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Abstract

This dissertation reports some first steps towards a compositional account of active inference

and the Bayesian brain. Specifically, we use the tools of contemporary applied category theory

to supply functorial semantics for approximate inference. To do so, we define on the ‘syntactic’

side the new notion of Bayesian lens and show that Bayesian updating composes according to the

compositional lens pattern. Using Bayesian lenses, and inspired by compositional game theory,

we define fibrations of statistical games and classify various problems of statistical inference as

corresponding sections: the chain rule of the relative entropy is formalized as a strict section, while

maximum likelihood estimation and the free energy give lax sections. In the process, we introduce

a new notion of ‘copy-composition’.

On the ‘semantic’ side, we present a new formalization of general open dynamical systems

(particularly: deterministic, stochastic, and random; and discrete- and continuous-time) as certain

coalgebras of polynomial functors, which we show collect into monoidal opindexed categories (or,

alternatively, into algebras for multicategories of generalized polynomial functors). We use these

opindexed categories to define monoidal bicategories of cilia: dynamical systems which control

lenses, and which supply the target for our functorial semantics. Accordingly, we construct functors

which explain the bidirectional compositional structure of predictive coding neural circuits under

the free energy principle, thereby giving a formal mathematical underpinning to the bidirectionality

observed in the cortex. Along the way, we explain how to compose rate-coded neural circuits

using an algebra for a multicategory of linear circuit diagrams, showing subsequently that this is

subsumed by lenses and polynomial functors.

Because category theory is unfamiliar to many computational neuroscientists and cognitive

scientists, we have made a particular effort to give clear, detailed, and approachable expositions

of all the category-theoretic structures and results of which we make use. We hope that this

dissertation will prove helpful in establishing a new “well-typed” science of life and mind, and in

facilitating interdisciplinary communication.
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1. Introduction

Thework of which this dissertation is a report began as a project to understand the brain’s “cognitive

map”, its internal representation of the structure of the world. Little of that work is reported here,

for it rapidly became clear at the outset that there was no coherent framework in which such a

project should most profitably be undertaken. This is not to say that no progress on understanding

the cognitive map can be made, a claim which would be easily contradicted by the evidence. Rather,

each research group has its own language and its own research questions, and it is not always

evident how to translate concepts from one group, or even one moment in time, faithfully to

another; what translation is done is performed at best highly informally.

If the aim of science
1
is to tell just-so stories, or if the aim is only to answer one’s own research

questions in isolation, then this state of affairs may be perfectly satisfactory. But the brain and the

behaviours that brains produce are so marvellous and so complex, and the implications of a finer

understanding so monumental, that one cannot but hope that science could do better. Of course, of

late, science has not been doing better, with disciplines as socially important as psychology [201]

and medicine [23, 135, 188] and machine learning [134, 149] struck by crises of reproducibility.

At the same time, as broadband internet has spread across the globe, the sheer amount of output

produced by scientists and other researchers has ballooned, contributing to the impossibility of

verification and the aforementioned translational difficulties, at least if one desires to do other than

simply following the herd. In some sense, although scientists all now speak English, science still

lacks a lingua franca, or at least a sufficiently precise one.

As luck would have it, while mainstream science has been suffering from this loss of faith,

the first phrases of a potentially adequate precise new language have begun to spread, with the

coalescence of a new community of researchers in applied category theory2. One part of the present

1

Or indeed, “if the aim of scientists”, as science itself may not have volition of its own.

2

The first major interdisciplinary meeting of applied category theorists (or at least the first meeting sufficiently confident

to take Applied Category Theory as its name) was held in 2018 in Leiden, although categorical methods have for

some time been used in computer science [210] and physics [16], and especially at their nexus [2, 68, 69]. More

sporadically, category theory had shown up elsewhere, such as in biology [86, 220], network theory [93–95], game

theory [3, 89, 119], cognitive science [37, 85, 183, 209] and linguistics [67, 70, 130], and in 2014 a workshop was held

at Dagstuhl bringing together some of these researchers [4], in what was to be a precursor to the Applied Category

1



difficulty of scientific translation is that each research group has not only its own language, but

also its own perspective; and another part of the difficulty is that these languages and perspectives

are not well connected, with the English language a very lossy medium through which to make

these connections. Fortunately, the language of category theory—being a mathematical rather than

a natural language—resolves both of these difficulties.

Category theory is the mathematics of pattern, composition, connection, and interaction; its

concepts are as crisp and clear as the water of a mountain pool; its simplicity lends it great power.

Categories describe how objects can be constructed from parts, and such compositional descriptions

extend to categories themselves: as a result, the language of category theory is ‘homoiconic’, and

can be used to translate constructions between contexts. One is able to abstract away from irrelevant

details, and show precisely how structures give rise to phenomena; and by choosing the abstractions

carefully, it becomes possible to see that, sometimes, important constructions are ‘universal’, able

to be performed in any relevant context. As a result, category theory resolves both problems of

scientific translation indicated above: concepts expressed categorically are inevitably expressed in

context, and not in isolation; and these contexts are naturally interconnected as if by a categorical

web (with the connections also expressed categorically). Moreover, not being English, categorical

definitions tend to be extremely concise and information-dense; and since the basic concepts of

category theory are themselves simple, concepts so expressed are not biased by geography or

geopolitics.

From the middle of the 20
th
century, the concepts of category theory began to revolutionize much

of mathematics
3
, and applied category theorists such as the present author believe that the time is

nigh for this revolution to spread throughout the sciences and alleviate some of their struggles.

Just as the internet constitutes physical infrastructure that fundamentally accelerates human

communications, we expect category theory to constitute conceptual infrastructure of similar

catalytic consequence. This thesis is a contribution to building this infrastructure, in the specific

domain of computational neuroscience and the general domain of (what was once, and will be again,

called) cybernetics
4
. In particular, we show that a prominent theory of brain function—predictive

Theory meetings; many of those researchers still work in this new interdisciplinary field.

3

The basic concepts of category theory were originally written down by Eilenberg and Mac Lane in order to formalize

processes of translation, and so clarify structures in the ways indicated in the main text above, in the field of algebraic

topology. This occurred at the end of the first half of the 20
th

century, in 1945 [87]. The ideas soon spread beyond

algebraic topology, gathering momentum rapidly from the 1950s, in which Cartan defined the concept of sheaf [56,

57] and Grothendieck reconceived the foundations of algebraic geometry [121]. By the mid-1960s, and especially

through the work of Lawvere on logic [165] and set theory [166], it was clear that category theory would be able to

supply supple but sturdy new foundations for all of mathematics.

4

Owing to its affinity for pattern and abstraction, it is hard to do interesting domain-specific work in category theory

without there being at least some more general results to be found, and indeed this is the case here: what began as

2



coding—has a clear compositional structure, that explains the bidirectional circuitry observed in

the brain [21], and that renders precise connections to the structure of statistical and machine

learning systems [187, 221, 278], as well as to the structure of much larger scale adaptive systems

traditionally modelled by economic game theory [119].

Predictive coding models were originally developed in the neuroscience of vision to explain

observations that neural activity might decrease as signals became less surprising [216] (rather

than increase as signals became more ‘preferred’), as well as to explain the robustness of sensory

processing to noise [246] and as a source of metabolic efficiency [32]
5
. The typical form of these

models involves a neuron or neural ensemble representing the system’s current prediction of (or

expectation about) its input, alongside another neuron or ensemble representing the difference

between this prediction and the actual input (i.e., representing the prediction error). We can think

of the former ensemble as directed from within the brain towards the sensory interface (such as

the retina), and the latter ensemble as carrying information from the world into the brain: this is

the aforementioned bidirectionality.

Another important observation about visual processing in the brain is that its circuitry seems

to be roughly hierarchical [179], with regions of cortex further from the retina being involved in

increasingly abstract representation [212]. Given a model of predictive coding at the level of a single

circuit, accompanied by models of how sensory circuits are coupled (and their representations

transformed), a natural next step is to construct hierarchical predictive coding models, in an attempt

to extend the benefits of the single circuit to a whole system; and indeed such hierarchical circuits

were prominently proposed in the literature [104, 216].

This hierarchical structure is a hint of compositionality, and thus a sign that a categorical

approach may be helpful and enlightening. This impression is strengthened when one considers

a particularly influential class of predictive coding models, obtained in the context of the “free

energy principle” [100, 104, 107], where the underlying equations themselves exhibit a form of

compositionality which is (more or less explicitly) used to obtain the hierarchical models
6
. Despite

this hint of compositionality, the equations of motion for these hierarchical systems are typically

derived from scratch each time [21, 48, 76, 108, 148, 264, 265], a redundant effort that would not be

a project in theoretical neuroscience swiftly became a study of adaptive and cybernetic systems more broadly, of

which the brain is of course the prime exemplar.

5

If the prediction is good, then communicating the difference between prediction and actuality can be done much more

efficiently than transmitting the whole incoming signal, which would contain much redundant information. This is

the principle underlying most data compression algorithms.

6

That is to say, the dynamics of each level of hierarchy i are governed by a quantity Fi, and the dynamics of two

adjacent levels i and i ` 1 are governed by Fi ` Fi`1; see Buckley et al. [48, Eq. 72].
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required had a compositional formalism such as category theory been used from the start. This

thesis supplies such a categorical formalism and exemplifies it with hierarchical predictive coding

under the free energy principle.

The “free energy” framework not only underpins a modern understanding of predictive coding,

but has more broadly been proposed as a unified theory of brain function [100], and latterly of all

adaptive or living systems [38, 102, 159, 204]. In the neuroscientific context, it constitutes a theory

of the Bayesian brain, by which most or all brain function can be understood as implementing

approximate Bayesian inference [160]; in the more broadly biological (or even metaphysical)

contexts, this claim is generalized to state that all life can be understood in this way. However,

despite these claims to universality, these proposals have to date been quite informally specified,

leading to confusion [28, 103] and charges of unfalsifiability [38, 71, 281]. As we will see, category

theory has a rich formal vocabulary for precisely describing universal constructions, and so not

only does a categorical formulation of the free energy framework promise to clarify the current

confusions, but it may be expected also to shed light on its potential universality. In particular, as

we discuss in Chapter 8, we will be able to make precise the questions of whether any dynamical

system of the appropriate type can universally be seen as performing approximate inference (in our

language, “playing a statistical game”), and of whether any cybernetic system (such as an economic

game player) can be expressed as an active inference system.

The notion of active inference is closely related to the free energy framework: an active inference

model of a system describes both the processes by which it updates its internal states on the

basis of incoming signals, and the processes by which it chooses how to act, using approximate

Bayesian inference. In this thesis, we do not get as far as a completely general formulation of active

inference, but we hope that our development of statistical games and their “dynamical semantics” in

approximate inference doctrines will provide a useful starting point for such a formulation, and in our

final chapter (8) we sketch how we might expect this formulation to go. Because active inference

models, and the free energy framework more broadly, are descriptions of systems that are ‘open’

to an environment, interacting with it, and therefore situated “in context”, they are particularly

suited to a category-theoretic reformulation. Likewise, Bayesianism and the free energy framework

lend themselves to a subjectivist metaphysics [102, 114, 115], which is itself in alignment with

the unavoidable perspective-taking of categorical models, and which is not dissimilar from the

emerging ‘biosemiotic’ reconceptualization of biological information-processing [20]. As we have

indicated, categorical tools help us to draw connections between concepts, and we see our efforts
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as a contribution to this endeavour.

It is through these connections that we hope eventually to make contact again with the cognitive

map. As noted above, the state of the art is fragmented, but there exist current models that are

expressed in the language of approximate (variational) inference [279], models expressed in the

language of reinforcement learning [257], and models that attempt to combine the two [185]. We

will see throughout the thesis that reinforcement learning (and its cousin, game theory) is closely

related to approximate inference, and so we expect that the foundations developed here, along

with the extensions proposed in §8.1.3, will help us unify these accounts. The key observation that

we expect to drive such a development is that learning a cognitive map (alternatively, learning

a “world model”) means internalizing a representation of the structure of the environment; and

comparing and translating structures is category theory’s forte.

Of course, even if the theory that we develop is sufficient to unify these computational-

phenomenological models, this is not to say it will satisfy all neuroscientists, many of which

may be expected to desire more biologically detailed models. In the contemporary undergraduate

neuroscience curriculum, one is taught informally to relate models at a high ‘computational’ level

to lower level models concerned with biological ‘implementation’, following Marr’s “three levels

of explanation” [179]. As we discuss in §2.2.3, this story is a shadow of the categorical notion

of functorial semantics, by which structures are translated precisely between contexts formalized

as categories. Although we concentrate on the more abstract computational level in this thesis,

our discussion of functorial semantics foreshadows the introduction of formal algebraic tools for

building biologically plausible neural circuit models (§3.3).

Our treatment of cognitive and neural systems is not the first to adopt categorical methods,

but we do believe that it is the first to do so in a comprehensively integrated and wide-ranging

way, taking functorial semantics seriously. Categorical concepts have been variously proposed in

biology as early as 1958 [220], and in cognitive science (with one eye toward the brain) since at

least 1987 [84, 85]; more recently, category theory has been used to study classic cognitive-science

concepts such as systematicity [209]. While inspirational, these studies do not make the most of

the translational power of categories, using only some concepts or methods in isolation. Moreover,

by working almost purely categorically, these works were invariably rather abstract, and did not

make direct contact with the tools and concepts of mainstream mathematical science. As a result,

they did not have the unifying impact or adoption that we hope the new wave of applied category

theoretical developments to have.
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Our primary motivation in writing this thesis is to lay the groundwork for well-typed cognitive

science and computational neuroscience. ‘Types’ are what render categorical concepts so precise,

and what allow categorical models to be so cleanly compositional: two systems can only “plug

together” if their interface types match. Because every concept in category theory has a type (i.e.,

every object is an object of some category), categorical thinking is forced to be very clear. As we

will sketch in §2.3.4, the “type theories” (or “internal languages”) of categories can be very richly

structured, but still the requirement to express concepts with types is necessarily burdensome. But

this burden is only the burden of thinking clearly: if one is not able to supply a detailed type, one

can resort to abstraction. And, to avoid the violence of declaring some object to be identified as of

some type
7
, it is necessary to understand the relationships between types; fortunately, as we will

soon make clear, and as we have attempted to emphasize, category theory is fundamentally the

mathematics of relationship.

Contemporary science is unavoidably computational, and the notion of ‘type’ that we invoke

here is closely related to (though not identical with) the informal notion of type that is used in

computer programming. Just as one of the strategies adopted to overcome the crises of modern

science that we invoked at the opening of this introduction is the making available of the code and

data that underlie scientific studies, we can envisage a near future in which accompanying these is

a formal specification of the types of the concepts that each study is about
8
. Some work along these

lines has already begun, particularly with the development of the Algebraic Julia ecosystem [122].

The free energy framework, like the structurally adjacent framework of compositional game

theory, has a strong flavour of teleology (that follows directly from its mathematics): systems act in

order to make their predictions come true. We therefore hope that, although we do not quite get as

far as a full compositional theory of active inference, the contributions reported in this dissertation

may in some small way help to make this particular prediction (of a well-typed science) come

true, and thereby help to overcome some of the aforenoted crises of scientific faith—as well as to

shed light not only on the form and function of ‘Bayesian’ brains, but also other complex adaptive

systems, such as the whole scientific community itself.

7

A perspective for which we must thank Brendan Fong.

8

One might think of this specification as akin to a scientifically elaborated version of the notion of header file in
programming languages such as C or C++: these files specify the types of functions and data structures, typically

without instantiating these types with detailed implementations. We can thus think of category theory as a very rich

metaprogramming language for the mathematical sciences (and this analogy goes quite far, as categorical proofs are

typically ‘constructive’ and hence correspond to computable functions, as we also sketch in §2.3.4).
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1.1. Overview of the dissertation

Category theory being quite alien to most researchers in computational neuroscience (and the

cognitive sciences more broadly), we begin the work of this dissertation in Chapter 2 with

a comprehensive review of the concepts and results needed to understand our mathematical

contributions. Using three hopefully familiar examples, we introduce categories as contrapuntal

to graphs, which are more familiar to scientists, but which lack important features of categories

such as composition and, somehow, dynamism. We then explain how enriched categories allow us

to “connect the connections” of categories, and attach extra data to them, and we exemplify these

concepts with the 2-category of categories, functors, and natural transformations—as well as a more

formal discussion of functorial ‘translation’ and semantics. The remainder of Chapter 2 is dedicated

to introducing the remaining key concepts of basic category theory: universal constructions, and

the Yoneda Lemma (categories’ fundamental theorem). All of these ideas are very well known to

category theorists.

In Chapter 3, we begin to reapproach neural modelling, and more generally the ‘algebraic’

modelling of the structure of interacting systems. We explain how ‘monoidal’ categories allow us to

consider processes “in parallel” (as well as just sequentially), and how this gives us a formal account

of the concept of ‘parameterized’ system. We then change the perspective a little, and introduce

our first piece of original work: an account of how to connect neural circuits into larger-scale

systems, using ‘multicategorical’ algebra. The remainder of the chapter is dedicated to developing

the theory of such algebra to the point needed later in the thesis, ending with the introduction

of polynomial functors which will supply a rich syntax for the interaction of systems, as well as a

language in which to express their dynamical semantics.

Chapter 4 presents our first main result, that Bayesian updating composes according to the

categorical ‘lens’ pattern. This result is abstractly stated, and so applies to whichever compositional

model of probability one might be interested in—but because we are later interested in concrete

models, we spend much of the chapter recapitulating compositional probability theory using the

tools introduced in Chapters 2 and 3 and instantiating it in discrete and continuous settings. We

also introduce and contextualize the lens pattern, in order to define our new notion of Bayesian lens,

which provides a mathematical formalization of the bidirectionality of predictive coding circuits.

Our main aim in this thesis is to formalize predictive coding through functorial semantics, and

Bayesian lenses will provide an important part of the ‘syntax’ of statistical models that we need. But

the Bayesian lenses that satisfy the main result of Chapter 4 are ‘exact’, while natural systems are
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inherently approximate. In order to measure the performance of such approximate systems, Chapter

5 introduces our next new notion, the concept of statistical game, which attaches loss functions to

lenses. These statistical games collect into a categorical structure known as a fibration (a kind of

categorified fibre bundle), and we can use the sections of this fibration to classify well-behaved

systems of approximate inference into loss models. These loss models include well-known quantities

such as the relative entropy, (maximum) likelihood, the free energy, and the Laplace approximation

of the latter. However, in order to make this classification work, we first introduce a new kind

of categorical composition, which we call copy-composition, and which seems to cleave the basic

process of composition in categories of stochastic channels, which typically proceeds first by

copying and then by marginalization (‘discarding’).

Having developed the syntactic side of predictive coding, we turn in Chapter 6 to the semantics,

which is found in a new abstract formalization of the concept of open dynamical system. We

make much use here of the language of polynomial functors: these will represent the interfaces of

interacting systems, and the dynamical systems themselves will be defined as particular classes of

morphisms of polynomials. We extend the traditional notion of polynomial functor to a setting

which allows for non-determinism, and thereby obtain new categories of open Markov process

and random dynamical system, both in discrete and continuous time. We then synthesize these

developments with the algebraic structures of Chapter 3, to define monoidal bicategories of

‘hierarchical’ cybernetic systems that we call cilia, as they control lenses.

Connecting these pieces together, Chapter 7 presents our functorial formalization of predictive

coding, using a new notion of approximate inference doctrine, by which statistical models are

translated into dynamical systems. This formalizes the process by which research in active inference

turns the abstract specification of a “generativemodel” into a dynamical system that can be simulated

and whose behaviours can then be compared with experimentally observed data. We explain how

this functorial process is decomposed into stages, and then exhibit them in two ways: first, with

the basic ‘Laplacian’ form of predictive coding; and then by introducing ‘Hebbian’ plasticity.

Finally, Chapter 8 reviews the prospects for future work, from the mathematics of the cognitive

map (a programme that we call compositional cognitive cartography), to the composition of multi-

agent systems and ecosystems and the connections with compositional game theory, categorical

cybernetics, and categorical systems theory. We close with some speculation on a new mathematics

of life, along with associated developments of fundamental theory.
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1.2. Contributions

The main individual contribution of this thesis is the formalization of models of predictive coding

circuits as functorial semantics, and the associated development and exemplification of fibrations of

statistical games, as well as the introduction of Bayesian lenses and the proof that Bayesian updates

compose optically. We believe our presentation of general open dynamical systems as certain

polynomial coalgebras also to be novel, along with the concept of cilia and their associated monoidal

bicategories. The categories of statistical games (and of Bayesian lenses) supply the syntax, and

the monoidal bicategories of cilia the semantics, for our functorial treatment of predictive coding,

and hence the basis for our compositional active inference framework. Each of these structures is

to our knowledge new, although of course inspired by much work that has gone before, and by

interactions with the beneficent community of researchers of which this author finds himself a

member.

Each of these strands of work has in some way been exhibited through publication, principally

as refereed presentations at the conference on Applied Category Theory (ACT) in 2020 [251], 2021

[252], and 2022 [254] (each published in the conference proceedings); but also in preliminary form at

the NeurIPS 2019 Context and Compositionality workshop [247], through a number of more informal

invited talks (e.g. [249]), as one main theme of a full-day workshop at the 2022 Cognitive Science

Society conference [12], and our ongoing series of preprints on compositional active inference

[250, 253]. Our work on Bayesian lenses, in collaboration with Dylan Braithwaite and Jules Hedges

[42]
9
, has been accepted for publication at MFCS 2023; and we are presently preparing for journal

publication an account of our compositional framework for predictive coding aimed explicitly at

computational neuroscientists.

Besides these specific novel contributions, we hope that this dissertation contributes to a

renaissance of cognitive and computational (neuro)science through the adoption of categorical

methods; it is for this reason that we have been so diligent in our exposition of the basic theory.

We hope that this exposition proves itself a useful contribution for interested researchers, and that

its cognitive-neuroscientific framing is sufficiently novel to be interesting.

Some work performed during the author’s DPhil studies is not included in this dissertation.

In particular, there has unfortunately not been the scope to include our simulation results on a

fragment of the circuitry underlying the cognitive map—a study on the development of place and

head-direction cells, which was published as [255]—although this did motivate our algebra of

9

See Remark 4.3.1 for the scholarly history.
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rate-coded neural circuits (§3.3), which is to the best of our knowledge novel (though much inspired

by earlier work on wiring-diagram algebras [237, 282]). We have also not exhibited our work on

Bayesian optics (as an alternative to Bayesian lenses) [248], as this would require a digression

through some unnecessarily complicated theory; and we have not presented in detail the examples

of “polynomial life” presented at ACT 2021 [252].

A first draft of this thesis was produced in December 2022, at which point the author intended to

submit it. However, shortly before submission, the author realized that the then-current treatment

of statistical games could be much improved. This led to the present fibrational account, and the

new notion of loss model (which formalizes the chain rule of the relative entropy), but which also

demanded a corresponding revision of the treatment of predictive coding. At the cost of some

higher-categorical machinery, we believe these changes amount to a substantial improvement,

worth the delay in submission. The new account of statistical games has been accepted as a

proceedings paper at ACT 2023.
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2. Basic category theory for computational
and cognitive (neuro)scientists

This chapter constitutes a comprehensive review of the concepts and results from basic category

theory that scaffold the rest of the thesis, written for the computational neuroscientist or cognitive

scientist who has noticed the ‘network’ structure of complex systems like the brain andwhowonders

how this structure relates to the systems’ function. Category theory gives us a mathematical

framework in which precise answers to such questions can be formulated, and reveals the

interconnectedness of scientific ideas. After introducing the notions of category and diagram

(§2.1), we swiftly introduce the notions of enriched category, functor, and adjunction (§2.2), with

which we can translate and compare mathematical concepts. We then explain how category theory

formalizes pattern as well as translation, using the concept of universal construction (§2.3), which

we exemplify with many common and important patterns. Finally, we introduce the fundamental

theorem of category theory, the Yoneda Lemma, which tells us that to understand a thing is to see

it from all perspectives (§2.4).

Category theory is well established in the foundations of mathematics, but not yet explicitly in

the foundations of science. As a result, although the only slightly original part of this chapter is its

presentation, we have given proofs of most results and plentiful examples, in order to familiarize

the reader with thinking categorically.

2.1. Categories, graphs, and networks

We begin by motivating the use of category theory by considering what is missing from a purely

graph-theoretic understanding of complex computational systems. Later in the thesis, we will see

how each of the diagrams depicted below can be formalized categorically, incorporating all the

scientifically salient information into coherent mathematical objects.
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2.1.1. Three examples

2.1.1.1. Neural circuits: dynamical networks of neurons

In computational and theoretical neuroscience, it is not unusual to encounter diagrams depicting

proposed architectures for neural circuits, such as on the left or right below:

E

I

On the left, we have depicted a standard “excitatory-inhibitory circuit” motif, in which one neuron

or ensemble of neurons E receives input from an external source as well as from a counterposed

inhibitory circuit I which itself is driven solely by E. On the right, we have reproduced a figure

depicting a “predictive coding” circuit from Bogacz [33], and we see that the E-I circuit is indeed

motivic, being recapitulated twice: we could say that the predictive coding circuit is composed

from interconnected E-I motifs, in a sense similarly to the composition of the E-I circuit from the

subnetworks E and I of neurons.

Both circuits have evident graphical structure — the nodes are the white circles, and the edges

the black wires between them — but of course there is more to neural circuits than these graphs:

not only do graphs so defined omit the decorations on the wires (indicating whether a connection

is excitatory or inhibitory), but they miss perhaps the more important detail, that these are circuits

of dynamical systems, which have their own rich structure and behaviours. Moreover, mere graphs

miss the aforementioned compositionality of neural circuits: we can fill in the white circles with

neurons or ensembles or other circuits and we can wire circuits together, and at the end of doing

so we have another ‘composite’ neural circuit.

Working only with graphs means we have to treat the decorations, the dynamics, and the

compositionality informally, or at least in some other data structure, thereby increasing the overhead

of this accounting.

2.1.1.2. Bayesian networks: belief and dependence

In computational statistics, one often begins by constructing a model of the causal dependence

between events, which can then be interrogated for the purposes of inference or belief-updating.

Such models are typically graphical, with representations as shown below; the nodes are again the
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circles, and the dashed edge implies the repetition of the depicted motif:

On the left, the graph represents a model of an event with two possible antecedents; on the right, a

set of events (or an event, repeated) with a recurrent cause. Although these graphical models —

otherwise known as Bayesian networks — may encode useful information about causal structure,

in themselves they do not encode the information about how events are caused; this is data that

must be accounted for separately. And once again, mere graphs are unlike causality in that they

are non-compositional: the structure does not explain how, given the causal dependence of B on A

and A1
and of C on B, one might model the dependence of C on A.

2.1.1.3. Computations: sets and functions

In a similar way, pure computations — in the sense of transformations between sets of data — are

often depicted graphically:

Wf

Wo

Wi

Wc

Uf

Uo

Ui

Ui

`

`

`

`

d

d

`

d

σ

σ

σ

σ

ct´1

xt

ht´1

ct

ht

Here, we have depicted a single ‘cell’ from a long short-term memory network [132]: a function

that ingests three variables (ct´1, an internal state; xt, an external input; and ht´1, an internal

‘memory’), and emits two (ct, a new internal state; and ht, an updated memory). This function is

itself composed from other functions, depicted above as boxes. (One typically takes the variables

ct, xt, ht as vectors of given dimension for all t, so that the domain and codomain of the function

are products of vector spaces; the boxesWi and Ui represent matrices which act on these vectors;

the boxes ` and d denote elementwise sum and product; the box σ represents the elementwise
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application of a logisitic function; and the splitting of wires represents the copying of data.) The

nodes of the graph in this instance are the functions (boxes), and the edges encode the flow of

information. Once more, however, a purely graphical model does not account for the compositional

structure of the computation: we could fill in the boxes with other graphs (representing elaborations

of the computations implied), and we could adjoin another such diagram beside and connect the

wires where the types match. To account for this compositionality — here and in the examples

above — we will need to add something to the structure: we need to move from graphs to categories.

2.1.2. From graphs to categories

A category is a directed graph in which edges can be composed: whenever the target of an edge f

is the source of another edge g, then there must be a composite edge denoted g ˝ f whose source is

the source of f and whose target is the target of g, as in the following diagram.

‚

‚ ‚f

g

g˝f

This composition rule incorporates into the structure a way to allow systems with compatible

interfaces to connect to each other, and for the resulting composite system also to be a system

of the same ‘type’; but as we will see, it has some other important consequences. Firstly, every

(‘small’) category has an underlying directed graph: but because of the composition rule, this

underlying graph typically has more edges than the graphs of the examples above, in order to

account for the existence of composites. Secondly, it is the edges, which in a categorical context we

will call morphisms, that compose: the nodes, which we will call objects, represent something like

the ‘interfaces’ at which composition is possible. This means that we cannot just interpret a circuit

diagram “as a category”, whose objects are ensembles of neurons and whose morphisms are their

axons: as we will see in §3.3, we need to do something a bit more sophisticated.

Before we get to that, however, we must first define categories precisely. We will take a graphical

approach, with a view to interpreting the above examples categorically, starting with the diagram

demonstrating the composition of g ˝ f : how should we interpret this in a category? To answer

this question, we first need to specify exactly what we mean by ‘graph’.

Definition 2.1.1. A directed graph G is a set G0 of nodes along with a set Gpa, bq of edges from

a to b for each pair a, b : G0 of nodes. We will sometimes write G1 to denote the disjoint union
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of the sets of edges, G1 :“
ř

a,b Gpa, bq. If e : Gpa, bq is an edge from a to b, we will write this as

e : a Ñ b and call a its source or domain and b its target or codomain. This assignment of domain

and codomain induces a pair of functions, dom, cod : G1 Ñ G0 respectively, such that for e : a Ñ b

we have dompeq “ a and codpeq “ b.

A category is a graph whose edges can be ‘associatively’ composed together, and where every

node has a special edge from itself to itself called its ‘identity’.

Definition 2.1.2. A (small) category C is a directed graph whose nodes are each assigned a

corresponding identity edge and whose edges are equipped with a composition operation ˝ that is

associative and unital with respect to the identities. In the context of categories, we call the nodes

C0 the objects or 0-cells, and the edges C1 the morphisms or 1-cells.

Identities are assigned by a function id : C0 Ñ C1 satisfying dompidaq “ a “ codpidaq for every

object a. The composition operation is a family of functions ˝a,b,c : Cpb, cq ˆ Cpa, bq Ñ Cpa, cq for

each triple of objects a, b, c. The notation Cpa, bq indicates the set of all morphisms a Ñ b, for each

pair of objects a and b; we call this set the hom set from a to b.

Given morphisms f : a Ñ b and g : b Ñ c, their composite a
f
ÝÑ b

g
ÝÑ c is written g ˝ f , which

we can read as “g after f”.

Associativity means that h ˝ pg ˝ fq “ ph ˝ gq ˝ f , and so we can omit the parentheses to

write h ˝ g ˝ f without ambiguity. Unitality means that, for every morphism f : a Ñ b, we have

idb ˝f “ f “ f ˝ ida.

Remark 2.1.3. We say small category to mean that both the collection of objects C0 and the

collection of morphisms C1 is a true set, rather than a proper class. We will say a category is locally

small if, for every pair a, b of objects in C, the hom set Cpa, bq is a set (rather than a proper class);

this allows for the collection of objects still to be a proper class, while letting us avoid “size issues”

such as Russell’s paradox in the course of normal reasoning.

More precisely, we can fix a ‘universe’ of sets, of size assumed to be smaller than a hypothesized

(and typically inaccessible) cardinal ℵi. Then we say that a category is locally small with respect to

ℵi if every hom set is within this universe, or small if both C0 and C1 are. We say that a category is

large if it is not small, but note that the ‘set’ of objects or morphisms of a large category may still

be a ‘set’, just in a larger universe: a universe whose sets are of cardinality at most ℵi`1 ą ℵi.

In the remainder of this thesis, we will typically assume categories to be locally small with

respect to a given (but unspecified) universe.
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Our first example of a category is in some sense the foundation of basic category theory, and

supplies a classic illustration of size issues.

Example 2.1.4. The category Set has sets as objects and functions as morphisms. The identity on

a setA is the identity function idA : A Ñ A : a ÞÑ a. Composition of morphisms in Set is function

composition: given f : A Ñ B and g : B Ñ C , their composite is the function g ˝ f : A Ñ C

defined for each a : A by pg ˝ fqpaq “ gpfpaqq; it is easy to check that function composition is

associative.

Note that Set is a large category: the set Set0 of all sets of at most size ℵi must live in a larger

universe.

Not all categories are large, of course. Some are quite small, as the following examples

demonstrate.

Example 2.1.5. There is a category with only two objects 0 and 1 and four morphisms: the

identities id0 : 0 Ñ 0 and id1 : 1 Ñ 1, and two non-identity morphisms s, t : 0 Ñ 1, as in the

following diagram:

0 1

s

t

When depicting categories graphically, we often omit identity morphisms as they are implied by

the objects.

Example 2.1.6. There is a category, denoted 1, with a single object ˚ and a single morphism, its

identity.

Example 2.1.7. The natural numbers N form the morphisms of another category with a single

object ˚: here, composition is addition and the identity morphism id˚ : ˚ Ñ ˚ is the number 0.

Since addition is associative and unital with respect to 0, this is a well-defined category.

Since a category is a directed graph equipped with a composition operation, we can ‘forget’ the

latter to recover the underlying graph on its own.

Proposition 2.1.8. Given a category C, we can obtain a directed graph pC0, C1q by keeping the

objects C0 and morphisms C1 and forgetting the composition and identity functions.

Proof. Take the objects to be the nodes and the morphisms to be the edges.
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However, in the absence of other data, obtaining a category from a given graph is a little

more laborious, as we must ensure the existence of well-defined composite edges. The following

proposition tells us how we can do this.

Proposition 2.1.9. Given a directed graph G, we can construct the free category generated by G,

denoted FG, as follows. The objects of FG are the nodes G0 of G. The morphisms FGpa, bq from

a to b are the paths in G from a to b: finite lists pe, f, gq of edges in which the domain of the first

edge is a, the codomain of any edge equals the domain of its successor (if any), and the codomain

of the last edge is b. Composition is by concatenation of lists, and the identity morphism for any

node is the empty list pq.

Proof. Let f :“ pf1, . . . , flq : a Ñ b, g :“ pg1, . . . , gmq : b Ñ c, and h :“ ph1, . . . , hnq : c Ñ d be

paths. Then

h ˝ pg ˝ fq “ ph1, . . . , hnq ˝ pf1, . . . , fl, g1, . . . , gmq

“ pf1, . . . , fl, g1, . . . , gm, h1, . . . , hnq

“ pg1, . . . , gm, h1, . . . , hnq ˝ pf1, . . . , flq “ ph ˝ gq ˝ f

so concatenation of lists is associative. Concatenation is trivially unital on both right and left:

pq ˝ pf1, . . . , flq “ pf1, . . . , flq “ pf1, . . . , flq ˝ pq. So the free category as defined is a well-defined

category.

Remark 2.1.10. Observe that the underlying graph of FG is not in general the same as the original

graph G: because the edges of G have no composition information (even if, given a pair of edges

a Ñ b and b Ñ c, there is an edge a Ñ c), we needed a canonical method to generate such

information, without any extra data. Since there is a notion of path in any graph, and since paths

are naturally composable, this gives us the canonical method we seek.

We begin to see some important differences between categories and graphs, as foreshadowed

above. Categories are somehow more ‘dynamical’ objects, more concerned with movement and

change than graphs; later in Chapter 6, we will even see how a general definition of dynamical

system emerges simply from some of the examples we have already seen.

At this point, to emphasize that categories allow us to study not just individual structures

themselves but also the relationships and transformations between structures, we note that directed

graphs themselves form a category.
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Example 2.1.11. Directed graphs pG0,G1, domG , codGq are the objects of a category, denoted

Graph. Given directed graphs G :“ pG0,G1, domG , codGq and H :“ pH0,H1,domH, codHq, a

morphism f : G Ñ H is a graph homomorphism from G to H: a pair of functions f0 : G0 Ñ G0

and f1 : G1 Ñ H1 that preserve the graphical structure in the sense that for every edge e in G,

f0pdomGpeqq “ domHpf1peqq and f0pcodGpeqq “ codHpf1peqq. Since graph homomorphisms are

pairs of functions, they compose as functions, and the identity morphism on a graph G is the pair

pidG0 , idG1q of identity functions on its sets of nodes and edges.

In large part, the power of category theory derives from its elevation of relationship and

transformation to mathematical prominence: objects are represented and studied in context, and

one we gain the ability to compare patterns of relationships across contexts. By expressing these

patterns categorically, we are able to abstract away irrelevant detail, and focus on the fundamental

structures that drive phenomena of interest; and since these patterns and abstract structures

are again expressed in the same language, we can continue to apply these techniques, to study

phenomena from diverse perspectives. Indeed, as we will soon see, category theory is ‘homoiconic’,

able to speak in its language about itself.

Accordingly, it is often helpful to apply graphical or diagrammatic methods to reason about

categories: for example, to say that two (or more) morphisms are actually equal. We can illustrate

this using the category Graph: the definition of graph homomorphism requires two equalities to

be satisfied. These equalities say that two (composite) pairs of functions are equal; since functions

are morphisms in Set, this is the same as saying that they are equal as morphisms there. Using the

fact that Set has an underlying graph, we can represent these morphisms graphically, as in the

following two diagrams:

G1 H1

G0 H0

f1

f0

domG domH

G1 H1

G0 H0

f1

f0

codG codH (2.1)

Then to say that f0 ˝ domG “ domH ˝f1 and f0 ˝ codG “ codH ˝f1 is to say that these diagrams

commute.

Definition 2.1.12. We say that two paths in a graph are parallel if they have the same start and

end nodes. We say that a diagram in a category C commutes when every pair of parallel paths in

the diagram corresponds to a pair of morphisms in C that are equal.
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To clarify this definition, we can use category theory to formalize the concept of diagram, which

will have the useful side-effect of simultaneously rendering it more general and more precise.

2.1.2.1. Diagrams in a category, functorially

The richness of categorical structure is reflected in the variety of diagrammatic practice, and in this

thesis we will encounter a number of formal diagram types. Nonetheless, there is one type that is

perhaps more basic than the rest, which we have already begun to call diagrams in a category: these

are the categorical analogue of equations in algebra. Often in category theory, we will be interested

in the relationships between more than two morphisms at once, and expressing such relationships

by equations quickly becomes cumbersome; instead, one typically starts with a directed graph and

interprets its nodes as objects and its edges as morphisms in one’s category of interest.

Formally, this interpretation is performed by taking the category generated by the graph and

mapping it ‘functorially’ into the category of interest. However, in order to account for relationships

such as equality between the morphisms represented in the graph, the domain of this mapping

cannot be as ‘free’ as in Proposition 2.1.9, as it needs to encode these relationships. To do this, we

can quotient the free category by the given relationships, as we now show.

Proposition 2.1.13 (Mac Lane [175, Prop. II.8.1]). Let G be a directed graph, and suppose we are

given a relation „a,b on each set FGpa, bq of paths a Ñ b; write „ for the whole family of relations,

and call it a relation on the category C. Then there is a category FG{„, the quotient of the free

category FG by „, which we call the category generated by G with relations „ or simply generated

by pG,„q.

The objects of FG{„ are again the nodes G0. The morphisms are equivalence classes of paths

according to „, extended to a congruence: suppose p „a,b p
1
; then they both belong to the same

equivalence class rps, and correspond to the same morphism rps : a Ñ b in FG{„.

Before we can make sense of and prove this proposition, and thus establish that composition in

FG{„ does what we hope, we need to define congruence.

Definition 2.1.14. Suppose „ is a relation on the category C. We call „ a congruence when its

constituent relations „a,b are equivalence relations compatible with the compositional structure of

C. This means that

1. if f „a,b f
1 : a Ñ b and g „b,c g

1 : b Ñ c, then g ˝ f „a,c g
1 ˝ f 1

; and

2. for each pair of objects a, b : C, „a,b is a symmetric, reflexive, transitive relation.
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The notion of congruence is what allows us to extend the family of relations „ to composites of

morphisms and thus ensure that it is compatible with the categorical structure; constructing the

most parsimonious congruence from „ is the key to the following proof.

Proof sketch for Proposition 2.1.13. First of all, we extend „ to a congruence; we choose the smallest

congruence containing „, and denote it by –. Explicitly, we can construct – in two steps. First,

define an intermediate relation » as the symmetric, reflexive, transitive closure of „. This means

that if f » f 1
, then either f „ f 1

, or f 1 „ f (symmetry), or f “ f 1
(reflexivity), or there exists

some ϕ : a Ñ c such that f „ ϕ and ϕ „ f 1
(transitivity). Next, define – as the closure of » under

composition. This means that if φ – φ1 : a Ñ c, then either φ » φ1
, or there exist composable

pairs f, f 1 : a Ñ b and g, g1 : b Ñ c such that f » f 1
and g » g1

, and such that φ “ g ˝ f and

φ1 “ g1 ˝ f 1
. To see that – is the least congruence on FG, observe that every congruence must

contain it by definition.

Having constructed the congruence –, we can form the quotient of FG by it, which we denote

by FG{„ in reference to the generating relation „. As in the statement of the proposition, the

objects of FG{„ are the nodes of G and the morphisms are equivalence classes of paths, according

to –; since – is by definition an equivalence relation, these equivalence classes are well-defined.

Moreover, the composite of two equivalence classes of morphisms rf s : a Ñ b and rgs : b Ñ c

coincides with the equivalence class rg ˝ f s.

Example 2.1.15. To exemplify the notion of category generated with relations, let J denote the

following directed graph

G1 H1

G0 H0

φ1

φ0

δG δH

and let „ be the relation φ0 ˝ δG „ δH ˝ φ1. Then the category FJ {„ generated by pJ ,„q has

four objects (G1, G0, H1, H0) and nine morphisms: an identity for each of the four objects; the

morphisms φ0 : G0 Ñ H0, φ1 : G1 Ñ H1, δG : G1 Ñ G0, and δH : H1 Ñ H0; and a single

morphism G1 Ñ H0, the equivalence class consisting of φ0 ˝ δG and δH ˝ φ1.

The category FJ {„ generated in this example expresses the commutativity of one of the

diagrams defining graph homomorphisms, but as things stand, it is simply a category standing

alone: to say that any particular pair of functions pf0, f1q satisfies the property requires us to

interpret the morphisms φ0 and φ1 accordingly as those functions. That is, to interpret the diagram,
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we need to translate it, by mapping FJ {„ into Set. Such a mapping of categories is known as a

functor.

Definition 2.1.16. A functor F : C Ñ D from the category C to the category D is a pair of

functions F0 : C0 Ñ D0 and F1 : C1 Ñ D1 between the sets of objects and morphisms that preserve

domains, codomains, identities and composition, meaning that F0pdomCpfqq “ domDpF1pfqq

and F0pcodCpfqq “ codDpF1pfqq for all morphisms f , F1pidaq “ idF paq for all objects a, and

F1pg ˝ fq “ F1pgq ˝ F1pfq for all composites g ˝ f in C.

Remark 2.1.17. Note that we could equivalently say that a functor C Ñ D is a homomorphism

from the underlying graph of C to that ofD that is additionally functorial, meaning that it preserves

identities and composites.

Notation 2.1.18. Although a functor F consists of a pair of functions pF0, F1q, we will typically

write just F whether it is applied to an object or a morphism, since the distinction will usually be

clear from the context. Since function composition (and hence application) is associative, we will

also often omit brackets, writing Fa for F paq, except where it is helpful to leave them in.

For each object c in a category C, there are two very important functors, the hom functors, which

exhibit C in Set “from the perspective” of c by returning the hom sets out of and into c.

Definition 2.1.19. Given an object c : C, its covariant hom functor Cpc,´q : C Ñ Set is defined

on objects x by returning the hom sets Cpc, xq and on morphisms g : x Ñ y by returning the

postcomposition function Cpc, gq : Cpc, xq Ñ Cpc, yq defined by mapping morphisms f : c Ñ x

in the set Cpc, xq to the composites g ˝ f : c Ñ y in Cpc, yq. To emphasize the action of Cpc, gq

by postcomposition, we will sometimes write it simply as g ˝ p´q. (That Cpc,´q is a well-defined

functor follows immediately from the unitality and associativity of composition in C.)

The covariant hom functor Cpc,´q “looks forward” along morphisms emanating out of c, in

the direction that these morphisms point, and therefore in the direction of composition in C: it is

for this reason that we say it is covariant. Dually, it is of course possible to “look backward” at

morphisms pointing into c. Since this means looking contrary to the direction of composition in C,

we say that the resulting backwards-looking hom functor is contravariant. To define it as a functor

in the sense of Definition 2.1.16, we perform the trick of swapping the direction of composition in

C around and then defining a covariant functor accordingly.
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Definition 2.1.20. For any category C there is a corresponding opposite category C op
with the

same objects as C and where the hom set C oppa, bq is defined to be the ‘opposite’ hom set in C,

namely Cpb, aq. Identity morphisms are the same in C op
as in C, but composition is also reversed. If

we write ˝ for composition in C and ˝op for composition in C op
, then, given morphisms g : c Ñ b

and f : b Ñ a in C op
corresponding to morphisms g : b Ñ c and f : a Ñ b in C, their composite

f ˝op g : c Ñ a in C op
is the morphism g ˝ f : a Ñ c in C. (Observe that this makes C op

a

well-defined category whenever C is.)

