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SUMMARY
Cellular responses to environmental changes are often highly heterogeneous and exhibit seemingly random
dynamics. The astonishing insight of chaos theory is that such unpredictable patterns can, in principle, arise
without the need for any randomprocesses, i.e., purely deterministically without noise. However, while chaos
is well understood in mathematics and physics, its role in cell biology remains unclear because the
complexity and noisiness of biological systems make testing difficult. Here, we show that chaos explains
the heterogeneous response of Escherichia coli cells to oxidative stress. We developed a theoretical model
of the gene expression dynamics and demonstrate that chaotic behavior arises from rapid molecular feed-
backs that are coupled with cell growth dynamics and cell-cell interactions. Based on theoretical predictions,
we then designed single-cell experiments to show we can shift gene expression from periodic oscillations to
chaos on demand. Our work suggests that chaotic gene regulation can be employed by cell populations to
generate strong and variable responses to changing environments.
INTRODUCTION

The birth of chaos theory was highly significant because it made

clear that unpredictable patterns in nature can arise without sto-

chasticity, i.e., purely deterministically.1 Many seemingly noisy

systems were subject to reanalysis and reinterpreted as chaotic

rather than stochastic, including examples from biology such as

ecological dynamics,2–7 gene expression,8,9 immune system dy-

namics,10,11 neural signal dynamics,12–15 circadian rhythms,16,17

and heart beats.18 However, the underlying causes of dynamics

in biological systems are not as well understood as in the physical

or chemical sciences.19,20 As a result, the inference of chaos in

biology often rests upon mathematical models alone,3,4,12,21–24

which is not sufficient to demonstrate that chaos actually occurs

in the biological system itself.

Empirically, chaotic dynamics have been inferred in biological

data by statistical detection tools.2,13,25,26 However, it is chal-

lenging to distinguish chaotic from stochastic causes in this

manner because the inference methods are highly sensitive to

measurement noise and random fluctuations that are inherent

to all biological processes.27 This problem was recently illus-

trated by Toker et al., who applied new analysis tools to both

physical and biological systems.28 Although they found evidence

for chaos in physical and simulated biological data, they

concluded that measured heart rate data are stochastic, in spite

of a large number of papers having previously concluded that

they are chaotic.18 Chaos, then, has proved much more difficult

to evidence in biological systems than in physical ones, leaving

the importance of chaotic dynamics for biology in doubt.

In response to environmental threats, bacteria have evolved

stress responses that drive rapid physiological adaptation.29
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Stress responses are intensively studied because they are central

to the ways in which bacteria survive environmental threats and

diverse treatments, including antibiotics.30–33 We serendipitously

discovered chaotic behavior in a theoretical model of one of the

major bacterial stress responses, specifically the oxidative stress

response of the model species E. coli. This discovery allowed us

to leverage the detailed understanding and tractability of E. coli to

overcome the typical challenges faced when studying chaos in

biological systems. Under high hydrogen peroxide (H2O2) stress,

a cell will strongly induce the expression of proteins that remove

H2O2 within the cell and thereby lower the concentration of

H2O2 in its vicinity. Our work shows that this response, in combi-

nation with the responses of surrounding cells, perturbs the regu-

lar periodicity of cell growth, driving the stress response dynamics

from periodic oscillations to chaotic fluctuations. By identifying

the drivers of chaos, we are able to predict the conditions when

itwill bepresent andwhen itwill be lost, andwevalidate these pre-

dictions empirically. In thisway,we provide clear experimental ev-

idence of chaos in a living system. Our results further suggest that

chaotic gene regulation could be common in the bacterial re-

sponses to diverse types of stresses and offer functional benefits.

RESULTS

Chaos is predicted in a bacterial stress response
Genetically identical bacteria often display considerable cell-to-

cell variability in their responses to the environment34 (Figure 1A).

Stress responses can be particularly variable,35 and it is often

assumed that this variability results from stochastic processes

inside the cell. Noisy as well as oscillatory response patterns

have been observed in bacteria exposed to reactive oxygen
e Author(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Modeling the oxidative stress

response in bacterial populations

(A) Environmental stress, such as H2O2 expo-

sure, induces heterogeneous responses in bac-

terial populations, which could be caused by

stochastic or deterministic mechanisms.

(B) H2O2 affects cell growth rates (G) and

triggers an intracellular stress response (S)

that creates stressor gradients by cell-cell in-

teractions (I). S-G-I feedback modulates H2O2

concentration in space and time, both outside

and inside the bacteria ([H2O2]external, [H2O2]cell,

respectively).

(C) Schematic of the core OxyR gene regulatory

circuit corresponding to the stress response

component of the model. It predicts the exp-

ression dynamics of proteins that scavenge

intracellular H2O2 (KatG, AhpCF) and control

OxyR oxidation status (GrxA). Model output

illustrated for constant [H2O2]external exposure

from 0 min.

(D) The growth model describes the inhibition of

cell elongation by H2O2. In turn, the growth dy-

namics feed into the stress response model by

determining the dilution rate of enzymes. Top: cell elongation rate as a function of intracellular H2O2. Bottom: exponential growth and division cycles of a

single cell without H2O2 treatment.

(E) Cell-cell interactions are described by a reaction-diffusion model where intracellular scavenging of H2O2 creates a stress gradient from the edge to the

interior of a cell population. Changes in the number and arrangement of cells in the population are determined by the growth model. See also Figure S1.
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and nitrogen species.36–39 Such behavior could arise when the

induction of detoxifying enzymes reduces the local concentra-

tion of stressor molecules,40 leading to dynamic feedbacks.

Indeed, recent work found that cellular heterogeneity in the

response of E. coli to oxidative stress by hydrogen peroxide

(H2O2) is driven by cell-cell interactions rather than intracellular

noise,41 where the response of each cell is determined by the

hydrogen peroxide scavenging activity of its neighbors. This

project began with the goal of better understanding the impact

of this response on cell-to-cell variability via a numerical model

(Figures 1 and S1). Themodel captures three coupled processes

(Figures 1B and S1). First is the dynamics of the intracellular

stress response (named S in the model). In E. coli, these occur

when H2O2 oxidizes the transcription factor OxyR, which in-

duces expression of H2O2-scavenging enzymes AhpCF and

KatG, and the glutaredoxin-1 GrxA that converts oxidized

OxyR back to its reduced form33,42 (Figure 1C). Second is the

inhibitory effect of H2O2 on the growth rate of the cells (named

G in the model) (Figure 1D) and, finally, there is the impact of

cell-cell interactions (named I in the model) (Figure 1E). These in-

teractions arise because the uptake of H2O2 by one cell can

lower the concentration of H2O2 for surrounding cells.

We began by solving a one-dimensional (1D) version of the

model, where cells are exposed to a constant external H2O2 con-

centration from one direction (Figure S1; Video S1). This simple

geometry allowed us to explore the behavior of the system at

steady state and is highly amenable to empirical testing via mi-

crofluidic growth trenches (using a device called the ‘‘mother

machine’’), which are commonly used in experiments with bac-

teria.41,43 We then followed the stress response (GrxA expres-

sion level) in so-called ‘‘mother cells’’ located at the base of

the cell group farthest from the source of treatment; the other

cells are termed ‘‘barrier cells’’ (Figure 2A; Video S1). Given

that the model is purely deterministic, with no noise terms, we
were surprised to observe seemingly random fluctuations in

the stress response of individual mother cells (Figure 2A; Video

S1).Moreover, repeated runs of themodel yielded highly variable

stress response trajectories, which we initially found confusing

because model parameters were identical throughout. The

only source of variability was that each run of the model began

with unsynchronized cells, i.e., at random points in the cell cy-

cles. To explore whether this was the source of the variation,

we ran the model with synchronized barrier cells but shifted

the initial cell cycle progression of only the mother cell by

2.5$10�4% and 5$10�4%. The resulting three trajectories were

initially indistinguishable but began to diverge significantly after

�6 h post treatment with H2O2(Figures 2B, S2A, and S2B; Video

S1 [bottom]). Once diverged, the dynamics became completely

different for the three model runs. This extreme sensitivity to

small differences in initial conditions of a deterministic model

suggests chaotic dynamics.28,44

We next visualized response trajectories as phase diagrams

across a range of H2O2 concentrations. These show the defined

and closed orbits of periodic oscillations for lower H2O2 concen-

trations, but at higher H2O2, we observed the dense aperiodic or-

bits that are indicative of chaotic fluctuations (Figures 2C and

2D). These fluctuations can also be seen in a bifurcation diagram,

which shows the extrema values of the fluctuations for cells as a

function of H2O2 concentration. The form of the resulting dia-

gram is characteristic of a chaotic system that shifts from peri-

odic to chaotic regimes as H2O2 concentration increases (Fig-

ure 2E). To test formally for chaotic dynamics, we computed

the Lyapunov exponent l, which is positive for a chaotic system

where a small perturbation in initial conditions leads to exponen-

tial divergence of the trajectories. As expected from the bifurca-

tion diagram, cells in the model at higher H2O2 concentrations

showed chaos (l > 0), while lower concentrations caused pre-

dominantly periodic oscillations in responses (l < 0) (Figure 2F).
Current Biology 33, 5404–5414, December 18, 2023 5405
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Figure 2. The model predicts chaos in the stress response

(A) Oxidative stress response fluctuations in individual ‘‘mother cells’’ at the base of a one-dimensional population with ‘‘barrier cells’’ positioned closer to the

H2O2 source. The model produces seemingly random dynamics of GrxA protein expression level during continuous H2O2 treatment from t = 0 min. The curves

represent three independent simulation runs, starting with unsynchronized cells at random points in the cell cycles.

