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1.  INTRODUCTION

With ageing populations throughout the world, cognitive 
decline now affects an increasingly large portion of soci-
ety and contributes to significant financial burden and 

death (Gorelick et  al., 2017; Wimo et  al., 2013). Of the 

drivers of age-related cognitive decline, neurovascular 

health has gained attention due to its widespread impact 

and relative ease of intervention (Gorelick et  al., 2011; 
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Iadecola et  al., 2016; Qiu & Fratiglioni, 2015; Sweeney 
et al., 2018).

Substantial work has shown diverse associations 
between vascular disease risk factors (VRFs, such as dia-
betes, high body mass index (BMI), and hypertension) 
and cognitive function (CF). Greater vascular risk in mid-
dle and old age associates with both poorer cognitive 
function and accelerated cognitive decline (Jefferson 
et  al., 2010; Knopman et  al., 2001; Lyall et  al., 2017; 
Samieri et  al., 2018; Yaffe et  al., 2014), and controlling 
vascular risk factors can lead to a decrease in onset of 
mild cognitive impairment (SPRINT MIND Investigators 
for the SPRINT Research Group et al., 2019).

Better understanding of the mechanism of this heart-
brain axis will facilitate biomarker development and  
treatment discovery for neurovascular health. Several 
mechanistic theories exist but lack evidence (Jensen 
et al., 2023; M. Wang et al., 2016; Zenger et al., 2023). 
One popular model, the structural-functional model, 
argues that VRFs might drive pathologic cardiac and 
cerebrovascular remodelling, which could then result in 
chronic cerebral hypoperfusion, brain structural damage, 
and poorer CF (de la Torre, 2012a, 2012b; Pasha et al., 
2017; Qiu & Fratiglioni, 2015; van Buchem et al., 2014). 
Direct evidence for this theory has remained unclear but 
could be found by simultaneously measuring vascular risk 
factors, cognitive function, and heart and brain structure.

Cardiac and brain imaging derived phenotypes (IDPs) 
have become popular methods for measuring heart and 
brain structure due to their minimally invasive nature and 
widespread use. Both are strong candidate biomarkers 
of the modest but well-replicated association between 
elevated vascular risk and lower cognitive function in 
middle and older age (Ferguson et al., 2020; Lyall et al., 
2017). However, to date, most of our knowledge about 
associations between (1) VRFs, (2) cardiac structure, (3) 
brain structure, and (4) cognitive measures come from 
separate reports, which only simultaneously consider 
two phenotypes of interest (Cox, Lyall, et al., 2019; Lyall 
et  al., 2017; McCracken et  al., 2021; Raisi-Estabragh, 
Jaggi, et  al., 2021; Raisi-Estabragh, M’Charrak, et  al., 
2021). Several recent works have indicated the value in 
extending analyses across three of the four phenotype 
categories above (Bai et  al., 2020; McCracken et  al., 
2022; Newby et al., 2021; Shen et al., 2020); for example, 
lower grey matter volume can explain part of the associ-
ation between hypertension, greater BMI, and lower per-
formance on some UK Biobank cognitive exams 
(Ferguson et al., 2020). Most recently, a large scale study 
has revealed that cardiac imaging features, brain imaging 

features, and neuropsychiatric disease all share a com-
mon genetic influence, motivating further work in explor-
ing how these systems may interact physiologically (Zhao 
et al., 2023). However, none of these studies have specif-
ically studied how inter-relations between cardiac and 
brain structural variation could explain the vascular risk - 
cognitive function association.

We hypothesise that, for the structural-functional 
model to adequately explain the VRF-CF association, 
separate heart and brain structures should associate with 
both greater vascular risk and lower cognitive function. In 
other words, heart and brain structural variation should 
mediate the VRF-CF association (Bai et  al., 2020; 
McCormick et  al., 2022). Additionally, heart mediators 
should associate with brain mediators. Finally, for all 
steps of the structural-functional model to be supported 
by the data, heart structural variation should mediate the 
VRF-brain structure association, and brain structural vari-
ation should mediate the heart structure–CF association. 
The extent to which these associations all align in a 
cohort of subjects modelled together is understudied 
(Ferguson et al., 2020; Gorelick & Sorond, 2018; Newby 
et  al., 2021). Furthermore, the relative strength of the 
association between cardiac and brain structural features 
and the disease endpoints (vascular risk and cognitive 
decline) is unknown. Along with validating the structural 
functional hypothesis, this comparative approach could 
identify novel biomarkers associated specifically with the 
VRF-CF association (rather than each dataset alone) and 
guide future decision-making comparing and prioritising 
organ-specific interventions in vascular and cognitive 
health (Banus et  al., 2021; Gorelick & Sorond, 2018; 
Gorelick et al., 2011, 2017).

To test the structural-functional hypothesis, in this 
work, we measure the extent that variation in heart and 
brain structure explains the association between vascular 
risk and cognitive function in the UK Biobank. We gather 
vascular risk factors, cognitive exam performance, car-
diac magnetic resonance imaging (CMR) radiomics fea-
tures, and brain MRI IDPs for 11,962 UK Biobank 
participants. We perform dimensionality reduction on all 
datasets separately. We discover novel measures of the 
heart-brain axis by capturing correlated variance in heart 
and brain imaging. We compute single and multiple medi-
ation models asking how well imaging latent variables 
explain the VRF-CF association. We then measure how 
well imaging latent variables explain associations between 
individual VRFs and cognitive exams. We finally explore 
how well individual heart and brain structural measures 
mediate the VRF-CF association. Along with myriad 
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smaller mediating effects, we find that myocardial inten-
sity, grey matter volume, and thalamic white matter tract 
integrity all associate with each other, and a joint factor 
capturing their variability most strongly associates with 
both elevated vascular risk and poorer cognitive function.

