definition 12, the parameter κ controls the rate of convergence of the full

Neumann series: larger values of κ result in faster convergence, requiring fewer

samples to obtain an estimate that has little bias with regards to the inverse

covariance matrix. However, larger values of κ (κ is bounded above as per

Definition 12) also produce estimators that have higher variance. Although here

we consider the simplest setting in which a single sample is used at each iteration

j in Equation (5.14), the variance of the estimator can of course be reduced by

using several samples per iteration.

5.3.3 Algorithm Based on LISSA

Provided that we use the LISSA procedure twice to construct two independent

estimates ŵt, ŵ′
t of the optimal weight vector W ∗

Φ,t, it is straightforward to demon-

strate that ĝdl(s) (Equation (5.12)) becomes an unbiased estimate of the gradient

of the loss L(Φ) as J → ∞; furthermore, for finite J its bias is controlled as a

consequence from Lemma 13. We may then perform gradient descent with this

estimate, adjusting the sth row of the matrix Φ according to

ϕ(s)← ϕ(s)− αĝdl(s), (5.15)

where α ∈ [0, 1) is a suitable step size. Based on our derivation, we call this procedure

the Danskin-LISSA algorithm. In practice, it is usually desirable to update ϕ for

N > 1 rows at once and use M > 1 samples to estimate ŵi and ŵ′
i; we give this

more general form in Algorithm 1. Note that while larger values of J are desirable

in order to reduce estimation bias, larger values of M and N contribute to reducing

the variance of the gradient estimate ĝdl and speeding up the learning process.

5. A Novel Stochastic Gradient Descent Algorithm 113

An important case is when the row representation ϕ is given by a mapping

that is parametrized by a collection of weights θ, in particular a neural network.

In this case, Equation (5.15) should be replaced by an update rule that adjusts

the weights θ. In practice, this can be done by determining the Jacobian ∂ϕ
∂θ

of

ϕ with respect to the weights θ, and applying the update

θ ← θ − α∂ϕ
∂θ
ĝdl(s).

An alternative particularly suited to automatic differentiation frameworks [Bradbury

et al., 2018, Abadi et al., 2016, Paszke et al., 2019], is to define a loss function whose

gradient corresponds to ∂ϕ
∂θ
ĝdl(s). One can verify that the sample loss function

1
2

(
ℓ(ŵt + ŵ′

t)− ℓ(ŵt)− ℓ(ŵ′
t)
)

ℓ(w) =
(
ϕ(s)⊤sg(w)− ψt(s)

)2

satisfies this requirement, where sg denotes the stop-gradient operation (in the

sense that ∇θsg(w) = 0). Additionally, the recursion in Equation (5.14) can be

implemented efficiently by first computing the vector-matrix product ϕ(sj)⊤∆̂j−1

and then taking the outer product of the result with ϕ(sj).

Algorithm 1: Danskin-LISSA
1: Parameters: Dimension d ∈ N+, J,M,N ∈ N+, α, κ0 ∈ (0, 2)
2: repeat
3: Sample independent rows s1:N , s

′
1:M , s

′′
1:M ∼ ξ

4: Sample a column t ∼ λ
5: Ĉ ← lissa(κ0, J)
6: Ĉ ′ ← lissa(κ0, J)
7: wt = Ĉ

M

∑M
k=1 ϕ(s′

k)ψt(s′
k)

8: ŵ′
t = Ĉ′

M

∑M
k=1 ϕ(s′′

k)ψt(s′′
k)

9: ĝ2lissa(sk) = ŵ′
t

(
ϕ(sk)⊤ŵt − ψt(sk)

)
10: ϕ(sk)← ϕ(sk)− αĝdl(sk) for k = 1, . . . , N
11: until satisfied

114 5.4. Related Work

5.4 Related Work

LISSA Estimator. Agarwal et al. [2017] consider an empirical risk minimization

problem with convex functions and rely on a Taylor expansion to estimate an

Hessian Inverse. Our method contrasts with the paper from Agarwal et al. [2017]

in several ways. Our algorithm consists in constructing an unbiased estimate of

the gradient of a least square objective where the weights are expressed implicitly

(non convex objective). To do so, we estimate the pseudoinverse of a covariance

matrix by following an observation from Agarwal et al. [2017]. We write it as

a Neumann series in a recursive formulation, and combine it with an unbiased

estimate of the covariance from one row sample.

Streaming PCA. Oja [1982] and Krasulina [1970] proposed the original streaming

PCA algorithms. They approximate the top eigenvector of a matrix through a

stochastic approximation of the power method. Tang [2019] extends this method to

other principal components but requires explicit normalization. Amid and Warmuth

[2020] extends it without the need to explicitly performing orthonormalization after

each gradient step at the cost of a batch having to be of size 1.

Pfau et al. [2019] recovers the subspace spanned by the top eigenfunctions of

symmetric infinite dimensional matrices by parametrizing them with neural networks

and performing gradient descent on a kernel-based loss. It is itself a generalization

of slow feature analysis [Wiskott and Sejnowski, 2002] in the tabular setting. Deng

et al. [2022] extends the objective from Gemp et al. [2021] to the function space

and propose an algorithm to learn the top d-eigenfunctions of symmetric matrices

by representing them with d neural networks. To find the principal subspace of

a general infinite dimensional matrix Ψ, the approaches above require computing

eigenfunctions of ΨΨT , which requires full row access to Ψ. By contrast, our

method can recover the principal subspace of any infinite dimensional matrix using

samples entries from rows of Ψ.

5. A Novel Stochastic Gradient Descent Algorithm 115

Low-rank Matrix Completion. In this setting, we observe a subset of entries

from a data matrix and aim to find a low-rank matrix that matches these observations

[Srebro and Jaakkola, 2003]. Matrix factorization is a common technique to solve

this problem where the matrix of interest is expressed as a product ΦW . It can be

solved efficiently by standard optimization algorithms [Sun and Luo, 2016]. Hardt

[2014], Jain et al. [2013] rely on alternating minimization over the representation

and weight matrices and guarantee convergence towards the true matrix. Other

methods perform gradient descent [Li et al., 2019, Ye and Du, 2021] or stochastic

gradient descent [Jin et al., 2016, Ge et al., 2015, De Sa et al., 2015]. Keshavan et al.

[2010], Keshavan and Oh [2009] minimize simultaneously over the representation

Φ and the weights W by gradient descent. Dai and Milenkovic [2010] first solves

the inner optimization problem and find the optimal weight matrix W and then

takes a gradient step on the outer optimization problem, with respect to the

representation matrix Φ. The Grassmannian Rank-One Subspace Estimation

(GROUSE) algorithm [Balzano et al., 2010] is a stochastic manifold gradient descent

algorithm for tracking subspaces from incomplete data which was recently shown

to be equivalent to Oja’s algorithm [Balzano, 2022]. In comparison, we consider

the problem of learning low-dimensional embeddings of higher dimensional vectors

through neural networks and propose an optimization procedure which performs

gradient descent on the representation matrix Φ only and where the weight matrix

W ∗
Φ is expressed implicitly, as a function of Φ.

5.5 Experiments

We now conduct an empirical evaluation demonstrating that the Danskin-LISSA

algorithm described in Section 5.3 recovers the d-dimensional principal subspace

of different types of data: synthetic matrices, MNIST images [LeCun et al., 2010]

and the successor measure for the modified PuddleWorld domain [Sutton, 1995]. In

all cases, we measure convergence using the normalized subspace distance [Tang,

116 5.5. Experiments

103 104 105 106

Number of Training Steps

10−3

10−2

10−1

100

Su
bs

pa
ce

 D
ist

an
ce

Exponentially Decaying Spectrum

103 104 105 106

Number of Training Steps

10−1

100

Su
bs

pa
ce

 D
ist

an
ce

Linearly Decaying Spectrum

Dimension d
1 5 10 15 20 25

103 104 105 106

Number of Training Steps

10−3

10−2

10−1

100

Su
bs

pa
ce

 D
ist

an
ce

Exponentially Decaying Spectrum

103 104 105 106

Number of Training Steps
10−2

10−1

100

Su
bs

pa
ce

 D
ist

an
ce

Linearly Decaying Spectrum

Number of Samples per Update
5 25 50 100 200 250

Figure 5.1: Subspace distance over the course of training LISSA for different dimensions
(left, L = 25, J = M = N = 5) and for different total number of samples per update
(right, d = 10) on synthetic matrices with a spectrum decaying linearly and exponentially,
averaged over 30 seeds. Shaded areas represent estimates of 95% confidence intervals.

2019] between Φ and the principal subspace of Ψ:

1− 1
d
· Tr

(
FdF

⊤
d PΦ

)
∈ [0, 1].

Here, Fd are the top-d left singular vectors of Ψ and PΦ = (Φ⊤Φ)†Φ⊤ is the

orthogonal projector onto the column space of Φ. For simplicity, we take M =

N = J in all experiments. The parameter κ = κ0/maxs∈s1:J ∥ϕ(s)∥2
2, where κ0 is a

hyperparameter, is computed from the sampled feature vectors but we note that

it can also be estimated online by a running average.

5.5.1 Synthetic Matrices

To begin, we consider a random matrix Ψ ∈ R50×50 whose entries are sampled from

a standard normal distribution. In order to study our algorithm’s behaviour under

different conditions, we follow Gemp et al. [2021] and set the matrix’s singular values

from 1000 to 1 linearly or exponentially (see Appendix 5.C.1 for more details). We

selected the step size α = 0.001 and the parameter κ0 = 1.9 from a hyperparameter

sweep. Figure 5.5 in Appendix 5.C.1 compares performance for different values

of κ0, in particular illustrating how κ0 > 2 fares poorly.

Figure 5.1, left illustrates that the Danskin-LISSA algorithm successfully recovers

the d-dimensional principal subspace given sufficiently many training steps, with

smaller values of d being easier to learn for the exponentially decaying spectrum

(results for d ⩾ 25 are given in Appendix 5.C.1). However, we see that learning the

5. A Novel Stochastic Gradient Descent Algorithm 117

0 100 200
Total Number of Row Samples L

0.0

0.2

0.4

0.6

0.8

1.0

Su
bs

pa
ce

 D
ist

an
ce

Exponentially Decaying Spectrum

0 100 200
Total Number of Row Samples L

Linearly Decaying Spectrum

Method
Naive
Danskin-Empirical
Danskin-LISSA

Figure 5.2: Subspace distance (d = 10) after 106 training steps according to the method
used to estimate the loss gradient. Here, the x axis represents the total number of row
samples L from the Φ matrix with J = M = N (L = 2J + 2M + N for the Danskin
methods, J + M + N for the naive method). Shaded areas represent estimates of 95%
confidence intervals. Note that because we are sampling with replacement, the gradient
estimate for L = 250 still differs from the gradient given in Lemma 12. (The naive
method diverges for very small values of L).

subspace spanned by a representation of dimension d = 25 is easier than d = 1 for

linearly decaying spectrum. Figure 5.1 right demonstrates that empirically, it is

possible to obtain a reasonable approximation of the principal subspace even for a

very smaller number of samples (J = 1 being the extreme), despite our theoretical

expectation of a biased covariance estimate. As described in Section 5.3, the

Danskin-LISSA approach stems from a combination of several algorithmic concepts.

First, it uses two independent estimates of the weight vectors. Second, it embeds a

LISSA procedure to estimate the inverse covariance matrix. To understand better

their relative importance in the performance of the Danskin-LISSA algorithm, we

compare it to two sample-based baselines which have access to the same amount of

information and memory. The first one uses the naive gradient estimator described in

Section 5.3. The second uses two separate weight estimates, following the derivation

from Danskin’s theorem, but uses the inverse of the empirical covariance matrix

rather than the LISSA procedure used in the Danskin-LISSA method – accordingly,

we call this the Danskin-Empirical method. Figure 5.2 illustrates the bias-reducing

advantage of the LISSA covariance estimator, in particular in the low-sample regime.

The naive method, which constructs a single weight estimate, has high bias and

underperforms compared to both of these methods.

118 5.5. Experiments

103 104 105 106

Number of Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
bs

pa
ce

 D
ist

an
ce

Eigengame*

Num. Pixels
32
64
128 Gr

ou
nd

Tr

ut
h

Tr
ue

Su
bs

pa
ce

LI
SS

A
(6

4
pi

xe
ls)

Figure 5.3: Training curves for LISSA on MNIST (d = 16) that updates only a subset
of pixels at a time (left). ∗: see main text. Reconstruction on MNIST test images (right).
First row show samples from test images. Second are images reconstructed from the true
principal components of Ψ and third row are images reconstructed from the principal
components learnt by Danskin-LISSA (N = 64). Reconstruction MSE errors for true
components and Danskin-LISSA are 21.46 and 21.53 respectively.

5.5.2 MNIST Dataset

We now consider learning the principal subspace of MNIST images from a training

dataset with the Danskin-LISSA algorithm. We represent the data as a matrix

Ψ ∈ R784×60000 where each column is a 28 × 28 sample image (flattened to size

784) of one of the ten possible digits and from which the mean image has been

subtracted. To accelerate learning speed we use the second-order Adam optimizer

[Kingma and Ba, 2015]. Figure 5.3 shows that it is possible to effectively learn

the principal subspace of this data even while updating as few as 32 pixels (rows)

at a time; naturally, using more samples per step results in improved learning

speed. As a point of comparison, we provide the subspace distance obtained by

Eigengame [Gemp et al., 2021], a state-of-the-art method that performs PCA by

sampling full columns (images) at a time.

To quantify the goodness of the representation learnt on the MNIST training set,

we use it to reconstruct MNIST images on the test set. Denoting Ψtest ∈ R784×10000

the test dataset and Φ ∈ R784×d a representation learnt from the training set,

the reconstructed images on the test set are given by PΦΨtest where PΦ denotes

the orthogonal projector onto the column space of Φ. Figure 5.3, right, shows

that the MNIST digits reconstructed from the subspace learnt by Danskin-LISSA

qualitatively look similar to the images reconstructed from the true principal

components of the training set and achieve a similar reconstruction error.

5. A Novel Stochastic Gradient Descent Algorithm 119

5.5.3 Learning the Successor Measure

In reinforcement learning (RL), the successor representation [Dayan, 1993] encodes

an agent’s future trajectories from any given state in terms of the vistation frequency

to various states. Of immediate relevance, it is often used as a building block in

representation learning for RL, in particular by directly learning its principal

subspace [Mahadevan and Maggioni, 2007, Behzadian and Petrik, 2018, Machado

et al., 2018]. Its extension to continuous state spaces is called the successor measure

[Blier et al., 2021], and is naturally described by an infinite dimensional matrix.

Our last experiment illustrates how the Danskin-LISSA algorithm can be used

to approximate the principal subspace of the successor measure of the Puddle

World domain [Sutton, 1995].

In our version of this environment, traversing puddles requires more time,

resulting in asymmetric successor measure; details of the environment and the

reinforcement learning framework are given in Appendix 5.C.3. Here, s ∈ [0, 1]2 cor-

responds to a particular two-dimensional state in the environment. For a collection

of sets X = {X ⊂ [0, 1]2} to be described below, we define the successor measure as

Ψ(s,X) =
∑
t⩾0

γt P (St ∈ X |S0 = s) , γ ∈ (0, 1)

The successor measure describes the expected, discounted number of visits to

the set X when the agent begins in state s and moves randomly. We take γ =

0.99. Compared to the experiments of the previous sections, we parametrize the

representation by a neural network. We are interested in understanding the degree to

which this neural network can be trained to approximate the d-dimensional principal

subspace of the successor measure. We take the collection X to be the set of non-

overlapping cells of a 100× 100 grid (illustrated by Figure 5.4). For computational

reasons, we assign the same value of Ψ(·, X) to all states within a grid cell; this value

is computed by 1, 000 truncated Monte-Carlo rollouts from a start state sampled

uniformly at random within a cell. This produces a 10, 000× 10, 000 matrix which

we treat as ground truth for measuring the accuracy of our predicted subspace.

120 5.5. Experiments

0 5 10 15 20 25
Dimension d

10−2

10−1

100

Su
bs

pa
ce

 D
ist

an
ce

Method
Danskin-LISSA
Explicit
Large Batch

Figure 5.4: The Puddle World domain [Sutton, 1995], with the shaded area indicating
regions where the agent moves slowly (left). In our experiments, each grid cell is
associated with a column of the implied data matrix. Subspace distance as a function
of the dimension d after 108 gradient steps for three methods: Danskin-LISSA, Explicit,
and the Large Batch baseline (right).

To gain an understanding of the effectiveness or our method, we compare it with

two other gradient-based methods commonly used in reinforcement learning. As the

name indicates, the Explicit method maintains a weight vector wi for each column

and relies on the pair of updates from Equation (5.7), similar to the method used

by Bellemare et al. [2019], Lyle et al. [2021]. Note that we present this method only

for completeness, as it is not applicable to an infinite number of columns and may

otherwise carry an impractically large memory cost. The Large Batch method, on

the other hand, estimates the weight vector wi using ϕ and Ψ evaluated at center of

each of the 10,000 grid cells (close in spirit to the Naive method of Subsection 5.5.1).

All three methods use Adam [Kingma and Ba, 2015] to optimize a two-layer

MLP with 512 hidden units and ReLU activations. We take J = M = N = 50

for Danskin-LISSA and N = 250 for the two other methods. The step size α was

tuned for each method according to a small hyperparameter sweep and after 108

gradient steps averaged across 5 runs. Details outlining these sweeps and complete

experimental methodology can be found in Appendix 5.C.

Figure 5.4, right compares the final subspace distance of these three algorithms

for various values of d. We find that the performance of the Danskin-LISSA

algorithm degrades gracefully as d is increased, while the Large Batch method is

only practical for small values of d. In part, this is explained by the fact that even

with such a large batch, there is a residual bias in the latter method’s covariance

5. A Novel Stochastic Gradient Descent Algorithm 121

estimate. The poor performance of the Explicit method is explained by the fact that

a single column is updated at any given time, resulting in stale weight vectors wi.

Although in practice this can be mitigated by updating multiple columns at once,

the result illustrates an important pitfall with the use of an explicit weight vector.

5.6 Discussion & Conclusion

In this paper, we presented an algorithm that learns principal components of

very large or infinite dimensional matrices by stochastic gradient descent. Our

experiments on synthetic matrices and MNIST images demonstrate that indeed the

method converges towards their top principal subspace. Our analysis on the Puddle

World domain also demonstrates that our algorithm can learn a low-dimensional,

neural-network state representation. This algorithm would benefit online PCA

applications where the columns, whose total number can be unknown, and the rows

of the data matrix of interest are sampled i.i.d. at each time step. For instance,

in deep reinforcement learning (RL), training a network on supervised auxiliary

predictions results in its representation corresponding to the principal components

of this set of tasks, assuming the network is other unconstrained [Bellemare et al.,

2019]. The rows of the auxiliary task matrix are the states and the columns are

value functions, for instance corresponding to different discount factors sampled

from the interval (0, 1) [Fedus et al., 2019]. Incorporating the Danskin-LISSA

procedure within a deep RL architecture may provide performance improvements

by incorporating more knowledge about the world into the network’s representation.

For simplicity, in this paper we assumed that all samples used in computing a

given gradient estimate are drawn independently. In practice, samples are naturally

expensive and it may appear undesirable to require a total of N + 2J + 2M for

a single gradient estimate. However, one can improve on this state of affairs by

permuting the order in which samples from the batch are presented, constructing

different gradient estimates from these permutations, and noting that the average

of multiple unbiased estimates remains unbiased (and generally has lower variance).

122 5.A. Proofs for Section 5.2

Acknowledgements

The authors would like to thank Ian Gemp, Mathieu Blondel, Matthieu Geist and

the anonymous reviewers for useful discussions and feedback on this paper.