(B) Stress response fluctuations diverge greatly over time, even if the differences in initial conditions are very small: here shown by theGrxA dynamics for 3mother

cells that differ very slightly in their initial stage of the cell cycle (2.5$10�4% and 5$10�4 % length differences).

(C) (Left) Representative GrxA dynamics for a mother cell with continuous treatment at different H2O2 concentrations (80, 140, and 260 mM). (Right) Histogram of

counts of extrema detected for 3 mother cells for different H2O2 concentrations.

(D) Phase diagrams for the GrxA dynamics of the mother cells presented in (C), displaying bistable (80 mM) and multistable periodic oscillations (140 mM) and

chaotic fluctuations (260 mM).

(E) Bifurcation plot of the GrxA extrema values over a range of H2O2 concentrations (n = 3 simulations per concentration). Vertical lines represent example traces in

(C) and (D).

(F) A positive Lyapunov exponent (l) shows chaotic divergence from initial conditions, computed for GrxA dynamics at different H2O2 concentrations. Individual

points represent singlemother cells, with red dots for chaos (l>0) and black dots for periodicity (l% 0). Blue line and shaded region showmean ± SD of n = 3 cells

simulated per H2O2 concentration.

(G) The autocorrelation function (ACF) distinguishes periodic and chaotic response fluctuations. Mean of ACF for GrxA of mother cells decreases steeply for

chaotic traces under high H2O2 treatment (1.7 mM, purple) and shows regular peaks for periodic traces under low H2O2 treatment (140 mM, orange) (n = 3

simulations).

See also Figure S2 and Video S1.

ll
OPEN ACCESS Article
Note that the frequent and abrupt transitions between periodic

and chaotic behavior that we observed in our simulations are

typical even for the simplest mathematical models of chaos.1

An autocorrelation curve of the aperiodic traces also decreased

quickly over time, again indicative of chaos, whereas periodic

oscillations showed characteristic autocorrelation peaks

(Figure 2G).

To explore the generality of our observations, we replaced the

detailed model of the oxidative stress response with a simpler

version for a generic stress response (Figure 3A). Here, cells

take up toxic molecules from their surroundings and protect
5406 Current Biology 33, 5404–5414, December 18, 2023
themselves by producing enzymes that reduce intracellular toxin

concentrations (Figures 3B and 3C). Similar to the oxidative

stressmodel, we observed that an increased toxin concentration

leads to chaotic enzyme expression dynamics (Figures 3D and

3E). Furthermore, the system becomes more prone to chaotic

behavior as the catalytic efficiency of the enzyme or its expres-

sion rate increase (Figures 3F–3I).

Observational data also suggest chaos
We next performed experiments on E. coli populations growing

in mother machine chips under constant H2O2 treatment, where
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Figure 3. Chaos emerges in a general model

of stress responses in cell populations

(A) Uptake of toxins reduces cell growth rates (G) and

triggers an intracellular stress response (S) that cre-

ates toxin gradients by cell-cell interactions (I). S-G-I

feedback modulates toxin concentration in space

and time, both outside and inside the bacteria

([Toxin]external, [Toxin]cell respectively).

(B) Schematic of a generic stress response in which

exposure to a toxin induces the expression of a

detoxifying enzyme with rate Kactivation that removes

toxin with rate Kcat.

(C) Model output illustrates the expression dynamics

of the enzyme (maroon) and the intracellular toxin

concentration (yellow) for constant external toxin

exposure from t = 0 min without S-G-I feedback.

(D) A positive Lyapunov exponent (l) shows chaotic

divergence from initial conditions, computed for

enzyme expression dynamics over a range of toxin

concentrations (n = 3 simulations per toxin concen-

tration). Higher external toxin concentrations lead to

chaos.

(E) Phase diagrams for the enzyme expression dy-

namics of a mother cell at toxin concentrations

marked by vertical lines in (D), displaying periodic

oscillations and chaotic fluctuations.

(F) Higher Kcat of the enzyme increases chaotic

behavior. Lyapunov exponent for enzyme expression

dynamics over a range of Kcat values.

(G) Phase diagrams for the enzyme expression dy-

namics of a mother cell at Kcat values marked in (F),

displaying periodic oscillations and chaotic fluctua-

tions.

(H) Higher expression rate Kactivation of the enzyme

increases chaotic behavior. Lyapunov exponent

for enzyme expression dynamics over a range of

Kactivation values.

(I) Phase diagrams for the enzyme expression dynamics of a mother cell at Kactivation values marked in (H), displaying periodic oscillations and chaotic

fluctuations.
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the stress response level is measured with a transcriptional

PgrxA-SCFP3 gene expression reporter and time-lapse fluores-

cence microscopy. We first tested the ability of the model to pre-

dict the general characteristics of the stress response. Adjusting

model parameters to themeasurement conditions (Figures S3A–

S3D) demonstrated an excellent quantitative agreement be-

tween our theory and the experiments (Figure 4A; Video S2).

Both showed similar spatio-temporal response dynamics and

the same gradient in stress response level along the row of cells

(Figure 4A; Video S2). Experiments also matched the theoretical

prediction that sudden H2O2 treatment triggers an induction of

stress response, which coincides with a transient dip in the cell

elongation rate followed by adaptation (Figures 4B, 4C, S3E,

and S3F). Importantly, like the model, the mother cells in exper-

iments displayed large fluctuations in stress response level dur-

ing constant H2O2 treatment (Figure 4D). The autocorrelation

curves from these traces decreased quickly over time, indicating

a lack of periodicity in the dynamics, consistent with chaotic

behavior (Figure 4E).

We further applied the ‘‘chaos decision tree algorithm’’ of Toker

et al.,28 which is an analysis pipeline that uses the permutation en-

tropy to categorize dynamics as stochastic or deterministic. The

pipeline classified 92% of the measured stress response trajec-

tories asdeterministic (Figures5A,5B, andS3M–S3Q), supporting
the prediction of themodel that the fluctuations are predominantly

a consequence of deterministic chaos and not caused by noise.

Most of the 8%of trajectories that were categorized as stochastic

corresponded to cells that haddiedat the onset ofH2O2 treatment

(Figures 5A, 5B, and S3M–S3Q). Active growth dynamics are

hence required for chaotic response behavior.

As another test to distinguish deterministic chaos from noise,

we applied the Grassberger-Procaccia algorithm.45 This algo-

rithm identifies the correlation dimension (or fractal dimension),

which should be low when the response fluctuations are driven

by a deterministic process with a small number of effective vari-

ables, but tends to infinity for a truly stochastic process.46 We

found a finite correlation dimension of�2 for the GrxA dynamics

in experiments and simulations, indicating determinism in the

system (Figure 5C). The analysis, therefore, is consistent with

our model prediction that deterministic response fluctuations

are generated by a simple cyclic cell growth pattern that gener-

ates oscillations in the number of barrier cells. Indeed, GrxA dy-

namics were negatively correlatedwith changes in the number of

barrier cells in experiments, consistent with the expectation that

an increase in the number of barrier cells reduces the local H2O2

concentration and thus the stress response level (Figure S4A).

The use of the mother machine allowed us to follow cell trajec-

tories over long periods, which is important for our ability to test
Current Biology 33, 5404–5414, December 18, 2023 5407
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Figure 4. Experiments on the oxidative stress

response in E. coli reveal a good fit with the

modeling predictions

(A) Top: model simulation snapshot of GrxA

expression after 90 min of 100 mM H2O2 treatment.

Bottom: snapshot of experiment with E. coli cells

growing in a ‘‘mother machine’’ expressing PgrxA-

SCFP3 after 90 min of 100 mM H2O2 treatment.

Scale bar, 10 mm.

(B and C) Model simulation predictions and

experimental data for mean GrxA expression

(left) and mean cell elongation rates (right) under

constant 100 mM H2O2 treatment from t = 0 min

for cells at different positions in growth trench

(n = 100 simulated trenches and 3 experimental re-

peats).

(D) PgrxA-SCFP3 dynamics of individual cells

diverge greatly over time under constant 100 mM

H2O2 treatment from t = 0 min in experiments (5

representative mother cells shown).

(E) The steep decay of the autocorrelation function

(ACF) of the response fluctuations is consistent with

chaos. Mean of ACF for PgrxA-SCFP3 of mother cells with 100 mM H2O2 treatment (blue, 3 experimental repeats). ACF for individual cell traces shown in

black (n = 100).