Remark 2.1.21. Because we can always form opposite categories in this way, categorical

constructions often come in two forms: one in C, and a ‘dual’ one in C op
. Typically, we use

the prefix co- to indicate such a dual construction: so if we have a construction in C, then its dual

in C op
would be called a coconstruction.

The dual of the covariant hom functor Cpc,´q : C Ñ Set is the contravariant hom functor.

Definition 2.1.22. Given an object c : C, its contravariant hom functor Cp´, cq : C op Ñ Set is

defined on objects x by returning the hom sets Cpx, cq. Given a morphism f : x Ñ y in C, we

define the precomposition function Cpf, cq : Cpy, cq Ñ Cpx, cq by mapping morphisms g : y Ñ c

in the set Cpy, cq to the composites g ˝ f : x Ñ c in Cpx, cq. To emphasize the action of Cpf, cq

by precomposition, we will sometimes write it simply as p´q ˝ f . (That Cp´, cq is a well-defined

functor again follows from the unitality and associativity of composition in C and hence in C op
.)

Remark 2.1.23. A contravariant functor on C is a (covariant) functor on C op
.

Notation 2.1.24. In line with other mathematical literature, we will also occasionally write the

precomposition function p´q ˝ f as f˚
; dually, we can write the postcomposition function g ˝ p´q

as g˚. In these forms, the former action f˚
is also known as pullback along f , as it “pulls back”

morphisms along f , and the latter action g˚ is also known as pushforward along g, as it “pushes

forward” morphisms along g. There is a close relationship between the pulling-back described here

and the universal construction also known as pullback (Example 2.3.43): f˚p´q defines a functor

which acts by the universal construction on objects and by precomposition on morphisms, which

we spell out in Definition 4.2.28.

Functors are the homomorphisms of categories, and just as graphs and their homomorphisms

form a category, so do categories and functors.
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Example 2.1.25. The category Cat has categories for objects and functors for morphisms. The

identity functor idC on a category C is the pair pidC0 , idC1q of identity functions on the sets of

objects and morphisms. Since functors are pairs of functions, functor composition is by function

composition, which is immediately associative and unital with respect to the identity functors so

defined. Note that, without a restriction on size, Cat is a large category, like Set.

As an example, we observe that the construction of the category FG{„ generated by pG,„q

from the free category FG is functorial.

Example 2.1.26. There is a ‘projection’ functor r¨s : FG Ñ FG{„. It maps every object to

itself, and every morphism to the corresponding equivalence class. The proof of Proposition 2.1.13

demonstrated the functoriality: identities are preserved by definition, and we have rg˝f s “ rgs˝rf s

by construction.

With the notion of functor to hand, we can formalize the concept of diagram simply as follows.

Definition 2.1.27. A J-shaped diagram in a category C is a functor D : J Ñ C. Typically, J is a

small category generated from a graph with some given relations, and the functor D interprets J

in C.

Example 2.1.28. The diagrams expressing the commutativity conditions for a graph homomor-

phism (2.1) are therefore witnessed by a pair of functors FJ {„ Ñ Set from the category FJ {„

generated in Example 2.1.15 into Set: each functor interprets φ0 and φ1 as f0 and f1 respectively,

while one functor interprets δG as domG and δH as domH and the other interprets δG as codG and

δH as codH. The fact that there is only a single morphism G1 Ñ H0 in FJ {„ (even though there

are two in FJ ) encodes the requirements that f0 ˝ domG “ domH ˝f1 and f0 ˝ codG “ codH ˝f1.

Throughout this thesis, we will see the utility of diagrams as in Definition 2.1.27: not only will

they be useful in reasoning explicitly about categorical constructions, but in §2.3.3 they will also be

used to formalize ‘universal constructions’, another concept which exhibits the power of category

theory.

Despite this, ‘mere’ categories and their diagrams are in some ways not expressive enough:

often we will want to encode looser relationships than strict equality, or to compose diagrams

together by ‘pasting’ them along common edges; we may even want to consider morphisms between

morphisms! For this we will need to ‘enrich’ our notion of category accordingly.
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2.2. Connecting the connections

As we have indicated, basic category theory is not sufficient if we want to encode information

about the relationships between morphisms into the formal structure. In this section, we will see

how to enrich the notion of category by letting the morphisms collect into more than just sets,

and how this leads naturally to higher category theory, where we have morphisms between the

morphisms, and from there to the notion of adjunction, with which we can translate concepts

faithfully back and forth between contexts. Amidst the development, we discuss the concept of

“functorial semantics” from a scientific perspective, considering how categorical tools let us supply

rich semantics for structured models of complex systems such as the brain.

2.2.1. Enriched categories

We can think of the condition that a diagram commutes — or equivalently the specification of an

equivalence relation on its paths — as a ‘filling-in’ of the diagram with some extra data. For example,

we can ‘fill’ the diagram depicting the graph homomorphism condition f0 ˝ domG “ domH ˝f1

with some annotation or data witnessing this relation, as follows:

G1 H1

G0 H0

f1

f0

domG domH

If we have a composite graph homomorphism g ˝ f : G Ñ I , we should be able to paste the

commuting diagrams of the factors together and fill them in accordingly:

G1 H1 I1

G0 H0 I0

domG domH domI

f1 g1

f0 g0

and we should be able to ‘compose’ the filler equalities to obtain the diagram for the composite:

G1 H1 I1

G0 H0 I0

domG domI

f1 g1

f0 g0

.
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The extra data with which we have filled these diagrams sits ‘between’ the morphisms, and so

if we wish to incorporate it into the categorical structure, we must move beyond mere sets, for

sets are just collections of elements, with nothing “in between”. What we will do is allow the hom

sets of a category to be no longer sets, but objects of another ‘enriching’ category. Now, observe

that, in pasting the two diagrams above together, we had to place them side by side: this means

that any suitable enriching category must come equipped with an operation that allows us to place

its objects side by side; in the basic case, where our categories just have hom sets, the enriching

category is Set, and this side-by-side operation is the product of sets.

Definition 2.2.1. Given sets A and B, their product is the set A ˆ B whose elements are pairs

pa, bq of an element a : A with an element b : B.

We have already made use of the product of sets above, when we defined the composition

operation for (small) categories in Definition 2.1.2. In general, however, we don’t need precisely a

product; only something weaker, which we call tensor. In order to define it, we need the notion of

isomorphism.

Definition 2.2.2. A morphism l : c Ñ d in a 1-category is an isomorphism if there is a morphism

r : d Ñ c such that l ˝ r “ idd and idc “ r ˝ l. We say that l and r are mutually inverse.

Definition 2.2.3. We will say that a category C has a tensor product if it is equipped with a functor

b : C ˆ C Ñ C along with an object I : C called the tensor unit and three families of isomorphisms:

1. associator isomorphisms αa,b,c : pab bq b c
„
ÝÑ ab pbb cq for each triple of objects a, b, c ;

2. left unitor isomorphisms λa : I b a
„
ÝÑ a for each object a; and

3. right unitor isomorphisms ρa : ab I
„
ÝÑ a for each object a.

Remark 2.2.4. The notion of tensor product forms part of the definition of monoidal category,

which we will come to in §3.1.2. Beyond having a tensor product, a monoidal category must have

structure isomorphisms that are coherent with respect to the ambient categorical structure, which

itself satisfies properties of associativity and unitality; this is an echo of the microcosm principle

which we discuss in Remark 3.4.7. However, to give the full definition the notion of monoidal

category requires us to introduce the notion of natural transformation, which we otherwise do not

need until Definition 2.2.17; moreover, questions of coherence of tensor products will not yet arise.

Unsurprisingly, the product of sets gives us our first example of a tensor product structure.
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Example 2.2.5. The product of sets gives us a tensor product ˆ : SetˆSet Ñ Set. To see

that it is functorial, observe that, given a product of sets A ˆ B and a function f : A Ñ A1
, we

naturally obtain a function f ˆB : AˆB Ñ AˆA1
by applying f only to the A-components of

the elements of the product AˆB; likewise given a function g : B Ñ B1
. The unit of the tensor

product structure is the set 1 with a single element ˚. The associator and unitors are almost trivial:

for associativity, map ppa, bq, cq to pa, pb, cqq.

Using the tensor product to put morphisms side by side, we can define the notion of enriched

category.

Definition 2.2.6. Suppose pE ,b, I, α, λ, ρq is a category equipped with a tensor product. An

E-category C, or category C enriched in E , constitutes

1. a set C0 of objects;

2. for each pair pa, bq of C-objects, an E-object Cpa, bq of morphisms from a to b;

3. for each object a in C, an E-morphism ida : I Ñ Cpa, aq witnessing identity; and

4. for each triple pa, b, cq of C-objects, an E-morphism ˝a,b,c : Cpb, cq b Cpa, bq Ñ Cpa, cq

witnessing composition;

such that composition is unital, i.e. for all a, b : C

Cpa, bq b I Cpa, bq b Cpa, aq

Cpa, bq

ρCpa,bq

Cpa,bqbida

˝a,a,b and

Cpa, bq b Cpa, aq I b Cpa, bq

Cpa, bq

λCpa,bq

idbbCpa,bq

˝a,b,b ,

and associative, i.e. for all a, b, c, d : C
`

Cpc, dq b Cpb, cq
˘

b Cpa, bq Cpc, dq b
`

Cpb, cq b Cpa, bq
˘

Cpb, dq b Cpa, bq Cpc, dq b Cpa, cq

Cpa, dq

αa,b,c,d

˝b,c,dbCpa,bq Cpc,dqb˝a,b,c

˝a,b,d ˝a,c,d

.

Our first example of enriched categories validates the definition.
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Example 2.2.7. A locally small category is a category enriched in pSet,ˆ, 1q.

Remark 2.2.8. In Set, morphisms 1 Ñ A out of the unit set 1 correspond to elements of A: each

such morphism is a function mapping the unique element ˚ : 1 to its corresponding element of A.

This is why identities in enriched category theory are given by morphisms I Ñ Cpa, aq, and it is

also why we will call morphisms out of a tensor unit generalized elements. (Even more generally,

we might say that morphisms X Ñ A are generalized elements of shape X , reflecting our use of

the word ‘shape’ to describe the domain of a diagram.)

To incorporate nontrivial fillers into our diagrams, we move instead to enrichment in prosets.

Example 2.2.9. A preordered set or proset is a category where there is at most one morphism

between any two objects. The objects of such a ‘thin’ category are the points of the proset, and the

morphisms encode the (partial) ordering of the points; as a result, they are often written a ď a1
.

Functors between prosets are functions that preserve the ordering, and the restriction of Cat to

prosets produces a category that we denote by Pro. The product of sets extends to prosets as

follows: if A and B are prosets, then their product is the proset AˆB whose points are the points

of the product set AˆB and a morphism pa, bq ď pa1, b1q whenever there are morphisms a ď a1

and b ď b1
in A and B respectively.

A category enriched in Pro is therefore a category whose hom sets are (pre)ordered and whose

composition operation preserves this ordering, which we can illustrate as follows:

A B C

f g

f 1 g1

ď ď ˝
ÞÝÑ A C

g˝f

g1˝f 1

ď

We can see how enrichment in Pro generalizes the situation with which we introduced this

section, where we considered filling diagrams with data witnessing the equality of morphisms:

here we have inequality data, and it is not hard to see how enriched composition encompasses the

pasting-and-composing discussed there (just replace the cells here by the squares above).

In order to make these filled diagrams precise, we need to extend the notion of functor to the

enriched setting; and so we make the following definition.

Definition 2.2.10. Suppose C and D are E-categories. Then an E-functor F constitutes

1. a function F0 : C0 Ñ D0 between the sets of objects; and

2. for each pair pa, bq : C0 ˆ C0 of objects in C, an E-morphism Fa,b : Cpa, bq Ñ DpF0a, F0bq
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which preserve identities

I

Cpa, aq DpF0a, F0aq

ida idF0a

Fa,a

and composition

Cpb, cq b Cpa, bq Cpa, cq

DpF0b, F0cq b DpF0a, F0bq DpF0a, F0cq

Fb,cbFa,b

˝a,b,c

Fa,c

˝F0a,F0b,F0c

.

A diagram in an E-enriched category C is therefore a choice of E-enriched category J (the

diagram’s shape) and an E-functor J Ñ C. J encodes the objects, morphisms and relationships

of the diagram, and the functor interprets it in C. In this enriched setting, we need not quotient

parallel paths in the shape of a diagram (which destroys their individuality); instead, we have extra

data (the fillers) encoding their relationships.

2.2.2. 2-categories

We have seen that filling the cells of a diagram with inequalities pushes us to consider enrichment

in Pro. Since Pro is the category of categories with at most one morphism (i.e., the inequality)

between each pair of objects, a natural generalization is to allow a broader choice of filler: that is,

to allow there to be morphisms between morphisms. This means moving from enrichment in Pro

to enrichment in Cat, and hence to the notion of 2-category. We therefore make the following

definition.

Definition 2.2.11. A strict 2-category is a category enriched in the 1-category Cat. This means

that, instead of hom sets, a 2-category has hom categories: the objects of these hom categories are

the 1-cells of the 2-category, and the morphisms of the hom categories are the 2-cells; the 0-cells

of the 2-category are its objects. To distinguish between the composition defined by the enriched

category structure from the composition within the hom categories, we will sometimes call the

former horizontal and the latter vertical composition.

Remark 2.2.12. We say 1-category above to refer to the ‘1-dimensional’ notion of category defined

in Definition 2.1.2.
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Remark 2.2.13. We say strict to mean that the associativity and unitality of composition hold up

to equality; later, it will be helpful to weaken this so that associativity and unitality only hold up to

“coherent isomorphism”, meaning that instead of asking the diagrams in Definition 2.2.6 simply to

commute (and thus be filled by equalities), we ask for them to be filled with ‘coherently’ defined

isomorphism. Weakening 2-categorical composition in this way leads to the notion of bicategory

(§3.1.4).

In order to give a well-defined notion of enrichment in Cat, we need to equip it with a suitable

tensor product structure; for this, we can extend the product of sets to categories, as follows.

Proposition 2.2.14. Given categories C and D, we can form the product category C ˆ D. Its set

of objects pC ˆ Dq0 is the product set C0 ˆ D0. Similarly, a morphism pc, dq Ñ pc1, d1q is a pair

pf, gq of a morphism f : c Ñ c1
in C with a morphism g : d Ñ d1

in D; hence pC ˆDq1 “ C1 ˆD1.

Composition is given by composing pairwise in C and D: pf 1, g1q ˝ pf, gq :“ pf 1 ˝ f, g1 ˝ gq.

Proof. That composition is associative and unital in CˆD follows immediately from those properties

in the underlying categories C and D.

Remark 2.2.15. Using the product of categories, we can gather the co- and contravariant families

of hom functors Cpc,´q and Cp´, cq into a single hom functor Cp´,“q : C op ˆ C Ñ Set, mapping

px, yq : C op ˆ C to Cpx, yq.

Proposition 2.2.16. The product of categories extends to a functor ˆ : CatˆCat Ñ Cat. Given

functors F : C Ñ C1
and G : D Ñ D1

, we obtain a functor F ˆG by applying F to the left factor

of the product C ˆ D and G to the right.

Proof. Sufficiently obvious that we omit it.

The archetypal 2-category is Cat itself, as we will now see: morphisms between functors are

called natural transformation, and they will play an important rôle throughout this thesis.

Definition 2.2.17. Suppose F and G are functors C Ñ D. A natural transformation α : F ñ G

is a family of morphisms αc : F pcq Ñ Gpcq in D and indexed by objects c of C, such that for any

morphism f : c Ñ c1
in C, the following diagram — called a naturality square for α — commutes:

Fc Gc

Fc1 Gc1

αc

αc1

Ff Gf .
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When the component 1-cells of a natural transformation α are all isomorphisms, then we call α a

natural isomorphism.

Example 2.2.18. Every morphism f : a Ñ b in a category C induces a (contravariant)

natural transformation Cpf,´q : Cpb,´q ñ Cpa,´q between covariant hom functors, acting

by precomposition. Dually, every morphism h : c Ñ d induces a (covariant) natural transformation

Cp´, hq : Cp´, cq ñ Cp´, dq between contravariant hom functors, acting by postcomposition. To

see that these two families are natural, observe that the square below left must commute for all

objects a, b, c : C and morphisms f : a Ñ b and h : c Ñ d, by the associativity of composition in C

(as illustrated on the right)

Cpb, cq Cpa, cq

Cpb, dq Cpa, dq

Cpf,cq

Cpb,hq

Cpf,dq

Cpa,hq

g g ˝ f

h ˝ g h ˝ g ˝ f

and that it therefore constitutes a naturality square for both Cpf,´q and Cp´, hq. Note also that we

can take either path through this square as a definition of the function Cpf, hq : Cpb, cq Ñ Cpa, dq

which thus acts by mapping g : b Ñ c to h ˝ g ˝ f : a Ñ d.

Remark 2.2.19. We will see in §3.1.2 that the families of structure morphisms for a tensor product

(and hence used in the definition of enriched category) are more properly required to be natural

transformations.

The existence of morphisms between functors implies that the collection of functors between

any pair of categories itself forms a category, which we now define.

Proposition 2.2.20. The functors between two categories C and D constitute the objects of a

category, called the functor category and denoted by CatpC,Dq or DC
, whose morphisms are the

natural transformations between those functors. The identity natural transformation on a functor

is the natural transformation whose components are all identity morphisms.

Proof. First, observe that the identity natural transformation is well-defined, as the following

diagram commutes for any morphism f : c Ñ c1
:

Fc Fc

Fc1 Fc1

idFc

idFc1

Ff Ff
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(Note that in general, we will depict an identity morphism in a diagram as an elongated equality

symbol, as above.) Given two natural transformations α : F ñ G and β : G ñ H , their composite

is the natural transformation defined by composing the component functions: pβ ˝ αqc :“ βc ˝ αc.

We can see that this gives a well-defined natural transformation by pasting the component naturality

squares:

Fc Gc Hc

Fc1 Gc1 Hc1

αc

αc1

Ff Gf

βc

βc1

Hf

Since the two inner squares commute, so must the outer square. And since the composition

of natural transformations reduces to the composition of functions, and the identity natural

transformation has identity function components, the composition of natural transformations

inherits strict associativity and unitality from composition in Set.

This gives us our a first nontrivial example of a 2-category.

Example 2.2.21. Functor categories constitute the hom categories of the strict 2-category Cat,

and henceforth we will write Cat1 to denote the 1-category of categories and functors; we can

therefore say that Cat is enriched in Cat1. The 0-cells of Cat are categories, the 1-cells are

functors, and the 2-cells are natural transformations. If α is a natural transformation F ñ G, with

F and G functors C Ñ D, then we can depict it as filling the cell between the functors:

C D

F

G

α

(More generally, we will depict 2-cells in this way, interpreting such depictions as diagrams of

enriched categories in the sense discussed above.)

Since Cat is a 2-category, it has both vertical composition (composition within hom-categories)

and horizontal (composition between them). In Proposition 2.2.20, we introduced the vertical

composition, so let us now consider the horizontal, which we will denote by ˛ to avoid ambiguity.

The horizontal composition of 1-cells is the composition of functors (as morphisms in Cat1),

but by the definition of enriched category, it must also extend to the 2-cells (here, the natural

transformations). Suppose then that we have natural transformations φ and γ as in the following

31



diagram:

B C D

F G

F 1 G1

φ γ

The horizontal composite γ ˛ φ is the natural transformation GF ñ G1F 1
with components

GFb
Gφb
ÝÝÑ GF 1b

γF 1b
ÝÝÑ G1F 1b .

Notation 2.2.22 (Whiskering). It is often useful to consider the horizontal composite of a natural

transformation α : F ñ G with (the identity natural transformation on) a functor, as in the

following diagrams, with precomposition on the left and postcomposition on the right:

D C C1

L F

GL

αidL C C1 D1

F

G

R

R

α idR

We will often write the left composite α ˛ L : FL ñ GL as αL, since its components are

αLd : FLd Ñ GLd for all d : D; and we will often write the right composite R ˛ α : RF ñ RG

as Rα, since its components are Rαc : RFc Ñ RGc for all c : C. This use of notation is called

whiskering.

2.2.3. On functorial semantics

At this point, we pause to consider category theory from the general perspective of our motivating

examples, to reflect on how category theory might surprise us: as we indicated in §2.1.2, categories

are more ‘dynamical’ than graphs, more preoccupied with change, and so behave differently; in fact,

they have a much richer variety of behaviours, and just as categories can often be very well-behaved,

they can also be quite unruly. Through its homoiconicity—its ability to describe itself—the use

of category theory impels us to consider not only how individual systems are constructed, nor

only how systems of a given type can be compared, but also how to compare different classes of

system. In this way, category theory rapidly concerns itself with notions not only of connection

and composition, but also of pattern and translation.

Scientifically, this is very useful: in the computational, cognitive, or otherwise cybernetic sciences,

we are often concerned with questions about when and how natural systems ‘compute’. Such

questions amount to questions of translation, between the abstract realm of computation to the

more concrete realms inhabited by the systems of interest and the data that they generate; one often

asks how natural structures might correspond to ‘algorithmic’ details, or whether the behaviours of
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systems correspond to computational processes. It is for this reason that we chose our motivating

examples, which exhibited (abstract) natural structure as well as two kinds of informational

or computational structure: a central question in contemporary neuroscience is the extent to

which neural circuits can be understood as performing computation (particularly of the form now

established in machine learning). This question is in some way at the heart of this thesis, which

aims to establish a compositional framework in which the theories of predictive coding and active

inference may be studied.

The dynamism of categories is a hint that it is possible to describe both the structure of systems

and their function categorically, with a ‘syntax’ for systems on the one hand and ‘semantics’ on the

other. This is the notion of functorial semantics [165], by which we translate syntactic structures

in one category to another category which supplies semantics: the use of functors means that

this translation preserves basic compositional structure, and we often ask for these functors to

preserve other structures, too; a typical choice, that we will adopt in Chapter 3 is to use lax monoidal

functors, which preserve composition in two dimensions, allowing us to place systems “side by

side” as well as “end to end”.

Of course, the particular choices of syntactic and semantic category will depend upon the subject

at hand—in this thesis we will be particularly interested in supplying dynamical semantics for

approximate inference problems—but typically the syntactic category will have some ‘nice’ algebraic

structure that is then preserved and interpreted by the functorial semantics. This is, for instance,

how functorial semantics lets us understand processes that “happen on graphs”, and as a simple

example, we can consider diagrams in Set: the shape of the diagram tells us how to compose the

parts of a system together, while the diagram functor gives us, for each abstract part, a set of possible

components that have a compatible interface, as well as functions realizing their interconnection.

In categorical ‘process’ theory, and the more general categorical theory of systems, one therefore

often considers the objects of the ‘syntactic’ category as representing the shapes or interfaces of

systems and the morphisms as representing how the different shapes can plug together. This is

an algebraic approach to systems design: mathematically, the syntactic structure is encoded as a

monad, and the functorial semantics corresponds to a monad algebra, as we explain in Chapter 3;

and the desire for composition richer than merely end-to-end is another motivation for venturing

into higher category theory. In Chapter 6, we will ‘unfold’ a combination of these ideas, to construct

bicategories whose objects represent interfaces, whose 1-cells are processes ‘between’ the interfaces

that can be composed both sequentially and in parallel, and whose 2-cells are homomorphisms of
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processes. This bicategory will then in Chapter 7 supply the semantics for models of predictive

coding.

In science, there is rarely only one way to study a phenomenon, and our collective understanding

of phenomena is therefore a patchwork of perspectives. At the end of this chapter, we will discuss

the Yoneda Lemma, which formalizes this observation that to understand a thing is to see it from all

perspectives, and it is for this reason that we expect category theory to supply a lingua franca for the

mathematical sciences. In computational neuroscience specifically, an influential methodological

theory is David Marr’s “three levels of explanation” [179], in which complex cognitive systems are

profitably studied at the levels of ‘computation’, ‘algorithm’, and ‘implementation’. These levels

are only very informally defined, and the relationships between them not at all clear. We hope

that functorial semantics and other categorical approaches can replace such methodologies so that

instead of a simplistic hierarchical understanding of systems, we can progressively and clearly

expose the web of relationships between models.

2.2.4. Adjunction and equivalence

We discussed above the use of functors to translate between mathematical contexts. Often, we

are interested not only in translation in one direction, but also in translating back again. When

we have a pair of functors—or 1-cells more generally—in opposite directions and when the two

translations are somehow reversible, we often find ourselves with an adjunction; for example, the

functorial mappings of graphs to categories and back are adjoint (Example 2.2.25 below), and we

conjecture in Chapter 8 that the mapping of “statistical games” to dynamical systems forms part

of an adjunction, too. Adjunctions are particularly well-behaved ‘dual’ translations, and they will

therefore be of much use throughout this thesis. For its conceptual elegance, we begin with an

abstract definition, which exhibits the fundamental essence.

Definition 2.2.23. Suppose L : C Ñ D and R : D Ñ C are 1-cells of a 2-category. We say that

they are adjoint or form an adjunction, denoted L % R, if there are 2-cells η : idC ñ RL and

ϵ : LR ñ idD , called respectively the unit and counit of the adjunction, which satisfy the triangle

equalities ϵL ˝ Lη “ idL and Rϵ ˝ ηR “ idR, so called owing to their diagrammatic depictions:

L LRL

L

Lη

ϵL and

R RLR

R

ηR

Rϵ
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The unit and counit of the adjunction measure ‘how far’ the round-trip composite functors

LR : C Ñ C and RL : D Ñ D leave us from our starting place, as indicated in the following

diagrams:

D

C C

L R

idC

η
and

C

D D

R L

idD

ϵ

The triangle identities then ensure that the round-trips have an isomorphic ‘core’, so that it is

possible to translate morphisms on one side to the other losslessly (which we will exemplify in

Proposition 2.2.26), and that the adjunction has a natural ‘algebraic’ interpretation (which we will

encounter in Proposition 3.4.13).

In the specific case of the 2-categoryCat, we can make the following alternative characterization

of adjunctions. Here we see that the “isomorphic core” of the adjunction can be characterized by

saying that morphisms into objects in C that come from D via R are in bijection with morphisms

out of objects in D that come from C via L.

Definition 2.2.24. Suppose L : C Ñ D and R : D Ñ C are functors between categories C and

D. We say that they are adjoint functors when there is an isomorphism between the hom-sets

DpLc, dq – Cpc,Rdq that is natural in c : C and d : D.

Given a morphism f : Lc Ñ d in D, we denote its (right) adjunct in C by f 7 : c Ñ Rd. Inversely,

given a morphism g : c Ñ Rd in C, we denote its (left) adjunct in D by g5 : Lc Ñ d. The existence

of the isomorphism means that f 75
“ f and g “ g57

.

Example 2.2.25. The functor F : Graph Ñ Cat mapping a graph to the corresponding free

category (Proposition 2.1.9) is left adjoint to the forgetful functor U : Cat Ñ Graph mapping

a category to its underlying graph (Proposition 2.1.8). To see this, we need to find a natural

isomorphism CatpFG, Cq – GraphpG, UCq. A graph homomorphism G Ñ UC is a mapping

of the nodes of G to the objects of C and of the edges of G to the morphisms of C that preserves

sources (domains) and targets (codomains). A functor FG Ñ C is a mapping of the nodes of G to

the objects of C along with a mapping of paths in G to morphisms in C that preserves domains,

codomains, identities and composites. A path in G is a list of ‘composable’ edges, with the identity

path being the empty list, so such a mapping of paths is entirely determined by a mapping of

edges to morphisms that preserves domains and codomains. That is to say, a functor FG Ñ C

is determined by, and determines, a graph homomorphism G Ñ UC, and so the two sets are

isomorphic: in some sense, functors between free categories are graph homomorphisms. To see that
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the isomorphism is natural, observe that it doesn’t matter if we precompose a graph homomorphism

G1 Ñ G (treated as a functor between free categories) or postcompose a functor C Ñ C1
(treated as

a graph homomorphism): because graph homomorphisms compose preserving the graph structure,

we would still have an isomorphism CatpFG1, C1q – GraphpG1, UC1q.

Before we can properly say that adjoint functors form an adjunction, we need to prove it. As the

following proof shows, the mappings p´q7
and p´q5

define and are defined by the unit and counit

of the adjunction.

Proposition 2.2.26. Functors that form an adjunction in Cat are exactly adjoint functors.

Proof. We need to show that functors that form an adjunction are adjoint, and that adjoint functors

form an adjunction; that is, we need to show that any pair of functors L : C Ñ D and R : D Ñ C

satisfying the definition of adjunction in Definition 2.2.23 necessarily constitute adjoint functors

according to Definition 2.2.24, and that if L and R are adjoint according to Definition 2.2.24 then

they form an adjunction according to Definition 2.2.23: i.e., the two definitions are equivalent.

We begin by showing that if L % R, then L and R are adjoint functors. This means we need

to exhibit a natural isomorphism DpLc, dq – Cpc,Rdq. We define a function p´q7 : DpLc, dq Ñ

Cpc,Rdq by setting

f 7 :“ c
ηc
ÝÑ RLc

Rf
ÝÝÑ Rd

and a function p´q5 : Cpc,Rdq Ñ DpLc, dq by setting

g5 :“ Lc
Lg
ÝÑ LRd

ϵd
ÝÑ d .

We then use naturality and the triangle equalities to show that f 75
“ f and g57

“ g:

f 75
“ Lc

Lf 7

ÝÝÑ LRd
ϵd
ÝÑ d

“ Lc
Lηc
ÝÝÑ LRLc

LRf
ÝÝÝÑ LRd

ϵd
ÝÑ d

“ Lc
Lηc
ÝÝÑ LRLc

ϵLc
ÝÝÑ Lc

f
ÝÑ d

“ Lc
f
ÝÑ d

g57
“ c

ηc
ÝÑ RLc

Rg5

ÝÝÑ Rd

“ c
ηc
ÝÑ RLc

RLc
ÝÝÑ RLRd

Rϵd
ÝÝÑ Rd

“ c
g
ÝÑ Rd

ηRd
ÝÝÑ RLRd

Rϵd
ÝÝÑ Rd

“ c
g
ÝÑ Rd

In each case the first two lines follow by definition, the third by naturality, and the fourth by the

triangle equality; hence we have an isomorphism DpLc, dq – Cpc,Rdq. The naturality of this

isomorphism follows from the naturality of η and ϵ. We first check that the isomorphisms p´q7
are
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natural in c, which means that the following squares commute for all ϕ : c1 Ñ c in C:

DpLc, dq Cpc,Rdq

DpLc1, dq Cpc1, Rdq

DpLϕ,dq

p´q
7

c1,d

Cpϕ,Rdq

p´q
7

c,d

This requires in turn that pf ˝ Lϕq7 “ f 7 ˝ ϕ, which we can check as follows:

pf ˝ Lϕq7 “ c1 ηc1

ÝÝÑ RLc1 RLϕ
ÝÝÝÑ RLc

Rf
ÝÝÑ Rd

“ c1 ϕ
ÝÑ c

ηc
ÝÑ RLc

Rf
ÝÝÑ Rd

“ c1 ϕ
ÝÑ c

f 7

ÝÑ Rd

where the second equality holds by the naturality of η. The naturality of p´q7
in d requires that

pϕ1 ˝ fq7 “ Rϕ1 ˝ f 7
for all ϕ1 : d Ñ d1

, which can be checked almost immediately:

pϕ1 ˝ fq7 “ c
ηc
ÝÑ RLc

Rf
ÝÝÑ Rd

Rϕ1

ÝÝÑ Rd1

“ c
f 7

ÝÑ Rd
Rϕ1

ÝÝÑ Rd1

Dually, the naturality of p´q5 : Cpc,Rdq Ñ DpLc, dq in d requires that pRϕ1 ˝ gq5 “ ϕ1 ˝ g5
for all

ϕ1 : d Ñ d1
, which obtains by the naturality of ϵ:

pRϕ1 ˝ gq5 “ Lc
Lg
ÝÑ LRd

LRϕ1

ÝÝÝÑ LRd1 ϵd1

ÝÑ d1

“ Lc
Lg
ÝÑ LRd

ϵd
ÝÑ d

ϕ1

ÝÑ d1

“ Lc
g5

ÝÑ d
ϕ1

ÝÑ d1

The naturality of p´q5
in c, which requires that pg ˝ ϕq5 “ g5 ˝ Lϕ, obtains similarly immediately:

pg ˝ ϕq5 “ Lc1 Lϕ
ÝÝÑ Lc

Lg
ÝÑ LRd

ϵd
ÝÑ d

“ Lc1 Lϕ
ÝÝÑ Lc

g5

ÝÑ d

Thus p´q7
and p´q5

are both natural in c and d, and hence L and R are adjoint functors.

To show the converse, that if L : C Ñ D and R : D Ñ C are adjoint functors then L % R,

we need to establish natural transformations η : idC ñ RL and ϵ : LR ñ idD from the natural

isomorphisms p´q7
and p´q5

, such that the triangle equalities ϵL ˝Lη “ idL andRϵ˝ηR “ idR are

satisfied. We first define η componentwise, by observing that ηc must have the type c Ñ RLc, and
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that the image of idLc : Lc Ñ Lc under p´q7
is of this type, and therefore defining ηc :“ pidLcq

7
.

Dually, we define ϵ by observing that ϵd must have the type LRd Ñ d, and that the image of idRd

under p´q5
has this type. We therefore define ϵd :“ pidRdq5

. To see that these definitions constitute

natural transformations, observe that they are themselves composed from natural transformations.

Explicitly, the naturality of η means that for any f : c Ñ c1
, we must have RLf ˝ ηc “ ηc1 ˝ f , and

the naturality of ϵ means that for any g : d Ñ d1
, we must have g ˝ ϵd “ ϵd1 ˝ LRg. These obtain

as follows:

RLf ˝ ηc “ c
pidLcq7

ÝÝÝÝÑ RLc
RLf
ÝÝÝÑ RLc1

“ c
pLf˝idLcq7

ÝÝÝÝÝÝÑ RLc1

“ c
pidLc1 ˝Lfq7

ÝÝÝÝÝÝÝÑ RLc1

“ c
f
ÝÑ c1 pidLc1 q7

ÝÝÝÝÑ RLc1

“ ηc1 ˝ f

g ˝ ϵd “ LRd
pidRdq5

ÝÝÝÝÑ d
g
ÝÑ d1

“ LRd
pRg˝idRdq5

ÝÝÝÝÝÝÝÑ d1

“ LRd
pidRd1 ˝Rgq5

ÝÝÝÝÝÝÝÑ d1

“ LRd
LRg
ÝÝÝÑ LRd1 pidRd1 q5

ÝÝÝÝÝÑ d1

“ ϵd1 ˝ LRg

In each case, the first equality holds by definition, the second by naturality of p´q7
and p´q5

(left

and right, respectively) in d, the third by naturality of id, the fourth by naturality in c, and the last

by definition. It remains to check that η and ϵ so defined satisfy the triangle equalities. Expressed

componentwise, we demonstrate that ϵLc ˝ Lηc “ idLc and that Rϵd ˝ ηRd “ idRd as follows:

ϵLc ˝ Lηc “ Lc
LpidLcq7

ÝÝÝÝÝÑ LRLc
pidRLcq5

ÝÝÝÝÝÑ Lc

“ Lc
pidRLc ˝pidLcq7q5

ÝÝÝÝÝÝÝÝÝÝÑ Lc

“ Lc
pidLcq75

ÝÝÝÝÝÑ Lc

“ Lc
idLc
ÝÝÑ Lc

Rϵd ˝ ηRd “ Rd
pidLRdq7

ÝÝÝÝÝÑ RLRd
RpidRdq5

ÝÝÝÝÝÑ Rd

“ Rd
ppidRdq5˝idLRdq7

ÝÝÝÝÝÝÝÝÝÝÑ Rd

“ Rd
pidRdq57

ÝÝÝÝÝÑ Rd

“ Rd
idRd
ÝÝÑ Rd

The first equality (on each side) holds by definition, the second (on the left) by naturality of p´q5
in

c and (on the right) by naturality of p´q7
in d, the third by unitality of composition, and the fourth

by the 7/5 isomorphism. This establishes that L % R, and hence the result.

Sometimes, the ‘distances’ measured by the unit and counit are so small that the categories C

and D are actually ‘equivalent’: this happens when the unit and counit are natural isomorphisms,

meaning that the isomorphic core of the adjunction extends to the whole of C and D. This gives us

the following definition.

Definition 2.2.27. Suppose L % R in a 2-category. When the unit and counit of the adjunction

are additionally isomorphisms, we say that L and R form an adjoint equivalence.
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Remark 2.2.28. More generally, an equivalence of categories is a pair of functors connected by

natural isomorphisms of the form of the unit and counit of an adjunction, but which may not

necessarily satisfy the triangle identities; however, given any such equivalence, it is possible to

modify the unit or counit so as to upgrade it to an adjoint equivalence. Henceforth, we will have

no need to distinguish equivalences from adjoint equivalences, so we will say simply ‘equivalence’

for both. If there is an equivalence between a pair of categories, then we will say that the two

categories are equivalent.

Note that the notion of equivalence of categories can be generalized to equivalence in a 2-category,

by replacing the categories by 0-cells, the functors by 1-cells, and the natural isomorphisms by

invertible 2-cells.

The structure of an equivalence of categories can alternatively be specified as properties of the

functors concerned, which in some situations can be easier to verify.

Definition 2.2.29. We say that a functor F : C Ñ D is

1. full when it is surjective on hom sets, in the sense that the functions Fa,b : Cpa, bq Ñ

DpFa, Fbq are surjections;

2. faithful when it is injective on hom sets, in the sense that the functions Fa,b are injections;

3. fully faithful when it is both full and faithful (i.e., isomorphic on hom sets); and

4. essentially surjective when it is surjective on objects up to isomorphism, in the sense that for

every object d : D there is an object c : C such that Fc – d.

Proposition 2.2.30. Categories C and D are equivalent if and only if there is a functor F : C Ñ D

that is fully faithful and essentially surjective.

Proof [213, Lemma 9.4.5]. First, we show that if F % G : D Ñ C is an equivalence of categories,

then F : C Ñ D is fully faithful and essentially surjective. For the latter, observe that G gives

us, for any d : D, an object Gd : C and ϵd is by definition an isomorphism FGd
„
ÝÑ d; hence

F is essentially surjective. To show that F is fully faithful means showing that each function

Fa,b : Cpa, bq Ñ DpFa, Fbq is an isomorphism; we can define the inverse F´1
a,b as the following

composite:

DpFa, Fbq
GFa,Fb
ÝÝÝÝÑ CpGFa,GFbq

Cpηa,η
´1
b q

ÝÝÝÝÝÝÑ Cpa, bq

g ÞÑ Gg ÞÑ
`

a
ηa
ÝÑ GFa

Gg
ÝÝÑ GFb

η´1
b

ÝÝÑ b
˘
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Here, the function Cpηa, η
´1
b q is the function f ÞÑ η´1

b ˝ f ˝ ηa obtained from the hom functor

(Remark 2.2.15). Hence F´1
a,b pgq :“ η´1

b ˝ Gg ˝ ηa. To see that this is indeed the desired inverse,

consider applying the functor F to the morphism F´1
a,b pgq; we have the following equalities:

Fa
Fηa
ÝÝÑ FGFa

FGg
ÝÝÝÑ FGFb

Fη´1
b

ÝÝÝÑ Fb

“ Fa
g
ÝÑ Fb

Fηb
ÝÝÑ FGFb

Fη´1
b

ÝÝÝÑ Fb

“ Fa
g
ÝÑ Fb

where the first equality holds by the naturality of η and the second equality holds since ηb is an

isomorphism. Since F is therefore isomorphic on hom sets, it is fully faithful.

Next, we show that if F : C Ñ D is fully faithful and essentially surjective, then there is a

functor G : D Ñ C and natural isomorphisms η : idC ñ GF and ϵ : FG ñ idD . On objects d : D,

we can define Gd : C as any choice of object such that FGd
„
ÝÑ d: such an object must exist since

F is essentially surjective. We then define ϵd to be the associated isomorphism FGd Ñ d; it is

easy to verify that ϵ so defined is natural. On morphisms, let the functions Gd,e be defined as the

composite functions

Dpd, eq
Dpϵd,ϵ

´1
e q

ÝÝÝÝÝÝÑ DpFGd, FGeq
F´1
Gd,Ge

ÝÝÝÝÑ CpGd,Geq

g ÞÑ
`

FGd
ϵd
ÝÑ d

g
ÝÑ e

ϵ´1
e

ÝÝÑ FGe
˘

ÞÑ F´1
Gd,Ge

`

ϵ´1
e ˝ g ˝ ϵd

˘

.

Since F is a fully faithful functor and ϵ is a natural isomorphism, this makes G a well-defined

functor. Finally, we define η as having the components ηc :“ F´1
c,GFc

`

ϵ´1
Fc

˘

; since ϵ is a natural

isomorphism, so is ϵ´1
, which is thus preserved as such by the inverse action of F in defining η.

This establishes all the data of the equivalence.

(Note that we can actually prove a little more: it is not hard to verify additionally that the two

constructions are inverse, so that equivalences are themselves equivalent to fully faithful essentially

surjective functors.)

Remark 2.2.31. In the above proof, we assumed the axiom of choice, defining Gd as a choice

of object such that FGd
„
ÝÑ d. It is possible to avoid making this assumption, by asking for

the surjection on objects F0 : C0 Ñ D0 to be ‘split’ in the sense that it comes with a function

s : D0 Ñ C0 such that F0pspdqq – d in D for every object d : D; then we just set Gd :“ spdq.
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2.3. Universal constructions

In the preceding sections, we have used diagrams to represent some patterns in a categorical

context, and we have discussed how functors allow us to translate patterns and structures between

contexts; indeed, we used functors to formalize diagrams themselves. But an important facet of

the notion of pattern is replication across contexts, and in many important situations, we will

encounter patterns that apply to all objects in a category. We call such patterns universal, and much

of science is a search for such universal patterns: for example, much of physics, and by extension

much of the theory of the Bayesian brain, is a study of the universal principle of stationary action.

In this section, we introduce the formal characterization of universality and exemplify it with some

examples that will be particularly important later on — as well as some examples that we have

encountered already.

2.3.1. The universality of common patterns

We begin with some basic examples of universal patterns.

2.3.1.1. Disjunctions, or coproducts

Our first example of a universal pattern is the coproduct, which captures the essence of the following

examples — situations like disjunction, where there is an element of choice between alternatives.

Example 2.3.1. Given two propositions, such as P1 :“ “ ´ is flat” and P2 :“ “ ´ is sharp”, we

can form their disjunction P1 _ P2 (meaning “ ´ is flat or sharp”). Similarly, given two subsets

P1, P2 Ď X , we can form their join or union, P1 Y P2: an element x is an element of P1 Y P2 if

(and only if) it is an element of P1 or an element of P2.

Example 2.3.2. Given two numbers, we can form their sum; for instance, 1 ` 2 “ 3. More

generally, given two sets A and B, we can form their disjoint union, denoted A`B. The elements

of A`B are pairs pi, xq where x is an element of A or of B and i indicates which set x is drawn

from (this ensures that if an element x of A is the same as an element of B, it is added twice to the

disjoint union). Therefore, if A has 1 element and B has 2, then A`B has 3 elements.

Remark 2.3.3. The preceding example illustrates how we can think of numbers equivalently as

sets of the indicated cardinality. Many operations on sets are generalizations of familiar operations

on numbers in this way.
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Example 2.3.4. Given two graphs, G and G1
, we can form the sum graph G`G1

, whose set of

nodes is G0 `G1
0 and whose set of edges is G1 `G1

1.

Example 2.3.5. Given two vector spaces V and V 1
, we can form their direct sum V ‘ V 1

, whose

vectors are linear combinations of vectors either in V or in V 1
.

Each of these is an example of a coproduct, which we now define.

Definition 2.3.6. Given objects A and B in a category C, their coproduct (if it exists) is an object,

canonically denotedA`B, equipped with twomorphisms injA : A Ñ A`B and injB : B Ñ A`B

such that, for any objectQ equipped with morphisms f : A Ñ Q and g : B Ñ Q, there is a unique

morphism u : A`B Ñ Q such that f “ u ˝ injA and g “ u ˝ injB . The morphisms injA and injB

are called injections, and the morphism u is called the copairing and often denoted by rf, gs.

Example 2.3.7. Morphisms of subsets are inclusions, so given subsets P1, P2 Ď X , there are

evident inclusions P1 Ď P1 YP2 and P2 Ď P1 YP2. Moreover, given a subsetQ such that P1 Ď Q

and P2 Ď Q, it is clearly the case that P1 Ď P1 ` P2 Ď Q and P2 Ď P1 ` P2 Ď Q.

Similarly, morphisms of propositions are implications, so given P1 and P2 such that P1 Ñ Q and

P2 Ñ Q, then it is necessarily the case that P1 Ñ P1 _ P2 Ñ Q and P2 Ñ P1 _ P2 Ñ Q: clearly,

both P1 and P2 imply P1 _ P2 by definition, and if both P1 and P2 imply Q, then so does P1 _ P2.

Example 2.3.8. Given sets A and B, the injections injA : A Ñ A ` B and injB : B Ñ A ` B

are the corresponding inclusions: injA maps a to p1, aq and injB maps b to p2, bq, where 1 tags

an element as coming from A, and 2 tags an element as coming from B. Given f : A Ñ Q and

g : B Ñ Q the copairing rf, gs : A ` B Ñ Q is the function that takes an element pi, xq and

returns fpxq if i “ 1 or gpxq if i “ 2; it is from this that the ‘choice’ interpretation arises for the

coproduct.

