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Abstract— Lane graph estimation is a long-standing problem
in the context of autonomous driving. Previous works aimed at
solving this problem by relying on large-scale, hand-annotated
lane graphs, introducing a data bottleneck for training models
to solve this task. To overcome this limitation, we propose
to use the motion patterns of traffic participants as lane
graph annotations. In our AutoGraph approach, we employ
a pre-trained object tracker to collect the tracklets of traffic
participants such as vehicles and trucks. Based on the location
of these tracklets, we predict the successor lane graph from an
initial position using overhead RGB images only, not requiring
any human supervision. In a subsequent stage, we show
how the individual successor predictions can be aggregated
into a consistent lane graph. We demonstrate the efficacy of
our approach on the UrbanLaneGraph dataset and perform
extensive quantitative and qualitative evaluations, indicating
that AutoGraph is on par with models trained on hand-
annotated graph data. Model and dataset will be made available
at http://autograph.cs.uni-freiburg.de/.

I. INTRODUCTION

Autonomous vehicles require detailed knowledge about
their surroundings to safely and robustly navigate complex
environments. Most approaches to automated driving follow
one of the two major paradigms: map-based or mapless
driving. Map-based approaches typically rely on HD maps
entailing detailed geospatial information relevant to driving
tasks, including the positions of traffic lights, lanes, or street
crossings. In this context, the graph of lane centerlines (i.e.
the lane graph) is a crucial component that encodes the
position and connectivity of all lanes. A major bottleneck in
deploying map-based autonomous driving approaches is the
slow and expensive manual annotation process to generate
HD maps for all regions where the vehicle is intended
to operate. Methods capable of estimating the lane graphs
robustly in an automated fashion are crucial for scaling up
the areas covered by HD maps [15], [30], [3]. Mapless
driving approaches, in contrast, solely rely on onboard sensor
measurements to infer the position and layout of objects and
surfaces relevant to the driving task, including the position
and orientation of roads and lanes. For mapless driving, the
accurate and robust estimation of the spatial and topological
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Fig. 1: Our approach AutoGraph leverages vehicle tracklets
and predicts complex lane graphs from aerial images without
requiring any hand-annotated lane graphs for supervision.

lane layout in the vicinity of the vehicle is paramount
for safe and efficient navigation. Therefore, automatic lane
graph estimation is a crucial task in map-based and mapless
automated driving.

Prior work in lane graph estimation focuses on training
models under full supervision [3], [30], [14], relying on
large-scale ground-truth lane graph annotations, typically
obtained from a large number of human annotators. The
production of accurate annotations such as those available
as part of the Argoverse2 [22] and NuScenes [4] datasets is,
therefore, resource-intensive in both money and time.

Inspired by the success of vehicle tracking ap-
proaches [17], [9], [20] and by prior work in the context of
automatic annotation from traffic participants [1], [31], in this
work, we propose to leverage traffic participant tracklets as
the only annotation source for lane graph estimation and do
not require any manually obtained graph annotations. Most
traffic participants follow their respective lanes with high
accuracy. Aggregated over large numbers, the trajectories of
traffic participants encode the overall structure of lane graphs
well (see Fig. 1). We interpret this driving data as a data
source for the annotation of lane graphs. In our approach,
AutoGraph, we track traffic participants in challenging urban
environments and propose a novel tracklet merging scheme,
allowing us to formulate a supervised learning task in which
we leverage aerial images as input and the merged tracklets
serve as the learning target for our model. The overall
approach is capable of accurately predicting lane graphs
covering large areas with high accuracy while the pipeline
does not require any hand-annotated data.

To summarize, this work makes the following contribu-

http://autograph.cs.uni-freiburg.de/


tions:
• a novel tracklet aggregation scheme leveraging observed

traffic participant tracklets as annotation sources for lane
graph estimation models;

• the large-scale UrbanTracklet dataset with hundreds of
thousands of vehicle and pedestrian tracklets generated
from the Argoverse2 and UrbanLaneGraph datasets;

• and extensive qualitative and quantitative ablation stud-
ies on the UrbanLaneGraph dataset, demonstrating the
efficacy of our approach.