See also Figure S3 and Video S2.
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the model’s predictions. However, the 1D structure introduced

by the mother machine is also potentially unrepresentative of

the way that bacteria normally grow and respond to stresses.

To study cells in a more realistic setting, we imaged two-dimen-

sional (2D) microcolonies with continuous H2O2 treatment

(Figures 5D, S5A, and S5B; Video S3). Although these experi-

ments cannot monitor cells over a long time, we again observed

substantial heterogeneity in responses between individual cells,

both within and across microcolonies, which is consistent with

chaotic behavior (Figures 5E, S5C, and S5D). Moreover, as the

colony grows and expands, the stress response eventually de-

creases and becomes more uniform (Figure S5E). This behavior

is predicted by the model: scavenging reduces the H2O2 con-

centration in a larger colony and, with this, the potential for

chaotic responses is predicted to decrease (Figure S5F).

Experimental tests make or break chaos
Ourmodelpredicts theexistenceofchaoticbehavior inabiological

system—the oxidative stress response of E. coli—and our obser-

vational data are consistent with chaos. Together, these two ap-

proaches lend support for chaotic behavior and they reflect the

typical standard of evidence in biological systems, where

modeling predicts chaos and/or observation of seemingly chaotic

dynamicsare reported.However, thereareproblemswithsuchev-

idence. Most obviously, a modeling prediction is just that; it does

not demonstrate that chaos actually occurs in a biological system.

Second, tests for chaos from observational data are challenging

when the underlying causes of the dynamics are uncertain.

We, therefore, sought to leverage the tractability of our study

system to provide strong evidence of chaos in a biological system

via targeted perturbation. In particular, if the dynamics are indeed

deterministic, then it should be possible to shift the responses

away from the chaotic regime into the parameter spacewhere pe-

riodic oscillations occur, whereas this should not be possible for

stochastic fluctuations (e.g., caused by gene expression noise).

To evaluate this prediction, we returned to our model to identify
5408 Current Biology 33, 5404–5414, December 18, 2023
changes that remove the chaos from the dynamics and

shift them toperiodic oscillations. This analysis revealed that feed-

back between each of the three components of the model—cell

growth (G), cell interactions (I), and stress response (S) (Fig-

ure 1B)—is required for the emergence of chaotic dynamics

(Figures S2C and S2F). Specifically, S is always required as it is

the core of the stress response. Without the cell-cell interaction

component of the model, no fluctuations were observed for the

GrxA traces (Figure S2C). When the cell growth component was

uncoupled from the model, i.e., the growth rate was unaffected

by the H2O2 treatment, then the response oscillations were no

longer chaotic but periodic (Figure S2F).

From here, we identified parameter changes for each compo-

nent of the model that are predicted to shift stress response dy-

namics from chaotic to periodic. These changes were as follows:

(1) reduce cell growth rate to slow down the oscillations in the

number of cells per trench (G) (Figures 6A and S2F-S2H), (2)

reduce cell numbers to lower the effects of cell-cell interaction

(I) (Figures 6B and S2C–S2E), and (3) reduce the stress response

(S) (Figures 2 and 6C). For each case, we then devised a way to

make thismanipulation experimentally (Figures 6A–6C and S3G–

S3L): (1) growth rates were reduced by switching to a less-

favored carbon source for E. coli (from glucose to glycerol) (Fig-

ure 6A; Video S4), (2) the protective effect of cell-cell interactions

was reduced by manufacturing a modified mother machine with

fewer cells in each growth channel (Figure 6B; Video S5), and (3)

the strength of the stress response was reduced by lowering the

concentration of H2O2 (Figure 6C; Video S6).

In each case, we followed the dynamics of the stress response

in mother cells as before and used autocorrelation analysis

to test for chaos. If the dynamics are periodic, one will see a

characteristic autocorrelation that peaks at the frequency of

the periodicity in the data. If the dynamics are chaotic, by

contrast, no such peak in the autocorrelation is seen. However,

if the fluctuations are stochastic, thenweshould not observe auto-

correlation peaks under any condition. As expected, applying this
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Figure 5. Measurements of stress response dynamics in E. coli are consistent with chaos

(A) Decision tree algorithm by Toker et al.28 suggests that most mother cells in experiments display deterministic and chaotic response dynamics under 100 mM

H2O2 treatment. Pie-chart indicates the fraction of dead (red) and alive (green/black) mother cells detected as having stochastic (black/red) or deterministic

(green) dynamics under 100 mM H2O2 (n = 3,581 cells, 3 experimental repeats).

(B) PgrxA traces (top) and their phase diagrams (bottom) for representative mother cell traces treated with 100 mM H2O2 treatment from t = 0 min, which are

classified as deterministic (green) or stochastic (red).

(C) Bar plots show mean and standard deviation of maximal correlation dimension for experimental (black) and model (orange) GrxA traces of mother cell with

(dark) or without shuffling (light) under 100 mM H2O2 treatment, as computed by the Grassberger-Procaccia method. Random shuffling was performed as a

control to remove temporal relation between data points. The low correlation dimension is consistent with determinism in experiments and simulations.

(D) Stress response dynamics of cells growing in a colony are consistent with chaos. Snapshots of PgrxA-SCFP3 expression with 1 mMH2O2 treatment from t =

0 min show cell-cell variability (scale bar, 10 mm).

(E) Single-cell trajectories from the colony experiment in (D) are consistent with chaotic divergence of stress response dynamics. See also Figures S3, S4, S5, and

S6 and Video S3.
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test revealed no peak in the autocorrelation function for experi-

mental conditions that yield chaos (cyan traces in Figures 6A–

6C, S6A, S6C, and S6E). By contrast, in all three cases designed

to remove chaos, we observe peaks in the autocorrelation func-

tion (black traces in Figures 6A–6C, S6B, S6D, and S6F).

In summary, we were able to identify three conditions that

break the chaos in the model. We then demonstrate that making

these manipulations in experiments also shifts cell responses

away from chaotic to periodic oscillations.

A simple deterministic process explains chaotic
oxidative stress response fluctuations
The above analyses all strongly support a deterministic origin

to the response dynamics. However, this does not imply the re-

sponses are entirely devoid of any noise. The number of OxyR
molecules and H2O2 scavenging enzymes per cell is expected

to fluctuate randomly due to gene expression noise.47 Might

these fluctuations still be important for the response dynamics

when combined with the deterministic causes? To investigate

this, we added gene expression noise to our model by intro-

ducing a stochastic term in each molecular component of the

stress response model (S*) and coupled it with the cell growth

or cell interaction model components as before (Figure S4).

Although the resulting response dynamics superficially matched

aspects of the experimental data, they disagreed with key fea-

tures. Specifically, none of the noisy response models (S*,

S*+I, S*+G) showed both (1) loss of autocorrelation peaks for

higher H2O2 concentrations and (2) negative cross-correlation

between response fluctuations and the number of cells per

trench. These findings again support our conclusion that the
Current Biology 33, 5404–5414, December 18, 2023 5409
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Figure 6. Predicted perturbations make or break chaos in experiments

Model predicts that chaos no longer occurs for reduced strength of either of the model components (growth, G; interactions, I; or response, S). Mean and

standard deviation of Lyapunov exponent (l) show a transition from deterministic (l% 0) to chaotic (l > 0) GrxA dynamics in simulations of cells with increasing

(A) growth rates, (B) population size, and (C) H2O2 concentration. Experimental designs to test model predictions by changing (A) growth media, (B) trench

lengths, and (C) H2O2 concentrations. Snapshots (scale bars, 10 mm) of PgrxA-SCFP3 90 min after start of treatment for cells growing in (A) M9 glycerol (slow

growth, top) or M9 glucose + 10% LB (fast growth, bottom) in 25-mm trenches treated with 100 mM H2O2.

(B) M9 glucose + 10% LB in 10-mm (2–4 cells per trench, top) or 25-mm (5–7 cells per trench, bottom) trenches treated with 25 mM H2O2.

(C) M9 glucose + 10% LB in 10-mm trenches treated with 25 mM H2O2 (top) or 100 mM H2O2 (bottom). Autocorrelation analysis demonstrates the predicted

transitions from periodic to chaotic dynamics in experiments. ACF curves of PgrxA-SCFP3 dynamics show characteristic peaks for periodic oscillations (black);

(legend continued on next page)
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fluctuations are predominantly deterministic. Only when we

coupled the noisy response with the full model of growth and

cell interactions (S*+G+I) did we recover the dynamics seen in

experiments, but this was already the case for the model without

noise. Therefore, the model can tolerate the addition of noise but

does not require it for the generation of unpredictable response

fluctuations.