We also thank the Python community [Van Rossum and Drake Jr, 1995, Oliphant,

2007] for developing tools that enabled this work, including NumPy [Oliphant, 2006,

Walt et al., 2011, Harris et al., 2020], SciPy [Jones et al., 2001], Matplotlib [Hunter,

2007] and JAX [Bradbury et al., 2018].

5.A Proofs for Section 5.2

Lemma 14. Following the notations from Section 5.2, we have

W ∗
Φ = (Φ⊤ΞΦ)†Φ⊤ΞΨ (5.16)

Proof. For a fixed Φ ∈ RS×d,

∇WL(Φ,W) = ∇W∥Ξ1/2(ΦW −Ψ)Λ1/2∥2
F

= 2Φ⊤Ξ(ΦW −Ψ)Λ

∇WL(Φ,W) = 0⇐⇒ 2Φ⊤Ξ(ΦW ∗
Φ −Ψ)Λ = 0

⇐⇒ Φ⊤Ξ(ΦW ∗
Φ −Ψ) = 0 as λ(t) > 0 for all t ∈ T

⇐⇒ Φ⊤ΞΦW ∗
Φ = Φ⊤ΞΨ

⇐⇒ W ∗
Φ = (Φ⊤ΞΦ)†Φ⊤ΞΨ

Proposition 1. Let GLd(R) be the set of d × d invertible matrices. Assume Ψ

has strictly decreasing singular values and rank(Ψ) = r < ∞ Write Ψ = FΣBT

for the SVD of Ψ with respect to the inner products ⟨x, y⟩Ξ for all x, y ∈ RS and

⟨x, y⟩Λ for all x, y ∈ RT . For an integer ℓ ∈ {1, ..., S}, let Fℓ ∈ RS×ℓ be the matrix

5. A Novel Stochastic Gradient Descent Algorithm 123

containing the first ℓ columns of F (sorted by decreasing singular value). For a fixed

d ∈ {1, ..., r},

arg min
Φ∈RS×d

min
W ∈Rd×T

∥Ξ 1
2 (ΦW −Ψ)Λ 1

2∥2
F = {Φ ∈ RS×d | ∃M ∈ GLd(R),Φ = FdM} .

(5.17)

Proof. We have Ψ = FΣBT where F ∈ RS×r, Σ ∈ Rr×r and B ∈ RT ×r sat-

isfy FTΞF = I, BTΛB = I. Let Fd,Σd and Bd the matrices containing the

first d columns of F,Σ and B respectively. For a fixed Φ ∈ RS×d and if Φ

is full rank, the unique solution of minW ∈Rd×T ∥|Ξ 1
2 (ΦW − Ψ)Λ 1

2∥2
F is given by

W ∗
Φ = (ΦTΞΦ)−1ΦT ΞΨ. When Φ is orthonormal with respect to the inner product

induced by Ξ, we have ΦTΞΦ = I and W ∗
Φ = ΦTΞΨ. Moreover, rank(ΦW ∗

Φ) ⩽

min(rank(Φ), rank(ΦTΞΨ)) ⩽ min(d,min(d, S, r)) = d. By the Eckart-Young

theorem, given a target matrix Ψ, the best approximating matrix of rank at

most d, with respect to the norm induced by Ξ, is FdΣdB
T
d which can be written in

terms of an orthogonal projection as follows FdF
T
d ΞΨ. By identification, ΦW ∗

Φ =

Φ(ΦT ΞΨ) = Fd(FT
d ΞΨ) and Φ = Fd is a solution to Equation (5.17).

As we can turn the basis Φ for span(Fd) into any other basis Φ′ = ΦR with R ∈

Rd×d an invertible matrix, the set of solutions for Φ is {FdR : R ∈ Rd×d invertible}

5.B Proofs for Section 5.3

Let Ξ = Es∼ν [ese
T
s] and Λ = Et∼Λ[ete

T
t].

Lemma 15. The j-LISSA estimator ∆̂j is an unbiased estimator of the partial Neu-

mann series defined in Equation (5.13). That is, given j samples s1:j = {s1, s2, ..., sj}

drawn i.i.d. from ξ, we have that

E
s1:j∼ξ

[∆̂j] = κ
j∑

i=0
(I − κΦ⊤ΞΦ)i

124 5.B. Proofs for Section 5.3

Proof. By induction.

E[∆̂0] = E[κI] = κI and κ
0∑

i=0
(I − κΦTΞΦ)i = κI

Es1∼ξ[∆̂1] = Es1∼ξ[κI + (I − κϕs1ϕ
T
s1)κI] = κI + κ(I − κΦTΞΦ)

as E[ϕiϕ
T
i] = ΦTΞΦ and κ

1∑
i=0

(I − κΦTΞΦ)i = κI + κ(I − κΦTΞΦ).

Let’s suppose that Es1:j−1∼ξ[∆̂j−1] = κ
∑j−1

i=0 (I − κΦTNΦ)i. Then,

Es1:j∼ξ[∆̂j] = Es1:j [κI + (I − κϕsj
ϕT

sj
)∆̂j−1]

= κI + Es1:j [(I − κϕsj
ϕT

sj
)∆̂j−1]

= κI + Esj∼ξ[I − κϕsj
ϕT

sj
]Es1:j−1∼ν [∆̂j−1]

= κI + (I − κΦTNΦ)κ
j−1∑
i=0

(I − κΦTNΦ)i

= κ
j∑

i=0
(I − κΦTNΦ)i

Hence, the conclusion.

Lemma 13 (Bias of LISSA). For 0 < κ < sups1:J
2∥ϕ(si)∥−2

2 , the bias of ∆̂j with

respect to (Φ⊤ΞΦ)† is given by

E(∆̂j)− (Φ⊤ΞΦ)† = −(Φ⊤ΞΦ)†(I − κΦ⊤ΞΦ)j+1

In particular, this bias asymptotically vanishes, in the sense that

lim
j→∞

E(∆̂j)− (Φ⊤ΞΦ)† = 0.

Proof.

bias(∆̂j) = E(∆̂j)− (ΦTΞΦ)†

= κ
j∑

i=0
(I − κΦTΞΦ)i − (ΦTΞΦ)† by Lemma 15

= κ(I − (I − κΦTΞΦ))†(I − (I − κΦTΞΦ)j+1)− (ΦTΞΦ)†

= −(ΦTΞΦ)†(I − κΦTΞΦ)j+1

In the third line, we use the closed form of a geometric series.

5. A Novel Stochastic Gradient Descent Algorithm 125

Theorem 8. Let es ∈ RS denote a basis vector. Given two independent unbiased

estimates Ĉ and Ĉ ′ of the inverse covariance, for s ∼ ξ, the gradient estimate ĝDL(s)

given in Equation (5.12) satisfies

E[esĝdl(s)⊤] = Ξ(ΦW ∗
Φ −Ψ)ΛW ∗

Φ
⊤.

Proof. By definition,

ĝdl(s) = ŵ′
i

(
ϕ(s)⊤ŵi − ψi(s)

)
Plugging in ŵi = Ĉϕ(s′)ψi(s′) and ŵ′

i = Ĉ ′ϕ(s′′)ψi(s′′), we have

ĝdl(s)⊤ =
(
ϕ(s)⊤Ĉϕ(s′)ψi(s′)− ψi(s)

)
(Ĉ ′ϕ(s′′)ψi(s′′))⊤

Now taking the expectation,

Es,s′,s′′,s1:n,s′
1:n,i[esĝdl(s)⊤]

= Es,s′,s′′,s1:n,s′
1:n,i

[
es

(
ϕ(s)⊤Ĉϕ(s′)ψi(s′)− ψi(s)

)
(Ĉ ′ϕ(s′′)ψi(s′′))⊤

]
= Es,i

[
es

(
ϕ(s)⊤Es1:n [Ĉ]Es′ [ϕ(s′)ψi(s′)]− ψi(s)

)
(Es′

1:n
[Ĉ ′]Es′′ [ϕ(s′′)ψi(s′′)])⊤

]
= Es,i

[
es

(
e⊤

s ΦEs1:n [Ĉ]Es′ [ΦTes′eT
s′Ψei]− e⊤

s Ψei

)
(Es′

1:n
[Ĉ ′]Es′′ [ΦTes′′eT

s′′Ψei])⊤
]

= Es,i

[
ese

⊤
s

(
ΦEs1:n [Ĉ]Es′ [ΦTes′eT

s′Ψ]−Ψ
)
eie

T
i Es′′ [ΨTes′′eT

s′′Φ](Es′
1:n

[Ĉ ′])⊤
]

= Esese
⊤
s

(
ΦEs1:n [Ĉ]ΦTEs′ [es′eT

s′]Ψ−Ψ
)
Ei[eie

T
i]ΨTEs′′ [es′′eT

s′′]ΦEs′
1:n

[Ĉ ′]

= Ξ
(
ΦEs1:n [Ĉ]ΦTΞΨ−Ψ

)
Λ(ΨTΞΦ(Es′

1:n
[Ĉ ′])⊤)

where in the last line, we used the fact that Ξ = Es∼ν [ese
T
s] and Λ = Et∼Λ[ete

T
t].

Now, given two unbiased estimators Ĉ and Ĉ ′, we have

Es1:n [Ĉ] = (ΦΞΦ⊤)† and Es′
1:n

[Ĉ ′] = (ΦΞΦ⊤)†

It then follows that

Es,s′,s′′,s1:n,s′
1:n,i[esĝ

⊤
dl(s)] = Ξ

(
Φ(ΦΞΦ⊤)†ΦTΞΨ−Ψ

)
Λ(ΨTΞ)Φ(ΦΞΦ⊤)†

= Ξ
(
Φ(ΦΞΦ⊤)†ΦTΞΨ−Ψ

)
Λ((ΦΞΦ⊤)†ΦTΞΨ)T

= Ξ(ΦW ∗
Φ −Ψ)Λ(W ∗

Φ)⊤

∝ ∇ΦL(Φ)

126 5.C. Additional Experimental Results

5.C Additional Experimental Results

5.C.1 Synthetic Matrices

0.5 0.9 1.0 1.5 1.9 2.0 5.0
κ0

0.000

0.002

0.004

0.006

0.008

0.010

0.012

lo
ss

Exponential Spectrum
 d = 1

0.5 0.9 1.0 1.5 1.9 2.0 5.0
κ0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Exponential Spectrum
 d = 10

0.5 0.9 1.0 1.5 1.9 2.0 5.0
κ0

0.0

0.1

0.2

0.3

Exponential Spectrum
 d = 25

0.5 0.9 1.0 1.5 1.9 2.0 5.0
κ0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lo
ss

Linear Spectrum
 d = 1

0.5 0.9 1.0 1.5 1.9 2.0 5.0
κ0

0.0

0.1

0.2

0.3

0.4

Linear Spectrum
 d = 10

0.5 0.9 1.0 1.5 1.9 2.0 5.0
κ0

0.0

0.1

0.2

0.3

Linear Spectrum
 d = 25

Figure 5.5: Subspace distance after 106 training steps of the LISSA algorithm for
different κ0

We follow the experimental protocol from Gemp et al. [2021]. We initialize

Ψ ∈ R50×50 randomly from a normal distribution. We compute its SVD such

that Ψ = FΣB. Let Σlinear = diag(1, ..., 1000) and Σexp = diag(100, ..., 103). We

rescale the matrix Ψ such that Ψlinear = FΣlinearB and Ψexp = FΣexpB. The matrix

Φ ∈ RS×d is also initialized randomly from a standard normal distribution. We

sweeped over the step size α and chose α = 0.001 which was working well in all

the synthetic experiments. We used the SGD otpimizer but found that there was

not a big performance difference with the Adam otpimizer [Kingma and Ba, 2015]

in most of these synthetic experiments. In Figure 5.5, we also sweeped over the

hyperparameter κ0 and found that κ0 = 1.9 was performing well across dimensions

and for both linear and exponential spectra. We trained the Danskin-LISSA method

for 106 time steps. As a complement to Figure 5.1, we show in Figure 5.6 the training

curves of the Danskin-LISSA algorithm for a broader range of dimensions d. For the

exponential spectrum, when d ⩾ 25, larger dimensions are easier to learn. This is

5. A Novel Stochastic Gradient Descent Algorithm 127

103 104 105 106

Number of Training Steps

10−3

10−2

10−1

100

Su
bs

pa
ce

 D
ist

an
ce

Exponentially Decaying Spectrum

103 104 105 106

Number of Training Steps

10−1

100

Su
bs

pa
ce

 D
ist

an
ce

Linearly Decaying Spectrum

Dimension d
1 5 10 15 20 25

103 104 105 106

Number of Training Steps
10−3

10−2

10−1

100

Su
bs

pa
ce

 D
ist

an
ce

Exponentially Decaying Spectrum

103 104 105 106

Number of Training Steps

10−1

100

Su
bs

pa
ce

 D
ist

an
ce

Linearly Decaying Spectrum

Dimension d
25 30 35 40 45

Figure 5.6: Subspace distance over the course of training LISSA for different dimensions
on synthetic matrices with a spectrum decaying linearly and exponentially, averaged over
30 seeds. The total number of samples used is 50. Shaded areas represent 95% confidence
intervals.

the opposite trend to the behavior found when d ⩽ 25 where smaller dimensions are

easier to learn. For the linearly decaying spectrum, when d ⩾ 25, larger dimensions

are easier to learn which is also the same trend as what we observed for d ⩽ 25.

5.C.2 MNIST

We found that the Adam optimizer [Kingma and Ba, 2015] performed best for our

MNIST experiments. We performed a sweep over the step-size α and found that

α = 0.005 worked best for 128 and 64 pixels. α = 0.01 performed best for 32 pixels.

We trained the Danskin-LISSA algorithm for 2.5 × 106 steps.

5.C.3 Puddle World

A Puddle World [Sutton, 1995] is a square arena, with x, y both in [0, 1]. It has a

continuous state space and a discrete action space. There are four actions (up, down,

left, right) that move the agent by 0.05 in each of the corresponding directions. A

random gaussian noise with standard deviation 0.01 is also added to transitions

in both directions. For our experiments, we used the same puddle configuration

found in [Sutton, 1995]. This configuration contains two puddles. The first puddle

lies between the points (0.1, 0.75) and (0.45, 0.75) with a radius of 0.1. The second

puddle lies between the points (0.45, 0.4) and (0.45, 0.8), also with a radius of 0.1.

While the original Puddle World gives negative rewards for being in a puddle, our

puddles instead cause a slowing affect by a factor of 0.5. That is, when in a puddle,

128 5.C. Additional Experimental Results

Principal Component 1 Principal Component 2 Principal Component 3 Principal Component 4 Principal Component 5

Principal Component 6 Principal Component 7 Principal Component 8 Principal Component 9 Principal Component 10

Figure 5.7: First 10 principal components of the successor measure of the Puddle World
domain.

the agent only moves by 0.025 in each direction. The puddles compound, meaning

that in the area where the two puddles overlap the agent will only move a distance

of 0.0125. We chose to use slowing puddles because our task is reward-agnostic, and

the successor measure task that we chose would capture the dynamics of the slowing

puddles. We visualize in Figure 5.7 the top-10 principal components of the successor

measure of Puddle World, demonstrating that they are non-trivial. The successor

measure was computed using 1000 Monte Carlo rollouts from each starting grid cell,

truncated after 700 steps. We used a discount factor γ = 0.99. We subtracted the

row sums to center-mean each column of the ground truth matrix Ψ ∈ R104×104 .

For each of the methods, we performed a sweep of learning rates and optimizers

(between Adam and SGD) and found that Adam with a learning rate of 10−4

worked well across the board. We ran each method for 100 million gradient steps.

For Danskin-LISSA, we kept κ fixed at 1.9, which we found worked well in our

previous experiments. Danskin-LISSA used a batch size of 50 for each of its 5

batches, while Large Batch and Explicit used a main batch size of 250 to ensure

that each method saw the same number of samples. To compute ϕ(s) we used a

two hidden-layer MLP with 512 hidden units per layer.

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis
publications. For each publication there should exist a complete statement that is to be filled out and signed by the
candidate and supervisor (only required where there isn’t already a statement of contribution within the paper
itself).

Title of Paper

A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces

Publication Status

 □Published □ Accepted for Publication

 □Submitted for Publication □Unpublished and unsubmitted work written
 in a manuscript style

Publication Details

Charline Le Lan, Joshua Greaves, Jesse Farebrother, Mark Rowland, Fabian
Pedregosa, Rishabh Agarwal, Marc G. Bellemare. A Novel Stochastic Gradient
Descent Algorithm for Learning Principal Subspaces. In International
Conference on Artificial Intelligence and Statistics (AISTATS) 2023

Student Confirmation

Student Name:

Charline Le Lan

Contribution to the
Paper

I led the project, developed the methodology, proved most theoretical results, wrote the
first draft of the paper, implemented the first version of the code used for the synthetic
experiments. Josh ran and created the plots for the synthetic experiments,
implemented the puddle world codebase. Jesse implemented the implicit method with
function approximation and ran some synthetic and puddle world experiments. Mark
proofread the methodology of the paper giving comments on theoretical aspects of the
writing, Fabian helped with the theoretical applicability of the LISSA estimator to our
setting, Rishabh ran and made plots for the MNIST experiment, Marc suggested the
initial project idea, advised the project, provided feedback / edits on the manuscript.

Signature

Date

March 23, 2023

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Professor Marc G. Bellemare

Supervisor comments

Signature

Date

This completed form should be included in the thesis, at the end of the relevant chapter.

13/04/23

This was an incredibly challenging piece of work to execute, because of subtle implementation
details in the algorithm.

129

130

6
Bootstrapped Representations in

Reinforcement Learning

131

132

Abstract

In reinforcement learning (RL), state representations are key to dealing with large
or continuous state spaces. While one of the promises of deep learning algorithms is
to automatically construct features well-tuned for the task they try to solve, such a
representation might not emerge from end-to-end training of deep RL agents. To mit-
igate this issue, auxiliary objectives are often incorporated into the learning process
and help shape the learnt state representation. Bootstrapping methods are today’s
method of choice to make these additional predictions. Yet, it is unclear which fea-
tures these algorithms capture and how they relate to those from other auxiliary-task-
based approaches. In this paper, we address this gap and provide a theoretical char-
acterization of the state representation learnt by temporal difference learning [Sutton,
1988]. Surprisingly, we find that this representation differs from the features learned
by Monte Carlo and residual gradient algorithms for most transition structures of
the environment in the policy evaluation setting. We describe the efficacy of these
representations for policy evaluation, and use our theoretical analysis to design new
auxiliary learning rules. We complement our theoretical results with an empirical
comparison of these learning rules for different cumulant functions on classic domains
such as the Four Rooms domain [Sutton et al., 1999] and Mountain Car [Moore, 1990]
and demonstrate that these pretrained representations speed up online learning.

6.1 Introduction

Figure 6.1: In deep RL, we see the penultimate layer of the network as the representation
ϕ which is linearly transformed into a value prediction V̂ϕ,w and auxiliary predictions
Ψ(x) by bootstrapping methods.

The process of representation learning is crucial to the success of reinforcement

learning at scale. In deep reinforcement learning, a neural network is used to

parameterise a representation ϕ which is linearly mapped into a value function

[Figure 6.1; Yu and Bertsekas, 2009, Bellemare et al., 2019, Levine et al., 2017]; this

approach often leads to state-of-the-art performance in the field [Mnih et al., 2015].

State representations are key to the stability and quality of this learning process.