II. RELATED WORKS

a) Lane Graph Estimation: Over the past years, the
task of lane graph estimation has gained much attention in the
autonomous driving research community. In contrast to road
graph estimation, where the goal is to estimate the connec-
tivity between roads [2], [19], lane graph estimation entails
predicting the position of lanes and how they are connected.
This task is much more challenging, in particular in areas
with complex lane connections such as roundabouts or multi-
arm intersections. Homayounfar et al. [15] predict the lane
graph of highway scenes with an iterative RNN model from
projected LiDAR data. Zürn et al. [30] proposed a Graph R-
CNN-based model for lane graph estimation from aggregated
LiDAR data in urban scenes. He et al. [14] leverage a
multi-stage approach for lane graph extraction in which they
first extract straight road sections between intersections and
subsequently learn the connectivity between each incoming
and outgoing lane arm. Büchner et al. [3] proposed a bottom-
up approach for lane graph estimation. They first estimate
the successor graph from a given starting position using
a graph neural network and subsequently aggregate a full
lane graph by iteratively merging each successor graph into
a global one. Similar to our work in spirit, Karlsson et
al. [16] infer maximum likelihood lane graphs from traffic
observations with a directional soft lane probability model.
They evaluate their model on the NuScenes dataset. However,
they do not consider model inference from aerial images but
from aggregated onboard sensor measurements. Crucially,
and in contrast to our approach, their model is not capable of
estimating large lane graphs due to the non-iterative nature
of their approach.

While the aforementioned works show promising results in
challenging environments, most of them require large-scale
handcrafted graph annotations or cannot generate predictions
for large-scale scenes. In the approach presented here, we do
not require any manual annotations and instead leverage data
encoded in the behavior of observed traffic participants.

b) Trajectory Prediction: Our successor lane graph pre-
diction module is related to the task of trajectory prediction.
From the large body of literature available in this field we
briefly review the most relevant recent related works. Most
approaches condition their models on rasterized or vectorized
HD map representations [5], [27], [10], discrete graphs [18]
or aerial images [28]. In Chai et al. [5], future vehicle posi-
tions are encoded by estimating the distribution over future
trajectories for each agent while Zhao et al. [27] leverage a

three-stage approach that finds prediction targets, estimates
future motion for each, and scores each predicted trajectory
to yield the final motion prediction. Our work also shares
similarities with the line of work by Gilles et al. [11], [12],
[13]. They frame the trajectory prediction task as a heatmap
regression task, where an HD map representation is used
for prediction conditioning. After subsequent post-processing
of this heatmap, they sample future agent trajectories. In
contrast to most existing works, we refrain from leveraging
an HD map representation and instead solely rely on aerial
images for our prediction task. In addition to regressing
future possible agent positions, we also use this prediction
block as input for a graph aggregation module to learn a
complete lane graph of a given input image.

c) Automatic Annotations in Autonomous Driving:
There exists a sizable body of work that considers the data
encoded either in the driving behavior of the ego-vehicle
or of other traffic participants. Barnes et al. [1] use the
ego-trajectory of a vehicle to annotate drivable regions in
an image. They project their own future positions into the
current camera image to label pixels as drivable. Other works
in self-supervised learning for navigation [21], [29] also use
the ego-trajectory to label pixels for a vision-based ground
classifier. Tracklets have been used by multiple previous
works in the context of autonomous driving tasks. Zürn et
al. [31] used the trajectories of other traffic participants such
as vehicles and pedestrians, obtained from a LiDAR tracker,
to annotate ground surfaces in urban environments. Other
works also explored the benefits of inferring driving policies
from the behavior of other traffic participants [23], [25], [6].
Chen et al. [6] leverage driving experiences collected from
the ego vehicle and other vehicles jointly to train a driving
policy from real-world data. Recent work by Collin et al. [8]
proposes an automated system for aggregating observed
traffic participant tracklets into a lane graph representation.
While their work shows a good performance in dense traffic
scenarios, it does not generalize to unseen areas since their
approach does not involve training a model on this data.

III. TECHNICAL APPROACH

Our approach proceeds in three steps. In the first step,
denoted tracklet parsing and merging, we track traffic par-
ticipants through all scenes in the dataset and prepare the
data for model training. In the subsequent model training
step, we train the proposed model with data obtained in the
first stage. In the third step, we perform inference with our
trained model to perform graph exploration and aggregation
into a globally consistent representation. In the following,
we describe each step in detail.

