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Measurement of the decay of laser-driven linear plasma wakefields

J. Jonnerby ,1,* A. von Boetticher,1 J. Holloway,1 L. Corner ,2 A. Picksley ,1,† A. J. Ross,1 R. J. Shalloo ,3,‡ C. Thornton,4

N. Bourgeois,4 R. Walczak ,1,§ and S. M. Hooker 1,‖
1John Adams Institute for Accelerator Science and Department of Physics, University of Oxford,

Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
2Cockcroft Institute of Accelerator Science, University of Liverpool, Liverpool WA4 4AD, United Kingdom

3John Adams Institute for Accelerator Science, Imperial College London, London SW7 2AZ, United Kingdom
4Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

(Received 20 June 2023; accepted 10 October 2023; published 27 November 2023)

We present measurements of the temporal decay rate of one-dimensional (1D), linear Langmuir waves excited
by an ultrashort laser pulse. Langmuir waves with relative amplitudes of approximately 6% were driven by 1.7 J,
50 fs laser pulses in hydrogen and deuterium plasmas of density ne0 = 8.4×1017 cm−3. The wakefield lifetimes
were measured to be τ

H2
wf = (9 ± 2) ps and τ

D2
wf = (16 ± 8) ps, respectively, for hydrogen and deuterium. The

experimental results were found to be in good agreement with 2D particle-in-cell simulations. In addition to being
of fundamental interest, these results are particularly relevant to the development of laser wakefield accelerators
and wakefield acceleration schemes using multiple pulses, such as multipulse laser wakefield accelerators.

DOI: 10.1103/PhysRevE.108.055211

I. INTRODUCTION

Next-generation plasma wakefield particle accelerators use
charged beams or laser pulses to excite Langmuir waves
that can support accelerating gradients on the order of
GeV/cm [1]. Considerable progress has been made in this
sphere in recent years, including, for example: the acceler-
ation to multi-GeV-scale energies in wakefields driven by
laser pulses [2,3], electron bunches [4,5], and by long proton
bunches [6]; and applications of plasma-accelerated beams to
the generation of radiation [7], and the first demonstrations of
gain in free-electron-laser experiments [8,9].

In the original concept [1] of a laser-driven plasma acceler-
ator, the driving laser pulse had a duration shorter than the
plasma period Tpe = 2π/ωpe, where ωpe = (ne0e2/meε0)1/2,
and in which e is the electron charge, me is the electron mass,
and ε0 is the vacuum permittivity. Many important results
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have been obtained in this regime, for both laser- and particle-
beam-driven plasma accelerators, and this regime continues
to be a major focus of research worldwide. However, it is also
possible to drive the plasma wakefield with: (i) a train of short
drive pulses, spaced by Tpe; or (ii) by a drive pulse that is long
compared to Tpe, but with a temporal intensity profile that is
modulated with a period of Tpe [4,6,10–12].

We recently extended this latter concept by proposing a
method [13] for generating the required pulse train: frequency
modulation of a long laser pulse by a plasma wave driven by
a short, low-energy seed pulse, followed by temporal com-
pression in a dispersive optical system. Simulations of this
scheme show that electrons could be accelerated to 0.65 GeV
in a plasma stage driven by a pulse train generated by a 1.7 J,
1 ps drive pulse of the type which could be provided by a
kilohertz repetition rate thin-disk laser [14]. For plasma ac-
celerators driven by long (τdrive � Tpe) drivers, it is important
to understand the extent to which the amplitude of the plasma
wave decays over the total duration of the driver.

Theoretical studies [15] and measurements of plasma
dynamics [16,17] have shown that interactions between
the oscillating electrons and the background ions can lead to
the growth of instabilities, which dissipate the Langmuir wave
energy into higher-order daughter waves. Ultimately, these
instabilities lead to the decay of the wakefields and heating
of the plasma. In this paper, we present the results of an
experimental investigation of the wakefield decay rate in a
parameter regime that is relevant for several current and future
plasma acceleration schemes, such as plasma wakefield accel-
eration (PWFA) [6], laser wakefield acceleration (LWFA) [2],
and multipulse laser wakefield acceleration (MP-LWFA) [10].
We compare our measured results with particle-in-cell simula-
tions, and show that there is good agreement between theory,
simulations, and measurements. We first establish the key
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TABLE I. Comparison of key parameters for several experiments to measure the decay of laser-driven plasma waves.

Regime Target Plasma τL ne0 ( cm−3) δne/ne0 T (eV) W τL/Tpe (λp/πσ )2 τwf/Tpe τwf (ps) Ref.

LBWA Cell D2 160 ps 1.07 × 1017 0.1 20 270 623 0.11 61 ± 59 20.6 ± 20 [18]
SM-LWFA Jet He 400 fs 3 × 1019 0.15 2500 4.6 20 0.023 132 ± 14 1.9 ± 0.2 [19]
SM-LWFA Jet He 400 fs 3.7 × 1019 0.1 1000 5.11 21 0.033 139 1.8 [20]
SM-LWFA Jet H2 400 fs 1 × 1019 0.1 10 255 11 0.62 142 ± 28 6 ± 1 [21]
SM-LWFA Jet He 400 fs 1 × 1019 0.1 10 255 11 0.62 142 ± 28 6 ± 1 [21]
LWFA Cell He 120 fs 1 × 1017 0.1 14 36 0.34 31.4 33+33

−8 8.3+8
−2 [22]

LWFA Jet He 52 fs 7.4 × 1017 0.75 13 1150 0.4 1.92 9.7 1.3 [23]
LWFA Cell H2 (48.9 ± 6.3) fs 8.4 × 1017 0.06 2 705 0.4 0.042 84 ± 25 9 ± 2 This work
LWFA Cell D2 (48.9 ± 6.3) fs 8.4 × 1017 0.04 2 262 0.4 0.042 134 ± 63 16 ± 8 This work

laser and plasma parameters, which determine the regime in
which a laser-plasma accelerator operates. When the quiver
velocity of the plasma electrons in the field of the driving
laser is nonrelativistic, the wakefield is approximately sinu-
soidal, and is said to be in the linear regime. For a single,
short driving laser pulse, this corresponds to a peak normal-
ized vector potential a0 < 1, where a0 = eE/mecω0, E the
laser electric field strength, and ω0 the laser frequency. In
this regime, and for the case of a driving laser pulse with
Gaussian temporal and transverse intensity profiles, the rel-
ative amplitude of the plasma wave δne/ne0 is given by the
sum of the relative amplitudes of the radial and longitudinal
wakefields [22],
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where r is the radial distance from the propagation axis
of the drive laser, ζ is the temporal delay after the peak
of the drive pulse, ωpe = (ne0e2/meε0)1/2 is the plasma fre-
quency, ne0 is the plasma electron density, nc = ε0meω

2/e2

is the critical density, and ω, σ , τL, and I are, respectively,
the angular frequency, beam radius at the 1/e2 intensity, the
duration (defined as the half-width at 1/e2 intensity) and
peak intensity of the driving laser pulse. The ratio of the
radial to the longitudinal wakefield components at r = 0 is
δnr/δnz|r=0 = (2c/ωpeσ )2 = (λp/πσ )2, where δnr/δnz � 1
indicates a predominantly radial wakefield and δnr/δnz � 1
indicates a longitudinal wakefield, which we will refer to as a
one-dimensional (1D) wakefield.

The mechanisms responsible for the decay of laser-driven
plasma waves have been investigated in several earlier stud-
ies. Marquès et al. [22] found that radial-dominated and
longitudinal-dominated wakefields can have different decay
mechanisms. Longitudinal wakefields decay through colli-
sions [24], Landau damping [25], beam loading by accelerated
particles [19], and the modulational instability [15]. The
growth rate of the modulational instability is expected to
be much greater than the collisional or Landau damping

mechanisms, and hence will usually dominate the decay in the
case when beam loading is not significant. If the total charge
trapped and accelerated by the wakefield is large, then beam
loading becomes important, and can be the leading cause of
the wakefield decay [19]. Radial wakefields can decay via
an additional mechanism. When the radial plasma density is
nonuniform, electrons at different radial trajectories have dif-
ferent oscillation periods, which leads to a loss of coherence of
the plasma oscillation. This can happen, e.g., via a final radial
extent of the drive laser or beam, or in preformed plasma
channels [26–29].