Example 2.3.9. Morphisms of vectors spaces are linear maps, and if the spaces are finite-

dimensional, then we can represent these maps as matrices: if V is n-dimensional and W is

m-dimensional, then a morphism V Ñ W is a matrix of shape pm,nq; writing the elements of V

andW as column vectors, such a matrix hasm rows and n columns. Moreover, in this case, the

direct sum V ‘W is pn`mq-dimensional.

Therefore suppose that V , V 1
andW have respective dimensions n, n1

andm, and suppose we

have linear maps f : V Ñ W and g : V 1 Ñ W . The injection V Ñ V ‘ V 1
is the block matrix

ˆ

1n
0n1

˙

where 1n is the n-by-n identity matrix and 0n1 is the n1
-by-n1

zero matrix; similarly, the
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injection V 1 Ñ V ‘ V 1
is the block matrix

ˆ

0n
1n1

˙

. And the copairing rf, gs : V ‘ V 1 Ñ W is the

block matrix

`

f g
˘

.

Remark 2.3.10. The coproducts we have considered so far have all been binary, being coproducts

of only two objects. More generally, we can often consider coproducts of more objects, by repeating

the binary coproduct operation; typically, there is an isomorphism pA`Bq ` C – A` pB ` Cq.

We can extend this further to finite (and, often, infinite) collections of objects. Suppose then that

tAiu is a collection of objects indexed by i : I , where I is a set, and form the iterated coproduct

ř

i:I Ai; we will call this object a dependent sum, because the summands Ai depend on i : I . In the

case where the objects Ai are all sets, the dependent sum
ř

iAi is again a set, whose elements are

pairs pi, xq where i is an element of I and x is an element of Ai. In other categories C, typically the

name dependent sum is reserved for the case when all of the objects Ai and the object I are objects

of C. But when I remains a set, we may still be able to form the I-indexed coproduct

ř

iAi in C.

2.3.1.2. Conjunctions, products, and sections

Our next example of a universal pattern is the product, which captures situations like conjunction,

in which things come along in separable pairs of individuals.

Example 2.3.11. Given two propositions, such asP1 :“ “´ is small” andP2 :“ “´ is connected”,

we can form their conjunction P1 ^ P2 (meaning “ ´ is small and connected”). Similarly, given

two subsets P1, P2 Ď X , we can form their meet or intersection, P1 X P2: an element x is an

element of P1 X P2 if (and only if) it is an element of P1 and an element of P2.

Example 2.3.12. Given two numbers, we can form their product; for instance, 2 ˆ 3 “ 6. More

generally, as we saw in Definition 2.2.1, we can form the product of any two sets A and B, denoted

AˆB. The elements of AˆB are pairs pa, bq where a is an element of A and b is an element of

B. Therefore, if A has 2 elements and B has 3, then AˆB has 6 elements.

Remark 2.3.13. When all the summands of a dependent sum are the same set or objectA regardless

of their associated index i : I , then the object

ř

i:I A is isomorphic to the product I ˆ A: this is

simply a categorification of the fact that “multiplication is repeated addition”.

Example 2.3.14. Given vector spaces V and V 1
(of respective dimensions n and n1

), their product

is again the direct sum V ‘ V 1
. Since the direct sum of vector spaces is both a product and a

coproduct, it is also said to be a biproduct.
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Categorically, the product is the dual of the coproduct.

Definition 2.3.15. Given objects A and B in a category C, their product (if it exists) is an object,

canonically denoted A ˆ B, equipped with two morphisms projA : A ˆ B Ñ A and projB :

A ˆ B Ñ B such that, for any object Q equipped with morphisms f : Q Ñ A and g : Q Ñ B,

there is a unique morphism u : Q Ñ A ˆ B such that f “ projA ˝ u and g “ projB ˝ u. The

morphisms projA and projB are called projections, and the morphism u is called the pairing and

often denoted by pf, gq.

Example 2.3.16. Given subjects P1, P2 Ď X , there are evident inclusions P1 X P2 Ď P1 and

P1 X P2 Ď P2. Moreover, given a subset Q such that Q Ď P1 and Q Ď P2, it is clearly then the

case that Q Ď P1 X P2 Ď P1 and Q Ď P1 X P2 Ď P2.

Similarly, given propositions P1 and P2 such that Q Ñ P1 and Q Ñ P2, it is (by the definition

of “and”) the case that Q Ñ P1 ^ P2 Ñ P1 and Q Ñ P1 ^ P2 Ñ P2.

Example 2.3.17. Given setsA andB, the projections projA : AˆB Ñ A and projB : AˆB Ñ B

are the functions pa, bq ÞÑ a and pa, bq ÞÑ b respectively. Given f : Q Ñ A and g : Q Ñ B, the

pairing pf, gq : Q Ñ AˆB is the function x ÞÑ
`

fpxq, gpxq
˘

; note that this involves ‘copying’ x,

which will be relevant when we come to consider copy-discard categories in §3.1.

Remark 2.3.18. Above, we observed that a coproduct with constant summands A is equivalently

a product I ˆA of the indexing object I with A; we therefore have a projection projI : I ˆA Ñ I .

More generally, for any dependent sum

ř

i:I Ai, there is a projection
ř

i:I Ai Ñ I ; in the case of

dependent sums in Set, this is unsurprisingly the function pi, xq ÞÑ i.

Example 2.3.19. Suppose we have vector spaces V , V 1
andW of respective dimensions n, n1

and

m. The projection V ‘ V 1 Ñ V is the block matrix

`

1n 0n1

˘

, and the projection V ‘ V 1 Ñ V 1

is the block matrix

`

0n 1n1

˘

. Given linear maps f : W Ñ V and g : W Ñ V 1
, the pairing

pf, gq :W Ñ V ‘V 1
is the block matrix

ˆ

f
g

˙

. Note that, in a sign of the duality between products

and coproducts, the projections and the pairing are respectively the injections and the copairing

transposed.

Remark 2.3.20. Just as in the case of coproducts, we can also consider products of more than two

objects, by repeating the product operation; there is again typically an isomorphism pAˆBqˆC –

Aˆ pB ˆ Cq. If tAiu is a collection of objects indexed by i : I (with I again a set), we can form

44



the dependent product1
ś

i:I Ai. In the case where I is finite and the objects Ai are all sets, the

dependent product

ś

i:I Ai is again a set, whose elements can equivalently be seen as lists pai, . . . q

indexed by i with each element ai drawn from the corresponding set Ai or as functions s with

domain I and codomain the dependent sum

ř

i:I Ai such that each spiq is tagged by i. This situation

is summarized by the commutativity of the diagram

I
ř

i:I Ai

I

s

π

where π is the projection and which therefore requires that π ˝ s “ idI . Such a function s is known

as a section of p, and we can think of sections therefore as dependent functions, since the types of

their output values (i.e., Ai) may depend on the input values i.

The notion of section is important enough to warrant a general definition.

Definition 2.3.21. Suppose p : E Ñ B is a morphism. A section of p is a morphism s : B Ñ E

such that p ˝ s “ idB .

2.3.1.3. Subobjects and equalizers

Our next examples of universal patterns do not involve pairing or grouping objects together to make

new ones. For instance, in many situations, it is of interest to restrict our attention to ‘subobjects’

(of a single given object) that satisfy a certain property, which may not extend to the whole object

at hand.

Example 2.3.22. In examples above, we saw that subsets and propositions behave similarly with

respect to disjunctions and conjunctions. More broadly, there is a correspondence between subsets

and propositions, if we think of propositions on a set X as functions X Ñ 2, where 2 is the

2-element set tK,Ju of truth values (where we interpret K as ‘false’ and J as ‘true’). Every subset

A Ď X has an associated injection,A ãÑ X , and there is a correspondence between such injections

and propositions PA : X Ñ 2, where PApxq is true whenever x is an element of A. This situation

1

This set-indexed product is also known as an indexed product, to emphasize that the factors are indexed by the set I ;
since I has elements, we can properly think of these as indices, which may not be true for other kinds of object. We

will see in Definition 2.3.63 how to use categorical structure to abstract away the requirement that I be a set.
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can be summarized by the commutativity of the diagram

A 1

X 2

!

J

PA

where 1 is the singleton set t˚u, ! is the unique function sending every element of A to ˚, and J is

the function ˚ ÞÑ J picking the truth value J. If, in a category C, there is an object such that, for

any subobject A ãÑ X , there is a unique morphismX Ñ 2 such that the above diagram commutes

(and moreover defines a pullback square in the sense of Example 2.3.43 below), then we say that

the object 2 is a subobject classifier in C; in this case, we interpret 1 as the ‘terminal’ object in C

(introduced below, in Example 2.3.41).

A pattern that will be particularly common is that in which we care about a subset of elements

of a set that make two functions equal. This can be generalized to arbitrary categories using the

following notion.

Definition 2.3.23. Suppose f and g are both morphisms X Ñ Y . Their equalizer is an object E

equipped with a function e : E Ñ X such that f ˝ e “ g ˝ e (so that e is said to equalize f and g)

as in the commuting diagram

E X Y
f

g

e

and such that, for any d : D Ñ X equalizing f and g, there is a unique morphism u : D Ñ E such

that d “ e ˝ u, as in the diagram

D E X Y
f

g

eu

d

.

Example 2.3.24. Via the correspondence between subsets and propositions, we can express the

conjunction of propositions as an equalizer. Suppose have have two propositions PA : X Ñ 2

and PB : X Ñ 2, corresponding to subsets A ãÑ X and B ãÑ X , whose inclusions we denote by

ιA and ιB respectively. The equalizer of AˆB X
ιA˝projA

ιB˝projB

is the subset of A ˆ B whose

elements are pairs pa, bq in which a “ b inX . This subset is isomorphic to the meet AXB, which

corresponds as a proposition to the conjunction PA ^ PB .
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2.3.1.4. Coequalizers and quotients

We can also make objects ‘smaller’ by dividing them into equivalence classes, as we did when

quotienting free categories by given relations (cf. Proposition 2.1.13). In general, this pattern is

captured by the notion of coequalizer, which is dual to the notion of equalizer in the same way that

coproducts are dual to products.

Definition 2.3.25. Suppose f and g are both morphismsX Ñ Y . Their coequalizer is an object P

equipped with a function p : Y Ñ P such that p ˝ f “ p ˝ g (with p said to coequalize f and g) as

in the commuting diagram

X Y P
f

g

p

and such that, for any q : Y Ñ Q coequalizing f and g, there is a unique morphism u : P Ñ Q

such that q “ u ˝ p, as in the diagram

X Y P Q
f

g

p u

q

.

Example 2.3.26. A relation „ on a set X is a proposition on X ˆ X , and thus equivalently a

subset R ãÑ X ˆX ; let ι denote the inclusion. The coequalizer of R X
proj1˝ι

proj2˝ι

is the set

of equivalence classes of X according to „, which is precisely the quotient X{„.

2.3.2. The pattern of universality

There is a common pattern to the common patterns above: in each case, we described an object

U equipped with some morphisms, such that, given any object X with morphisms of a similar

shape, there was a unique morphism u relatingX and U . The existence of such a unique morphism

for any comparable X makes the object U a universal representative of the situation at hand and

has a number of powerful consequences: in particular, it entirely characterizes the object U up to

isomorphism. Much of the power of category theory comes from the use of universal properties to

classify, compare, and reason about situations of interest — for the general notion of universality

itself can be characterized categorically.

Definition 2.3.27. Suppose F : C Ñ D is a functor and X : D an object. We define two dual

universal constructions. A universal morphism from X to F is a morphism u : X Ñ FU for a

corresponding universal object U : C such that for any f : X Ñ FV in D there exists a unique

e : U Ñ V such that f “ X
u
ÝÑ FU

Fe
ÝÝÑ FV .
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Dually, a universal morphism from F to X is a morphism u : FU Ñ X for a given U : C such

that for any f : FV Ñ X in D there exists a unique e : V Ñ U such that f “ FV
Fe
ÝÝÑ FU

u
ÝÑ X .

We can now formalize the universal properties of the examples we met above, beginning with

the coproduct.

Example 2.3.28. Let ∆ : C Ñ C ˆ C denote the functor X ÞÑ pX,Xq. A coproduct of X and

Y in C is a universal morphism from the object pX,Y q in C ˆ C to ∆: that is, an object X ` Y

in C and a morphism pinjX , injY q : pX,Y q Ñ pX ` Y,X ` Y q in C ˆ C such that, for any

pf, gq : pX,Y q Ñ pQ,Qq in C ˆ C, the copairing rf, gs : X ` Y Ñ Q uniquely satisfies the

equation pf, gq “ pX,Y q
pinjX ,injY q
ÝÝÝÝÝÝÑ pX ` Y,X ` Y q

prf,gs,rf,gsq
ÝÝÝÝÝÝÝÑ pQ,Qq.

Example 2.3.29. Again let ∆ : C Ñ C ˆ C denote the functor X ÞÑ pX,Xq. A product of X and

Y in C is a universal morphism from the object pX,Y q : C ˆ C to ∆: that is, an object X ˆ Y

in C and a morphism pprojX , projY q : pX ˆ Y,X ˆ Y q Ñ pX,Y q in C ˆ C such that, for any

pf, gq : pQ,Qq Ñ pX,Y q in C ˆ C, the pairing pf, gq : Q Ñ X ˆY uniquely satisfies the equation

pf, gq “ pQ,Qq
ppf,gq,pf,gqq
ÝÝÝÝÝÝÝÑ pX ˆ Y,X ˆ Y q

pprojX ,projY q
ÝÝÝÝÝÝÝÝÑ pX,Y q.

Remark 2.3.30. If we let 2 denote the two-object discrete category t‚ ‚u, then there is an

equivalence C ˆ C – C2
and so a pair of morphisms in C is equivalently a natural transformation

in C2
. (This is a categorification of the familiar fact that “exponentiation is repeated multiplication”,

which we will explore in §2.3.4.)

Consequently, the functor ∆ from the preceding examples can equivalently be defined as a

functor C Ñ C2
. Letting the exponent take a more general shape, we obtain a family of constant

functors.

Proposition 2.3.31. Suppose C and D are categories, and d : D is an object. Then there is a

constant functor on d, denoted ∆d : C Ñ D, which takes each object c : C to d : D and each

morphism f : c Ñ c1
to idd; note that Fc “ d “ Fc1

. The assignment d ÞÑ ∆d is itself trivially

functorial, giving a functor ∆ : D Ñ DC
which we call the constant functor functor.

Example 2.3.32. Let J be the category with two objects, 1 and 2, and two non-identity morphisms

α, β : 1 Ñ 2, as in the diagram 1 2
α

β
, and let ∆ be the constant functor functor C Ñ CJ

.

Now suppose f and g are two morphisms X Ñ Y in C. To construct their equalizer as a universal

morphism, let D be the diagram J Ñ C mapping α ÞÑ f and β ÞÑ g. Then an equalizer of

f and g is a universal morphism from ∆ to D (with D being an object of the functor category
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CJ
): that is, an object E : C equipped with a natural transformation ϵ : ∆E ñ D satisfying the

universal property that, for any φ : ∆F ñ D there exists a unique morphism u : F Ñ E such

that φ “ ϵ ˝ ∆u.

Unraveling this definition, we find that such a natural transformation ϵ consists of a pair of

morphisms ϵ1 : E Ñ X and ϵ2 : E Ñ Y making the following naturality squares commute:

E X

E Y

ϵ1

ϵ2

f

E X

E Y

ϵ1

ϵ2

g

We can therefore set ϵ1 “ e, where e is the equalizing morphism E Ñ X . The commutativity of

the naturality squares enforces that f ˝ e “ ϵ2 “ g ˝ e and hence that f ˝ e “ g ˝ e, which is the

first condition defining the equalizer. Unwinding the universal property as expressed here shows

that the morphisms φ1 and u correspond exactly to the morphisms d and u of Definition 2.3.23.

Example 2.3.33. The case of a coequalizer is precisely dual to that of an equalizer. Therefore, let

J , ∆, and D be defined as above. A coequalizer of f, g : X Ñ Y is then a universal morphism

from D to∆.

Example 2.3.34. In Proposition 2.1.13, we constructed a category generated with relations FG{„

as a quotient of a free category on a graph FG. Since this category FG{„ is a quotient and

quotients are coequalizers (by Example 2.3.26), the projection functor FG Ñ FG{„ (Example

2.1.26) constitutes the associated universal morphism, in the sense dual to the morphism ϵ1 of

Example 2.3.32.

Example 2.3.35. The free category construction itself (Proposition 2.1.9) exhibits a universal

property, as a consequence of the free-forgetful adjunction (Example 2.2.25): given a graph G and a

category C, any functor FG Ñ C is uniquely determined by a graph homomorphism G Ñ UC from

G to the underlying graph of C. More precisely, there is a universal morphism from the singleton set

1 to the functorCatpF´, Cq for every category C. This means that, for any graph G, every functor

f : FG Ñ C factors as FG Fh
ÝÝÑ FUC u

ÝÑ C where u is the universal morphism and h is the unique

graph homomorphism. This universal property follows abstractly from facts that we will soon

encounter: that adjoint functors are ‘representable’ (Proposition 2.4.16); and that representable

functors are universal (Proposition 2.4.23). We hinted at this property in Example 2.2.25, where we

observed that functors between free categories ‘are’ graph homomorphisms: the homomorphism h

here is the graph homomorphism corresponding to the functor f , and u renders it as a functor into

C.
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When an object satisfies a universal property, then this property characterizes the object uniquely:

as a result, universal properties are powerful constructions, telling us that for certain questions,

there can be only one possible answer. Characterizing an object by a universal property abstracts

away from contextually irrelevant details (for example, the particular elements making up a set),

and crystallizes its essence.

The uniqueness of universal morphisms is formalized by the following proposition.

Proposition 2.3.36 (Universal constructions are unique up to unique isomorphism). Suppose

u : X Ñ FU and u1 : X Ñ FU 1
are both universal morphisms from X : C to F : C Ñ D. Then

there is a unique isomorphism i : U Ñ U 1
.

To prove this, we need to know that functors preserve isomorphisms.

Proposition 2.3.37. If F : C Ñ D is a functor and f : x Ñ y is an isomorphism in C, then

Ff : Fx Ñ Fy is an isomorphism in D.

Proof. For f to be an isomorphism, there must be a morphism f´1 : y Ñ x such that f´1 ˝f “ idx

and f ˝ f´1 “ idy . We have idFx “ F pidxq “ F pf´1 ˝ fq “ Ff´1 ˝Ff , where the first and third

equations hold by the functoriality of F and the second equation holds ex hypothesi. Similarly,

idFy “ F pidyq “ F pf ˝ f´1q “ Ff ˝ Ff´1
. Therefore Ff´1

is both a right and left inverse for

Ff , and so Ff is an isomorphism.

Proof of Proposition 2.3.36. Since u1
is a morphism from X to F , the universal property of u says

that there exists a unique morphism i : U Ñ U 1
such that u1 “ Fi ˝ u. Similarly, the universal

property of u1
stipulates that there exists a unique morphism i1 : U 1 Ñ U such that u “ Fi1 ˝ u1

.

We can substitute the latter into the former and the former into the latter:

u1 “ X
u1

ÝÑ FU 1 i1
ÝÑ FU

Fi
ÝÑ FU 1

“ X
u1

ÝÑ FU 1 F pi˝i1q
ÝÝÝÝÑ FU 1

“ X
u1

ÝÑ FU 1 F idU 1

ÝÝÝÝÑ FU 1

u “ X
u
ÝÑ FU

Fi
ÝÑ FU 1 Fi1

ÝÝÑ FU

“ X
u
ÝÑ FU

F pi1˝iq
ÝÝÝÝÑ FU

“ X
u
ÝÑ FU

F idU
ÝÝÝÑ FU

and since functors preserve isomorphism, we have i ˝ i1 “ idU 1 and i1 ˝ i “ idU . Therefore, i is an

isomorphism which is unique by definition.
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2.3.3. Limits and colimits: mapping in to and out of diagrams

Many of the universal constructions above
2
fall into their own general pattern, in which a diagram

of objects and morphisms is specified, and a universal morphism is produced which encodes the

data of mapping into or out of that diagram, in a sufficiently parsimonious way that any other

way of mapping into or out of the diagram factors through it. In the case of the (co)product, the

diagram is simple: simply a pair of objects, with no morphisms between them. In the case of the

(co)equalizer, the diagram is a little more complex, being a ‘fork’ of the form 1 2
α

β
. We

can generalize these examples further, to consider the most parsimonious ways of mapping into

or out of diagrams of arbitrary shape: these universal constructions are called colimits and limits

respectively, and to formalize them, we need to define what it means to map into or out of a diagram.

For this purpose, we use the following notion of cone over a diagram.

Definition 2.3.38. A cone over the J-shaped diagramD in C is a natural transformation∆c ñ D

for a given object c : C which we call its apex. Dually, a cocone under D with apex c is a natural

transformation D ñ ∆c. We say that J is the shape of the cone.

With this definition to hand, the notions of limit and colimit are easy to define.

Definition 2.3.39. A limit is a universal cone, and a colimit is a universal cocone. More explicitly,

if D is a J-shaped diagram in C, then the limit of D is a universal morphism from the constant

diagram functor functor ∆ : C Ñ CJ to D (considered as an object of the functor category), and

the colimit ofD is a universal morphism fromD to∆; alternatively, a colimit in C is a limit in C op
.

In both cases, the apex of the cone is the universal object of the construction, which in the case of

the limit of D we denote by limD, and in the case of the colimit, colimD.

Note that we will often say ‘(co)limit’ to refer to the apex of the universal (co)cone, even though

the (co)limit is properly the whole universal construction. We are entitled to say “the (co)limit”

thanks to the uniqueness of universal constructions.

We will often denote a universal cone by proj and call its component morphisms projections;

dually, we will often denote a universal cocone by inj and call its morphisms injections.

Example 2.3.40. We can now exemplify the pattern of the limiting examples above. We will draw

diagrams to depict the shape categories, with each symbol ‚ indicating a distinct object and each

arrow Ñ indicating a distinct non-identity morphism.

2

Products, coproducts, equalizers, and coequalizers.
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1. A coproduct is a colimit of shape

␣

‚ ‚
(

;

2. a product is a limit of shape

␣

‚ ‚
(

;

3. an equalizer is a limit of shape

␣

‚ ‚
(

; and

4. a coequalizer is a colimit of shape

␣

‚ ‚
(

.

Of course, these are not the only possible shapes of limits and colimits. Some others will be

particularly important, too.

Example 2.3.41. Let 0 denote the category with no objects or morphisms. A limit of shape 0 is

known as a terminal object. This is an object 1 such that, for every object X , there is a unique

morphism ! : X Ñ 1. The terminal object in Set is a singleton set t˚u.

Dually, a colimit of shape 0 is known as an initial object: an object 0 such that, for every object

X , there is a unique morphism

!

: 0 Ñ X . The initial object in Set is the empty set.

Remark 2.3.42. In Remark 2.2.8, we noted that morphisms 1 Ñ A in Set correspond to elements

of A. In general categories C with a terminal object, one sometimes calls morphisms out of the

terminal object global elements. The word ‘global’ emphasizes the special position of the terminal

object in a category, which has a unique view of every object.

Example 2.3.43. A pullback is a limit of shape

␣

‚ ‚ ‚
(

. That is, given morphisms

f : A Ñ X and g : B Ñ X , their pullback is an object P and morphisms projA : P Ñ A and

projB : P Ñ B making the following diagram commute

P B

A X

g

f

projB

projA
{

in the universal sense that, for any object Q and morphisms πA : Q Ñ A and πB : Q Ñ B such

that f ˝ πA “ g ˝ πB , then there is a unique morphism u : Q Ñ P such that πA “ projA ˝ u and

πB “ projB ˝ u. We indicate a pullback square using the symbol { as in the diagram above, and will

variously denote the limiting object P by AˆX B, f˚B, or g˚A, depending on the context.

The interpretation of the pullback is something like a generalized equation: in the category Set,

the pullback AˆX B is the subset of the product AˆB consisting of elements pa, bq for which

fpaq “ gpbq. Alternatively, it can be understood as a kind of generalized intersection: given two

objects A and B and “ways of assigning them properties in X” f and g, the pullback AˆX B is
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the generalized intersection of A and B according to these X-properties. In fact, we already saw

this latter interpretation in Example 2.3.24, where we exhibited an intersection as an equalizer;

now we can see that that equalizer was ‘secretly’ a pullback.

Remark 2.3.44. Dually, a colimit of shape

␣

‚ ‚ ‚
(

is known as a pushout. Whereas

a pullback has an interpretation as a subobject of a product, a pushout has an interpration as a

quotient of a coproduct. In this work, we will make far more use of pullbacks than pushouts.

The observation that pullbacks can be interpreted as subobjects of products (and dually that

pushouts can be interpreted as quotients of coproducts) is a consequence of the more general result

that all limits can be expressed using products and equalizers (and hence dually that colimits can

be expressed using coproducts and coequalizers).

Proposition 2.3.45. Let D : J Ñ C be a diagram in C, and suppose the products

ś

j:J0
Dpjq and

ś

f :J1
Dpcod fq exist. Then, if it exists, the equalizer of

ś

j:J0
Dpjq

ś

f :J1
Dpcod fq

ś

f :J1
pDf ˝ projdom fq

ś

f :J1
projcod f

is the limit of D.

Proof sketch. Observe that the equalizer of the diagram above is an object L such that, for every

morphism f : j Ñ j1
in J , the diagram

L

Dj Dj1

projj projj1

Df

commutes, and such that any cone overD factors through it. This is precisely the universal property

of the limit of D, and so by Proposition 2.3.36, pL, projq is the limit.

Remark 2.3.46. As we indicated above, a dual result holds expressing colimits using coequalizers

and coproducts. Because results obtained for limits in C will hold for colimits in C op
, we will

henceforth not always give explicit dualizations.
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2.3.3.1. Functoriality of taking limits

In the statement of Proposition 2.3.45, we used the fact that taking products extends to morphisms,

too: a fact that was exemplified concretely in Example 2.2.5, and which follows from the fact that a

pair of morphisms in C is equivalently a morphism in C ˆ C. We then saw in Remark 2.3.30 that

C ˆ C – C2
. By letting the exponent again vary, the functoriality of taking products generalizes to

the functoriality of taking limits, as long as C has all limits of the relevant shape.

Proposition 2.3.47 (Taking limits is functorial). Suppose C has all limits of shape J (i.e., for any

diagram D : J Ñ C, the limit limD exists in C). Then lim defines a functor CatpJ, Cq Ñ C.

Proof. We only need to check the assignment is well-defined on morphisms and functorial. Suppose

D and D1
are two diagrams J Ñ C with corresponding limiting cones u : ∆limD ñ D and

u1 : ∆limD1 ñ D1
, and suppose δ : D ñ D1

is a natural transformation. Observe that the

composite natural transformation ∆limD
u
ùñ D

δ
ùñ D1

is a cone on D1
, and that cones on D1

are in

bijection with morphisms in C into the apex object limD1
. Therefore, by the universal property of

the limit, there is a unique morphism d : limD Ñ limD1
such that δ ˝ u “ u1 ˝ ∆d. This situation

is summarized by the commutativity of the following diagram, where the dashed arrow indicates

the uniqueness of ∆d:

∆limD ∆limD1

D D1

∆d

δ

u u1

We define the action of the functor lim : CatpJ, Cq Ñ C on the natural transformation δ by this

unique morphism d, setting lim δ :“ d : limD Ñ limD1
.

It therefore only remains to check that this assignment is functorial (i.e., that it preserves identities

and composites). To see that lim preserves identities, just take δ “ idD in the situation above;

clearly, by the uniqueness of d, we must have lim idD “ idlimD. Now suppose δ1 : D1 Ñ D2
is

another natural transformation. To see that limpδ1 ˝ δq “ lim δ1 ˝ lim δ, consider the pasting of the

associated diagrams:

∆limD ∆limD1 ∆limD2

D D1 D2

∆d

δ

u u1

∆d1

u2

δ1

∆d1d
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We have limpδ1 ˝ δq “ d1d, which is unique by definition. Therefore we must have d1d “ d1 ˝ d “

limpδ1q ˝ limpδq, and hence limpδ1 ˝ δq “ limpδ1q ˝ limpδq as required.

2.3.3.2. (Co)limits as adjoints

Since taking limits is functorial, it makes sense to ask if the functor lim has an adjoint, and indeed

it does, in a familiar form.

Proposition 2.3.48. The functor lim : CJ Ñ C is right adjoint to the constant diagram functor

functor∆ : C Ñ CJ , i.e. ∆ % lim.

Proof. We need to show that CJp∆c, Dq – Cpc, limDq naturally in c : C and D : J Ñ C. It is

sufficient to demonstrate naturality in each argument separately, by the universal property of

the product in Cat. We have already established naturality in c : C in Lemma 2.3.51 and shown

that taking limits is functorial (Proposition 2.3.47). So it only remains to show that this extends

to naturality in D : J Ñ C, which requires the commutativity of the following diagram for any

δ : D Ñ D1
, where we write αD for the isomorphism Cpc, limDq

„
ÝÑ CJp∆c, Dq:

Cpc, limDq CJp∆c, Dq

Cpc, limD1q CJp∆c, D
1q

αD

αD1

CJ p∆c,δqCpc,lim δq

Chasing a morphism β : c Ñ limD around this diagram, we find that its commutativity amounts

to the commutativity of the following diagram of cones for all φ : i Ñ j in J , where by definition

αDpβqi “ πi ˝ β and αD1plim δ ˝ βqi “ π1
i ˝ lim δ ˝ β:

Di D1i

c limD limD1

Dj D1j

Dφ

δi

D1φ

δj

πi

πj

π1
i

π1
j

lim δβ

πi˝β

πj˝β

This diagram commutes by definition, so the isomorphism is natural in D, which therefore

establishes the desired adjunction.

Remark 2.3.49. Dually, if all colimits of shape J exist in C, then colim is left adjoint to∆.
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Later, we will see that every adjoint functor exhibits a universal property (Propositions 2.4.16

and 2.4.23, results that we’ve already seen exemplified in Example 2.3.35), and this therefore gives

us another perspective on the universality of limits.

2.3.3.3. Hom preserves limits

We end this section with a useful result on the interaction between the covariant hom functors

Cpc,´q : C Ñ Set and taking limits.

Proposition 2.3.50 (Hom functor preserves limits). Suppose D : J Ñ C is a diagram in the

category C. There is an isomorphism Cpc, limDq – lim Cpc,Dp´qq which is natural in c : C.

To prove this proposition, it helps to have the following lemma, which establishes a natural

isomorphism between the set of morphisms into a limit and the set of cones on the corresponding

diagram.

Lemma 2.3.51. Cpc, limDq – CJp∆c, Dq, naturally in c : C.

Proof. For a given c : C, the isomorphism Cpc, limDq – CJp∆c, Dq follows directly from the

universal property of the limit: morphisms from c into the limiting object limD are in bijection

with cones ∆c ñ D. So it only remains to show that this isomorphism is natural in c : C. Writing

α : Cp´, limDq ñ CJp∆p´q, Dq for the natural transformation that takes each morphism into the

limit to the corresponding cone on D, naturality amounts to the commutativity of the following

square for each f : c1 Ñ c in C:

Cpc, limDq CJp∆c, Dq

Cpc1, limDq CJp∆c1 , Dq

Cpf,limDq CJ p∆f ,Dq

αc

αc1

Commutativity of this naturality square witnesses the fact that, given a morphism g : c Ñ limD,

you can either take the corresponding cone αcpgq and pull it back along ∆f (at its apex) to obtain

the cone αcpgq ˝ ∆f , or you can form the composite morphism g ˝ f and take its cone αc1pg ˝ fq,

and you’ll have the same cone: αcpgq ˝ ∆f “ αc1pg ˝ fq. This is illustrated by the commutativity

of the following diagram, which shows fragments of the limiting cone denoted π, the cone αcpgq,
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and the cone αc1pg ˝ fq, for a morphism φ : i Ñ j in J :

Di

c1 c limD

Dj

Dφ

πi

πj

gf

αcpgqi

αc1 pg˝fqi

αcpgqj
αc1 pg˝fqj

By the universal property of the limit, we must have αc1pg ˝ fqi “ αcpgqi ˝ f “ πi ˝ g ˝ f naturally

in i, and hence αc1pg ˝ fq “ αcpgq ˝ ∆f .

Proof of Proposition 2.3.50. By Lemma 2.3.51, we have a natural isomorphism CJp∆c, Dq –

lim Cpc,Dp´qq, so it suffices to establish a natural isomorphism CJp∆c, Dq – lim Cpc,Dp´qq.

This says that cones on D with apex c are isomorphic to the limit of Cpc,Dp´qq : J Ñ Set,

naturally in c. First, note that this limiting cone in Set is constituted by a family of functions

tpi : lim Cpc,Dp´qq Ñ Cpc,Diqui:J , as in the following commuting diagram:

Cpc,Diq

lim Cpc,Dp´qq

Cpc,Djq

Cpc,Dφq

pi

pj

Next, note there is a bijection between cones∆c ñ D onD in C with apex c, as in the commuting

diagram below-left, and cones∆1 ñ Cpc,Dp´qq in Set, as in the commuting diagram below-right.

Di

c

Dj

βi

Dφ

βj

Cpc,Diq

1

Cpc,Djq

Cpc,Dφq

βi

βj

By the univeral property of the limit, any cone tβiu as on the right factors uniquely through

lim Cpc,Dp´qq, as in the following commuting diagram. Similarly, any element β of lim Cpc,Dp´qq

induces a corresponding cone tpipβqu, by composition with the limiting cone p. To see that this

correspondence is an isomorphism, observe that the element of the set lim Cpc,Dp´qq assigned to

the cone tpipβqu must be exactly β, since the universal property of lim Cpc,Dp´qq ensures that β

57



is uniquely determined.

Cpc,Diq

˚ lim Cpc,Dp´qq

Cpc,Djq

Cpc,Dφq

pi

pj

β

βi

βj

It only remains to check that this correspondence is natural in c, so suppose f is any morphism

c1 Ñ c in C. If we write p´ : lim Cpc,Dp´qq Ñ CJp∆c, Dq to denote the function β ÞÑ tpipβqu,

and p1
´ to denote the corresponding function for c1

, naturality requires the following square to

commute:

lim Cpc,Dp´qq CJp∆c, Dq

lim Cpc1, Dp´qq CJp∆c1 , Dq

p´

p1
´

CJ p∆f ,Dqlim Cpf,Dp´qq

The commutativity of this square in turn corresponds to the commutativity of the following diagram

in Set, for any cone β:

Cpc,Diq Cpc1, Diq

1 lim Cpc,Dp´qq lim Cpc1, Dp´qq

Cpc,Djq Cpc1, Djq

Cpf,Diq

Cpf,Djq

Cpc1,Dφq

p1
i

p1
j

Cpc,Dφq

lim Cpf,Dp´qq

pi

pj

β

By the correspondence between cones ∆c ñ D in C and cones ∆1 ñ Cpc,Dp´qq in Set, this

diagram commutes if and only if the following diagram commutes:

Di

c1 c

Dj

βi

Dφ

βj

f

βi˝f

βj˝f

This diagram commutes by the definition of β and of the composites tβi ˝ fu, thereby establishing

the naturality of the isomorphism lim Cpc,Dp´qq – CJp∆c, Dq. Since we also have a natural

isomorphism CJp∆c, Dq – Cpc, limDq, we have established the result.
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The preceding proof established more than just the hom functor’s preservation of limits: it gave

us another useful natural isomorphism, this time betwen the set of cones ∆c ñ D in C and the set

of cones∆1 ñ Cpc,Dq on the diagram Cpc,Dq : J Ñ Set with apex the terminal set 1.

Corollary 2.3.52. There is an isomorphism CJp∆c, Dq – SetJp∆1, Cpc,Dqq, natural in c : C.

Remark 2.3.53. Since limits in C op
are colimits in C, Proposition 2.3.50 implies that the

contravariant hom functors Cp´, cq turn limits into colimits; i.e. CplimD, cq – colim CpDp´q, cq.

2.3.4. Closed categories and exponential objects

A distinguishing feature of adaptive systems such as the brain is that they contain processes

which themselves control other processes, and so it is useful to be able to formalize this situation

compositionally. When a category contains objects which themselves represent the morphisms of

the category, we say that the category is closed: in such categories, we may have processes whose

outputs are again processes, and we may think of the latter as controlled by the former.

A basic instance of this mathematical situation is found amidst the natural numbers, where

repeated multiplication coincides with exponentiation, as in 2ˆ 2ˆ 2 “ 23. If we think of numbers

as sets of the corresponding size, and let 23 denote the set of functions 3 Ñ 2, then it is not hard

to see that there are 8 such distinct functions. If we generalize this situation from numbers to

arbitrary objects, and from functions to morphisms, we obtain the following general definition of

exponentiation.

Definition 2.3.54. Let ˆ denote the product in a category C. When there is an object e : C

such that Cpx, eq – Cpx ˆ y, zq naturally in x, we say that e is an exponential object and denote

it by zy . The image of idzy under the isomorphism is called the evaluation map and is written

evy,z : z
y ˆ y Ñ z.

Example 2.3.55. In Set, given sets A and B, the exponential object BA
is the set of functions

A Ñ B. Given a function f : A Ñ B, the evaluation map evB,A acts by applying f to elements of

A: i.e., evB,Apf, aq “ fpaq.

Typically, we are most interested in situations where every pair of objects is naturally

exponentiable, which induces the following adjunction, formalizing the idea that exponentiation is

repeated multiplication.
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Proposition 2.3.56. When the isomorphism Cpxˆy, zq – Cpx, zyq is additionally natural in z, we

obtain an adjunction p´q ˆ y % p´qy called the product-exponential adjunction, and this uniquely

determines a functor C op ˆ C Ñ C : py, zq ÞÑ zy that we call the internal hom for C.

Proof. That the natural isomorphism induces an adjunction is immediate from Proposition 2.2.26;

the counit of this adjunction is the family of evaluation maps ev : p´qy ˆ y ñ idC . The uniqueness

of the internal hom follows from the uniqueness of adjoint functors (which we will establish in

Corollary 2.4.18).

Definition 2.3.57. A category C in which every pair of objects has a product is called Cartesian. A

Cartesian category C with a corresponding internal hom is called Cartesian closed.

Example 2.3.58. We’ve already seen that Set is Cartesian closed. So is Cat: the internal hom CB

is the category of functors B Ñ C.

Example 2.3.59 (A non-example). The category Meas of measurable spaces with measurable

functions between them is Cartesian but not Cartesian closed: the evaluation function is not always

measurable [15]. In this context, we will introduce quasi-Borel spaces (originally due to Heunen

et al. [131]) in §4.1.5, in order to construct stochastic processes which emit functions.

It is not hard to prove the following result, which says that Cartesian closed categories can

“reason about themselves”.

Proposition 2.3.60. A Cartesian closed category is enriched in itself.

This ‘internalization’ is witnessed by the hom functors, which in the case of a Cartesian closed

enriching category E become E-functors.

Proposition 2.3.61. Suppose C is an E-category where E is Cartesian closed. Then the hom

functor Cp´,“q is an E-functor C op ˆC Ñ E . On objects pc, dq, the hom functor returns the object

Cpc, dq in E of morphisms c Ñ d. Then, for each quadruple pb, c, a, dq of objects in C, we define an

E-morphism C oppb, aq ˆ Cpc, dq Ñ E
`

Cpb, cq, Cpa, dq
˘

as the image of the composite

`

Cpa, bq ˆ Cpc, dq
˘

ˆ Cpb, cq
α
ÝÑ Cpa, bq ˆ

`

Cpc, dq ˆ Cpb, cq
˘

¨ ¨ ¨

¨ ¨ ¨
Cpa,bqˆ˝b,c,d
ÝÝÝÝÝÝÝÝÑ Cpa, bq ˆ Cpb, dq

σ
ÝÑ Cpb, dq ˆ Cpa, bq

˝a,b,d
ÝÝÝÑ Cpa, dq

under the product-exponential isomorphism

E
`

Cpa, bq ˆ Cpc, dq, Cpa, dqCpb,cq
˘

– E
´

`

Cpa, bq ˆ Cpc, dq
˘

ˆ Cpb, cq, Cpa, dq

¯
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where α is the associativty of the product and σ is its symmetry X ˆ Y – Y ˆX , and where we

have used that C oppb, aq “ Cpa, bq.

Remark 2.3.62. The rôle of the symmetry here is testament to the fact that we can read a composite

morphism g ˝ f as either “g after f” or “f before g”.

Proof sketch. To give an E-functor (Definition 2.2.10) is to give a function on objects and a family

of E-morphisms (corresponding to the hom objects of C) such that identities and composites are

preserved. We have given such a function and such a family in the statement of the proposition,

and so it remains to check the axioms: these follow by the unitality and associativity of composition

in an E-category (Definition 2.2.6).

When E is Cartesian closed, then as a corollary its hom functor Ep´,“q is an E-functor.

When a diagram commutes, every parallel path is equal when interpreted as a morphism. If a

diagram commutes up to some 2-cell or 2-cells, then parallel paths can be transformed into each

other using the 2-cell(s). Much categorical reasoning therefore consists in using morphisms in the

base of enrichment to translate between different hom objects; the simplest such of course being

pre- and post-composition. In the next section, we will see many explicit examples of this kind of

reasoning when we prove the Yoneda Lemma—which says that the hom objects contain all the data

of the category—but we have already seen examples of it above, when we considered adjunctions:

after all, adjunctions are families of isomorphisms between hom objects.

When a category is Cartesian closed, it is its own base of enrichment, and so one does not have

to move to an external perspective to reason categorically about it: one can do so using its ‘internal

language’. We have already seen a correspondence between the language of logic and that of sets,

in which we can think of elements of sets as witnesses to the proof of propositions represented

by those sets, and where logical operations such as conjunction and disjunction correspond to

operations on sets. This correspondence extends to Cartesian closed categories generally: universal

constructions such as those we have introduced above can be interpreted as encoding the logic of

the internal language.

More precisely, Cartesian closed categories are said to provide the semantics for dependent type

theory: a higher-order logic in which propositions are generalized by ‘types’
3
. One can construct

a ‘syntactic’ category representing the logic of the type theory, and then interpret it functorially

3

A type is something like a proposition in which we’re ‘allowed’ to distinguish between its witnesses, which we call

terms of the given type.
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in a Cartesian closed category. This correspondence is known as the Curry-Howard-Lambek

correspondence, which says that logical proofs correspond to morphisms in a Cartesian closed

category, and that such morphisms can equally be seen as representing the functions computed

by deterministic computer programs. (In general, the correspondence is an adjoint one: dually,

one can construct from a given category a ‘syntactic’ category encoding the logic of its internal

language.)

When a category moreover has (internal) dependent sums and products, then it can be interpreted

as a model of dependent type theory, in which types themselves may depend on values; for instance,

one might expect that the type of a weather forecast should depend on whether one is on land or at

sea. We will not say much more about dependent type theory, although we will make implicit use

of some of its ideas later in the thesis. Therefore, before moving on to the Yoneda Lemma, we will

say just enough to define the notion of dependent product ‘universally’, without reference to sets.

2.3.4.1. Dependent products

In Remark 2.3.20, we discussed products where the factors were indexed by an arbitrary set and

explained how they correspond to sets of generalized ‘dependent’ functions, where the codomain

type may vary with the input. In that case, we were restricted to considering products indexed by

sets, but with the machinery of limits at hand, we can ‘internalize’ the definition to other Cartesian

closed categories.

Definition 2.3.63. Suppose C is Cartesian closed and has all limits, and suppose p : E Ñ B is a

morphism in C. The dependent product of p along B is the pullback object

ś

B p as in the diagram

ś

B p EB

1 BB
idB

pB
{

where 1 is the terminal object, idB is the element picking the identity morphism B Ñ B, and pB is

the postcomposition morphism induced by the functoriality of exponentiation.

Remark 2.3.64. When p is the projection
ř

b:B Pb Ñ B out of a dependent sum, we will write its

dependent product as

ś

b:B Pb. Since a productBˆC is isomorphic to the dependent sum

ř

b:B C ,

note that this means we can alternatively write the exponential object CB as

ś

b:B C .

To understand how Definition 2.3.63 generalizes Remark 2.3.20, we can interpret the former in

Set and see that the two constructions coincide. The set EB is the set of functions s : B Ñ E,
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and pB acts by s ÞÑ p ˝ s. The indicated pullback therefore selects the subset of EB such that

p ˝ s “ idB . This is precisely the set of sections of p, which is in turn the dependent product of p in

Set.

Remark 2.3.65. Definition 2.3.63 is entirely internal to C: it depends only on structure that is

available within C itself, and not on ‘external’ structures (such as indexing sets) or knowledge

(such as knowledge of the make-up of the objects of C). It is epistemically parismonious: a purely

categorical definition, stated entirely in terms of universal constructions.

Remark 2.3.66. Under the Curry-Howard-Lambek correspondence, exponential objects represent

the propositions that one proposition implies another; in type theory, they represent the type

of functions from one type to another. As dependent exponential objects, dependent products

could therefore be seen as representing ‘dependent’ implications; as we have already seen, they do

represent the type of dependent functions. However, dependent products and sums have another

kind of logical interpretation: as quantifiers. That is, the logical proposition represented by

ś

b:B Pb

is @b : B.P pbq: an element of

ś

b:B Pb is a proof that, for all b : B, the proposition P pbq is satisfied.

Dually, the proposition represented by

ř

b:B Pb is Db : B.P pbq: an element of

ř

b:B Pb is a pair

pb, xq of a witness to B and a witness x of the satisfaction of P pbq.