A. Tracklet Parsing and Merging

In the following, we describe our tracklet parsing and
merging pipeline. We start our data processing pipeline by
tracking traffic participants from ego-vehicle data in all
available scenes of the Argoverse2 dataset [22] across all
six available cities. Each scene in the dataset consists of
approximately 20 seconds of driving. For each scene, we



Fig. 2: Visualization of tracklets in the city of Austin, Texas,
aligned with aerial imagery (darkened for better contrast).

track vehicles such as cars, trucks, motorcycles, and busses
using a pre-trained LiDAR-based object detector [20] that
processes the vehicle onboard LiDAR point clouds. We note
that the performance of the tracker predictions may affect
the quality of the annotations and thus the downstream
performance of our approach. We transform all tracklets
into a global coordinate frame. Subsequently, we smooth
the tracklets with a moving average filter to minimize the
amount of observation noise and the influence of erratic
driving behavior (i.e., steering inaccuracies).

Fig. 2 illustrates an exemplary urban scene with the
observed vehicle tracklets. Due to imperfect vehicle driving
manoeuvres and the inherent observation noise, tracklets of
observed traffic participants do not perfectly overlap with the
ground-truth lane graph. Furthermore, and more importantly,
each tracklet only covers a subset of the actual lane graph
since the corresponding vehicle was only visible from the
ego vehicle for a few seconds. Thus, the goal of the tracklet
merging module is to merge tracklets that have significant
overlap and follow the same underlying lane segment with
a high likelihood.

In the following, we describe the tracklet merging pro-
cedure. We define a tracklet T as a list of points pt ∈ R2

describing the 2D position of a tracked object centroid at the
tracking time step t and a list of heading vectors ht ∈ R2

describing the heading of the tracked object. The tracking
frequency is constant for all tracklets and equals the LiDAR
frequency. We define the set of all object positions in all
tracklets as P . Our goal is to merge multiple tracklets into a
successor graph that encompasses all regions that have been
traversed by tracked vehicles which passed through a given
starting position. To this end, we define an Euclidean distance
tracklet merging matrix MD and an angle-based merging
matrix MA. The Euclidean distance merging matrix MD is
defined as the element-wise Euclidean distance of two object
centroids:

MD,ij = ||pi − pj ||22, (1)

where MD ∈ R|P|×|P|. We also define an angle matrix
MA ∈ R|P|×|P|, indicating the absolute relative angle
between object heading hi and hj :

MA,ij =
∣∣ arccos( hi · hj

|hi| · |hj |

)∣∣. (2)

To merge multiple tracklets into a successor graph, we
define a binary tracklet merging matrix M ∈ {0, 1}|P|×|P|

as follows:

M := [MD < dmax] ∧ [MA < αmax], (3)

where Mij = 1 implies a merging of the tracklet con-
taining pi with the tracklet containing pj . So far, we only
considered the relative heading angle and relative position
of two tracked objects. In the final step, we update M and
integrate all recorded tracklets into the connectivity matrix.
Since each single tracklet consists of a list of observed object
positions and headings, we add all pairs of consecutive object
positions and headings in each tracklet to M as well. Note
that a connection pi → pi+1 encoded in a specific tracklet
adds the respective connection in M[i, i + 1] but does not
add the connection in M[i + 1, i] since each tracklet has a
notion of direction. Thus, M ̸= MT in the general case.

Using this formulation, we now have a mechanism for
generating a successor graph Sq from a query point q by
following all tracklets connected to q according to M. In
order to fit our model to this data, we randomly select a
query point q from the aerial image and extract a small
image crop around q. We extract all tracklets visible in this
crop and extract the successor graph Sq . For an exemplary
visualization of the merging procedure, please refer to Fig. 3.

Furthermore, we extract the Drivable map layer and the
Angles map layer. In these layers, we collect all tracklets
of the whole city and colorize all pixels that are covered
by a tracklet as 1 for the Drivable map layer or as the
tracklet angle α, for the Angles layer. The remaining pixels
are assigned a value of 0. For visualization of these map
layers, please refer to Fig. 4.