In addition to the ratio δnr/δnz, two other parameters are
important in determining the mechanisms responsible for, and
the rate of, wakefield decay. First, the ratio of the energy
density of the Langmuir wave to the thermal energy density,
W = (vL/vt )2 = ε0|EL|2/2ne0kBTe, where vL = eEL/meωpe,
vt = (kBTe/me)1/2, EL is the electric field strength of the
wakefield, kB is the Boltzmann constant, and Te is the elec-
tron plasma temperature [15]. The parameter W determines
the growth rate of the modulational instability and delin-
eates the strong-field regime (W � 1) from the weak-field
regime (W � 1). Second, the ratio of the drive pulse length
to the plasma ion period τL/Tpi, where Tpi = 2π/ωpi, where
ωpi = (Zne0e2/Mε0)1/2, and in which Z and M are the charge
and mass of the ions respectively. For τL � Tpi the plasma
instabilities driven by ion dynamics coevolve with the drive
laser, and for τL � Tpi they develop only after the wakefield
is excited.

Table I summarizes the results of previous measurements
of the decay time of laser-driven wakefields. The penultimate
and antepenultimate columns of the table give the wakefield
decay time τwf and the ratio of this to the electron plasma
period Tpe. It should be noted that the precise definition of
τwf varies between the experiments. In Refs. [18,21] it refers
to the total length of the detectable wakefield signal, whereas
in Refs. [19,20,22,23], and in the present work, it refers to
the time taken for the wakefield amplitude to decay to 1/e of
the maximum amplitude. We also note that the time given in
Ref. [18] refers to the saturation time of the beat-wave-driven
wakefield, and, for simplicity, we have taken this to be equal
to the decay time. It is striking that with the exception of
Ref. [23], the ratio of the wakefield lifetime to the electron
plasma period τwf/Tpe varies by less than a factor of 5 in
experiments for which the plasma density and the duration
of the drive pulse both vary by more than two orders of
magnitude.
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The earlier work summarized in Table I was undertaken in
a wide range of laser-plasma accelerator regimes. In the exper-
iment by Moulin et al. [18] a wakefield was excited using the
beat-wave (LBWA) scheme in which two long pulses (160 ps
and 90 ps), of angular frequencies ω1 and ω2, interfere to gen-
erate a beat pattern at the plasma frequency ωpe = ω1 − ω2. In
that work plasma instabilities therefore developed during the
excitation of the wakefield by the drive beam or drivers. The
experiments by Leblanc et al. [19], Chen et al. [20], and Ting
et al. [21] corresponded to the self-modulated laser wakefield
(SM-LWFA) regime in which interaction between a long laser
pulse (τL � Tpe) and the weak plasma wave it drives causes
the laser pulse to become modulated with a period of Tpe,
leading to a nonlinear feedback in which the modulation of
the laser pulse and the wakefield amplitude both increase
with delay relative to the front of the driving pulse. Hence
these experiments correspond to an intermediate regime in
which the duration of the drive pulse lies between the electron
plasma period and the ion plasma period Tpi. Finally, Marquès
et al. [22] and Kotaki et al. [23] performed experiments in
the LWFA regime originally proposed by Tajima and Dawson,
in which the wakefield is excited by a laser pulse with τL <

Tpe. These last two experiments both operated in the radial-
dominated wakefield regime, and shorter decay times relative
to the plasma period were observed compared to the experi-
ments that generated longitudinal-dominated wakefields. With
the exception of the work by Kotaki et al. [23], in all the
experiments δne/ne0 ≈ 0.1, i.e., they were all conducted in the
linear wakefield regime. We note that for the much stronger
wakefields (δne/ne0 ≈ 0.75) studied in Ref. [23], the observed
ratio τwf/Tpe is much smaller than found in experiments oper-
ating in the linear regime; this finding is discussed further in
Sec. IV.

Before concluding this short review of prior experimen-
tal work, we note that wakefield decay and ion motion has
also been studied for proton-beam-driven wakefield acceler-
ators [30]; these results have not been included in Table I
owing to the very different driver and plasma parameters.
We also note recent experiments to establish the limits to the
repetition rate of PWFAs driven by electron bunches [31].
The topic of the present paper, the timescale for wakefield
decay, is related to the maximum possible repetition rate of
a plasma accelerator. However, we emphasize that wakefield
decay is just the first step in a complex chain of processes,
which includes wakefield decay, electron-ion recombination,
and heat redistribution, which must be completed before the
following drive pulse can be delivered.

The work presented in the present paper is a measure-
ment of the decay rate of a one-dimensional (δnr/δnz � 1),
linear wakefield (a0 ∼ 0.5) in the short-pulse LWFA regime
(τL/Tpe ≈ 0.4). This short-pulse regime is relevant for future
plasma wakefield facilities [32–34] (although we note that
some of these are expected to operate in the quasilinear regime
(a0 ∼ 1 for a single pulse), e.g., Ref. [32]), and it is also rele-
vant to alternative schemes, such as MP-LWFAs [10,11,13].

II. MEASUREMENT OF THE WAKEFIELD LIFETIME

Experiments to measure the lifetime of a plasma wake-
field in the 1D linear regime were undertaken at the Central

FIG. 1. Schematic drawing of the experimental layout inside the
target vacuum chamber. Both beams of the Astra-Gemini TA3 laser
were used: one as the drive beam, and the other as the diagnostic
probe beam. The 800 nm beams are shown in red and the 400 nm
diagnostic beam is shown in blue. After leaving the gas cell, the
diagnostic beam was transported to a 400 nm spectrometer located
outside the vacuum chamber. The inset shows an example record-
ing of a wakefield in a spectral interferogram, as captured by the
spectrometer camera. AO: Adaptive optic; HM: Holed mirror; HWP:
Half-wave plate; L1: f = 500 mm lens; L2: f = −100 mm lens; L3:
f = 300 mm lens; P: polariser; 10X: microscope objective; SHG:
second harmonic generating crystal.

Laser Facility of the Rutherford Appleton Laboratory, using
the Astra-Gemini TA3 laser. A schematic illustration of the
experiment layout is shown in Fig. 1.

A linearly polarized laser pulse with energy E =
(1.68 ± 0.06) J, center wavelength 800 nm, and FWHM pulse
duration (48.9 ± 6.3) fs was used to drive the wakefield.
This pulse was focused by an on-axis reflecting paraboloid
of focal length f ≈ 6.1 m, used at f /40, to a spot size
(1/e2 intensity radius) of w0 = (52.3 ± 0.8) µm at the cen-
ter of a gas cell. The peak intensity at the laser focus was
I = 6.5×1017 W cm−2. The peak fluence of the focal spot,
measured using the transverse fluence profile, was used to cal-
culate the peak normalized vector potential a0 = 0.54 ± 0.18,
with approximately a factor of 0.3 of the beam energy en-
closed within the FWHM beam diameter at focus.

Laser radiation could enter and leave the cell via a pair of
coaxial, 400 µm diameter pinholes located at each end of the
4 mm long gas cell. Gas, either hydrogen (H2) or deuterium
(D2), was flowed into the cell in a pulse of duration of approx-
imately 500 ms; the gas flowed into the surrounding vacuum
chamber via the pinholes. For these experiments the cell back-
ing pressure was Pcell = (17.0 ± 1.2) mbar, corresponding to
an electron density 8.4×1017 cm−3 (assuming 100% ioniza-
tion).