2.  METHODS

2.1.  Acquisition and processing

2.1.1.  Assessment

This work utilises clinical and imaging data from the 
United Kingdom (UK) Biobank via access application 
2964 (Ukbb-Prot-, n.d.). The UK Biobank is a large-scale 
longitudinal dataset derived from 500,000 volunteers 
recruited between 2006 and 2010 from across the UK. 
At visits, participants completed both a touchscreen 
questionnaire and medical history interview with a 
nurse. The project recorded information regarding par-
ticipants’ health, lifestyle, and family history and col-
lected physical measurements, biological samples, and 
genome. Moreover, since 2015, over 50,000 participants 
have received CMR and brain MR imaging at follow-up 
imaging visits.

2.1.2.  Vascular risk factors

We analysed hypercholesterolemia, diabetes, hyperten-
sion, smoking pack years, blood pressure, and anthropo-
morphic measures (BMI and waist-to-hip ratio, WHR) 
(Cox, Lyall, et al., 2019; de la Torre, 2012a, 2012b; Haley 
et al., 2018; Pasha et al., 2017; Sweeney et al., 2018). All 
vascular risk factors were collected at the baseline visit 
and prepared as reported previously (Cox, Lyall, et  al., 
2019; Raisi-Estabragh, Jaggi, et  al., 2021). We sum-
marise the process here. Diagnosis of diabetes, hyper-
tension, and hypercholesterolemia was established via a 
combination of self-report, biochemistry, and linked hos-
pital episode statistics (HES) data (Supplementary Meth-
ods) (Raisi-Estabragh, Jaggi, et  al., 2021). Participants 
provided information on cigarette smoking in the touch-
screen questionnaire, and smoking pack years were 
computed from this data (Cox, Lyall, et al., 2019). Blood 
pressure was collected twice, moments apart, using an 
Omron 705IT monitor. Mean systolic and diastolic blood 
pressure were computed. Anthropometric measures 
were taken after participants had removed bulky clothing 
and shoes. Waist and hip measurements were conducted 
to provide WHR. BMI was computed by dividing weight 
by squared height.

2.1.3.  Cognitive exams

Cognitive testing was performed at both the UK Biobank 
baseline and imaging sessions; we examined four tests 
from the imaging visit cognitive assessment. The com-
plete battery and assessment of its repeatability and reli-
ability have been detailed previously (Fawns-Ritchie & 
Deary, 2020; Lyall et al., 2016, 2017). We used the four 
tests commonly used in analysis and dimensionality 
reduction of the baseline cognitive assessment: the fluid 
intelligence task (verbal numerical reasoning, VNR), the 
visual memory task (vismem), the reaction time task (RT), 
and the prospective memory task (prosmem) (Lyall et al., 
2016). As previously reported (Lyall et al., 2016), the reac-
tion time scores were positively skewed, so we applied a 
natural log transformation (LN). Additionally, the visual 
memory scores were zero-inflated and positively skewed, 
so we applied an LN+1 transformation.

2.1.4.  Cardiac imaging

Cardiac imaging acquisition and preparation are discussed 
in Supplementary Methods. Using the CMR images and 
their corresponding segmentations, we performed radio-
mics phenotyping based on the open-source python-
based pyradiomics library (van Griethuysen et al., 2017). 
Radiomics extracts features quantifying myocardial and 
ventricular structure (shape radiomics), myocardial imag-
ing intensity (first-order radiomics), and myocardial visual 
textures (texture radiomics) (Raisi-Estabragh et al., 2020). 
In total, 212 features per region were extracted at end-
diastole and end-systole. Right and left ventricular cavity 
first-order and texture features were excluded from analy-
sis because they do not encompass clinically relevant 
information. We also incorporate alternative traditional and 
advanced CMR indices into the matching analysis and 
final mediation by individual features, computed as previ-
ously reported (detailed in Supplementary Methods) (Bai 
et  al., 2020; McCracken et  al., 2021; Raisi-Estabragh, 
McCracken, et  al., 2021; Raisi-Estabragh, M’Charrak, 
et al., 2021; Zhao et al., 2023).

2.1.5.  Brain imaging

Brain imaging acquisition and preparation is discussed in 
Supplementary Methods. The global tissue volumes and 
white matter tract-averaged water molecular diffusion 
indices were processed by the UK Biobank team and 
made available to approved researchers as imaging-
derived phenotypes (IDPs); the full details of the image 
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processing and QC pipeline are available in an open 
access article (Alfaro-Almagro et al., 2018). The IDPs in 
this study included total brain volume, grey matter vol-
ume, subcortical volumes, and tract-averaged white mat-
ter microstructural measures. A detailed list of volumes, 
white matter tracts, and white matter tract measures is 
provided in Supplementary Methods.

2.2.  Analysis

2.2.1.  Workflow

We began with 19,408 subjects with completed CMR 
radiomics analysis of their short-axis imaging from the 
UK Biobank Imaging Extension. We downloaded and 
prepared the vascular risk factor, cognitive testing, brain 
imaging data, heart imaging, and covariates for these 
subjects (see Acquisition and Preparation). For each 
dataset separately, we dropped all subjects without com-
plete data, merged all datasets, and selected only sub-
jects without cardiovascular or brain disease (defined in 
Supplementary Methods). We then performed dimen-
sionality reduction on each data type separately. We per-
formed joint factorization of the heart and brain imaging 
data. We regressed out imaging confounders from the 
latent factors (Supplementary Methods). We merged the 
latent factors and performed all downstream analyses. 
We corrected all comparisons for multiple hypothesis 
testing with a Benjamini-Hochberg False Discovery Rate 
(BH-FDR) correction. Entire pipeline with number of sub-
jects retained at each step reported in Supplementary 
Figure 1 and population statistics are reported in Supple-
mentary Table 1. For every analysis, we present both raw 
and deconfounded results as paired Supplementary 
Tables, but we only discuss deconfounded results in the 
text. All code was open-sourced, see Data and Code 
Availability; the list of packages and settings used is in 
Supplementary Methods.

2.2.2.  Dimensionality reduction

2.2.2.1.  Latent variables for vascular risk (gVRF).  
First, we derived an aggregate measure of vascular risk 
for each individual, counting instances of diagnosis of 
hypertension, diabetes, or hypercholesterolaemia, hav-
ing ever smoked, having a BMI > 25, and having a high 
WHR (>0.85 for females and >0.90 for males) (Cox, Lyall, 
et al., 2019; Hamer & Batty, 2019). This factor is useful for 
clinical translation and also defining simple high- and 
low-risk groups.