However, a representation supporting the downstream task of interest might not

emerge from end-to-end training. Hence, auxiliary objectives are often incorporated

into the training process to help the agent combine its inputs into useful features

[Sutton et al., 2011, Jaderberg et al., 2017, Bellemare et al., 2017, Lyle et al., 2021]

and the resulting network’s representation can help the agent estimate the value

function. To construct representations supporting these characteristics, different

kind of auxiliary tasks have thus been incorporated into the learning process such

as controlling visual aspects of observed states [Jaderberg et al., 2017], predicting

the values of several policies [Bellemare et al., 2019, Dabney et al., 2021], predicting

values over multiple discount factors [Fedus et al., 2019] or prediction of next state

6. Bootstrapped Representations in Reinforcement Learning 135

observations [Jaderberg et al., 2017, Gelada et al., 2019] and rewards [Dabney et al.,

2021, Lyle et al., 2021, Farebrother et al., 2023].

While these tasks have mainly been trained by bootstrapping, a precise char-

acterization of the resulting representation is lacking. This paper aims to fill

this gap. We study the representations learnt by TD learning when training

auxiliary tasks consisting in predicting the expected return of a fixed policy for

several cumulant functions (Section 6.3). More generally, this analysis informs

bootstrapped representations arising from algorithms such as Q-learning [Watkins

and Dayan, 1992], n-step Q-learning [Hessel et al., 2018, Kapturowski et al., 2019,

Schwarzer et al., 2021] or Retrace [Munos et al., 2016]. Our key insight is that

the way we train these value functions, for instance by TD learning, Monte Carlo

or residual gradient, influences the resulting features. In particular, we show that

when trained by TD learning, these features converge to the top-d real invariant

subspace of the transition matrix P π, when it exists (Theorem 9). We present an

empirical evaluation that supports our theoretical characterizations and show the

importance of the choice of a learning rule to learn the value function in Section 6.5.

In Section 6.4, we characterise the goodness of these representations by quan-

tifying the approximation error of a linear prediction of the value function from

these frozen representations in the TD learning and batch Monte Carlo settings

(Subsection 6.4.1). We find that to minimize this error, the cumulants need to depend

on the dynamics of the environment but in a different way whether we learn the

main value function by batch Monte Carlo or TD learning. Then, we show random

cumulants which have been used in the literature [Lyle et al., 2021, Farebrother et al.,

2023] can be good pseudo-reward functions for some particular structures of the

successor representation [Dayan, 1993] by providing an error bound that arises from

sampling a small number of random pseudo-reward functions (Subsection 6.4.2).

Finally, we find that one way to improve this bound is to sample pseudo-reward

functions which depend on the dynamics of the environment and inspired by this

observation, we propose a novel auxiliary task method with adaptive cumulants

136 6.2. Background

and show that the resulting pretrained features outperform training from scratch

on the Four Rooms and Mountain Car domains Subsection 6.5.3.

6.2 Background

We consider a Markov decision process (MDP) M = ⟨S,A,R,P , γ⟩ [Puterman,

1994] with finite state space S, finite set of actions A, transition kernel P : S×A →

P(S), deterministic reward function R : S × A → [−Rmax, Rmax], and discount

factor γ ∈ [0, 1). A stationary policy π : S → P(A) is a mapping from states

to distributions over actions, describing a particular way of interacting with the

environment. We denote the set of all policies by Π. We write Pπ : S → P(S)

the transition kernel induced by a policy π ∈ Π

Pπ(s, s′) =
∑
a∈A
P(s, a)(s′)π(a | s)

and rπ : S → [−Rmax, Rmax] the expected reward function

rπ(s) = Eπ[R(S0, A0) |S0 = s, A0 ∼ π(· |S0)].

For any policy π ∈ Π, the value function V π(s) measures the expected discounted

sum of rewards received when starting from state s ∈ S and acting according to π:

V π(s) := E
π,P

[∞∑
t=0

γtR(St, At) |S0 = s, At ∼ π(· |St)
]
.

It satisfies the Bellman equation [Bellman, 1957]

V π(s) = rπ(s) + γES′∼Pπ(·|s)[V π(S ′)],

which can be expressed using vector notation [Puterman, 1994] (viewing rπ and

V π as vectors in RS and Pπ as an RS×S transition matrix) as

V π = rπ + γPπV
π = (I − γPπ)−1rπ.

We are interested in approximating the value function V π using a linear combination

of features [Yu and Bertsekas, 2009, Levine et al., 2017, Bellemare et al., 2019]. We

call the mapping ϕ : S → Rd a state representation, where d ∈ N+. Usually, we are

6. Bootstrapped Representations in Reinforcement Learning 137

interested in reducing the number of parameters needed to approximate the value

function and have d ≪ |S|. Given a feature vector ϕ(s) for a state s ∈ S and a

weight vector w ∈ Rd, the value function approximant at s can be expressed as

Vϕ,w(s) = ϕ(s)⊤w.

We write the feature matrix Φ ∈ RS×d whose rows correspond to the per-state feature

vectors (ϕ(s), s ∈ S). This leads to the more concise value function approximation

Vϕ,w = Φw.

In the classic linear function approximation literature, the feature map ϕ is held fixed,

and the agent adapts only the weights w to attempt to improve its predictions. By

contrast, in deep reinforcement learning, ϕ itself is parameterized by a neural network

and is typically updated alongside w to improve predictions about the value function.

We measure the accuracy of the linear approximation Vϕ,w in terms of the

squared ξ-weighted l2 norm, for ξ ∈ P(S), 1

∥Vϕ,w − V π∥2
ξ =

∑
s∈S

ξ(s)(ϕ(s)Tw − V π(s))2.

The ξ-weighted norm describes the importance of each state.

6.2.1 Auxiliary Tasks

In deep reinforcement learning, the agent can use its representation ϕ to make

additional predictions on a set of T auxiliary task functions {ψt ∈ RS}t∈{1,...,T } where

each ψt maps states to real values [Jaderberg et al., 2017, Bellemare et al., 2019,

Dabney et al., 2021]. These predictions are used to refine the representation itself.

We collect these targets into an auxiliary task matrix Ψ ∈ RS×T whose rows are

ψ(s) = [ψ1(s), ..., ψT (s)]. We are interested in the case of linear task approximation

Ψ̂ = ΦW,

where W ∈ Rd×T is a weight matrix, and want to choose Φ and W such that

Ψ̂ ≈ Ψπ. In this paper, we consider a variety of auxiliary tasks that ultimately
1We assume that ξ(s) > 0 for all states s ∈ S.

138 6.2. Background

involve predicting the value functions of auxiliary cumulants, also referred to as

general value functions [GVFs; Sutton et al., 2011]. By construction, these tasks can

be decomposed into a non-zero cumulant function g : S → RT , mapping each state to

T real values, and an expected discounted next-state term when acting according to π

ψπ(s) = g(s) + γES′∼Pπ(·|s)[ψπ(S ′)].

In matrix form, this recurrence can be expressed as follows

Ψπ = G+ γPπΨπ = (I − γP π)−1G,

where G ∈ RS×T is a cumulant matrix whose columns correspond to each pseudo-

reward vector. An example of a family of auxiliary tasks following this structure

is the successor representation [SR; Dayan, 1993]. The SR encodes a state in

terms of the expected discounted time spent in other states and satisfies the

following recursive form

ψπ (s, s′′) = I [s = s′′] + γES′∼Pπ(·|s) [ψπ (S ′, s′′)] ,

for all s′′ ∈ S. The SR is a collection of value functions associated with the cumulant

matrix G = I. Here we focus our analysis in its tabular form, noting that it can be

extended to larger state spaces in a number of ways [Barreto et al., 2017b, Janner

et al., 2020, Blier et al., 2021, Thakoor et al., 2022, Farebrother et al., 2023].

6.2.2 Monte Carlo Representations

To understand how auxiliary tasks shape representations, we start by presenting the

simple case where the values of auxiliary cumulants are predicted in a supervised

way. Here, the targets Ψπ = (I − γP π)−1G are obtained by Monte Carlo rollouts,

that is using the fixed policy to perform roll-outs and collecting the sum of rewards.

The goal is to minimize the loss below

LMC
aux(Φ,W) = min

W ∈Rd×T
∥Ξ1/2(ΦW −Ψπ)∥2

F .

This method results in the network’s representation Φ, assuming a linear, fully-

connected last layer, corresponding to the k principal components of the auxiliary

task matrix Ψπ if the network is other unconstrained [Bellemare et al., 2019].

6. Bootstrapped Representations in Reinforcement Learning 139

Proposition 2 (Monte Carlo representations). If rank(Ψπ) ⩾ d, all representations

spanning the top-d left singular vectors of Ψπ with respect to the inner product ⟨x, y⟩Ξ

are global minimizers of LMC
aux and can be recovered by stochastic gradient descent.

In large environments, it is not practical to collect full trajectories to estimate

Ψπ. Instead, practitioners learn them by bootstrapping [Sutton and Barto, 1998].

6.2.3 Temporal Difference Learning with a Deep Network

Temporal difference [TD; Sutton, 1988] is the method of choice for these auxiliary

predictions. The main idea of this approach is bootstrapping [Sutton and Barto,

1998]. It consists in using the current estimate of the auxiliary task function

to generate some targets replacing their true value Ψπ in order to learn a new

approximant of the auxiliary task function. In this paper, we consider one-step

temporal difference learning where we replace the targets by a one-step prediction

from the currently approximated auxiliary task function. In deep reinforcement

learning, both the representation ϕ and the weights W are learnt simultaneously

by minimizing the following loss function

LTD
aux(ϕ,W) = E

s∼ξ
s′∼Pπ(·|s)

[
ϕ(s)W − sg

(
g(s) + γϕ(s′)W

)]2

where sg denotes a stop gradient and means that ϕ and W are treated as a constant

when taking the gradient from automatic differentiation tools [Bradbury et al., 2018,

Abadi et al., 2016, Paszke et al., 2019]. Written in matrix form, we have

LTD
aux(Φ,W) = ∥(Ξ) 1

2 (ΦW − sg(G+ γP πΦW))∥2
F

Here, Ξ ∈ RS×S is a diagonal matrix with elements {ξ(s) : s ∈ S} on the diagonal.

For clarity of exposition, we express this loss with universal value functions but the

analysis can be extented to state-action values at the cost of additional complexity.

The idea is to reduce the mean squared error between the approximant ψ̂ and the

target values by stochastic gradient descent (SGD). Taking the gradient of L with

140 6.3. Bootstrapped Representations

respect to Φ and W , we obtain the semi-gradient update rule

Φ← Φ− αΞ ((I − γP π)ΦW −G)W⊤

W ← W − αΦTΞ ((I − γP π)ΦW −G) (6.1)

for a step size α. Because the values of the targets change over time, the loss L

does not have a proper gradient field [Dann et al., 2014] except in some particular

cases [Barnard, 1993, Ollivier, 2018] and hence classic analysis of stochastic gradient

descent [Bottou et al., 2018] does not apply.

6.3 Bootstrapped Representations

We now study the d-dimensional features that arise when performing value estimation

of a fixed set of cumulants and how the choice of a learning method such as

TD learning affects the learnt representations. Our first result characterizes

representations that bootstrap themselves. We assume that the features Φ are

updated in a tabular manner under the dynamics in Equation (6.1). To simplify

the presentation, we now make the following invertibility assumption.

Assumption 2. We assume that ΦTΞ(I − γP π)Φ is invertible for any full rank

representation Φ ∈ RS×d.

This standard assumption is for instance verified when ξ is the stationary

distribution over states under π of an aperiodic, irreducible Markov chain [see

e.g. Sutton et al., 2016].

An interesting characterization of the dynamical system in Equation (6.1) is

its set of critical points. For a given Φ, we write

WTD
Φ,G ∈ {W ∈ Rd×T |∇WLTD

aux(Φ,W) = 0}.

Using classic linear algebra, we find that the weights WTD obtained at conver-

gence correspond to the LSTD solution [Bradtke and Barto, 1996, Boyan, 2002,

Zhang et al., 2021]

WTD
Φ,G =

(
ΦTΞ(I − γP π)Φ

)−1
ΦTΞG.

6. Bootstrapped Representations in Reinforcement Learning 141

A key notion for our analysis is the concept of invariant subspace of a linear mapping.

Definition 13 (Gohberg et al., 2006). A representation Φ ∈ RS×d spans a real

invariant subspace of a linear mapping M : S → R|S| if the column span of Φ is

preserved by M , that is in matrix form

span(MΦ) ⊆ span(Φ).

For instance, any real eigenvector of M generates one of its one-dimensional

real invariant subspaces.

We are now equipped with the tools to enumerate the set of critical represen-

tations {Φ ∈ RS×d | ∇ΦLTD
aux(Φ,WTD

Φ) = 0} in the lemma below.

Lemma 16 (Critical representations for TD). All full rank representations which

are critical points to LTD
aux span real invariant subspaces of (I − γP π)−1GGTΞ, that

is span((I − γP π)−1GGTΞΦ) ⊆ span(Φ).

Proof. The proof is given in Appendix 6.C and relies on the view of LSTD as an

oblique projection [Scherrer, 2010].

In the particular case of an identity cumulant matrix and a uniform distribution

over states, this set can be more directly expressed as the representations invariant

under the transition dynamics.

Corollary 6. If G = I and Ξ = I/|S|, all full rank representations which are

critical points to LTD
aux span real invariant subspaces of the invariant subspaces of

P π.

Similarly to how the top principal components of a matrix explain most of its

variability [Hotelling, 1933], these critical representations are not equally informative

of the dynamics of the environment.

This motivates the need to understand the behavior of the updates from

Equation (6.1). To ease the analysis, we assume that the weights W have converged

142 6.3. Bootstrapped Representations

e2 e 3

e 1

Figure 6.2: A simple 3-state MDP (left). Five subspaces, each represented by a circle,
spanned by Φ during the last training steps of gradient descent on LTD

aux for d = 2 (right).

perfectly to WTD
Φ,G at each time step [Le Lan et al., 2023a] and consider the following

continuous-time dynamics.

d

dt
Φ = −∇ΦL(Φ,WTD

Φ,G) = −F (Φ), (6.2)

where:

F (Φ) := 2Ξ
(
(I − γP π)ΦWTD

Φ,G −G
)

(WTD
Φ,G)⊤.

Our key result is that the stable critical points of this ordinary differential equation

correspond to the real top-d invariant subspace of P π, when this exists.

Theorem 9 (TD representations). Assume G = I, P π symmetric and a uniform

distribution ξ over states. Let λ1, .., λ|S| be the (possibly complex) eigenvalues of P π,

ordered by decreasing real part Re(λi) ⩾ Re(λi+1), i ∈ {1, .., |S|}. If Φ is initialized

to be orthogonal, under the dynamics in Equation (6.2), all real invariant subspaces

of dimension d are critical points, and any non top-d real invariant subspace, if it

exists, is unstable.

The result above implies that the TD algorithm converges towards a real top-

d invariant subspace or diverges with probability 1. While real diagonalisable

transition matrices always induce real invariant subspaces, complex eigenvalues

do not guarantee their existence and in such a case, where there is no top-d real

6. Bootstrapped Representations in Reinforcement Learning 143

invariant subspace, the representation learning algorithm does not converge. As

an illustration, consider the three-state MDP depicted in Figure 6.2, left, whose

transition matrix is complex diagonalisable and given by

P π =

0 1 0
0 0 1
1 0 0


Its eigenvalues are λ1 = 1 associated to the real eigenvector e1 and the complex

conjugate pair (λ2, λ2) = (e2πi/3, e−2πi/3), associated to the pair of real eigen-

vectors (e2, e3). Hence, the real invariant subspaces of P π are {0}, span(e1),

span(e2, e3), span(e1, e2, e3). Note that there is no 2-dimensional real invariant sub-

space containing the top eigenvector e1. Consequently, the 2-dimensional representa-

tion learnt by gradient descent on the TD learning rule with G = I does not converge

and rotates in the higher dimensional subspace span(e1, e2, e3) (see Figure 6.2, right).

To understand the importance of the stop-gradient in TD learning, it useful to

study the representations arising from the minimization of the following loss function

Lres
aux(Φ,W) = ∥Ξ 1

2 (ΦW − (G+ γP πΦW)) ∥2
F ,

which corresponds to residual gradient algorithms [Baird, 1995]. While it has been

remarked on before that the weights minimizing Lres
aux(Φ,W) for a fixed Φ differ from

WTD
Φ,G [see Lemma 23; Lagoudakis and Parr, 2003, Scherrer, 2010], this objective

function also has a different optimal representation

Proposition 3 (Residual representations). Let d ∈ {1, ..., S} and Fd be the top d

left singular vectors of G with respect to the inner product ⟨x, y⟩Ξ = yTΞx, for all

x, y ∈ R|S|. All representations spanning (I − γP π)−1Fd are global minimizers of

Lres
aux and can be recovered by stochastic gradient descent.

While TD and Monte Carlo representations are in general different, in the

particular case of symmetric transition matrices and orthogonal cumulant matrices,

they are the same.

144 6.4. Representations for Policy Evaluation

Main l1-ball Optimal Representation Learnt
Algorithm Representation Loss Representation

Batch MC SVD
(
(I − γP π)−1

)
MC SVD

(
(I − γP π)−1 G

)
Residual SVD

(
(I − γP π)−1

)
Σd Residual (I − γP π)−1 SVD (G)

TD Φ∗
TD TD Inv

(
(I − γP π)−1GGTξ

)

Table 6.1: Different types of representation loss and their induced representations. The
supervised targets Ψ ∈ RS×T are (I − γP π)−1G. SVD(M) denotes the top-d left singular
vectors of M, Inv(M) the top-d invariant subspace of M and Σd ∈ Rd×d the diagonal
matrix with the top-d singular values of (I − γP π)−1 on its diagonal.

Corollary 7 (Symmetric transition matrices). If a cumulant matrix G ∈ RS×T

(with T ⩾ S) has unit-norm, orthogonal columns (e.g. G = I), the representations

learnt from the supervised objective LMC
aux and the TD update rule LTD

aux are the same

for symmetric transition matrices P π under a uniform state distribution ξ.

This is because eigenvectors and singular vectors are identical in that setting

and the eigenvalues of the successor representation are all positive.

6.4 Representations for Policy Evaluation

With the results from the previous section, the question that naturally arises

is which approach results in better representations. To provide an answer, we

consider a two-stage procedure. First, we learn a representation Φ by predicting

the values of T auxiliary cumulants simultaneously, using one of the learning rules

described in Section 6.3. Then, we retain this representation and perform policy

evaluation. If the value function is estimated on-policy, it converges towards the

LSTD solution [Tsitsiklis and Van Roy, 1996]

V̂ TD = ΦwTD
Φ

where wTD
Φ =

(
ΦTΞ(I − γP π)Φ

)−1
ΦTΞrπ. We are interested in whether this value

function results in low approximation error on average over random reward functions

rπ, that is we want the following error to be small

Erπ [∥ΦwTD
Φ − V π∥2

ξ] (6.3)

6. Bootstrapped Representations in Reinforcement Learning 145

0.10 0.15 0.20 0.25 0.30 0.35
Distance between top left and top right

 singular vector of (I− γPπ)

5

10

15
M

C
ap

pr
ox

im
at

io
n

er
ro

r
TD
Supervised

0.10 0.15 0.20 0.25 0.30 0.35
Distance between top left and top right

 singular vector of (I− γPπ)

200

300

400

500

TD
 a

pp
ro

xi
m

at
io

n
er

ro
r

Figure 6.3: MC (left) and TD (right) approximation errors as a function of the
misalignment of the top left and right singular vector of the SR induced by greedifying
the policy. Trained with LMC

aux , LTD
aux, G = I, d = 1 on a 4-state room.

where the expectation is over the reward functions rπ sampled uniformly over the l1

ball {rπ ∈ RS | ∥rπ∥1 ⩽ 1}. This set models an unknown reward function.

We say that a representation Φ∗
TD is l1-ball optimal for TD learning when

it minimizes the error in Equation (6.3). Here Φ∗
TD depends on the transition

dynamics of the environment but not on the reward function.