The amplitude of the plasma wave was measured by fre-
quency domain holography (FDH) [35], analyzed with the
TESS technique [36,37]. In this method, two chirped and
stretched diagnostic pulses are generated: (i) a probe pulse,
which propagates behind the drive pulse, and acquires a tem-
porally dependent phase shift from the density modulation
of the plasma wave; and (ii) a near-identical reference pulse,
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which propagates ahead of the drive pulse. This pair of diag-
nostic pulses was generated by passing a frequency-doubled
pick off from the probe beam through a Michelson interfer-
ometer with a path difference corresponding to 
ζ ≈ 6 ps.
Each of the pair of pulses thereby created was then frequency
chirped and stretched to a duration of 1.35 ps by propagating
them through a 160 mm long piece of glass (BK7). The di-
agnostic pulses were injected coaxially with the drive beam
by directing them through a holed turning mirror, and fo-
cused into the gas cell by the same optic used to focus the
drive beam. On leaving the gas cell the diagnostic pulses
were separated from the transmitted drive pulse by reflection
from a dichroic mirror and imaged onto the entrance slit of
a Czerny-Turner spectrometer to yield a spectral interfero-
gram, which was recorded by a CCD camera (Andor Newton
DU940N-BU). The wakefield amplitude was calculated from
the captured interferograms using the TESS technique, as
follows. Each spectral interferogram was Fourier transformed
along its spectral axis to give a spatiotemporal profile. The
Fourier-transformed data comprises a zero-frequency (DC)
band; a sideband located at t = 
ζ ; and three satellites—two
on either side of the sideband, and a third located near the DC
band. These satellites arise from the phase shift imposed on
the probe beam by the sinusoidal plasma wave. The satellites
are offset from the sideband and have temporal locations given
by Refs. [36,37],

τ = 
ζ ± ϕ(2)ωpe, (3)

where ϕ(2) is the group delay dispersion (GDD) of the probe
and reference pulses. Equation (3) was used, together with
the group delay dispersion and cell backing pressure, to define
the expected location of the satellites. These were found to be
fully separated from the sideband, and close to their expected
locations. For plasma waves with large amplitudes, higher-
order satellites can appear, located at τ = 
ζ ± mϕ(2)ωpe,
m = 2, 3, 4, . . ., but these higher-order satellites were not
observed in this experiment. The relative amplitude of the
wakefield at delay ζ can be found from the ratio r of the
satellite amplitude to that of the sideband since this is given
by Refs. [36,37],

r = F (ωpe)
J1(φ0)

J0(φ0)
, (4)

where,

φ0 = ω2
peL

2ωprobec

δne

ne0
. (5)

and where J0 and J1 are Bessel functions of the first kind,
F (ωpe) a spectral overlap function (see Appendix), L is the
interaction length, and ωprobe is the frequency of the probe
laser. By varying the backing pressure, and measuring ωpe

immediately after the drive pulse, we could confirm that the
measured positions of the identified satellites closely followed
the expected positions, based on Eq. (3). Using this procedure,
it was found that the pressure in the cell was linearly related to
the measured backing pressure through Pcell = α(Pgauge − P0),
where α = 0.96 accounts for the fact that the pressure guage
was located prior to the gas cell gas inlet and P0 = 3 mbar (see
Appendix).

FIG. 2. Measured normalized relative wakefield amplitude cal-
culated using the TESS technique [36,37] as a function of delay
for: (a) hydrogen; (b) deuterium, recorded with a backing pressure
Pcell = (17.0 ± 1.2) mbar. For each delay are shown the uncertainty-
weighted average wakefield amplitude (δne(ζ )/ne0) and the standard
error. The uncertainty was calculated using the background noise
in the Fourier-transformed interferograms. The wakefield amplitude
calculated from the PIC simulations are shown as open circles. Also
shown are fits of the exponential function to the data as black lines.

III. RESULTS

The wakefield amplitude was measured for a range of de-
lays ζ in steps of 0.67 ps. For each temporal delay, the results
of ten shots were averaged in order to reduce the statistical
error in the measured wake amplitude.

Figure 2 shows, for hydrogen and deuterium, the measured
wakefield amplitude as a function of delay, normalized to
δne(0), where δne(0) is determined by a fit of the function
δne(ζ ) = δne(0) exp(−ζ/τwf ) to the data. Due to variations
in the experimental conditions, the plasma waves driven in
deuterium had an initially lower amplitude, which made the
error bars relatively larger after normalization.

Also shown in Fig. 2 are the results of 2D particle-in-cell
(PIC) simulations performed with the relativistic particle-in-
cell code SMILEI (Simulation of Matter Irradiated by Light
at Extreme Intensities [38]) for the laser and plasma param-
eters used in the experiment (see Appendix). The wakefield
amplitude was calculated from the maximum Fourier ampli-
tude (near ωpe) of the density variation δn(x, y) = δne(x, y) −
δni(x, y) corresponding to the wakefield plasma oscillation,
where δni(x, y) is the ion density. The Fourier amplitude,
AF , was converted to the wakefield amplitude, Awake using
the relation Awake = 2AF 
x/[

∫
W β

T (x) dx]. Here W β
T (x) is a

Tukey window with window parameter β (set to β = 0.2), and

x = 26.7 nm, the simulation cell size in the dimension along
the laser axis of propagation.

The results of the simulations are seen to be in very good
agreement with the experimental data. As well as correctly re-
producing the timescale of the wakefield decay, the wakefield
amplitudes calculated by the simulations are found to be close
in absolute terms to the measured values. For both hydrogen
and deuterium plasmas the relative wake amplitude at ζ = 0
was calculated to be 7.5% for the laser and plasma conditions
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TABLE II. Comparison of the wakefield decay times (in picosec-
onds) obtained from experiments and PIC simulations.

τ
H2
wf τ

D2
wf τ

D2
wf /τ

H2
wf

Experiment 9 ± 2 16 ± 8 1.78 ± 0.97
Simulation 8.5 ± 0.9 15 ± 1 1.76 ± 0.22

of the experiment. This compares with the measured values
of (6 ± 2)% for hydrogen and (4 ± 2)% for deuterium. This
agreement, which is within a factor of two, is remarkably good
when it is considered that: (i) the simulations contained no
free parameters; and (ii) the measured wakefield amplitude
is rather sensitive to variations in many of the experimental
parameters. These experimental parameters include: the pulse
energy, duration, and spatiotemporal quality of the laser pulse;
the spectrum of the probe pulse; the relative alignment of the
drive and diagnostic pulses; and the pressure in the gas cell.
Notably, a large contributor to less than optimal conditions
was the relatively poor quality of the laser focal spot, with
only a factor 0.3 of the beam energy enclosed within the
FWHM beam diameter at focus. In the simulations, an ideal
focal spot was used, albeit with the same peak a0 as estimated
from the experimental parameters.

Table II summarizes the results of the measurements and
simulations; to enable a comparison with the experiments,
the temporal variation of the wake amplitude found in the
simulations was fitted to an exponential decay. While the
decay process is not expected to be strictly exponential [39],
as is evident from the results of PIC simulations shown in
Fig. 2. However, we chose to fit the data to an exponential
decay since it is a reasonable approximation and it provides
a convenient measure for comparing (in Table I) the results
of experiments undertaken over a wide range of plasmas
parameters. For the conditions of the experiment we find:
for hydrogen, τwf ≈ 9 ps, corresponding to around 76 plasma
periods; for deuterium these values are approximately 16 ps
and 134 periods, respectively.