2.4. The Yoneda Lemma: a human perspective

We end this chapter by introducing the fundamental theorem of category theory, the Yoneda

Lemma, which expresses mathematically the idea that to know how a thing is related to other

things is to know the identity of the thing itself. The notion of relational identity is recognized

throughout human endeavour. In linguistics, it underlies the observation of Firth [92] that “you

shall know a word by the company it keeps!”, which in turn is the foundation of distributional

semantics and thus much of contemporary natural language processing in machine learning. In

culture, it is illustrated by the ancient parable of the blind men and the elephant, in which the

identity of the creature is only known by stitching together evidence from many perspectives.

In society, it is reflected in the South African philosophy of ubuntu (meaning “I am because we

are”) and the Māori notion of whanaungatanga (in which personal identity is developed through

kinship), and the observation that “actions speak louder than words”. Finally, the Yoneda Lemma is

manifest in science, where our understanding of phenomena derives from the accumulation across

contexts of results and their interpretation and translation: no single individual understands the

totality of any subject, and no subject or phenomenon is understood in isolation.
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2.4.1. Formalizing categorical reasoning via the Yoneda embedding

In §2.3.4, we saw how Cartesian closed categories allow us to internalize categorical reasoning. The

category Set is the archetypal Cartesian closed category, and constitutes the base of enrichment

for all locally small categories. The Yoneda embedding allows us to move from reasoning about

the objects in any given category C to reasoning about the morphisms between its hom sets: the

natural transformations between hom functors. In this context, the hom functors constitute special

examples of functors into the base of enrichment, which we call ‘presheaves’ (contravariantly) and

‘copresheaves’ (covariantly), and which can be thought of as C-shaped diagrams in Set.

Definition 2.4.1. Let C be a category. A presheaf on C is a functor C op Ñ Set. Dually, a copresheaf

is a functor C Ñ Set. The corresponding functor categories are the categories of (co)presheaves on

C.

Remark 2.4.2. In the enriched setting, when C is enriched in E , an E-presheaf is an E-functor

C op Ñ E and an E-copresheaf is an E-functor C Ñ E .

As a first example of a presheaf, we have an alternative definition of the notion of directed graph.

Example 2.4.3. Let G denote the category of Example 2.1.5 containing two objects 0 and 1 and

two morphisms s, t : 0 Ñ 1. Then a directed graph is a presheaf on G.

This definition is justified by the following proposition.

Proposition 2.4.4. There is an equivalence of categoriesGraph – SetG
op
, whereGraph is the

category of directed graphs introduced in Example 2.1.11.

Proof. To each graph G we can associate a presheaf G : G op Ñ Set by defining Gp0q :“ G0,

Gp1q :“ G1, Gpsq :“ domG and Gptq :“ codG ; and to each presheaf we can likewise associate a

graph, so that we have defined a bijection on objects. It therefore only remains to show that there

is a bijection between graph homomorphisms and natural transformations accordingly: but this is

easy to see once we have observed that the graph homomorphism axioms are precisely the law of

naturality, as illustrated diagrammatically in (2.1).

Taking again a general perspective, the Yoneda embedding is the embedding of a category C into

its presheaf category, obtained by mapping c : C to the presheaf Cp´, cq; and there is of course a

dual ‘coYoneda’ embedding.
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Remark 2.4.5. We say ‘embedding’ to mean a functor that is injective on objects and faithful

(injective on hom sets). The Yoneda embedding will turn out to be fully faithful (bijective on hom

sets), as a consequence of the Yoneda lemma.

Owing to its importance, we make a formal definition of the Yoneda embedding.

Definition 2.4.6. Let C be a category. By applying the product-exponential adjunction in Cat to

the hom functor Cp´,“q : C op ˆ C Ñ Set, we obtain a functor よ : C Ñ SetC
op

: c ÞÑ Cp´, cq

of C into its presheaf category, and dually a functor よ: C op Ñ SetC : c ÞÑ Cpc,“q into the

copresheaf category. We call the former functor the Yoneda embedding and the latter the coYoneda

embedding. When C is an E-category and E is Cartesian closed, then the Yoneda embedding is

instead an E-functor C Ñ EC op
(and likewise for the coYoneda embedding).

Remark 2.4.7. This abstract definition does not make explicit howよ acts on morphisms. However,

we have already seen this action, when we first exemplified natural transformations in Example

2.2.18.

As we discussed in §2.3.4, much categorical reasoning corresponds to following morphisms

between hom objects, and often the reasoning is agnostic either to where one starts, or to where

one ends up. The Yoneda embedding witnesses such proofs as morphisms in the (co)presheaf

categories. As an example, consider the proof of Proposition 2.4.20 below: each step corresponds to

the application of a natural transformation.

Remark 2.4.8. It also so happens that every (co)presheaf category is very richly structured,

inheriting its structure from the base of enrichment. For example, this means that the presheaf

category SetC
op

has all limits, is Cartesian closed, has a subobject classifier, and dependent sums

and products, even when C has none of these. (Interestingly, this means that the category of directed

graphs is accordingly richly structured, being a presheaf category by Proposition 2.4.4.) As a result,

(co)presheaf categories are very powerful places to do categorical reasoning.

2.4.2. Knowing a thing by its relationships

The Yoneda lemma says that every (co)presheaf on C is determined by “how it looks from C”. Since

under the (co)Yoneda embedding every object gives rise to a (co)presheaf, a corollary of the Yoneda

lemma is that every object can be identified by its relationships.
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Remark 2.4.9. If the base of enrichment of a category is Cartesian closed, then one can prove an

analogous enriched version of the Yoneda lemma. We will only prove the standard Set-enriched

case here.

We will also only prove the Yoneda lemma for presheaves; there is of course a dual coYoneda

lemma for copresheaves, which follows simply by swapping C for C op
.

Theorem 2.4.10 (Yoneda lemma). Let F : C op Ñ Set be a presheaf on C. Then for each c : C,

there is an isomorphism Fc – SetC
op

pCp´, cq, F q. Moreover, this isomorphism is natural in both

F : C op Ñ Set and c : C.

Proof. We first define a mapping γ : Fc Ñ SetC
op

pCp´, cq, F q as follows. Given h : Fc, we

define the natural transformation γphq : Cp´, cq ñ F to have components γphqb : Cpb, cq Ñ

Fb : f ÞÑ Ffphq; note that since h : Fc and f : b Ñ c, we have Ff : Fc Ñ Fb and hence

Ffphq : Fb. To check that this definition makes γphq into a natural transformation, suppose

g : a Ñ b. We need to check Fg ˝ γphqb “ γphqa ˝ Cpg, cq. Since Cpg, cqpfq “ f ˝ g, this means

verifying Fg ˝ Ffphq “ F pf ˝ gqphq. But F is a contravariant functor, so F pf ˝ gq “ Fg ˝ Ff ,

thereby establishing naturality.

Conversely, we define a mapping γ1 : SetC
op

pCp´, cq, F q Ñ Fc as follows. Suppose α is a

natural transformation Cp´, cq ñ F , so that its component at c is the function αc : Cpc, cq Ñ Fc.

We define γ1pαq :“ αcpidcq.

Next, we need to establish that γ and γ1
are mutually inverse. First, we check that γ1 ˝ γ “ idFc.

Given h : Fc, we have

γ1pγphqq “ γphqcpidcq “ F pidcqphq “ idFcphq “ h

as required. We now check that γ ˝ γ1 “ idSetC op
pCp´,cq,F q

. Given α : Cp´, cq ñ F , we have

γ1pαq “ αcpidcq by definition. Hence γpγ1pαqq : Cp´, cq ñ F has components γpγ1pαqqb :

Cpb, cq Ñ Fb which act by f ÞÑ Ffpαcpidcqq. So we need to show that Ffpαcpidcqq “ αbpfq.

This follows directly from the naturality of α. The commutativity of the naturality square on the

left in particular holds at idc : Cpc, cq as on the right:

Cpc, cq Fc

Cpb, cq Fb

αc

FfCpf,cq

αb

idc αcpidcq

f αbpfq “ Ffpαcpidcqq

66



Note that Cpf, cqpidcq “ idc ˝f “ f . This establishes that γ ˝ γ1 “ idSetC op
pCp´,cq,F q

, and since

γ1 ˝ γ “ idFc, we have Fc – SetC
op

pCp´, cq, F q.

It remains to verify that this isomorphism is natural in F and c. Suppose φ : F ñ F 1
is a natural

transformation, and write γ1
Fc for the function γ

1
defined above, and γ1

F 1c for the corresponding

function for F 1
. Naturality in F means that the diagram on the left below commutes, which we

can see by chasing the natural transformation α as on the right:

SetC
op

pCp´, cq, F q Fc

SetC
op

pCp´, cq, F 1q F 1c

SetC
op

pCp´,cq,φq

γ1
Fc

γ1
F 1c

φc

α γ1
Fcpαq

φ ˝ α γ1
F 1cpφ ˝ αq “ φc ˝ γ1

Fcpαq

Since γ1
Fcpαqc :“ αcpidcq and γ

1
F 1cpφ˝αqc :“ φc ˝αcpidcq, the equation γ

1
F 1cpφ˝αq “ φc ˝γ1

Fcpαq

holds by definition, thereby establishing naturality in F . Finally, suppose f : b Ñ c in C, and write

γFc for the function γ defined above and γFb for the corresponding function for b : C. Naturality

in c means the commutativity of the following diagram:

Fc SetC
op

pCp´, cq, F q

Fb SetC
op

pCp´, bq, F q

SetC
op

pCp´,fq,F q

γFc

γFb

Ff

Suppose h : Fc. The component of γFcphq at a : C is the function γFcphqa : Cpa, cq Ñ Fa

defined by g ÞÑ Fgphq. The component of SetC
op

pCp´, fq, F q ˝ γFcphq at a : C is thus the

function γcphqa ˝ Cpa, fq : Cpa, bq Ñ Fa taking g : a Ñ b to F pf ˝ gqphq. On the other hand,

the component of γFbpFfphqq at a : C is the function γFbpFfphqqa : Cpa, bq Ñ Fa taking g

to FgpFfphqq. Since F is a contravariant functor, we have F pf ˝ gqphq “ FgpFfphqq. This

establishes the commutativity of the naturality square, and thus naturality in c as well as F .

The identification of an object with its collection of hom sets is formalized by the following

corollary.

Corollary 2.4.11 (Representables are unique up to isomorphism). Suppose there is an isomorphism

of presheaves Cp´, aq – Cp´, bq. Then a – b in C.

This corollary follows from the next one, which expresses that the image of the Yoneda embedding

is isomorphic with C itself.
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Corollary 2.4.12. The Yoneda embedding is fully faithful.

Proof. The Yoneda embedding defines a family of functions on the hom sets of C:

よb,c : Cpb, cq Ñ SetC
op

pCp´, bq, Cp´, cqq

f ÞÑ Cp´, fq

By the Yoneda lemma, we immediately have SetC
op

pCp´, bq, Cp´, cqq – Cpb, cq, which is the

required isomorphism of hom sets.

Next, we have the following fact, that fully faithful functors transport isomorphisms in their

codomain to their domain (they ‘reflect’ them).

Proposition 2.4.13 (Fully faithful functors reflect isomorphisms). Suppose F : C Ñ D is a fully

faithful functor. If f : a Ñ b is a morphism in C such that Ff is an isomorphism in D, then f is an

isomorphism in C.

Proof. Ff : Fa Ñ Fb being an isomorphism means that there is a morphism g1 : Fb Ñ Fa in D

such that g1 ˝ Ff “ idFa and Ff ˝ g1 “ idFb. By the functoriality of F , we have idFa “ F ida and

idFb “ F idb. Hence g
1 ˝Ff “ F ida and Ff ˝g1 “ F idb. Since F is isomorphic on hom sets, there

is a unique g : b Ñ a such that g1 “ Fg. Hence Fg ˝ Ff “ F ida and Ff ˝ Fg “ F idb. By the

functoriality of F , we have Fg ˝Ff “ F pg ˝fq and Ff ˝Fg “ F pf ˝ gq. Hence F pg ˝fq “ F ida

and F pf ˝ gq “ F idb. Finally, since F is isomorphic on hom sets, we must have g ˝ f “ ida and

f ˝ g “ idb, and hence f is an isomorphism in C.

And this gives us the proof we seek:

Proof of Corollary 2.4.11. Since the Yoneda embedding is fully faithful (Corollary 2.4.12), it reflects

isomorphisms by Proposition 2.4.13.

Presheaves in the image of the Yoneda embedding consequently play a special rôle in category

theory: to show that an arbitrary presheaf F is isomorphic to Cp´, cq is to identify it with the object

c itself, and in this case, we can say that F is represented by c. We therefore make the following

definition.

Definition 2.4.14. Suppose F is a presheaf on C. We say that it is representable if there is a natural

isomorphism F – Cp´, cq for some object c : C which we call its representing object; we call the

natural isomorphism Cp´, cq ñ F its representation. Dually, if F is instead a copresheaf, we call
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it corepresentable if there is a natural isomorphism F – Cpc,“q, with c being the corepresenting

object; we call the natural isomorphism Cpc,“q ñ F its corepresentation.

Remark 2.4.15. Corepresentable copresheaves will play an important rôle later in this thesis: their

coproducts are called polynomial functors (§3.5), and these will be used to formalize the interfaces

of interacting adaptive systems.

Via the uniqueness of representables, the Yoneda lemma underlies universal constructions, since

knowing the morphisms into or out of an object is enough to identify that object. The definition of

a limit, notably, is the statement that morphisms into it correspond to morphisms into a diagram;

and this in turn is equivalently the statement that lim is right adjoint to ∆. Indeed, adjointness

is itself a certain kind of representability: the definition of adjoint functor (2.2.24) is precisely a

natural characterization of morphisms into and out of objects, as related by the adjunction!

Proposition 2.4.16 (Adjoints are representable). Suppose R : D Ñ C is right adjoint to L. Then

for every d : D, the presheaf DpL´, dq : C op Ñ Set is represented by the object Rd : C. Dually,

the copresheaf Cpc,R´q : D Ñ Set is corepresented by the object Lc : D.

Proof. Since L $ R, we have an isomorphism DpLc, dq – Cpc,Rdq natural in c and d. Therefore

in particular we have a natural isomorphism of presheaves Cp´, Rdq ñ DpL´, dq and a natural

isomorphism of copresheaves DpLc,´q ñ Cpc,R´q; the former is a representation and the latter

a corepresentation.

From this, we can formalize the representability of limits and colimits.

Corollary 2.4.17 (Limits are representations). Suppose D : J Ñ C is a diagram in C. A limit

of D is a representation of CJp∆p´q, Dq : C op Ñ Set, or equivalently of SetJp∆1, Cp´, Dqq.

Dually, a colimit of D is a corepresentation of CJpD,∆p´qq : C Ñ Set, or equivalently of

SetJp∆1, CpD,´qq.

Proof. If C has all limits of shape J , then this follows directly from the facts that lim is right adjoint

to ∆ (Proposition 2.3.48) and that adjoints are representable (Proposition 2.4.16); the dual result

follows similarly from the fact that colim is left adjoint to∆.

Otherwise, the limit case follows immediately from Lemma 2.3.51 (or equivalently Corollary

2.3.52) and the definition of representation (2.4.14); the colimit case is formally dual.

Accordingly, we recover the uniqueness of universal constructions.
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Corollary 2.4.18. Adjoint functors are unique up to unique isomorphism.

Corollary 2.4.19. Limits and colimits are unique up to unique isomorphism.

Using these ideas, we obtain the following useful result relating limits and adjoint functors.

Proposition 2.4.20 (Right adjoints preserve limits). Suppose D : J Ñ D is a diagram in D and

L $ R : D Ñ C is an adjunction. Then R limD – limRD in C.

Proof. We have the following chain of natural isomorphisms:

Cpc,R limDq – DpLc, limDq since R is right adjoint to L

– limDpLc,Dq since hom preserves limits

– lim Cpc,RDq since R is right adjoint to L

– Cpc, limRDq since hom preserves limits

Since representables are unique up to isomorphism and we have established an isomorphism of

presheaves Cp´, R limDq – Cp´, limRDq, we must have R limD – limRD in C.

Remark 2.4.21. There is of course a dual result that left adjoints preserve colimits.

Remark 2.4.22. One might speculate about the converse: is it the case that the preservation of

limits by a functor is enough to guarantee the existence of its left adjoint? The answer to this

question is, “under certain conditions” on the size and structure of the categories and functors

involved, and a positive answer is called an adjoint functor theorem. The “certain conditions” hold

quite generally, and so it is often sufficient just to check whether a functor preserves limits (or

colimits) to see that it is a right (or left) adjoint.

We end this chapter by closing the loop between universality and representability.

Proposition 2.4.23 (Universality of representability). Representable presheaves F : C op Ñ Set

correspond bijectively to universal morphisms from 1 : Set to F .

Proof. A representation of F is a choice of object c : C and a natural isomorphism υ : Cp´, cq ñ F .

We construct a bijection between the set of representations of F and the set of universal morphisms

from 1 to F . Therefore suppose given a representation υ : Cp´, cq ñ F of F ; its component at c : C

is the isomorphism υc : Cpc, cq Ñ Fc. The Yoneda lemma assigns to υ an element γ1pυq : 1 Ñ Fc

satisfying γ1pυq “ υcpidcq. We now show that this element υcpidcq satisfies the universal property
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that for all f : 1 Ñ Fb there exists a unique morphism h : b Ñ c in C such that f “ Fh ˝ υcpidcq.

Therefore let f be any such element 1 Ñ Fb. Since υ is a natural isomorphism, it has an inverse

component at b : C, denoted υ1
b : Fb Ñ Cpb, cq, and so we obtain by composition an element

h :“ 1
f
ÝÑ Fb

υ1
b

ÝÑ Cpb, cq of Cpb, cq. Such an element is precisely a morphism h : b Ñ c in C.

Consider now the following diagram:

1 Cpc, cq Cpb, cq

Fc Fb

idc Cph,cq

υbυc

Fh

υcpidcq

The triangle on the left commutes by definition and the square on the right commutes by the

naturality of υ, so that the whole diagram commutes. The composite morphism Cph, cq ˝ idc along

the top of the diagram picks out the element idc ˝h of Cpb, cq. By the unitality of composition, this

element is equal to h itself, so we can rewrite the diagram as follows:

1 Cpb, cq

Fc Fb

υb

Fh

υcpidcq

h

Next, we can substitute the definition h :“ υ1
b ˝ f , and observe that υb ˝ υ1

b “ idFb (since υb is an

isomorphism with υ1
b its inverse):

1 Fb Cpb, cq

Fc Fb

υb

Fh

υcpidcq

f υ1
b

The commutativity of this diagram means that f “ Fh˝υcpidcq. Moreover, since h “ υ1
b ˝f and υ1

b

is an isomorphism, h is unique for a given f . Therefore υcpidcq : 1 Ñ Fc is a universal morphism

from 1 to F .

Next, suppose given a universal morphism u : 1 Ñ Fc. The Yoneda lemmea associates to this

element a natural transformation γpuq whose component at b is the function γpuqb : Cpb, cq Ñ Fb

which acts by f ÞÑ Ffpuq. We need to show that this function is an isomorphism for every b : C, so

that γpuq : Cp´, cq ñ F is a natural isomorphism and hence F is represented by c. We therefore

need to define an inverse function φb : Fb Ñ Cpb, cq, which we do using the universal property
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of u: for each element f : 1 Ñ Fb, we have a unique morphism h : b Ñ c such that f “ Fhpuq.

This unique h is an element of Cpb, cq, and so we can simply define φbpfq :“ h. The uniqueness

of h ensures that φb is an inverse of γpuqb: observe that γpuqb ˝ φb acts by f ÞÑ h ÞÑ Fhpuq and

f “ Fhpuq by definition; in the opposite direction, we necessarily have f ÞÑ Ffpuq ÞÑ f .

We have constructed mappings between the set of representations of F and universal morphisms

from 1 to F , so it remains to show that these mappings are mutually inverse. This again follows

directly from the Yoneda lemma: the mapping of representations to universal morphisms takes a

representation υ to the element γ1pυq induced by the Yoneda lemma; and the mapping of universal

morphisms to representations takes a universal morphism u to the natural transformation γpuq

induced by the Yoneda lemma. Since the functions γ and γ1
are mutually inverse, so must these

mappings be: γ ˝ γ1pυq “ υ and γ1 ˝ γpuq “ u.

Using the universality of representability, and the uniqueness of universal morphisms, and the

representability of limits and adjoints, we therefore obtain alternative proofs of the uniqueness of

those universal constructions.
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3. Algebraic connectomics

In Chapter 2, we motivated applied category theory in the context of complex systems like brains

by its abilities to relate structure and function, to translate between models and frameworks, and

to distil phenomena to their essences. However, the focus in that chapter was on ‘one-dimensional’

morphisms, which can be understood as connecting one interface to another, with the composition

of 1-cells representing something like the ‘end-to-end’ composition of processes; although we

considered some higher-dimensional category theory, this was largely restricted to weakening

equalities and thus comparing morphisms.

Because systems can be placed ‘side-by-side’ as well as end-to-end, and because two systems

placed side by side may be nontrivially wired together, in this chapter we extend the higher-

dimensional categorical language accordingly, with a particular focus once more on the graphical

and diagrammatic representation of systems and processes. In line with the distinction made in

§2.2.3 between syntax and semantics, our treatment here of the syntax of wiring—of connectomics—is

largely ‘algebraic’. Later, in Chapter 6, we will see how our semantic focus will be ‘coalgebraic’.

We will begin therefore by introducing the graphical calculus of monoidal categories, which

allow us to depict and reason about sequential and parallel composition simultaneously. We follow

this with the formal underpinnings of the structure—to use the term from Chapter 2, a monoidal

structure is a ‘well-behaved’ tensor product—before explaining how monoidal categories relate

to the higher category theory of Chapter 2 using the notion of bicategory. We then make use of

the extra freedom afforded by bicategories to consider parameterized systems, with which we can

model systems that not only act but also learn.

By this point, we will find ourselves ready to apply our new toolkit, and so in §3.3, we use

functorial semantics to define a graphical algebra for neural circuits, revisiting our first example

from Chapter 2. This involves a change of perspective from the graphical calculus with which we

begin the chapter: instead of using the composition of morphisms to encode the plugging-together

of systems at the same ‘scale’ or “level of hierarchy”, we use composition to encode the wiring of

circuits at one level into systems at a higher level. Although formally closely related to monoidal

73



categories, this ‘hierarchical’ perspective is strictly speakingmulticategorical and allows morphisms’

domains to take very general shapes.

After this extended example, we return to algebra, explaining what makes monoidal categories

monoidal, and using the related concept of monad to explain how we think of them as algebraic;

monads will later prove to be of importance in categorical approaches to probability theory. Finally,

we end the chapter by introducing the richly structured category of polynomial functorsSet Ñ Set,

which we will use in Chapter 6 both to formalize a wide variety of open dynamical systems as well

as to specify the shapes of those systems’ interfaces.

Excepting the extended example of §3.3, the content of this chapter is well known to category-

theoreticians. However, since it is not well known to mathematical scientists, we have again

endeavoured to supply detailed motivations for the concepts and results that we introduce.

3.1. Categories and calculi for process theories

In this section, we introduce an alternative way of depicting morphisms and their composites in

categories equipped with notions of both sequential and parallel composition. Such categories

are useful for representing processes in which information flows: we formalize the processes

as morphisms, and consider the flow as from domain to codomain, even when the categories

themselves are quite abstract and lack a notion of time with which to make sense of ‘flow’. In

such contexts, the categories are often not only monoidal, but also copy-discard categories, since a

distinctive feature of classical information is that it can be copied and deleted. Monoidal categories

will therefore be important not only in depicting composite computations (as indicated in §2.1.1.3),

but also in depicting and manipulating the factorization of probabilistic models (as indicated in

§2.1.1.2).

3.1.1. String diagrams

Rather than beginning with the formal definition of “monoidal category”, we start with the

associated graphical calculus of string diagrams and its intuition.

Sequential and parallel composition Diagrams in the graphical calculus depict morphisms

as boxes on strings: the strings are labelled with objects, and a string without a box on it can

be interpreted as an identity morphism. Sequential composition is represented by connecting

strings together, and parallel composition by placing diagrams adjacent to one another; sequential

composition distributes over parallel, and so we can of course compose parallel boxes in sequence.
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Because monoidal structures are “well-behaved tensor products”, we will typically denote them

using the same symbols that we adopted in Chapter 2, with sequential composition denoted by ˝ and

parallel composition (tensor) denoted by b. Diagrams will be read in the direction of information

flow, which will be either bottom-to-top or left-to-right; we will adopt the former convention in

this section.

In this way, c : X Ñ Y , idX : X Ñ X , d ˝ c : X
c

ÝÑ Y
d
ÝÑ Z , and f b g : X b Y Ñ AbB are

depicted respectively as:

c

X

Y

X

X

d

Z

c

X

f

X

A

g

Y

B

A monoidal structure comes with a monoidal unit, which we will also continue to call a tensor unit,

and which will be not be depicted in diagrams, but rather left implicit. (Alternatively, it is depicted as

the “empty diagram”.) This is justified, as we will see, by the requirement that IbX – X – Xb I

naturally in X .

States and costates In Remark 2.2.8, we called a morphism I Ñ X out of the tensor unit a

generalized element, but owing to the many rôles they play, such morphisms go by many names.

When we think ofX as representing a system, we will also call such morphisms states ofX . Dually,

morphismsX Ñ I can be called costates, or sometimes effects. When the unit object is the terminal

object (such as when the monoidal structure is given by the categorical product), then these costates

are trivial. In other categories, costates may be more effectful, and so carry more information: for

example, in a category of vector spaces, states are vectors, costates are linear functionals, and so

the composite of a state with a costate is an inner product.

Graphically, states η : I Ñ X and costates ϵ : X Ñ I will be represented respectively as follows:

η

X
ϵ

X

Discarding, marginalization, and causality In a category with only trivial effects, we can

think of these as witnessing the ‘discarding’ of information: in electronics terms, they “send the
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signal to ground”. For this reason, we will denote such trivial effects by the symbol , writing

X : X Ñ I for each object X .

We can use discarding to depict marginalization. Given a ‘joint’ state (a state of a tensor product)

ω : I Ñ X b Y , we can discard either Y or X to obtain ‘marginal’ states ω1 of X and ω2 of Y

respectively, as in the following depiction:

ω
“

ω1

X X

and

ω
“

ω2

YY

.

We will see in Chapter 4 how this corresponds to the marginalization familiar from probability

theory.

To make the notion of discarding more mathematically precise, we can use it to encode a causality

condition: physically realistic processes should not be able to affect the past.

Definition 3.1.1. Whenever a morphism c satisfies the equation

“c

we will say that c is causal: the equation says that, if you do c and throw away the result, the effect

is of not having done c at all—and so c could not have had an anti-causal effect on its input.

Remark 3.1.2. If in a category every morphism is causal, then this is equivalently a statement of

the naturality of family of discarding morphisms X : X Ñ I , which implies that there is only one

such morphism X Ñ I for every object X , and which therefore means that I must be a terminal

object.

Some categories of interest will have nontrivial costates, yet we will still need notions of

discarding and marginalization. In these categories, it suffices to ask for each object X to be

equipped with a ‘comonoid’ structure (to be elaborated in §3.4.1), of which one part is a ‘counit’

morphism X Ñ I which can play a discarding rôle, and which we will therefore also denote by

X .

Copying The other part of a comonoid structure on X is a ‘copying’ map X : X Ñ X bX ,

which has an intuitive graphical representation. As we will see in §3.4.1, the comonoid laws say
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that copying must interact nicely with the discarding maps:

““ and “

These equations say that making a copy and throwing it away is the same as not making a copy (left,

counitality; and that in copying a copy, it doesn’t matter which copy you copy (right, coassociativity).

Definition 3.1.3. A category with a comonoid structure p X , Xq for every object X is called a

copy-discard category [60].

Symmetry In all our applications, the tensor product structure will be symmetric, meaning that

X b Y can reversibly be turned into Y bX simply by swapping terms around. In the graphical

calculus, we depict this by the swapping of wires, which we ask to satisfy the following equations:

“ and “

The equations say that swapping is self-inverse (on the left), and that copying is invariant under the

symmetry (on the right). (Strictly speaking, the right equation is an axiom called cocommutativity

that we additionally ask the comonoid structure to satisfy in the presence of a symmetric tensor.)

3.1.2. Monoidal categories

It being important to use tools appropriate for the jobs at hand, we will not always work just with

the graphical calculus: we will need to translate between string diagrams and the symbolic algebra

of Chapter 2. In the first instance, this means making mathematical sense of the graphical calculus

itself, for which the key definition is that of the monoidal category.

Definition 3.1.4. We will call a category C monoidal if it is equipped with a functor b : C ˆC Ñ C

called the tensor or monoidal product along with an object I : C called the monoidal unit and three

natural isomorphisms

1. an associator α : pp´q b p´qq b p´q ñ p´q b pp´q b p´qq;

2. a left unitor λ : I b p´q ñ p´q; and
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3. a right unitor ρ : p´q b I ñ p´q

such that the unitors are compatible with the associator, i.e. for all a, b : C the diagram

pab Iq b b ab pI b bq

ab b

ρabidb

αa,I,b

ida bλb

commutes, and such that the associativity is ‘order-independent’, i.e. for all a, b, c, d : C the diagram

pab pbb cqq b d ab ppbb cq b dq

ppab bq b cq b d ab pbb pcb dqq

pab bq b pcb dq

αabb,c,d αa,b,cbd

αa,b,cbidd

αa,bbc,d

ida bαb,c,d

commutes.

We call C strict monoidal if the associator and unitors are equalities rather than isomorphisms;

in this case, the diagrams above commute by definition.

Example 3.1.5. Any category equipped with a tensor product in the sense of Definition 2.2.3

where the structure isomorphisms are additionally natural and satisfy the axioms of compatibility

and order-independence is a monoidal category.

Example 3.1.6. If pC,b, Iq is a monoidal category, then so is pC op,bop, Iq, where bop
is the

induced opposite functor C op ˆ C op Ñ C op
.

The associativity of the tensor is what allows us to depict string diagrams “without brackets”

indicating the order of tensoring, and the unitality is what allows us to omit the monoidal unit

from the diagrams. Note that the functoriality of the tensor means that b distributes over ˝ as in

pf 1 ˝ fq b pg1 ˝ gq “ pf 1 b g1q ˝ pf b gq, both of which expressions are therefore depicted as

f 1

f

g1

g
.

The symmetry of a monoidal structure is formalized as follows.
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Definition 3.1.7. A symmetric monoidal category is a monoidal category pC,b, I, α, λ, ρq that

is additionally equipped with a natural isomorphism σ : p´q b p“q ñ p“q b p´q, called the

symmetry, such that σb,a ˝ σa,b “ idabb for all a, b : C, and whose compatibility with the associator

is witnessed by the commutativity of the following diagram:

pab bq b c ab pbb cq pbb cq b a

pbb aq b c bb pab cq bb pcb aq

αa,b,c σa,bbc

αb,c,aσa,bbidc

αb,a,c idb bσa,c

Here is a familiar family of examples of symmetric, but not strict, monoidal categories.

Example 3.1.8. Any category within which every pair of objects has a product is said to have

finite products, and any category with finite products and a terminal object is a monoidal category.

This includes the Cartesian products of sets (Definition 2.2.1 and Example 2.2.5) and of categories

(Propositions 2.2.14 and 2.2.16).

To see that the Cartesian product of sets is not strictly associative, observe that the elements

of Aˆ pB ˆ Cq are tuples pa, pb, cqq whereas the elements of pAˆBq ˆ C are tuples ppa, bq, cq;

evidently, these two sets are isomorphic, but not equal, and the same holds for the product of

categories.

At the same time, it is easy to see that a Cartesian product is symmetric: we haveAˆB – BˆA

by the mapping pa, bq Ø pb, aq.

And here is a family of examples of strict, but not symmetric, monoidal categories.

Example 3.1.9. If C is any category, then the category CC
of endofunctors C Ñ C is a strict monoidal

category, where the monoidal product is given by composition ˝ of endofunctors and the monoidal

unit is the identity functor idC on C. That the monoidal structure here is strict follows from the fact

that composition in a category is strictly associative and unital.

In practice, we will tend to encounter strict monoidal categories only when themonoidal structure

derives from the composition operator of a category, as in the preceding example. However, when

we work with the graphical calculus, we are often implicitly working with strict monoidal structure,

as a result of the following important theorem.

Theorem 3.1.10 (Mac Lane [175, Theorem XI.3.1]). Every monoidal category is strong monoidally

equivalent to a strict monoidal one.
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As a consequence of this coherence theorem, any two string diagrams where one can be

transformed into the other by a purely topological transformation are equal, as in the following

example (read from left to right):

“

This follows because the coherence theorem renders parallel morphisms entirely constructed from

identities, associators and unitors (and the symmetry, as long as it is strictly self-inverse) equal “on

the nose”
1
.

To make sense of the notion of strong monoidal equivalence, we need a notion of functor that

preserves monoidal structure; we define the ‘weak’ case first.

Definition 3.1.11. Suppose pC,bC , ICq and pD,bD, IDq are monoidal categories. A lax monoidal

functor pC,bC , ICq Ñ pD,bD, IDq is a triple of

1. a functor F : C Ñ D;

2. a state ϵ : ID Ñ F pICq called the unit; and

3. a natural transformation, the laxator, µ : F p´q bD F p“q ñ F pp´q bC p“qq

satisfying the axioms of

(a) associativity, in that the following diagram commutes

pF paq bD F pbqq bD F pcq F paq bD pF pbq bD F pcqq

F pabC bq bD F pcq F paq bD F pbbC cq

F ppabC bq bC cq F pabC pbbC cqq

αD
F paq,F pbq,F pcq

F paqbDµb,cµa,bbDF pcq

µabCb,c

F pαC
a,b,cq

µF paq,bbCc

where αC
and αD

are the associators of the respective monoidal structures on C and D; and

1

This process of turning natural isomorphisms into equalities is called strictification.
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(b) (left and right) unitality, in that the following diagrams commute

ID bD F paq F pICq bD F paq

F paq F pIC bC aq

λD
F paq

µIC ,a

ϵbDF paq

F pλCaq

and

F paq bD ID F paq bD F pICq

F paq F pabC ICq

ρD
F paq

µa,IC

F paqbDϵ

F pρCaq

where λC and λD are the left, and ρC and ρD the right, unitors of the respective monoidal

structures on C and D.

A strong monoidal functor is a lax monoidal functor for which the unit and laxator are isomorphisms.

A strong monoidal equivalence is therefore an equivalence of categories in which the two functors

are strong monoidal.

Remark 3.1.12. Laxness can be read as a sign of an “emergent property”: if F is lax monoidal,

then this means there are systems of type F pX b Y q that do not arise simply by placing a system

of type F pXq beside a system of type F pY q using b; whereas if F is strong monoidal, then there

are no such ‘emergent’ systems. More generally, we can think of emergence as an indication of

higher-dimensional structure that is hidden when one restricts oneself to lower dimensions (and

hence can appear mysterious). In this example, the higher-dimensional structure is the 2-cell of the

laxator.

There is of course a notion of monoidal natural transformation, making monoidal categories, lax

monoidal functors, and monoidal natural transformations into the constituents of a 2-category.

Definition 3.1.13. If pF, µ, ϵq and pF 1, µ1, ϵ1q are laxmonoidal functors pC,bC , ICq Ñ pD,bD, IDq,

then a monoidal natural transformation α : pF, µ, ϵq ñ pF 1, µ1, ϵ1q is a natural transformation

α : F ñ F 1
that is compatible with the unitors

ID

F pICq F 1pICq

ϵ ϵ1

αIC

and the laxators

FabD Fb F 1abC F
1b

F pabC bq F 1pabC bq

αabDαb

αabCb

µa,b µ1
a,b
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for all a, b : C.

Proposition 3.1.14. Monoidal categories, lax monoidal functors, and monoidal natural transfor-

mations form the 0-cells, 1-cells, and 2-cells of a 2-category, denotedMonCat.

Proof. Given composable lax monoidal functors pF, ϵ, µq : pC,bC , ICq Ñ pD,bD, IDq and

pF 1, ϵ1, µ1q : pD,bD, IDq Ñ pE ,bE , IEq, form their horizontal composite as follows. The functors

compose as functors, G ˝ F . The composite state is given by IE
ϵ1

ÝÑ F 1pIDq
F 1ϵ
ÝÝÑ F 1F pICq. The

laxator is given by

F 1F p´q bE F
1F p“q

µ1
F p´q,F p“q

ùùùùùùùñ F 1pF p´q bD F p“qq
F 1µa,b
ùùùùñ F 1F pp´q bC p“qq .

The identity lax monoidal functor on C is given by pidC , idIC , idp´qbCp“qq. Unitality and associativity

of composition of lax monoidal functors follow straightforwardly from unitality and associativity

of composition of morphisms, functors, and natural transformations. Monoidal natural transforma-

tions compose vertically as natural transformations, and it is easy to see that the composites satisfy

the compatibility conditions by pasting the relevant diagrams.

3.1.3. Closed monoidal categories

Since one source of monoidal structures is the generalization of the categorical product, it is no

surprise that there is a corresponding generalization of exponentials: a ‘tensor-hom’ adjunction

that induces a concept of closed monoidal category. Such categories will be important later in the

thesis when we consider learning and adaptive systems: our compositional model of predictive

coding, for example, will be built on a certain generalized exponential (see Remark 6.3.2).

Definition 3.1.15. Let pC,b, Iq be a monoidal category. When there is an object e : C such

that Cpx, eq – Cpx b y, zq naturally in x, we say that e is an internal hom object and denote it

by ry, zs. The image of idry,zs under the isomorphism is called the evaluation map and is written

evy,z : ry, zs b y Ñ z.

Proposition 3.1.16. When the isomorphism Cpxb y, zq – Cpx, ry, zsq is additionally natural in

z, we obtain an adjunction p´q b y % ry,´s called the tensor-hom adjunction, which uniquely

determines a functor C op ˆ C Ñ C : py, zq ÞÑ ry, zs that we call the internal hom for C.

Proof. A direct generalization of the Cartesian case (Proposition 2.3.56).

Definition 3.1.17. A monoidal category C with a corresponding internal hom is called monoidal

closed.
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Example 3.1.18. The category of finite-dimensional real vector spaces and linear maps between

them is monoidal closed with respect to the tensor product of vector spaces, as each space of linear

maps is again a vector space and the tensor is necessarily bilinear.

As in the Cartesian case, monoidal closed categories can reason about themselves.

Proposition 3.1.19. A monoidal closed category is enriched in itself.

And when a category is enriched in a symmetric monoidal category, then its hom functor is

likewise enriched.

Proposition 3.1.20. Suppose C is an E-category where E is symmetric monoidal closed. Then the

hom functor Cp´,“q is an E-functor.

Proof. A direct generalization of Proposition 2.3.61.

Remark 3.1.21. Since Cartesian closed categories have a rich internal logic, via the Curry-Howard-

Lambek correspondence, one might wonder if there is an analogous situation for monoidal closed

categories. To a certain intricate extent there is: the internal logic of monoidal closed categories

is generally known as linear logic, and its corresponding language linear type theory. These are

‘refinements’ of intuitionistic logic and type theory which of course coincide in the Cartesian case,

but which more generally clarify certain logical interactions; we shall say no more in this thesis,

except that such logics find application in quantum mechanics, owing to the monoidal closed

structure of vector spaces, where the linear structure constrains the use of resources (in relation,

for example, to the famous quantum ‘no-cloning’ and ‘no-deleting’ theorems).

With respect to dependent types, the situation is a little more vexed, as the existence of well-

behaved dependent sums and products classically depends on the existence of pullbacks and their

coherence with products (and, for example, the tensor product of vector spaces is not a categorical

product); this means that classical dependent data is somehow not resource-sensitive. Nonetheless,

various proposals have been made to unify linear logic with dependent type theory[14, 111, 174,

182, 269]: the simplest of these proceed by requiring dependence to be somehow Cartesian, which is

the approach we will take in Chapter 6 when we face a similar quandary in the context of defining

a category of polynomial functors with non-deterministic feedback. (We will see in Chapter 4 that

the property of Cartesianness is equally closely related to determinism.)
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3.1.4. Bicategories

Monoidal categories are not the first two-dimensional categorical structures we have so far

encountered, the other primary example being 2-categories. These two classes of examples are

closely related: a strict monoidal category is a 2-category with one object; and so just as a monoidal

category is a correspondingly weakened version, a bicategory is a ‘weak 2-category’.

Definition 3.1.22. A bicategory B is constituted by

1. a set B0 of objects or 0-cells;

2. for each pair pA,Bq of B-objects, a category BpA,Bq called the hom category, the objects of

which are the morphisms or 1-cells from A to B, and the morphisms of which are the 2-cells

between those 1-cells;

3. for each 0-cell A, a 1-cell ida : BpA,Aq witnessing identity; and

4. for each triple pA,B,Cq of 0-cells, a functor ˛A,B,C : BpB,Cq ˆ BpA,Bq Ñ BpA,Cq

witnessing horizontal composition (with vertical composition referring to composition within

each hom category);

5. for each pair pA,Bq of 0-cells, natural isomorphisms ρA,B (the right unitor) and λA,B (the

left unitor) witnessing the unitality of horizontal composition, as in the diagrams

BpA,Bq ˆ 1 BpA,Bq ˆ BpA,Aq

BpA,Bq

PBpA,Bq

BpA,BqˆidA

˛A,A,B

ρA,B

and

BpB,Bq ˆ BpA,Bq 1 ˆ BpA,Bq

BpA,Bq

ΛBpA,Bq

idBˆBpA,Bq

˛A,B,B

λA,B

where Λ : 1 ˆ p´q ñ p´q and P : p´q ˆ 1 ñ p´q are the (almost trivial) left and right

unitors of the product ˆ on Cat; and

6. for each quadruple pA,B,C,Dq of 0-cells, a natural isomorphism αA,B,C,D witnessing the
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associativity of horizontal composition, as in the diagram

`

BpC,Dq ˆ BpB,Cq
˘

ˆ BpA,Bq BpC,Dq ˆ
`

BpB,Cq ˆ BpA,Bq
˘

BpB,Dq ˆ BpA,Bq BpC,Dq ˆ BpA,Cq

BpA,Dq

ABpC,Dq,BpB,Cq,BpA,Bq

˛B,C,DˆBpA,Bq BpC,Dqˆ˛A,B,C

˛A,B,D ˛A,C,D

αA,B,C,D

where A : pp´q ˆ p´qq ˆ p´q ñ p´q ˆ pp´q ˆ p´qq is the (almost trivial) associator of the

product ˆ on Cat;

such that the unitors are compatible with the associator, i.e. for all 1-cells a : BpA,Bq and

b : BpB,Cq the diagram

pb ˛ idBq ˛ a b ˛ pidB ˛aq

b ˛ a

ρb˛ida

αb,idB,a

idb ˛λa

commutes (where we have omitted the subscripts indexing the 0-cells on α, ρ, and λ); and such that

the associativity is ‘order-independent’, i.e. for all 1-cells a : BpA,Bq, b : BpB,Cq, c : BpC,Dq,

and d : BpD,Eq the diagram

pa ˛ pb ˛ cqq ˛ d a ˛ ppb ˛ cq ˛ dq

ppa ˛ bq ˛ cq ˛ d a ˛ pb ˛ pc ˛ dqq

pa ˛ bq ˛ pc ˛ dq

αa˛b,c,d αa,b,c˛d

αa,b,c˛idd

αa,b˛c,d

ida ˛αb,c,d

commutes (where we have again omitted the subscripts indexing the 0-cells on α).

Remark 3.1.23. Just as a 2-category is a category enriched in Cat, a bicategory is a category

weakly enriched inCat. This is easy to see by comparing Definition 3.1.22 with Definition 2.2.6: the

former is obtained from the latter by taking E to beCat and filling the unitality and associativity
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diagrams with nontrivial fillers which are required to satisfy coherence laws generalizing those of

the monoidal category structure (Definition 3.1.4). Conceptually, we can see this weakening in the

context of our brief discussion of emergence above (Remark 3.1.12): we recognize the property of

axiom-satisfaction as a shadow of a higher-dimensional structure (the fillers), which we categorify

accordingly.

Bicategories will appear later in this thesis whenwe construct categories of dynamical hierarchical

inference systems: the construction proceeds by using polynomial functors to “wire together”

categories of dynamical systems, and the composition of polynomials distributes weakly but

naturally over the categories of systems, thereby producing a category weakly enriched in Cat.

Before then, we will encounter bicategories in the abstract context of general parameterized

morphisms, where the 2-cells witness changes of parameter.

For now, our first examples of bicategories are induced by monoidal categories, which are

equivalently single-object bicategories.

Proposition 3.1.24. Suppose pC,b, Iq is a monoidal category. Then there is a bicategoryBC with

a single 0-cell, ˚, and whose category of 1-cellsBCp˚, ˚q is C. The identity 1-cell is I , and horizontal

composition is given by the monoidal product C; vertical composition is just the composition

of morphisms in C. The unitors and associator of the bicategory structure are the unitors and

associator of the monoidal structure. We call BC the delooping of C.

Proof. The bicategory axioms are satisfied immediately, because the structure morphisms satisfy

the (in this case identical) monoidal category axioms.

In the opposite direction, the equivalence is witnessed by the following proposition.

Proposition 3.1.25. Suppose B is a bicategory with a single 0-cell, ˚, and whose horizontal

composition is denoted ˛. Then
`

Bp˚, ˚q, ˛, id˚

˘

is a monoidal category.