We find further evidence of the importance of deterministic pro-

cesses over stochastic ones when we apply the Grassberger-

Procaccia algorithm to the noisy response models. In all cases,

the noisy models do not converge on a low correlation dimension,

whereas the deterministic model had a correlation dimension of

�2 (Figures S4G–S4I). This means that although the model in-

cludes multiple dynamic variables for each of the interacting cells

in a trench, the response dynamics of one focal cell are actually

driven by a deterministic process with only�2 effective variables.

Strikingly, the experimental data had the same effective correla-

tion dimension of�2 across all growth conditions used in our tests

for chaos (varying growth rate, trench length, H2O2 concentration),

irrespective of whether the dynamics were periodic or chaotic

(Figures 6D and S4G–S4I). This finding suggests that one simple

deterministic process is responsible for generating all the

observed response dynamics in experiments, from periodic to

chaotic. Moreover, both our model and experiments suggest

the cause of this determinism is strongly linked to the cell cycle

(Figures S2F–S2H and S4A). Indeed, the timing of the peaks in

the autocorrelation curves matches the cell cycle duration in

each experimental condition, which is again predicted by the

model (Figure 6E).

How does one process generate periodic oscillations under

some conditions and chaotic fluctuations under others? Periodic

oscillations occur at low stress levels when the cell growth rate is

constant. Here, the number of cells in a given locality oscillates at

regular intervals as cells grow and divide, leading to periodic

changes in the H2O2 concentration around each cell. At higher

stress treatments, the growth rate of each cell becomes sensitive

to the H2O2 concentration. The cells then grow at variable rates

and their local numbers change without a fixed period, leading to

irregular oscillations in H2O2. In this way, the stress response dy-

namics transition to chaos.

DISCUSSION

Our work has identified chaos in a bacterial stress response. This

finding shows that seemingly random phenotypic heterogeneity

can be generated by deterministic rather than stochastic pro-

cesses. That is, regulatory circuits are able to generate unpre-

dictable outputs, even when the underlying mechanisms are

entirely deterministic. Such cases are called chaotic because
these peaks are absent for chaotic dynamics (teal) in the case of (A) growth rate p

size perturbation (1,003 and 1,440 cells, respectively; nR 3 repeats), and (C) H2O2

(D) Bar plots showmean and standard deviation of maximal correlation dimension

(C) resulting in chaos (teal), or periodicity (black), as obtained from the Grassber

(E) The periods of non-chaotic oscillations correlate with cell cycle duration (interd

and standard deviation of interdivision time and the time of the first ACF peak for s

(right) with 100 mMH2O2 in M9 glycerol in 25-mm trenches (black), 50 mMH2O2 in M

LB in 10-mm trenches (light blue) (966, 397, and 661 cells, respectively; n R 3 re

See also Figures S2 and S6 and Videos S4–S6.
they have the property of amplifying infinitesimally small differ-

ences in the initial conditions to an extent that forecasting the

long-term behavior is impossible—no matter how accurately

the initial conditions can be defined. Although noise due to mo-

lecular fluctuations is certainly present in cells, ourmodel and ex-

periments show that phenotypic heterogeneity among cells can

arise without the requirement for stochasticity. Moreover, our

analyses suggest that the key driver of both the periodic oscilla-

tions and chaotic fluctuations is the determinism of the cell cycle

(Figures 6, S2F–S2H, S6E, and S6F).

We have focused here on the behavior of cells as they grow in

lines in channels of the mother machine microfluidic device. The

great advantage of this study system is that one can follow stress

responsedynamicsof individual cells for relatively longperiods ina

bacterial populationwhere cell-cell interactions are still preserved.

These relatively long time series from single cells were important

for our ability toboth identify anddescribechaosempirically.How-

ever, our work suggests that the chaotic behavior seen in this sys-

tem also occurs in more complex and realistic growth conditions.

When we study cells in 2D colonies, we also see unpredictable

stress response dynamics, which are consistent with chaos

(Figures5Dand5E). Itwill be interesting tounderstandhowchaotic

processes are affected in even more complex growth environ-

ments, such as submerged biofilms. On the one hand, additional

variation in the local density and arrangement of cells should in-

crease thepotential for chaos,while on theother the increasingca-

pacity to scavenge H2O2 within larger communities may reduce

stress levels and the duration of any chaotic dynamics.

Why have bacterial cells evolved to display such chaotic

behavior? Our work shows that multiple processes interact to

generate chaos, including the cell cycle and changes in local

cell density. Another important factor is the strength of the stress

response itself: a high expression rate and high catalytic effi-

ciency of scavenging enzymes are critical to the transition from

periodic oscillations to chaos (Figures 3 and 6). The evolution

of chaotic behavior in the oxidative stress response may, there-

fore, lie in the benefits of a strong response for surviving stress,

which is likely to provide a strong selective advantage to

cells.33,48 This importance of a strong response for chaosmirrors

the classic theoretical results on chaos in population biology.

There, models predict that high population growth rate is needed

to generate chaotic dynamics44 because this causes the popula-

tion to overshoot equilibria and over-compensate.49

Chaos also results in a variable response among cells. An

intriguing possibility, therefore, is that chaotic responses could

have the benefit of diversifying cell behavior as a population

bet-hedging strategy against unpredictable stresses.50 Although

microbes can harness intracellular molecular noise to generate

phenotypic heterogeneity, deterministic chaos can achieve this
erturbation (1,806 and 1,991 cells, respectively; nR 3 repeats), (B) population

concentration perturbation (1,003 and 1,361 cells, respectively; nR 3 repeats).

for GrxA traces of mother cells in experimental conditions shown in (A), (B), and

ger-Procaccia method.

ivision time) over a range of growth rates in simulations and experiments. Mean

imulated GrxA dynamics (left, n = 3 simulations per condition) and experiments

9 glucose in 10-mm trenches (dark blue), and 25 mMH2O2 in M9 glucose + 10%

peats).
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without noise disturbing the response accuracy of each individ-

ual cell. In fact, our study showed that the conditions that lead to

chaos are exactly those where bet-hedging is valuable in princi-

ple, namely at high stress levels and in cell populations but not in

isolated cells.

Although our work is based upon the detailed study of one

bacterial stress response, the existence of chaotic behavior

may be widespread in cellular systems for related reasons.3,51

Using a generalized model, we find that chaotic cell responses

are possible whenever the absorbance of a stressor reduces a

cell’s growth rate and lowers the stressor concentration of the

surrounding cells (Figure 3). The feedback between these effects

creates spatio-temporal dynamics that amplify small perturba-

tions, leading to chaotic behavior. Hence, the survival strategies

of bacteria and other cells exposed to stressors—such as antibi-

otics, antimicrobial peptides, or reactive chemicals—all have the

potential for deterministic chaos.

The study of chaos in biology has received considerable atten-

tion, and there are many potential examples where unpredictable

dynamics have been observed that appear chaotic.28 However, it

remains challenging to identify chaos from either observational

data or theoretical models alone. Here, we have presented a

different strategy, which rests on the ability to manipulate chaos.

In addition to the prediction of chaos and observational experi-

ments, our model also correctly predicts the conditions where

chaotic dynamics are lost. This close fit between model andmea-

surements provides clear evidence for the existence of chaos in

the single-cell dynamics of bacterial stress responses.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial Strains

AB1157, DflhD, PRNAI-mKate2, mutL-mYPet (SU178) Choudhary et al.41 N/A

AB1157, DflhD, PRNAI-mKate2, mutL-mYPet,

carrying pUA139 PgrxA-SCFP3A Kan (SU777)

Choudhary et al.41 N/A

Chemicals, Peptides, and Recombinant Proteins

M9 minimal salts 5x Sigma Product Number: M9956

MEM amino acids Gibco Catalog number: 11130-036

L-Proline Biochemica Reference Number: A3453,0100

Thiamine Biochemica Reference Number: A0955,0050

Pluronic F-127 Sigma Product Number: P2443-250G

Propidium iodide Sigma Product Number: P4170

30% W/W solution of H2O2 Sigma Product Number: H1009-100mL

Kanamycin Sigma Product Number: A1493

Agarose Bio-Rad Product Number: 1613100

PDMS Univar Specialty

Consumables Ltd

Dowsil / Dow Corning

Sylgard 184 Kit 1.1kg

Software and Algorithms

MATLAB Mathworks Mathworks.com

BACMMAN Fiji,52 Ollion et al.53 github.com/jeanollion/bacmman

Python Spyder anaconda.com

Python code for model simulations and experimental data analysis This study github.com/divyachoudhary2809/Chaos

Deposited Data

Raw data collected This study Oxford Research Archive:

https://doi.org/10.5287/ora-b7dw9pmqd
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Stephan

Uphoff (stephan.uphoff@bioch.ox.ac.uk).

Materials availability
The study did not generate new unique reagents.

Data and code availability
All data reported in this paper will be shared by the lead contact upon request.

All the raw data collected for analysis in this study is freely and openly available on the Oxford Research Archive: https://doi.org/10.

5287/ora-b7dw9pmqd. Custom-built python codes for model simulations and experimental data analysis are available on Github

https://github.com/divyachoudhary2809/Chaos.