Lemma 17. A representation Φ∗
TD is l1-ball optimal for TD learning iff it is a

solution of the following optimization problem.

Φ∗
TD ∈ arg minΦ

∥∥∥Ξ1/2(ΦWTD
Φ,I − (I − γP π)−1)

∥∥∥2

F
.

When P π is symmetric and Ξ = I/|S|, the minimum is achieved by both the

top-d left singular vectors and top-d invariant subspace of the SR. However, as the

misalignment between the top-d left and top-d right singular vectors of (I − γP π)

increases, the top-d invariant subspace results in lower error compared to the top-d

singular vectors (see Figure 6.3); note that here, none of them achieves Φ∗
TD and

hence G = I is not l1-ball optimal for TD learning.

As a comparison, we study which representations are l1-ball optimal for linear

batch Monte Carlo policy evaluation. In that setting, we are given a dataset

consisting of states and their associated value, which can be estimated by the

realisation of the random return [Bellemare et al., 2017, Sutton and Barto, 2018],

146 6.4. Representations for Policy Evaluation

and the weights are learnt by least square regression. As above, we want the

features minimizing

Erπ [∥ΦwMC
Φ − V π∥2

ξ] (6.4)

where V̂ MC = ΦwMC
Φ is the value function learnt at convergence and wMC

Φ =

(Φ⊤ΞΦ)−1Φ⊤ΞV π.

Lemma 18. A representation Φ∗
MC is l1-ball optimal for batch Monte Carlo policy

evaluation if its column space spans the top-d left singular vectors (with respect to

the inner product ⟨x, y⟩Ξ) of (I − γP π)−1.

Unlike TD, Φ∗
MC is achieved by training LMC

aux with G = I.

We summarize in Table 6.1 our representation learning results mentioned

throughout Section 6.3 and Section 6.4. For completeness, we also include l1-

ball optimal representations for residual algorithms. Proofs can be found in

Appendix 6.D.

6.4.1 TD and Monte Carlo Need Different Cumulants

Having characterized which features common auxiliary tasks capture and what

representations are desirable to support training the main value function, we

now show that MC policy evaluation and TD learning need different cumulants.

In large environments, we are interested in cumulant matrices encoding a small

number of tasks T ≪ S.

Lemma 19. Denote BT the top-T right singular vectors of the SR and O(T, S) the

set of orthogonal matrices in RT ×S. Training auxiliary tasks in a MC way with any

G from the set {G ∈ RS×T |∃M ∈ O(T, S), G = BTM} results in an l1-ball optimal

representation for batch Monte Carlo.

We showed in Section 6.3 that training auxiliary tasks by TD does not always

converge when the transition matrix has complex eigenvalues. Maybe surprisingly,

we find that this is not problematic when learning the main value function by TD.

Indeed, the rotation of its own weights balances the rotation of the underlying

representation.

6. Bootstrapped Representations in Reinforcement Learning 147

Lemma 20. Let {Φω} be the set of rotating representations from Figure 6.2 learnt

by TD learning with G = I and d = 2. All these representations are equally good

for learning the main value function by TD learning, that is ∀ω ∈ [0, 1],

E∥r∥2
2<1

∥∥∥Φωw
TD
Φω
− V π

∥∥∥2

F

is constant and independent of ω.

Although G = I does not always lead to Φ∗
TD when training LTD

aux, by analogy

with the MC setting, we assume that G = I leads to overall desirable representations.

Assuming Ξ = I/|S|, this means we would like the subspace spanned by top-d

invariant subspaces of (I − γP π)−1 to be the same as the subspace spanned by

the top d invariant subspaces of (I − γP π)−1GG⊤.

Lemma 21. The set of cumulant matrices G ∈ RS×T that preserve the top-T

invariant subspaces of the successor representation by TD learning are the top-T

orthogonal invariant subspaces of (I − γP π)−1, that is satisfying G⊤G = I by

orthogonality and (I − γP π)−1G ⊆ G by the invariance property.

Unlike the MC case, a desirable cumulant matrix should encode the exact same

information as the representation being learnt and the choice of a parametriza-

tion here matters.

6.4.2 A Deeper Analysis of Random Cumulants

We now study random cumulants which have mainly been used in the literature

[Dabney et al., 2021, Lyle et al., 2021, Farebrother et al., 2023] as a heuristic

to learn representations. We aim to explain their recent achievements as a pre-

training technique [Farebrother et al., 2023] and their effectiveness in sparse reward

environments [Lyle et al., 2021].

Proposition 4 (MC Error bound). Let G ∈ RS×T be a sample from a standard

gaussian distribution and assume d ⩽ T . Let Fd be the top-d left singular vectors

of the successor representation (I − γP π)−1 and F̂d be the top left singular vectors

148 6.5. Empirical Analysis

of (I − γP π)−1G. Denote σ1 ⩾ σ2 ⩾ ... ⩾ σS the singular values of the SR and

dist(Fd, F̂d) the sin θ distance between the subspaces spanned by Fd and F̂d. We have

E[dist(Fd, F̂d)] ⩽
√

d

T − d− 1
σd+1

σd

+ e
√
T

T − d

 n∑
j=d+1

σ2
j

σ2
d

 1
2

Proof. A proof can be found in Appendix 6.E and follows arguments from random

matrix theory.

This bound fundamentally depends on the ratio of the singular values σd+1/σd

of the successor representation. As the oversampling parameter (T − d) grows, the

right hand side tends towards 0. In particular, for the right hand side to be less than

ϵ, we need the oversampling parameter to satisfy (T − d) ⩾ 1/ϵ2. We investigate to

which extent this result holds empirically for the TD objective in Subsection 6.4.1.

6.5 Empirical Analysis

In this section, we illustrate empirically the correctness of our theoretical character-

izations from Section 6.3 and compare the goodness of different cumulants on the

Four Rooms [Sutton and Barto, 2018] and Mountain Car [Moore, 1990] domains.

Let PΦ = Φ(Φ⊤Φ)†Φ⊤. Here, any distance between two subspaces Φ and Φ∗ is

measured using the normalized subspace distance, 2 [Tang, 2019] defined by

dist(Φ,Φ∗) = 1− 1
d
· Tr (PΦ∗PΦ) ∈ [0, 1].

6.5.1 Synthetic Matrices

To begin, we train the TD, supervised and residual update rules from Section 6.3

up to convergence knowing the exact transition matrices P π. In Figure 6.4 left and

middle, we randomly sample 30 real diagonalisable matrices P π ∈ R50×50 to prevent

any convergence issue from the TD update rule. In Figure 6.4 right, we generate

symmetric transition matrices P π ∈ R50×50. To illustrate the theory, we run gradient

descent on each learning rule by expressing the weights implicitly as a function of
2It is equivalent to the sin θ distance up to some constant

6. Bootstrapped Representations in Reinforcement Learning 149

TD Supervised Residual

0 25 50 75 100
Number of Training Steps (x 1000)

10−4

10−2

100

Di
st

an
ce

 to
 to

p
 le

ft
sin

gu
la

r v
ec

to
rs

0 25 50 75 100
Number of Training Steps (x 1000)

10−5

10−3

10−1

Pπ
-in

va
ria

nc
e

0 25 50 75 100
Number of Training Steps (x 1000)

10−4

10−2

100

Di
st

an
ce

 to
 to

p
 le

ft
sin

gu
la

r v
ec

to
rs

Figure 6.4: Subspace distance between Φ and the top-d left singular vectors of the SR
on the left (resp. and a top-d P π-invariant subspace in the middle over the course of
training LTD

aux,LMC
aux and Lres

aux for 105 steps, averaged over 30 seeds (d = 3). MDPs with
real diagonalisable (left, middle) and symmetric (right) transition matrices are randomly
generated. Shaded areas represent 95% confidence intervals.

the features (see Equation (6.2) for TD for instance). Figure 6.4, left, middle show

that these auxiliary task algorithms learn different representations and successfully

recover our theoretical characterizations (Proposition 2, Theorem 9) from Table 6.1,

right. Figure 6.4 right illustrates that the supervised and TD rules converge to the

same representation for symmetric P π, as predicted by our theory (Corollary 7).

6.5.2 Effectiveness of Random Cumulants

Following our theoretical analysis from Subsection 6.5.2, our aim is to illustrate

the goodness of random cumulants at recovering the left singular vectors of the

successor representation on the four room domain [Sutton et al., 1999] and to

investigate to which extent an analogous result holds empirically for the TD rule.

We investigate the importance of three properties of a distribution: isotropy, norm

and orthogonality of the columns. We consider random cumulants from different

distributions: a standard Gaussian N(0, I), a Gaussian distribution which columns

are normalized to be unit-norm, the O(N) Haar distribution and random indicators

functions. Figure 6.5, left shows that the the indicator distribution which is not

isotropic performs worse overall for the supervised objective and when the number

of tasks is large enough, orthogonality between the columns of the cumulant matrix

leads to better accuracy. In comparison, Figure 6.5, right studies the goodness

of random cumulants at recovering the top-d invariant subspaces of the SR and

depicts a different picture. Here, the Gaussian distribution achieves the highest error

150 6.5. Empirical Analysis

Gaussian Orthogonal Group Indicator Normalized Gaussian

0 20 40 60 80
Number of tasks

10−2

10−1

100

Di
st

an
ce

 to
 to

p
 le

ft
sin

gu
la

r v
ec

to
rs

Figure 6.5: Subspace distance after 5× 105 training steps and averaged over 30 seeds
(d = 5) between Φ learnt with LMC

aux and the top left singular vectors of the SR (left) and
between Φ learnt with LTD

aux and the top invariant subspaces of the SR (right) for different
random cumulants, on the Four Rooms domain. Shaded areas represent estimates of
95% confidence intervals

irrespective of the number of tasks sampled while the normalized Gaussian achieves

lower error suggesting the norm of the columns matter for TD training. The indicator

distribution performs well for many number of sampled tasks indicating that the

isotropy of the distribution is not as important for TD as it is for supervised training.

Finally, the orthogonal cumulants achieve the lowest error when the number of tasks

is large enough, showing this is an important property for both kinds of training.

6.5.3 Offline Pre-training

In this section we follow a similar evaluation protocol as that of Farebrother et al.

[2023], but applied to the four room and Mountain car domains to allow a clear

investigation of the various cumulant generation methods and the effects of their

corresponding GVFs as a representation pre-training method for reinforcement

learning. Details can be found in Appendix 6.A.

We consider four cumulant functions. The first two are stationary and are

generated before offline pre-training begins. For ExactSVD, we compute the top-

k right singular vectors of the successor representation matrix of the uniform

random policy. For Normal, we generate cumulant functions sampled from a

standard Normal distribution.

6. Bootstrapped Representations in Reinforcement Learning 151

0.0 0.2 0.4 0.6 0.8 1.0
Environment Step 1e5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ep

iso
de

 R
et

ur
n

Four Rooms

DQN
CCR
Exact SVD
Normal
RNI

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e5

0.00

0.05

0.10

0.15

0.20

0.25

Ep
iso

de
 R

et
ur

n

Mountain Car
DQN
CCR
Exact SVD
Normal
RNI

Figure 6.6: Comparing effects of offline pre-training on the Four Rooms (left) and sparse
Mountain Car (right) domains for different cumulant generation methods. Results are
averages over three seeds.

The second two cumulant functions are learned during offline pre-training using

a separate neural network. RNI [Farebrother et al., 2023], learns a set of indicator

functions which are trained to be active in a particular percentage of the states

(15% in this experiment). Clustering Contrastive Representations (CCR) learns

cumulants by learning a representation of the state using CPC [Oord et al., 2018],

and then performs online clustering of the learned representations with k clusters.

The online clustering method we use differs slightly from standard approaches in

that we maintain an estimate of the frequency that each cluster center is assigned to

a state, pi, and the assigned cluster is identified with arg mini pi∥ϕ(x)− bi∥, where

ϕ(x) is the learned CPC representation and bi is cumulant i’s centroid. Examples

of the cumulants produced by these four methods, and their corresponding value

functions, are given in Appendix 6.A.

Figure 6.6 compares the online performance after pre-training, for various

cumulant functions, with the online performance of DQN without pre-training.

Two take-aways are readily apparent. First, that offline pre-training, speeds up

online learning, as expected. Second, that the two best performing methods are

both sensitive to the structure of the environment dynamics, directly in the case of

ExactSVD and indirectly through the CPC representation for CCR.

152 6.6. Related Work

6.6 Related Work

Optimal representations. Bellemare et al. [2019] define a notion of optimal

representations for batch Monte Carlo optimization based on the worst approx-

imation error of the value function across the set of all possible policies, later

relaxed by Dabney et al. [2021]. Instead, we do not consider the control setting

but focus on policy evaluation. Ghosh and Bellemare [2020] and Le Lan et al.

[2022] characterize the stability, approximation and generalization errors of the SR

[Dayan, 1993] and Schur representations which are P π-invariant, a key property

to ensure stability. In contrast, we formalize that predicting values functions by

TD learning from G = I leads to P π-invariant subspaces.

Auxiliary tasks. Lyle et al. [2021] analyse the representations learnt by several

auxiliary tasks such as random cumulants [Osband et al., 2018, Dabney et al., 2021]

assuming real diagonalizability of the transition matrix P π and constant weights

W . They found that in the limit of an infinity of gaussian random cumulants,

the subspace spanned by TD representations converges in distribution towards

the left singular vectors of the successor representation. Instead, our theoretical

analysis holds for any transition matrix and both the weights W and the features

Φ are updated at each time step. Recently, Farebrother et al. [2023] rely on a

random binary cumulant matrix which sparsity is controlled by means of a quantile

regression loss. Finally, other auxiliary tasks regroup self-supervised learning

methods [Schwarzer et al., 2021, Guo et al., 2020]. Tang et al. [2023] demonstrate

that these algorithms perform an eigendecompositon of real diagonalisable transition

matrix P π, under some assumptions, suggesting a close connection to TD auxiliary

tasks. Touati and Ollivier [2021], Blier et al. [2021] propose an unsupervised

pretraining algorithm to learn representations based on an eigendecomposition of

transition matrix P π. They demonstrate the usefulness of their approach on discrete

and continuous mazes, pixel-based MsPacman and the FetchReach virtual robot arm.

6. Bootstrapped Representations in Reinforcement Learning 153

6.7 Conclusion

In this paper, we have studied representations learnt by bootstrapping methods

and proved their benefit for value-based deep RL agents. Based on an analysis

of the TD continuous-time dynamical system, we generalized existing work [Lyle

et al., 2021] and provided evidence that TD representations are actually different

from Monte Carlo representations.

Our investigation demonstrated that an identity cumulant matrix provides as

much information as the TD and supervised auxiliary algorithms can carry; this

work also shows that it is possible to design more compact pseudo-reward functions,

though this requires prior knowledge about the transition dynamics. This led us to

propose new families of cumulants which also proved useful empirically.

We assumed in this paper that the TD updates are carried out in tabular way,

that is that there is not generalization between states when we update the features.

An exciting opportunity for future work is to extend the theoretical results to the

case where the representation is parametrized by a neural network. Other avenues for

future work include scaling up the representation learning methods here introduced.

Acknowledgements

The authors would like to thank Yunhao Tang, Doina Precup and the anonymous

reviewers for detailed feedback on this manuscript. We also thank Jesse Farebrother

and Joshua Greaves for help with the Proto-Value Networks codebase [Farebrother

et al., 2023]. Thank you to Matthieu Geist, Bruno Scherrer, Chris Dann, Diana

Borsa, Remi Munos, David Abel, Daniel Guo and Bernardo Avila Pires for useful

discussions too.

We also thank the Python community [Van Rossum and Drake Jr, 1995, Oliphant,

2007] for developing tools that enabled this work, including NumPy [Oliphant, 2006,

Walt et al., 2011, Harris et al., 2020], SciPy [Jones et al., 2001], Matplotlib [Hunter,

2007] and JAX [Bradbury et al., 2018].

154 6.A. Additional Empirical Results

6.A Additional Empirical Results

6.A.1 Additional Details for Subsection 6.5.1

In this experiment, we selected a step size α = 0.08 for all the algorithms.

We also choose a uniform data distribution Ξ = I/|S| and a cumulant matrix

G = I for simplicity.

6.A.2 Additional Details for Subsection 6.5.2

In this experiment, we use a step size α = 5e−3 and train the different learning rules

for 500k steps with 3 seeds. We consider the transition matrices induced by an

epsilon greedy policy on the Four Rooms domain [Sutton et al., 1999] with ϵ = 0.8

and train the supervised and TD update rules as described in Subsection 6.5.1.

We provide additionnal empirical results in Figure 6.7.

Gaussian Orthogonal Group Indicator Normalized Gaussian

0 20 40 60 80
Number of tasks

103

104

105

M
on

te
 C

ar
lo

 A

pp
ro

xi
m

at
io

n
Er

ro
r

0 20 40 60 80
Number of tasks

103

104

105

M
on

te
 C

ar
lo

 A

pp
ro

xi
m

at
io

n
Er

ro
r

0 20 40 60 80
Number of tasks

107

109

1011

TD
 a

pp
ro

xi
m

at
io

n
Er

ro
r

0 20 40 60 80
Number of tasks

106

107

108

TD
 a

pp
ro

xi
m

at
io

n
Er

ro
r

Figure 6.7: Monte Carlo and TD approximation errors after 5.105 training steps on
the learning rules LMC

aux (on the left column) and LTD
aux (on the right column) in the Four

Rooms domain for different distributions of cumulant, averaged over 30 seeds, for d = 5.
Shaded areas represent estimates of 95% confidence intervals.

6. Bootstrapped Representations in Reinforcement Learning 155

6.A.3 Additional Details for Subsection 6.5.3

Four Rooms is a tabular gridworld environment where the agent begins in a room

in the top left corner and must navigate to the goal state in the lower right corner.

The actions are up, down, left and right and have deterministic effects. The reward

function is one upon transitioning into the goal state and zero otherwise.

Mountain Car is a two-dimensional continuous state environment where the

agent must move an under-powered car from the bottom of a valley to a goal state

at the top of the nearby hill. The agent observes the continuous-valued position and

velocity of the car, and controls it with three discrete actions which apply positive,

negative, and zero thrust to the car. In this sparse reward version of the domain

the reward is one for reaching the goal and zero otherwise. In this domain, we

compute the ExactSVD by first discretizing the state space into approximately 2000

states, and compute an approximate P π by simulating transitions from uniformly

random continuous states belonging to each discretized state.

In this evaluation, we first pre-train a network representation offline with a large

fixed dataset produced from following the uniform random policy. During offline

pre-training the agent does not observe the reward, and instead learns action-value

functions, GVFs, for each of several cumulant functions. After pre-training, the GVF

head is removed and replaced with a single action-value function head. This network

is then trained online with DQN on the true environmental reward. Note that we

allow gradients to propagate into the network representation during online training.

In the Four Rooms domain, all methods use k = 40 cumulants and in Mountain

Car all methods use k = 80 cumulants.

The inputs to the network were a one-hot encoding of the observation in the

Four Rooms domain and the usual position and velocity feature vector in Mountain

car. The offline pre-training dataset contains 100000 and 200000 transitions for

Four Rooms and Mountain Car respectively. In both cases the dataset is generated

and used to fill a (fixed) replay buffer, and then the agent is trained for 400000

updates (each update using a minibatch of 32 transitions sampled uniformly from

the buffer/dataset). The learning rate for both offline and online training was the

156 6.A. Additional Empirical Results

same as the standard DQN learning rate (0.00025), and similarly for the optimizer

epsilon. The network architecture is a simple fully connected MLP with ReLU

activations [Nair and Hinton, 2010] and two hidden layers of size 512 (first) and

256 (second), followed by a linear layer to give action-values.