B. Model Training

After our aggregation step, we are able to query all
tracklets that are visible in an aerial image crop, starting
from a given querying position q. To obtain a training dataset
for our models, for each query pose q, we extract an aerial
image crop RGBq from the full aerial image, centered and
oriented around the query pose. In the same way, we crop the
drivable map, producing Dq, and the angle map, producing
Aq. The whole training pipeline is visualized in Fig. 4. Our
model consists of two sub-networks. We train a DeepLabv3+
model [7] to predict the pixel-wise drivable and angle maps
from an RGB aerial image input, using Dq and Aq as
the learning targets. We denote this model as TrackletNet.
This initial task is identified as an auxiliary task, leveraging
the vast amount of tracklets readily available for a given
crop. For training, we use a binary cross-entropy loss to
guide the prediction of the drivable map layer and a mean
squared error loss for the prediction of the angle map. We
encode the Drivable layer as a tensor Dij ∈ {0, 1}H×W .
To circumvent the discontinuous angles at the singularity



Fig. 3: A T-junction with vehicle tracklets (blue dashed
lines). Merging points for tracklets are indicated with a green
checkmark while exemplary failed merges are indicated with
a red cross. The extracted successor graph is visualized in
white.

α = ±π, we encode the angle at pixel location (i, j) as
a value pair [sin(α), cos(α)]T , producing the Angles layer
Ak

ij ∈ RH×W×2. To summarize, during the TrackletNet
training stage, we minimize the following loss:

L =
1

HW

∑
i<H

∑
j<W

(
Dij log D̂ij + α

∑
k

||Ak
ij − Âk

ij ||22
)
,

(4)

with a weighing factor α between the drivable surface
classification and the angle regression. In our experiments,
we set α = 1.

Subsequently, we train a separate DeepLabv3+ model [7]
to predict the successor graph from pose q, which we
parameterize as a heatmap Sq. To account for the additional
Drivable and Angles input layers, which we feed into this
model in addition to the RGB aerial image crop, we adapt the
number of input layers of the model. We denote this model as
SuccessorNet. To obtain per-pixel labeling of the successor
graph in the image crop, we render the successor graph Sq as
a heatmap in the crop by drawing along the graph edges with
a certain stroke width. This heatmap highlights all regions
in the aerial image that are reachable by an agent placed at
pose q. We train our SuccessorNet model with a binary cross-
entropy loss. Finally, we skeletonize the predicted heatmap
Ŝq using a morphological skinning process [26] and convert
the skeleton into a graph representation.

C. Graph Exploration and Aggregation

The approach described in the previous sections is capable
of inferring the graph structure of the successor graph from
a given query position. In this section, we illustrate how
a complete lane graph can be obtained by running our
AutoGraph model iteratively on its own predictions and by

subsequently aggregating these predictions into a globally
consistent graph representation.

To this end, we leverage a depth-first exploration al-
gorithm: We initialize our model by selecting start poses,
which can either be chosen manually or obtained from our
TrackletNet model. We predict the successor graph from this
initial position and repeatedly query our model along the
successor graph. In the case of a straight road section, for
each forward pass of our model, we add a single future query
pose to the list of query poses to process. If a lane split is
encountered, for each of the successor subgraphs starting at
lane splits, we add a query pose to the list. If a lane ends
or no successor graphs are found, the respective branch of
the aggregated lane graph terminates and we query the next
pose in the list. The exploration terminates once the list of
future query poses is empty. In contrast to prior work [3],
where they aggregate the complete set of successor graphs
according to an elaborate graph aggregation scheme, we
instead only add graph nodes to the global graph where the
virtual agent was placed at a given time. Therefore, we add
edges between graph nodes according to the movement of the
successor graph query position. This aggregation formulation
simplifies the graph aggregation scheme since the number of
nodes to integrate into the global graph is greatly reduced.

IV. DATASET

We evaluate our proposed method on a large-scale dataset
for lane graph estimation from traffic participants. We use
the RGB aerial images and the ground-truth lane graph
annotations from the UrbanLaneGraph dataset [3]. To obtain
the traffic participant tracklets, we leverage the LiDAR
dataset split of the Argoverse2 [22] dataset. The dataset
contains consecutive LiDAR scans for hundreds of driving
scenarios. A single driving scenario entails approx. 20 s
of real-world driving. We leverage the OpenPCDet [20]
detection and tracking suite for LiDAR point clouds with
a CenterPoint [24] model, pre-trained on the NuScenes
dataset [4]. We track the vehicle classes of Car, Bus, Trailer,
and Motorcycle. Subsequently, we transform the respective
LiDAR-centric tracklet coordinates to a global reference
frame that is aligned with the aerial image coordinates.
We smooth each tracklet with a mean filter approach to
account for sensor noise and tracking inaccuracies. We call
our tracklet dataset the UrbanTracklet dataset and make it
publicly available as an addition to the UrbanLaneGraph
dataset [3]. In Tab. II, we list all relevant metrics of our Ur-
banTracklet dataset. In total, our dataset entails tracklets with
an accumulated total length of approximately 12 000 km.