The measured wakefield lifetimes are long compared to
the electron plasma period Tpe = 121 fs, and are comparable
to the ion plasma periods Tpi = 5.2 ps and 7.4 ps for hy-
drogen and deuterium, respectively. The ratios of the decay
times measured for deuterium and hydrogen are found to
be τD2

wf /τ
H2
wf = 1.78 ± 0.97 and 1.76 ± 0.22 from the mea-

surements and simulations, respectively. The experimentally
measured decay times are seen to be in very close agreement
with those determined from PIC simulations. Unfortunately
the experimental errors, particularly those for D2, which had
a lower initial wake amplitude due to less optimized exper-
imental conditions—the experiment was optimized once per
day and the D2 data was collected after the H2 data the
same day—and therefore a lower signal-to-noise ratio, are too
large to conclude that the ratio τD2

wf /τH2
wf differs from unity.

However, the PIC simulations do show that the decay time
for deuterium is longer than that for hydrogen, and that their
ratio is close to, but larger than, the ratio of the ratio of the in-
verse ion plasma frequencies ω−1

D2/ω−1
H2 = √

MD2/MH2 = √
2.

The measurements and simulations demonstrate that the wake
decay time is of the order of the inverse ion plasma period, but

that it is too simplistic to assume that the decay time is strictly
proportional to this quantity [39].

A detailed analysis of the PIC simulations [39], and com-
parison with work by Sanmartin et al. [40], shows plasma
waves under these experimental conditions decay via the
modulational instability. This instability causes small spatial
variations in the ion density to grow exponentially, with a
timescale of order Tpi, leading to a loss of coherence of
the electron oscillations, and hence decay of the wakefield
amplitude.

IV. CONCLUSION

In conclusion, we have used single-shot frequency do-
main holography to measure the lifetime of 1D linear plasma
wakefields in hydrogen and deuterium plasmas driven in the
short-pulse LWFA regime. Wakefields with relative ampli-
tudes of approximately 6% were driven by 1.7 J, 50 fs laser
pulses in hydrogen and deuterium plasmas of density ne0 =
8.4×1017 cm−3. The wakefield lifetimes were measured to
be τ

H2
wf = (9 ± 2) ps and τ

D2
wf = (16 ± 8) ps, respectively,

for hydrogen and deuterium. The experimental results were
found to be in very good agreement with 2D particle-in-cell
simulations.

These findings are of relevance to the MP-LWFA scheme,
in which the wakefield is driven resonantly by a train of
short pulses [10,11]. This latter approach is of considerable
interest since it offers a route to driving LWFAs at high
pulse repetition rates with novel laser technologies, which
can provide the required average power, with high wall-plug
efficiency, but which deliver pulses, which are too long to
drive a plasma wave directly. The wakefield lifetime is of key
importance to the MP-LWFA scheme since it determines the
maximum useful number of pulses in the pulse train. For ex-
ample, in the plasma-modulated plasma accelerator (P-MoPA)
scheme [13], plasma modulation of a ∼ 1 ps, 1.7 J pulse
is used to generate a train of ∼ 5 pulses. Simulations show
that this train can resonantly excite a wakefield of amplitude
δne/ne0 = 0.6 in a plasma of density ne0 = 2.5×1017 cm−3.
The results presented in the present paper will be relevant
to this scheme, at least during the crucial period in which
the wakefield grows to a large amplitude. The experiments
described in Ref. [23], summarized in Table I, indicate that
the decay rate of large amplitude wakes is faster than for
linear wakefields. However, the authors of that earlier work
note that the measured decay rate may have been increased
by nonuniformities in the gas jet target that was used. It is
clear, therefore, that further work is required to determine the
wakefield decay rate in the nonlinear regime.

The work presented here shows that, for plasma densities
relevant to MP-LWFAs, the wakefield lifetime corresponds
to of order 100 plasma periods, which is large compared to
the N ≈ 10 pulses required for MP-LWFA schemes driven by
pulse trains of total duration in the picosecond range [13].
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APPENDIX

In this Appendix we provide further details of the exper-
imental setup, the TESS method and associated calibrations,
and the particle-in-cell simulations.

1. Experimental setup

The diagnostic pulses were generated using one of the
Gemini beams (central wavelength 800 nm), temporally syn-
chronized with the drive beam. This beam was frequency
doubled to 400 nm and split into two temporally offset pulses
using a Michelson interferometer with a path difference cor-
responding to 
ζ ≈ 6 ps between the two arms. The pulses
were subsequently chirped, and stretched to a pulse dura-
tion of approximately 1.35 ps, by propagating them through
a 160 mm long piece of BK7 glass. The diagnostic pulses
were injected co-axially with the drive beam by directing
them through a holed mirror, and on leaving the gas cell
they were reflected by a dichroic mirror and a beam splitter
and directed at normal incidence to a spherical mirror of
focal length f = 2.5 m ( f /25). The collimated light from
the object plane, located a distance f from the spherical
mirror, was returned through an optical wedge onto a set
of lenses: L1: f = 500 mm and L2: f = −100 mm forming
a down-collimating telescope; L3: f = 300 mm; and a 10X
microscopic lens ( f = 20 mm) used to image the beam onto
the spectrometer.

A half-wave plate (HWP) and polarizer setup was used to
filter out blue light generated in the plasma by the drive beam.
A simplified drawing of the layout is shown in Fig. 3.

The peak intensity of the drive pulse at focus was estimated
by using a camera to record the transverse fluence profile of
the focus. This was converted to a transverse intensity profile
by using the measured energy and duration of the pulse.

2. Spectral phase

The spectral phases of the diagnostic pulses (i.e., the probe
and reference pulses) were measured by recording the spec-
trum of the relevant diagnostic pulse after it had copropagated
through the gas cell with the driver pulse. A sharp reduction

FIG. 3. Schematic drawing of the experimental layout inside the
target vacuum chamber. Both beams of the Astra-Gemini TA3 laser
were used, one beam used as the drive beam and the other beam as
the diagnostic beam. The 800 nm beams are shown in red and the
400 nm diagnostic beam is shown in blue. The diagnostic beam was
transported to a 400 nm imaging spectrometer located outside the
vacuum chamber. AO: adaptive optic; SHG: second harmonic gener-
ating crystal; HWP: half wave plate; P: polarizer; L1: f = 500 mm
(4 in diameter); L2: f = −100 mm (1 in diameter); L3: f = 300 mm
(1 in diameter).

in the spectral intensity of the diagnostic pulse was observed
at the local frequency corresponding to the point in the probe
pulse, which overlapped with the drive pulse. This reduction
of intensity was caused by the high refractive gradient at the
ionization front produced by the drive pulse. By tracking,
as a function of the relative delay ζi of the drive pulse, the
frequency at which this intensity reduction occurred, it was
possible to measured the local frequency ω(ζi ) of the diag-
nostic pulse. An example measurement is shown in Fig. 4, for
one temporal delay.

The measured frequency ω(ζi ) was used to estimate the
spectral phase in the following way. By measuring the probe
spectrum separately on a spectrometer we obtained its spec-
tral amplitude |E (ω)|, from which we could reconstruct
the spectral representation of its electric field as E (ω) =
|E (ω)| exp[ϕ(ω)]. Here ϕ(ω) is the spectral phase to be es-
timated, assumed to be a third-order polynomial:

ϕ(ω) = ϕ0 + ϕ1(ω − ω0) + 1
2ϕ2(ω − ω0)2 + 1

6ϕ3(ω − ω0)3,

where the coefficients ϕ1, ϕ2, and ϕ3 are to be determined.
By guessing initial values for these coefficients, the temporal
representation of the electric field can be obtained from the

FIG. 4. Plot of the perturbed spectrum of the probe pulse, taken
during measurements of the spectral chirp of the probe pulse. The
temporal overlap of the probe and drive pulses in the gas cell causes
a reduction of the probe pulse intensity as measured on the spec-
trometer. The red cross marks a low-intensity feature that is tracked
as a function of the temporal delay between the drive and probe (or
reference) pulses, in order to measure the spectral phase.
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Fourier transform of E (ω), E (ζ ) = FT[E (ω)]. The temporal
phase is obtained from its argument: φ(ζ ) = arg[E (ζ )]. Not-
ing that the instantaneous frequency is given by the derivative
of the temporal phase, ω(ζ ) = dφ(ζ )/dζ , we compared this
reconstructed frequency with the measured frequency ω(ζi )
using the overlap technique described above. We could im-
prove on the guess of the spectral phase ϕ(ω) and find the
value that best matched the measured instantaneous frequency
by minimizing the squared difference between these:

min
∑

i

(∣∣∣∣ωprobe,ref (ζi ) − dφ(ζi )

dζ

∣∣∣∣2
)

. (A1)

Using this technique, ϕ2 (i.e., the GDD) was found to
be (18600 ± 790) fs2 and (17600 ± 800) fs2 for the probe
[Fig. 5(a)] and references pulses [Fig. 5(b)], respectively.
These values were used in the TESS analysis.