Any further information about data and code is available upon request by the lead contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Weperformed experiments with bacterial strains that were derived from E. coli K-12 AB1157. The description of genetic modification

and growth conditions is described in sections below.
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Strains and plasmids
All experiments were performedwith a strain derived from E. coliK12 AB1157 that was previously described in Choudhary et al.41 The

strain constitutively expressed PRNAI-mKate2 fluorescent marker for cell segmentation analysis and the flhD gene was deleted to

inhibit flagellar motility allowing growth in mothermachine microfluidic chips. The OxyR response reporter plasmid carrying

PgrxA-SCFP3 was derived from an E. coli promoter library of pSC101 plasmids.54 Each plasmid in the library contains the promoter

region of a specific gene or operon in front of GFPmut2 fluorescent protein. We changed the GFPmut2 to the fast-maturing cyan

fluorescent protein SCFP355 using Gibson Assembly (NEB). The promoter region was confirmed by sequencing and the plasmid

was transformed yielding strain SU777 (AB1157, DflhD, PRNAI-mKate2, mutL-mYPet, carrying plasmid pUA139 PgrxA-SCFP3 with

kanamycin resistance gene). Presence of the expected fluorescent protein signal was verified by taking microscopy snapshots.

Media and growth conditions
Cells were grown at 37�C for all experiments. Cells were streaked from glycerol stocks stored at -80�C on LB agarose plates with

25 mg/mL kanamycin. A single colony was picked and grown overnight shaking in 4 mLM9minimal media. This media was prepared

with M9 salts (15 g/L KH2PO4, 64 g/L Na2HPO4, 2.5 g/L NaCl, and 5.0 g/L NH4Cl), 2 mMMgSO4, 0.1 mMCaCl2, 0.5 mg/mL thiamine,

MEM amino acids, 0.1 mg/mL L-proline, and 0.2% carbon source (glucose or glycerol). The next day, overnight culture was diluted

1:50 and grown shaking to OD600�0.3 in 4 mLM9minimal media. For loading cells in microfluidic chips, 0.85 mg/mL Pluronic F127

was added to the media to avoid cell aggregation. For experiments done under hydrogen peroxide treatment, the specific concen-

tration of H2O2 was added to the growth media immediately before the start of the experiment. LB (10% V/V) was added to M9

glucose media for certain experiments, as specified in the figures.

METHOD DETAILS

Microfluidics experiments
Mother machine chip preparation

Single-cell imaging was performed using the ‘mother machine’ microfluidic device as described in 43,56. The chip has a main channel

for flow ofmedia, branching into perpendicular growth channels (here called ‘growth trenches’) of dimension 1.2 mmwidth and 1.2 mm

height and 25 mm length. The chips were made of polydimethysiloxane (PDMS, Dow Corning Sylgard 184 kit) polymer using a silicon

wafer mold (Conscience). A 1:10 solution of polymerising agent and PDMSmonomer were rigorouslymixed and then poured onto the

silicon wafer. This was placed in a vacuum chamber and pressurised to remove air bubbles. The device was then heated at 65�C in an

oven for 2 hours to polymerise. For each experiment, one chip was cut out using a scalpel, and holes for inlet and outlet were inserted

using a 0.75 mm biopsy puncher. The device was cleaned using 100% ethanol and dried with nitrogen gas. The cleaning was

repeated 3 times. The PDMS chip was bonded on a glass coverslip (thickness No 1.5). These coverslips were first cleaned by son-

ication with acetone for 20 mins followed by isopropanol for 20 min, and then dried with nitrogen gas. The cleaned coverslip and

PDMS chip were exposed to air plasma for 2 min and bonded at 95�C for 30 min.

Where indicated, a different silicon wafer was used to generate mother machine chips with shorter trenches of 10 mm length and

1.2 mm width and 1.2 mm height. Here a ‘‘negative’’ mould was prepared first using PDMS as intermediate from a silicon wafer (by

mixing monomer and curing agent 1:5) that was then used to prepare the ‘‘positive’’ chips using the method explained above.

Mother machine setup

1 mL of exponentially growing cells were spun down for 2 min at 6000 rpm. Cells in the pellet were resuspended in 100 mL of the

supernatant and loaded in the microfluidic chips by pipetting through the inlet. The chip was then inserted into a custom-built centri-

fuge holder and spun at 5000 rpm for 10 min to aid the loading of cells into the growth trenches. 50 mL syringes were filled with

M9 minimal media containing Pluronic F127 and H2O2 as indicated. The syringes were attached to silicon tubing (Tygon) and loaded

onto syringe pumps (NewEra SyringePumpPro) to deliver media into chips at a constant flow rate of 2.5 mL per hour. Cells were

initially grown without H2O2 for �3 hours before switching the inlet media to a syringe containing H2O2.

Microcolony chip preparation

E. coli microcolonies were grown on 1% agarose pads made with M9 glucose + 10% LB media. The procedure of preparing these

pads is shown in Figure S5A. Melted agarose solution was poured into the top of an empty 50mL syringe plunger head wrapped with

adhesive tape to act like a container. A glass cover slip was then placed on top of the taped cylinder. After the agarose was set, the

cover slip was removed and 1 ml spots of overnight culture were dropped on the flat agarose surface and grown for 2 hours at 37�C.
After 2 hours, the agarose was removed from the plunger head, thus leaving a conical dip in the agarose that acted as reservoir for

adding H2O2 treatment solution. The agarose pad was inverted to sandwich the cells between the agarose and a cover slip for im-

aging. A needle was inserted through the adhesive tape to continuously flow in growth medium with H2O2 using syringe pumps. The

medium dripped onto the conical dip and diffused through the agarose to reach the cells below.

Microscopy
Time-lapse microscopy of cells in mother machine chips

Time-lapse imaging was performed using a Nikon Ti-E inverted fluorescence microscope equipped with 100x NA 1.40 immersion oil

objective, motorized stage, sCMOS camera (Hamamatsu Flash 4), LED excitation source (Lumencor SpectraX), and operated with a

perfect focus system. Exposure times were 100 ms for PRNAI-mKate2 (l = 555 nm) and 75 ms for sCFP3 reporter (l = 440 nm) using
e2 Current Biology 33, 5404–5414.e1–e9, December 18, 2023
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50% of maximal LED excitation intensities. The excitation and emission lights were separated using a triband dichroic and individual

emission filters. The microscope chamber (Okolabs) was maintained at 37�C throughout the experiments. Images were captured

every 3 min for the 2 emission channels.

Time-lapse microscopy of cells in microcolonies

Time lapse imaging was performed on a Nikon Ti-E microscope equipped with a 100x NA 1.45 oil immersion objective, motorised

stage, sCMOS camera (Photometrics Prime95B), LED excitation source (Lumencor SpectraX) and perfect focus system. Exposure

times were 100 ms for PRNAI-mKate2 (l = 555 nm) and 75 ms for sCFP3 reporter (l = 440 nm) using 50% of maximal LED excitation

intensities. The microscope chamber (Okolabs) was maintained at 37�C throughout the experiments. Images were captured every

3 minutes with phase contrast and the two fluorescence channels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mother machine data processing and analysis
Time-lapsemicroscopy data were saved as .nd2 files and visualized in Fiji.52 The data were processed using the BACMMAN plugin in

Fiji as described in 53 and further analysed using custom Python and MATLAB scripts. Images were first pre-processed by

BACMMAN using the PRNAI-mKate2 fluorescence channel to stack all individual growth trenches and correct for experimental drift

in x-y coordinates and image rotation. The outlines of cells in the growth trenches were then jointly segmented and tracked over time

based on the PRNAI-mKate2 fluorescence signal. The traces were visually inspected and manually corrected for errors in segmenta-

tion or lineage tracing using the BACMMAN software. The SCFP3 fluorescence was extracted by overlaying the cell masks from the

PRNAI-mKate2 channel onto the SCFP3 channel and computing themean intensity over the cell area. BACMMAN generated output in

3 excel files containing cell growth characteristic, PRNAI-mKate2 intensity data and SCFP3 intensity data. These files were then further

analyzed using Python and MATLAB code as described below.

Microcolony image analysis
Segmentation of cells growing in microcolonies was performed based on the PRNAI-mKate2 fluorescence signal and using the

MicrobeTracker tool in MATLAB57 followed by manual correction of the segmentation masks. These outlines were then applied to

the CFP channel and a MATLAB script was used to quantify the average intensity per cell area. Cell lineage tracing was performed

manually and custom python code was used to plot CFP intensity traces.