Remark 3.1.26. It is possible to define a notion of monoidal bicategory, as something like a

monoidal category weakly enriched in Cat, or as a one-object ‘tricategory’, and in many cases the

bicategories considered below are likely to have such structure. We will say a little more about this

in Remark 3.4.7 below, but will not define or make formal use of this higher structure in this thesis.

More generally, there are analogues of the other structures and results of basic category theory

introduced both in this chapter and in Chapter 2 that are applicable to higher-dimensional categories

such as bicategories, but they too will not play an important rôle in this thesis.
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3.2. Parameterized systems

A category does not have to be monoidal closed for us to be able to talk about “controlled processes”

in it: its being monoidal is sufficient, for we can consider morphisms of the form P bX Ñ Y and

treat the object P as an object of adjustable parameters. Parameterized morphisms of this form

can easily be made to compose: given another morphism Qb Y Ñ Z , we can straightforwardly

obtain a composite parameterized morphism pQb P q bX Ñ Z , as we elaborate in §3.2.1 below.

Categories of such parameterized morphisms play a central rôle in the compositional modelling

of cybernetic systems[54, 251], where we typically see the parameter as controlling the choice of

process, and understand learning as a ‘higher-order’ process by which the choice of parameter is

adjusted. More concretely, consider the synaptic strengths or weights of a neural network, which

change as the system learns about the world, affecting the predictions it makes and actions it takes;

or consider the process of Bayesian inference, where the posterior is dependent on a parameter

that is typically called the ‘prior’.

In this section, we introduce two related formal notions of parameterization: ‘internal’, where the

parameter object constitutes a part of the domain of morphisms in a category; and ‘external’, where

the parameters remain outside of the category being parameterized and the choice of morphism

is implemented as a morphism in the base of enrichment. We will make use of both kinds of

parameterization in this thesis.

Remark 3.2.1. Parameterization can be understood as introducing a new dimension into a category

of processes. Consequently, the parameterization (either internal or external) of a category will

produce a bicategory. When representing processes graphically, such as when using the string

diagram calculus, this extra dimension becomes particularly explicit, and although we won’t make

use of graphical representations of parameterized processes in this thesis, they are typical in the

applied-categorical literature, particularly in the literature on categorical cybernetics; for example,

see Capucci et al. [54, Fig. 1], Cruttwell et al. [74, pp.1–2], and Capucci [51, Fig. 1].

3.2.1. Internal parameterization

Internal parameterization generalizes the case with which we opened this section, of morphisms

P b X Ñ Y , to a situation in which the parameterization may have different structure to the

processes at hand, so that the parameterizing objects live in a different category. For this reason, we

describe the ‘actegorical’ situation in which a category of parametersM acts on on a category of

processes C to generate a category of parameterized processes. Nonetheless, even in this case, the
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parameter ends up constituting part of the domain of the morphism representing the parameterized

process.

The first concept we need is that of an ‘actegory’, which categorifies the better known

mathematical notion of monoid action
2
.

Definition 3.2.2 (M-actegory). Suppose M is a monoidal category with tensor b and unit object

I . We say that C is a left M-actegory when there is a functor d : MˆC Ñ C called the action along

with natural unitor and associator isomorphisms λd
X : IdX

„
ÝÑ X and ad

M,N,X : pMbNqdX
„
ÝÑ

M d pN dXq compatible with the monoidal structure of pM,b, Iq, in a sense analogous to the

coherence data of a monoidal category (Definition 3.1.4). This means that the following triangle

and pentagon diagrams must commute, where ρ and α are the right unitor and the associator of

the monoidal structure onM.

pM b Iq d C M d pI d Cq

M d C

ad
M,I,C

ρMbidC idM dλd
C

pK b pM bNqq d C K d ppM bNq d Cq

ppK bMq bNq d C K d pM d pN d Cqq

pK bMq d pN d Cq

ad
K,MbN,C

αK,M,NbidC idK bad
M,N,C

ad
KbM,N,C ad

K,M,NdC

Given an actegory, we can define a category of correspondingly parameterized morphisms.

Proposition 3.2.3 (Capucci et al. [54]). Let pC,d, λd, adq be an pM,b, Iq-actegory. Then there is

a bicategory ofM-parameterized morphisms in C, denotedParapdq. Its objects are those of C. For

each pair of objectsX,Y , the set of 1-cells is defined asParapdqpX,Y q :“
ř

M :M CpM dX,Y q;

we denote an element pM,fq of this set by f : X
M
ÝÑ Y . Given 1-cells f : X

M
ÝÑ Y and g : Y

N
ÝÑ Z ,

their composite g ˝ f : X
NbM
ÝÝÝÝÑ Z is the following morphism in C:

pN bMq dX
ad
N,M,X

ÝÝÝÝÝÑ N d pM dXq
idN df
ÝÝÝÝÑ N d Y

g
ÝÑ Z

2

For a comprehensive reference on actegory theory, see Capucci and Gavranović [52].
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Given 1-cells f : X
M
ÝÑ Y and f 1 : X

M 1

ÝÝÑ Y , a 2-cell α : f ñ f 1
is a morphism α :M Ñ M 1

in

M such that f “ f 1 ˝ pα d idXq in C; identities and composition of 2-cells are as in C.

Andwhen the action is ‘strong’ and themonoidal structure on C is symmetric, these parameterized

categories inherit a monoidal structure.

Definition 3.2.4. Suppose C is a monoidal category and F : C Ñ C is an endofunctor. A right

strength for F is a natural transformation strrX,Y : FX b Y Ñ F pX b Y q making the following

diagrams commute:

FX b pY b Zq F pX b pY b Zqq

pFX b Y q b Z F pX b Y q b Z F ppX b Y q b Zq

αFX,Y,Z

strrX,Y bidZ strrXbY,Z

F pαX,Y,Zq

strrX,Y bZ

FX b I F pX b Iq

FX

strrX,I

FρX
ρFX

An action d : M ˆ C Ñ C induces a family of functorsM d p´q : C Ñ C, natural inM : M.

If each of these is equipped with a right strength, also natural in M : M, then we call the

resulting transformation strrM,X,Y a right strength for d. Dually, there are notions of left strength,

strlX,Y : X b FY Ñ F pX b Y q and costrength, with the latter obtained in the usual way as a

strength in C op
(reverse all the defining arrows).

Note that, if C is symmetric monoidal, then a left strength induces a right strength (by swapping)

and likewise a right strength induces a left strength.

Proposition 3.2.5 (Capucci et al. [54, §2.1]). When C is equipped with both a symmetric monoidal

structure pb, Iq and an pM,b, Iq-actegory structure d, and these are compatible in that the action

d has a strength isomorphism, the symmetric monoidal structure pb, Iq lifts to Parapdq.

The tensor of objects in Parapdq is then defined as the tensor of objects in C, and the tensor of

morphisms (1-cells) f : X
M
ÝÑ Y and g : A

N
ÝÑ B is given by the composite

fbg : XbA
MbN
ÝÝÝÝÑ Y bB :“ pMbNqdpXbAq

ιM,N,X,A
ÝÝÝÝÝÝÑ pMdAqbpNdAq

fbg
ÝÝÑ Y bB
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where the interchanger ιM,N,X,A : pM bNq d pX bAq
„
ÝÑ pM dXq b pN dAq is obtained using

the associator of the actegory structure and the costrengths:

ιM,N,X,A :“ pM bNq d pX bAq
ad

M,N,pXbAq
ÝÝÝÝÝÝÝÑ M d pN d pX bAqq ¨ ¨ ¨

¨ ¨ ¨
MdcostrlN,X,A
ÝÝÝÝÝÝÝÝÝÑ M d pX b pN dAqq

costrrM,X,NdA
ÝÝÝÝÝÝÝÝÝÑ pM dXq b pN dAq .

(Note that the costrengths are obtained as the inverses of the strengths.)

We can see a monoidal product b : C ˆ C Ñ C as an action of C on itself, and this induces the

self-parameterization of C.

Proposition 3.2.6 (Self-parameterization). If pC,b, Iq is a monoidal category, then it induces a

parameterization Parapbq on itself. For eachM,X, Y : C, the morphisms X
M
ÝÑ Y of Parapbq

are the morphismsM bX Ñ Y in C.

Notation 3.2.7. When considering the self-paramterization induced by a monoidal category

pC,b, Iq, we will often write ParapCq instead of Parapbq.

It will frequently be the case that we do not in fact need the whole bicategory structure. The

following proposition tells us that we can also just work 1-categorically, as long as we work with

equivalence classes of isomorphically-parameterized maps, in order that composition is suffiently

strictly associative.

Proposition 3.2.8. Each bicategory Parapdq induces a 1-category Parapdq1 by forgetting the

bicategorical structure. The hom sets Parapdq1pX,Y q are given by UParapdqpX,Y q{ „ where

U is the forgetful functor U : Cat Ñ Set and f „ g if and only if there is some 2-cell α : f ñ g

that is an isomorphism. We callParapdq1 the 1-categorical truncation ofParapdq. WhenParapdq

is monoidal, so is Parapdq1.

Remark 3.2.9. We can understand the 1-categorical truncation ofParapdq as grouping the objects

of each hom-category into their isomorphism-connected components.

3.2.2. External parameterization

In a monoidal closed category, morphisms P b X Ñ Y correspond bijectively to morphisms

P Ñ rX,Y s. The fact that monoidal closed categories are enriched in themselves presents an

opportunity for generalization in a different direction to the actegorical approach taken above:
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that is, given a category of processes C enriched in E , we can think of an externally parameterized

process from X to Y as a morphism P Ñ CpX,Y q in E .

This notion of external parameterization can be operationally more faithful to the structure of

systems of interest, even though in the case of monoidal closed categories it is equivalent. For

example, the improvement of the performance of a system of inference due to learning is often

treated ‘externally’ to the inference process itself: the learning process might proceed by observing

(but not interfering with) the inference process, and updating the parameters accordingly; and, if

treated dynamically, the two processes might be assumed to exhibit a separation of timescales such

that the parameters are stationary on the timescale of inference. We will make such assumptions

when we formalize learning in Chapter 7, and so we will make use of external parameterization.

The definition of external parameterization is simplified by using the ‘slice’ construction.

Definition 3.2.10. SupposeX is an object of a category E . We define the slice of E overX , denoted

E{X , as the category of ‘bundles’ over X in E : its objects are morphisms p : A Ñ X into X for

any A : E , which we call bundles over X and write as pA, pq. The morphisms f : pA, pq Ñ pB, qq

in E{X are morphisms f : A Ñ B in E such that q ˝ f “ p, as in the diagram

A B

X

f

p q
.

We therefore define external parameterization using slices over hom objects.

Definition 3.2.11. Given a category C enriched in pE ,ˆ, 1q, we define the external parameterization

PC of C in E as the following bicategory. 0-cells are the objects of C, and each hom-category

PCpA,Bq is given by the slice category E{CpA,Bq. The composition of 1-cells is by composing

in C after taking the product of parameters: given f : Θ Ñ CpA,Bq and g : Ω Ñ CpB,Cq, their

composite g ˝ f is

g ˝ f :“ Ω ˆ Θ
gˆf
ÝÝÑ CpB,Cq ˆ CpA,Bq

‚
ÝÑ CpA,Cq

where ‚ is the composition map for C in E . The identity 1-cells are the points on the identity

morphisms in C. For instance, the identity 1-cell onA is the corresponding point idA : 1 Ñ CpA,Aq.

We will denote 1-cells using our earlier notation for parameterized morphisms: for instance,

f : A
Θ
ÝÑ B and idA : A

1
ÝÑ A. The horizontal composition of 2-cells is given by taking their

product.
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Remark 3.2.12. External parameterization is alternatively obtained as the change-of-enrichment

induced by the covariant self-indexing, the functor E{p´q : E Ñ E-Cat, given on objects by

X ÞÑ E{X and on morphisms by the functor induced by post-composition
3
. A base of enrichment

must a fortiori be a monoidal category, and in this case E{p´q is a lax monoidal functor. A lax

monoidal functor out of the base of enrichment induces a corresponding change-of-enrichment

pseudofunctor
4
, and P is obtained precisely as the change-of-enrichment induced by E{p´q.

One important consequence of this is that P defines a pseudofunctor P : E-Cat Ñ

pE-Catq-Cat. Note that we take enrichment here to mean weak enrichment, in the sense indicated

by Remark 2.2.13. In the case of locally small categories, where E “ Set, this means that P has the

typeCat Ñ Bicat, as suggested above. (We will discuss the definition of Bicat in §5.2.2, where

we also define pseudofunctors between bicategories.)

Remark 3.2.13. In prior work, this external parameterization has been called ‘proxying’ [53].

We prefer the more explicit name ‘external parameterization’, reserving ‘proxying’ for a slightly

different double-categorical construction to appear in future work by the present author.

Remark 3.2.14. Both internal and external parameterization are jointly generalized by the notion

of locally graded category [172], which can be understood to mean “presheaf-enriched category”.

If M acts on C by d, then the hom category ParapdqpA,Bq is the category of elements of the

presheaf Cp´ d A,Bq : M op Ñ Set. Similarly, the hom category PCpA,Bq is the category of

elements of the presheaf E
`

´, CpA,Bq
˘

: E op Ñ Set. We will see in §4.2.1 that the category

of elements construction yields an equivalence between presheaves and categories-of-elements,

and so we may as well consider Parapdq to be enriched in the presheaf category rM op,Sets

and PC to be enriched in rE op,Sets. The phrase “locally graded” indicates that the ‘hom sets’ of

Parapdq and PC are ‘graded’ by the objects of M and E respectively. We learnt about locally

graded categories from Dylan Braithwaite.

3.3. Systems from circuits

The dominant motivation for the use of monoidal categories so far has been in modelling the

compositional structure of processes, on the basis of the observation that processes may generally

3

Later, in Definition 4.2.28, we will encounter the contravariant self-indexing, which has the same action on objects but

is given on morphisms by pullback. Whereas the covariant self-indexing is always well-defined, the contravariant

self-indexing is therefore only well-defined in the more restricted situation where E has all pullbacks.

4

A pseudofunctor is a kind of ‘weakened’ functor, for which functoriality only needs to hold up to isomorphism; see

Definition 4.2.10.
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be composed both sequentially and in parallel, and so 1-dimensional category theory alone is

insufficient. The processes for which this kind of structure is most suited are those that exhibit a

flow of information. For example, if we take the morphisms of the category Set as computable

functions, then we see that the corresponding “process theory” is adequate for interpreting diagrams

of the form of §2.1.1.3; andwewill encounter in Chapter 4 a process-theoretic framework formalizing

probabilistic graphical models of the kind discussed in §2.1.1.2.

In these monoidal categories, processes are represented by morphisms, with composition used

to connect processes together: the composite of two processes is again a process. However, some

morphisms are purely ‘structural’, implementing the plumbing of information flow—such as copying,

discarding, and swapping—and so these categories somewhat blur the boundary between syntax

and semantics. At the same time, it is strange to think of something like a neural circuit as a

‘process’: although it might reify some process in its behaviour, it is rather a system.

To sharpen the syntax-semantics boundary, one can show that every monoidal category arises

as an algebra for a certain monad. We will make these notions precise in §3.4 below, and here

it will suffice to provide some intuition: the monad defines the syntax, and the algebra supplies

a compatible semantics. Algebra in this sense is a vast generalization of the abstract algebra of

familiar mathematics, and typically involves defining symbolic operations and rules by which they

can be combined, substituted, compared, and reduced.

In this section, although we do not explicitly make use of the technology of monads, we exemplify

this approach with an example of compositional connectomics: on the syntactic side, we will

introduce a ‘multicategory’ of linear circuit diagrams which govern patterns of neural connectivity;

while on the semantic side, we will equip this multicategory with a functorial algebra of rate-coded

neural circuits
5
. We will find that this more explicitly algebraic approach resolves the dilemma

observed above between the compositional structure of processes and that of systems: algebraic

syntax is in some sense about substitution, and so circuit diagrams will have ‘holes’ into which can

be substituted other circuit diagrams. That is to say, a circuit diagram is a morphism which takes a

given pattern of holes and connects them together into a single circuit, as in the following diagram,

5

In the Appendix (§A.1), we sketch the connection between this multicategorical story and the monadic one.
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which brings us back to our first motivating example from §2.1.1.1 and which we formalize below.

E

I

ÞÑ EI

We will use a similar approach when we supply dynamical semantics for approximate inference,

although there, for our general syntax of systems, we will use categories of polynomial functors,

which we introduce in §3.5 at the end of this chapter. In any case, it will turn out that linear

circuit diagrams embed naturally into polynomials, and so the circuits below can be understood as

providing a sample of what is to come.

3.3.1. Multicategorical algebra for hierarchical systems

A multicategory is like a category, but where morphisms may have a ‘complex’ domain, such as a

list of objects [168]. A morphism whose domain is an n-length list is called ‘n-ary’, and we can

abstractly think of such morphisms as ‘n-ary operations’: for example, we will use them to model

connecting n circuits together into a single system. Because these morphisms effect a kind of

‘zooming-out’, we can use them to construct hierarchical or ‘nested’ systems-of-systems.

Definition 3.3.1. A multicategory O consists of

1. a set O0 of objects;

2. a set O1 of morphisms, equipped with

a) a codomain function cod : O1 Ñ O0, and

b) a domain function dom : O1 Ñ ListpO0q, where ListpO0q is the set of finite lists of

objects po1, . . . , onq,

so that each n-ary morphism f has a list of n objects as its domain and a single object as its

codomain, written f : po1, . . . , onq Ñ p;

3. an identity function id : O0 Ñ O1 such that codpidoq “ o and dompidoq “ poq, so that the

identity on o is written ido : o Ñ o;

4. a family of composition functions

˝
p,poiq,po

j
i q
: Opo1, . . . , on; pq ˆ Opo11, . . . , o

k1
1 ; o1q ˆ ¨ ¨ ¨ ˆ Opo1n, . . . , o

kn
n ; onq

Ñ Opo11, . . . , o
k1
1 , . . . , o

1
n, . . . , o

kn
n ; pq
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written as

pf, f1, . . . , fnq ÞÑ f ˝ pf1, . . . , fnq

for each object p, n-ary list objects po1, . . . , onq, and n ki-ary lists of objects po1i , . . . , o
ki
i q;

satisfying the equations of associativity

f ˝
`

f1 ˝ pf11 , . . . , f
k1
1 q, . . . , fn ˝ pf1n, . . . , f

kn
n q

˘

“
`

f ˝ pf1, . . . , fnq
˘

˝ pf11 , . . . , f
k1
1 , . . . , f1n, . . . , f

kn
n q

whenever such composites make sense, and unitality

f ˝ pido1 , . . . , idonq “ f “ idp ˝f

for every f : po1, . . . , onq Ñ p.

For our purposes, the order of objects in the lists will not matter, which we formalize with the

notion of symmetric multicategory—analogous to the symmetric monoidal categories of §3.1.2.

Definition 3.3.2. Let Sn be the symmetric group on n elements. A symmetric multicategory O is a

multicategory O which is additionally equipped, for each n : N, with an action σn of Sn on the set

On
1 of n-ary morphisms

σn : Sn ˆ On
1 Ñ On

1

such that composition ˝ preserves this action.

Remark 3.3.3. In other applied-category-theoretical contexts, multicategories of this kind are

sometimes called operads (cf. e.g. [18, 97, 98, 171, 206, 222, 231, 237, 243, 244, 268, 282]). Traditionally,

an operad is the same as a multicategory with one object[168]; sometimes therefore, multicategories

are called coloured or typed operads[17, 59, 98, 168]. In order to avoid confusion, we will stick with

‘multicategory’.

Although the multicategorical intuition—of hierarchically constructing complex systems—is

valuable, the following fact means that there is a close connection between multicategories and

monoidal categories, for in a monoidal category, we can interpret an n-ary tensor x1 b ¨ ¨ ¨ b xn as

an n-ary list of objects.

Proposition 3.3.4. Any monoidal category pC,b, Iq induces a corresponding multicategory OC.

The objectsOC0 are the objects C0 of C. The n-ary morphisms pc1, . . . , cnq Ñ d are the morphisms

c1 b ¨ ¨ ¨ b cn Ñ d; i.e., OCpc1, . . . , cn; dq :“ Cpc1 b ¨ ¨ ¨ b cn, dq. Identities are as in C, and

composition is defined by pf, f1, . . . , fnq ÞÑ f ˝ pf1 b ¨ ¨ ¨ b fnq. When C is symmetric, so is OC.
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Example 3.3.5. An example that will soon become important is the operad Sets of sets and n-ary

functions, which is obtained from the symmetric monoidal category Set by Sets :“ O Set.

As we discussed above, wewill consider multicategories as supplying a syntax for the composition

of systems, and so actually to compose systems requires the extra data of what those systems are

and how they can be composed according to the syntax. This extra semantic data is called an

‘algebra’ for the multicategory.

Definition 3.3.6. An algebra for a multicategory M is a multifunctor M Ñ Sets.

Multifunctors are the multicategorical analogues of functors; but fortunately (even though the

definition is not a hard one), we will not need to define them, owing to the following result, which

relates multifunctors and lax monoidal functors.

Proposition 3.3.7 (Leinster [168, Example 4.3.3, Definition 2.1.12]). If the multicategory M arises

from a monoidal category pC,b, Iq as M “ OC, then an algebra for M is determined by a lax

monoidal functor pC,b, Iq Ñ pSet,ˆ, 1q.

Remark 3.3.8. In §3.4, we will encounter the concept of “algebra for a monad”, which is perhaps

the more familiar concept in mathematics and computer science. One might therefore wonder

what the relationship between the two notions of ‘algebra’ is: why do they both have this name?

The answer is provided by Leinster [168]: every ‘shape’ of multicategory corresponds to a certain

monad; and every multicategory algebra corresponds to an algebra for a monad derived (in the

context of the particular multicategory at hand) from this multicategory-shape monad. For the

interested reader, we review these results in the Appendix (§A.1). In §3.3.2, we will exemplify the

notion of monad algebra with the more basic result that every small category corresponds to an

algebra for a certain monad. Monad algebras will also prove useful later in the thesis in the context

of compositional probability theory.

3.3.2. Linear circuit diagrams

Let us now exhibit the multicategory formalizing circuit diagrams of the type with which we

opened this section. Although our motivation is multicategorical, for simplicity we will proceed by

defining a symmetric monoidal category. Its objects will represent the ‘output-input’ dimensions of

a circuit, written as pairs of numbers pno, niq, and its morphisms pno, niq Ñ pmo,miq encode how

to wire a circuit with no outputs and ni inputs together to produce a circuit ofmo outputs andmi

inputs: this may involve connecting some of the no outputs to themo outputs; or connecting some
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of themi inputs, or (to allow recurrence) the no outputs, to the ni inputs. The definition may seem

somewhat mysterious at first, but its form is owed to a more abstract structure (lenses) that we will

define later, in §4.2.

Example 3.3.9. We define a symmetric monoidal category

`

LinCirc,`, p0, 0q
˘

of linear circuit

diagrams and consider the induced multicategory OLinCirc. The objects of LinCirc are pairs

pno, niq of natural numbers. A morphism pno, niq Ñ pmo,miq is a pair of real-valued matrices

pA,Bq with A of shape pmo, noq and semi-orthogonal (i.e., such that AAT “ 1mo ) and B of shape

pni, no `miq; equivalently, A is a semi-orthogonal linear map Rno Ñ Rmo
and B is a linear map

Rno`mi Ñ Rni
. The identity morphism idpno,niq

on pno, niq is the pair of matrices p1no , 01noq

where 01no is the block matrix

`

0no 1no

˘

. Given morphisms pA,Bq : pno, niq Ñ pmo,miq and

pA1, B1q : pmo,miq Ñ pko, kiq, their composite is the pair pA1A,BB1
Aq where A1A is the usual

matrix product and BB1
A is defined as the following block matrix multiplication:

BB1
A :“ B

ˆ

1no 0
0 B1

˙

¨

˝

1no 0
A 0
0 1ki

˛

‚

Unitality and associativity of composition follow from those properties of matrix multiplication,

and AA1
is easily seen to be semi-orthogonal (by AA1pAA1qT “ AA1A1TAT “ AAT “ 1mo ), so

LinCirc is a well-defined category.

We now turn to the monoidal structure. The monoidal unit is the pair p0, 0q; note that Ro – 1.

The monoidal product ` is defined on objects as the pointwise sum: pno, niq ` pmo,miq :“ pno `

mo, ni ` miq; note that Rno`mo – Rno ˆ Rmo
. Given morphisms pA,Bq : pno, niq Ñ pmo,miq

and pA1, B1q : pn1
o, n

1
iq Ñ pm1

o,m
1
iq, their monoidal product pA,Bq ` pA1, B1q is defined as the

pair pA‘A1, B ‘B1q : pno ` n1
o, ni ` n1

iq Ñ pmo `m1
o,mi `m1

iq with

A‘A1 :“

ˆ

A 0
0 A1

˙

and B ‘B1 :“

ˆ

B 0
0 B1

˙

¨

˚

˚

˝

1no 0 0 0
0 0 1mi 0
0 1n1

o
0 0

0 0 0 1m1
i

˛

‹

‹

‚

.

For each pair of objects pno, niq and pmo,miq, the symmetry σpno,niq,pmo,miq
: pno, niq `

pmo,miq Ñ pmo,miq ` pno, niq is defined as the pair of matrices pσon,m, σ
i
n,mq,

σon,m :“

ˆ

0 1mo

1no 0

˙

and σin,m :“

ˆ

0 0 0 1ni

0 0 1mi 0

˙

.

That this definition produces a well-defined symmetric monoidal structure follows from more

abstract considerations that we explain in Remark 4.2.33 and Corollary 4.2.36: LinCirc is a

subcategory of Cartesian lenses, with the monoidal structure inherited accordingly.
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The category of linear circuit diagrams is a syntactic category: on its own, it does not do anything.

We need to equip it with semantics.

3.3.3. An algebra of rate-coded neural circuits

We begin by defining a notion of ‘rate-coded’ neural circuit.

Definition 3.3.10. An no-dimensional rate-coded neural circuit with ni-dimensional input is an

ordinary differential equation

9x “ ´λd x` h
`

W px‘ iq;α, β, γ
˘

where x, λ, α, β, γ are real vectors of dimension no, i a real vector of dimension ni, W a real

matrix of shape pno, no ` niq, d elementwise multiplication, ‘ the direct sum (so that x‘ i is the

concatenation

ˆ

x
i

˙

), and h the logistic function

hpx;α, β, γq “
γ

1 ` exp
`

´βpx´ αq
˘

applied elementwise. We summarize the data of such a circuit as the tuple pλ, α, β, γ,W q.

Remark 3.3.11. Rate-coded neural circuits are a coarse phenomenological model of neural

dynamics. The state variable x represents the firing rates of an ensemble of neurons, either

averaged over time or over subpopulations. Neural activity is of course not so simple: neurons

communicate by the transmission of discrete ‘action potentials’ along their axons. The emission of

an action potential is governed by the electrical potential of its cellular membrane: if this potential

crosses a threshold, then the neuron ‘fires’ an action potential down its axon. The axon crosses the

dendrites of other neurons at junctions called synapses, which modulate and transmit the activity

accordingly: it is these afferent signals which in large part determine the neurons’ membrane

potentials.

There are of course detailed physiological models of this process (cf. e.g. [79, 133, 181, 226]), as

well as many models which aim to capture its statistics and phenomenology in a more explicitly

computational setting (cf. e.g. [81, 82, 117, 136, 146, 202, 227, 273]), but in some situations, one

can simply model neural firing as an inhomogeneous Poisson process: in this case the variable

x encodes the rate parameters of the processes. We expect there to be functorial connections

between the different classes of models: in particular, we expect adjoint functors between certain

spike-emission models and firing rate models of the class defined above; and in the specific case of
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‘efficient balanced’ networks[32, 82], the relationships are expected to be quite simple. Nonetheless,

we leave the exploration of such functors to future work.

The parameters of a rate-coded neural circuit—the terms λ, α, β, γ,W— have a neurological

interpretation, even though this dynamical model is not physiologically faithful. The term λ

represents the ‘leak’ of voltage from the neuron’s membrane, which has the effect of determining

the timescale of its memory or signal-sensitivity (effectively, the voltage leak entails a process of

filtering). The term α represents an abstraction of the neuron’s firing threshold, and the term β its

sensitivity (i.e., how much its firing rate increases with incoming signals); the term γ determines

the maximum firing rate of the neuron (and is typically normalized to 1). Finally, the matrixW

records the strengths of the synaptic connections within the circuit: positive coefficients represent

excitatory connections, while negative coefficients represent inhibitory connections.

Rate-coded neural circuits can be organized into complex ‘hierarchical’ systems using linear

circuit diagrams: the linear connectivity of the diagrams is used to define the synaptic connection

matrix of the complex, algebraically. The proof that the following construction does actually

constitute an algebra ensures that composing systems from circuits using diagrams is predictably

well-behaved, as we will subsequently exemplify.

Proposition 3.3.12 (Algebra of rate-coded neural circuits). There is a LinCirc-algebra pR,µ, ϵq :
`

LinCirc,`, p0, 0q
˘

Ñ pSet,ˆ, 1q of rate-coded neural circuits. On objects pno, niq, define

Rpno, niq to be the set of no-dimensional rate-coded neural circuits with ni-dimensional input.

Then, given a linear circuit diagram pA,Bq : pno, niq Ñ pmo,miq, define a function

RpA,Bq : Rpno, niq Ñ Rpmo,miq

pλ, α, β, γ,W q ÞÑ pAλ,Aα,Aβ,Aγ,WABq

whereWAB is the following block matrix product:

WAB :“ AW

ˆ

1no 0
0 B

˙

¨

˝

1no 0
1no 0
0 1mi

˛

‚

ˆ

AT 0
0 1mi

˙

.

The laxator µ is defined componentwise as the family of functions

µpno,niq,pmo,miq
: Rpno, niq ˆRpmo,miq Ñ R

`

pno, niq ` pmo,miq
˘

taking a pair of circuits pλ, α, β, γ,W q : Rpno, niq and pλ1, α1, β1, γ1,W 1q : Rpmo,miq to the

circuit pλ‘ λ1, α‘ α1, β ‘ β1, γ ‘ γ1,WW 1q where x‘ y is again the direct sum

ˆ

x
y

˙

and where
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the matrixWW 1
is defined as

WW 1 :“

ˆ

W 0
0 W 1

˙

¨

˚

˚

˝

1no 0 0 0
0 0 1ni 0
0 1mo 0 0
0 0 0 1mi

˛

‹

‹

‚

.

The unitor ϵ is the isomorphism ϵ : 1
„
ÝÑ Rp0, 0q.

Proof. We need to check that R is a lax monoidal functor, and begin by verifying functoriality.

So suppose pA1, B1q is a linear circuit diagram pmo,miq Ñ pko, kiq. On the terms λ, α, β, γ, the

functoriality of R is immediate from matrix multiplication, so we concentrate on the action of

R on W . We need to show that R
`

pA1, B1q ˝ pA,Bq
˘

pW q “ RpA1, B1q ˝ RpA,BqpW q, where

RpA,BqpW q “ WAB as defined above. Note that we can alternatively writeWAB as the following

composite linear map

mo `mi
AT `mi
ÝÝÝÝÝÑ no `mi

`mi
ÝÝÝÝÑ no ` no `mi

no`B
ÝÝÝÝÑ no ` ni

W
ÝÑ no

A
ÝÑ mo .

We can therefore write RpA1, B1qpWABq as

ko ` ki
A1T `ki
ÝÝÝÝÝÑ mo ` ki

AT `ki
ÝÝÝÝÑ no ` ki

`ki
ÝÝÝÝÑ no ` no ` ki ¨ ¨ ¨

¨ ¨ ¨
no` `ki
ÝÝÝÝÝÝÑ no ` no ` no ` ki

no`no`A`ki
ÝÝÝÝÝÝÝÝÑ no ` no `mo ` ki ¨ ¨ ¨

¨ ¨ ¨
no`no`B1

ÝÝÝÝÝÝÝÑ no ` no `mi
no`B
ÝÝÝÝÑ no ` ni

W
ÝÑ no

A
ÝÑ mo

A1

ÝÑ ko

and R
`

pA1, B1q ˝ pA,Bq
˘

pW q as

ko ` ki
A1T `ki
ÝÝÝÝÝÑ mo ` ki

`ki
ÝÝÝÝÑ mo `mo ` ki

mo`B1

ÝÝÝÝÑ mo `mi
AT `mi
ÝÝÝÝÝÑ ¨ ¨ ¨

¨ ¨ ¨ no `mi
`mi

ÝÝÝÝÑ no ` no `mi
no`B
ÝÝÝÝÑ no ` ni

W
ÝÑ no

A
ÝÑ mo

A1

ÝÑ ko

so it suffices to check that

mo ` ki
AT `ki
ÝÝÝÝÑ no ` ki

`ki
ÝÝÝÝÑ no ` no ` ki

no` `ki
ÝÝÝÝÝÝÑ no ` no ` no ` ki ¨ ¨ ¨

¨ ¨ ¨
no`no`A`ki
ÝÝÝÝÝÝÝÝÑ no ` no `mo ` ki

no`no`B1

ÝÝÝÝÝÝÝÑ no ` no `mi

“

mo ` ki
`ki

ÝÝÝÝÑ mo `mo ` ki
mo`B1

ÝÝÝÝÑ mo `mi
AT `mi
ÝÝÝÝÝÑ no `mi

`mi
ÝÝÝÝÑ no ` no `mi
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which we can do using the graphical calculus:

AT

A
B1

mo

ki

no

no

mi

(1)

“

AT

A
B1

AT

mo

ki

no

no

mi

¨ ¨ ¨

¨ ¨ ¨
(2)

“

AT

A
B1

AT
mo

ki

no

no

miAT

(3)

“

AT

B1

AT
mo

ki

no

no

mi

¨ ¨ ¨

¨ ¨ ¨
(4)

“

AT

B1

ATmo

ki

no

no

mi

(5)

“

B1

ATmo

ki

no

no

mi

where the equality (1) holds because AT is a comonoid morphism (Definition 3.4.23)
6
, (2) likewise,

(3) because A is semi-orthogonal, (4) by the coassociativity of copying, and (5) again because AT is

a comonoid morphism. Finally, we observe that the last string diagram depicts the linear map

mo ` ki
`ki

ÝÝÝÝÑ mo `mo ` ki
AT `B1

ÝÝÝÝÑ no `mi
`mi

ÝÝÝÝÑ no ` no `mi

which equals the required map

mo ` ki
`ki

ÝÝÝÝÑ mo `mo ` ki
mo`B1

ÝÝÝÝÑ mo `mi
AT `mi
ÝÝÝÝÝÑ no `mi

`mi
ÝÝÝÝÑ no ` no `mi

by the unitality of composition. This establishes that R preserves composites; it remains to check

that it preserves identities. Once again, this follows immediately on the terms λ, α, β, γ, so we

concentrate on the action onW . We have

Rp1no , 01noqpW q “ 1noW

ˆ

1no 0 0
0 0 1no

˙

¨

˝

1no 0
1no 0
0 1mi

˛

‚

ˆ

1no 0
0 1mi

˙

which is easily seen to be equal toW itself. Therefore R defines a functor.

We now need to verify that the unitor and laxator satisfy the unitality and associativity axioms of a

lax monoidal functor. We begin by checking associativity, so suppose that we are given three circuits:

6

This in turn because ‘ is the Cartesian product, and so every morphism is a ‘-comonoid morphism.
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pλ, α, β, γ,W q : Rpno, niq, and pλ1, α1, β1, γ1,W 1q : Rpmo,miq, and pλ2, α2, β2, γ2,W 2q :

Rpko, kiq. Associativity on all the terms but W,W 1,W 2
follows from the associativity of the

direct sum ‘, and so we just need to check that µpW,µpW 1,W 2qq “ µpµpW,W 1q,W 2q where

µpW,W 1q “ WW 1
and µpW 1,W 2q “ W 1W 2

, according to the definition above. Once more, we

use the graphical calculus. Observe that we can depictWW 1
andW 1W 2

as

W 1

W
no

mo
mi

ni

mo

no

and

W 2

W 1
mo

ko
ki

mi

ko

mo

respectively. Hence µpW,µpW 1,W 2qq satisfies the equality

µpW,µpW 1,W 2qq “

W
no

W 1W 2

mo

ko
ki

mi

ko

mo

no

ni “

W
no

ki

mi

ko

mo

no

ni

W 2

W 1
mo

ko

and likewise µpµpW,W 1q,W 2q satisfies

µpµpW,W 1q,W 2q “

WW 1

no

W 2

mo

ko
ki

mi

ko

mo

no

ni “

W
no

ki

mi

ko

mo

no

ni

W 2

W 1
mo

ko

.

The two diagrams on the right hand side are equal up to a topological deformation, and so the

depicted morphisms are equal by the coherence theorem for monoidal categories. This establishes

the associativity of the laxator. It remains to establish unitality: but this follows immediately,

becauseRp0, 0q – R0
and the 0-dimensional space is the unit for the direct sum ‘. Hence pR,µ, ϵq

is a lax monoidal functor, and hence an algebra for

`

LinCirc,`, p0, 0q
˘

.

Remark 3.3.13. At points in the preceding proof, we used the fact that a linear map is a comonoid

morphism, which implies that it commutes with copying. We will define the notion of comonoid
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morphism in §3.4.1 below; meanwhile, the fact that AT is one follows from the fact that ‘ is the

categorical product of vector spaces, and so every linear map is a ‘-comonoid morphism.

Remark 3.3.14. Let us return briefly to the distinction made at the beginning of this section

between processes and systems, and their corresponding categorical incarnations. One might be

tempted to try constructing a symmetric monoidal category of neural circuits using this algebra

whose objects would be natural numbers and whose morphisms i Ñ o would be circuits in

Rpo, iq, treated thus as ‘processes’. But this won’t work, because there is no neural circuit that

will function as an identity morphism! Later in the thesis (§6.3), we will see one way around

this problem, building monoidal categories of hierarchical dynamical systems that are in some

sense analogous to these circuits (while being more general): there, we will use the rich structure

of polynomial functors to define both the syntax of composition as well as the hom categories

(for our construction will be bicategorical) of dynamical systems, and the extra generality will

mean we will have identity systems (that compose appropriately unitally). Until then, we note

that the moral of this observation might be that it affirms that the composition of neural circuits is

multicategory-algebraic (formalizing a notion of hierarchy), rather than merely categorical.

The weight matrices resulting from the linear circuit algebra encode the pattern of connectivity

specified by the diagram, as we now exemplify.

Example 3.3.15. Let us consider the circuit example from the beginning of this section, the wiring

of an inhibitory circuit to an excitatory circuit, as in the diagram

E

I

ÞÑ EI

which depicts a linear circuit diagram E ` I Ñ EI . In such a diagram, the input dimension of

an object (such as E) must have dimension equalling the sum of the dimensions of the incoming

wires. Dually, the dimension along a wire emanating from an object must have dimension equal to

the output dimension of that object. To distinguish the source and target of a wire, we decorate the

target ends: a filled circle denotes an inhibitory connection, interpreted in the linear circuit as the

negative identity matrix ´1 of the appropriate dimension; and an inverted arrowhead denotes an

excitatory connection, interpreted as the positive identity 1 of the appropriate dimension. We will

write the dimensions of the objectE as poE , iEq, of I as poI , iIq, and ofEI as poEI , iEIq. Therefore,
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in this example, the following equalities must hold: iE “ oI ` iEI ; iI “ oE ; and oEI “ oE ` oI .

The last equation holds because the circuit EI is formed from the sum of the circuits E and I .

To give a circuit diagram pA,Bq : poE , iEq ` poI , iIq Ñ poEI , iEIq is to give a semi-orthogonal

real matrix A of shape poEI , oE ` oIq and a real matrix B of shape piE ` iI , oE ` oI ` iEIq. Using

the preceding equalities, these are equivalently shaped as poE ` oI , oE ` oIq and poI ` iEI `

oE , oE ` oI ` iEIq, and we just choose the identity matrix 1oE`oI for A. To define B, we read it

off from the diagram as

B :“

¨

˝

0 ´1oI 0
0 0 1iEI

1oE 0 0

˛

‚ .

Now suppose pλE , α,E , βE , γE ,WEq and pλI , α,I , βI , γI ,WIq are two rate-coded neural circuits,

the former of type RpoE , iEq and the latter of type RpoI , iIq. How does RpA,Bq act upon them to

give our composite circuit?

On all the parameters but the weight matrices, RpA,Bq acts trivially (since A is just the identity

matrix), and so we will concentrate on the action onWE ,WI . Firstly, we need to form the monoidal

product of the weight matrices, µpWE ,WIq, which is defined by

µpWE ,WIq “

ˆ

WE 0
0 WI

˙

¨

˚

˚

˝

1oE 0 0 0
0 0 1iE 0
0 1oI 0 0
0 0 0 1iI

˛

‹

‹

‚

“

ˆ

WE 0
0 WI

˙

¨

˚

˚

˚

˚

˝

1oE 0 0 0 0
0 0 1oI 0 0
0 0 0 1iEI 0
0 1oI 0 0 0
0 0 0 0 1oE

˛

‹

‹

‹

‹

‚

where the second equality holds by applying the equalities between the dimensions defined above.

The weight matrix RpA,BqpµpWE ,WIqq is then defined as

AµpWE ,WIq

ˆ

1oE`oI 0
0 B

˙

¨

˝

1oE`oI 0
1oE`oI 0

0 1iEI

˛

‚

ˆ

AT 0
0 1iEI

˙

.

Since A “ 1oE`oI , and by substituting the definition of µpWE ,WIq, this reduces to

ˆ

WE 0
0 WI

˙

¨

˚

˚

˚

˚

˝

1oE 0 0 0 0
0 0 1oI 0 0
0 0 0 1iEI 0
0 1oI 0 0 0
0 0 0 0 1oE

˛

‹

‹

‹

‹

‚

ˆ

1oE`oI 0
0 B

˙

¨

˝

1oE`oI 0
1oE`oI 0

0 1iEI

˛

‚ .
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Then, by substitution and matrix multiplication, we have the following equalities:

¨

˚

˚

˚

˚

˝

1oE 0 0 0 0
0 0 1oI 0 0
0 0 0 1iEI 0
0 1oI 0 0 0
0 0 0 0 1oE

˛

‹

‹

‹

‹

‚

ˆ

1oE`oI 0
0 B

˙

¨

˝

1oE`oI 0
1oE`oI 0

0 1iEI

˛

‚

“

¨

˚

˚

˚

˚

˝

1oE 0 0 0 0
0 0 1oI 0 0
0 0 0 1iEI 0
0 1oI 0 0 0
0 0 0 0 1oE

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

1oE 0 0 0 0
0 1oI 0 0 0
0 0 0 ´1oI 0
0 0 0 0 1iEI

0 0 1oE 0 0

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

1oE 0 0
0 1oI 0
1oE 0 0
0 1oI 0
0 0 1iEI

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1oE 0 0 0 0
0 0 1oI 0 0
0 0 0 1iEI 0
0 1oI 0 0 0
0 0 0 0 1oE

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

1oI 0 0
0 1oI 0
0 ´1oI 0
0 0 1iEI

1oE 0 0

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1oE 0 0
0 ´1oI 0
0 0 1iEI

0 1oI 0
1oE 0 0

˛

‹

‹

‹

‹

‚

so that the resulting weight matrix RpA,BqpµpWE ,WIqq is

ˆ

WE 0
0 WI

˙

¨

˚

˚

˚

˚

˝

1oE 0 0
0 ´1oI 0
0 0 1iEI

0 1oI 0
1oE 0 0

˛

‹

‹

‹

‹

‚

.

Reading off this weight matrix, we see that the E neurons receive external input plus recurrent

excitatory input from themselves as well as inhibitory input from I , and that the I neurons receive

only recurrent excitatory input plus excitatory input from E. This is exactly as it should be,

given the diagram: by formalizing these computations, we render them mechanical (and hence

computer-implementable). In particular, we can treat the resulting EI circuit as a “black box” and

substitute it into other diagrams to construct still larger-scale systems.

Since linear circuit diagrams allow for any linear pattern of connectivity, we can of course

generalize the picture above to allow for more subtle interconnections.

Example 3.3.16. Suppose that instead of incorporating only excitatory or inhibitory connections,

105



we sought something a little more complex, as in the following circuit diagram:

E

I

DC ÞÑ EI

Now, we have decorated the wires with fleches, to indicate the flow of activity; and besides the

circular boxes (representing circuits), we have incorporated square boxes (representing linear

patterns of interconnection). Using the same notation for the dimensions of the circuits E,I and

EI as in Example 3.3.15, this means that the boxes square boxes represent matrices C of shape

piE ` iI , n` iEIq and D of shape pn, oE ` oIq, where n is the dimension of the D-C wire. If we

again write pA,Bq for the implied circuit diagram, and we can again setA to be the identity matrix,

and read B from the diagram as the composite matrix

B :“ oE ` oI ` iEI
D‘1iEI
ÝÝÝÝÝÑ n` iEI

C
ÝÑ iE ` iI .

The rest of the calculation follows mechanically, just as before.

One feature missing from the construction in this section is synaptic plasticity: although we have

shown how to compose circuits into systems, it is only the neural firing rates that are dynamical;

the connection matrices remain fixed. In the preceding section, we motivated the introduction of

parameterized categories by their application to learning problems, and indeed one could factorize

the linear circuit algebra above by extracting the connection matrices into parameters; if one

wanted to retain a choice of initial weight matrix, this could also be incorporated into a ‘pointed’

version of the structure.