3. TESS analysis method

TESS is a simplified analysis method to obtain the wake-
field amplitude from spectral interferometric data obtained us-
ing an FDH diagnostic setup. Following Matlis et al. [36], let
a propagating reference pulse, ahead in time of the pump and
probe pulses, and a probe pulse copropagating with the wake-
field be described by Eref(ζ ) and the phase-modulated probe
pulse by E ′

probe(ζ ) = Eprobe(ζ ) exp[iφ0 sin(ωpeζ )], where the
wakefield is assumed to be sinusoidal with φ0 being the phase
amplitude of the sinusoidal wave, and ωpe the plasma fre-
quency. Taking the Fourier transform of the probe pulse one
obtains

E ′
probe(ω) = 1√

2π

∫ ∞

−∞
Eprobe(ζ )

× exp[iφ0 sin(ωpeζ )] exp(−iωζ )dζ . (A2)

= 1√
2π

∫ ∞

−∞
Eprobe(ζ )

∞∑
−∞

Jk (φ0)

× exp(ikωpeζ ) exp(−iωζ )dζ (A3)

=
∞∑

k=−∞
Jk (φ0)Eprobe(ω − kωpe), (A4)

using the Jacobi-Anger expansion to express the phase term
as an infinite sum of Bessel functions of the first kind:

exp[iφ0 sin(ωpeζ )] =
∞∑

k=−∞
Jk (φ0) exp(ikωpeζ ). (A5)

The spectral interference intensity between the probe and
reference pulses is given by:

S(ω) = |Eprobe(ω) + Eref(ω)|2. (A6)

FIG. 5. Measurement of the spectral phase of the (a) probe and
(b) reference pulses. The black dots indicate the location of the
ionization front feature in time and frequency. The dashed lines show
the fitted first derivative of the temporal phase dφ(ζ )/dζ of each
pulse. The dotted lines show a linear fit to the data.

Using Eq. (A4), this can be expanded into a sum of the
cross terms of the probe and reference spectra, as well as the
different copies contained in the probe spectrum:

S(ω) = |Eprobe(ω)|2 + |Eref(ω)|2 + E∗
probe(ω)Eref(ω) + c.c. (A7)

=
∑
m,n

Jn(φ0)Jm(φ0)E∗
probe(ω − nωpe)Eprobe(ω − mωpe) + |Eref(ω)|2

+
∑

k

Jk (φ0)E∗
ref(ω)Eprobe(ω − kωpe) exp(−iω
ζ ) + c.c., (A8)
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where c.c. stands for the complex conjugate of the previous
term, and the Fourier shift theorem was used to introduce

ζ , the temporal delay between the probe and reference
pulses. The Fourier transform of the spectral interferogram in
Eq. (A8) is given by:

S(ζ ) =
∑

m

gm(φ0, ζ , ωpe)H (ζ , mωpe) + H (ζ , 0) (A9)

+
∑

k

Jk (φ0)H (ζ − 
ζ, kωpe) + c.c., (A10)

where the function H is given by:

H (ζ , ωpe) = 1√
2π

∫ ∞

−∞
E∗

ref(ω)Eprobe(ω − ωpe) exp(iωζ )dω,

(A11)
and the function g by:

gm(φ0, ζ , ωpe) =
∑

n

Jn(φ0)Jm+n(φ0) exp(inωpeζ ). (A12)

This can be rewritten as, defining H0(ζ ) ≡ H (ζ , ωpe = 0)

S(ζ ) =
∑

m

gm(φ0, ζ , ωpe) f (mωpe)H0(ζ + mτ ) + H0(ζ )

︸ ︷︷ ︸
DC peak

(A13)

+
∑

k

Jk (φ0)F (kωpe)H0(t − 
ζ + kτ ) + c.c.

︸ ︷︷ ︸
Sidebands+satellites

,

(A14)

where τ ≡ ϕ(2)ωpe, and F (kωpe) is a spectral overlap factor,
which in general is given by [37]:

F (kωpe) =
∫ ∞
−∞ |Eprobe(ω + kωp)||Eref(ω)|dω∫ ∞

−∞ |Eprobe(ω)||Eref(ω)|dω
. (A15)

The measured probe and reference spectra and their spectral
overlap factors are plotted in Fig. 6.

The sideband term in Eq. (A14) contains TESS satellite in-
tensity peaks (k �= 0) and the sideband caused by interference
(k = 0). These peaks are plotted in Fig. 7. In this figure is also
shown the dependence on the temporal separation between the
TESS satellite peaks and the sideband term with plasma den-
sity, due to variation of the ωpe term in τ . The ratio r between
the first TESS satellite in Eq. (A14) (k = 1 term, evaluated
at ζ = 
ζ − τ ) and the sideband (k = 0 term, evaluated at
ζ = 
ζ ), is

r = J1(φ0)F (ωpe)

J0(φ0)
. (A16)

For small amplitudes φ0 � 1, the Bessel functions of the first
kind Jα can be expanded as:

Jα (φ0) ≈ 1

(α − 1)!

(
φ0

2

)α

, (A17)

with J0(φ0) ≈ 1 and J1(φ0) ≈ φ0/2. The phase amplitude φ0

can therefore be expressed as:

φ0 = 2r

F (ωpe)
. (A18)

FIG. 6. (a) Line outs of the spectral intensities of the probe
(red line) and reference pulses (blue line). The dashed lines show
Gaussian fits to these spectra. (b) spectral overlap function F (ωpe )
as a function of the plasma frequency, for the measured spectra and
Gaussian spectra fitted to the measured spectra.

The plasma wave is assumed to be sinusoidal:

ne(ζ ) = ne0 + δne sin(ωpeζ ). (A19)

The phase difference acquired by a laser of wavelength λ

propagating through plasma is given by:


φ(ζ ) =
∫

ne(ζ )e2λ

4πε0me
dz. (A20)

Inserting Eq. (A19) and removing the constant density term
yields:


φ(ζ ) =
∫

ω2
peλ

4π

δne

ne0
sin(ωpeζ )dz, (A21)

with ω2
pe/ne0 = e2/ε0me. Assuming that there is no significant

longitudinal variation this can be integrated over the length L
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FIG. 7. (a) Intensity of the Fourier transform of the recorded
spectral interferograms. The three TESS satellites on either side of
the sideband at t = 
ζ = 6 ps, and next to the DC band at t = 0
ps are indicated. (b) Waterfall plot of Fourier transformed interfero-
grams for a range of cell pressures P. For each Fourier transform a
1.7 µm wide strip, centered on the peak of the satellite, is shown.
The dashed line shows a parabolic fit to the satellite-to-sideband
separation, using the satellites on the left side of the sideband. The
above plots are shown using a logarithmic intensity scale.

of the plasma:


φ(ζ ) = ω2
peλ

4π

δne

ne0
sin(ωpeζ )L. (A22)

The phase amplitude is thus identified as:

φ0 = ω2
peλ

4π

δne

ne0
L. (A23)

Using Eq. (A18) the relative wakefield amplitude δne/ne0 is
given by:

δne

ne0
= φ0

4π

ω2
peλL

(A24)