V. EXPERIMENTAL RESULTS

A. Implementation Details

The TrackletNet and SuccessorNet have identical
DeepLabv3+ architectures. The TrackletNet receives an
RGB input image of shape H × W × 3 and outputs
the Drivable and Angles layer map output. We use two
separate decoders to produce the outputs. The drivable area
segmentation has a resolution of H × W while the lane
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Fig. 4: Illustration of our successor graph prediction approach. We first place a virtual agent on a crop of an aerial image.
We first predict the Drivable and Angles map layers from the aerial image crop with a fully convolutional neural network.
We subsequently predict the successor lane heatmap from the aerial image crop, the predicted drivable surface, and lane
angles. The successor lane heatmap is post-processed into a successor graph, encoding the location of successor lanes and
lane split points that are reachable from the current agent’s position.

TABLE I: Comparison of two baseline models with our AutoGraph approach for the Successor-LGP task. We evaluate on
the test split of the UrbanLaneGraph dataset. Best model results are marked in bold.

Model APLS ↑ IoU ↑ TOPO P/R ↑ GEO P/R ↑ SDA20 ↑ SDA50 ↑ Human supervision

LaneGraphNet [30] 0.179 0.063 0.0 / 0.0 0.0 / 0.0 0.0 0.0 ✓
LaneGNN [3] 0.202 0.347 0.600 / 0.699 0.599 / 0.695 0.227 0.377 ✓
AutoGraph (ours) 0.310 0.233 0.412 / 0.628 0.422 / 0.601 0.159 0.678 ✗
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Fig. 5: Qualitative results of our models for the Successor-LGP task. We visualize the successor heatmap and the graph
generated from it for our human-supervised model AutoGraph-GT and our tracklet-supervised model AutoGraph.



TABLE II: Key statistics of our UrbanTracklet dataset

City Number of tracklets Total tracklet length

Austin, TX 287,306 3.642 km
Detroit, MI 73,232 1.099 km
Miami, FL 283,641 3.312 km
Palo Alto, CA 82,351 1.050 km
Pittsburgh, PA 34,505 1.390 km
Washington D.C. 121,557 1.469 km

All 882,592 11.962 km

angle output has the size of H × W × 2. The training
data used to train the two models is obtained from the
dataset described in Sec. IV. We crop image segments of
size 256 px × 256 px from the global aerial image. The
crops are oriented along a randomly sampled tracklet at
the bottom centre of each crop. To increase the efficacy
of our aggregation method (see Sec. III-C), we require the
successor graph prediction to be robust w.r.t. perturbations
in the position of the virtual agent. To provide more diverse
samples with different positional variations, we randomly
rotate the crop with an angle ∆ϕ ∼ U(−π/3, π/3).

Using this sampling method, a vast amount of samples
can be generated since the aerial image can be cropped at
arbitrary locations and orientations. For our experiments, we
generate a total number of 1.5M samples from all cities
combined. We found that the lane graph complexity differs
between different scenes, i.e., straight road sections have
much simpler successor graphs than entries to roundabouts
or multi-arm intersections. We found that a balanced mix
between easy (successor graph has no splits) and hard (suc-
cessor graph has one or more splits) samples is beneficial.

B. Tasks

Following Büchner et al. [3], we evaluate our approach on
two complementary tasks: Successor Lane Graph Prediction
(Successor-LGP), and Full Lane Graph Prediction (Full-
LGP). In Successor-LGP, we aim at predicting a feasible
ego-reachable successor lane graph from the current pose
of the virtual agent. In the task of Full-LGP, we compare
the complete lane graph in a local region to the ground-
truth graph. We evaluate each task on the test images of
the UrbanLaneGraph dataset [3], which are not used for
model training at any stage. For model evaluation, we use
the metrics proposed by Büchner et al.[3].