We derived an additional latent factor of general vas-
cular risk (gVRF) following prior work in this and other 
cohorts, using confirmatory factor analysis (CFA) in struc-
tural equation modelling (Cox, Lyall, et al., 2019; Wardlaw 
et al., 2014). This latent measure captures the tendency 
for VRFs to co-occur. gVRF was derived from smoking 
pack years, diastolic and systolic blood pressure, BMI, 
WHR, diagnosis of hypertension, diabetes, and hyper-
cholesterolaemia. The model fit the data well, though 
loadings were inconsistent (range 0.189–0.745), with the 
factor more strongly loaded towards BMI and WHR (Sup-
plementary Fig. 2, Supplementary Table 2). Because the 
aggregate measure of vascular risk relies on arbitrary cut-
offs and there is high correlation between the aggregate 
measure and gVRF, we focus on gVRF in our discussion 
of all mediation analyses.

2.2.2.2.  Latent variables for cognitive function (general 
intelligence, g).  As previously reported (Lyall et al., 2017), 
we performed a CFA of the four cognitive tests. We 
hypothesised that the four tests would correlate 
moderately-highly (with intercorrelations of r > 0.40) and 
would form a single latent general factor (labelled g in 
prior literature) across the four tests with good fit to the 
data (Cox, Ritchie, et al., 2019; Deary et al., 2010; Lyall 
et al., 2016). We found this to be the case (Supplemen-
tary Fig. 3, Supplementary Table 3).

2.2.2.3.  Latent variables for heart structure.  Since prin-
cipal component analysis (PCA) is commonly used in 
radiomics to extract lower dimensional representations of 
the data (Antonopoulos et  al., 2021; Raisi-Estabragh 
et al., 2020; Truhn et al., 2019; Zhang et al., 2017), we 
performed PCA on the z-scored radiomics. We chose the 
number of principal components using cross-validation, 
detailed in the Supplementary Methods. We kept the first 
three unrotated PCs (Supplementary Fig. 4, Supplemen-
tary Table 4). We extracted the scores of these compo-
nents for each subject and used them for downstream 
analyses.

2.2.2.4.  Latent variables for brain structure.  We iso-
lated brain volume (“atrophy” after controlling for head 
size), grey matter volume, and total white matter hyper-
intensity volume (Cox, Lyall, et al., 2019). Latent mea-
sures of general white matter fractional anisotropy (gFA) 
and mean diffusivity (gMD) were derived using CFA, as 
previously reported in this cohort (Cox, Lyall, et  al., 
2019; Cox et al., 2016). The CFA models fit well with the 
lowest loadings for the corticospinal tracts and cingu-
late gyri and the highest loadings for the thalamic 
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radiata and fasciculi (Supplementary Fig.  5, Supple-
mentary Table 5).

Since principal component analysis has been used to 
capture variation in brain imaging in previous work and 
since we are using it to summarise the heart imaging in 
this work (Alfaro-Almagro et al., 2021; Elliott et al., 2018; 
Liang et al., 2021; Miller et al., 2016), we also computed 
PCA over all z-scored brain IDPs and selected the num-
ber of principal components to retain as before (Supple-
mentary Methods). We kept three PCs (Supplementary 
Fig. 6, Supplementary Table 6). We extracted their scores 
for each subject and utilised them in downstream analy-
ses. Because both CFA and PCA are widely used in the 
field and there is no definitive reason for preferring one to 
the other, we will include both in all downstream analyses 
to ensure that our findings are not dependent on the 
method of latent feature definition (John et al., 2012).

2.2.2.5.  Joint heart-brain factor analysis.  Along with 
the factor analysis of the individual datasets described 
above, we also sought to derive latent factors that cap-
tured the main modes of correlated variation between 
heart and brain structural imaging. That is, we aimed to 
identify components of brain structure and components 
of heart structure that were maximally correlated. Through 
canonical correlation analysis (CCA) on the z-scored 
heart radiomics and brain IDPs, we derived 10 modes 
(Miller et al., 2016). Each mode consists of two compo-
nents: (1) a linear combination of heart radiomics features 
and (2) a separate linear combination of brain IDPs that 
have highly similar variation in the population. The modes 
are ranked by the amount of correlation between the 
heart and brain components. We chose the number of 
modes to keep via cross-validation (Supplementary 
Methods), kept three modes (Supplementary Fig. 7, Sup-
plementary Table 7), extracted the component scores for 
each subject in each dataset, and used them in down-
stream analyses.

2.2.3.  Descriptive statistics and associations

We conducted descriptive analyses, testing the associa-
tion of age and sex with all of our latent variables using 
linear regression. We then examined the pairwise linear 
association between all latent variables by linearly model-
ling each latent variable as a function of sex, age, and 
each other latent variable. See Supplementary Methods 
for modelling details and how additional R^2 is computed. 
Results are reported for both raw and deconfounded 
imaging latents.

2.2.4.  Propensity score matching

Since all other analyses are performed on corrected, 
standardised, and latent measures of the data, we per-
formed propensity score matching to yield real-units 
measurements of the differences between subjects with 
and without VRFs. We matched subjects with four or 
more VRFs with their nearest neighbour with no VRFs, 
requiring an exact match for sex (Supplementary Meth-
ods). We then performed repeated t-tests to compare the 
cognitive exam performance, CMR measures, and brain 
IDPs of the matched groups of subjects.

2.2.5.  Mediation modelling

To measure how well heart and brain structural features 
explain the VRF-CF association, we perform a series of 
mediation analyses (Bai et  al., 2020; Ferguson et  al., 
2020; McCormick et  al., 2022; Wardlaw et  al., 2014). 
This method allows us to directly quantify the degree to 
which any identified associations between vascular risk 
and cognitive function are accounted for by brain or 
heart-based measures. The primary outcome is there-
fore the % of the gVRF-g association that is mediated 
when brain/heart measures are included in the model. In 
more complex models with more than one mediator, one 
can also identify which mediator is contributing the larg-
est unique mediating effect. Thus, these analyses offer 
an elegant quantitative solution for identification of 
important heart and brain biomarkers underpinning 
VRF-cognitive associations. We report a more complete 
description of the mediation model in the Supplemen-
tary Methods.