This parameterized construction would be bicategorical, and so a faithful semantics for it

would no longer land in Set, but rather in Cat: we would have categories of circuits related by

reparameterizations of the weight matrices, and with the dynamics also incorporating plasticity
7
.

With a sufficiently sophisticated algebra, it would even be possible to allow the circuit diagrams

themselves to be dynamical and subject to learning. We will not pursue this line of enquiry further

here, but we will return to it when we introduce plasticity into approximate inference doctrines:

there, our structures will be sufficiently supple to incorporate all of the concepts sketched here.

7

An even more faithful dynamical semantics would land in “bundle dynamical systems”, of the form that we introduce

in Chapter 6: two two levels of the bundle would witness the dynamics of the firing activity and the plasticity, and

the bundles themselves would witness the timescale separation.
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3.4. From monoids to monads

In order to reach the level of suppleness required by plastic dynamical approximate inference, it will

help to understand the structures underlying the definitions and constructions introduced so far in

this chapter—in particular, we will need a firm grasp of the concepts of monad and comonoid—and

so at this point we return to an expository mode.

The fundamental concept underlying many of the structures we have seen so far is the monoid:

an object equipped with two operations, one binary and one ‘nullary’, with the latter acting as a

‘unit’ for the former, and although the major operation is only binary, it can be chained in order to

form n-ary operations. For this reason, monoids are fundamental to abstract algebra: categories

themselves are “monoids with many objects” (in the same way that a multicategory is an operad

with many objects). Both monads and comonoids can be defined using monoids.

Even though monoids are fundamental and intimately familiar to mathematicians and computer

scientists, they remain underappreciated in computational and cognitive neuroscience. For this

reason, we once again take a fairly pedagogical approach in this section.

Definition 3.4.1. Suppose pC,b, Iq is a monoidal category. A monoid object in C is an objectm

equipped with a multiplication morphism µ : m b m Ñ m and a unit morphism η : I Ñ m,

satisfying the axioms of (left and right) unitality

““

ηη

µµ

m

and associativity

µ

µ

µ

µ

“ .

If C is symmetric monoidal then we say that the monoid pm,µ, ηq is commutative if µ commutes
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with the symmetry as in

“µ µ
.

Since we are doing category theory, it is important to understand morphisms of monoids.

Definition 3.4.2. Suppose pm,µ, ηq and pm1, µ1, η1q are monoids in pC,b, Iq. A monoid morphism

pm,µ, ηq Ñ pm1, µ1, η1q is a morphism f : m Ñ m1
in C that is compatible with the monoidal

structures, i.e. by satisfying the axioms

η

f

η1

“ and

µ

fµ1

f f

“ .

Monoids and their morphisms in C constitute a category MonpCq; composition and identities are

as in C, and it is easy to check that the composite of two monoid morphisms is again a monoid

morphism.

If C is symmetric monoidal, then there is a subcategoryCMonpCq ãÑ MonpCq of commutative

monoids and their morphisms.

In the names MonpCq and CMonpCq, we leave the monoidal structure implicit; should it be

necessary to be explicit, we writeMonbpCq and CMonbpCq.

Let us consider some first examples of monoids in monoidal categories.

Example 3.4.3. The natural numbers N equipped with addition ` : N ˆ N Ñ N and zero 0

constitute a monoid in Set. (In fact, pN,`, 0q is the free monoid generated by a single element.)

Example 3.4.4. If A is a set, then there is a monoid

`

ListpAq, ˝, pq
˘

of lists of elements of A: the

elements of the set ListpAq are finite lists pa, b, . . . q of elements ofA; themultiplication ˝ : ListpAqˆ

ListpAq Ñ ListpAq is given by concatenation of lists pb1, . . . q ˝ pa1, . . . q “ pa1, . . . , b1, . . . q; and

the unit 1 Ñ ListpAq is given by then empty list pq. We saw in the proof of Proposition 2.1.9 that

list concatenation is associative and unital.

108



Example 3.4.5. A monoid pm, ˝, ˚q in Set is a category with a single object, denoted ˚. We

already saw an example of this, in Example 2.1.7: the monoid pN,`, 0q, treated as a category. More

generally, a monoid in a monoidal category pC,b, Iq is a C-enriched category with a single object.

Example 3.4.6. A monoid pC,b, Iq in the monoidal category pCat,ˆ,1q of categories and

functors is a strict monoidal category: the tensor is the monoid multiplication, and its unit is the

monoid unit. In fact, this explains the name “monoidal category”: a (strict) monoidal category is a

monoid object in Cat.

Remark 3.4.7. Non-strict monoidal categories are ‘weak’ in the same sense that bicategories

are weak 2-categories; after all, a monoidal category is a one-object bicategory. In this way, we

can also weaken the notion of monoid object in a bicategory, so that the axioms of unitality and

associativity only hold up to ‘coherent isomorphism’: that is, up to isomorphisms that cohere with

the weak unitality and associativity of the ambient bicategory. Such weak monoid objects are

called pseudomonoids8, and when interpreted in the monoidal 2-category pCat,ˆ,1q their formal

definition[77, §3] yields exactly the non-strict monoidal categories.

But note that to make sense in general of the notion of pseudomonoid, we first need to have a

notion of monoidal bicategory. Abstractly, such a thing should be a one-object tricategory, but this

often doesn’t help: in those cases, we need something more concrete. Informally, then, a monoidal

bicategory is a bicategory equipped with a monoidal structure that is coherent with the 2-cells, but

as we have begun to see here, to specify all this coherence data quickly becomes quite verbose,

and to prove their satisfaction by any given structure quite arduous, so we will only make use

informally in this thesis of the notions of monoidal bicategory and pseudomonoid — and when we

do, it will be by reference to the familiar structures on and inCat: its Cartesian monoidal structure;

and (non-strict) monoidal categories.

Finally, we note that the general phenomenon, of which we observe an instance here, wherein

algebraic structures (such as monoids) may be defined internally to categories equipped with

higher-dimensional analogues of that same structure is known as the microcosm principle[17].

In Example 3.1.9, we saw that categories of endofunctors are strict monoidal categories. Following

Example 3.4.6, this means that endofunctor categories are equivalently monoid objects. In fact,

since categories are monoids with many objects
9
, this means we can consider any object of

endomorphisms as an appropriately typed monoid object.

8

One often uses the prefix ‘pseudo-’ in category theory to denote a weak structure.

9

This pattern—of extending structures to “many objects”—is sometimes called horizontal categorification, to distinguish

it from the ‘vertical’ categorification of adding an extra dimension of morphism.
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Example 3.4.8. If c : C is any object in any category C, then the hom-set Cpc, cq is a monoid

`

Cpc, cq, ˝, idc
˘

in Set. More generally, if C is enriched in E , then
`

Cpc, cq, ˝, idc
˘

is a monoid in E .

In each case, we call the monoid the endomorphism monoid on c.

In the case when the endomorphism objects are categories, as in the case of Example 3.1.9, the

monoidal structure makes them into monoidal categories, and so we can consider monoids objects

defined internally to them. More generally, we can do this inside any bicategory, and the resulting

monoids will play an important rôle subsequently.

Remark 3.4.9. Just as a monoidal category is a bicategory with a single object, the hom-category

Bpb, bq for any 0-cell b in a bicategoryB is a monoidal category: the objects are the 1-cells b Ñ b, the

morphisms are the 2-cells between them, composed vertically; the tensor is horizontal composition

of 1-cells, and its unit is the identity 1-cell idb. We can therefore define a monoid in a bicategory B

to be a monoid in Bpb, bq for some 0-cell b : B, using this induced monoidal structure.

Since Cat is morally a 2-category (and a fortiori a bicategory), and thus to avoid confusion with

monoid objects in pCat,ˆ, 1q (i.e. strict monoidal categories), we will introduce a new term for

monoids in the bicategory Cat.

Definition 3.4.10. A monad on the category C is a monoid object in the strict monoidal category

pCC , ˝, idCq.

Monads are often defined in a more explicit way, by expressing the monoid structures and axioms

directly and diagrammatically.

Proposition 3.4.11. A monad on C is equivalently a triple pT, µ, ηq of

1. a functor T : C Ñ C;

2. a natural transformation µ : TT ñ T called the multiplication; and

3. a natural transformation η : idC ñ T called the unit;

such that, for all c : C, the following diagrams commute:

TTTc TTc

TTc Tc

µTc

Tµc

µc

µc

and

Tc TTc Tc

Tc

µc

ηTc Tηc
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A monad is like a monoidal structure for composition: instead of taking two objects and

constructing a single object representing their conjunction (like the tensor of a monoidal category),

a monad takes two levels of nesting and composes them into a single level; this is the source of the

connection between multicategory algebras and monad algebras.

Example 3.4.12. Recall the list monoid from Example 3.4.4. The mapping A ÞÑ ListpAq defines

the functor part of a monad List : Set Ñ Set; given a function f : A Ñ B, Listpfq : ListpAq Ñ

ListpBq is defined by applying f to each element of the lists: pa1, a2, . . . q ÞÑ pfpa1q, fpa2q, . . . q.

The monad multiplication µ : List2 ñ List is given by “removing inner brackets” from lists of lists:

µA
`

pa11, a
2
1, . . . q, pa

1
2, . . . q, . . .

˘

“ pa11, a
2
1, . . . , a

1
2, . . . , . . . q; equivalently, form the perspective of

Example 3.4.4, this is the concatenation of the ‘inner’ lists into a single list. The monad unit

η : idSet ñ List is defined by returning ‘singleton’ lists: ηA : A Ñ ListpAq : a ÞÑ paq.

There is a close connection between monads and adjunctions: every adjunction induces a monad.

Proposition 3.4.13. Suppose L % R : D Ñ C is an adjunction, with unit η : idC ñ RL and

counit ϵ : LR ñ idD . Then pRL,RϵL, ηq is a monad.

Proof. To see that the associativity axiom is satisfied, observe that RϵLRL “ RLϵRL “ RLRϵL

by naturality. Right unitality follows by the triangle identity ϵL ˝ Lη “ idL, which entails the

required equation RϵL ˝RLη “ idRL; and left unitality follows from right unitality by naturality,

as ηRL “ RLη.

It is also true that every monad arises from an adjunction: in fact, there are typically multiple

adjunctions inducing the same monad, and we will exhibit one extremal case in §4.1.

Remark 3.4.14. This dual correspondence is itself an example of an adjunction—in the quite

general bicategorical sense, following the definition of monad as a monoid in a bicategory—though

we leave the demonstration of this to the reader.

Before we show in generality how every monad arises from an adjunction, we can exhibit the

list monad as a classic special case.

Example 3.4.15 (Lists are free monoids). There is a forgetful functor U : MonpSetq Ñ Set,

taking each monoid pM, ˝, ˚q (or monoid morphism f ) and forgetting the monoid structure to

return just the setM (or the morphism f ). This functor has a left adjoint F : Set Ñ MonpSetq,

which takes each set A to the free monoid on A; this free monoid F pAq is precisely the monoid
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`

ListpAq, ˝, pq
˘

of lists in A, equipped with concatenation as multiplication and the empty list as

unit, as described in Example 3.4.4. The induced monad pList, µ, ηq, described in Example 3.4.12, is

then precisely the monad induced by this adjunction, with List “ UF .

At this point, with an example of a monad to hand, we can start to explore their connection to

algebra.

Definition 3.4.16. Suppose pT, µ, ηq is a monad on C. A T -algebra is a choice of object A : C and

a morphism a : TA Ñ A such that the following diagrams commute:

A TA

A

ηA

a and

TTA TA

TA Aa

aµA

Ta

Once again, this being category theory, we are interested less in individual T -algebras than in

their category.

Definition 3.4.17. A morphism of T -algebras pA, aq Ñ pB, bq is a morphism f : A Ñ B that

preserves the T -algebra structures, in the sense that the following diagram commutes:

TA TB

A B
f

ba

Tf

T -algebras and their morphisms constitute a category, denoted AlgpT q and called the category of

T -algebras or the Eilenberg-Moore category for T . (Algebra morphisms compose by the composition

of morphisms; a composite morphism of T -algebras is again a morphism of T -algebras by pasting.

Identities are the usual identity morphisms in C.)

We now demonstrate the ‘algebra’ of monad algebras using two familiar examples.

Example 3.4.18. The category of monoids in pSet,ˆ, 1q is equivalent to the category of List-

algebras. A List-algebra is a pair of a set A and a function a : ListpAq Ñ A satisfying the algebra

axioms, which mean that a must map singleton lists to their corresponding elements, and that a

must respect the ordering of elements in the list (so that it doesn’t matter whether you apply a to

the lists in a lists of lists, or to the collapsed list resulting from the monad multiplication). To obtain

a monoid, we can simply take the set A. The monoid multiplication is given by the action of a on
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2-element lists; and the monoid unit is given by the action of a on the empty list. Since a satisfies

the monad algebra laws, the resulting multiplication and unit satisfy the monoid axioms: the monad

laws are a categorification of the monoid axioms, and the algebra laws ensure compatibility with

them.

Dually, given a monoid pA,m, eq, we can construct a List algebra a by induction: on empty lists,

return e; on singleton lists, return their elements; on 2-element lists, applym; on lists of length

n, applym to the first two elements to obtain a list of length n´ 1 repeatedly until reaching the

2-element case. The monoid laws then ensure that the monad axioms are satisfied.

Example 3.4.19. Recall from Proposition 2.1.8 that one can obtain from any category a directed

graph by forgetting the compositional structure and retaining only the objects and morphisms as

nodes and edges. Recall also from Proposition 2.1.9 that one can obtain from any directed graph G

a category FG, the free category on G whose objects are the nodes of G and whose morphisms are

paths in G. These two constructions form a free-forgetful adjunction, F % U : Cat Ñ Graph,

and the induced monad UF : Graph Ñ Graph is called the path monad: on objects, it takes a

graph G and returns a graph with the same nodes but whose edges are the paths in G. The category

AlgpUF q of algebras of UF is equivalent to the category Cat of (small) categories.

To see this, note that a UF -algebra is a graph homomorphism UFG Ñ G, for some graph G:

a mapping of nodes in UFG to nodes in G, and a mapping of edges in UFG to edges in G that

preserves domains and codomains. Since UFG and G have the same nodes, the simplest choice is

to map each node to itself: we will consider the nodes as the objects of the resulting category. The

mapping of paths to edges induces a composition operation on the edges of G, which we henceforth

think of as morphisms. The reasoning proceeds inductively, much like the List-algebra case: we

take paths of length 0 to be identity morphisms; paths of length 1 are taken to their constituent

morphisms; paths of length 2 are taken to their composites; and one obtains the composites of

longer paths by induction. Associativity and unitality then follow easily from the monad algebra

laws.

Remark 3.4.20. Both the preceding examples suggest a connection between monad algebras

and inductive reasoning, and indeed one can formalize inductive reasoning (as inductive types)

in terms of algebras. Dually, there is a close connection between ‘coalgebras’ and ‘coinduction’,

which can be used to formalize the behaviours of systems that can be iterated, such as dynamical

systems. As an informal example, the coinductive type corresponding to List is the type of “streams”:

113



possibly infinite lists of the states or outputs of transition systems. In Chapter 6, we use coalgebra to

formalize the compositional structure of ‘open’ (i.e., interacting) dynamical systems quite generally.

In the Appendix (§A.1), we pursue the monad algebra story a little further, to demonstrate the

connection with multicategory algebra. However, since that connection is not strictly germane to

the rest of the thesis, and with the suggested notion of coalgebra to whet our appetite, we now

turn to monoids’ duals, comonoids.

3.4.1. Comonoids

We introduced comonoids graphically at the beginning of §3.1.1, as a structural manifestation of

copying and discarding, but in the fullest of generality, comonoids are simply monoids in opposite

categories.

Definition 3.4.21. A comonoid in pC,b, Iq is a monoid in C op
, when C op

is equipped with the

opposite monoidal structure induced by pb, Iq. Explicitly, this means an object c : C equipped with

a comultiplication δ : c Ñ cb c and counit ϵ : c Ñ I , satisfying counitality and coassociativity laws

formally dual to the corresponding unitality and associativity laws of monoids: read the diagrams

of Definition 3.4.1 top-to-bottom, rather than bottom-to-top. Likewise, if C is symmetric monoidal,

we say that a comonoid in C is cocommutative if its comultiplication commutes with the symmetry.

Example 3.4.22. Every object in a category with finite products ˆ and a terminal object 1 is a

comonoid with respect to the monoidal structure pˆ, 1q. The comultiplications δX : X Ñ X ˆX

are defined by the pairing pidX , idXq (recall Definition 2.3.15) and the counits ϵX : X Ñ 1 are

(necessarily) the unique morphisms into the terminal object.

Coassociativity follows because pidX , pidX , idXqq “ αX,X,X ˝ ppidX , idXq, idXq, where α is the

associator of the product. Counitality follows by the naturality of pairing, pidX ˆ !q ˝ pidX , idXq “

pidX , !q, and because projX ˝ pidX , !q “ idX by the universal property of the product; note that

projX is the X component of the right unitor of the monoidal structure, and pidX , !q is its inverse.

Instantiating this example in Set, we see that the comultiplication is given by copying, i.e.,

x ÞÑ px, xq; and the counit is the unique map x ÞÑ ˚ into the singleton set. This justifies our

writing of the comonoid structure in copy-discard style as p X , Xq.

In general, when a comonoid structure is to be interpreted as a copy-discard structure, we will

therefore write the struture morphisms as p , q and depict them accordingly in the graphical

calculus, rather than using the boxed forms of Definition 3.4.1. However, copy-discard structures
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are not the only important comonoids that we will encounter. In the next section, we introduce

the category of polynomial functors Set Ñ Set, and since these are endofunctors, their category

inherits a monoidal structure given by functor composition. Comonoids for this monoidal structure

in Poly give us another definition for a now multifariously familiar concept: they are again small

categories, although their morphisms are not functors but rather cofunctors.

Of course, a morphism of comonoids is much like a morphism of monoids.

Definition 3.4.23. A comonoid morphism f : pc, δ, ϵq Ñ pc1, δ1, ϵ1q in pC,b, Iq is a morphism

f : c Ñ c1
that is compatible with the comonoid structures, in the sense of satisfying axioms dual

to those of Definition 3.4.2. There is thus a category ComonpCq of comonoids in C and their

morphisms, as well as a subcategory CComonpCq ãÑ ComonpCq of commutatitve comonoids.

In the more familiar copy-discard setting, comonoid morphisms also play an important rôle. In

the next chapter, we will see concretely that, in the context of stochastic maps, comonoid morphisms

(with respect to the tensor product) correspond to the deterministic functions. This result is closely

related to the following fact.

Proposition 3.4.24. If every morphism in the monoidal category pC,b, Iq is a comonoid morphism,

then a b b satisfies the universal property of the product for every a, b : C, and hence b is the

categorical product and I the terminal object in C (up to isomorphism).

Proof. If every morphism is a comonoid morphism, then every object a : C carries a comonoid

structure; assume a choice of comonoid structure p a : a Ñ a b a, a : a Ñ Iq for every a : C.

The universal property of the product says that every morphism f : x Ñ ab b factors as

f

a

b

x
“

a

b

x
fa

fb

where fa : x Ñ a and fb : x Ñ b are uniquely defined as

fa :“ f

a

x
and fb :“ f

b

x
.

Since f is ex hypothesi a comonoid morphism, we have

f

a

b

x
“ f

x

a

b

“

f

a

f b

x
“

a

b

x
fa

fb
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where the first equality holds by counitality, the second since f commutes with x ex hypothesi,

and the third by definition. This establishes that ab b satisfies the universal property, and hence

that b is the categorical product.

To see that I is the terminal object up to isomorphism, suppose that 1 is the terminal object. Since

b is the categorical product, there is an isomorphism a
„
ÝÑ a b 1 for any a : C, by the universal

property. In particular, there is an isomorphism I
„
ÝÑ I b 1. But since I is the monoidal unit for b,

the component of the left unitor at 1 is an isomorphism I b 1
„
ÝÑ 1. Hence we have a composite

isomorphism I
„
ÝÑ I b 1

„
ÝÑ 1, and so I – 1.

Remark 3.4.25. The preceding proposition gives us another way to look at comonoids: we can

think of them as “products without the universal property”. The reason for this is that, since products

are characterized by their (universal) projections, we can use the counits to define projections for

the monoidal product of comonoids: that is, if a and b are comonoids in C, then we can define

(non-universal) projections a
proja

ÐÝÝÝ ab b
projb
ÝÝÝÑ b by

a
ρa

ÐÝ ab I
ida b b

ÐÝÝÝÝÝ ab b abidb
ÝÝÝÝÝÑ I b b

λb
ÝÑ b

where ρ and λ denote the right and left unitors of the monoidal structure respectively. The failure

of universality means that the family of projections tprojaua:C in C does not constitute a natural

transformation.

Remark 3.4.26. Abstractly, we can use naturality as a way to characterize deterministic morphisms:

the naturality law for requires that

a
f
ÝÑ b b

ÝÝÑ bb b “ a a
ÝÝÑ ab a

fbf
ÝÝÝÑ bb b

and this says that first doing f and the copying its output is the same as copying the input and

feeding each copy into f . If f were non-deterministic, then there would be a correlation between

the copies in the former case but not in the latter, and so this equation would not hold. Therefore,

we can think of those morphisms f for which copying is natural as the deterministic morphisms in

C. We will return to this perspective in Remark 4.1.19.

Finally, there is also a notion of comonad, dual to monad: a comonad is quite generally a comonoid

in a bicategory, in the sense of Remark 3.4.9, or, less generally, a comonoid with respect to the

composition product in a category of endofunctors. This means that the polynomial comonoids we

discussed above are by definition comonads.
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In Remark 3.4.20, we introduced the notion of ‘coalgebra’, and indeed there is a notion of comonad

coalgebra that is dual to the notion of monad algebra; and indeed we will use coalgebras later

to formalize dynamical systems. But although these coalgebras will be morphisms of the form

FX Ñ X , for F an endofunctor and X an object, the endofunctor F will not necessarily have a

comonad structure, and so the coalgebras will be more general than the algebras we considered

above: there will be no comonad compatibility axioms to satisfy.

In many cases, the endofunctor F will be a polynomial functor, so let us now introduce these.

3.5. Polynomial functors

In order to be considered adaptive, a system must have something to adapt to. This ‘something’ is

often what we call the system’s environment, and we say that the system is open to its environment.

The interface or boundary separating the system from its environment can be thought of as

‘inhabited’ by the system: the system is embodied by its interface of interaction; the interface

is animated by the system. In this way, the system can affect the environment, by changing the

shape or configuration of its interface
10
; through the coupling, these changes are propagated to the

environment. In turn, the environment may impinge on the interface: its own changes, mediated

by the coupling, arrive at the interface as immanent signals; and the type of signals to which the

system is alive may depend on the system’s configuration (as when an eye can only perceive if its

lid is open). Thus, information flows across the interface.

The mathematical language capturing this kind of inhabited interaction is that of polynomial

functors, which we adopt following Spivak and Niu [235]. We will see that this language—or rather,

its category—is sufficiently richly structured to provide both a satisfactory syntax for the patterns

of interaction of adaptive systems, generalizing the circuit diagrams of §3.3.2, as well as a home for

the dynamical semantics that we will seek.

Polynomial functors are so named because they are a categorification of polynomial functions:

functions built from sums, products, and exponentials, of the form y ÞÑ
ř

i:I bi y
ai
. To categorify

a function of this kind, we can simply interpret the coefficients and exponents and the variable

y as standing for sets rather than mere numbers. In this way, we reinterpret the term yai as

the representable copresheaf Setpai,´q, so that we can substitute in any set X and obtain the

exponential Xai
(just as in the classical case). To categorify the sums and products, we can simply

use the universal constructions available in the copresheaf category SetSet: these are still available

10

Such changes can be very general: consider for instance the changes involved in producing sound (e.g., rapid vibration
of tissue) or light (e.g., connecting a luminescent circuit, or the molecular interactions involved therein).
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in the subcategory Poly, since Poly is by definition the subcategory of the copresheaf category

on sums of representables (and as we have seen, products are equivalently iterated coproducts).

Remark 3.5.1. Limits and colimits in (co)presheaf categories are computed ‘pointwise’. Therefore,

if F and G are two copresheaves C Ñ Set, then their sum F ` G is the copresheaf defined by

x ÞÑ F pxq `Gpxq and their product is the copresheaf defined by x ÞÑ F pxq ˆGpxq.

We will adopt the standard notation for polynomial functors of Spivak and Niu [235], so that

if p is a polynomial, we will expand it as

ř

i:pp1q y
pris

. When treating p as encoding the type of a

system’s interface, we will interpret pp1q as encoding the set of possible configurations (or ‘shapes’)

that the system may adopt, and for each configuration i : pp1q, the set pris is the set of possible

immanent signals (‘inputs’) that may arrive on the interface in configuration i.

Definition 3.5.2. First, if A be any set, we will denote by yA its representable copresheaf yA :“

SetpA,´q : Set Ñ Set. A polynomial functor p : Set Ñ Set is then an indexed coproduct of

such representable copresheaves, written p :“
ř

i:pp1q y
pi
, where pp1q denotes the indexing set and

pris the representing set for each i. The category of polynomial functors is the full subcategory

Poly ãÑ SetSet of the copresheaf category spanned by coproducts of representables. A morphism

of polynomials is thus a natural transformation.

Remark 3.5.3. Note that, given a polynomial functor p : Set Ñ Set, the indexing set pp1q is

indeed obtained by applying p to the terminal set 1.

We will make much use of the following ‘bundle’ representation of polynomial functors and

their morphisms.

Proposition 3.5.4. Every polynomial functor

ř

i:pp1q y
pi

corresponds to a bundle (a function)

p :
ř

i:pp1q pi Ñ pp1q, where the set
ř

i:pp1q pi is the pp1q-indexed coproduct of the representing

objects pi and p is the projection out of the coproduct onto the indexing set pp1q.

Every morphism of polynomials f : p Ñ q corresponds to a pair pf1, f
7q of a function f1 :

pp1q Ñ qp1q and a pp1q-indexed family of functions f 7

i : qrf1piqs Ñ pris making the diagram

below commute. We adopt the notation pris :“ pi, and write f 7
to denote the coproduct

ř

i f
7

i .

ř

i:pp1q pris
ř

i:pp1q qrf1piqs
ř

j:qp1q qrjs

pp1q pp1q qp1q

f 7

qp

f1

{
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Given f : p Ñ q and g : q Ñ r, their composite g ˝ f : p Ñ r is as marked in the diagram

ř

i:pp1q pris
ř

i:pp1q rrg1 ˝ f1piqs
ř

k:rp1q rrks

pp1q pp1q rp1q

pgfq7

rp

g1˝f1

{

where pgfq7
is the coproduct of the pp1q-indexed family of composite maps

rrg1pf1piqqs
f˚g7

ÝÝÝÑ qrf1piqs
f 7

ÝÑ pris .

The identity morphism on a polynomial p is pidpp1q, idq.

Proof. We just need to show that every natural transformation between polynomial functors

corresponds to a pair of maps pf1, f
7q as defined above. The set of natural transforma-

tions

ř

i:pp1q y
pris ñ

ř

j:qp1q y
qrjs

is the hom-set SetSet
`
ř

i:pp1q y
pris,

ř

j:qp1q y
qrjs

˘

. Since the

contravariant hom functor takes colimits to limits (Remark 2.3.53), this hom-set is isomor-

phic to

ś

i:pp1q Set
Setpypris,

ř

j:qp1q y
qrjsq. By the Yoneda lemma, this is in turn isomorphic

to

ś

i:pp1q

ř

j:qp1q prisqrjs
. And since products distribute over sums, we can rewrite this as

ř

f1:pp1qÑqp1q

ś

i:pp1q prisqrf1piqs
. The elements of this set are precisely pairs of a function f1 :

pp1q Ñ qp1q along with a family of functions qrf1piqs Ñ pris indexed by i : pp1q, such that the

diagram above commutes.

We now recall a handful of useful facts about polynomials and their morphisms, each of which

is explained in Spivak and Niu [235] and summarized in Spivak [241].

We will consider the unit polynomial y to represent a ‘closed’ system, since it has no nontrivial

configurations and no possibility of external input. For this reason, morphisms p Ñ y will represent

ways to make an open system closed, and in this context the following fact explains why: such

morphisms correspond to a choice of possible input for each p-configuration; that is, they encode

“how the environment might respond to p”.

Proposition 3.5.5. Polynomial morphisms p Ñ y correspond to sections pp1q Ñ
ř

i pris of the

corresponding function p :
ř

i pris Ñ pp1q.

The following embedding ofSet intoPolywill be useful in constructing ‘hierarchical’ dynamical

systems.

Proposition 3.5.6. There is an embedding of Set into Poly given by taking sets X to the linear

polynomials Xy : Poly and functions f : X Ñ Y to morphisms pf, idXq : Xy Ñ Y y.
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There are many monoidal structures on Poly, but two will be particularly important for us. The

first represents the parallel composition of systems.

Proposition 3.5.7. There is a symmetric monoidal structure pb, yq on Poly that we call tensor,

and which is given on objects by pbq :“
ř

i:pp1q

ř

j:qp1q y
prisˆqrjs

and on morphisms f :“ pf1, f
7q :

p Ñ p1
and g :“ pg1, g

7q : q Ñ q1
by f b g :“

`

f1 ˆ g1,Σpf 7, g7q
˘

, where Σpf 7, g7q is the family

of functions

Σpf 7, g7qi,j :“ p1rf1piqs ˆ q1rg1pjqs
f 7

i ˆg7

j
ÝÝÝÝÑ pris ˆ qrjs

indexed by pi, jq : pp1q ˆ qp1q. This is to say that the ‘forwards’ component of f b g is the product

of the forwards components of f and g, while the ‘backwards’ component is the pointwise product

of the respective backwards components.

Proposition 3.5.8. pPoly,b, yq is symmetric monoidal closed, with internal hom denoted r´,“s.

Explicitly, we have rp, qs “
ř

f :pÑq y
ř

i:pp1q qrf1piqs
. Given an set A, we have rAy, ys – yA.

The second important monoidal structure is that inherited from the composition of endofunctors.

To avoid confusion with other composition operators, we will in this context denote the operation

by ◁.

Proposition 3.5.9. The composition of polynomial functors q˝p : E Ñ E Ñ E induces a monoidal

structure on PolyE , which we denote ◁, and call ‘composition’ or ‘substitution’. Its unit is again y.

Comonoids with respect to ◁ play a particularly important rôle in the theory of polynomial

functors, and we will make accordingly much use of them.

Proposition 3.5.10 (Ahman and Uustalu [7, §3.2]). Comonoids in pPoly,◁, yq correspond to

small categories. If pc, δ, ϵq is a comonoid, then the shapes cp1q are the objects of the corresponding

category C. For each object x : cp1q, cris is the set
ř

y:cp1q Cpx, yq of morphisms out of x. The

counit morphism ϵ : c Ñ y is, following Proposition 3.5.5, a section of c, and assigns to each

x : cp1q its identity morphism idx : x Ñ x. The comultiplication δ : c Ñ c◁ c encodes morphisms’

codomains (its forward action) and their composition (its backward action). Finally, the comonoid

laws ensure that the category is well defined.

Remark 3.5.11. ◁-comonoid homomorphisms are not, as one might expect, functors; rather, they

are ‘cofunctors’: they act backwards on morphisms. We will not explore the theory of cofunctors

any further in this thesis, although we will make frequent use of them later in the context of

dynamical systems.
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The following ◁-comonoids will play a prominent rôle in our dynamical developments.

Proposition 3.5.12. If T is a monoid in pSet,ˆ, 1q, then the comonoid structure on yT witnesses

it as the category BT.

Proposition 3.5.13. Monomials of the form SyS can be equipped with a canonical comonoid

structure witnessing the codiscrete groupoid on S: the category with an object for every element s

of S and a morphism s Ñ t for every pair of elements ps, tq.
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4. The compositional structure of Bayesian
inference

This chapter introduces the fundamental concepts and structures needed for the development

of statistical games in Chapter 5, and proves the crucial result that Bayesian updating composes

according to the ‘lens’ pattern. To make sense of this statement, we first introduce compositional

probability (§4.1), motivating it as a resolution of some imprecision that arises when one works

informally with probability and statistics, particularly in the context of ‘hierarchical’ models. We

exhibit categorical probability theory both abstractly (§4.1.2 and §4.1.3) and concretely (using

discrete probability in §4.1.1 and ‘continuous’ probability in §4.1.4). We then move on to construct

categories of bidirectional processes in §4.2, by first categorifying our earlier discussion of dependent

data using the Grothendieck construction (§4.2.1) and then using this to introduce the lens pattern

(§4.2.2).

In §4.3, we present our novel results. First, we introduce the indexed category of “state-dependent

channels” in §4.3.1. These formalize the type of Bayesian inversions, and so in §4.3.2 we define the

associated notion of Bayesian lens, and show in §4.3.3 that Bayesian updating composes according

to the lens pattern. We end with a brief discussion of the ‘lawfulness’ of Bayesian lenses.

Remark 4.0.1. To gain some intuition about the hierarchical compositional structure of Bayesian

inference, consider sitting close to the screen at a cinema. Your neural activity encodes a belief

about where the characters are on the screen and what they are doing, but your visual field can

only capture a part of the image at any one time. These incoming visual signals contain “low-level”

information, about the light intensity over the patch of screen you can see, and the first job of the

visual system is to infer what this means for what’s going on in this patch. Of course, having been

following the film so far, your brain encodes a high-level belief about what is going on across the

whole screen, and it uses this to predict what to expect in the patch. This intermediate-level belief

is then updated using the received visual signals, through a process of (approximate) Bayesian

inference. The resulting intermediate-level posterior then supplies the input for a second inference

process, updating the prior high-level belief accordingly. Notice that this means that the process of

122



prediction in such a hierarchical inference system points from inside an agent “towards the world”;

and the belief-updating process points the other way, from the world into the agent.

4.1. Compositional probability

In informal literature, Bayes’ rule is often written in the following form:

PpA|Bq “
PpB|Aq ¨ PpAq

PpBq

where PpAq is the probability of the event A, and PpA|Bq is the probability of the event A given

that the event B occurred; and vice versa swapping A and B. Unfortunately, this notation obscures

that there is in general no unique assignment of probabilities to events: different observers can hold

different beliefs. Moreover, we are usually less interested in the probability of particular events

than in the process of assigning probabilities to arbitrarily chosen beliefs; and what should be done

if PpBq “ 0 for some B? The aim in this section is to exhibit a general, precise, and compositional,

form of Bayes’ rule; we begin, as before, by introducing the intuition.

In the categorical setting, the assignment of probabilities or beliefs to events will formally be the

task of a state (in the sense of §3.1.1) on the space from which the events are drawn; we should

think of states as generalizing distributions or measures. With this notion to hand, we can write

PπpAq to denote the probability of A according to the state π.

The formalization of conditional probability will be achieved by morphisms that we will call

channels, meaning that we can write PcpB|Aq to denote the probability of B given A according to

the channel c. We can think of the channel c as taking events A as inputs and emitting states cpAq

as outputs. This means that we can alternatively write PcpB|Aq “ PcpAqpBq.

If the input events are drawn from the space X and the output states encode beliefs about Y ,

then the channel c will be a morphismXÑ‚ Y . Given a channel c : XÑ‚ Y and a channel d : YÑ‚ Z ,

we will understand their composite d ‚ c : XÑ‚ Z as marginalizing (averaging) over the possible

outcomes in Y . We will see precisely how this works in various settings below.

Notation 4.1.1. In a stochastic context, we will denote channels by the arrow Ñ‚ , and write

their composition operator as ‚. We do this to distinguish stochastic channels from deterministic

functions, which we will continue to write as Ñ with composition ˝; in a number of situations, it

will be desirable to work with both kinds of morphism and composition.
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Given two spaces X and Y of events, we can form beliefs about them jointly, represented by

states on the product space denoted X b Y . The numerator in Bayes’ rule represents such a joint

state, by the law of conditional probability or ‘product rule’:

PωpA,Bq “ PcpB|Aq ¨ PπpAq (4.1)

where ¨ is multiplication of probabilities, π is a state onX , and ω denotes the joint state onX b Y .

By composing c and π to form a state c ‚ π on Y , we can write

Pω1pB,Aq “ P
c:
π

pA|Bq ¨ Pc‚πpBq

where c:
π will denote the Bayesian inversion of c with respect to π.

Joint states in classical probability theory are symmetric—and so the tensor b is symmetric—

meaning that there is a family of isomorphisms swap : X b Y
„
ÝÑ‚ Y bX , as in §3.1.1, and which

will satisfy the symmetric monoidal category axioms (Definition 3.1.4). Consequently, we have

PωpA,Bq “ Pω1pB,Aq where ω1 “ swap ‚ ω, and thus

PcpB|Aq ¨ PπpAq “ P
c:
π

pA|Bq ¨ Pc‚πpBq (4.2)

where both left- and right-hand sides are called disintegrations of the joint state ω [60]. From this

equality, we can write down the usual form of Bayes’ theorem, now with the sources of belief

indicated:

P
c:
π

pA|Bq “
PcpB|Aq ¨ PπpAq

Pc‚πpBq
. (4.3)

As long as Pc‚πpBq ‰ 0, this equality defines the inverse channel c:
π . If the division is undefined,

or if we cannot guarantee Pc‚πpBq ‰ 0, then c:
π can be any channel satisfying (4.2).

There is therefore generally no unique Bayesian inversion c: : YÑ‚ X for a given channel

c : XÑ‚ Y : rather, we have an inverse c:
π : YÑ‚ X for each prior state π on X . Moreover, c:

π is

not a “posterior distribution” (as written in some literature), but a process which emits a posterior

distribution, given an observation in Y . If we denote our category of stochastic channels by C, then,

by allowing π to vary, we obtain a map of the form c:

p¨q
: PX Ñ CpY,Xq, where PX denotes a

space of states on X . Note that here we are not assuming the object PX to be an object of C itself

(though it often will be), but rather an object in its base of enrichment, so that here we can think of

c:

p¨q
as a kind of externally parameterized channel (in the sense of §3.2.2). Making the type of this

‘state-dependent’ channel c:

p¨q
precise is the task of §4.2.1.
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Remark 4.1.2. There are two easily confused pieces of terminology here. We will call the channel

c:
π the Bayesian inversion of the channel c with respect to π. Then, given some y P Y , the state

c:
πpyq is a new ‘posterior’ distribution on X. We will call c:

πpyq the Bayesian update of π along c

given y.

In the remainder of this section, we instantiate the ideas above in categories of stochastic channels

of various levels of generality, beginning with the familiar case of discrete (i.e., finitely supported,

or ‘categorical’) probability.

4.1.1. Discrete probability, algebraically

Interpreting the informal Bayes’ rule (4.3) is simplest in the case of discrete or finitely-supported

probability. Here, every event is a set, generated as the disjoint union of so many atomic (singleton)

events, which one can therefore take as the elements of the set. A finitely-suported probability

distribution is then simply an assignment of nonzero probabilities to finitely many elements, such

that the sum of all the assignments is 1. This condition is a convexity condition, and so in this

subsection wewill introduce discrete compositional probability theory from a geometric perspective,

using the algebraic tools of the previous chapter.

Definition 4.1.3. Suppose X is a set. A function c : X Ñ r0, 1s such that cpxq ą 0 for only

finitely many x : X and

ř

x:X cpxq “ 1 will be called a discrete or finitely-supported distribution on

X . We write DX to denote the set of discrete distributions onX . A (real-valued) convex set is a set

X equipped with a function ς : DX Ñ X called its evaluation.

Convex sets X are sets in which we can form convex combinations of elements. Algebraically,

we can model these convex combinations as distributions on X , and the evaluations realize the

convex combinations (distributions) as elements again of X : geometrically, the evaluation returns

the barycentre of the distribution.

In light of Chapter 3, this situation may seem familiar. Indeed, the assignment X ÞÑ DX is

the functor part of a monad on Set, whose algebras are convex sets. This monad arises from a

free-forgetful adjunction between the category of convex sets (the category of algebras of the

monad) and the category Set. Later, we will find that the category of finitely-supported conditional

probability distributions—the category of discrete stochastic channels—is equivalent to the category

of free convex sets and their morphisms: a free convex set onX is equivalently a distribution onX .

Let us first formalize the functor D.
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Proposition 4.1.4. The mapping of sets X ÞÑ DX is functorial. Given a function f : X Ñ Y , we

obtain a function Df : DX Ñ DY mapping c : DX to the distribution Dfpcq : DY ,

Dfpcq : Y Ñ r0, 1s

y ÞÑ
ÿ

x:fpxq“y

cpxq .

Proof. Given f : X Ñ Y and g : Y Ñ Z , we have

DgpDfpcqq : Z Ñ r0, 1s

z ÞÑ
ÿ

y:gpyq“z

ÿ

x:fpxq“y

cpxq

“
ÿ

x:g˝fpxq“z

cpxq

hence Dg ˝ Df “ Dpg ˝ fq. We also have

DpidXqpcq : X Ñ r0, 1s

x ÞÑ
ÿ

x1:idXpx1q“x

cpx1q

“ cpxq

and hence Dpidq “ idD .

To obtain the monad structure of D, we will exhibit the free-forgetful adjunction. We start by

defining the category of convex sets, and the specific case of a free convex set.

Definition 4.1.5. The category of (real-valued) convex setsConv has convex sets pX, ςXq as objects.

Its morphisms pX, ςXq Ñ pY, ςY q are functions f : X Ñ Y that preserve the convex structure, in

the sense that the following square commutes:

DX DY

X Y

Df

f

ςX ςY

Definition 4.1.6. If X is any set, then the free convex set on X is the set DX equipped with the

evaluation µX : DDX Ñ DX which maps α : DDX to the distribution µXpαq : DX ,

µXpαq : X Ñ r0, 1s

x ÞÑ
ÿ

c:DX
αpcq ¨ cpxq .
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Notation 4.1.7. To emphasize the algebraic nature of finitely-supported distributions π : DX ,

instead of writing them as functions x ÞÑ πpxq, we can write them as formal sums or formal convex

combinations
ř

x:X πpxq |xy, with each element x : X corresponding to a formal “basis vector” |xy

with the coefficient πpxq. If X is a convex set, then the evaluation realizes this formal sum as an

actual element (‘vector’) in X .

We are now in a position to exhibit the adjunction: the reasoning behind the following proposition

follows the lines of Example 3.4.19 and Proposition 2.2.25 (on the free-forgetful adjunction between

graphs and categories).

Proposition 4.1.8. The mapping of X : Set to the free convex set pDX,µXq defines a functor

F : Set Ñ Conv which takes functions f : X Ñ Y to morphisms Ff : pDX,µXq Ñ pDY, µY q

defined by Df : DX Ñ DY . This functor F is left adjoint to the forgetful functor U : Conv Ñ

Set which acts by pX, ςXq ÞÑ X .

Using Proposition 3.4.13, the adjunction gives us a monad.

Corollary 4.1.9. The functor D : Set Ñ Set is equivalently the functor part of the monad

induced by the free-forgetful adjunction on convex sets. It therefore acquires a monad structure

pµ, ηq where the components of the multiplication µ are the free evaluations µX : DDX Ñ DX ,

and the unit η has components ηX : X Ñ DX which return the ‘Dirac’ distributions, as in

ηXpxq : X Ñ r0, 1s

x1 ÞÑ

#

1 iff x “ x1

0 otherwise.

And Conv is the category of algebras for this monad.

Corollary 4.1.10. Conv – AlgpDq.

Using Corollary 4.1.10, we can actually exhibit the relationship between the monad D and

its defining adjunction tautologously: every monad T on a category C induces an free-forgetful

adjunction between its category of algebrasAlgpT q and C itself, such that the monad generated

by this adjunction is again T . This is precisely the situation here.

Proposition 4.1.11. Suppose pT, µ, ηq is a monad on the category C. There is a forgetful functor

U : AlgpT q Ñ C which has a left adjoint F : C Ñ AlgpT q taking each object X : C to the free

T -algebra pTX, µXq onX , where µX : TTX Ñ TX is the component of the monadmultiplication

µ at X . The unit of the adjunction is the monadic unit η, the counit ϵ is defined by ϵpX,ςXq :“ ςX ,

and the monad induced by the adjunction is pT, µ, ηq.
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Proof sketch. The proof that F is left adjoint to U is standard (see Borceux [39, Prop. 4.1.4]), and

that the adjunction generates the monad follows almost immediately from Proposition 3.4.13.

Remark 4.1.12. It must be emphasized that, although every monad arises from such a free-forgetful

adjunction, not every adjunction does! (Consider for example the adjunction∆ % lim of Proposition

2.3.48: ∆ does not assign to each c : C the “free J-shaped diagram on c”, and lim does not simply

forget diagrammatic structure.) Those adjunctions which do arise from monads in this way are

called monadic.

There is a special name for subcategories of free algebras.

Definition 4.1.13. Suppose pT, µ, ηq is a monad on C. The subcategory of AlgpT q on the free

T -algebras pTX, µXq is called the Kleisli category for T , and denoted KℓpT q.

The following proposition gives us an alternative presentation of KℓpT q which, when applied to

the monad D, will yield a computationally meaningful category of finitely-supported stochastic

channels.

Proposition 4.1.14. The objects of KℓpT q are the objects of C. The morphisms XÑ‚ Y of KℓpT q

are the morphismsX Ñ TY of C. Identity morphisms idX : XÑ‚ X are given by the monadic unit

ηX : X Ñ TX . Composition is defined by Kleisli extension: given g : YÑ‚ Z , we form its Kleisli

extension g▷ : TYÑ‚ Z as the composite TY
Tg
ÝÝÑ TTZ

µZ
ÝÝÑ TZ in C. Then, given f : XÑ‚ Y , we

form the composite g ‚ f : XÑ‚ Z as g▷ ˝ f : X
f
ÝÑ TY

Tg
ÝÝÑ TTZ

µZ
ÝÝÑ TZ .