Chaos decision tree algorithm
To categorise if the fluctuations in PgrxA-SCFP3 traces of individual mother cells are deterministic or stochastic, we applied the

‘Chaos decision tree algorithm’ as described by Toker et al.28 The pipeline is available as MATLAB code. Briefly, the algorithm tests

for stochasticity by computing the permutation entropy using the cyclic phase permutation algorithm. The permutation entropy quan-

tifies the extent to which the values in a trace are ordered or random in time. The value of the permutation entropy for the original trace

is compared tomany randomly shuffled versions of the same trace in which the temporal order of the data points is removedwhile the

mean and standard deviation are maintained. If the fluctuations are stochastic, then the permutation entropy is similar for the original

and shuffled traces; otherwise the fluctuations are classified as deterministic. The chaos decision tree further tests for stationarity. i.e.

whether statistical properties like the mean and standard deviation of a trace do not change over time; else the trace is classified as

non-stationary.

Deterministic vs stochastic and live vs dead categorization of experimental traces
The MATLAB code described in Toker et al.28 as explained in the section above was used to categorise PgrxA-SCFP3 traces of in-

dividual mother cells as showing deterministic or stochastic fluctuations. Traces were analysed at steady-state from 1-hour after the

start of H2O2 treatment. The traces were pre-processed with a moving-mean filter using a window of 3 time points (i.e. 9 min) twice.

The rationale for this is that we are principally interested in the large-scale response fluctuations on the time-scale of the cell cycle

(�50 to 100 min, depending on conditions). Only traces with at least 5.5 hours of data were included in this analysis (length of data

required for entropy calculation in the pipeline).

PgrxA-SCFP3 traces were further categorised as originating from live or deadmother cells. A cell was considered dead if the length

growth rate as computed by BACMMAN was below 0.0024 min-1.

Autocorrelation analysis
Autocorrelation analysis was performed to distinguish between periodic and chaotic fluctuations of the PgrxA-SCFP3 traces of in-

dividual mother cells. Traces with at least 2-hours of data were analysed at steady-state from 1-hour after the start of H2O2 treatment.

The traces were pre-processed with a moving-mean filter using a window of 3 frames (i.e. 9 min) twice. Due to the slower growth of

cells in M9 glycerol media, a window of 6 frames was used and traces were analysed at steady-state from 2-hours after the start of

H2O2 treatment. ACF curves were computed from the DPgrxA difference signal, which was calculated by subtracting the PgrxA-

SCFP3 values of consecutive frames. The Python stattools.acf function from the statsmodel library was used to output the autocor-

relation value over a range of lag times. Mean ACF curves were computed by averaging the ACF values from the single-cell traces at

each lag time. A peak finding algorithm was applied to the mean ACF curves to quantify the period of non-chaotic PgrxA-SCFP3
Current Biology 33, 5404–5414.e1–e9, December 18, 2023 e3
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traces. This was done in python using the find_peaks function in the scipy.signal library with a prominence of 0.2. ACF curves for

simulated GrxA traces were computed during steady-state from 700 to 5200min after start of H2O2 treatment at t = 50min. The anal-

ysis was done as for experimental data but without moving-mean filtering.

Correlation Dimension to discriminate deterministic and stochastic processes
We used the Grassberger - Procaccia algorithm45 to estimate the correlation dimension (Dcorr ) of the GrxA response dynamics, which

can be understood as the effective number of dynamic variables that generate the response fluctuations. A large number implies a

stochastic process whereas a low number results from a deterministic process.46

To compute the correlation dimension, we followed the procedure described in Sandler et al.46 For a given trace of {GrxAn} where n

is any time point, the algorithm constructs a vector {GrxAn, GrxAn+1, GrxAn+2,., GrxAn+E-2, GrxAn+E-1} considering them in E-dimen-

sional space (E is also called embedding dimension). For a data set with N data points in an embedding dimension E, the correlation

sum CðrÞ is quantified to then compute dcorr :

CðE; rÞ =
2

NðN � 1Þ
XN
i = 1

XN
j = i+1

Ɵðr � ��xi � xj
��Þ

The Heaviside step function ƟðxÞ (ƟðxÞ = 1 if x > 0 andƟðxÞ = 0 if x%0) is used to compute the fraction of data points xi and xj that

are within a distance r of each other. The values of r were evenly spaced in log scale from 0.01s to 3s, where s is the standard de-

viation of the fluctuation of the given GrxA trace.

The correlation dimension CðrÞ follows a power law for small r, such that CðrÞarDcorr . Therefore, Dcorr can be estimated from the

slope of a log-log plot of CðrÞ versus r. CðrÞ grows monotonically with r.

The Dcorr obtained for different values of E is plotted against E. For a deterministic process, the Dcorr vs E plot saturates and the

saturating value of Dcorr corresponds to the effective dimension of the dynamic process, i.e. the number of dynamic variables that

determine the response dynamics. In contrast, a truly stochastic process yields a straight line forDcorr vs E, with E =Dcorr for any value

of dimension E, implying that the process is determined by an infinite number of dynamic variables.

We applied a moving-average filter with a filtering window of 3 time points (i.e. 9 minutes) to smooth experimental PgrxA-SCFP3

traces before applying the Grassberger – Procaccia algorithm. The rationale for this is that we are principally interested in the large-

scale response fluctuations on the time-scale of the cell cycle (�50 to 100min, depending on conditions). Nevertheless, applying the

Grassberger – Procaccia algorithm to experimental data without smoothing also produced a low correlation dimension (Figures S4H

and S4I), consistent with the dynamics being overall deterministic.

Lyapunov exponent computation
Lyapunov exponent was computed for simulatedGrxA traces ofmother cells (positioned at the closed end of growth trenches) during

steady-state from 700 to 5200 min after start of H2O2 treatment. The traces were normalized in MATLAB using the ‘‘normalize’’ func-

tion that rescales the data with mean of 0 and standard deviation of 1. The Lyapunov exponent was computed in MATLAB using the

‘‘phaseSpaceReconstruction’’ function and ‘‘lyapunovExponent’’ function with fs = 10.

Quantitative model of the oxidative stress response in a bacterial population
Cell growth model

The growth of rod-shaped E. coli cells was described by an adder model with equal length added to the cell over time between suc-

cessive division events.58 The elongation rate g determines the increase in cell length lfrom time t to t + 1:

lt+1 = lt$ð1+gÞ (Equation 1)

The cell divides into 2 daughter cells of equal length when the total cell length added from the birth length exceeds 2 mm. We

modelled the inhibition of the cell elongation rate by H2O2 as a sigmoidal decay:

g

�
½H2O2�cellÞ =g0$ð1� 1

1+10� c1ð½H2O2 �cell � c2 Þ
�

(Equation 2)

where g0 is the elongation rate without treatment, ½H2O2�cell is the intracellular H2O2 concentration, and the sigmoidal decay factors

c1; c2determine the sensitivity of the elongation rate to ½H2O2�cell.
Cell-cell interaction model

Scavenging of H2O2 results in concentration gradients that are determined by the spatial arrangement of cells and the diffusion of

H2O2 with diffusion coefficient D. Hence, ½H2O2�external is a function of a cell’s position x along the length of the growth trench. The

spatial arrangement was modelled as a one-dimensional colony of rod-shaped cells with radius RC in cuboid growth trenches

with square cross section W2. This is analogous to the growth trenches in a mother machine device41 with H2O2 treatment entering

through the open end of the trench (where x = 0). The scavenging rate of H2O2 is limited by the absorption of H2O2 across the cell

envelope41 with absorption rate constant kabs. We modelled the spatial profile of ½H2O2�external based on the reaction-diffusion equa-

tion, using a similar approach as described in Yang et al.59:
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v½H2O2�external
vt

=
�
W2�pR2

c

�
D
v2½H2O2�external

vx2
� 2pRckabs½H2O2�external (Equation 3)

We first consider the profile of ½H2O2�external along the length of a single cylinder-shaped cell of length lt (the hemispherical caps at

the cell poles will be considered below). At each position x, ðW2-- pR2
cÞcorresponds to the area around the cell where H2O2 diffuses

through the trench. The circular perimeter of the cell where H2O2 is absorbed is 2pRc. At steady-state,
v½H2O2 �external

vt = 0. Therefore, the

reaction-diffusion equation becomes:

�
W2�pR2

c

�
D
v2½H2O2�external

vx2
= 2pRckabs½H2O2�external (Equation 4)

To solve this equation for ½H2O2�external, we introduce the coefficient l:

v2½H2O2�external
vx2

=
1

l2
½H2O2�external (Equation 5)

with l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2� pR2

cÞ D
2pRckabs

q
We assume the non-adsorbing boundary condition at x =lt.

The solution to this equation is:

½H2O2�externalðxÞ = ½H2O2�external;0
cosh

�
x � lt

l

�

cosh

�
lt
l

� (Equation 6)

Here, ½H2O2�external;0 is the concentration at x = 0.