We provide visualizations of the cumulants produced by each method and their

corresponding value functions in Figure 6.8, Figure 6.9, Figure 6.10, Figure 6.11,

Figure 6.12, Figure 6.13, Figure 6.14 and Figure 6.15.

Figure 6.8: Example for ExactSVD of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in Four Rooms under the uniform
random policy.

Figure 6.9: Example for Normal of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in Four Rooms under the uniform
random policy.

6. Bootstrapped Representations in Reinforcement Learning 157

Figure 6.10: Example for CCR of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in Four Rooms under the uniform
random policy.

Figure 6.11: Example for RNI of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in Four Rooms under the uniform
random policy.

6.B Proofs for Section 6.2

Proposition 2 (Monte Carlo representations). If rank(Ψπ) ⩾ d, all representations

spanning the top-d left singular vectors of Ψπ with respect to the inner product ⟨x, y⟩Ξ
are global minimizers of LMC

aux and can be recovered by stochastic gradient descent.

Proof. Let Fd denote the top d left singular vectors of Ψ.

arg min
Φ∈RS×d

min
W ∈Rd×T

∥Ξ1/2(ΦW −Ψ)∥2
F = arg min

Φ∈RS×d

∥P⊥
Ξ1/2ΦΞ1/2Ψ∥2

F

= {Φ ∈ RS×d | ∃M ∈ GLd(R),Φ = FdM}

158 6.C. Proofs for Section 6.3

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Figure 6.12: Example for ExactSVD of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in sparse Mountain Car under the
uniform random policy.

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Figure 6.13: Example for Normal of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in sparse Mountain Car under the
uniform random policy.

This set of representations can be recovered by stochastic gradient descent efficiently,

i.e., with number of SGD iterations scaling at most polynomially in all problem

specific parameters [Ge et al., 2017, Jin et al., 2017] in the context of SGD.

6.C Proofs for Section 6.3

Throughout this appendix, we will use the notation L := I − γP π.

The beginning of this section is dedicated to proving the main result of Section 6.3,

Theorem 9. Before that, we introduce the following necessary lemma.

6. Bootstrapped Representations in Reinforcement Learning 159

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Figure 6.14: Example for CCR of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in sparse Mountain Car under the
uniform random policy.

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

1.0 0.5 0.0 0.5

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Figure 6.15: Example for RNI of the learned cumulants (first two rows) and value
functions (last two rows) during offline pre-training in sparse Mountain Car under the
uniform random policy.

Lemma 22. Let Φ ∈ RS×d and Ψ ∈ RS×T . Let PΦ be a (possibly oblique) projection

onto span(Φ). We have

PΦΨ = Ψ⇐⇒ span(Ψ) ⊆ span(Φ)

Proof. PΦ can be written as PΦ = Φ(X⊤Φ)−1X⊤ where Φ, X ∈ RS×d and X⊤Φ ∈

Rd×d is invertible. Write PΦ = ΦQ with Q = (X⊤Φ)−1X⊤.

(=⇒) Suppose Ψ ∈ RS×T such that PΦΨ = Ψ. Then, Ψ = Φ(QΨ). Let ω ∈ RT .

160 6.C. Proofs for Section 6.3

Ψω = Φ(QΨ)ω so Ψω ∈ span(Φ) Hence span(Ψ) ⊆ span(Φ).

(⇐=) Suppose span(Ψ) ⊆ span(Φ). Denote (et) the standard basis. We

have PΦΨ = (∑t PΦ(Ψet)e⊤
t). Note that Ψet ∈ span(Ψ) ⊆ span(Φ). Hence,

there exists yt ∈ Rd such that Ψet = Φyt. Now, PΦΨ = (∑t PΦ(Φyt)e⊤
t) =

(∑t Φ(X⊤Φ)−1X⊤Φyte
⊤
t) = (∑t Φyte

⊤
t) = (∑t Ψete

⊤
t) = Ψ.

Lemma 16 (Critical representations for TD). All full rank representations which

are critical points to LTD
aux span real invariant subspaces of (I − γP π)−1GGTΞ, that

is span((I − γP π)−1GGTΞΦ) ⊆ span(Φ).

Proof. Start with these equations.

For a fixed Φ,∇WLTD
aux(Φ,W) = 2ΦTΞ(ΦW −G− γP πΦW)

For a fixed W,∇ΦLTD
aux(Φ,W) = 2Ξ(ΦW −G− γP πΦW)WT

By Assumption 2, ΦTΞLΦ is invertible for all full rank representations Φ. Hence,

for a fixed full rank Φ,

∇W∥(Ξ) 1
2 (ΦW −G− γP πsg[ΦW])∥2

F = 0⇐⇒ W ∗
Φ =

(
ΦTΞLΦ

)−1
ΦTΞG

Using the second fixed-point equation:

0 = (LΦW −G)WT ⇐⇒ LΦWWT = GWT.

Now plugging in the expression for W ∗
Φ,

LΦ
(
ΦTΞLΦ

)−1
ΦTΞG

((
ΦTΞLΦ

)−1
ΦTΞG

)T
= G

((
ΦTΞLΦ

)−1
ΦTΞG

)T

⇔ LΦ
(
ΦTΞLΦ

)−1
ΦTΞGGTΞΦ

(
ΦTΞLΦ

)−T
= GGTΞΦ

(
ΦTΞLΦ

)−T

⇔ Φ
(
ΦTΞLΦ

)−1
ΦTΞGGTΞΦ = L−1GGTΞΦ

⇔ ΠLTΞΦL
−1GGTΞΦ = L−1GGTΞΦ

where ΠX = Φ(XTΦ)−1XT is the oblique projection onto span(Φ) orthogonally to

span(X). This is equivalent to Π⊥
LTΞΦL

−1GGTΞΦ = 0, which is equivalent to saying

that span(Φ) must be an invariant subspace of L−1GGTΞ by Lemma 22.

6. Bootstrapped Representations in Reinforcement Learning 161

In other words, we have shown that all non-degenerate full-rank Φ which are

critical points span invariant subspaces of L−1GGTΞ. We can enumerate these

via the real Jordan normal form of L−1GGTΞ. Each block of the real Jordan

normal form corresponds to an invariant subspace of L−1GGTΞ. Suppose that the

real Jordan block sizes of L−1GGTΞ are n1, n2, ..., nb (L−1GGTΞ has b real Jordan

blocks), and suppose L−1GGTΞ = SJS−1 is the real Jordan decomposition, with

J = blkdiag(Jn1(λ1), ..., Jnb
(λb)). Partition the columns of S into S1, ..., Sb. Then if

Φ ∈ RS×k, the set of non-degenerate stationary full rank representations is:

{
[
Si1 ... Siℓ

]
| ni1 + ...+ niℓ

= k}.

Corollary 6. If G = I and Ξ = I/|S|, all full rank representations which are

critical points to LTD
aux span real invariant subspaces of the invariant subspaces of

P π.

Proof. Let G = I and Ξ = I/|S|. By Lemma 16, all full rank representations which

are critical points of LTD
aux span real invariant subspaces of (I − γP π)−1.

Let Φ be a representation spanning an invariant subspace of (I − γP π)−1. By

definition, span((I− γP π)−1Φ) ⊆ span(Φ). Because (I− γP π) is invertible, we have

dim((I − γP π)−1Φ) = dim(Φ). Hence, we actually have span((I − γP π)−1Φ) =

span(Φ). There exists w1, w2 ∈ Rd such that Φw1 = (I − γP π)−1Φw2 so (I −

γP π)Φw1 = Φw2. It follows that Φ (w1−w2)
γ

= P πΦw1. Hence, P πΦw1 ∈ span(Φ)

and span(P πΦ) ⊆ span(Φ). We conclude that Φ spans an invariant subspace of

P π.

Theorem 9 (TD representations). Assume G = I, P π symmetric and a uniform

distribution ξ over states. Let λ1, .., λ|S| be the (possibly complex) eigenvalues of P π,

ordered by decreasing real part Re(λi) ⩾ Re(λi+1), i ∈ {1, .., |S|}. If Φ is initialized

to be orthogonal, under the dynamics in Equation (6.2), all real invariant subspaces

of dimension d are critical points, and any non top-d real invariant subspace, if it

exists, is unstable.

162 6.C. Proofs for Section 6.3

Proof. Consider this objective:

L(Φ) = 1
2∥(Ξ

1
2)(ΦWTD

Φ,G −G− γP πsg[ΦWTD
Φ,G])∥2

F ,

and WTD
Φ,G =

(
ΦTΞLΦ

)−1
ΦTΞG and define L := I − γP π. Observe that:

For a fixed W,∇Φ∥ΦW −G− γP πsg[ΦW]∥2
F = 2Ξ(LΦW −G)(W)T

So now we consider the continuous time dynamics:

d

dt
Φ = −∇ΦL(Φ) := −F (Φ), (6.5)

where:

F (Φ) := Ξ(LΦWTD
Φ,G −G)(WTD

Φ,G)T = ΞL(ΠL⊤ΞΦ − I)L−1GGTΞΦ(ΦTΞLΦ)−T

Consider the case G = I and Ξ = I/|S|. The proof strategy consists in constructing

an eigenvector ∆ ∈ RS×d of ∂ΦF (Φ) as a function of Φ, L,G such that ∂ΦF (Φ)[∆] =

−λ∆ for some Re(λ) > 0. For every non top-d invariant subspace, we prove that

the Jacobian of the dynamics −F has a positive real part eigenvalue.

Let Φ be a stationary point which columns are orthogonal such that ΦTΦ = I.

Φ is an invariant subspace of P π. Assume that Φ does not contain any of the

eigenvectors corresponding to the top d eigenvalues. Define Λ = diag(λ1, ..., λd) its

associated eigenvalues assumed distinct. We have PΦ = ΦΛ. Hence, (I − γP π)Φ =

Φ(I − γΛ). Let λmax the largest eigenvalue of P π not contained in Φ and let

i ∈ {1, .., d} be the largest index such that λi < λmax. Let ∆ be the matrix with the

eigenvector corresponding to the eigenvalue λmax in its i-th column and 0 elsewhere.

∂ΦW
∗
Φ[∆] = −(ΦTLΦ)−1(∆TLΦ + ΦTL∆)(ΦTLΦ)−1ΦTG+ (ΦTLΦ)−1∆TG

= −(ΦTΦ(I − γΛ))−1(∆TΦ(I − γΛ)

+ (1− γλmax)ΦT∆)(ΦTΦ(I − γΛ))−1ΦTG+ (ΦTΦ(I − γΛ))−1∆T

= (I − γΛ)−1(ΦTΦ)−1∆T as ∆⊤Φ = 0

6. Bootstrapped Representations in Reinforcement Learning 163

∂ΦF (Φ)[∆] = (L∆W ∗
Φ + LΦ(dW ∗

Φ))(W ∗
Φ)T + (LΦW ∗

Φ −G)(dW ∗
Φ)T

= (1− γλmax)∆(I − γΛ)−2(ΦTΦ)−1

+ LΦ(I − γΛ)−1(ΦTΦ)−1∆TΦ(ΦTLΦ)−T

+ LΦ(ΦTLΦ)−1ΦT∆(ΦTΦ)−1(I − γΛ)−T −∆(ΦTΦ)−1(I − γΛ)−T

= ∆(1− γλmax)(I − γΛ)−2(ΦTΦ)−1 −∆(ΦTΦ)−1(I − γΛ)−T

= ∆(1− γλmax)(I − γΛ)−2 −∆(I − γΛ)−1

= γ∆(−λmaxI + Λ)(I − γΛ)−2

= γ∆(−λmax + λi)(1− γλi)−2 < 0

Hence, any non top-d invariant subspace is unstable for gradient descent.

Proposition 3 (Residual representations). Let d ∈ {1, ..., S} and Fd be the top d

left singular vectors of G with respect to the inner product ⟨x, y⟩Ξ = yTΞx, for all

x, y ∈ R|S|. All representations spanning (I − γP π)−1Fd are global minimizers of

Lres
aux and can be recovered by stochastic gradient descent.

Proof. We can write the loss function to be minimized as

J(Φ) = min
W ∈Rd×T

∥Ξ1/2(ΦW − (G+ γP πΦW))∥2
F

= min
W ∈Rd×T

∥Ξ1/2(ΦW − γP πΦW −G)∥2
F

= min
W ∈Rd×T

∥Ξ1/2((I − γP π)ΦW −G)∥2
F

Now,

arg min
Φ∈RS×d

min
W ∈Rd×T

∥Ξ1/2((I − γP π)ΦW −G)∥2
F

= arg min
Φ∈RS×d

∥P⊥
Ξ1/2(I−γP π)ΦΞ1/2G∥2

F

= {Φ ∈ RS×d | Φ = (I − γP π)−1FdM,M ∈ GLd(R)}

This set of representations can be recovered by stochastic gradient descent efficiently,

i.e., with number of SGD iterations scaling at most polynomially in all problem

specific parameters [Ge et al., 2017, Jin et al., 2017] in the context of SGD.

164 6.D. Proofs for Section 6.4

Corollary 7 (Symmetric transition matrices). If a cumulant matrix G ∈ RS×T

(with T ⩾ S) has unit-norm, orthogonal columns (e.g. G = I), the representations

learnt from the supervised objective LMC
aux and the TD update rule LTD

aux are the same

for symmetric transition matrices P π under a uniform state distribution ξ.

Proof. Assume that P π is symmetric so that L and L−1 are also symmetric.

By Proposition 2, running SGD on the supervised objective LMC
aux using Ψ = L−1G

as targets results in a representation spanning the top-d left singular vectors of

L−1G which are the same as the top-d left singular vectors of L−1.

By assumption G is orthogonal, hence GGT = I. Because L−1GGT is symmetric,

all its eigenvalues are real. By Theorem 9, running gradient descent on LTD
aux using

G as the cumulant matrix converges to the top-d eigenvectors of L−1GGT = L−1.

Indeed, the subspaces given by the span of the right eigenvectors of L−1 are the

only L−1-invariant subspaces. These eigenvectors are also the singular vectors of

L−1 as this matrix is symmetric.

Because P is a row stochastic matrix, we have that the spectral radius of P

satisfies ρ(P) = 1, and therefore λ(P) ⊆ [−1, 1]. Hence:

1
1− γλ ∈ [1/(1 + γ), 1/(1− γ)].

Hence, the eigenvalues of L−1 are positive. Because L−1 is symmetric, the singular

values of L−1 are exactly its eigenvalues. Hence, the top-d eigenvectors are the

top-d singular vectors and the conclusion follows.

6.D Proofs for Section 6.4

Lemma 17. A representation Φ∗
TD is l1-ball optimal for TD learning iff it is a

solution of the following optimization problem.

Φ∗
TD ∈ arg minΦ

∥∥∥Ξ1/2(ΦWTD
Φ,I − (I − γP π)−1)

∥∥∥2

F
.

6. Bootstrapped Representations in Reinforcement Learning 165

Proof. By definition, a representation is enough for TD learning when it is a

minimizer of Equation (6.3), that is,

Φ∗
TD ∈ arg min

Φ∈RS×d

Erπ∥ΦwTD
Φ − V π∥2

ξ , (6.6)

where the expectation is over the reward functions rπ sampled uniformly over the l1
ball ∥rπ∥2

1 ⩽ 1 and

wTD
Φ =

(
ΦTΞ(I − γP π)Φ

)−1
ΦTΞrπ.

Write P⊥
LTΞΦ = I − PLTΞΦ and PX = Φ(XTΦ)−1XT the oblique projection onto

span(Φ) orthogonally to span(X). We have

E∥r∥2
1⩽1∥ΦwTD

Φ − V π∥2
ξ = E∥r∥2

1⩽1∥Ξ1/2P⊥
LTΞΦ(I − γP π)−1r∥2

2

= E∥r∥2
1⩽1∥Ξ1/2P⊥

LTΞΦ(I − γP π)−1r∥2
2

= E∥r∥2
1⩽1 tr(r⊤L−⊤(P⊥

LTΞΦ)⊤ΞP⊥
LTΞΦL

−1r)

= tr(L−⊤(P⊥
LTΞΦ)⊤ΞP⊥

LTΞΦL
−1E(rr⊤))

∝ ∥Ξ1/2P⊥
LTΞΦL

−1∥2
F

∝
∥∥∥Ξ1/2(ΦWTD

Φ,I − (I − γP π)−1)
∥∥∥2

F

The penultieme line comes from the fact that r is sampled from an isotropic

distribution.

Lemma 18. A representation Φ∗
MC is l1-ball optimal for batch Monte Carlo policy

evaluation if its column space spans the top-d left singular vectors (with respect to

the inner product ⟨x, y⟩Ξ) of (I − γP π)−1.

Proof. We have

E∥r∥2
1⩽1∥V̂ MC − V π∥2

ξ = E∥r∥2
1⩽1∥P⊥

Ξ1/2ΦΞ1/2(I − γP π)−1r∥2
2

= E∥r∥2
1⩽1 tr(r⊤L−⊤Ξ1/2P⊥

Ξ1/2ΦΞ1/2L−1r)

= tr(L−⊤Ξ1/2P⊥
Ξ1/2ΦΞ1/2L−1E(rr⊤))

= ∥P⊥
Ξ1/2ΦΞ1/2L−1∥2

F

166 6.D. Proofs for Section 6.4

Write (I − γP π)−1 = FΣB⊤ the weighted SVD of (I − γP π)−1 where F ∈ RS×S

such that FTΞF = I and B ∈ RS×S such that BTB = I. Write Fd the top-d left

singular vectors corresponding to the top-d singular values on the diagonal of Σ. By

definition, an l1-ball optimal representation is solution to the following optimization

problem

arg min
Φ∈RS×d

E∥r∥2
1⩽1∥V̂ MC − V π∥2

ξ = arg min
Φ∈RS×d

∥P⊥
Ξ1/2ΦΞ1/2L−1∥2

F

= arg min
Φ∈RS×d

∥P⊥
Ξ1/2ΦΞ1/2FΣB⊤∥2

F

By the Eckart-Young theorem, ∥P⊥
Fd

Ξ1/2FΣBT∥2
F ⩽ ∥P⊥

Φ Ξ1/2FΣBT∥2
F . Hence, the

set of optimal representations is {FdM,M ∈ GLd(R)}.

Lemma 23. Write FdΣdB
⊤
d the truncated weighted SVD of the successor represen-

tation (I − γP π)−1. A representation is l1-ball optimal for residual policy evaluation

if its column space spans FdΣd.

Proof. Write (I − γP π)−1 = FΣBT the weighted SVD of (I − γP π)−1 where

F ∈ RS×S such that FTΞF = I and B ∈ RS×S such that BTB = I. Write Fd the

top-d left singular vectors corresponding to the top-d singular values on the diagonal

of Σ. For a fixed Φ ∈ RS×d, the solution of minw∈Rd ∥Ξ1/2(Φw − (rπ + γP πΦw))∥2
F

is the Bellman residual minimizing approximation [Lagoudakis and Parr, 2003] and

is given by

wres
Φ =

(
(Φ− γP πΦ)TΞ(Φ− γP πΦ)

)−1
(Φ− γP πΦ)TΞrπ.