C. Baselines

To provide relevant comparisons and ablations demonstrat-
ing the efficacy of our AutoGraph approach, we compare
it with a baseline model trained on ground-truth graph
annotations, denoted as AutoGraph-GT. For this model,
we use the ground-truth lane graph in places where we
would otherwise query the recorded vehicle tracklets in our
AutoGraph approach. This approach yields the ground truth
lane graphs and successor lane graphs according to the graph
annotations available in the dataset. The ground-truth lane
graph annotations have none of the shortcomings of tracklet-
based approaches, such as observation noise or erratic driving

behaviour. We also compare to the previously proposed
models LaneExtraction [14] and LaneGNN [3]. Note that
other recent works by Colling et al. [8] and Karlsson et
al. [16] are relevant works but do not aim at solving the
task this work is concerned with and thus cannot be used for
comparison.

D. Task Evaluation

We evaluate our model on two tasks for lane graph
estimation: Successor Lane Graph Prediction and Full Lane
Graph Prediction.

1) Successor Lane Graph Prediction: We evaluate the
performance of our AutoGraph model and compare it with
the recently proposed LaneGNN [30] and LaneGraphNet [3]
models. Tab. I lists the model performances on the test split
of the UrbanLaneGraph dataset. Our experiments indicate
that the performance of our AutoGraph model is superior to
the LaneGraphNet model in all metrics and is mostly on par
with the recently proposed LaneGNN model. While it per-
forms much better in the APLS and SDA50 metric than the
LaneGNN model, it is slightly inferior for the TOPO/GEO
metrics and the Graph IoU metric. We hypothesize that
the performance of our AutoGraph model could be further
improved in scenes with road occlusions due to congested
roads and overarching vegetation since our model struggles
to predict accurate successor graphs in these regions. Specific
treatment of such scenes in the model training schedule (i.e.,
active learning) might be beneficial.

Additionally, we perform ablation studies of multiple
variants of our AutoGraph approach. The results are listed
in Tab. III. In our AutoGraph-no-join variant, we do not join
the tracklets (see Sec. III-A), ignoring their proximity and
their relative angles. Instead, we follow tracklets until they
end or until they leave the image crop. We also do not use
the Drivable (D) and Angles (A) model outputs but feed
the aerial image directly into the SuccessorNet model. For
our AutoGraph model variant, we use joined tracklets as per
Sec. III-A but omit the TrackletNet auxiliary network. For
our AutoGraph+D and AutoGraph+DA model variants, we
add the Drivable and Angles model outputs, respectively. The
model variant AutoGraph-GT does not use the tracklets of
other traffic participants but is trained on ground truth human
graph annotations, where we encode the successor graph as
a heatmap instead of the raw graph representation as in the
LaneGNN or LaneGraphNet models.

Our ablation studies indicate that the AutoGraph-no-join
method overall performs worse than our AutoGraph model
variant. This indicates that joining tracklets to form more
complete successor graphs helps produce higher-quality and
more consistent annotations. Furthermore, the inclusion of
the Drivable map layer on top of the RGB layer improves
model performance for some metrics. Adding the Angles
map layer in addition to the Drivable layer does not con-
sistently improve our evaluation metrics any further. Despite
the additional information that is available about the scene
if the Angles map layer is included, the increased noise
produced by imprecise angle estimates seems to outweigh



TABLE III: Ablation study with multiple model variants for the Successor-LGP task. We compare our AutoGraph model
with our human-supervised model variant AutoGraph-GT and evaluate the influence of different map input layers on the
model performance. We highlight the best-performing model with and without human supervision, respectively, in bold.

Model APLS ↑ IoU ↑ SDA20 ↑ SDA50 ↑ Human supervision Tracklet-
Joining

Drivable
map layer

Angles
map layer

AutoGraph-no-join 0.344 0.232 0.052 0.498 ✗ ✓ ✗ ✗
AutoGraph 0.310 0.233 0.159 0.678 ✗ ✗ ✗ ✗
AutoGraph+D 0.349 0.230 0.063 0.510 ✗ ✓ ✓ ✗
AutoGraph+DA 0.346 0.211 0.080 0.447 ✗ ✓ ✓ ✓
AutoGraph-GT 0.377 0.281 0.048 0.416 ✓ N/A ✗ ✗
AutoGraph-GT+D 0.418 0.268 0.072 0.418 ✓ N/A ✓ ✗
AutoGraph-GT+DA 0.409 0.269 0.059 0.463 ✓ N/A ✓ ✓