We first performed mediation models on solely the 
latent representations of each data set. We found the 
association between gVRF and g and then modelled how 
well each imaging latent variable mediated this associa-
tion (more details in Supplementary Methods). At first, we 
only modelled one imaging latent at a time, calling this 
the “Latent Single Mediation Model.” Then we performed 
both parallel and sequential multiple mediation analyses, 
fixing heart PC2 as the first mediator and then adding 
brain latents as the second mediator, called “Latent Mul-
tiple Mediation Model.” Next, we replaced the gVRF-g 
association with pairs of individual VRFs and cognitive 
exams, testing imaging latents one at a time again, call-
ing this “Latent Single Mediation Modelling of VRF-
Cognitive Pairs.” Given the high association between the 
VRFs (Supplementary Fig. 2, Supplementary Table 2), we 
control each VRF-exam association for all other VRFs to 
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Fig. 1.  Latent factors. A schematic illustration is provided of all of the extracted latent factors and a simple interpretation 
of their meaning is given. The loadings for all the factors can be found in the Supplementary Tables and more detailed 
interpretations of the meaning of each factor can be found in the Supplementary Methods.

identify unique associations between each VRF and cog-
nitive exam.

To explore the role of individual imaging features in 
explaining the association between VRFs and CF, we 
returned to the gVRF-g association and performed medi-
ation modelling for each imaging feature individually, call-
ing this the “Individual Feature Single Mediation Model.” 
We perform modelling as described in Supplementary 
Methods and always control for age and sex.

Given that all latent measures across domains (vascu-
lar risk, heart, brain and cognitive) were standardised, 
reported coefficients are standardised regression coeffi-
cients (i.e., β range [-1,1]) throughout, allowing direct 
comparison of effect magnitudes across modalities.

4.  RESULTS

4.1.  Quantifying heart brain axes

After our data preparation pipeline yielded 11,962 sub-
jects (Supplementary Fig. 1, Supplementary Table 1), we 
quantified key axes of variation in all four of our datasets. 
We extracted latent measures of vascular risk (gVRF), 
cognitive function (g), and brain structure as reported 
previously (see Methods) (Cox, Lyall, et  al., 2019; Cox, 
Ritchie, et  al., 2019; Ferguson et  al., 2020; Lyall et  al., 
2016, 2017). Along with traditional measures, we per-
formed PCA of heart and brain imaging separately and a 
novel CCA to capture correlated variability in heart and 
brain structure (Fig.  1). For cardiac radiomics, the first 

three PCs explain 25, 20, and 12% of the variance and 
represent myocardial size, intensity, and textural com-
plexity respectively (Supplementary Fig. 4, Supplemen-
tary Table 4). For brain MRI indices, the first three PCs 
explain 30, 12, and 8% of the variance and represent 
high FA and low MD of the fasciculi and thalamic radiata, 
high FA and low MD of the corticospinal tract, and brain 
volume respectively (Supplementary Fig. 6, Supplemen-
tary Table 6). For the joint heart brain axes, the first three 
modes have a Pearson correlation of 0.71, 0.48, and 0.32 
respectively (Supplementary Fig.  7, Supplementary 
Table 7). Based on the loadings, we interpreted that the 
heart brain axes correspond to (1) heart and brain vol-
ume, (2) end-systolic myocardial intensity, grey matter 
and thalamic volume, and thalamic radiation WM integ-
rity, and (3) end-diastolic myocardial intensity and low FA 
and high MD of many tracts (more details in Supplemen-
tary Methods).

4.2.  Descriptive statistics

Nearly all latent variables have a significant association 
with age and sex (Supplementary Fig. 8, Supplementary 
Tables 8, 9). Older subjects show lower aggregate perfor-
mance on cognitive exams (β = -0.183) and greater vas-
cular risk (β = 0.171) (Cox, Lyall, et al., 2019; Lyall et al., 
2017). Among the heart structural latents, old age associ-
ates with slightly greater myocardial volume (CMR PC1, β 
= 0.035), lower myocardial intensity (PC2, β = -0.173), and 
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lower myocardial textural complexity (PC3, β = -0.109) 
(Rouch et al., 2022).

Among the brain structural latents, old age associates 
with lower total and grey matter volume, lower white mat-
ter integrity (β range -0.363 to -0.249), and greater white 
matter hyperintensity volume (β  =  0.353). Age also 
strongly negatively associates with the components of 
the second CCA mode, representing lower myocardial 
intensity, grey matter and thalamic volume, and thalamic 
white matter integrity (β range -0.591 to -0.441).

4.3.  Associations between vascular risk, heart, brain, and cognition

Associations among each pair of latent variables were 
modelled separately, controlling for age and sex (Fig. 2, 
Supplementary Tables  10, 11). There is a small but  
significant negative association between gVRF and g 
(β = -0.036), consistent with prior reports (Ferguson et al., 
2020; Lyall et  al., 2017). Many imaging latents across 
heart and brain associate with both greater gVRF and 
lower g: lower latent myocardial intensity, lower total and 
grey matter volume, lower white matter tract integrity, 

Fig. 2.  Pairwise latent associations. We modelled the association between every pair of latent variables. (A) A schematic 
diagram of the modelling process. Every latent variable (e.g., VRF agg) is linearly modelled as a function of another latent 
variable (e.g., gVRF), sex, and age. The derived coefficients for the example first model are illustrated. We repeat this for 
every variable, and the coefficients from these analyses compose the first row of the adjacent heatmap. (B) Heatmap of 
standardised coefficients from all 342 separate pairwise linear models. Each row lists the dependent variable, and each 
column lists the independent variable in the linear models. (C) With gVRF set as the dependent variable, we compare the 
R-squared of the linear model for each latent grouped by whether it was derived from the heart or brain imaging. (D) With 
g set as the dependent variable, we compare the R-squared of the linear model for each latent grouped by whether it was 
derived from the heart or brain imaging. All model estimates are reported in Supplementary Table 11.
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and greater white matter hyperintensity volume (Fig.  2, 
Supplementary Table 11).