= 2r

F (ωpe)

4π

ω2
peλL

. (A25)

4. Pressure scan

In addition to varying the temporal delay ζ to measure the
wakefield amplitude over time, in a separate experiment the
pressure of hydrogen was was varied between 10 mbar and 40
mbar. A one-pixel wide slice in the y direction centered on the
TESS peak was selected for each shot, and used to populate
the waterfall plot in Fig. 7. The positions of the peaks relative
to the sideband were then measured as a function of plasma
density. This data was used to fit the expression τ = ϕ(2)ωpe,
using the GDD (ϕ(2)) as the fitting parameter. Fitting directly
to the data, a GDD value of ϕ(2) = (15203 ± 327) fs2 was
obtained. However, it was observed that the data appeared to
be offset from this simple fit, as can be seen in Fig. 8. This
is likely caused by a drop in pressure between the location of
the pressure gauge, which was connected to the gas pipe at a
distance of ∼2 m from the cell. A second fit was therefore
performed, where the pressure in the cell was assumed to

FIG. 8. Plot showing a fit to the temporal separation τ between
the sideband and the TESS satellites as a function of plasma density.
The red points assume that the pressure in the cell is that measured by
the gauge, Pmeas; the blue points assume that the true pressure in the
cell is given by Pcell = αPmeas − P0. For both plots that the electron
density is calculated assuming complete ionization of the H2 gas
at the corresponding pressure. The horizontal error bars correspond
to the pressure resolution of 1 mbar of the pressure gauge, and the
vertical bars show the estimated error of the TESS satellite location.
The solid (dashed) line shows a fit to the red (blue) points of the form
τ = ωpeϕ

(2).

be given by: Pcell = α(Pgauge − P0), where the offset P0 ac-
counts for any potential calibration offset. With this method
the fitted parameters were found to be α = 0.96, P0 = 3 mbar,
and ϕ(2) = (16946 ± 81) fs2, which is also shown in Fig. 8
(where the offset and shift parameters have been applied to
the measured data rather than to the fit). This value of the
GDD is within ∼10% of that obtained using the spectral
blowout technique described in Appendix, confirming that the
procedure adopted for relating the cell pressure to the gauge
pressure is correct.

5. Particle-in-cell simulations

Numerical simulations of the experiments were performed
with the relativistic particle-in-cell code SMILEI [38] on the
ARCHER UK National Supercomputing Service and the Ox-
ford Advanced Research Computing (ARC) Arcus-B cluster,
using the same parameters as used in the experiment (the
parameters used in the simulations are summarized in Ta-
ble III). In the simulations, the plasma has a longitudinal and
transverse extent of 240 µm (8λp) and 160 µm, respectively,
at a uniform plasma density, ne0 = 9.7×1017 cm−3. The sim-
ulation window was fixed, and boundaries were absorptive to
electromagnetic radiation and reflective to electron and ion
particles. The wakefield amplitude was calculated from that
of the electric field of the Fourier mode corresponding to the
wakefield plasma oscillation. Modulations of the longitudinal

055211-9



J. JONNERBY et al. PHYSICAL REVIEW E 108, 055211 (2023)

TABLE III. Parameters of plasma, and drive and probe laser beams.

Simulation laser and plasma parameters

Drive pulse parameters:
Wavelength (nm) 800
Pulse duration (FWHM) (fs) 40
Pulse width (FWHM) (µm) 45
Peak intensity (Wm−2) 1×1018

a0 0.5

Plasma parameters:
ne (m−3) 9.7×1023

λD (µm) 0.025

x (λD) 1

y (λD) 5

t (tCFL ) 0.95
nppc 64
xmax (λp) 8
ymax (µm) 160

electric field developed within two picoseconds after exci-
tation in the simulations, on a scale much smaller than the
wakefield wavelength (∼1.3 µm versus λp ≈ 30 µm).

6. Estimating the plasma temperature

In order to estimate the parameter W , which determines
whether the modulational instability is in the strong- or weak-
field regime, for the experimental conditions described in this
paper we need an estimate of the temperature after ioniza-
tion in the plasma. To obtain this estimate, we performed
2D particle-in-cell (PIC) simulations in the code Extendable
PIC Open Collaboration (EPOCH) [42]. EPOCH includes ion-
ization models, which take into account both tunneling and
barrier suppression ionization pathways [42]. Collisional ion-
ization is a third pathway that is less important in the case
of short-pulse laser ionization; with a measured ionization
cross section of hydrogen of σ ≈ 5×10−17 cm2 [43] for non-
relativistic electrons with quiver velocities vosc = a0c ≈ 0.5c
(with a0 ≈ 0.5), the ionization rate is approximately given by:

W = neσvosc[s−1] ≈ 0.72 ps−1. (A26)

Since collisional ionization is important over the scale of
picoseconds rather than femtoseconds, as is the case for short-
pulse laser ionization, we neglected this contribution in the
simulations. The simulation parameters, which were chosen
to be equal to the experimental parameters, are summarized
in Table IV. Two different methods were used for estimating
the temperature from these simulations. In the first, which
is a built-in temperature probe in EPOCH, the temperature is
approximated as the standard deviation of the total momentum
in each simulation cell i,

kbTi ≈ 〈p2〉i

2m
. (A27)

Averaging along the axis of laser propagation, we obtained an
average on-axis temperature of 2.75 eV. The second way of
approximating the temperature is by measuring the random
(thermal) motion of the electrons, from which we obtained
the thermal energy distribution Ethermal = p2

thermal/2m. During
the time that the drive laser spends in the plasma slab, there

TABLE IV. Simulation parameters used in 2D PIC simulations
to estimate the plasma electron temperature.

Parameter Value Unit

Particles per cell 32 –
Simulation length 150 µm
Simulation width 300 µm
Resolution (along laser axis) 0.05 λ

Resolution (perpendicular to laser axis) 0.1 λ

Gas species H2 –
Plasma density 9.7×1017 cm−3

Laser temporal duration 48.9 fs
Laser spot width 52.3 µm
Laser intensity 6.5×1017 Wcm−2

is a strong coherent quiver motion at the laser frequency. By
filtering out this low-frequency component from the momen-
tum we are left with only the thermal component from which
we estimated the thermal energy distribution. The temperature
was obtained using a fit of the Maxwell-Boltzmann distribu-
tion, with the temperature T as the fitting parameter:

fE (E , T ) = 2

√
E

π

(
1

kBT

)3/2

exp

( −E

kBT

)
. (A28)

The laser-ionization processes investigated in this paper do
not initially lead to a thermal distribution. Over time however,
the electrons will equilibrate to a thermal distribution through
collisions. We found that the simulation results could be well
characterized as a sum of two approximately equal electron
populations with different temperatures T1 and T2, with T1 =
0.26 eV and T2 = 1.54 eV. Coulomb collisions between these
two populations lead to a thermal distribution after a short
time. This equilibration process may be described by [44]:

dTα

dt
=

∑
β

ν̄α\β
ε (Tβ − Tα ), (A29)

where the Spitzer collision frequency is given by:

ν̄α\β
ε = 1.8×10−19

(mαmβ )1/2Z2
αZ2

βnβ ln λ

(mαTβ + mβTα )3/2
s−1. (A30)

For electron-electron equilibration mα,β = me, Zα = Zβ = 1.
Since it was found that the populations were approximately
equal in size, we used nα = nβ = 0.5ne.

The Coulomb logarithm for these parameters is ln λ ≈
13.7. The equilibration time was defined as [44]

τα/β
ε ≡ 1

ν̄
α\β
ε

≈ 1.7×105 (Tα[eV] + Tβ[eV])
3
2

nβ[cm−3] ln λ
s ≈ 0.1 ps.