Hence, the value approximant can be expressed by means of an orthogonal projection

matrix as follows

Φwres
Φ = (I − γP π)−1Ξ−1/2PΞ1/2(I−γP π)ΦΞ1/2rπ

where PX = X(XTX)−1XT denotes an orthogonal projection. By definition, a

representation l1-ball optimal for residual policy evaluation is solution to the

6. Bootstrapped Representations in Reinforcement Learning 167

following optimization problem

arg min
Φ∈RS×d

E∥r∥2
1⩽1∥V̂ res − V π∥2

ξ

= arg min
Φ∈RS×d

∥Ξ1/2(I − γP π)−1Ξ−1/2PΞ1/2(I−γP π)ΦΞ1/2rπ − Ξ1/2(I − γP π)−1rπ∥2
F

= arg min
Φ∈RS×d

∥Ξ1/2(I − γP π)−1Ξ−1/2PΞ1/2(I−γP π)ΦΞ1/2 − Ξ1/2(I − γP π)−1∥2
F

= arg min
Φ∈RS×d

∥Ξ1/2(I − γP π)−1P⊥
Ξ1/2(I−γP π)Φ∥

2
F

Using an oblique projection,

Φwres
Φ = (I − γP π)−1Ξ−1/2PΞ1/2(I−γP π)ΦΞ1/2rπ

arg min
Φ∈RS×d

E∥r∥2
1⩽1∥V̂ res − V π∥2

ξ

= arg min
Φ∈RS×d

∥Ξ1/2(I − γP π)−1Ξ−1/2PΞ1/2(I−γP π)ΦΞ1/2rπ − Ξ1/2(I − γP π)−1rπ∥2
F

= arg min
Φ∈RS×d

∥Ξ1/2(I − γP π)−1Ξ−1/2PΞ1/2(I−γP π)ΦΞ1/2 − Ξ1/2(I − γP π)−1∥2
F

= arg min
Φ∈RS×d

∥Ξ1/2(I − γP π)−1P⊥
Ξ1/2(I−γP π)Φ∥

2
F

L−1 = UΣV T

L−1× the top d right singular vectors of (I−γP π)−1 is a solution. Let Ud,Σd, Vd

correspond to the top d svals. Lets say that Ud is S × d, Σd is square, and Vd is

also S × d. What is V TVd =
[
Id

0

]
.

We want LΦ = Vd so Φ = L−1Vd = UΣV TVd = UdΣd. If LΦ = Vd, then

P⊥
LΦ = P⊥

Vd
, so L−1P⊥

Vd
= U⊥

d Σ⊥
d (V ⊥

d)T, so the objective is now sum of the last

(S − d) singular values squared.

6.E Proofs for Subsection 6.4.1

Lemma 19. Denote BT the top-T right singular vectors of the SR and O(T, S) the

set of orthogonal matrices in RT ×S. Training auxiliary tasks in a MC way with any

168 6.E. Proofs for Subsection 6.4.1

G from the set {G ∈ RS×T |∃M ∈ O(T, S), G = BTM} results in an l1-ball optimal

representation for batch Monte Carlo.

Proof. By Lemma 18, a representation is l1-ball optimal for batch Monte Carlo policy

evaluation if it spans the top-d left singular vectors of the successor representation.

Let G ∈ RS×T be a cumulant matrix.

LSL
aux(Φ) = min

W ∈Rd×S
∥(ΦW − (I − γP π)−1G)∥2

F

By Proposition 2, we know that training on such a loss with G = I results in a

representation spanning the same subspace as the left singular vectors of the SR, that

is {Φ ∈ RS×d | ∃M ∈ GLd(R),Φ = FdM} where Fd are the left singular vectors of

the SR. We note that there is not a unique matrix G resulting into a representation

spanning that subspace. In particular, training with any of the matrices from the

set of cumulant matrices G(G) = {G′ ∈ RS×T |∃M ∈ O(T, S), G′ = GM} results in

the same representation, where O(T, S) denotes the set of orthogonal matrices in

RT ×S (rows have l2 norm 1).

We are interested in finding a cumulant matrix G ∈ RS×T with T < S such that

training the Monte Carlo loss LMC
aux results in a representation spanning the top-d

left singular vectors of the successor representation.

Denote BT the top T right singular vectors of the SR. Then the set G(BT)

satisfies the requirement.

In particular, this finding is consistent in the case where S = T because

G(BS) = {G′ ∈ RS×T |∃M ∈ O(T), G′ = BSM} = G(IS).

Indeed, let G′ ∈ G(BS). There exists M ∈ O(S) such that G′ = BSM =

IS(BSM). Because BSM ∈ O(S), we have G′ ∈ G(IS). Hence G(BS) ⊂ G(IS).

Let G′ ∈ G(IS). There exists M ∈ O(S) such that G′ = ISM = (BSB
T
S)M =

BS(BT
SM). Because BT

SM ∈ O(S), we have G′ ∈ G(BS). Hence G(IS) ⊂ G(BS).

As a conclusion, we have G(IS) = G(BS).

6. Bootstrapped Representations in Reinforcement Learning 169

Lemma 20. Let {Φω} be the set of rotating representations from Figure 6.2 learnt

by TD learning with G = I and d = 2. All these representations are equally good

for learning the main value function by TD learning, that is ∀ω ∈ [0, 1],

E∥r∥2
2<1

∥∥∥Φωw
TD
Φω
− V π

∥∥∥2

F

is constant and independent of ω.

Proof. Let’s start by considering the case of the three-state circular example. We

consider an orthogonal basis for the invariant subspaces of Φ. By definition,

P πe1 = e1, P
π[e2, e3] = [e2, e3]Λ so Le1 = (1−γ)e1 and L[e2, e3] = (I−γP)[e2, e3] =

[e2, e3]− γ[e2, e3]Λ = [e2, e3](I − γΛ).

Assume that there exists ω ∈ [0, 1] such that the representation is Φ = [e1, ωe2 +

(1−ω)e3] = [e1, e2, e3]Ω with Ω =

1 0
0 ω
0 (1− ω)

. LΦ = [(1− γ)e1, [e2, e3](I − γΛ)]Ω.

Hence, we have LΦ = [e1, e2, e3]
[
1− γ 0

0 I − γΛ

]
Ω

and ΦTLΦ = ΩT[e1, e2, e3]T[e1, e2, e3]
[
1− γ 0

0 I − γΛ

]
Ω = ΩT

[
1− γ 0

0 I − γΛ

]
Ω.

Hence, (ΦTLΦ)−1 =
[
(1− γ)−1 0

0 (uT(I − γΛ)u)−1

]
with u = (w, (1 − w))T. Note

that uT(I − γΛ)u = ω2λ1,1 + (1− ω)2λ1,1

The TD value function is given by V̂ TD = Φ(ΦTLΦ)−1ΦT

V̂ TD = [e1, e2, e3]Ω
[
(1− γ)−1 0

0 (uT(I − γΛ)u)−1

]
ΩT[e1, e2, e3]T

= [e1, e2, e3]
[
(1− γ)−1 0

0 u(uT(I − γΛ)u)−1uT

]
[e1, e2, e3]T

= 1/(1− γ)e1e
T
1 + ω2e2e

T
2 + ω(1− ω)e3e

T
2 + ω(1− ω)e2e

T
3 + (1− ω)2e3e

T
3

ω2λ1,1 + (1− ω)2λ1,1

Now ∥Φ(ΦTLΦ)−1ΦT − V π∥2
F is independent of ω.

Lemma 21. The set of cumulant matrices G ∈ RS×T that preserve the top-T

invariant subspaces of the successor representation by TD learning are the top-T

orthogonal invariant subspaces of (I − γP π)−1, that is satisfying G⊤G = I by

orthogonality and (I − γP π)−1G ⊆ G by the invariance property.

170 6.F. Proofs for Subsection 6.4.2

Proof. Let Φ ∈ RS×d spanning an invariant subspace of L−1. By definition, there

exists a block diagonal matrix JΦ ∈ Rd×d such that L−1Φ = ΦJΦ. Let G ∈ O(S, T)

spanning the top T invariant subspaces of L−1. By definition, there exists a block

diagonal matrix JG ∈ Rd×d such that L−1G = GJG. Hencer, we have

(L−1GGT)Φ = (L−1G)GTΦ

= GJTG
TΦ

= (ΦJΦ) by orthonormality

Then, Φ is an invariant subspace of L−1GG⊤.

6.F Proofs for Subsection 6.4.2

We now proceed to the proof of Proposition 4. Before that, we introduce some

necessary notations and lemmas.

6.F.1 Notations

Let O(S, d) := {A ∈ RS×d : ATA = I}.

Definition 14. Let A,B ∈ O(S, d). The principle angles Θ between A and B are

given by writing the SVD of ATB = U cos ΘV T.

Definition 15. Let A,B ∈ O(S, d) with principle angles Θ. We define the distance

d(A,B) as d(A,B) := ∥sin Θ∥op.

Proposition 5. Let A,B ∈ O(S, d). We have the following identities:

d(A,B) = ∥AAT −BBT∥op = ∥sin Θ∥op = ∥ATB̄∥op,

where B̄ ∈ O(S, S − d) satisfies BBT + B̄B̄T = I.

6. Bootstrapped Representations in Reinforcement Learning 171

6.F.2 Approximate Matrix Decompositions

Lemma 24 (Deterministic error bound). Let A be an S × S matrix. Fix d ⩽ S,

and partition the SVD of A as:

A =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V ⊤

1
V ⊤

2

]
,

where Σ1 is d× d (the dimensions of all the other factors are determined by this

selection). Put Ad := U1Σ1V
T

1 as the rank-d approximation of A. Let Ω be an S × ℓ

test matrix (ℓ ⩾ d). Put Y = AΩ, Ω1 = V ⊤
1 Ω and Ω2 = V ⊤

2 Ω. We have that:

∥(I − PY)Ak∥2
op ⩽ ∥Σ2Ω2Ω†

1∥2
op.

Proof. This proof is adapted from Theorem 9.1 of Halko et al. [2011].

Write Ad = ÛΣ̂V̂ ⊤ the full SVD of Ad. By invariance of the spectral norm to

unitary transformations,

∥(I − PY)Ad∥2
op = ∥Û⊤(I − PY)Û(Û⊤Ad)∥2

op = ∥(I − PÛ⊤Y)(Û⊤Ad)∥2
op

Assume the diagonal entries of Σ2 are not all strictly positive. Then Σ2 is zero

as a consequence of the ordering of the singular values.

range(Û⊤Y) = range
[
Σ1Ω1

0

]
= range

[
Σ1V

⊤
1

0

]
= range(Û⊤Ad)

So we can conclude that ∥(I − PY)Ad∥2
op = 0 assuming that V ⊤

1 and Ω1 have full

row rank.

Now assume that the diagonal entries of Σ1 are strictly positive. Let Z =

Û⊤Y · Ω†
1Σ−1

1 =
[
Id

F

]
with F = Σ2Ω2Ω†

1Σ−1
1 ∈ R(S−d)×d.

By construction, range(Z) ⊂ range(Û⊤Y), hence we have,

∥(I − PÛ⊤Y)(Û⊤Ad)∥2
op ⩽ ∥(I − PZ)Û⊤Ad∥2

op

⩽ ∥A⊤
d Û(I − PZ)Û⊤Ad∥op

⩽ ∥Σ̂(I − PZ)Σ̂∥op

Following the proof from Theorem 9.1 of Halko et al. [2011], we have

(I − PZ) ≼
[
F⊤F B
B⊤ IS−d

]

172 6.F. Proofs for Subsection 6.4.2

where B = −(Id − F⊤F)−1F⊤ ∈ Rd×(S−d).

Consequently, we have

Σ̂(I − PZ)Σ̂ ≼

[
Σ1F

⊤FΣ1 0
0 0

]

Σ̂(I − PZ)Σ̂ is PSD by the conjugation rule, hence the matrix on the right hand

side is PSD too. It follows that

∥Σ̂(I − PZ)Σ̂∥op ⩽ ∥Σ1F
⊤FΣ1∥op = ∥FΣ1∥2

op = ∥Σ2Ω2Ω†
1∥2

op

Lemma 25 (Average spectral error). Let A be an S×S matrix with singular values

σ1 ⩾ σ2 ⩾ Fix a target rank 2 ⩽ d ⩽ S and an oversampling parameter p ⩾ 2

where p+ d ⩾ S. Draw and S × (d+ p) standard gaussian matrix Ω and construct

the sample matrix Y = AΩ. Then, we have

E∥(I − PY)Ad∥op ⩽

√
d

p− 1σd+1 + e
√
d+ p

p

 S∑
j=d+1

σ2
j

1/2

.

Proof. By Lemma 24 and linearity of the expectation, we have

E∥(I − PY)Ad∥op ⩽ E∥Σ2Ω2Ω†
1∥op

⩽

√
d

p− 1σd+1 + e
√
d+ p

p

 S∑
j=d+1

σ2
j

1/2

,

where the last inequality comes from Theorem 10.6 of Halko et al. [2011].

Lemma 26. Let A ∈ Rm×n, and fix a d < n. Let σ1 ⩾ σ2 ⩾ . . . ⩾ σn denote the

singular values of M listed in decreasing order, and suppose that σk > 0. Let Ad

denote the rank-d approximation of A. Fix any matrix Y ∈ Rm×T . We have:

∥(I − PY)Ak∥op ⩾ ∥(I − PY)PAk
∥opσk.

Proof. Decompose P⊥
Y Ak as:

P⊥
Y Ak = P⊥

Y PAk
Ak

6. Bootstrapped Representations in Reinforcement Learning 173

∥P⊥
Y Ak∥op = ∥P⊥

Y PAk
Ak∥op ⩾ ∥P⊥

Y PAk
∥op∥Ak∥op = ∥P⊥

Y PAk
∥opσk

where the inequality comes from the sub-multiplicativity of the the operator norm

Proposition 6. Let A be an S × S matrix with singular values σ1 ⩾ σ2 ⩾ Fix

a target rank 2 ⩽ d ⩽ n and an oversampling parameter p ⩾ 2 where p + d ⩾ S.

Draw and n× (d+ p) standard gaussian matrix Ω and construct the sample matrix

Y = AΩ. Then, we have

E∥(I − PY)PAd
∥op ⩽

√
d

p− 1
σd+1

σd

+ e
√
d+ p

p

 S∑
j=d+1

σ2
j

σ2
d

1/2

.

Proof. By Lemma 26 and linearity of the expectation, we have

1
σd

E∥(I − PY)Ad∥op ⩾ E∥(I − PY)PAd
∥op

Now applying Lemma 25, we have√
d

p− 1
σd+1

σd

+ e
√
d+ p

p

 S∑
j=d+1

σ2
j

σ2
d

1/2

⩾ E∥(I − PY)PAd
∥op

Observe that, as the oversampling factor p grows, the RHS tends to zero.

However, the dependence will be something like p ≳ 1/ε2, if you want the RHS to

be ⩽ ε. This actually makes sense I think– you are using concentration of measure

to increase the accuracy, so you should pay 1/ε2 sample complexity.

6.F.3 Analysis

Proposition 4 (MC Error bound). Let G ∈ RS×T be a sample from a standard

gaussian distribution and assume d ⩽ T . Let Fd be the top-d left singular vectors

of the successor representation (I − γP π)−1 and F̂d be the top left singular vectors

of (I − γP π)−1G. Denote σ1 ⩾ σ2 ⩾ ... ⩾ σS the singular values of the SR and

dist(Fd, F̂d) the sin θ distance between the subspaces spanned by Fd and F̂d. We have

E[dist(Fd, F̂d)] ⩽
√

d

T − d− 1
σd+1

σd

+ e
√
T

T − d

 n∑
j=d+1

σ2
j

σ2
d

 1
2

174 6.F. Proofs for Subsection 6.4.2

Proof. Let l ∈{d,...,S}. Fl ∈ O(S, l) be the top l left singular vectors of (I−γP π)−1

and F̂l ∈ O(S, d) be the top left singular vectors of (I − γP π)−1G.

d(Fd, F̂d) = ∥F̂⊤
d F

⊥
d ∥op

= ∥PF̂d
P⊥

Fd
∥op

⩽ ∥PL−1GP
⊥
Fd
∥op as span(F̂d) ⊆ span(L−1G)

= ∥F̂⊤
T F

⊥
d ∥op

= ∥F⊤
d F̂

⊥
T ∥op

= ∥PFd
P⊥

F̂T
∥op

= ∥P⊥
F̂T
PFd
∥op by symmetry of the projection matrices

= ∥(I − PF̂T
)PFd
∥op

= ∥(I − PL−1G)P(L−1)d
∥op

⩽
1
σd

∥(I − PL−1G)(L−1)d∥op by Lemma 26

Now taking the expectation with respect to G and applying Proposition 6,

E[d(Fd, F̂d)] ⩽
√

d

T − d− 1
σd+1

σd

+ e
√
T

T − d

 n∑
j=d+1

σ2
j

σ2
d

1/2

.

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis
publications. For each publication there should exist a complete statement that is to be filled out and signed by the
candidate and supervisor (only required where there isn’t already a statement of contribution within the paper
itself).

Title of Paper

Bootstrapped Representations in Reinforcement Learning

Publication Status

 □Published □ Accepted for Publication

 □Submitted for Publication □Unpublished and unsubmitted work written
 in a manuscript style

Publication Details

Charline Le Lan, Stephen Tu, Mark Rowland, Anna Harutyunyan, Rishabh
Agarwal, Marc G. Bellemare, Will Dabney. In Reincarnating RL Workshop at
ICLR 2023.

Student Confirmation

Student Name:

Charline Le Lan

Contribution to the
Paper

I led the project, wrote the paper, came up with an initial proof about the
representations learnt by TD as a motivating step for this project, wrote proofs in
appendix, wrote the code for synthetic matrices experiments and random cumulants on
the four-room domain.
Will suggested the cumulant approach based on CPC with clustering, implemented this
method and generated the plots for the offline pre-training experiments.
All authors contributed to discussions, advising and provided feedback and edits on the
manuscript.

Signature

Date

March 23, 2023

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Professor Marc G. Bellemare

Supervisor comments

Signature

Date

This completed form should be included in the thesis, at the end of the relevant chapter.

13/04/23

Following our prior work on representation learning, Charline discovered an important gap
in our understanding of how deep reinforcement learning algorithms actually operate, because
they bootstrap rather than use supervised labels. This work is not yet formally published but
has received glowing reviews at ICML23.

175

176

7
Discussion

To conclude, we summarize the main contributions presented in this dissertation

and discuss promising avenues for future work.

7.1 Conclusion

The thesis defended in this dissertation is that topological tools, statistical learning

and dynamical systems theory can help shape principled state representations

that enhance RL agents.

We demonstrated this thesis by considering state representations through

two approaches, state abstraction (Chapter 3) and state features (Chapter 4,

Chapter 5, Chapter 6), and introduced a framework to improve reinforcement

learning algorithms in a theoretically-grounded manner.

In Chapter 3, we studied the goodness of a state-aggregation depending on how

well it can extrapolate values or q-values. This is key for algorithms like approximate

value iteration, policy iteration and for exploration algorithms on continuous state

spaces [Pazis and Parr, 2013]. This work also informs the choice of a behavioral

metric and corroborates the empirical success of follow-up state-similarity based

algorithms [Castro et al., 2021, Zhang et al., 2020].

177

178 7.2. Future Directions

In Chapter 4, we compared the generalization capacity of different state repre-

sentations by looking at their effective dimension, a quantity we introduced and

which drives the generalization to unseen states. Our analysis also motivated a

new auxiliary learning rule aiming at improving generalization of deep RL agents

and our work inspired several empirical investigations, in particular in the offline

setting [Fu et al., 2022].

In Chapter 5, we provided an algorithm to scale Monte Carlo auxiliary tasks

without increasing the amount of memory space required all while recovering the

desired state representation. We believe this approach will be crucial to scale up

auxiliary tasks such as proto-value networks [Farebrother et al., 2023].

In Chapter 6, we set up a mathematical model with which we characterize

the representations learned when predicting a collection of auxiliary tasks. This

analysis is important because, given a desired state representation, it informs

which additional predictions the agent should make and how it should make these

predictions. Together with this analysis, we developed scalable algorithms for

sparse reward settings and offline pre-training which proved useful on the Four

Rooms and Mountain Car domains.

7.2 Future Directions

There are a number of exciting directions for future work following from this

dissertation. We discuss a few of them in the following sections.