We modify Equation 7 to account for the shape of E. coli cells as cylinders capped with hemispheres. First, we multiply Equation 5

by the cell length lt:

�
W2�pR2

c

�
$lt$D $

v2½H2O2�external
vx2

= 2pRc $ kabs $ lt$½H2O2�external (Equation 7)

Compared to the cylinder geometry, the free volume in the trench through which H2O2 diffuses increases by 2pR
3
c--

4
3pR

3
c due to the

two hemispherical caps. The surface area for H2O2 absorption is unchanged. Hence:�
W2lt� pR2

clt +

�
2pR3

c � 4

3
pR3

c

��
$D $

v2½H2O2�external
vx2

= 2pRc $ kabs $ lt$½H2O2�external (Equation 8)
The solution to the equation is½H2O2�external = ½H2O2�external;0
cosh

�
x � lt
l0

�

cosh

�
lt
l0

� (Equation 9)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
W2 lt� pR2

c lt+

�
2
pR3

c

��
D

vuut

Where, l0 =

3
2pRckabslt

Oxidative stress response model

The oxidative stress response was modelled based on mass action kinetics using a set of 5 coupled ordinary differential equations

(ODEs) to predict the dynamics of gene expression and intracellular H2O2 concentration ([H2O2]cell) for a given external H2O2 concen-

tration ([H2O2]external). This is illustrated in the following schematic:

nd
[H2O2]cell oxidises the transcription factor OxyR from its reduce
d to oxidised form, where Kox is the 2 -order oxidation rate con-

stant. The total OxyR concentration was assumed constant, such that ½OxyR�Ox = ½OxyR�total � ½OxyR�Red. Oxidised OxyR is reduced

by GrxA with Michaelis-Menten kinetics where Kred is the catalytic rate constant and hOxyR is the Michaelis constant. Hence:

d½OxyR�Red
dt

= �Kox $ ½OxyRRed� $ ½H2O2�cell +Kred$½GrxA� $
� ½OxyR�total � ½OxyR�Red�½OxyR�total � ½OxyR�RedÞ+hOxyR

�
(Equation 10)
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The OxyR regulon includes numerous genes involved in various aspects of oxidative stress tolerance. We reduced this system to

the two key H2O2 scavenging enzyme genes katG and ahpC, and the glutaredoxin-1 grxA. Each gene has a basal expression rate

(RgrxA;basal, RkatG;basal, RahpC;basal) and an inducible expression rate that depends on the concentration of oxidised OxyR

(½OxyR�total � ½OxyR�Red). The maximal induced-expression rates are given by KgrxA;act, KkatG;act;KahpC;act. The parameters hgrxA;act,

hkatG;act,hahpC;act define the concentrations of ½OxyR�Ox that give half-maximal induction of each gene. Gene expression is counter-

acted by dilution due to cell growth with rate g, given by the growth model (Equation 2). The gene expression dynamics follow:

d½GrxA�
dt

= RgrxA;basal +KgrxA;act$

 
½OxyR�total � ½OxyR�Red�½OxyR�total � ½OxyR�RedÞ+hgrxA;act

!
� g$½GrxA� (Equation 11)
d½KatG�
dt

= RkatG;basal +KkatG;act$

 
½OxyR�total � ½OxyR�Red�½OxyR�total � ½OxyR�RedÞ+hkatG;act

!
� g$½KatG� (Equation 12)
d½AhpC�
dt

= RaphC;basal +KahpC;act$

 
½OxyR�total � ½OxyR�Red�½OxyR�total � ½OxyR�RedÞ+hahpC;act

!
� g$½AhpC� (Equation 13)

The intracellular H2O2 concentration is determined by the influx of external H2O2 with rate Rinflux$½H2O2�external, a basal endogenous

production rate RH2O2 ;basal, and scavenging by catalase and peroxidase enzymes with Michaelis-Menten kinetics where KAhpC, KKatG

are the catalytic rate constants and hAhpC, hKatG are the Michaelis constants:

d½H2O2�cell
dt

= Rinflux $ ½H2O2�external + RH2O2 ;basal � KAhpc $ ½AhpC� $
� ½H2O2�cell
½H2O2�cell+hAhpC

�
� KKatG $ ½KatG�$

� ½H2O2�cell
½H2O2�cell+hKatG

�
(Equation 14)

General stress response model

We formulated a general model to study the emergence of chaos in the response to a generic toxin. The purpose of this model was to

abstract as many of the molecular details as possible and explore if a simple gene regulatory circuit is still capable of producing

chaotic dynamics when coupled with the growth model and the cell-cell interaction model described above. The intracellular toxin

concentration ½Toxin�cell is determined by the influx of external toxin with rate constant Rinflux, and detoxification by an enzyme E

where Kcat is the catalytic rate constant and hE is the Michaelis constant:

d½Toxin�cell
dt

= Rinflux½Toxin�external � Kcat½E�
� ½Toxin�cell
½Toxin�cell+hE

�
(Equation 15)

The detoxifying enzyme is produced at an inducible expression rate that depends on the intracellular toxin concentration. The

maximal induced-expression rate is Kact and hact defines the toxin concentration that gives half-maximal gene induction. Enzyme

expression is counteracted by dilution due to cell growth with rate g, given by the growth model (Equation 2).

d½E�
dt

= Kact

� ½Toxin�cell
½Toxin�cell+hact

�
� g½E� (Equation 16)

As above, the cell elongation rate depends on the intracellular toxin concentration:

g

�
½Toxin�cellÞ =g0$ð1� 1

1+10c1ð½Toxin�cell � c2 Þ
�

(Equation 17)

Model simulations
Software

Simulations of the model were performed using custom-written Python code. The following libraries were used: pandas, numpy,

math, scipy, random, and matplotlib.

Growth model parametrisation

Under the experimental conditions of our study, the mean elongation rates of E. coli cells growing without H2O2 in M9 glycerol, M9

glucose and M9 glucose + 10% LB media are g0 = 0:025min-1,0:042min-1 and 0:065min-1 respectively. For the sigmoidal function

describing the sensitivity of elongation rate to H2O2, the growth rate reduces to half when½H2O2�cell = c2 = 10� 4 mM,with growth stall-

ing at ½H2O2�cell � 2c2. The value c2 was chosen in the sub-nanomolar range as E. coli cells can tolerate up to nanomolar ½H2O2�cell in
the absence of exogenous H2O2.

60 The steepness of the sigmoidal decay is given by parameter c1 and was refined to match the

variation of elongation rates for cells at different positions in a growth trench under H2O2 treatment observed in the mother machine

experiments. To this end, we varied c1over five order of magnitude from 200mM� 1 and minimized the value of mean absolute error
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(MAE) between gmodel and gexperimental. For a given value of c1, the MAE was estimated for steady-state elongation rate values ob-

tained for cells at different positions in trenches growing in M9 glucose and treated with various concentrations of H2O2 (12.5 mM,

25 mM, 37.5 mM, 50 mM, 62.5 mM, 75 mM, 82.5 mM, 100 mM and 500 mM).

MAE =

�����gmodel;i;cell position � gexperimental;i;cell position

gexperimental;i;cell position

�����
Where i denotes the different H2O2 concentrations and cell position denotes the position of cells in the trench from the open end.

The MAE plotted against different values of c1 showed a minimum at 2$104mM� 1 [Figures S3C and S3D].

Cell-cell interaction model parametrisation

The reaction-diffusion Equation 9 was solved with a cell radius of Rc= 0.575 mm and growth trench width W = 1.2 mm. The diffusion

coefficient of H2O2 in water is D = 10� 9m2=s. The H2O2 absorption rate60 is kabs = 1:6 $10� 5m=s.

Oxidative stress response model parametrisation

The model was parametrised using the following literature values:

KAhpc = 660s� 1 (Ref 61), hAhpC = 1:2 mM (Ref 61), KKatG = 490000s� 1 (Ref 61), hKatG = 5900 mM (Ref 61), RH2O2 ;basal = 0:02 mMmin� 1

(Ref 60,61), Kox = 0:1mM� 1s� 1 (Ref 62), Kred = 8mMs� 1 (Ref 62), hOxyR = 2583 mM (Ref 62), ½OxyR�total=1 mM (Ref 62).

The gene regulatory parameters were matched to the experimental data presented in this paper and in Choudhary et al.41:

hAhpC;act = 0:1 mM; hKatG;act = 0:18 mM; hGrxA;act = 0:1 mM;KAhpC;act = 0:2 mMmin� 1;
KKatG;act = 0:15 mMmin� 1;KGrxA;act = 0:1 mMmin� 1;RgrxA;basal = 0 mMmin� 1;RkatG;basal

= 0 mMmin� 1;RaphC;basal = 0:01 mMmin� 1;Rinflux = 1min� 1

We estimated the calibration factor kGrxA;calibrationwhich allowed to compare the PgrxA-SCFP3 intensity from experiments to the

GrxA concentrations in the model simulations, such that:

GrxAmodel;calibrated = kGrxA;calibration$GrxAmodel = GrxAexperimental

We varied kGrxA;calibrationfrom 0 to 2500with steps of 50 andminimized theMAE betweenGrxAmodel;calibrated andGrxAexperimental. For a

given value of kGrxA;calibration, the MAE was estimated from the PgrxA-SCFP3 intensity values of the cells at the open end of the growth

trenches inM9 glucosemedia at steady-state treated with various concentrations of H2O2 (12.5 mM, 25 mM, 37.5 mM, 50 mM, 62.5 mM,

75 mM, 82.5 mM, 100 mM and 500 mM).