All of the heart PCs explained at least an order of mag-
nitude more variance in gVRF (additional R2: 0.002–0.166) 
than in g (aR2: 0–0.004) (Fig. 2). Similarly, the brain vol-
ume latents (atrophy, grey matter volume, PC3) explained 
at least an order of magnitude greater variance in g (aR2: 
0.012–0.027) than in gVRF (aR2: 0.0006–0.003). Interest-
ingly, the second joint factor (CC2) explains more similar 
amounts of variance in both g (aR2: 0.009–0.013) and 
gVRF (aR2: 0.089–0.164), and it explains at least an order 
of magnitude more variance in both g and gVRF than the 
white matter latents. This suggests that leveraging infor-
mation from both heart and brain structure is useful in 
deriving factors that explain a relatively large and equal 
amount of variance in both vascular risk and cognitive 
function.

4.3.  Matched analysis

Aware that the latent measures are all in arbitrary units, 
we used propensity score matching to provide more 
practically interpretable information on how those with 
high and low vascular risk differ across heart, brain, and 
cognitive measures, in native units. We assembled two 
groups of 425 subjects matched by sex, age, head size, 
and BSA (Supplementary Table  12). On average, when 
compared to matched individuals with no VRFs, subjects 
with 4 or more VRFs have 13.09 mL (8.29%) lower LVEDV, 
7.56  mL (11.50%) lower LVESV, and 5.52  mL (5.99%) 
lower LVSV. Consistent with mild ventricular hypertrophy, 
the subjects with 4 or more VRFs have 1.51% (2.58%) 
greater ejection fraction. We find lower average intensi-
ties of the myocardium in end-systole (23.53%) and 
-diastole (19.65%). We also find greater uniformity of the 
myocardial tissue appearance (5.25–8.37%). These sub-
jects also have 14,357 mm3 (2.31%) less grey matter vol-
ume and additionally lower subcortical volumes. They 
have greater white matter hyperintensity volume 
(62.34%). They also have lower FA in many tracts (range 
0.96% and 1.92%). Compared to matched healthy con-
trols, subjects with 4 or more VRFs also score on average 
0.48 (6.67%) fewer points on verbal-numerical reasoning. 
These subjects also have notable differences in their 
latent measures, like greater myocardial size, poorer 
white matter tracts, and lower second heart-brain axis 
(myocardial intensity, grey matter volume, thalamic WM 
tract integrity). Simply summing risk factors correlates 
with gVRF (Fig.  2, Supplementary Table  11), and this 
matched analysis shows that the sum manifests with 

clinically observable phenotypes in heart imaging, brain 
imaging, and cognitive exam performance.

4.4.  Latent single mediation modelling

Initially, we asked the degree to which each brain or heart 
measure, in isolation, mediates the association between 
vascular risk and CF. Results are presented in Figure 3, 
Supplementary Tables  13, 14. Consistent with prior 
reports, measures of brain structure—irrespective of how 
they were measured—only modestly mediated the asso-
ciation (4.97–38.12%), with white matter measures being 
the smallest, but still significant, mediators. However, 
latent myocardial intensity (heart PC2) and the heart-brain 
axis capturing myocardial intensity, grey matter volume, 
and thalamic white matter integrity (CC2) all completely 
mediate the gVRF-g association (117%-150%; attenu-
ated to be indistinguishable from β = 0 in each case). For 
example, one standard deviation (SD) lower gVRF associ-
ates with 0.55 standard deviation lower latent myocardial 
intensity. This 0.55 SD lower intensity associates with 
0.043 SD lower cognitive function.

As a control, we address two possible counterargu-
ments: (1) that the BMI-cognitive function association is 
the only VRF well explained by myocardial intensity and 
(2) that latent myocardial intensity is just a proxy for myo-
cardial size. First, since gVRF most strongly weights BMI 
and WHR (Supplementary Table 2), it is possible that the 
gVRF-g association is driven primarily by BMI and that 
latent myocardial intensity only mediates the BMI-g asso-
ciation. However, covarying for BMI partly attenuated, but 
did not remove, myocardial intensity’s mediation of the 
gVRF-g association (40.18%) (Supplementary Table 15). 
Second, since latent myocardial intensity and myocardial 
volume are associated (Supplementary Table  11), it is 
possible that latent myocardial intensity is just a measure 
of myocardial size not well adjusted by regressing out 
BSA. However, we show that latent myocardial intensity 
associates with BMI independent of body and myocardial 
size (Supplementary Table 15). Therefore, latent myocar-
dial intensity’s mediation of the gVRF-g association is not 
just explained by the BMI-g association and, furthermore, 
the BMI-latent myocardial intensity association is not just 
due to the myocardium being larger.

4.5.  Latent multiple mediation modelling

The structural functional model argues that heart struc-
tural variation impacts cognitive function via its impact 
on brain structure. To model this within our data, we 
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constructed two related multiple mediation models 
(Fig. 4). In the first model, we performed “parallel” multi-
ple mediation that does not account for the heart-brain 
association. In the second model, we performed 
“sequential” multiple mediation that does account for 
the heart-brain association.

We performed this analysis for latent myocardial inten-
sity paired with every brain latent since latent myocardial 
intensity was the only significant heart mediator. Com-
paring the heart indirect effects between the single medi-
ation (Fig. 3) and the parallel multiple mediation (Fig. 4C, 
Supplementary Tables  16, 17) allows us to assess the 
impact of brain structure on the heart-cognitive function 
association. The heart indirect effect slightly decreases 
when accounting for brain volumes but not brain white 
matter measures. Therefore, brain volume variation can 
explain some but not all of the association between latent 
myocardial intensity and cognitive function. Comparing 
the brain indirect effects between the parallel and sequen-
tial mediation allows assessment of the impact of latent 
myocardial intensity on the VRF-brain association. In this 
case, the brain volume measure indirect effects go to 
zero but the white matter indirect effects do not decrease 

(Fig. 4D, Supplementary Tables 18, 19). Thus, latent myo-
cardial intensity variation can explain all of the associa-
tion between VRFs and brain volume but not VRFs and 
white matter intensity.