(A31)

With the low temperature obtained in the simulation, one
sees that τ � 1 ps. The two different plasma electron will
also become isotropic on a similar timescale [45], and will
therefore be fully thermalized on a timescale much shorter
than the picosecond timescale relevant for the wakefield de-
cay process. The final electron temperature used was the
average between the two methods outlined in this section,
T = 2.75/2 + (0.26/2 + 1.54/2)/2 ≈ 2 eV.

055211-10



MEASUREMENT OF THE DECAY OF LASER-DRIVEN … PHYSICAL REVIEW E 108, 055211 (2023)

[1] T. Tajima and J. M. Dawson, Laser electron accelerator, Phys.
Rev. Lett. 43, 267 (1979).

[2] W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K.
Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and
S. M. Hooker, GeV electron beams from a centimetre-scale
accelerator, Nature Phys. 2, 696 (2006).

[3] A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C.
Pieronek, T. C. H. de Raadt, S. Steinke, J. H. Bin, S. S. Bulanov,
J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, C. Tóth,
E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N.
Bobrova, V. Gasilov, G. Korn, P. Sasorov et al., Petawatt laser
guiding and electron beam acceleration to 8 GeV in a laser-
heated capillary discharge waveguide, Phys. Rev. Lett. 122,
084801 (2019).

[4] V. Yakimenko, L. Alsberg, E. Bong, G. Bouchard, C. Clarke,
C. Emma, S. Green, C. Hast, M. J. Hogan, J. Seabury, N.
Lipkowitz, B. O’Shea, D. Storey, G. White, and G. Yocky,
FACET-II facility for advanced accelerator experimental tests,
Phys. Rev. Accel. Beams 22, 101301 (2019).

[5] R. Pompili, D. Alesini, M. P. Anania, M. Behtouei, M.
Bellaveglia, A. Biagioni, F. G. Bisesto, M. Cesarini, E.
Chiadroni, A. Cianchi, G. Costa, M. Croia, A. Del Dotto, D. Di
Giovenale, M. Diomede, F. Dipace, M. Ferrario, A. Giribono,
V. Lollo, L. Magnisi et al., Energy spread minimization in a
beam-driven plasma wakefield accelerator, Nature Phys. 17,
499 (2021).

[6] E. Adli, A. Ahuja, O. Apsimon, R. Apsimon, D. Barrientos,
F. Batsch, J. Bauche, M. Bernardini, T. Bohl, C. Bracco, G.
Burt, A. Caldwell, M. Cascella, J. Chappell, E. Chevallay, M.
Chung, D. Cooke, H. Damerau, L. Deacon, L. H. Deubner et al.,
Acceleration of electrons in the plasma wakefield of a proton
bunch, Nature (London) 561, 363 (2018).

[7] F. Albert, N. Lemos, J. L. Shaw, B. B. Pollock, C. Goyon, W.
Schumaker, A. M. Saunders, K. A. Marsh, A. Pak, J. E. Ralph,
J. L. Martins, L. D. Amorim, R. W. Falcone, S. H. Glenzer,
J. D. Moody, and C. Joshi, Observation of betatron x-ray radia-
tion in a self-modulated laser wakefield accelerator driven with
picosecond laser pulses, Phys. Rev. Lett. 118, 134801 (2017).

[8] W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu, R. Qi, Y. Chen, Z.
Qin, Z. Zhang, M. Fang, J. Liu, K. Jiang, H. Wang, C. Wang,
X. Yang, F. Wu, Y. Leng, J. Liu, R. Li, and Z. Xu, Free-electron
lasing at 27 nanometres based on a laser wakefield accelerator,
Nature (London) 595, 516 (2021).

[9] R. Pompili et al., Free-electron lasing with compact beam-
driven plasma wakefield accelerator, Nature 605, 659 (2022).

[10] S. M. Hooker, R. Bartolini, S. P. D. Mangles, A. Tünnermann,
L. Corner, J. Limpert, A. Seryi, and R. Walczak, Multi-
pulse laser wakefield acceleration: a new route to efficient,
high-repetition-rate plasma accelerators and high flux radia-
tion sources, J. Phys. B: At., Mol. Opt. Phys. 47, 234003
(2014).

[11] J. Cowley, C. Thornton, C. Arran, R. J. Shalloo, L. Corner, G.
Cheung, C. D. Gregory, S. P. D. Mangles, N. H. Matlis, D. R.
Symes, R. Walczak, and S. M. Hooker, Excitation and control
of plasma wakefields by multiple laser pulses, Phys. Rev. Lett.
119, 044802 (2017).

[12] P. Muggli, B. Allen, V. E. Yakimenko, J. Park, M. Babzien,
K. P. Kusche, and W. D. Kimura, Simple method for generating
adjustable trains of picosecond electron bunches, Phys. Rev.
Spec. Top. Accel Beams 13, 052803 (2010).

[13] O. Jakobsson, S. M. Hooker, and R. Walczak, Gev-scale ac-
celerators driven by plasma-modulated pulses from kilohertz
lasers, Phys. Rev. Lett. 127, 184801 (2021).

[14] A. Tünnermann, T. Schreiber, and J. Limpert, Fiber lasers and
amplifiers: An ultrafast performance evolution, Appl. Opt. 49,
F71 (2010).

[15] P. Mora, D. Pesme, A. Heron, G. Laval, and N. Silvestre,
Modulational instability and its consequences for the beat-wave
accelerator, Phys. Rev. Lett. 61, 1611 (1988).

[16] F. Amiranoff, M. Laberge, J. R. Marquès, F. Moulin, E. Fabre,
B. Cros, G. Matthieussent, P. Benkheiri, F. Jacquet, J. Meyer,
P. Miné, C. Stenz, and P. Mora, Observation of modulational
instability in nd-laser beat-wave experiments, Phys. Rev. Lett.
68, 3710 (1992).

[17] F. Amiranoff, M. Laberge, J. R. Marquès, F. Moulin, E. Fabre,
B. Cros, G. Matthieussent, P. Benkheiri, F. Jacquet, J. Meyer,
P. Miné, C. Stenz, and P. Mora, Observation of modulational
instability in nd-laser beat-wave experiments, Phys. Rev. Lett.
69, 996(E) (1992).

[18] F. Moulin, F. Amiranoff, M. Laberge, J. R. Marquès, B. Cros, G.
Matthieussent, D. Bernard, F. Jacquet, P. Miné, A. Specka, C.
Stenz, and P. Mora, Coupling between electron and ion waves in
Nd-laser beat-wave experiments, Phys. Plasmas 1, 1318 (1994).

[19] S. P. Le Blanc, M. C. Downer, R. Wagner, S. Y. Chen, A.
Maksimchuk, G. Mourou, and D. Umstadter, Temporal charac-
terization of a self-modulated laser wakefield, Phys. Rev. Lett.
77, 5381 (1996).

[20] S. Y. Chen, M. Krishnan, A. Maksimchuk, and D. Umstadter,
Excitation and damping of a self-modulated laser wakefield,
Phys. Plasmas 7, 403 (2000).

[21] A. Ting, K. Krushelnick, C. I. Moore, H. R. Burris, E. Esarey,
J. Krall, and P. Sprangle, Temporal evolution of self-modulated
laser wakefields measured by coherent thomson scattering,
Phys. Rev. Lett. 77, 5377 (1996).

[22] J. R. Marques, F. Dorchies, F. Amiranoff, P. Audebert, J. C.
Gauthier, J. P. Geindre, A. Antonetti, J. T. M. Antonsen, P.
Chessa, and P. Mora, Laser wakefield: experimental study of
nonlinear radial electron oscillations, Phys. Plasmas 5, 1162
(1998).

[23] H. Kotaki, M. Kando, T. Oketa, S. Masuda, J. K. Koga,
S. Kondo, S. Kanazawa, T. Yokoyama, T. Matoba, and K.
Nakajima, Direct measurement of coherent ultrahigh wakefields
excited by intense ultrashort laser pulses in a gas-jet plasma,
Phys. Plasmas 9, 1392 (2002).