Proof. Observe that there is a bijection between the objectsX of C and the freeT -algebras pTX, µXq.

We therefore only need to establish a bijection between the hom-setsAlgpT q
`

pTX, µXq, pTY, µY q
˘

and KℓpT qpX,Y q, with the latter defined as in the statement of the proposition.

First, we demonstrate that Kleisli extension defines a surjection

KℓpT qpX,Y q Ñ AlgpT q
`

pTX, µXq, pTY, µY q
˘

.

Suppose ϕ is any algebra morphism pTX, µXq Ñ pTY, µY q; we show that it is equal to the Kleisli

extension of the Kleisli morphism X
ηX
ÝÝÑ TX

ϕ
ÝÑ TY :

TX
pϕ˝ηXq▷

ÝÝÝÝÝÑ TY “ TX
TηX
ÝÝÝÑ TTX

Tϕ
ÝÝÑ TTY

µTY
ÝÝÝÑ TY

“ TX
TηX
ÝÝÝÑ TTX

µTX
ÝÝÝÑ TX

ϕ
ÝÑ TY

“ TX
idTX

ùùùùù TX
ϕ
ÝÑ TY

“ TX
ϕ
ÝÑ TY
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where the first equality holds by definition, the second line by naturality of µ, and the third by

the unitality of the monad pT, µ, ηq. Hence every free algebra morphism is in the image of Kleisli

extension, and so Kleisli extension defines a surjection.

Next, we show that this surjection is additionally injective. Suppose f, g are twoKleisli morphisms

X Ñ TY such that their Kleisli extensions are equal

TX
Tf
ÝÝÑ TTY

µTY
ÝÝÝÑ TY “ TX

Tg
ÝÝÑ TTY

µTY
ÝÝÝÑ TY

and recall that the identity in KℓpT q is η. We therefore have the following equalities:

X
ηX
ÝÝÑ TX

Tf
ÝÝÑ TTY

µTY
ÝÝÝÑ TY “ X

ηX
ÝÝÑ TX

Tg
ÝÝÑ TTY

µTY
ÝÝÝÑ TY

“ X
f
ÝÑ TY

Tηy
ÝÝÑ TTY

µTY
ÝÝÝÑ TY “ X

g
ÝÑ TY

Tηy
ÝÝÑ TTY

µTY
ÝÝÝÑ TY

“ X
f
ÝÑ Y “ X

g
ÝÑ Y .

where the equality in the first line holds ex hypothesi, the second by naturality, and the

third by monadic unitality. Since f “ g when their Kleisli extensions are equal, Kleisli

extension is injective. Since it is also surjective, we have an isomorphism between KℓpT qpX,Y q

and AlgpT q
`

pTX, µXq, pTY, µY q
˘

. Hence KℓpT q is the subcategory of AlgpT q on the free

algebras.

If T is a monad on C, there is a canonical embedding of C into KℓpT q. In the case of KℓpDq, this

will yield the subcategory of deterministic channels: those which do not add any uncertainty.

Proposition 4.1.15. Suppose T is a monad on C. Then there is an identity-on-objects embedding

C ãÑ KℓpT q given on morphisms by mapping f : X Ñ Y in C to the Kleisli morphism X
ηX
ÝÝÑ

TX
Tf
ÝÝÑ TY .

Proof sketch. Functoriality follows from the unitality of η in the monad structure, since Kleisli

composition involves post-composing the monad multiplication, and µT ˝ Tη “ id.

4.1.1.1. Stochastic matrices

At this point, let us exhibit KℓpDq a little more concretely, by instantiating Proposition 4.1.14. Since

a distribution π on the setX is a functionX Ñ r0, 1s, and following the “formal sum” intuition, we

can alternatively think of π as a vector, whose coefficients are indexed by elements of X (the basis

vectors |xy). MorphismsXÑ‚ Y in KℓpDq are functionsX Ñ DY , and so we can similarly think of

these as stochastic matrices, by the Cartesian closure of Set: a function X Ñ DY is equivalently
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a function X Ñ r0, 1sY , which in turn corresponds to a function X ˆ Y Ñ r0, 1s, which we can

read as a (left) stochastic matrix, with only finitely many nonzero coefficients and each of whose

columns must sum to 1. We will adopt ‘conditional probability’ notation for the coefficients of

these matrices: given p : XÑ‚ Y , x P X and y P Y , we write ppy|xq :“ ppxqpyq P r0, 1s for “the

probabilty of y given x, according to p”.

Composition in KℓpDq is then matrix multiplication: given p : X Ñ DY and q : Y Ñ DZ , we

compute their composite q ‚ p : X Ñ DZ by ‘averaging over’ or ‘marginalizing out’ Y via the

Chapman-Kolmogorov equation:

q ‚ p : X Ñ DZ :“ x ÞÑ
ÿ

z:Z

ÿ

y:Y

qpz|yq ¨ ppy|xq |zy .

Here we have again used the formal sum notation, drawing a box to indicate the coefficients (i.e.,

the probabilities returned by the conditional distribution q ‚ ppxq for each atomic event z in Z).

Via the monadic unit, identity morphisms idX : XÑ‚ X in KℓpDq take points to ‘Dirac delta’

distributions: idX :“ x ÞÑ 1 |xy. The embedding Set ãÑ KℓpDq makes any function f : Y Ñ X

into a (deterministic) channel f “ ηX ˝ f : Y Ñ DX by post-composing with ηX .

4.1.1.2. Monoidal structure

We will want to equip KℓpDq with a copy-discard category structure, in order to represent joint

states (joint distributions) and their marginalization, as well as the copying of information. The first

ingredient making a copy-discard category, after the category itself, is a monoidal structure. Once

again, in the case ofKℓpDq, this can be obtained abstractly from a more fundamental structure—the

categorical product pˆ, 1q on Set—as a consequence ofD being a ‘monoidal’ monad. We will write

the induced tensor product on KℓpDq as b; its monoidal unit remains the object 1.

Definition 4.1.16. A monoidal monad is a monad in MonCat. This means that it is a monad

pT, µ, ηq in Cat whose functor T : C Ñ C is additionally equipped with a lax monoidal structure

pα, ϵq such that the monad multiplication µ and unit η are monoidal natural transformations

accordingly.

With this extra structure, it is not hard to verify that the following proposition makes KℓpT q

into a well-defined monoidal category.

Proposition 4.1.17. The Kleisli category KℓpT q of a monoidal monad pT, α, ϵ, µ, ηq is a monoidal

category. The monoidal product is given on objects by the monoidal product b of the base category
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C. On Kleisli morphisms f : XÑ‚ Y and f 1 : X 1Ñ‚ Y 1
, their tensor f b g is given by the following

composite in C:

X bX 1 fbf 1

ÝÝÝÑ TX b TX 1
αX,X1

ÝÝÝÝÑ T pX bX 1q

The monoidal unit is the monoidal unit I in C. The associator and unitor of the monoidal category

structure are inherited from C under the embedding C ãÑ KℓpT q. When pC,b, Iq is symmetric

monoidal, then so is pKℓpT q,b, Iq.

In the specific case of KℓpDq, the tensor product b is given on objects by the product of sets and

on stochastic channels f : X Ñ DA and g : Y Ñ DB as

X ˆ Y
fˆg
ÝÝÑ DAˆ DB

αA,B
ÝÝÝÑ DpAˆBq .

Note that because not all joint states have independent marginals, the monoidal product b is not

Cartesian: that is, given an arbitrary ω : DpX b Y q, we do not necessarily have ω “ pρ, σq for

some ρ : DX and σ : DY . The laxator takes a pair of distributions pρ, σq in DX ˆDY to the joint

distribution onX ˆY given by px, yq ÞÑ ρpxq ¨σpyq; ρ and σ are then the (independent) marginals

of this joint distribution. (Of course, the joint distribution pρ, σq is not the only joint distribution

with those marginals: other joint states may have these marginals but also correlations between

them, and this is what it means for not all joint states to have independent marginals.)

Since pSet,ˆ, 1q is symmetric monoidal, KℓpDq is too, with swap isomorphisms swapX,Y :

X b Y
„
ÝÑ‚ Y bX similarly inherited form those of ˆ.

4.1.1.3. Copy-discard structure

The copy-discard structure in KℓpDq is inherited from Set through its embedding: since every

object in KℓpDq is an object in Set, and every object in Set is a comonoid (Example 3.4.22), and

since functors preserve equalities, these comonoid structures are preserved under the embedding.

More explicitly, the discarding channels X are given by x ÞÑ 1 |˚y, and the copiers X by

x ÞÑ 1 |x, xy. Note that the copiers are not natural in KℓpDq: in general, ‚ f ‰ f b f ‚ , as a

result of the possibility of correlations.

Since the projections projX : X ˆ Y Ñ X in Set satisfy projX “ ρX ˝ pidX ˆ Y q where

ρX : X ˆ 1 Ñ X is component of the right unitor, we can see how discarding and projection

give us marginalization, thereby explaining the string diagrams of §3.1.1. Given some joint state

ω : 1Ñ‚ X b Y , its X-marginal ωX : 1Ñ‚ X is given by projX ‚ ω, which in KℓpDq is given by the

formal sum formula

ř

x:X

ř

y:Y ωpx, yq |xy, where we have again drawn a box to distinguish the
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probability assigned to |xy, which we note coincides with the classical rule for marginal discrete

probability. (The Y -marginal is of course symmetric.)

Remark 4.1.18. A semicartesian category is a monoidal category in which the monoidal unit is

terminal. In a semicartesian monoidal category, every tensor product X b Y is equipped with a

natural family of projections projX : X b Y Ñ X and projY : X b Y Ñ Y given by ‘discarding’

one of the factors and using the unitor; the existence of such projections is not otherwise implied

by a monoidal structure (though of course it does follow when the tensor is the product).

A related notion is that of an affine functor, which is one that preserves the terminal object, and

of which D is an example. As a result, and following the discussion above, we can see that KℓpDq

is an example of a semicartesian category.

Semicartesian copy-discard categories are also known as Markov categories, following Fritz [109].

Remark 4.1.19. Since 1 is therefore terminal in KℓpDq, Proposition 3.4.24 tells us that those

channels f that do commute with copying (i.e., for which is natural; Remark 3.4.26), and which are

therefore comonoid morphisms, are precisely the deterministic channels: those in the image of the

embedding of Set (and which therefore emit Dirac delta distributions). As a result, we can think of

ComonpKℓpDqq as the subcategory of deterministic channels, and writeComonpKℓpDqq – Set.

(Intuitively, this follows almost by definition: a deterministic process is one that has no informational

side-effects; that is to say, whether we copy a state before performing the process on each copy, or

perform the process and then copy the resulting state, or whether we perform the process and then

marginalize, or just marginalize, makes no difference to the resulting state.)

4.1.1.4. Bayesian inversion

We can now instantiate Bayesian inversion in KℓpDq, formalizing Equation (4.3). Given a channel

p : X Ñ DY satisfying the condition in Remark 4.1.20 below, its Bayesian inversion is given by

the function

p: : DX ˆ Y Ñ DX :“ pπ, yq ÞÑ
ÿ

x:X

ppy|xq ¨ πpxq
ř

x1:X ppy|x1q ¨ πpx1q
|xy “

ÿ

x:X

ppy|xq ¨ πpxq

pp ‚ πqpyq
|xy

(4.4)

so that the Bayesian update of p along π is the conditional distribution defined by

p:
πpx|yq “

ppy|xq ¨ πpxq

pp ‚ πqpyq
.

Note that here we have used the Cartesian closure of Set, writing the type of p:
asDXˆY Ñ DX

rather than DX Ñ KℓpDqpY,Xq, where KℓpDqpY,Xq “ pDXqY .
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Remark 4.1.20. In the form given above, p:
is only well-defined when the support of p ‚ π is the

whole of Y , so that, for all y, pp ‚ πqpyq ą 0; otherwise, the division is ill-defined. Henceforth,

in the context of Bayesian inversion, we will therefore assume that p ‚ π has full support (see

Definition 4.1.21).

To avoid this (rather ugly) condition, one can replace it by the assumption that the notion of

‘support’ is well-defined, and modify the type of p:
accordingly: this is the refinement made by

Braithwaite and Hedges [41], and were it not for the presently-uncertain nature of support objects

in general, it would now be this author’s preferred approach. This leads to writing the type of

the inversion p:
as

ř

π:DX supppp ‚ πq Ñ DX , where supppp ‚ πq is the subobject of Y on which

p ‚ π is supported: with this type, p:
π is always a well-defined channel. One can then proceed with

the definition of ‘dependent’ Bayesian lenses accordingly; for the details, we refer the reader to

Braithwaite and Hedges [41]. In this thesis, for simplicity of exposition and faithfulness to this

author’s earlier work, we will proceed under the full-support assumption.

4.1.2. Abstract Bayesian inversion

Beyond the concerns of Remark 4.1.20, in a more general setting it is not always possible to define

Bayesian inversion using an equation like Equation (4.4) or Equation (4.3): the expression ppy|xq

might not be well-defined, or there might not be a well-defined notion of division. Instead being

guided by Equation (4.3) in defining Bayesian inversion, we can use Equation (4.2). Therefore,

supposing a channel c : XÑ‚ Y and a state π : IÑ‚ X in an ambient copy-discard category C, we

can ask for the Bayesian inversion c:
π to be any channel satisfying the graphical equality [60, eq. 5]:

c

π

X Y

“

c:
π

π

c

X Y

(4.5)

This diagram can be interpreted as follows. Given a prior π : IÑ‚ X and a channel c : XÑ‚ Y , we

form the joint distribution ω :“ pidX b cq ‚ X ‚ π : IÑ‚ X b Y shown on the left hand side: this

formalizes the product rule, PωpA,Bq “ PcpB|Aq ¨PπpAq, and π is the correspondingX-marginal.
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As in the concrete case of KℓpDq, we seek an inverse channel YÑ‚ X witnessing the ‘dual’ form of

the rule, PωpA,Bq “ PpA|Bq ¨ PpBq; this is depicted on the right hand side. By discarding X , we

see that c ‚ π : IÑ‚ Y is the Y -marginal witnessing PpBq. So any channel c:
π : YÑ‚ X witnessing

PpA|Bq and satisfying the equality above is a Bayesian inverse of c with respect to π.

In light of Remark 4.1.20, we therefore make the following definition.

Definition 4.1.21. We say that a channel c : XÑ‚ Y admits Bayesian inversion with respect to

π : IÑ‚ X if there exists a channel c:
π : YÑ‚ X satisfying equation (4.5). We say that c admits

Bayesian inversion tout court if c admits Bayesian inversion with respect to all states π : IÑ‚ X .

Remark 4.1.22. We need to be careful about the existence of inversions as a consequence of the

fact that c ‚ π may not always be fully supported on Y (recall Remark 4.1.20). In this thesis we will

henceforth assume that c ‚ π is always fully supported, in order to keep the exposition clear. This

is justified in two ways: first, because we can always restrict to a wide subcategory all of whose

channels do admit inversion; and second, because we may equally work with dependent Bayesian

lenses (as described by Braithwaite and Hedges [41] and noted in Remark 4.1.20).

4.1.3. Density functions

Abstract Bayesian inversion (4.5) generalizes the product rule form of Bayes’ theorem (4.2) but

in most applications, we are interested in a specific channel witnessing PpA|Bq “ PpB|Aq ¨

PpAq{PpBq. In the typical measure-theoretic setting, this is often written informally as

ppx|yq “
ppy|xq ¨ ppxq

ppyq
“

ppy|xq ¨ ppxq
ş

x1:X ppy|x1q ¨ ppx1q dx1
(4.6)

but the formal semantics of such an expression are not trivial: for instance, what is the object

ppy|xq, and how does it relate to a channel c : XÑ‚ Y ?

Following Cho and Jacobs [60], we can interpret ppy|xq as a density function for a channel,

abstractly witnessed by an effectX b YÑ‚ I in our ambient category C. Consequently, C cannot be

semicartesian—as this would trivialize all density functions—though it must still supply comonoids.

We can think of this as expanding the collection of channels in the category to include acausal or

‘partial’ maps and unnormalized distributions or states.

Example 4.1.23. An example of such a category is KℓpDď1q, whose objects are sets and whose

morphisms XÑ‚ Y are functions X Ñ DpY ` 1q. Then a stochastic map is partial if it sends any

probability to the added element ˚, and the subcategory of total (equivalently, causal) maps is

KℓpDq (see [61] for more details).
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A morphism XÑ‚ 1 in KℓpDď1q is therefore a function X Ñ Dp1 ` 1q. Now, a distribution π on

1 ` 1 is the same as a number π̄ in r0, 1s: note that 1 ` 1 has two points, and so π assigns π̄ to one

of them and 1 ´ π̄ to the other. Therefore an effect XÑ‚ 1 is equivalently a function X Ñ r0, 1s,

which is precisely the type we expect for a density function.

We therefore adopt the following abstract definition.

Definition 4.1.24 (Density functions [60, Def. 8.1]). A channel c : XÑ‚ Y is said to be represented

by an effect p : X b YÑ‚ I with respect to µ : IÑ‚ Y if

c

X

Y

µ

p

X

Y

“ .

In this case, we call p a density function for c.

We will also need the concepts of almost-equality and almost-invertibility.

Definition 4.1.25 (Almost-equality, almost-invertibility [60, Def. 8.2]). Given a state π : IÑ‚ X ,

we say that two channels c : XÑ‚ Y and d : XÑ‚ Y are π-almost-equal, denoted c π
„ d, if

c

π

X Y

“

d

π

X Y

and we say that an effect p : XÑ‚ I is π-almost-invertible with π-almost-inverse q : XÑ‚ I if

π
„

qp

X X

.
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The following basic results about almost-equality will prove helpful.

Proposition 4.1.26 (Composition preserves almost-equality). If c π
„ d, then f ‚ c

π
„ f ‚ d.

Proof. Immediate from the definition of almost-equality.

Proposition 4.1.27 (Almost-inverses are almost-equal). Suppose q : XÑ‚ I and r : XÑ‚ I are both

π-almost-inverses for the effect p : XÑ‚ I . Then q
π
„ r.

Proof. By assumption, we have

π
„

qp

π
„

rp

.

Then, by the definition of almost-equality (Definition 4.1.25):

qp

π π π

rp

π

“““

. (4.7)

We seek to show that

“

q

π

r

π

. (4.8)
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Substituting the right-hand-side of (4.7) for π in the left-hand-side of (4.8), we have that

qrp

π

q

π

“

rqp

π

r

π

““

which establishes the result. The second equality follows by the coassociativity of and the third

by its counitality.

With these notions, we can characterise Bayesian inversion via density functions. The result is

due to Cho and Jacobs [60], but we include the graphical proof for expository completeness, as an

example of string-diagrammatic reasoning.

Proposition 4.1.28 (Bayesian inversion via density functions [60, Thm. 8.3]). Suppose c : XÑ‚ Y

is represented by the effect p with respect to µ. The Bayesian inverse c:
π : YÑ‚ X of c with respect

to π : IÑ‚ X is given by

p

π

p´1

X

Y
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where p´1 : YÑ‚ I is a µ-almost-inverse for the effect

p

π

Y

Proof. We seek to establish the relation (4.5) characterizing Bayesian inversion. By substituting the

density function representations for c and c:
π into the right-hand-side of (4.5), we have

c:
π

π

c

“

µ

p

p

π

p´1

π

“

µ

p p

π

p´1

π
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“

c

π

“

µ

p

π

as required. The second equality holds by the coassociativity of , the third since p´1
is an

almost-inverse ex hypothesi, and the fourth by the counitality of p , q and the density function

representation of c.

The following proposition is an immediate consequence of the definition of almost-equality and

of the abstract characterisation of Bayesian inversion (4.5). We omit the proof.

Proposition 4.1.29 (Bayesian inverses are almost-equal). Suppose α : YÑ‚ X and β : YÑ‚ X are

both Bayesian inversions of the channel c : XÑ‚ Y with respect to π : IÑ‚ X . Then α
c‚π
„ β.

4.1.4. S-finite kernels

To represent channels by concrete density functions, we can work in the category sfKrn of

measurable spaces and s-finite kernels. We will only sketch the structure of this category, and refer

the reader to Cho and Jacobs [60] and Staton [258] for elaboration.

Objects in sfKrn are measurable spaces pX,ΣXq; often we will just write X , and leave the

σ-algebra ΣX implicit. Morphisms pX,ΣXqÑ‚ pY,ΣY q are s-finite kernels. A kernel k from X to

Y is a function k : X ˆ ΣY Ñ r0,8s satisfying the following conditions:

• for all x P X , kpx,´q : ΣY Ñ r0,8s is a measure; and

• for all B P ΣY , kp´, Bq : X Ñ r0,8s is measurable.

A kernel k : X ˆ ΣY Ñ r0,8s is finite if there exists some r P r0,8q such that, for all x P X ,

kpx, Y q ď r. And k is s-finite if it is the sum of at most countably many finite kernels kn,

k “
ř

n:N kn.

Identity morphisms idX : XÑ‚ X are Dirac kernels δX : X ˆ ΣX Ñ r0,8s :“ x ˆ A ÞÑ 1 iff

x P A and 0 otherwise. Composition is given by a Chapman-Kolmogorov equation, analogously to
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composition in KℓpDq. Suppose c : XÑ‚ Y and d : YÑ‚ Z . Then

d ‚ c : X ˆ ΣZ Ñ r0,8s :“ xˆ C ÞÑ

ż

y:Y
dpC|yq cpdy|xq

where we have again used the ‘conditional probability’ notation dpC|yq :“ d ˝ py ˆ Cq. Reading

dpC|yq from left to right, we can think of this notation as akin to reading the string diagrams from

top to bottom, i.e. from output(s) to input(s).

Monoidal structure on sfKrn There is a monoidal structure on sfKrn analogous to that on

KℓpDq. On objects, X b Y is the Cartesian product X ˆ Y of measurable spaces. On morphisms,

f b g : X b YÑ‚ AbB is given by

f b g : pX ˆ Y q ˆ ΣAˆB :“ pxˆ yq ˆ E ÞÑ

ż

a:A

ż

b:B
δAbBpE|x, yq fpda|xq gpdb|yq

where, as above, δAbBpE|a, bq “ 1 iff pa, bq P E and 0 otherwise. Note that pf b gqpE|x, yq “

pgbfqpE|y, xq for all s-finite kernels (and allE, x and y), by the Fubini-Tonelli theorem for s-finite

measures [60, 258], and so b is symmetric on sfKrn.

The monoidal unit in sfKrn is again I “ 1, the singleton set. Unlike in KℓpDq, however, we do

have nontrivial effects p : XÑ‚ I , given by kernels p : pX ˆ Σ1q – X Ñ r0,8s, with which we

will represent density functions.

Comonoids in sfKrn Every object in sfKrn is a comonoid, analogously to KℓpDq. Discarding

is given by the family of effects X : X Ñ r0,8s :“ x ÞÑ 1, and copying is again Dirac-like:

X : X ˆ ΣXˆX :“ x ˆ E ÞÑ 1 iff px, xq P E and 0 otherwise. Because we have nontrivial

effects, discarding is only natural for causal or ‘total’ channels: if c satisfies ‚ c “ , then cp´|xq

is a probability measure for all x in the domain
1
. And, once again, copying is natural (that is,

‚ c “ pcb cq ‚ ) if and only if the channel is deterministic.

Channels represented by effects We can interpret the string diagrams of §4.1.3 in sfKrn, and

we will do so by following the intuition of the conditional probability notation and reading the string

diagrams from outputs to inputs. Hence, if c : XÑ‚ Y is represented by the effect p : X b YÑ‚ I

with respect to the measure µ : IÑ‚ Y , then

c : X ˆ ΣY Ñ r0,8s :“ xˆB ÞÑ

ż

y:B
µpdyq ppy|xq.

1

This means that the subcategory of total maps in sfKrn is equivalent to the Kleisli category KℓpGq of the Giry monad
G taking each measurable spaceX to the space GX of measures over X ; see Example 4.1.30 for more details.
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Note that we also use conditional probability notation for density functions, and so ppy|xq :“

p ˝ pxˆ yq.

Suppose that c : XÑ‚ Y is indeed represented by p with respect to µ, and that d : YÑ‚ Z is

represented by q : Y b ZÑ‚ I with respect to ν : IÑ‚ Z . Then in sfKrn, d ‚ c : XÑ‚ Z is given by

d ‚ c : X ˆ ΣZ :“ xˆ C ÞÑ

ż

z:C
νpdzq

ż

y:Y
qpz|yqµpdyq ppy|xq

Alternatively, by defining the effect ppµqq : X b ZÑ‚ I as

ppµqq : X ˆ Z Ñ r0,8s :“ xˆ z ÞÑ

ż

y:Y
qpz|yqµpdyq ppy|xq,

we can write d ‚ c as

d ‚ c : X ˆ ΣZ :“ xˆ C ÞÑ

ż

z:C
νpdzq ppµqqpz|xq.

Bayesian inversion via density functions Once again writing π : IÑ‚ X for a prior on X, and

interpreting the string diagram of Proposition 4.1.28 for c:
π : YÑ‚ X in sfKrn, we have

c:
π : Y ˆ ΣX Ñ r0,8s :“ y ˆA ÞÑ

ˆ
ż

x:A
πpdxq ppy|xq

˙

p´1pyq

“ p´1pyq

ż

x:A
ppy|xqπpdxq,

(4.9)

where p´1 : YÑ‚ I is a µ-almost-inverse for effect p‚pπbidY q, and is given up to µ-almost-equality

by

p´1 : Y Ñ r0,8s :“ y ÞÑ

ˆ
ż

x:X
ppy|xqπpdxq

˙´1

.

Note that from this we recover the informal form of Bayes’ rule for measurable spaces (4.6). Suppose

π is itself represented by a density function pπ with respect to the Lebesgue measure dx. Then

c:
πpA|yq “

ż

x:A

ppy|xq pπpxq
ş

x1:X ppy|x1q pπpx1qdx1
dx.

4.1.5. On probability monads

Later, it will at times be helpful towork in a category of stochastic channels that is the Kleisli category

for a monad, without fixing that monad in advance; in this case we will speak of a probability monad.

Unfortunately, an abstract characterization of probability monads is not presently known to the

author, and so we use this term informally. However, when we do so, we have in mind a monoidal

monad that maps spaces to spaces of measures or valuations on them, and that maps morphisms to

the corresponding pushforwards. In the setting of finitary probability, we have already seen one

example, the monad D explored in §4.1.1. Here we note the existence of others.
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Example 4.1.30 (Giry monad [120]). Let Meas denote the category of measurable spaces, whose

objects are sets equipped with σ-algebras and whose morphisms are measurable functions. The Giry

monad G : Meas Ñ Meas maps each measurable space pX,ΣXq to the space GX of probability

measures α : ΣX Ñ r0, 1s over it, equipped with the smallest σ-algebra making the evaluation

functions

evU : GX Ñ r0, 1s

α ÞÑ αpUq

measurable for all U P ΣX . Given a measurable function f : X Ñ Y , the function Gf : GX Ñ GY

is defined by pushforwards: that is, for each α : GX , we define

Gfpαq : ΣY Ñ r0, 1s

V ÞÑ α
`

f´1pV q
˘

.

(We may also write f˚α to denote Gfpαq.) The unit of the monad η has components ηX : X Ñ GX

mapping each point x to the corresponding Dirac measure δx, which is defined by δxpUq “ 1 iff

x P U and δxpUq “ 0 otherwise. Finally, the multiplication µ has components µX : GGX Ñ GX

defined by integration, analogous to the ‘evaluation’ of D (Def. 4.1.6): for each ν : GGX , define

µXpνq : ΣX Ñ r0, 1s

U ÞÑ

ż

α:GX
αpUq dν .

Note that the subcategory of total morphisms in sfKrn is equivalent to KℓpGq.

The category Meas has all finite limits (it has products and equalizers), and this will mean

that we will be able in Chapter 6 to define “effectful polynomials” in KℓpGq, and hence obtain

categories of continuous-time continuous-space open Markov processes. However, Meas does

not have exponentials and is therefore not Cartesian closed, because the evaluation function

evR,R : MeaspR,Rq ˆ R Ñ R : pf, xq ÞÑ fpxq is not measurable, for any choice of σ-algeba

on the function space MeaspR,Rq [15]. This means that KℓpGq cannot be enriched in Meas,

and so we cannot define Bayesian lenses internally to Meas. Circumnavigating this obstruction

would complicate our construction of cilia — dynamical systems that control lenses — which are

central to our formalization of predictive coding. This is because the output maps of stochastic

dynamical systems are deterministic functions: in the case of systems in KℓpGq, this means they

are morphisms in Meas; for a general probability monad P : E Ñ E , they are morphisms in E .
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For a system to be able to emit a lens, therefore, the hom objects ofBayesLens must be objects in

E , and this in turn requires KℓpPq to be enriched in E . Fortunately, as the following example notes,

a suitable probability monad does exist.

Example 4.1.31 (Quasi-Borel spaces [131]). A quasi-Borel space is a set X equipped with a set

MX of ‘random variables’ on X taking samples from the real line, MX Ă XR
. The set MX is

taken to satisfy three closure properties: (i)MX contains all constant functions; (ii)MX is closed

under composition with measurable functions, such that if ρ P MX and f : R Ñ R is measurable

with respect to the standard Borel structure on R, then ρ ˝ f P MX ; and (iii)MX is closed under

gluing ‘disjoint Borel domains’, meaning that if R is countably partitioned by R –
ř

i:N Si, and

if tαiui:N Ă MX , then the function px P Siq ÞÑ αipxq is in MX . A function f : X Ñ Y is a

morphism of quasi-Borel spaces if for all ρ P MX , f ˝ ρ P MY . Quasi-Borel spaces and their

morphisms form a category,QBS, and this category is Cartesian closed: ifX and Y are quasi-Borel

spaces, then QBSpX,Y q can be given a quasi-Borel structureMXY by defining

MXY :“ tρ : R Ñ QBSpX,Y q |
`

ρ5 : R ˆX Ñ Y
˘

P QBSpR ˆX,Y qu .

A probability measure on a quasi-Borel space X is defined to be a pair of a (standard) probability

measure ν on R and a random variable ρ P MX . Since two different pairs pν, ρq and pµ, τq may

produce equal pushforward measures, ρ˚ν “ τ˚µ, it makes sense to consider two such QBS

measures to be equivalent if their pushforwards are equal. The set PX of such equivalence classes

of QBS measures on X can then be equipped with the structure of a quasi-Borel space, and the

assignmentP is made functorial by the pushforwards action. Finally, the functorP : QBS Ñ QBS

can be equipped with the structure of a (monoidal) monad in a manner analogous to the Giry

monad: the unit yields Dirac measures, and the multiplication acts by integration.

We end this section by noting that the notions of s-finite measure and s-finite kernel can be

reconstructed within QBS, so that we may interpret sfKrn to be enriched accordingly [270, §11].

Moreover, Vákár and Ong [270] show that the set TX of s-finite measures on X can be given a

quasi-Borel structure, and this assignment actually yields a monad T : QBS Ñ QBS (by analogy

with the ‘continuation’ monad). This licenses us to take sfKrn to be instead defined as KℓpT q.

For further examples of probability monads, we refer the reader to Jacobs [139].
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4.2. Dependent data and bidirectional processes

Two properties of Bayesian inversion are particularly notable. Firstly, given a channelXÑ‚ Y , its

inversion yields a channel in the opposite direction, YÑ‚ X . Secondly, this inverse channel does

not exist in isolation, but rather depends on a supplied ‘prior’ distribution. In Chapter 7 we will

want to assign functorially to stochastic channels dynamical systems that invert them, and to do

this requires understanding how inversions compose. The general pattern for the composition

of dependent bidirectional processes is called the lens pattern, and this section is dedicated to

introducing it. The more fundamental aspect is that of dependence, which we began to explore

in the context of dependent sums and products in Chapter 2: we therefore begin this section by

introducing the Grothendieck construction, a ‘fibrational’ framework for composing dependent

processes.

4.2.1. Indexed categories and the Grothendieck construction

At various point above, we have encountered ‘dependent’ objects and morphisms: indexed and

dependent sums (Remark 2.3.10); indexed products (Remark 2.3.20); dependent products (§2.3.4.1);

hints at dependent type theory (end of §2.3.4); parameterized morphisms (§3.2.2); circuit algebras

(§3.3); and, of course, Bayesian inversions. The Grothendieck construction classifies each of these

as examples of a common pattern, allowing us to translate between ‘indexed’ and ‘fibrational’

perspectives: from the indexed perspective, we consider functors from an indexing object into a

category (think of diagrams); from the fibrational perspective, we consider bundles as projection

maps. The correspondence is then, roughly speaking, between “the object indexed by i” and “the

subobject that projects to i”, which is called the ‘fibre’ of the bundle over i.

For this reason, categories of bundles are an important part of the story, from which much else

is generalized. Recall from Definition 3.2.10 that these categories of bundles are slice categories:

the category of bundles over B in C is the slice C{B, whose objects are pairs pE, pq of an object E

and a morphism p : E Ñ B; and whose morphisms pE, pq Ñ pE1, p1q are morphisms α : E Ñ E1

of C such that p “ p1 ˝ α. We call this the category of bundles over B as a generalization of the

notion of “fibre bundle”, from which we inherit the notion of ‘fibre’.

Definition 4.2.1. Suppose C is a category with finite limits. Given a bundle p : E Ñ B in C, its

fibre over b : B is the subobject Eb of E such that ppeq “ b for all e : Eb. The fibre Eb can be
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characterized as the following pullback object, where 1 is the terminal object in C:

Eb E

1 B
b

p
{

In the case where C “ Set, there is an equivalence between the slice Set {B and a certain

presheaf category: the category of B-diagrams in Set, which we can equivalently think of as the

category of B-indexed sets.

Definition 4.2.2. Suppose B is a set. The discrete category onX is the category whose objects are

the elements of B and whose only morphisms are identity morphisms idb : b Ñ b for each element

b : B. We will denote the discrete category on B simply by B.

Proposition 4.2.3. For each set B, there is an equivalence Set {B – SetB .

Proof. In the direction Set {B Ñ SetB , let p : E Ñ B be a bundle over B. We construct a functor

P : B Ñ Set by defining P pbq :“ Eb, where Eb is the fibre of p over b; there are no nontrivial

morphisms in B, so we are done. Now suppose f : pE, pq Ñ pF, qq is a morphism of bundles. A

natural transformation φ : P ñ Q in SetB is just a family of functions φb : Pb Ñ Qb indexed by

b. Hence, given f , we define φb as the restriction of f to Eb for each b : B.

In the direction SetB Ñ Set {B, let P : B Ñ Set be a functor. We define E as the coproduct

ř

b:B P pbq, and the bundle p : E Ñ B as the projection pb, xq ÞÑ b for every pb, xq in
ř

b:B P pbq.

Now suppose φ : P ñ Q is a natural transformation in SetB . We define the function f : pE, pq Ñ

pF, qq by the coproduct of the functions φb, as f :“
ř

b:B φb.

These two constructions are easily verified as mutually inverse.

If theB inSetB is not just a set, but rather a category, then there is a correspondingly categorified

notion of the category of bundles.

Definition 4.2.4. Suppose F : C Ñ Set is a copresheaf on C. Its category of elements C{F has

for objects pairs pX,xq of an object X : C and an element x : FX . A morphism pX,xq Ñ pY, yq

is a morphism f : X Ñ Y in C such that Ffpxq “ y, as in the following diagram, where the top

triangle commutes in Set:

1

FX FY

X Y

x

Ff

y

f

.
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Identities are given by identity morphisms in C, and composition is composition of the underlying

morphisms in C. There is an evident forgetful functor πF : C{F Ñ C, which acts on objects as

pX,xq ÞÑ X and on morphisms as f ÞÑ f .

To validate that the category of elements construction is a good generalization of the slice

category, we have the following example.

Example 4.2.5. The category of elements of a representable copresheaf CpC,´q is equivalent to

the slice category C{C , from which we derive the similar notation.

Remark 4.2.6. Another way to look at the morphisms pX,xq Ñ pY, yq in C{F is as pairs pf, ιq,

where f is a morphism X Ñ Y in C and ι is an identification Ffpxq “ y. Then composition

in C{F is not just composition of morphisms in C, but also composition of identifications: given

pf, ιq : pX,xq Ñ pY, yq and pg, κq : pY, yq Ñ pZ, zq, the composite pg, κq˝pf, ιq is pg˝f, κ˝Fgpιqq,

where κ ˝ Fgpιq is the composite identification F pg ˝ fqpxq
Fgpιq

ùùùùù Fgpyq
κ

ùù z. We can think of

these identifications as witnesses to the required equalities. This perspective on C{F is analogous

to the process of categorification we considered in Chapter 2, where we added witnesses (fillers) to

equations and diagrams.

A better way to validate the category of elements construction is to generalize the Grothendieck

correspondence, Proposition 4.2.3, which means we need something to correspond to SetB: a

category of categories of elements. These generalized categories of elements are called “discrete

opfibrations”, and constitute our first examples of categorified bundles.

Definition 4.2.7. A discrete opfibration is a functor F : E Ñ B such that, for every object E in

E and morphism g : FE Ñ B in B, there exists a unique morphism h : E Ñ E1
in E such that

Fh “ g (called the lift of g):

E E1

FE B

h

g

Write DOpfibpBq to denote the full subcategory of Cat{B on those objects which are discrete

opfibrations. The subcategory EB of E all of whose objects are mapped by F to B and all of whose

morphisms are mapped to idB is called the fibre of F over B.

Example 4.2.8. The forgetful functor πF : C{F Ñ C out of the category of elements of a copresheaf

F is a discrete opfibration: for any object pX,xq in C{F and morphism g : X Ñ Y in C, there is a

unique morphism g : pX,xq Ñ pY, yq, namely where y “ Ffpxq.
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And thus we obtain a Grothendieck correspondence at the next level of categorification.

Proposition 4.2.9. For any category B, there is an equivalenceDOpfibpBq – SetB.

Proof sketch. We only sketch the bijection on objects; the correspondence on morphisms subse-

quently follows quite mechanically.

Given a discrete opfibration p : E Ñ B, it is easy to check that each fibreEb is a discrete category

and hence a set. Given a morphism f : b Ñ c in B, we define a function φ : Eb Ñ Ec by mapping

each e : Eb to the codomain of the unique lift h. This defines a functor B Ñ Set; functoriality

follows from the uniqueness of lifts.

In the inverse direction, given a copresheaf F : B Ñ Set, take the forgetful functor πF : B{F Ñ

B out of its category of elements, which is a discrete opfibration by the example above. Given a

natural transformation σ : F ñ G, define a functor S : B{F Ñ B{G on objects as SpX,xq “

pX,σXpxqq and on morphisms f : pX,xq Ñ pY, yq as Sf “ pX,σXpxqq
f
ÝÑ pY, σY pyqq; this is

well-defined by the naturality of σ and the definition of f , since Gf ˝ σXpxq “ σY ˝ Ffpxq and

Ffpxq “ y.

The verification that these two constructions are mutually inverse is straightforward.

In many cases, the dependent data of interest will have more structure than that of mere sets. For

example, in §3.3 we introduced a rate-coded circuit diagrams as an indexing of sets of rate-coded

circuits by a category of circuit diagrams; later, we will see that dynamical systems have a canonical

notion of morphism, and so our dynamical semantics will take the form of an indexed collection of

categories. This requires us to categorify not only the domain of indexing (as we have done above),

but also the codomain of values (as we do now). As with monoidal categories—and as in the case

of circuit algebras—in this higher-dimensional setting, it becomes necessary to work with weak

composition, and the relevant notion of weak functor is the ‘pseudofunctor’.

Definition 4.2.10. Suppose C is a category and B is a bicategory. A pseudofunctor F : C Ñ B is

constituted by

1. a function F0 : C0 Ñ B0 on objects;

2. for each pair of objects a, b : C, a function Fa,b : Cpa, bq Ñ BpF0a, F0bq0 on morphisms;

3. for each object c : C, a 2-isomorphism Fidc : idF0c ñ Fc,cpidcq witnessing weak unity, natural

in c; and
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4. for each composable pair of morphisms f : a Ñ b and g : b Ñ c in C, a 2-isomorphism

Fg,f : Fb,cpgq ˛ Fa,bpfq ñ Fa,cpg ˝ fq witnessing weak functoriality, natural in f and g,

where we have written composition in C as ˝ and horizontal composition in B as ˛;

satisfying the following conditions:

(a) coherence with left and right unitality of horizontal composition, so that the respective

diagrams of 2-cells commute:

idF0b ˛Fa,bpfq Fa,bpfq

Fb,bpidbq ˛ Fa,bpfq Fa,bpidb ˝fq

λFa,bpfq

Fidb
˛Fa,bpfq

Fidb,f

Fa,bpfq ˛ idF0a Fa,bpfq

Fa,bpfq ˛ Fa,apidaq Fa,bpf ˝ idaq

ρFa,bpfq

Fa,bpfq˛Fida

Ff,ida

(b) coherence with associativity of horizontal composition, so that the following diagram of

2-cells commutes:

pFc,dphq ˛ Fb,cpgqq ˛ Fa,bpfq Fc,dphq ˛ pFb,cpgq ˛ Fa,bpfqq

Fb,dph ˝ gq ˛ Fa,bpfq Fc,dphq ˛ Fa,cpg ˝ fq

Fa,dpph ˝ gq ˝ fq Fa,dph ˝ pg ˝ fqq

αFc,dphq,Fb,cpgq,Fa,bpfq

Fc,dphq˛Fg,f

Fh,g˝f

Fh,g˛Fa,bpfq

Fh˝g,f

.

Remark 4.2.11. If C is in fact a nontrivial bicategory, then the definition of pseudofunctor is

weakened accordingly: the functions Fa,b are replaced by functors between the corresponding

hom-categories, and the equalities in the functoriality conditions (a) and (b) are replaced by the

relevant unitor or associator isomorphism. We will encounter this more general case in the next

chapter, where we introduce the (yet weaker) concept of lax functor : see Definition 5.2.8, and the

associated footnote 5 for the relationship with the present notion of pseudofunctor.

With pseudofunctors, we gain a notion of indexed category.

Definition 4.2.12. An indexed category is a pseudofunctor F : C op Ñ Cat, for some indexing

category C. An opindexed category is a pseudofunctor F : C Ñ Cat. Given an (op)indexed category

F , we call the categories Fc its fibres, for each object c : C.
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Working with indexed categories rather than indexed sets, the relevant notion of (op)fibration

is no longer discrete, as there are now (non-trivial) morphisms to account for. Following the

Grothendieck logic, fibrations p : E Ñ B should be in bijective correspondence with indexed

categories F : B op Ñ Cat. This means that we should be able to turn any indexed category

into a fibration by appropriately gluing together its fibres; and conversely, given a fibration p, the

assignment b ÞÑ Eb2 should define a pseudofunctor B op Ñ Cat. These considerations yield the

following definition.

Definition 4.2.13. A fibration is a functor p : E Ñ B such that, for every pair of morphisms

f : E1 Ñ E and ϕ : E2 Ñ E in E , and for every morphism g : ppE2q Ñ ppE1q such that

ppϕq “ ppfq ˝ g in B, there exists a unique morphism h : E2 Ñ E1
in E such that pphq “ g and

ϕ “ f ˝ h:

E2 E1

E

ppE2q ppE1q

ppEq

h

g

f

ϕ

ppϕq

ppfq

The subcategory EB of all those objects mapped by p to B : B and all those morphisms mapped to

idB is called the fibre of p overB. An opfibration is a functor p : E Ñ B for which p op : E op Ñ B op

is a fibration.

Remark 4.2.14. Note that a discrete (op)fibration is a(n) (op)fibration each of whose fibres is

a discrete category: this means that in each fibre, there are no non-identity morphisms, so that

morphisms f and ϕ in the definition above are trivialized, thereby recovering the form of Definition

4.2.7.

The Grothendieck construction then tells us how to translate from (op)indexed categories to

(op)fibrations: in some situations, it will be easier to work with the one, and in others the other.

In particular, categories of lenses (and polynomial functors) will be seen to arise as Grothendieck

constructions.

Definition 4.2.15. Suppose F : C op Ñ Cat is a pseudofunctor. Its (contravariant) Grothendieck

construction is the category

ş

F defined as follows. The objects of

ş

F are pairs pX,xq of an object

2

with Eb being the subcategory of E sometimes denoted p´1
pbq all of whose objects are mapped by p to b, as in the

proof of Proposition 4.2.9.
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X : C and an object x : FX . A morphism pX,xq Ñ pY, yq is a pair pf, φq of a morphism

f : X Ñ Y in C and a morphism φ : x Ñ Ffpyq in FX , as in the following diagram, where the

upper triangle is interpreted in Cat (note the contravariance of Ff ):

1

FX FY

X Y

x

Ff

y

f

φ

We can thus write the hom set

ş

F
`

pX,xq, pY, yq
˘

as the dependent sum

ř

f : CpX,Y q FX
`

x, Ffpyq
˘

.

The identity morphism on pX,xq is pidX , idxq, and composition is defined as follows. Given

pf, φq : pX,xq Ñ pY, yq and pg, γq : pY, yq Ñ pZ, zq, their composite pg, γq ˝ pf, φq is the pair

pg ˝ f, Ffpγq ˝ φq .

The following well-known result tells us that the Grothendieck construction yields fibrations.