7.2.1 Further Theoretical Analysis of Representation Learn-
ing Schemes

A direct continuation of the work presented in this thesis would be to extend our

work from Chapter 4 by deriving a generalization bound from a given representation

in the temporal difference setting. A promising way would be to use concentration

inequalities and arguments for the analysis of random design linear least-squares

problems [Hsu et al., 2014]. We believe that the effective dimension from Chapter 4

would also play an important role. Recently, Duan et al. [2021] analyzed the

7. Discussion 179

estimation error when learning by kernel least-squares temporal difference (LSTD)

under a generative model. However, their proof is more complex than the one

suggested above and Duan et al. [2021] do not aim at comparing state representations

under the lens of generalization. A generalization bound in the TD setting would

be beneficial because it could lead to novel auxiliary update rules in the future.

We believe it is also essential to develop a better theoretical understanding of

how different representation learning schemes relate to each other.

Recent approaches about representation learning in RL are generally categorized

into three different families of methods: auxiliary tasks on which we focus in this

thesis, contrastive [Chen et al., 2020a, He et al., 2020, Chen et al., 2020b] and

non contrastive self-supervised approaches [Grill et al., 2020, Chen and He, 2021].

Usually, practitioners tend to think of them separately.

Lately, HaoChen et al. [2021] analysed contrastive learning in the setting of

classification and showed a close relationship with spectral decomposition. We

demonstrated in Chapter 6 that training auxiliary tasks in a supervised way also

performs a spectral decomposition on the auxiliary task matrix. It would thus

be interesting to characterize to which extend the representations learned with

contrastive losses (e.g. by means of a latent embedding) are connected with the

ones learned with auxiliary tasks.

Recently, Garrido et al. [2023] showed that contrastive and non-contrastive

methods are to some extend theoretically equivalent. Following their theoretical

insights, they demonstrated that careful design choices could close the gap between

the two approaches empirically.

Looking forward, we believe that extending some of these theoretical results

to the RL setting would be an exciting path for future research. Understanding

similarities and potential differences between the representations resulting from

training contrastive, self-supervised and auxiliary tasks methods could result in the

development of more principled representation learning algorithms for RL.

180 7.2. Future Directions

7.2.2 Benchmarks

In addition to the theoretical comparison suggested in Subsection 7.2.1, a complemen-

tary approach would be to develop a unified benchmark of different representation

learning approaches.

In this dissertation, we relied on the Atari 2600 video games [Bellemare et al.,

2013] and smaller domains such as the Four Rooms domain [Sutton et al., 1999],

Mountain Car [Moore, 1990] or Puddle World [Sutton, 1995] to demonstrate that

our theoretical insights made useful predictions about value-based deep RL agents

(Chapter 4 and Chapter 6) and led to efficient novel algorithms (Chapter 4, Chapter 5,

Chapter 6). Several approaches also rely on spectral representations [Barreto et al.,

2017a,b, Janner et al., 2020, Blier et al., 2021, Touati and Ollivier, 2021, Farebrother

et al., 2023, Schwarzer et al., 2021, Guo et al., 2020] but have often been evaluated

on different benchmarks and regimes.

Moving forward, an interesting direction would be to carefully tune the hyperpa-

rameters and the network architectures of these methods on the same benchmarks,

in line with the possible equivalences suggested in Subsection 7.2.1. Recently, Touati

et al. [2023] started to compare different representation learning algorithms on more

tasks and environments from the Unsupervised RL benchmark [Laskin et al., 2021]

but their experiments are still small-scale and the environments deterministic. It

would be exciting to evaluate these methods on other domains, for instance focusing

on complex or sparse reward environments. The NetHack learning environment

[Küttler et al., 2020] is a large-scale stochastic domain which would be an interesting

evaluation platform for the auxiliary tasks methods presented in Chapter 6. The

video game Minecraft could also be used as a testbed. It is a challenging benchmark

due to the high dimensionality of its state and action space as well as the sparsity of

its reward signal. The Balloon Learning Environment [BLE; Greaves et al., 2021] is a

partially observable and non-stationary environment which simulates the real-world

problem of navigating stratospheric balloons [Bellemare et al., 2020]. It would be

useful to evaluate the sample and compute-efficiency of the various representation

learning algorithms we mentioned on this task. Finally, as a way to measure the

7. Discussion 181

goodness of these representation learning methods for performing actions in the real

world, we could rely on some robotics benchmarks, for instance the robotic block

stacking environment [Lee et al., 2021]. Two settings would be particularly of interest:

1) first pretraining representations from offline data and then using them to learn a

policy in an online phase [Farebrother et al., 2023] and 2) pretraining representations

from offline data and fine-tuning them during second offline training phase.

Applying the methods presented in this thesis to these benchmarks would require

scaling them up. Farebrother et al. [2023] suggested that, given fixed capacity, the

performance of value-based agents saturated as the number of auxiliary tasks used

to pre-train representations kept increasing. Fully scaling up auxiliary-task based

methods would require revisiting some of the architectural choices made so far. For

instance, modern architecture, more depth, adaptive width and combining features

in a non-linear way could provide a path to keep scaling up these methods. We

also demonstrated theoretically in Chapter 6 and empirically in Chapter 5 that

learning dynamics differ when the weights of the last linear layer of a deep RL

architecture are parameterized explicitly or implicitly, as a function of the state

features. Comparing both training dynamics on the above benchmarks would also

be a way to work towards scaling up auxiliary tasks in reinforcement learning.

In addition, we presented in this thesis several quantities to measure the

usefulness of a representation such as the approximation error, the generalization

error (Chapter 4), the computational cost Chapter 3, an l1-ball optimality criterion

(Chapter 6) and the stability [Ghosh and Bellemare, 2020]. Reporting these

quantities for different representation learning methods would be an additional

helpful tool to evaluate them.

7.2.3 Pre-training Representations and Reincarnating Re-
inforcement Learning

A thrilling direction we touched upon in Chapter 6 is the idea of pre-training

representations. It is part of an emerging trend of reusing computation in RL,

also referred to as reincarnating RL [Agarwal et al., 2022]. Leveraging prior

182 7.2. Future Directions

computation is exciting because it can speed up training which is necessary to

develop large scale RL systems. In particular, reusing computation in the forms of

pre-trained representation can help learning a control policy faster than learning

it tabula rasa. These representations are often learned from offline datasets of

transitions as part of an unsupervised pre-training phase [Touati and Ollivier, 2021,

Farebrother et al., 2023, Touati et al., 2023]. They can be fixed and used for

linear function approximation [Farebrother et al., 2023] or fine-tuned throughout

training (see e.g. Subsection 6.5.3).

In this thesis, we looked at designing algorithms in single-environment settings.

However, learning more general agents capable of solving several tasks (e.g. games)

could further increase their generalization capacities. A possible research goal is to

develop universal pre-training methods of reinforcement learning agents [Guo et al.,

2020, Chen et al., 2021, Reed et al., 2022, Venuto et al., 2022, Taiga et al., 2023]. We

could therefore investigate the goodness of some of the auxiliary-task based methods

introduced in this thesis at learning universal features, for instance on Atari video

games. Following Agarwal et al. [2022], open-sourcing these features would enable

the research community to tackle RL problems requiring significant computational

resources by focusing on credit assignment separately from representation learning.

There are several promising real-world applications to reusing pre-trained

representations. Specifically, some of the work in this thesis could be leveraged

for dialogue systems. Current conversational response models such as ChatGPT

[OpenAI, 2023] are trained to predict the next text token, which simply corresponds

to behavior cloning [Pomerleau, 1991, Bagnell et al., 2006, Ross and Bagnell, 2010].

However, the Internet can be seen as an environment with non-trivial dynamics

providing high quantity but low quality data and Schwarzer et al. [2021], Farebrother

et al. [2023] demonstrated that self-supervised and auxiliary losses outperformed

behavioral cloning on "suboptimal" Atari data. Hence, investigating alternative

ways to pre-train large language models by leveraging the successor representation

is an exciting challenge ahead of us.

Bibliography

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.

Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin

Wicke, Yuan Yu, and Zheng Xiaoqiang. Tensorflow: A system for large-scale

machine learning. In USENIX Symposium on Operating Systems Design and

Implementation, 2016.

David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via

approximate state abstraction. In Proceedings of the International Conference on

Machine Learning, 2016.

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimiza-

tion in linear time. Journal of Machine Learning Research, 18:1–40, 2017.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic

perspective on offline reinforcement learning. In Proceedings of the International

Conference on Machine Learning, 2020.

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G

Bellemare. Contrastive behavioral similarity embeddings for generalization in

reinforcement learning. In Proceedings of the International Conference on Learning

Representations, 2021a.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and

Marc G Bellemare. Deep reinforcement learning at the edge of the statistical

precipice. In Advances in Neural Information Processing Systems, 2021b.

183

184 Bibliography

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville,

and Marc Bellemare. Reincarnating reinforcement learning: Reusing prior

computation to accelerate progress. In Advances in Neural Information Processing

Systems, 2022.

Ehsan Amid and Manfred K Warmuth. An implicit form of krasulina’s k-PCA

update without the orthonormality constraint. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2020.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter

Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.

Hindsight experience replay. In Advances in Neural Information Processing

Systems, 2017.

T. W. Archibald, K. I. M. McKinnon, and L. C. Thomas. On the generation of

Markov decision processes. The Journal of the Operational Research Society, 46

(3):354–361, 1995.

J Bagnell, Joel Chestnutt, David Bradley, and Nathan Ratliff. Boosting structured

prediction for imitation learning. In Advances in Neural Information Processing

Systems, 2006.

Leemon Baird. Residual algorithms: Reinforcement learning with function

approximation. In Machine Learning Proceedings 1995, pages 30–37. Elsevier,

1995.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis:

Learning from examples without local minima. Neural networks, 2(1):53–58, 1989.

Laura Balzano. On the equivalence of oja’s algorithm and grouse. In Proceedings

of the International Conference on Artificial Intelligence and Statistics, 2022.

Laura Balzano, Robert Nowak, and Benjamin Recht. Online identification and

tracking of subspaces from highly incomplete information. In Annual Allerton

Conference on Communication, Control, and Computing. IEEE, 2010.

Bibliography 185

Etienne Barnard. Temporal-difference methods and markov models. IEEE

Transactions on Systems, Man, and Cybernetics, 23(2):357–365, 1993.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado

van Hasselt, and David Silver. Successor features for transfer in reinforcement

learning. In Advances in Neural Information Processing Systems, 2017a.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P

van Hasselt, and David Silver. Successor features for transfer in reinforcement

learning. In Advances in Neural Information Processing Systems, 2017b.

Bahram Behzadian and Marek Petrik. Low-rank feature selection for reinforcement

learning. In Proceedings of the International Symposium on Artificial Intelligence

and Mathematics, 2018.

Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel

Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A

geometric perspective on optimal representations for reinforcement learning. In

Advances in Neural Information Processing Systems, 2019.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade

learning environment: An evaluation platform for general agents. Journal of

Artificial Intelligence Research, 47:253–279, 2013.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective

on reinforcement learning. In Proceedings of the International Conference on

Machine Learning, 2017.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C

Machado, Subhodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous

navigation of stratospheric balloons using reinforcement learning. Nature, 588

(7836):77–82, 2020.

Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement

Learning. MIT Press, 2023. http://www.distributional-rl.org.

http://www.distributional-rl.org

186 Bibliography

RJNJ Bellman. Dynamic programming princeton university press princeton. New

Jersey Google Scholar, 1957.

Dimitri P. Bertsekas. Approximate policy iteration: A survey and some new

methods. Journal of Control Theory and Applications, 9(3):310–335, 2011.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-

dependent values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123,

2021.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for

large-scale machine learning. Siam Review, 60(2):223–311, 2018.

Justin A Boyan. Technical update: Least-squares temporal difference learning.

Machine learning, 49(2):233–246, 2002.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye

Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of

Python+NumPy programs, 2018. URL http://github.com/google/jax.

Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal

difference learning. Machine learning, 22(1):33–57, 1996.

Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues,

volume 31. Springer Science & Business Media, 2013.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by

random network distillation. In Proceedings of the International Conference on

Learning Representations, 2018.

Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex

optimization. Foundations of Computational mathematics, 9(6):717–772, 2009.

http://github.com/google/jax

Bibliography 187

Pablo S. Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G.

Bellemare. Dopamine: A research framework for deep reinforcement learning.

arXiv, 2018.

Pablo Samuel Castro. Scalable methods for computing state similarity in deter-

ministic markov decision processes. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2020.

Pablo Samuel Castro and Doina Precup. Using bisimulation for policy transfer in

mdps. In Proceedings of the AAAI Conference on Artificial Intelligence, 2010.

Pablo Samuel Castro, Prakash Panangaden, and Doina Precup. Notions of state

equivalence under partial observability. In Proceedings of the International Joint

Conference on Artificial Intelligence, 2009.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland.

Mico: Improved representations via sampling-based state similarity for markov

decision processes. In Advances in Neural Information Processing Systems, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,

Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer:

Reinforcement learning via sequence modeling. In Advances in Neural Information

Processing Systems, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. In Proceedings of

the International Conference on Machine Learning, 2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E

Hinton. Big self-supervised models are strong semi-supervised learners. In

Advances in Neural Information Processing Systems, 2020b.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning.

In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2021.

188 Bibliography

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario

Amodei. Deep reinforcement learning from human preferences. In Advances in

Neural Information Processing Systems, 2017.

Wesley Chung, Somjit Nath, Ajin Joseph, and Martha White. Two-timescale

networks for nonlinear value function approximation. In Proceedings of the

International Conference on Learning Representations, 2018.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quan-

tile networks for distributional reinforcement learning. In Proceedings of the

International Conference on Machine Learning, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional

reinforcement learning with quantile regression. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2018b.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G

Bellemare, and David Silver. The value-improvement path: Towards better

representations for reinforcement learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, 2021.

Robert Dadashi, Adrien Ali Taiga, Nicolas Le Roux, Dale Schuurmans, and Marc G

Bellemare. The value function polytope in reinforcement learning. In Proceedings

of the International Conference on Machine Learning, 2019.

Wei Dai and Olgica Milenkovic. Set: An algorithm for consistent matrix completion.

In Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing, 2010.

Christoph Dann, Gerhard Neumann, Jan Peters, et al. Policy evaluation with

temporal differences: A survey and comparison. Journal of Machine Learning

Research, 15:809–883, 2014.

John M Danskin. The theory of max-min and its application to weapons allocation

problems, volume 5. Springer Science & Business Media, 2012.

Bibliography 189

Peter Dayan. Improving generalization for temporal difference learning: The

successor representation. Neural Computation, 5(4):613–624, 1993.

Daniela Pucci De Farias. The linear programming approach to approximate dynamic

programming. John Wiley & Sons, 2003.

Christopher De Sa, Christopher Re, and Kunle Olukotun. Global convergence of

stochastic gradient descent for some non-convex matrix problems. In Proceedings

of the International Conference on Machine Learning, 2015.

Zhijie Deng, Jiaxin Shi, and Jun Zhu. Neuralef: Deconstructing kernels by deep

neural networks. In Proceedings of the International Conference on Machine

Learning, 2022.

Yaqi Duan, Chi Jin, and Zhiyuan Li. Risk bounds and rademacher complexity in

batch reinforcement learning. In Proceedings of the International Conference on

Machine Learning, 2021.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross

Goroshin, Pablo Samuel Castro, and Marc G Bellemare. Proto-value networks:

Scaling representation learning with auxiliary tasks. In Proceedings of the

International Conference on Learning Representations, 2023.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-

Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz,

Julian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, and Push-

meet Kohli. Discovering faster matrix multiplication algorithms with reinforcement

learning. Nature, 610(7930):47–53, 2022. doi: 10.1038/s41586-022-05172-4.

William Fedus, Carles Gelada, Yoshua Bengio, Marc G Bellemare, and Hugo

Larochelle. Hyperbolic discounting and learning over multiple horizons. arXiv

preprint arXiv:1902.06865, 2019.

190 Bibliography

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov

decision processes. In Proceedings of the Conference on Uncertainty in Artificial

Intelligence, 2004.

Norman Ferns, Prakash Panangaden, and Doina Precup. Metrics for Markov

Decision Processes with infinite state spaces. In Proceedings of the Conference on

Uncertainty in Artificial Intelligence, 2005.

Vincent François-Lavet, Yoshua Bengio, Doina Precup, and Joelle Pineau. Combined

reinforcement learning via abstract representations. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2019.

Yuwei Fu, Di Wu, and Benoit Boulet. A closer look at offline rl agents. In Advances

in Neural Information Processing Systems, 2022.

Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, and Yann Lecun.

On the duality between contrastive and non-contrastive self-supervised learning.

In Proceedings of the International Conference on Learning Representations, 2023.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle

points—online stochastic gradient for tensor decomposition. In Proceedings

of the Conference on Learning Theory, 2015.

Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low

rank problems: A unified geometric analysis. In Proceedings of the International

Conference on Machine Learning, 2017.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G

Bellemare. DeepMDP: Learning continuous latent space models for representation

learning. In Proceedings of the International Conference on Machine Learning,

2019.

Ian Gemp, Brian McWilliams, Claire Vernade, and Thore Graepel. EigenGame:

Pca as a nash equilibrium. In Proceedings of the International Conference on

Learning Representations, 2021.

Bibliography 191

Ian Gemp, Brian McWilliams, Claire Vernade, and Thore Graepel. EigenGame

unloaded: When playing games is better than optimizing. In Proceedings of the

International Conference on Learning Representations, 2022.

Dibya Ghosh and Marc G Bellemare. Representations for stable off-policy

reinforcement learning. In Proceedings of the International Conference on Machine

Learning, 2020.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model

minimization in markov decision processes. Artificial Intelligence, 147(1-2):163–

223, 2003.

Israel Gohberg, Peter Lancaster, and Leiba Rodman. Invariant subspaces of matrices

with applications. SIAM, 2006.

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and

Trends® in Communications and Information Theory, 2(3):155–239, 2006.

Joshua Greaves, Salvatore Candido, Vincent Dumoulin, Ross Goroshin,

Sameera S. Ponda, Marc G. Bellemare, and Pablo Samuel Castro. Bal-

loon Learning Environment, 2021. URL https://github.com/google/

balloon-learning-environment.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,

Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Moham-

mad Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to

self-supervised learning. In Advances in Neural Information Processing Systems,

2020.

Charles Miller Grinstead and James Laurie Snell. Introduction to probability.

American Mathematical Soc., 2012.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient

solution algorithms for factored mdps. Journal of Artificial Intelligence Research,

19:399–468, 2003.

https://github.com/google/balloon-learning-environment
https://github.com/google/balloon-learning-environment

192 Bibliography

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez

Colmenarejo, Konrad Zołna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz,

Cosmin Paduraru, et al. Rl unplugged: a suite of benchmarks for offline

reinforcement learning. In Advances in Neural Information Processing Systems,

2020.

Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent

Altché, Rémi Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-

predictive representations for multitask reinforcement learning. In Proceedings of

the International Conference on Machine Learning, 2020.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure

with randomness: Probabilistic algorithms for constructing approximate matrix

decompositions. SIAM review, 53(2):217–288, 2011.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees

for self-supervised deep learning with spectral contrastive loss. In Advances in

Neural Information Processing Systems, 2021.

Moritz Hardt. Understanding alternating minimization for matrix completion. In

2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages

651–660. IEEE, 2014.

Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,

Nathaniel J Smith, et al. Array programming with numpy. Nature, 585(7825):

357–362, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2020.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,

Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.

Bibliography 193

Rainbow: Combining improvements in deep reinforcement learning. In Proceedings

of the AAAI Conference on Artificial Intelligence, 2018.

Harold Hotelling. Analysis of a complex of statistical variables into principal

components. Journal of educational psychology, 24(6):417, 1933.