4.6.  Latent single mediation modelling of individual  
VRF-cognitive pairs

Recent work has noted the potential for spurious media-
tions when modelling with composite measures; for 
example, false “interrupted mediators” occur when one 
component of a composite mediator associates with only 
the causal variable and one component associates with 
only the outcome. To confirm that our results are robust 
to this concern, we spend the next two sections analys-
ing mediation using individual measures. We first con-
sider pairs of individual VRFs and cognitive exams 
(Supplementary Fig. 9, Supplementary Tables 20, 21). We 
found that pack years and VNR (β = -0.028), WHR and 
VNR (β = -0.061), and WHR and RT (β = 0.032) all had 
independent associations in the expected directions. 
Brain volumetric latents most strongly mediated the pack 
year–VNR association (12.11–47.64%), while myocardial 

Fig. 3.  Latent single mediation modelling. We performed serial mediation modelling of the gVRF-g association, testing 
each imaging latent as a potential mediator. (A) Schematic for the CMR radiomics modelling procedure. gVRF and g were 
maintained as the known association, and we iterated over all CMR imaging latent factors. Equations demonstrate the 
derivation of the direct and indirect effect. (B) Schematic for the brain MRI modelling procedure. (C) Example computation 
of the measured effects. Confidence intervals reported in Supplementary Table 14. (D) The estimates for the direct and 
indirect effects for all potential mediators, sorted by indirect effect size, closed circles are significant (p < 0.05) and open 
are not. Error bars derived from bootstrapping (see Supplementary Methods).
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intensity associated latents most strongly mediated the 
WHR-VNR association (27.33–42.76%). The myocardial 
intensity features are also the only significant mediators 
of the WHR-RT association (34.75–49.52%). Likely 
because they capture some relevant variation in brain 
volumes, white matter tracts, and myocardial intensity, 
the components of the second joint factor strongly medi-
ate both the pack-year and WHR cognitive exam associ-
ations (21.63–49.52%).

4.7.  Individual feature mediation modelling

Continuing our controls for spurious mediation from 
composite measures, we next turn to individual imaging 

measures. Although the latent imaging features capture 
large amounts of the variance in the imaging datasets 
(Supplementary Figs.  4, 6), each imaging dataset con-
tains many features and much variance beyond the 
latents used in the previous analyses. To offer a compre-
hensive picture of how heart and brain structure mediate 
the gVRF-g association, we perform single mediation 
analysis for every individual imaging feature (Fig. 5, Sup-
plementary Tables 22, 23, 24, 25).

As expected, many individual features associated with 
myocardial intensity show complete mediation (Fig.  5, 
Supplementary Tables  22, 23). However, a number of 
CMR measures showed mediating effects that were pre-
viously difficult to appreciate via latent modelling. While 

Fig. 4.  Latent multiple mediation modelling. We performed both parallel and sequential multiple mediation modelling 
of the gVRF-g association, including heart PC2 as the first mediator and then considering all brain latents as second 
mediators. (A) Schematic of the parallel modelling procedure with a single direct effect and two indirect effects, one for 
each potential mediator. We list values from an example mediation effect in which grey matter volume was the second 
mediator. Confidence intervals are reported in Supplementary Table 17. The direct effect is fixed for all mediators at 0.009. 
(B) Analogous schematic for the sequential modelling procedure. Values reported from an example model with grey matter 
as the second mediator. Full data are provided in Supplementary Table 19. (C) A bar chart of the estimates for the indirect 
effect for heart PC2 when each brain latent was used, closed is significant (p < 0.05) and open is not. (D) A bar chart of the 
estimates for the indirect effect for each brain latent when using either parallel (left) or sequential (right) mediation.
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the latent measure of myocardial volume did not mediate 
the association (Fig. 3), both the right and left ventricular 
volumes partially mediated the association (32.5–61.1%). 
Although the latent measure of myocardial tissue com-
plexity was just below significance (Supplementary 
Table 14), some measures of local nonuniformity and local 
homogeneity partially mediated the association (32.5–
48.5%). Greater local nonuniformity associated with lower 
vascular risk (β  =  -0.347– -0.284) and greater cognitive 
function (β = 0.051–0.054), and measures of local homo-
geneity show the opposite associations (Supplementary 
Table 23).

Compared to the heart, the brain IDPs show an order 
of magnitude lower indirect effects and proportionally 
lower percent mediation (Fig.  5, Supplementary 
Tables 24, 25). Of the brain IDPs, volumes have the larg-
est mediating effect, particularly grey matter (38.1%) and 
thalamic volume (35.9–36.4%). The largest white matter 
microstructural mediating effects are from the thalamic 
radiation tracts (Supplementary Fig.  10). For example, 
MD of all the thalamic radiation tracts significantly medi-
ates the association (5.17–8.26%), and the FA of the left 
posterior thalamic radiation tract has the greatest medi-

ation of all the white matter microstructural mediating 
effects (18.3%).

For both the VRF-cognitive exam pairs and the indi-
vidual mediators, the existence of significant mediation 
for individual features argues against potential spurious 
mediation due to composite measures (McCormick 
et al., 2022).

Lastly, we considered whether an expanded set of 
CMR indices, including myocardial strain, myocardial 
thickness, aortic dilation, and other advanced shape-
based features, could mediate the vascular risk–cognitive 
function association (Bai et al., 2020; Zhao et al., 2023). 
After controlling for body surface area, none of these 
advanced shape measures are significant mediators of 
the vascular risk–cognitive function association (Supple-
mentary Table 26).

5.  DISCUSSION

5.1.  Interpretation

This study supports the structural-functional model for 
the link between vascular risk and cognitive function. 