MAE =

����GrxAexperimental;i� GrxAmodel;calibrated;i

GrxAexperimental;i

����
Where i denotes the different H2O2 concentrations.

The MAE plotted against kGrxA;calibration showed a minimum at 1150 [Figures S3A and S3B].

General stress response model parametrisation

For the plots in Figure 3, we used the following parameter values to solve the general stress response model: hE = 1a:u:;Kact =

0:1a:u:min� 1; hact = 1 a:u:;Kcat was varied between 0 to 20min� 1;Rinflux = 1 min� 1, ½Toxin�external was varied between 0 to 200

a.u. The parameters used in the growth model and cell-cell interaction model were the same as for the H2O2 stress response model.

Simulation input

Simulation runs were initialised by specifying the user-defined parameters: number of time points T, time step duration Dt (1 min),

[H2O2]external, time of H2O2 treatment (time point 50, unless mentioned otherwise), number of growth trenches (ng), length of growth

trenches (Ltrench), initial cell lengths at t0. Unless otherwise specified, the initial cell lengths were drawn from a random distribution to

match experimental conditions where cells are loaded into growth trenches from an unsynchronised culture. Cells are positioned in a

straight row with their poles touching. The values used for simulations are given in the Methods S1.

Simulation procedure

Simulating the interlinked cell-cell interaction model (I), stress response model (S), and growth model (G) required discretisation in

space and time. The simulation procedure is shown schematically in Figure S1.

First, the cell-cell interaction model predicts the external [H2O2]external concentration that each cell is exposed to according to its po-

sition in the growth trench. The reaction-diffusion equation (Equation 9) is solved for the uptake of [H2O2]external by the outermost cell first

which is exposed to the fixed concentration of [H2O2]external in the growth media. This leads to a reduced external [H2O2]external concen-

tration for the cell located immediately beneath the outermost cell. The procedure is repeated to predict the external [H2O2]external
concentration from one barrier cell to the next until the mother cell is reached at the bottom of the population.

Secondly, the stress response model predicts for each cell the changes in the intracellular [H2O2]cell concentration, concentration

of reduced regulator OxyRred, and concentrations of the stress response enzymes (GrxA, KatG, AhpCF) for the next time point (Equa-

tions 10, 11, 12, 13, and 14). It uses the external [H2O2]external concentration from the cell-cell interactionmodel and the cell elongation

rate g (Equation 2) from the growth model as inputs for each cell.
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Thirdly, the growthmodel uses the intracellular [H2O2]cell concentration from the stress responsemodel as input to compute the cell

elongation rate g for each cell (Equation 2), and changes the number, size, and positions of all the cells for the next time point (Equa-

tion 1). Cell elongation and division pushes cells towards the open end of the trench. If the summed cell lengths exceed the trench

length then the outermost cell is removed at the next time point.

The outputs of the interdependent models at one time point are used as input conditions for the next time point. The simulation runs

for a set number of time points. Parallel growth trenches are treated as independent simulation runs.

Simulation visualization

We generated videos to visualise the simulation results using custom Python code and the following libraries: Image, ImageDraw

from PIL, tifffile. We drew rows of rod-shaped cells according to the outputs of the growth model and the intensity of each cell

was given by a linear grayscale conversion of the GrxA value from the stress response model. Simulations with multiple growth

trenches were combined into the same image and converted into .tiff files. The tiff files were concatenated over time into videos using

Fiji.52 Further data visualisation and extraction (e.g. lineage tracing) was performed on the simulated videos using BACMMAN soft-

ware53 as for experimental data, described above.

Model of the oxidative stress response with noise
Stochastic differential equations

The stress response model was modified using the Langevin approach63–65 to account for stochasticity in gene regulation. This

approach involves adding a stochastic noise term to the set of differential equations (Equations 10, 11, 12, 13, and 14). Specifically,

for the deterministic differential equation of the form:

dX

dt
= fðXÞ (Equation 18)

where X = ½OxyR�Red; ½GrxA�; ½KatG�; ½AhpC�, we add a noise term h:

dX

dt
= fðXÞ+ h (Equation 19)
h= s
dW

dt

Where W is the variable of a Weiner process satisfying the condition thatWt � W0� Ɲ.66 Ɲ is a normal distribution with mean of m

and variance of s2: Rearranging Equation 17 gives the stochastic differential equation (SDE) as follows:

dX = fðXÞdt + sdW (Equation 20)

Euler-Maruyama method

To solve Equation 20 numerically, we use the Euler-Maruyama method.67,68 Let Dt = ti+1 � ti where i represents the iteration step

from 0,1, . to N (number of iterations). Therefore, Equation 20 can be rewritten as:

Xi+1 = Xi + fðXiÞDt + sZi

ffiffiffiffiffi
Dt

p
(Equation 21)

Where Zi represents the normal distribution (Weiner process derivatives) with mean = 0 and variance = 1.

Noisy equations for oxidative stress response

To solve the equations numerically, the equations were non-dimensionalised in time tnd = t$g, where g is the elongation rate. Then,

noise term ɣgene was added to each equation, giving the following:

d½OxyR�Red
dtnd

=
1

g

�
� Kox½OxyRRed�½H2O2�cell + Kred½GrxA�

� ½OxyR�total � ½OxyR�Red�½OxyR�total � ½OxyR�RedÞ+hOxyR

��
+ ɣOxyR (Equation 22)
d½GrxA�
dtnd

=
1

g

 
RgrxA;basal +KgrxA;act

 
½OxyR�total � ½OxyR�Red�½OxyR�total � ½OxyR�RedÞ+hgrxA;act

!
� g½GrxA�

!
+ ɣGrxA (Equation 23)
d½KatG�
dtnd

=
1

g

 
RkatG;basal +KkatG;act

 
½OxyR�total � ½OxyR�Red�½OxyR�total � ½OxyR�RedÞ+hkatG;act

!
� g½KatG�

!
+ ɣKatG (Equation 24)
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d½AhpC�
dtnd

=
1

g

 
RaphC;basal +KahpC;act

 
½OxyR�total � ½OxyR�Red�½OxyR�total � ½OxyR�RedÞ+hahpC;act

!
� g½AhpC�

!
+ ɣAhpC (Equation 25)

To solve the equations numerically using the Euler-Maruyama method, Equations 22, 23, 24, and 25 were converted to the form

shown in Equation 18, giving the following:

½OxyR�Redi+1 = ½OxyR�Redi +
Dtnd
g

 
� Kox½OxyR�Redi½H2O2�cell i +Kred½GrxA�i

 
½OxyR�total � ½OxyR�Redi�½OxyR�total � ½OxyR�Redi

�
+hOxyR

!!
+ soxyRZi

ffiffiffiffiffiffiffiffiffi
Dtnd

p
(Equation 26)
½GrxA�i+1 = ½GrxA�i +
Dtnd
g

 
RgrxA;basal +KgrxA;act

 
½OxyR�total � ½OxyR�Redi�½OxyR�total � ½OxyR�Redi

�
+hgrxA;act

!
� g½GrxA�i

!
+ sGrxAZi

ffiffiffiffiffiffiffiffiffi
Dtnd

p
(Equation 27)
½KatG�i+1 = ½KatG�i +
Dtnd
g

 
RkatG;basal +KkatG;act

 
½OxyR�total � ½OxyR�Redi�½OxyR�total � ½OxyR�Redi

�
+hkatG;act

!
� g½KatG�i

!
+ sKatGZi

ffiffiffiffiffiffiffiffiffi
Dtnd

p
(Equation 28)
½AhpC�i+1 = ½AhpC�i +
Dtnd
g

 
RaphC;basal +KkatG;act

 
½OxyR�total � ½OxyR�Redi�½OxyR�total � ½OxyR�Redi

�
+hahpC;act

!
� g½AhpC�i

!
+ sAhpCZi

ffiffiffiffiffiffiffiffiffi
Dtnd

p
(Equation 29)

The noise term is added in the form ɣgene = sgeneZi

ffiffiffiffiffiffiffiffiffiffi
Dtnd

p
For our simulations Dtnd = 5$10� 6 min� 1 and {sOxyR;sGrxA;sKatG;sAhpC} = {0:0002;0:02;0:02;0:02}.

We chose values of s such that the magnitude of the fluctuations of the stochastic response model (S*) was similar to the magni-

tude of the chaotic fluctuations of the full deterministic model (S+G+I). MAE was computed between the CV (Coefficient of variation)

of GrxA from the deterministic model and the stochastic stress response model solved for a range of concentrations of H2O2 for s of

[0.00005, 0.0001,0.0005, 0.001,0.005, 0.01,0.05, 0.1].

MAE =

����CVdeterministic� CVstochastic

CVdeterministic

����
This model was then coupled with the deterministic G and I models individually (S*+G, S*+I) or with both G and I models (S*+G+I),

as required.
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