Daniel Hsu, Sham Kakade, and Tong Zhang. A tail inequality for quadratic forms

of subgaussian random vectors. Electronic Communications in Probability, 17:

1–6, 2012.

Daniel Hsu, Sham M. Kakade, and Tong Zhang. Random design analysis of ridge

regression. Foundations of Computational Mathematics, 14(3):569–600, 2014.

John D Hunter. Matplotlib: A 2d graphics environment. Computing in science &

engineering, 9(3):90–95, 2007.

Hutchinson, Le Lan, Zaidi, Emilien Dupont, Yee Whye Teh, and Hyunjik Kim.

LieTransformer: Equivariant self-attention for lie groups. In Proceedings of the

International Conference on Machine Learning, 2021.

Max Jaderberg, Volodymyr Mnih, Wojciech M. Czarnecki, Tom Schaul, Joel Z Leibo,

David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised

auxiliary tasks. In Proceedings of the International Conference on Learning

Representations, 2017.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion

using alternating minimization. In Proceedings of the ACM Symposium on Theory

of Computing, 2013.

Michael Janner, Igor Mordatch, and Sergey Levine. Gamma-models: Generative

temporal difference learning for infinite-horizon prediction. In Advances in Neural

Information Processing Systems, 2020.

Chi Jin, Sham M Kakade, and Praneeth Netrapalli. Provable efficient online matrix

completion via non-convex stochastic gradient descent. In Advances in Neural

Information Processing Systems, 2016.

194 Bibliography

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How

to escape saddle points efficiently. In Proceedings of the International Conference

on Machine Learning, 2017.

Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: open source scientific tools

for Python, 2001. URL http://www.scipy.org.

Sham Kakade, Michael J Kearns, and John Langford. Exploration in metric state

spaces. In Proceedings of the International Conference on Machine Learning,

2003.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney.

Recurrent experience replay in distributed reinforcement learning. In Proceedings

of the International conference on learning representations, 2019.

Philipp W Keller, Shie Mannor, and Doina Precup. Automatic basis function

construction for approximate dynamic programming and reinforcement learning.

In Proceedings of the International Conference on Machine Learning, 2006.

John G Kemeny and J Laurie Snell. Finite continuous time markov chains. Theory

of Probability & Its Applications, 6(1):101–105, 1961.

Raghunandan H Keshavan and Sewoong Oh. A gradient descent algorithm on the

grassman manifold for matrix completion. arXiv preprint arXiv:0910.5260, 2009.

Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion

from a few entries. IEEE Transactions on Information Theory, 56(6):2980–2998,

2010.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In Proceedings of the International Conference on Learning Representations, 2015.

George D. Konidaris, Sarah Osentoski, and Philip S. Thomas. Value function

approximation in reinforcement learning using the fourier basis. In Proceedings

of the AAAI Conference on Artificial Intelligence, 2011.

http://www.scipy.org

Bibliography 195

T Krasulina. Method of stochastic approximation in the determination of the largest

eigenvalue of the mathematical expectation of random matrices. Automatation

and remote control, 2:50–56, 1970.

R Matthew Kretchmar and Charles W Anderson. Using temporal neighborhoods to

adapt function approximators in reinforcement learning. In International Work

Conference on Artificial and Natural Neural Networks, 1999.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit

under-parameterization inhibits data-efficient deep reinforcement learning. In

Proceedings of the International Conference on Learning Representations, 2021.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker,

and Sergey Levine. Dr3: Value-based deep reinforcement learning requires

explicit regularization. In Proceedings of the International Conference on Learning

Representations, 2022.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco

Selvatici, Edward Grefenstette, and Tim Rocktäschel. The nethack learning

environment. In Advances in Neural Information Processing Systems, 2020.

Branislav Kveton and Milos Hauskrecht. Learning basis functions in hybrid domains.

In Proceedings of the National Conference on Artificial Intelligence, 2006.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal

of Machine Learning Research, 4:1107–1149, 2003.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and

Pieter Abbeel. Cic: Contrastive intrinsic control for unsupervised skill discovery.

In Deep RL Workshop at NeurIPS, 2021.

Charline Le Lan and Rishabh Agarwal. Revisiting bisimulation: a sampling-based

state similarity pseudo-metric. Preprint, 2023.

196 Bibliography

Charline Le Lan and Laurent Dinh. Perfect density models cannot guarantee

anomaly detection. Entropy, 23(12):1690, 2021.

Charline Le Lan, Marc G Bellemare, and Pablo Samuel Castro. Metrics and

continuity in reinforcement learning. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2021.

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G

Bellemare. On the generalization of representations in reinforcement learning.

In Proceedings of the International Conference on Artificial Intelligence and

Statistics, 2022.

Charline Le Lan, Joshua Greaves, Jesse Farebrother, Mark Rowland, Fabian

Pedregosa, Rishabh Agarwal, and Marc G Bellemare. A novel stochastic

gradient descent algorithm for learning principal subspaces. In Proceedings

of the International Conference on Artificial Intelligence and Statistics, 2023a.

Charline Le Lan, Stephen Tu, Mark Rowland, Anna Harutyunyan, Rishabh

Agarwal, Marc G Bellemare, and Will Dabney. Bootstrapped representations in

reinforcement learning. In Workshop on Reincarnating Reinforcement Learning

at ICLR, 2023b.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361(10):1995,

1995.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database.

ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Alex X Lee, Coline Manon Devin, Yuxiang Zhou, Thomas Lampe, Konstantinos

Bousmalis, Jost Tobias Springenberg, Arunkumar Byravan, Abbas Abdolmaleki,

Nimrod Gileadi, David Khosid, et al. Beyond pick-and-place: Tackling robotic

stacking of diverse shapes. In Proceedings of the Conference on Robot Learning,

2021.

Bibliography 197

Nir Levine, Tom Zahavy, Daniel Mankowitz, Aviv Tamar, and Shie Mannor. Shallow

updates for deep reinforcement learning. In Advances in Neural Information

Processing Systems, 2017.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement

learning: Tutorial, review, and perspectives on open problems. arXiv preprint

arXiv:2005.01643, 2020.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of

state abstraction for mdps. In ISAIM, 2006.

Xingguo Li, Junwei Lu, Raman Arora, Jarvis Haupt, Han Liu, Zhaoran Wang,

and Tuo Zhao. Symmetry, saddle points, and global optimization landscape of

nonconvex matrix factorization. IEEE Transactions on Information Theory, 65

(6):3489–3514, 2019.

Guoqing Liu, Chuheng Zhang, Li Zhao, Tao Qin, Jinhua Zhu, Li Jian, Nenghai

Yu, and Tie-Yan Liu. Return-based contrastive representation learning for

reinforcement learning. In Proceedings of the International Conference on Learning

Representations, 2021.

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of

auxiliary tasks on representation dynamics. In Proceedings of the International

Conference on Artificial Intelligence and Statistics, 2021.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro,

and Murray Campbell. Eigenoption discovery through the deep successor

representation. In Proceedings of the International Conference on Learning

Representations, 2018.

M.C. Machado, M.G. Bellemare, and M. Bowling. A Laplacian framework for

option discovery in reinforcement learning. In Proceedings of the International

Conference on Machine Learning, 2017.

198 Bibliography

Sephora Madjiheurem and Laura Toni. Representation learning on graphs: A

reinforcement learning application. In Proceedings of the International Conference

on Machine Learning, 2019.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian

framework for learning representation and control in markov decision processes.

Journal of Machine Learning Research, 8(10), 2007.

Odalric-Ambrym Maillard and Rémi Munos. Compressed least-squares regression.

In Advances in Neural Information Processing Systems, 2009.

Emile Mathieu, Charline Le Lan, Chris J Maddison, Ryota Tomioka, and Yee Whye

Teh. Continuous hierarchical representations with poincaré variational auto-

encoders. In Advances in Neural Information Processing Systems, 2019.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis function adaptation in

temporal difference reinforcement learning. Annals of Operations Research, 134

(1):215–238, 2005.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim

Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade

Nazi, et al. A graph placement methodology for fast chip design. Nature, 594

(7862):207–212, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.

Human-level control through deep reinforcement learning. Nature, 518(7540):

529–533, 2015.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

machine learning. MIT press, 2018.

Bibliography 199

Andrew William Moore. Efficient memory-based learning for robot control. Technical

report, University of Cambridge, 1990.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and

efficient off-policy reinforcement learning. In Advances in Neural Information

Processing Systems, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the International Conference on Machine

Learning, 2010.

Andriy Norets. Continuity and differentiability of expected value functions in

dynamic discrete choice models. Quantitative economics, 1(2):305–322, 2010.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of

mathematical biology, 15(3):267–273, 1982.

Jungseul Ok, Alexandre Proutiere, and Damianos Tranos. Exploration in structured

reinforcement learning. In Advances in Neural Information Processing Systems,

2018.

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

Travis E Oliphant. Python for scientific computing. Computing in Science &

Engineering, 9(3):10–20, 2007.

Yann Ollivier. Approximate temporal difference learning is a gradient descent for

reversible policies. arXiv preprint arXiv:1805.00869, 2018.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions

for deep reinforcement learning. In Advances in Neural Information Processing

Systems, 2018.

200 Bibliography

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al.

Training language models to follow instructions with human feedback. In Advances

in Neural Information Processing Systems, 2022.

Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L

Littman. An analysis of linear models, linear value-function approximation, and

feature selection for reinforcement learning. In Proceedings of the International

Conference on Machine Learning, 2008.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. Pytorch: An imperative style, high-performance deep

learning library. In Advances in Neural Information Processing Systems, 2019.

Jason Pazis and Ronald Parr. Pac optimal exploration in continuous space

markov decision processes. In Proceedings of the AAAI Conference on Artificial

Intelligence, 2013.

Marek Petrik. An analysis of laplacian methods for value function approximation

in mdps. In Proceedings of the International Joint Conference on Artificial

Intelligence, 2007.

David Pfau, Stig Petersen, Ashish Agarwal, David GT Barrett, and Kimberly L

Stachenfeld. Spectral inference networks: Unifying deep and spectral learning. In

Proceedings of the International Conference on Learning Representations, 2019.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Difference of convex functions

programming for reinforcement learning. In Advances in Neural Information

Processing Systems, 2014.

Bibliography 201

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous

navigation. Neural computation, 3(1):88–97, 1991.

Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. John Wiley & Sons, 1994.

Emmanuel Rachelson and Michail G. Lagoudakis. On the locality of action

domination in sequential decision making. In Proceedings of the International

Symposium on Artificial Intelligence and Mathematics, 2010.

Bohdana Ratitch and Doina Precup. Sparse distributed memories for on-line value-

based reinforcement learning. In Proceedings of the European Conference on

Machine Learning, 2004.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander

Novikov, Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost To-

bias Springenberg, et al. A generalist agent. Transactions on Machine Learning

Research, 2022.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In

Proceedings of the International Conference on Artificial Intelligence and Statistics,

2010.

H.L. Royden. Real Analysis. Prentice Hall, Upper Saddle River, New Jersey 07458,

3 edition, 1968. ISBN 0024041513.

Arthur L Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of research and development, 3(3):210–229, 1959.

Bruno Scherrer. Should one compute the temporal difference fix point or minimize

the bellman residual? the unified oblique projection view. In Proceedings of the

International Conference on Machine Learning, 2010.

202 Bibliography

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville,

and Philip Bachman. Data-efficient reinforcement learning with self-predictive

representations. In Proceedings of the International Conference on Learning

Representations, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal

Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray

Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of

Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Sean R Sinclair, Siddhartha Banerjee, and Christina Lee Yu. Adaptive discretization

for episodic reinforcement learning in metric spaces. Proceedings of the ACM on

Measurement and Analysis of Computing Systems, 3(3):1–44, 2019.

Alec Solway, Carlos Diuk, Natalia Córdova, Debbie Yee, Andrew G Barto, Yael Niv,

and Matthew M Botvinick. Optimal behavioral hierarchy. PLoS Computational

Biology, 10(8):e1003779, aug 2014.

Zhao Song and Wen Sun. Efficient model-free reinforcement learning in metric

spaces. arXiv preprint arXiv:1905.00475, 2019.

Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In

Proceedings of the International Conference on Machine Learning, 2003.

Kimberly L. Stachenfeld, Matthew Botvinick, and Samuel J. Gershman. Design

principles of the hippocampal cognitive map. In Advances in Neural Information

Processing Systems, 2014.

Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex

factorization. IEEE Transactions on Information Theory, 62(11):6535–6579,

2016.

Bibliography 203

Wilson A Sutherland. Introduction to metric and topological spaces. Oxford

University Press, 2009.

Richard S Sutton. Learning to predict by the methods of temporal differences.

Machine learning, 3(1):9–44, 1988.

Richard S Sutton. Generalization in reinforcement learning: Successful examples

using sparse coarse coding. In Advances in Neural Information Processing Systems,

1995.

Richard S Sutton. Generalization in reinforcement learning: Successful examples

using sparse coarse coding. In Advances in Neural Information Processing Systems,

1996.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An Introduction.

MIT Press, 1998.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An Introduction.

MIT Press, 2nd edition, 2018.

Richard S Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael P Bowling.

Dyna-style planning with linear function approximation and prioritized sweeping.

In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2008.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski,

Adam White, and Doina Precup. Horde: A scalable real-time architecture for

learning knowledge from unsupervised sensorimotor interaction. In Proceedings

of the International Conference on Autonomous Agents and Multiagent Systems,

2011.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach

to the problem of off-policy temporal-difference learning. Journal of Machine

Learning Research, 17(1):2603–2631, 2016.

204 Bibliography

R.S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework

for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:

181–211, 1999.

Adrien Ali Taiga, Rishabh Agarwal, Jesse Farebrother, Aaron Courville, and

Marc G Bellemare. Investigating multi-task pretraining and generalization in

reinforcement learning. In Proceedings of the International Conference on Learning

Representations, 2023.

Cheng Tang. Exponentially convergent stochastic k-pca without variance reduction.

In Advances in Neural Information Processing Systems, 2019.

Yunhao Tang, Zhaohan Daniel Guo, Pierre Harvey Richemond, Bernardo Ávila

Pires, Yash Chandak, Rémi Munos, Mark Rowland, Mohammad Gheshlaghi Azar,

Charline Le Lan, Clare Lyle, et al. Understanding self-predictive learning for

reinforcement learning. arXiv preprint arXiv:2212.03319, 2023.

Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance

loss in approximate mdp homomorphisms. In Advances in Neural Information

Processing Systems, 2009.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning

domains: A survey. Journal of Machine Learning Research, 10(1):1633–1685,

2009.

Shantanu Thakoor, Mark Rowland, Diana Borsa, Will Dabney, Rémi Munos,

and André Barreto. Generalised policy improvement with geometric policy

composition. In Proceedings of the International Conference on Machine Learning,

2022.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all

rewards. In Advances in Neural Information Processing Systems, 2021.

Bibliography 205

Ahmed Touati, Adrien Ali Taiga, and Marc G Bellemare. Zooming for efficient model-

free reinforcement learning in metric spaces. arXiv preprint arXiv:2003.04069,

2020.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement

learning exist? In Proceedings of the International Conference on Learning

Representations, 2023.

Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations

and Trends in Machine Learning, 8, 2015.

John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning

with function approximation. In Advances in Neural Information Processing

Systems, 1996.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor

Wiskunde en Informatica Amsterdam, 1995.

Vladimir Vapnik. The nature of statistical learning theory. Springer science &

business media, 1995.

David Venuto, Sherry Yang, Pieter Abbeel, Doina Precup, Igor Mordatch, and

Ofir Nachum. Multi-environment pretraining enables transfer to action limited

datasets. In NeurIPS 2022 Foundation Models for Decision Making Workshop,

2022.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices.

arXiv preprint arXiv:1011.3027, 2010.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement

learning. In Advances in Neural Information Processing Systems, 2020.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science &

Business Media, 2008.

206 Bibliography

Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a

structure for efficient numerical computation. Computing in science & engineering,

13(2):22–30, 2011.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:

279–292, 1992.

Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised

learning of invariances. Neural computation, 14(4):715–770, 2002.

Tian Ye and Simon S Du. Global convergence of gradient descent for asymmetric

low-rank matrix factorization. In Advances in Neural Information Processing

Systems, 2021.

Huizhen Yu and Dimitri P Bertsekas. Basis function adaptation methods for cost

approximation in mdp. In Proceedings of the IEEE Symposium on Adaptive

Dynamic Programming and Reinforcement Learning, 2009.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey

Levine. Learning invariant representations for reinforcement learning without

reconstruction. In Proceedings of the International Conference on Learning

Representations, 2020.

Shangtong Zhang, Hengshuai Yao, and Shimon Whiteson. Breaking the deadly

triad with a target network. In Proceedings of the International Conference on

Machine Learning, 2021.

Dongbin Zhao and Yuanheng Zhu. Mec—a near-optimal online reinforcement

learning algorithm for continuous deterministic systems. IEEE Transactions on

Neural Networks and Learning Systems, 26(2):346–356, 2014.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Outline
	Publications

	Background and Related Work
	Reinforcement Learning
	Representation Learning
	Feature Engineering in Classical Reinforcement Learning
	You Are What You Predict: Representation Learning in Deep Reinforcement Learning
	Representations Matter

	Metrics and Continuity in Reinforcement Learning
	Introduction
	Overview
	Background
	Metrics, Topologies, and Continuity
	Prior Metrics and Abstractions

	Continuity Relationships
	Taxonomy of Metrics
	Continuity: Prior Metrics
	Value-Based Metrics
	Categorizing Metrics, Continuity and Complexity

	Empirical Evaluation
	Generalizing the Value Function Lg
	Generalizing the Q-function Lg
	Approximate Value Iteration

	Discussion
	Broader Impact
	Proofs for
	Proofs for
	Formal Definition of Bisimulation Metrics
	Additional Empirical Evaluations

	On the Generalization of Representations in Reinforcement Learning
	Introduction
	Background
	Statistical Learning Theory
	The Successor Representation

	Characterizing Excess Risk
	Illustrative Examples

	Generalization for the Successor Representation
	Approximation Error: Lg
	Effect of Transition Structure
	Analysis of the One-dimensional Torus

	Experiments
	Comparing State Representations
	Deep Reinforcement Learning

	Conclusion
	Proofs for
	Proofs for
	Empirical Evaluation: Additionnal Details
	Graphical Structures
	Full Atari Results

	Societal Impact

	A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
	Introduction
	Background
	Problem Statement

	PCA from Samples
	An Improved Gradient Estimate
	Estimate of the Weight Vector Lg
	Algorithm Based on LISSA

	Related Work
	Experiments
	Synthetic Matrices
	MNIST Dataset
	Learning the Successor Measure

	Discussion & Conclusion
	Proofs for
	Proofs for
	Additional Experimental Results
	Synthetic Matrices
	MNIST
	Puddle World

	Bootstrapped Representations in Reinforcement Learning
	Introduction
	Background
	Auxiliary Tasks
	Monte Carlo Representations
	Temporal Difference Learning with a Deep Network

	Bootstrapped Representations
	Representations for Policy Evaluation
	TD and Monte Carlo Need Different Cumulants
	A Deeper Analysis of Random Cumulants

	Empirical Analysis
	Synthetic Matrices
	Effectiveness of Random Cumulants
	Offline Pre-training

	Related Work
	Conclusion
	Additional Empirical Results
	Additional Details for
	Additional Details for
	Additional Details for

	Proofs for
	Proofs for
	Proofs for
	Proofs for
	Proofs for
	Notations
	Approximate Matrix Decompositions
	Analysis

	Discussion
	Conclusion
	Future Directions
	Further Theoretical Analysis of Representation Learning Schemes
	Benchmarks
	Pre-training Representations and Reincarnating Reinforcement Learning

	Bibliography