Fig. 5.  Individual feature single mediation modelling. We performed serial mediation modelling for all individual imaging 
features. (A) Schematic for the modelling procedure for CMR IDPs. Same as Figure 3, except all potential mediators are 
now individual features (IDPs) instead of latent variables. (B) Schematic for Brain IDPs. (C) Example mediation model for 
an individual feature with the left thalamic volume (Volume Thalamus) as a potential mediator. Confidence intervals are 
reported in Supplementary Table 25. (D) Direct and indirect effects for all tested CMR radiomics grouped by cluster and 
brain MRI IDPs grouped by their feature type. For visualisation, we grouped the brain IDPs by their IDP categories and 
the CMR radiomics by previously reported clusters extracted from imaging of healthy individuals (Raisi-Estabragh, Jaggi, 
et al., 2021). We also include conventional CMR indices as a separate cluster.
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Many heart and brain structural measures separately 
mediate the vascular risk–cognitive function association 
(Figs. 3, 5). Despite these initial results, it was still possible 
that the mediating measures from the heart and brain 
shared no inter-associations. This would violate the 
structural-functional model’s claim that vascular risk 
causes vascular and cardiac remodelling, which, in turn, 
causes cerebral damage. Our results argue against this 
possible negative result in three ways. First, we find signif-
icant associations among the separate heart and brain 
mediators, like between heart PC2 and grey matter volume 
(Fig. 2). Second, we find that these associated mediators 
have partially overlapping mediating effects (Fig. 4). Third, 
we find that one of the major axes of covariance between 
heart and brain structure (CC2) significantly mediated the 
VRF-CF association (Fig. 3). Therefore, the heart and brain 
do indeed share mediating effects, indicating that their 
variation may be linked via the structural-functional model.

Our results also complicate the structural functional 
model. When comparing the multiple mediation models 
(Fig. 4), we found that latent myocardial intensity variation 
can fully explain the VRF-grey matter association, but 
grey matter variation cannot fully explain the latent myo-
cardial intensity–cognitive function association. This sug-
gests that heart structural variation can associate with 
cognitive function in ways independent of brain structural 
variation. This violation of the structural functional model 
could be explained by brain changes not well captured 
by our metrics (e.g., smaller cortical grey matter changes). 
Additionally, we found that latent myocardial intensity 
cannot explain the VRF-white matter integrity association 
(Fig. 4). Therefore, the brain associates with risk factors in 
manners independent of cardiac variation. Mechanisms 
for this break in the model could be explained by direct 
impact of metabolic hormonal dysregulation on the brain 
or brain vasculature, without affecting heart structure.

Consistent with prior reports, considering brain struc-
tural measures alone only accounted for a minority of the 
VRF-CF association (Ferguson et  al., 2020). Although 
important features from these brain latents all have rela-
tively large coefficients in the second heart-brain CCA 
mode (Supplementary Table 7), these latents alone show 
much smaller indirect effects than the second heart-brain 
CCA mode (Supplementary Table 14). The strong align-
ment of the second CCA mode with the VRF-CF associ-
ation suggests that leveraging the association between 
heart and brain structure is informative to deriving a brain 
imaging latent factor that associates with both vascular 
risk and cognitive decline. In other words, without con-
sidering vascular risk or cognitive function in their deriva-

tion, one can discover brain biomarkers that better 
explain the VRF-CF association by using the heart-brain 
structural association.

Focusing on the brain structures identified, this work 
unifies separate findings that have shown that lower grey 
matter and thalamic volume associates with greater vas-
cular risk and lower cognitive function (Bai et al., 2020; 
Cox, Lyall, et al., 2019; Cox, Ritchie, et al., 2019; Ferguson 
et al., 2020). Furthermore, this work supports the associ-
ation of deteriorating thalamic tract white matter micro-
structure with elevated vascular risk and poorer cognitive 
function (Cox, Lyall, et  al., 2019; Cox, Ritchie, et  al., 
2019). Previous work has argued that the thalamus is 
both central to integrative signalling in the brain and 
potentially susceptible to changes in cerebrovascular 
perfusion (Bohlken et  al., 2014; Cox et  al., 2016; 
Payabvash et al., 2011; Rikhye et al., 2018). Crucially, this 
works links variation in these structures to myocardial 
intensity. Why exactly thalamic volume and thalamic 
white matter integrity associate with myocardial intensity 
is still unknown and will be of interest in future work.

Our analyses of individual VRFs and cognitive exams 
revealed subtle trends not apparent in our more global/
latent results, where brain and heart had differential 
importance. For example, whereas brain volumes more 
strongly mediate the pack year–VNR association than the 
WHR-VNR association, myocardial intensity exhibited the 
reverse pattern (Supplementary Fig. 9, Supplementary 
Table 21). This result highlights the utility of a comparative 
approach between heart and brain structural variation. 
However, the individual VRF cognitive exam analysis also 
revealed the complexity in some of these phenotypes, 
replicating a previous finding of a positive association 
between BMI and visual memory (Supplementary 
Table 21) (Ferguson et al., 2020).