(a) Washington, D.C. (b) Miami, detail view

Fig. 6: Qualitative results on the Full-LGP task. We visualize predictions of our aggregated AutoGraph in pink color. Our
aggregation scheme is capable of traversing challenging urban scenes featuring complex graph topologies with high accuracy.

the benefits of having additional information available. This
result supports the results discussed in Zürn et al. [30], where
additional input modalities did not significantly improve
model performance. For our subsequent experiments, we
opted to keep our Drivable and Angles model components
despite the inconclusive results since drivable and angles
maps are a useful model output for potential downstream
tasks. Exemplarily, these outputs could also be aggregated
and used to obtain a robust pixel-wise estimate for the
prediction of drivable surface and lane orientation in large
areas, similar to how we aggregate our successor graphs into
a large graph structure.

For qualitative evaluation, we visualize predictions of our
best-performing model in Fig. 5 and the reference model
AutoGraph-GT. We observe that both models are capable
of modeling the multimodal spatial distribution of successor
lanes efficiently. However, the AutoGraph-GT model shows
more accurate heatmap outputs, since the annotations used
for training stem from the ground-truth successor lane graph.

To summarize, our experiments demonstrate that our Auto-
Graph model variants (trained on tracklets) perform overall
similarly to our AutoGraph-GT model variants (trained on
human lane graph annotations), indicating that vehicle track-
lets recorded from a moving recording platform are suitable
for training lane graph prediction models. In the APLS

metric and the Graph IoU, the AutoGraph-GT model variant
performs better than the AutoGraph model, presumably due
to the higher annotation accuracy due to the better alignment
of annotation with aerial images.

2) Full Lane Graph Prediction: For the Full Lane Graph
Prediction task, we initialize our model on 10 initial poses
per evaluation tile and run our aggregation scheme. We com-
pare the performance of our best-performing model variant
with the prediction results of LaneExtraction [14] and the
aggregation module of LaneGNN [3]. Note that the number
of initialization poses is much smaller compared to the num-
ber of initialization poses used for the LaneGNN model [3].
The results are listed in Tab. IV. We observe that for some
metrics, our AutoGraph model achieves comparable or better
performance than the human-supervised LaneGNN [3] or
LaneGraphNet models [30]. Our model performs worse in
the TOPO and GEO metrics. We note that our AutoGraph
model struggles with road surface occlusions introduced by
overarching vegetation. However, we emphasize that since
our model uses fewer model initialization poses compared
to LaneGNN [3], a degradation in graph connectivity may
be expected since lane graph regions in occluded areas may
not be reached with an iterative aggregation scheme when
no successor graph is found in a given frame.

Our qualitative evaluations show a high graph fidelity,



TABLE IV: Evaluation on the Full-LGP task.

Model APLS IoU TOPO P/R GEO P/R

LaneExtraction [14] 0.072 0.213 0.405 / 0.507 0.491 / 0.454
LaneGNN [3] 0.103 0.384 0.481 / 0.670 0.649 / 0.689
AutoGraph 0.258 0.189 0.503 / 0.529 0.503 / 0.351

recognizing most of the visible lanes and modelling their
connectivity accurately. Fig 6 illustrates two exemplary lane
graphs for the cities of Washington, D.C., and Miami. We
observe that our approach is capable of accurately recon-
structing the lane graph in visually challenging environments.
Large scenes with multiple blocks are handled well and
clearly reflect the underlying lane graph topology. The de-
tailed view of a complex intersection in Miami illustrates that
almost all major intersection arms are covered even in the
presence of visual clutter such as water, boats, parking lots,
and asphalt-colored roofs of buildings. Minor inaccuracies
are produced at the five-armed intersection at the bottom
of the aerial image, where not all connections between
intersection arms are present in the inferred lane graph.

VI. CONCLUSION

In this work, we presented a novel method for lane graph
estimation in urban environments from traffic participant
tracklets. We showed that our model, which is trained solely
on data from tracked vehicles, is capable of predicting highly
accurate lane graphs. We presented a tracklet processing
scheme that allows us to use the observed tracklets of traffic
participants as an annotation source to train our model. We
demonstrated the efficacy of our approach on a large-scale
lane graph dataset for which our approach demonstrated
performance close to a ground-truth supervised baseline
model. Future work will address adding pedestrians and
bicycle tracklets to the approach for capturing more diverse
annotations. Additionally, the improved handling of occluded
roads appears to be a promising direction for future research.
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