[24] J. W. Banks, S. Brunner, R. L. Berger, and T. M. Tran, Vlasov
simulations of electron-ion collision effects on damping of elec-
tron plasma waves, Phys. Plasmas 23, 032108 (2016).

[25] P. M. Bellan, Fundamentals of Plasma Physics (Cambridge
University Press, New York, 2006).

[26] R. J. Shalloo, C. Arran, A. Picksley, A. von Boetticher, L.
Corner, J. Holloway, G. Hine, J. Jonnerby, H. M. Milchberg, C.
Thornton, R. Walczak, and S. M. Hooker, Low-density hydro-
dynamic optical-field-ionized plasma channels generated with
an axicon lens, Phys. Rev. Accel. Beams 22, 041302 (2019).

[27] A. Picksley, A. Alejo, J. Cowley, N. Bourgeois, L. Corner, L.
Feder, J. Holloway, H. Jones, J. Jonnerby, H. M. Milchberg,
L. R. Reid, A. J. Ross, R. Walczak, and S. Hooker, Guiding
of high-intensity laser pulses in 100-mm-long hydrodynamic
optical-field-ionized plasma channels, Phys. Rev. Accel. Beams
23, 081303 (2020).

055211-11

https://doi.org/10.1103/PhysRevLett.43.267
https://doi.org/10.1038/nphys418
https://doi.org/10.1103/PhysRevLett.122.084801
https://doi.org/10.1103/PhysRevAccelBeams.22.101301
https://doi.org/10.1038/s41567-020-01116-9
https://doi.org/10.1038/s41586-018-0485-4
https://doi.org/10.1103/PhysRevLett.118.134801
https://doi.org/10.1038/s41586-021-03678-x
https://doi.org/10.1038/s41586-022-04589-1
https://doi.org/10.1088/0953-4075/47/23/234003
https://doi.org/10.1103/PhysRevLett.119.044802
https://doi.org/10.1103/PhysRevSTAB.13.052803
https://doi.org/10.1103/PhysRevLett.127.184801
https://doi.org/10.1364/AO.49.000F71
https://doi.org/10.1103/PhysRevLett.61.1611
https://doi.org/10.1103/PhysRevLett.68.3710
https://doi.org/10.1103/PhysRevLett.69.996.2
https://doi.org/10.1063/1.870730
https://doi.org/10.1103/PhysRevLett.77.5381
https://doi.org/10.1063/1.873809
https://doi.org/10.1103/PhysRevLett.77.5377
https://doi.org/10.1063/1.873001
https://doi.org/10.1063/1.1457464
https://doi.org/10.1063/1.4943194
https://doi.org/10.1103/PhysRevAccelBeams.22.041302
https://doi.org/10.1103/PhysRevAccelBeams.23.081303


J. JONNERBY et al. PHYSICAL REVIEW E 108, 055211 (2023)

[28] A. Picksley, A. Alejo, R. J. Shalloo, C. Arran, A. von
Boetticher, L. Corner, J. A. Holloway, J. Jonnerby, O.
Jakobsson, C. Thornton, R. Walczak, and S. M. Hooker, Meter-
scale conditioned hydrodynamic optical-field-ionized plasma
channels, Phys. Rev. E 102, 053201 (2020).

[29] A. Alejo, J. Cowley, A. Picksley, R. Walczak, and S. M.
Hooker, Demonstration of kilohertz operation of hydrodynamic
optical-field-ionized plasma channels, Phys. Rev. Accel. Beams
25, 011301 (2022).

[30] J. Vieira, R. A. Fonseca, W. B. Mori, and L. O. Silva, Ion
motion in self-modulated plasma wakefield accelerators, Phys.
Rev. Lett. 109, 145005 (2012).

[31] R. D’Arcy, J. Chappell, J. Beinortaite, S. Diederichs, G. Boyle,
B. Foster, M. J. Garland, P. G. Caminal, C. A. Lindstrøm, G.
Loisch, S. Schreiber, S. Schröder, R. J. Shalloo, M. Thévenet, S.
Wesch, M. Wing, and J. Osterhoff, Recovery time of a plasma-
wakefield accelerator, Nature (London) 603, 58 (2022).

[32] R. W. Assmann, M. K. Weikum, and T. Akhter, Eupraxia con-
ceptual design report (draft), Eur. Phys. J. Spec. Top. 229, 3675
(2019).

[33] B. Cros, P. Muggli, C. Schroeder, S. Hooker, P. Piot, J.
England, S. Gessner, J. Vieira, E. Gschwendtner, J.-L. Vay, and
M. Peskin, Towards an advanced linear international collider,
arXiv:1901.10370.

[34] W. P. Leemans, R. Duarte, E. Esarey, S. Fournier, C. G. Geddes,
D. Lockhart, C. B. Schroeder, C. Toth, J. L. Vay, and S.
Zimmermann, The Berkeley lab laser accelerator (BELLA):
A 10 GeV laser plasma accelerator, AIP Conf. Proc. 1299, 3
(2010).

[35] N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G.
Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A.
Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer,
Snapshots of laser wakefields, Nature Phys. 2, 749 (2006).

[36] N. Matlis, A. Maksimchuk, V. Yanovsky, W. Leemans, and
M. Downer, Analysis of sinusoidally modulated chirped laser
pulses by temporally encoded spectral shifting, Opt. Lett. 41,
5503 (2016).

[37] C. Arran, N. H. Matlis, R. Walczak, and S. M. Hooker, Re-
constructing nonlinear plasma wakefields using a generalized
temporally encoded spectral shifting analysis, Phys. Rev. Accel.
Beams 21, 103501 (2018).

[38] J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello,
A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J.
Dargent, C. Riconda, and M. Grech, Smilei: A collaborative,
open-source, multi-purpose particle-in-cell code for plasma
simulation, Comput. Phys. Commun. 222, 351 (2018).

[39] A. von Boetticher, R. Walczak, and S. M. Hooker, Modulational
instability in large-amplitude linear laser wakefields, Phys. Rev.
E 107, L023201 (2023).

[40] J. R. Sanmartin, Electrostatic plasma instabilities excited
by a high-frequency electric field, Phys. Fluids 13, 1533
(1970).

[41] https://zenodo.org/deposit/7945414.
[42] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas,

M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans,
H. Schmitz, A. R. Bell, and C. P. Ridgers, Contemporary
particle-in-cell approach to laser-plasma modelling, Plasma
Phys. Controlled Fusion 57, 113001 (2015).

[43] M. B. Shah, D. S. Elliott, and H. B. Gilbody, Pulsed crossed-
beam study of the ionization of atomic hydrogen by electron
impact, J. Phys. B 20, 3501 (1987).

[44] D. B. Melrose, Plasma formulary, Instabilities in Space and
Laboratory Plasmas (Cambridge University Press, Cambridge,
2010).

[45] L. Spitzer Jr., Physics of Fully Ionized Gases (Dover Publica-
tions, New York, 2006).

055211-12

https://doi.org/10.1103/PhysRevE.102.053201
https://doi.org/10.1103/PhysRevAccelBeams.25.011301
https://doi.org/10.1103/PhysRevLett.109.145005
https://doi.org/10.1038/s41586-021-04348-8
https://doi.org/10.1140/epjst/e2020-000127-8
http://arxiv.org/abs/arXiv:1901.10370
https://doi.org/10.1063/1.3520352
https://doi.org/10.1038/nphys442
https://doi.org/10.1364/OL.41.005503
https://doi.org/10.1103/PhysRevAccelBeams.21.103501
https://doi.org/10.1016/j.cpc.2017.09.024
https://doi.org/10.1103/PhysRevE.107.L023201
https://doi.org/10.1063/1.1693114
https://zenodo.org/deposit/7945414
https://doi.org/10.1088/0741-3335/57/11/113001
https://doi.org/10.1088/0022-3700/20/14/022