Beyond supporting findings from the latent analysis, 
the individual gVRF-g mediation analysis of imaging fea-
tures revealed that lower right and left ventricular volume 
for body size associates with greater vascular risk and 
lower cognitive function (Fig. 5, Supplementary Table 23). 
This result could point to a simple mechanistic step in the 
structural-functional hypothesis in which lower stroke 
volume for body size decreases cerebral perfusion 
(Rouch et al., 2022). Analysis of the individual brain fea-
tures highlights grey matter, some subcortical volumes, 
and thalamic white matter tract measures as most medi-
ating the gVRF-g association (Fig. 5, Supplementary 
Table  25). This provides independent support from the 
joint analysis that these specific brain structures are key 
to the heart-brain axis.
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Lower myocardial intensity has previously been asso-
ciated with specific vascular risk factors and greater red 
meat consumption, and, here, we quantify its association 
with both greater aggregate vascular risk and lower cog-
nitive function (Cetin et al., 2020; Raisi-Estabragh, Jaggi, 
et  al., 2021; Raisi-Estabragh, McCracken, et  al., 2021). 
Lower myocardial intensity strongly associates with 
higher vascular risk in a manner not explained by body or 
heart size (Supplementary Table 15). Additionally, myo-
cardial thickness cannot explain the vascular risk–
cognitive function association (Supplementary Table 26). 
These findings suggest that myocardial intensity is a 
myocardial size-independent biomarker for vascular risk. 
Lower myocardial intensity could have several biological 
interpretations. Previous imaging studies have detected 
myocardial fibrosis in cohorts of patients with vascular 
risk factors, suggesting that the low intensity features 
common to vascular risk and cognitive decline could be 
signs of a common myocardial fibrotic pathology driven 
by vascular risk factors (Mavrogeni et al., 2017; Ng et al., 
2012; Turkbey et al., 2015). We also found some media-
tion via greater myocardial textural uniformity (Supple-
mentary Table 23), which could also associate with the 
speculated fibrosis. Alternatively, since blood appears 
bright in CMR, lower myocardial intensity could suggest 
lower myocardial perfusion, compromising cardiac func-
tion and cerebral circulation. These results motivate fur-
ther work to confirm these hypotheses through detailed 
imaging and tissue pathology.

5.2.  Limitations

Although this study uses an exceptionally large dataset of 
adults across a wide range of middle- and older ages, this 
work does not analyse longitudinal data. Therefore, we 
cannot disambiguate whether cardiovascular risk is caus-
ing decreased cognitive function, lower cognitive function 
is causing increased cardiovascular risk, or some mix of 
both effects. However, numerous longitudinal studies in 
other cohorts support that cardiovascular risk associates 
with accelerated cognitive decline (Knopman et al., 2001; 
Rusanen et al., 2014; Samieri et al., 2018; SPRINT MIND 
Investigators for the SPRINT Research Group et al., 2019; 
W. Wang et al., 2022; Yaffe et al., 2014). Furthermore, with-
out longitudinal imaging, we cannot assess the temporal 
relationship between cardiac and brain imaging pheno-
types, vascular risk, and cognitive function. However, we 
argue that our results still offer novel cross-sectional sup-
port for the structural-functional model linking elevated 
vascular risk and poorer cognitive function.

In this work, we focus on the structural functional model 
linking vascular risk and cognitive function. Importantly, 
the VRF-CF association could be equally well explained by 
unmeasured mechanisms (e.g., metabolic hormonal dys-
regulation could directly impact neuronal function) 
(Benedict et al., 2007) or by reverse causation (e.g., poor 
cognitive function could decrease healthy lifestyle mainte-
nance) (Batty et al., 2007; Calvin et al., 2011). Testing these 
hypotheses adequately would require longitudinal and bio-
chemical data not yet available via the UK Biobank (Jensen 
et al., 2023; M. Wang et al., 2016). The UK Biobank does 
offer numerous measurements of possible confounders 
(socioeconomic status, geography, lifestyle, etc.) that 
could be used to rule out potential sources of error in our 
estimates. Although this study attempts to control for sev-
eral well-studied sources of biometric and imaging con-
founding, future work could survey the wide array of 
possible confounders to refine our initial estimates.

We do not adjust for ethnicity in this study due to the 
low numbers of non-White British participants and the 
heterogeneity of those minority participants (Supplemen-
tary Table 1). Because the UK Biobank represents a rela-
tively homogenous, well-educated, higher socioeconomic 
status, and predominantly Caucasian population, we 
emphasise the lack of generalizability of our findings to 
other populations. Neurovascular disease may differ sig-
nificantly across populations of different ancestries and 
economies. Increased longitudinal biobanking of more 
diverse populations will be crucial to extending our find-
ings to a more representative sample of the global popu-
lation (Prictor et al., 2018; Ricard et al., 2023).

Whereas some have questioned the reliability of the UK 
Biobank cognitive exams (Lyall et al., 2016), recent work 
has supported their validity and psychometric properties 
(Fawns-Ritchie & Deary, 2020). Additionally, as reported in 
previous work, the effect sizes for the association between 
individual VRFs and cognitive exams is small, and we find 
no unique association for many VRFs and at least two 
associations pointing in the “opposite direction” as 
hypothesised (Supplementary Fig. 9, Supplementary 
Tables 21) (Lyall et al., 2017). Results from the full UK Bio-
bank study suggest that large studies are needed to con-
sistently detect these small effects and future increases to 
the imaging subset will help refine our results (Ferguson 
et  al., 2020; Newby et  al., 2021). We argue that the 
approach implemented here, via obtaining a latent mea-
sure g, minimises the impact of individual exam variability 
by obtaining an estimate of a robust, replicable, and test-
invariant cognitive construct (Cox, Ritchie, et  al., 2019; 
Fawns-Ritchie & Deary, 2020; Lyall et al., 2016).
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6.  CONCLUSION

The structural-functional model explaining the VRF-CF 
association rests on the argument that vascular risk drives 
changes in cardiovascular structure that lead to alterations 
in brain structure that lead to cognitive decline. Definitive 
support for the causal sequence of this model would 
require experimental or longitudinal work. However, our 
models (using cross-sectional data) are consistent with the 
hypothesis that vascular risk-associated cognitive ageing 
associates with distinctive variation in cardiac and brain 
structure. This is the first large-scale work to show that 
there is correlated variance in both heart and brain struc-
ture that mediates the association between vascular risk 
and cognitive function, providing a more extensive multi-
modal framework to important prior work (Bai et al., 2020; 
Cox, Lyall, et al., 2019; Cox, Ritchie, et al., 2019; Ferguson 
et  al., 2020; Lyall et  al., 2017; McCracken et  al., 2021; 
Newby et al., 2021; Raisi-Estabragh, Jaggi, et al., 2021; 
Raisi-Estabragh, M’Charrak, et al., 2021). One of the many 
hypotheses generated from analysing these data together 
is the identification of a key link to explain: how myocardial 
hypointensity could associate with cerebrovascular 
hypoperfusion impacting particular subcortical structures, 
like the thalamus.
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