Proposition 4.2.16 (Johnson and Yau [145, Prop. 10.1.10]). Suppose F : C op Ñ Cat is an indexed

category. Then there is a ‘projection’ functor πF :
ş

F Ñ C mapping pX,xq ÞÑ X and pf, φq ÞÑ f ,

and this functor is a fibration.

Remark 4.2.17. Dually, there is a covariant Grothendieck construction, for opindexed categories

F : C Ñ Cat. The objects of

ş

F are again pairs pX : C, x : FXq, but now the morphisms

pX,xq Ñ pY, yq are pairs pf, φq with f : X Ñ Y in C as before and now φ : Ffpxq Ñ y; all

that we have done is swapped the direction of the arrow Ff in the diagram in Definition 4.2.15

(compare the identifications in the category of elements of a copresheaf, in Definition 4.2.4). As a

result, we can write the hom set

ş

F
`

pX,xq, pY, yq
˘

in this case as

ř

f : CpX,Y q FX
`

Ffpxq, y
˘

.

Remark 4.2.18. The Grothendieck construction induces an analogue of Proposition 4.2.9 between

the bicategory of pseudofunctors B op Ñ Cat and the bicategory of Grothendieck fibrations on B

[145, Theorem 10.6.16]. Indeed there are analogues of Propositions 4.2.9 and 4.2.3 in any categorical

dimension. Because fibrations are the higher-dimensional analogues of bundles, they have a base

category (the codomain) and a ‘total’ category (the domain), which is a kind of colimit of the

fibres (constructed by the Grothendieck construction): strictly speaking, what we have called

the Grothendieck construction above is total category of the full fibrational construction; the

fibration itself is the corresponding forgetful (projection) functor. For a highly readable exposition

of Grothendieck constructions, we refer the reader to Loregian and Riehl [173].
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4.2.1.1. The monoidal Grothendieck construction

When C is a monoidal category with which F is appropriately compatible, then we can ‘upgrade’

the notions of indexed category and Grothendieck construction accordingly. In this chapter, we

will restrict ourselves to locally trivial monoidal indexed categories, those for which the domain C

is only a category; Moeller and Vasilakopoulou [189] work out the structure for bicategorical C.

(As noted in Remark 4.2.11, in Chapter 5, we will sketch a notion of monoidal indexed bicategory

which amounts to a categorification of the present notion; but that will also in some sense be locally

trivial.)

Definition 4.2.19 (After Moeller and Vasilakopoulou [189, §3.2]). Suppose pC,b, Iq is a monoidal

category. We say that F is a monoidal indexed category when F is a lax monoidal pseudofunctor

pF, µ, ηq : pC op,b op, Iq Ñ pCat,ˆ,1q. This means that the laxator µ is given by a natural family

of functors µA,B : FA ˆ FB Ñ F pA b Bq along with, for any morphisms f : A Ñ A1
and

g : B Ñ B1
in C, a natural isomorphism µf,g : µA1,B1 ˝ pFf ˆ Fgq ñ F pf b gq ˝ µA,B . (This

makes µ into a pseudonatural transformation in the sense of Definition 5.2.9.) The laxator and the

unitor η : 1 Ñ FI together satisfy axioms of associativity and unitality that constitute indexed

versions of the associators and unitors of a monoidal category (Definition 3.1.4).

Explicitly, this means that there must be three families of natural isomorphisms, indexed by

objects A,B,C : C,

1. an associator family αA,B,C : µAbB,CpµA,Bp´,´q,´q ñ µA,BbCp´, µB,Cp´,´qq;

2. a left unitor λA : µI,Apη,´q ñ idFA; and

3. a right unitor ρA : µA,Ip´, ηq ñ idFA

such that the unitors are compatible with the associator, i.e. for all A,B : C the diagram

µAbI,BpµA,Ip´, ηq,´q µA,IbBp´, µI,Bpη,´qq

µA,Bp´,´q

µPA,BpρA,´q

αA,I,Bp´,η,´q

µA,ΛB
p´,λBq

commutes (where P and Λ are the right and left associators of the monoidal structure pb, Iq on

C), and such that the associativity is ‘order-independent’, i.e. for all A,B,C,D : C, the diagram
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µAbpBbCq,DpµA,BbCp´, µB,Cp´,´qq,´q µA,pBbCqbDp´, µBbC,DpµB,Cp´,´q,´qq

µpAbBqbC,DpµAbB,CpµA,Bp´,´q,´q,´q µA,BbpCbDqp´, µB,CbDp´, µC,Dp´,´qqq

µAbB,CbDpµA,Bp´,´q, µC,Dp´,´qq

αA,BbC,D

µAA,B,C,DpαA,B,C ,´q

αAbB,C,D αA,B,CbD

µA,AB,C,D
p´,αB,C,Dq

commutes (where A is the associator of the monoidal structure on C).

The following proposition exhibits the monoidal structure carried by the Grothendieck

construction when the indexed category is monoidal.

Proposition 4.2.20 (Moeller and Vasilakopoulou [189, §6.1]). Suppose pF, µ, ηq : pC op,b op, Iq Ñ

pCat,ˆ,1q is a monoidal indexed category. Then the total category of the Grothendieck

construction

ş

F obtains a monoidal structure pbµ, Iµq. On objects, define

pC,Xq bµ pD,Y q :“
`

C bD,µCDpX,Y q
˘

where µCD : FC ˆ FD Ñ F pC bDq is the component of µ at pC,Dq. On morphisms pf, f :q :

pC,Xq ÞÑ pC 1, X 1q and pg, g:q : pD,Y q ÞÑ pD1, Y 1q, define

pf, f :q bµ pg, g:q :“
`

f b g, µCDpf :, g:q
˘

.

The monoidal unit Iµ is defined to be the object Iµ :“
`

I, ηp˚q
˘

. Writing λ : I b p´q ñ p´q

and ρ : p´q b I ñ p´q for the left and right unitors of the monoidal structure on C, the left and

right unitors in

ş

F are given by pλ, idq and pρ, idq respectively. Writing α for the associator of the

monoidal structure on C, the associator in
ş

F is given by pα, idq.

Remark 4.2.21. Sometimes, rather than (or in addition to) an indexed category F being lax

monoidal as a pseudofunctor (which yields a ‘global’ monoidal structure), it may in fact be fibrewise

monoidal, meaning that each fibre FX is itself a monoidal category (yielding ‘local’ monoidal

structures); in this case, the pseudofunctor F can be written with the type C op Ñ MonCat.

In general, the fibrewise monoidal structures may be independent both of each other and of

the lax monoidal structure on F itself, but when C is in fact Cartesian monoidal, the local and

global monoidal structures coincide. For more reading on this, we refer the reader to Moeller and

Vasilakopoulou [189, §4].
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4.2.2. Grothendieck lenses

Lenses formalize bidirectional processes in which the ‘backward’ process depends on data in the

domain of the ‘forward’ process. The name originates in database theory [34, 99], where the

forward process gives a zoomed-in ‘view’ onto a database record, and the backward process is used

to update it. Following an observation of Myers and Spivak [238], lenses of this general shape can

be given a concise definition using the Grothendieck construction. In order to obtain the backward

directionality of the dependent part, we use the “pointwise opposite” of a pseudofunctor.

Definition 4.2.22. Suppose F : C op Ñ Cat is a pseudofunctor. We define its pointwise opposite

F p : C op Ñ Cat to be the pseudofunctor c ÞÑ Fc op returning the opposite of each category Fc;

given f : c Ñ c1
, F pf : Fc op Ñ Fc1 op

is defined as pFfq op : Fc op Ñ Fc1 op
.

Categories of Grothendieck lenses are then obtained via the Grothendieck construction of

pointwise opposites of pseudofunctors.

Definition 4.2.23 (Grothendieck lenses [238]). We define the category LensF of Grothendieck

lenses for a pseudofunctorF : C op Ñ Cat to be the total category of the Grothendieck construction

for the pointwise opposite F p of F . Explicitly, its objects pLensF q0 are pairs pC,Xq of objects C

in C and X in F pCq, and its hom-sets LensF
`

pC,Xq, pC 1, X 1q
˘

are the dependent sums

LensF
`

pC,Xq, pC 1, X 1q
˘

“
ÿ

f : CpC,C1q

F pCq
`

F pfqpX 1q, X
˘

(4.10)

so that a morphism pC,Xq ÞÑ pC 1, X 1q is a pair pf, f :q of f : CpC,C 1q and f : :

F pCq
`

F pfqpX 1q, X
˘

. We call such pairs Grothendieck lenses for F or F -lenses. We say that the

morphism f is the forward component of the lens, and the morphism f :
the backward component.

The identity Grothendieck lens on pC,Xq is idpC,Xq “ pidC , idXq. Sequential composition is

as follows. Given pf, f :q : pC,Xq ÞÑ pC 1, X 1q and pg, g:q : pC 1, X 1q ÞÑ pD,Y q, their composite

pg, g:q � pf, f :q is defined to be the lens

`

g ‚ f, f : ˝ F pfqpg:q
˘

: pC,Xq ÞÑ pD,Y q.

Notation 4.2.24. In the context of lenses, we will often write the backward map as f :
or f 7

, with

the former particularly used for Bayesian lenses. We will also use ÞÑ to denote a lens, and � for

lens composition. Above, we additionally used ‚ for composition in the base category and ˝ for

composition in the fibres.

Since lenses are bidirectional processes and English is read horizontally, when it comes to string

diagrams for lenses, we will depict these horizontally, with the forwards direction read from left to

right.
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Whenever C is a monoidal category, it gives rise to a canonical category of lenses, in which the

forwards morphisms are comonoid morphisms in C and the backwards morphisms are (internally)

parameterized by the domains of the forwards ones. Comonoids and their morphisms are necessary

to copy parameters during composition. The resulting ‘monoidal’ lenses are a natural generalization

of the ‘Cartesian’ lenses used in the database setting, and we will see that Bayesian lenses are

similarly constructed using an indexed category of (externally) parameterized morphisms.

Example 4.2.25. Suppose pC,b, Iq is a monoidal category and let ComonpCq be its subcategory

of comonoids and comonoid morphisms. A monoidal lens pX,Aq ÞÑ pY,Bq is a pair pf, f 7q of a

comonoid morphism f : X Ñ Y in ComonpCq and a morphism f 7 : X b B Ñ A in C. Such

lenses can be characterized as Grothendieck lenses, following Spivak [238, §3.2].

First, define a pseudofunctor P : ComonpCq op Ñ Cat as follows. On objects X : ComonpCq,

define PX as the category with the same objects as C and with hom-sets given by PXpA,Bq :“

CpXbA,Bq; denote a morphism f fromA toB in PX by f : A
X
ÝÑ B. The identity idA : A

X
ÝÑ A

is defined as the projection projA : X b A XbidA
ÝÝÝÝÝÝÑ I b A

λA
ÝÝÑ A. Given f : A

X
ÝÑ B and

g : B
X
ÝÑ C , their composite g ˝ f : A

X
ÝÑ C is given by the following string diagram in C:

f

gX

A

B
.

Given h : X Ñ Y in ComonpCq, the functor Ph : PY Ñ PX acts by precomposition on

morphisms, taking f : A
Y
ÝÑ B to the morphism Phpfq : A

X
ÝÑ B given by

X bA
hbidA
ÝÝÝÝÑ Y bA

f
ÝÑ B .

(An alternative way to obtain PX is as the ‘coKleisli’ category of the comonad X b p´q.)

The category of monoidal lenses is then defined to be the category of Grothendieck P-lenses.

The objects of LensP are pairs pX,Aq of a comonoid X and an object A in C, and the morphisms

are monoidal lenses. Given lenses pf, f 7q : pX,Aq Ñ pY,Bq and pg, g7q : pY,Bq Ñ pZ,Cq, the

composite lens has forward component given by g ˝ f : X Ñ Z and backward component given

by f 7 ˝ Pfpg7q : C
X
ÝÑ A.

We can depict monoidal lenses string-diagrammatically, with the forward and backward

components oriented in opposite directions. To exemplify this, note that, because the forwards
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components are comonoid morphisms, the following equality holds for all composite monoidal

lenses pg, g7q ˝ pf, f 7q:

f

f 7

X

A B

Y

X

g

g7 C

Z

Y “

f

f 7

X

A

g

g7 C

Z

f

Here, we have decorated the strings with fletches to indicate the direction of information-flow

and disambiguate the bidirectionality, and drawn boxes around the pairs that constitute each lens.

Note however that the parameterizing input to the backwards component of the first lens is not

constrained to be a copy of the input to the forwards component; it is only for compositional

convenience that we depict lenses this way.

Definition 4.2.26. When C is Cartesian monoidal, so that its monoidal structure pˆ, 1q is the

categorical product, we will call monoidal lenses in C Cartesian lenses.

Remark 4.2.27. The string-diagrammatic depictions of lenses above were not strictly formal, or at

least we have not explain how they might be; we have not exhibited a coherence theorem such as

3.1.10. In this case, the diagrams above are depictions in the graphical calculus of Boisseau [35].

An alternative graphical language for a generalization of lenses called optics[184, 217] has been

described by Román [219].

Monoidal lenses find uses not only in database theory, but in many other situations, too: the

general pattern is “interacting systems where information flows bidirectionally”. In economics

(specifically, compositional game theory), lenses are used to model the pattern of interaction of

economic games: the forward maps encode how players act in light of observations, and the

backward maps encode how utility is passed “backwards in time” from outcomes, in order to

assign credit[119]. In non-probabilistic machine learning, lenses can be used to formalize reverse

differentiation and hence the backpropagation of error (another kind of credit assignment): the

forwards maps represent differentiable processes (such as neural networks), and the backward maps

are the reverse-derivatives used to pass error back (e.g., between neural network layers)[74, 96].
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Generalizations of lenses known as optics[184, 217] have also been used both to model economic

games with uncertainty (‘mixed’ strategies)[36] and to model the process of dynamic programming

(Bellman iteration) used in the related field of reinforcement learning[128], as well as to model

client-server interactions in computing[277].

In systems theory, lenses can be used to formalize various kinds of dynamical system: the forward

maps encode their ‘outputs’ or ‘actions’, and the backward maps encode how states and inputs

give rise to transitions[191]. This latter application will be a particular inspiration to us, and is

closely related to Example 4.2.30, which expresses polynomial functors as lenses (thereby explaining

Proposition 3.5.4), and for which we need the following canonical family of indexed categories.

Definition 4.2.28. When a category C has pullbacks, its slice categories C{C collect into an indexed

category C{p´q : C op Ñ Cat called the (contravariant3) self-indexing of C, and defined as follows.

On objects C : C, the self-indexing unsurprisingly returns the corresponding slice categories C{C .

Given a morphism f : A Ñ B, the functor C{f : C{B Ñ C{A is defined by pullback. On objects

pE, pq : C{B, we define pC{fqpE, pq :“ pf˚E, f˚pq, where f˚E is the pullback object A ˆB E

and f˚p is the associated projection to A. On morphisms φ : pE, pq Ñ pE1, p1q in C{B, we define

pC{fqpφq as the morphism f˚φ : pf˚E, f˚pq Ñ pf˚E1, f˚p1q induced by the universal property

of the pullback f˚E1
, as in the commuting diagram

f˚E E

f˚E1 E1

A B

φf˚φ

{

p1

p

f

f˚p1

{

f˚p .

Remark 4.2.29. The functors C{f : C{B Ñ C{A are also known as base-change functors, as they

change the ‘base’ of the slice category.

Example 4.2.30. The category Poly of polynomial functors (§3.5) is equivalent to the category

of Grothendieck lenses for the self-indexing of Set: that is, Poly – LensSet {p´q. To see this,

observe that the objects of LensSet {p´q are bundles p : E Ñ B of sets. If we define the set pris to

be the fibre Ei of p for each i : B, we have an isomorphism E –
ř

i:B pris. We can then define

3

‘Contravariant’ in contradistinction to the covariant self-indexing of Remark 3.2.12 (in the context of external

parameterization as change-of-enrichment).
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a polynomial functor P :“
ř

i:B y
pris

, and then find that P p1q “ B, which justifies writing the

original bundle as p :
ř

i:pp1q pris Ñ pp1q. We saw in Proposition 3.5.4 how to associate to any

polynomial functor P a bundle p, and it is easy to check that applying this construction to the P

defined here returns our original bundle p. This shows that the objects of Poly are in bijection

with the objects of LensSet {p´q. What about the morphisms?

A morphism p Ñ q in LensSet {p´q, for p : X Ñ A and q : Y Ñ B is a pair of functions

f1 : A Ñ B and f 7 : f˚
1 Y Ñ X such that f˚

1 q “ p ˝ f 7
, as in the following diagram:

X f˚
1 Y Y

A A B

f 7

qf˚
1 q

p

f1

{

Replacing the bundles p and q by their polynomial representations p :
ř

i:pp1q pris Ñ pp1q and

q :
ř

j:qp1q qrjs Ñ qp1q, we see that the pair pf1, f
7q is precisely a morphism of polynomials of the

form established in Proposition 3.5.4, and that every morphism of polynomials corresponds to such

a lens. This establishes an isomorphism of hom-sets, and hence Poly – LensSet {p´q.

Lenses are also closely related to wiring diagrams[239, 282] and our linear circuit diagrams

(§3.3.2).

Example 4.2.31. Let FVect denote the category of finite-dimensional real vector spaces and

linear maps between them; write n for the object Rn. FVect has a Cartesian monoidal product

p`, 0q given by the direct sum of vectors (n ` m “ Rn ‘ Rm “ Rn`m
), and whose unit object

is 0. The category of monoidal lenses in pFVect,`, 0q is the category of linear circuit diagrams

(Example 3.3.9).

Cartesian lenses pX,Aq ÞÑ pY,Bq are in some sense ‘non-dependent’ lenses, because the domain

of the backwards map is a simple productX ˆB, in which the object B does not depend on x : X .

We can see polynomial functors as a dependent generalization of Cartesian lenses in Set.

Proposition 4.2.32. The category of monoidal lenses in pSet,ˆ, 1q is equivalently the full

subcategory of Poly on the monomials XyA.

Proof sketch. A morphism of monomials pf1, f
7q : XyA Ñ Y yB is a pair of functions f1 : X Ñ Y

and f 7 : X ˆ B Ñ A; this is a Cartesian lens pX,Aq Ñ pY,Bq. There is clearly a bijection of

objects XyA Ø pX,Aq.
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In particular, this situation encompasses linear circuit diagrams, which embed into Poly

accordingly.

Remark 4.2.33. There is a forgetful functor from vector spaces to sets, U : FVect Ñ Set. If we

write LenspCq to denote the category of monoidal lenses in C (with the relevant monoidal structure

left implicit), this forgetful functor induces a ‘change of base’ LenspUq : LenspFVectq Ñ

LenspSetq, since the Grothendieck construction is functorial by Remark 4.2.18, and hence so is

the Lens construction. There is therefore a canonical embedding of linear circuit diagrams into

Poly, LenspFVectq
LenspUq
ÝÝÝÝÝÑ LenspSetq ãÑ Poly.

Our dynamical semantics for approximate inference (Chapter 7) can, if one squints a little, be

therefore seen as a kind of probabilistic generalization of our algebra for rate-coded neural circuits:

it will be an algebra for (a stochastic analogue of) the multicategory OPoly with semantics in

categories of (stochastic) dynamical systems. One can see a morphism of polynomials therefore

as a kind of ‘dependent’ circuit diagram, with the forwards component transporting ‘outgoing’

information from inside a (‘nested’) system to its boundary (its external interface), and the backward

component transporting ‘incoming’ information (“immanent signals”) from the boundary internally,

depending on the configuration of the boundary.

Of course, to give an OPoly-algebra is to give a lax monoidal functor, which means knowing

the relevant monoidal structure. While we saw this in the case of polynomial functors of sets in

Proposition 3.5.7, it will be helpful when it comes to generalizing Poly to see how this structure is

obtained. Moreover, we will want a monoidal structure on Bayesian lenses, in order to define joint

approximate inference systems. For these reasons, we now turn to monoidal categories of lenses.

4.2.2.1. Monoidal categories of lenses

The monoidal structures on categories of Grothendieck lenses—at least those of interest here—are a

direct corollary of the monoidal Grothendieck construction, Proposition 4.2.20.

Corollary 4.2.34. When F : C op Ñ Cat is equipped with a monoidal indexed category structure

pµ, ηq, its category of lenses LensF becomes a monoidal category pLensF ,b
1
µ, Iµq. On objects

b1
µ is defined as bµ in Proposition 4.2.20, as is Iµ. On morphisms pf, f :q : pC,Xq ÞÑ pC 1, X 1q and

pg, g:q : pD,Y q ÞÑ pD1, Y 1q, define

pf, f :q b1
µ pg, g:q :“

`

f b g, µopCDpf :, g:q
˘
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where µopCD : F pCq op ˆF pDq op Ñ F pCbDq op is the pointwise opposite of µCD . The associator

and unitors are defined as in Proposition 4.2.20.

As an example, this gives us the tensor product on Poly, which is inherited by the category of

Cartesian lenses in Set.

Example 4.2.35. The tensor product structure pb, yq on Poly is induced by a monoidal indexed

category structure pµ, ηq on the self-indexing of pSet,ˆ, 1q. To define the unitor η, first note that

Set {1 – Set, so that η equivalently has the type 1 Ñ Set; we thus make the natural choice for η,

the terminal element ˚ ÞÑ 1. The laxator µ is defined for each B,C : Set by the functor

µB,C : Set {B ˆ Set {C Ñ Set {pB ˆ Cq

`

p :
ÿ

i:B

pris Ñ B, q :
ÿ

j:C

qrjs Ñ C
˘

ÞÑ
ÿ

pi,jq:BˆC

pris ˆ qrjs

the naturality and functoriality of which follow from the functoriality of ˆ. Applying Corollary

4.2.34 to this structure, we obtain precisely the tensor product of polynomials introduced in

Proposition 3.5.7.

Corollary 4.2.36. Since the category of Cartesian lenses in Set is the monomial subcategory

of Poly, to which the tensor structure pb, yq restricts, the latter induces a symmetric monoidal

structure on the former, the unit of which is the object p1, 1q. Given objects pX,Aq and pX 1, A1q,

their tensor pX,Aq b pX 1, A1q is pX ˆX 1, AˆA1q. Given lenses pf, f 7q : pX,Aq Ñ pY,Bq and

pf 1, f 17q : pX 1, A1q Ñ pY 1, B1q, their tensor has forward component f ˆ f 1 : X ˆX 1 Ñ Y ˆ Y 1

and backward component

X ˆX 1 ˆB ˆB1
idX ˆσX1,BˆidB1

ÝÝÝÝÝÝÝÝÝÝÑ X ˆB ˆX 1 ˆB1 f 7ˆf 17

ÝÝÝÝÑ AˆA1

where σ is the symmetry of the product ˆ.

We will see that the monoidal structure on Bayesian lenses is defined similarly. First of all, we

need to define Bayesian lenses themselves.

4.3. The bidirectional structure of Bayesian updating

In this section, we define a collection of indexed categories, each denoted Stat, whosemorphisms can

be seen as generalized Bayesian inversions. Following Definition 4.2.23, these induce corresponding

categories of lenses which we call Bayesian lenses. In §4.3.3, we show abstractly that, for the
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subcategories of exact Bayesian lenses whose backward channels correspond to ‘exact’ Bayesian

inversions, the Bayesian inversion of a composite of forward channels is given (up to almost-

equality) by the lens composite of the corresponding backward channels. This justifies calling these

lenses ‘Bayesian’, and provides the foundation for the study of approximate (non-exact) Bayesian

inversion in Chapter 5.

Remark 4.3.1. Bayesian lenses, and the result that “Bayesian updates compose optically”, were

first introduced by the present author in [248]. Braithwaite and Hedges [41] then elaborated the

structure to define dependent Bayesian lenses, solving the ‘divide-by-zero’ issue already indicated

in Remark 4.1.22. All three authors then joined forces to produce a paper [42], published at MFCS

2023, which we take to be a canonical summary of the definitions and basic results.

4.3.1. State-dependent channels

As we saw in §4.1, a channel c : XÑ‚ Y admitting a Bayesian inversion induces a family of inverse

channels c:
π : YÑ‚ X , indexed by ‘prior’ states π : 1Ñ‚ X . Making the state-dependence explicit, in

typical cases where c is a probability kernel we obtain a function c: : GX ˆ Y Ñ GX , under the

assumption that c‚π is fully supported for all π : GX (see Remark 4.1.20 for our justification of this

simplifying assumption). In more general situations, and in light of the full-support assumption,

we obtain a morphism c: : CpI,Xq Ñ CpY,Xq in the base of enrichment of the monoidal category

pC,b, Iq of c, which for simplicity we take to be Set (although the construction still succeeds for

an arbitrary Cartesian base of enrichment). We call morphisms of this general type state-dependent

channels, and structure the indexing as an indexed category.

Definition 4.3.2. Let pC,b, Iq be a monoidal category. Define the C-state-indexed category

Stat : C op Ñ Cat as follows.

Stat : C op Ñ Cat

X ÞÑ StatpXq :“

¨

˚

˚

˝

StatpXq0 :“ C0
StatpXqpA,Bq :“ Set

`

CpI,Xq, CpA,Bq
˘

idA : StatpXqpA,Aq :“

"

idA : CpI,Xq Ñ CpA,Aq

ρ ÞÑ idA

˛

‹

‹

‚

(4.11)

f : CpY,Xq ÞÑ

¨

˚

˚

˚

˚

˝

Statpfq : StatpXq Ñ StatpY q

StatpXq0 “ StatpY q0

SetpCpI,Xq, CpA,Bqq Ñ Set
`

CpI, Y q, CpA,Bq
˘

α ÞÑ
`

σ : CpI, Y q
˘

ÞÑ
`

αf‚σ : CpA,Bq
˘

˛

‹

‹

‹

‹

‚
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Composition in each fibre StatpXq is as in C. Explicitly, indicating morphisms CpI,Xq Ñ CpA,Bq

in StatpXq byA
X
ÝÑ‚ B, and given α : A

X
ÝÑ‚ B and β : B

X
ÝÑ‚ C , their composite β ˝α : A

X
ÝÑ‚ is defined

by pβ ˝ αqρ :“ βρ ‚ αρ, where here we indicate composition in C by ‚ and composition in the

fibres StatpXq by ˝. Given f : YÑ‚ X in C, the induced functor Statpfq : StatpXq Ñ StatpY q acts

by pre-composition (compare Definition 4.2.28 of the functorial action of the self-indexing); for

example:

Statpfqpαq : CpI, Y q
CpI,fq
ÝÝÝÝÑ CpI,Xq

α
ÝÑ CpA,Bq

σ ÞÑ f ‚ σ ÞÑ αf‚σ

.

Remark 4.3.3. If we do not wish to make the full-support assumption, and instead we know that

the category C has a well-defined notion of support object[41, 109, 259], then for a given general

channel c : XÑ‚ Y , we can write the type of its Bayesian inversion c:
as

ś

π:CpI,Xq C
`

supppc‚πq, Y
˘

.

As Braithwaite and Hedges [41] show, this corresponds to a morphism in a certain fibration, and

gives rise to a category of dependent Bayesian lenses; see Remark 4.1.20.

Notation 4.3.4. Just as we wrote X
M
ÝÑ Y for an internally M -parameterized morphism in

CpM d X,Y q (see Proposition 3.2.3) and A
Θ
ÝÑ B for an externally Θ-parameterized morphism

in E
`

Θ, CpA,Bq
˘

(see Definition 3.2.11), we write A
X
ÝÑ‚ B for an X-state-dependent morphism

in Set
`

CpI,Xq, CpA,Bq
˘

. Given a state ρ in CpI,Xq and an X-state-dependent morphism f :

A
X
ÝÑ‚ B, we write fρ for the resulting morphism in CpA,Bq.

Remark 4.3.5. The similarities between state-dependent channels and externally parameterized

functions are no coincidence: the indexed category Stat is closely related to an indexed category

underlying external parameterization in Set, which in previous work, reported by Capucci,

Gavranović, and St Clere Smithe [53], we called Prox (for ‘proxies’).

When C is a Kleisli category KℓpT q, it is of course possible to define a variant of Stat on the

other side of the product-exponential adjunction, with state-dependent morphisms A
X
ÝÑ‚ B having

the types TX ˆA Ñ TB. This avoids the technical difficulties sketched in the preceding example

at the cost of requiring a monad T . However, the exponential form makes for better exegesis, and

so we will stick to that.

We will want to place inference systems side-by-side, which means we want a monoidal category

structure for Bayesian lenses. Following Corollary 4.2.34, this means Stat needs to be a monoidal

indexed category.

Proposition 4.3.6. Stat is a monoidal indexed category, in the sense of Definition 4.2.19. The

components µXY : StatpXq ˆ StatpY q Ñ StatpX b Y q of the laxator are defined on objects
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by µXY pA,A1q :“ A b A1
and on morphisms f : A

X
ÝÑ‚ B and f 1 : A1 YÝÑ‚ B1

as the X b Y -state-

dependent morphism denoted f b f 1
and given by the function

µXY pf, f 1q : CpI,X b Y q Ñ CpAbA1, B bB1q

ω ÞÑ fωX b f 1
ωY

.

Here, ωX and ωY are theX and Y marginals of ω, given by ωX :“ projX ‚ω and ωY :“ projY ‚ω.

(Note that this makes µ into a strict transformation in the sense of Definition 5.2.9.) The unit

η : 1 Ñ StatpIq of the lax monoidal structure is the functor mapping the unique object ˚ : 1 to the

unit object I : StatpIq.

Remark 4.3.7. Note that Stat is also fibrewise monoidal in the sense of Remark 4.2.21, as an almost

trivial consequence of C being monoidal. We will not make use of this structure in this chapter, but

we will return to it in the construction of statistical games in §5.3.1.

At this point, we can turn to Bayesian lenses themselves.

4.3.2. Bayesian lenses

We define the category of Bayesian lenses in C to be the category of Grothendieck Stat-lenses.

Definition 4.3.8. The category BayesLensC of Bayesian lenses in C is the category LensStat of

Grothendieck lenses for the functor Stat. A Bayesian lens is a morphism in BayesLensC . Where

the category C is evident from the context, we will just write BayesLens.

Unpacking this definition, we find that the objects of BayesLensC are pairs pX,Aq of objects

of C. Morphisms (that is, Bayesian lenses) pX,Aq ÞÑ pY,Bq are pairs pc, c:q of a channel c : XÑ‚ Y

and a generalized Bayesian inversion c: : B
X
ÝÑ‚ A; that is, elements of the hom objects

BayesLensC
`

pX,Aq, pY,Bq
˘

: “ LensStat
`

pX,Aq, pY,Bq
˘

– CpX,Y q ˆ Set
`

CpI,Xq, CpB,Aq
˘

.

The identity Bayesian lens on pX,Aq is pidX , idAq, where by abuse of notation idA : CpI, Y q Ñ

CpA,Aq is the constant map idA defined in Equation (4.11) that takes any state on Y to the identity

on A.

The sequential composite pd, d:q � pc, c:q of pc, c:q : pX,Aq ÞÑ pY,Bq and pd, d:q : pY,Bq ÞÑ

pZ,Cq is the Bayesian lens

`

pd ‚ cq, pc: ˝ c˚d:q
˘

: pX,Aq ÞÑ pZ,Cq where pc: ˝ c˚d:q : C
X
ÝÑ‚ A

takes a state π : IÑ‚ X to the channel c:
π ‚ d:

c‚π : CÑ‚ A.
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To emphasize the structural similarity between Bayesian and monoidal lenses, and visualize the

channel c:
π ‚ d:

c‚π , note that following Example 4.2.25, we can depict Bayesian lens composition

using the graphical calculus of Boisseau [35] as

c

c:

X

A B

Y

X

d

d:
C

Z

Y “

c

c:

X

A

d

d:
C

Z

c

.

Remark 4.3.9. Strictly speaking, these depictions are diagrams in Boisseau [35]’s calculus of

string diagrams for optics, which means that they are not direct depictions of the Bayesian lenses

themselves; rather they are depictions of the corresponding optics, which we define and elaborate

in [248]. Briefly, these optics are obtained by embedding the categories of forrwards and backwards

channels into their corresponding (co)presheaf categories and coupling them together along the

‘residual’ category C; in the depictions, the string diagrams in the forwards and backwards directions

are thus interpreted in these different categories. This explains why we are allowed to ‘copy’ the

channel c in the depiction above, producing the right-hand side by pushing c through the copier as

if it were a comonoid morphism: it is because the comonoids in question are CpI,Xq and CpI, Y q,

and the function CpI, cq is indeed a comonoid morphism, even though c is in general not!

Remark 4.3.10. Note that the definition of Stat and hence the definition of BayesLensC do

not require C to be a copy-delete category, even though our motivating categories of stochastic

channels are; all that is required for the definition is that C is monoidal. On the other hand, as

we can define Bayesian lenses in any copy-delete category, we can define them in Set, where

Setp1, Xq – X for every set X : in this case, Bayesian lenses coincide with Cartesian lenses.

Of course, since Stat is a monoidal indexed category, BayesLensC is a monoidal category.

Proposition 4.3.11. BayesLensC is a monoidal category, with structure

`

pb, pI, Iq
˘

inherited

from C. On objects, define pA,A1q b pB,B1q :“ pA b A1, B b B1q. On morphisms pf, f :q :

pX,Aq ÞÑ pY,Bq and pg, g:q : pX 1, A1q ÞÑ pY 1, B1q, define pf, f :q b pg, g:q :“ pf b g, f : b g:q,

where f : b g: : B b B1 XbX 1

ÝÝÝÝÑ‚ A b A1
acts on states ω : IÑ‚ X b X 1

to return the channel

163



f :
ωX b g:

ωX1 , following the definition of the laxator µ in Proposition 4.3.6. The monoidal unit in

BayesLensC is the pair pI, Iq duplicating the unit in C. When C is moreover symmetric monoidal,

so is BayesLensC .

Proof sketch. The main result is immediate from Proposition 4.3.6 and Corollary 4.2.34. When b is

symmetric in C, the symmetry lifts to the fibres of Stat and hence to BayesLensC .

But BayesLensC is not in general a copy-discard category.

Remark 4.3.12. AlthoughBayesLensC is a monoidal category, it does not inherit a copy-discard

structure from C, owing to the bidirectionality of its component morphisms. To see this, we can

consider morphisms into the monoidal unit pI, Iq, and find that there is generally no canonical

discarding map. For instance, a morphism pX,Aq ÞÑ pI, Iq consists in a pair of a channel XÑ‚ I

(which may indeed be a discarding map) and a state-dependent channel I
X
ÝÑ‚ A, for which there is

generally no suitable choice satisfying the comonoid laws. Note, however, that a lens of the type

pX, Iq ÞÑ pI,Bq might indeed act by discarding, since we can choose the constant state-dependent

channel B
X
ÝÑ‚ I on the discarding map : BÑ‚ I . By contrast, the Grothendieck category

ş

Stat

is a copy-delete category, as the morphisms pX,Aq Ñ pI, Iq in
ş

Stat are pairs XÑ‚ I and A
X
ÝÑ‚ I ,

and so for both components we can choose morphisms witnessing the comonoid structure.

4.3.3. Bayesian updates compose optically

In this section we prove the fundamental result that justifies the development of statistical games as

hierarchical inference systems in Chapter 5: that the Bayesian inversion of a composite channel is

given up to almost-equality by the lens composite of the backwards components of the associated

‘exact’ Bayesian lenses.

Definition 4.3.13. Let pc, c:q : pX,Xq ÞÑ pY, Y q be a Bayesian lens. We say that pc, c:q is exact

if c admits Bayesian inversion and, for each π : IÑ‚ X such that c ‚ π has full support, c and c:
π

together satisfy equation (4.5) (p. 133). Bayesian lenses that are not exact are said to be approximate.

Theorem 4.3.14. Let pc, c:q and pd, d:q be sequentially composable exact Bayesian lenses. Then,

for any state π on the domain of c, the contravariant component c: ˝ c˚d:
of the composite lens

pd, d:q � pc, c:q is the Bayesian inversion of d ‚ c. That is to say, Bayesian updates compose optically:

pd ‚ cq:
π
d‚c‚π

„ c:
π ‚ d:

c‚π .

164



Proof. For any suitably-typed π, the state-dependent channel c: ˝c˚d:
returns the channel c:

π‚d:
c‚π :

ZÑ‚ X , so to establish the result it suffices to show that

d:
c‚π

π

c

d

c:
π

X Z

“

c

π

d

X Z

.

We have

d:
c‚π

π

c

d

c:
π

X Z

“

d

π

c

c:
π

X Z

“

c

π

d

X Z

where the first obtains because d:
c‚π is by assumption a Bayesian inverse of d with respect to c ‚ π,

and the second because c:
π is likewise a Bayesian inverse of c with respect to π. Hence, c:

π ‚ d:
c‚π

and pd ‚ cq:
π are both Bayesian inversions of d ‚ c with respect to π. Since Bayesian inversions are

almost-equal (Proposition 4.1.29), we have c:
π ‚ d:

c‚π
d‚c‚π

„ pd ‚ cq:
π , as required.

This theorem has the following important immediate consequence.

Corollary 4.3.15. Suppose C:
is a subcategory of C all of whose channels admit Bayesian inversion,

and consider the restriction to C:
of the fibration πLens : BayesLensC Ñ C of Bayesian lenses,

denoted π:

Lens. Then there is an almost sure section : : C: Ñ BayesLensC of π:

Lens taking each

object X to pX,Xq and each channel c : XÑ‚ Y to a lens pc, c:q : pX,Xq ÞÑ pY, Y q where c:
is an

almost-surely unique Bayesian inversion of c. Hence the composite C :
ÝÑ BayesLensC

π:

Lens
ÝÝÝÑ C is

equal to the identity functor idC .

Remark 4.3.16. A morphism σ : B Ñ E is a section of π : E Ñ B when π ˝ σ “ idB . In

standard category theory, a section of a fibration π is therefore a functor: but, since Bayesian
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inversion is only defined up to almost-equality, the functoriality of the preceding corollary is

accordingly weakened. This leads to the notion of almost sure section, which we formalize by

lifting the relation of almost-equality from C to BayesLensC , as follows. Suppose pc, c7q and

pd, d7q are lenses pX,Xq ÞÑ pY, Y q. Then we may say that they are equivalent up to almost

equality, denoted pc, c7q « pd, d7q, if for all states α : IÑ‚ X , we have c
α
„ d and c7

α
c‚α
„ d7

α. If

additionally we have c “ d, we write pc, c7q » pd, d7q and say that they are strongly equivalent.

Note then that the mapping : of the preceding corollary is functorial up to this strong equivalence:

:pdq � :pcq » :pd ‚ cq; this is what we mean by almost sure section. We believe this notion (and the

implicit more general one of almost sure functor) to be new, but do not study it further here.

Remark 4.3.17. In the context of finitely-supported probability (i.e., in KℓpDq), almost-equality

coincides with simple equality over the support, and so Bayesian inversions are then just equal

(over the support). This suggests that, in this context, : may be strengthened to a strict functor: but

the qualification over the support means we must use the machinery of dependent Bayesian lenses

(Remark 4.1.20); then, : does yield a strict functor.

Remark 4.3.18. Note that the functor : is not monoidal, because inverting the tensor of two

channels with respect to a joint distribution is not the same as inverting the two channels

independently with respect to the marginals and tensoring them together (unless the joint is

already the product of two independent states); that is, pc b dq
:
ω ‰ c:

ω1 b d:
ω2 , where ω1 and ω2

are the two marginals of the joint state ω. Technically, this situation obtains because there is no

channelX1 bX2Ñ‚ X1 bX2 that performs this marginalization-then-tensoring that could play the

part of the laxator of :. (But note that typically a probability monad P will be ‘bimonoidal’, with

the ‘opmonoidal’ structure PpX1 ˆ X2q Ñ PX1 ˆ PX2 witnessing this joint-marginalization

operation [110, §4]; the technical hurdle is that this structure typically interacts nicely with the

monad structure, since the tensor of two Dirac deltas is again a Dirac delta.)

In §5.4, we will use the machinery of statistical games to measure the error produced by inverting

two channels independently, versus inverting them jointly.

Historically, lenses have often been associated with ‘lens laws’: additional axioms guaranteeing

their well-behavedness. These laws originate in the context of database systems, and we now

investigate how well they are satisfied by Bayesian lenses, where one might see an inference system

as a kind of uncertain database. We will find that Bayesian lenses are not lawful in this traditional

sense, because they ‘mix’ information.
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4.3.4. Lawfulness of Bayesian lenses

The study of Cartesian lenses substantially originates in the context of bidirectional transformations

of data in the computer science and database community [34, 99], where we can think of the view

(or get) function as returning part of a database record, and the update (or put) function as ‘putting’

a part into a record and returning the updated record. In this setting, axioms known as lens laws

can be imposed on lenses to ensure that they are ‘well-behaved’ with respect to database behaviour:

for example, that updating a record with some data is idempotent (the ‘put-put’ law).

We might hope that well-behaved or “very well-behaved” lenses in the database context should

roughly correspond to our notion of exact Bayesian lens: with the view that an inference system,

formalized by a Bayesian lens, is something like a probabilistic database. However, as we will see,

even exact Bayesian lenses are only weakly lawful in the database sense: Bayesian updating mixes

information in the prior state (the ‘record’) with the observation (the ‘data’), rather than replacing

the prior information outright.

We will concentrate on the three lens laws that have attracted recent study [35, 217]: GetPut,

PutGet, and PutPut. A Cartesian lens satisfying the former two is well-behaved while a lens

satisfying all three is very well-behaved, in the terminology of Foster et al. [99]. Informally, GetPut

says that getting part of a record and putting it straight back returns an unchanged record; PutGet

says that putting a part into a record and then getting it returns the same part that we started with;

and PutPut says that putting one part and then putting a second part has the same effect on a

record as just putting the second part (that is, update completely overwrites the part in the record).

We will express these laws graphically, and consider them each briefly in turn.

Note first that we can lift any channel c in the base category C into any state-dependent fibre

StatpAq using the constant (identity-on-objects) functor taking c to the constant-valued state-

indexed channel ρ ÞÑ c that maps any state ρ to c. We can lift string diagrams in C into the fibres

accordingly.

GetPut

Definition 4.3.19. A lens pc, c:q is said to satisfy the GetPut law if it satisfies the left equality

in (4.12) below. Equivalently, because the copier induced by the Cartesian product is natural (i.e.,

˝ f “ pf ˆ fq ˝ ), for any state π, we say that pc, c:q satisfies GetPut with respect to π if it
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satisfies the right equality in (4.12) below.

c

c:

“ ùñ

π

c

c:
π

π

“ (4.12)

(Note that here we have written the copying map as , since we are assuming an ambient Cartesian

monoidal structure; hence for a Bayesian lens we interpret the left diagram above in the image of

the Yoneda embedding.)

Proposition 4.3.20. When c is causal, the exact Bayesian lens pc, c:q satisfies the GetPut law

with respect to any state π for which c admits Bayesian inversion.

Proof. Starting from the right-hand-side of (4.12), we have the following chain of equalities

π

c:
π

π

c

c

π

“ “

π

“

π

c

c:
π

“

where the first holds by the counitality of , the second by the causality of c, the third since c

admits Bayesian inversion (4.5) with respect to π, and the fourth again by counitality.

Note that by Bayes’ law, exact Bayesian lenses only satisfy GetPut with respect to states. This

result means that, if we think of c as generating a prediction c ‚ π from a prior belief π, then if our

observation exactly matches the prediction, updating the prior π according to Bayes’ rule results in

no change.
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PutGet The PutGet law is characterized for a lens pv, uq by the following equality:

u

v

“

In general, PutGet does not hold for exact Bayesian lenses pc, c:q. However, because GetPut

holds with respect to states π, we do have c ‚ c:
π ‚ c ‚ π “ c ‚ π; that is, PutGet holds for exact

Bayesian lenses pc, c:q for the prior π and ‘input’ c ‚ π.

The reason PutGet fails to hold in general is that Bayesian updating mixes information from

the prior and the observation, according to the strength of belief. Consequently, updating a belief

according to an observed state and then producing a new prediction need not result in the same

state as observed; unless, of course, the prediction already matches the observation.

PutPut Finally, the PutPut law for a lens pv, uq is characterized by the following equality:

u

u

u“

PutPut fails to hold for exact Bayesian lenses for the same reason that PutGet fails to hold in

general: updates mix old and new beliefs, rather than entirely replace the old with the new.

Comment In the original context of computer databases, there is assumed to be no uncertainty,

so a ‘belief’ is either true or false. Consequently, there can be no ‘mixing’ of beliefs; and in database

applications, such mixing may be highly undesirable. Bayesian lenses, on the other hand, live in a

fuzzier world: our present interest in Bayesian lenses originates in their application to describing

cognitive and cybernetic processes such as perception and action, and here the ability to mix beliefs

according to uncertainty is desirable.

Possibly it would be of interest to give analogous information-theoretic lens laws that characterize

exact and approximate Bayesian lenses and their generalizations; and we might then expect the
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‘Boolean’ lens laws to emerge in the extremal case where there is no uncertainty and only Dirac

states. We leave such an endeavour for future work: Bayes’ law (4.5) is sufficiently concise and

productive for our purposes here.
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5. Statistical games

In this chapter, we characterize a number of well known systems of approximate inference as loss

models (defined in §5.3.2): lax sections of 2-fibrations of statistical games, themselves constructed

(in §5.3.1) by attaching internally-defined loss functions to Bayesian lenses. Our examples include

the relative entropy (§5.3.3.1), which constitutes a strict section, and whose chain rule is formalized

by the horizontal composition of the 2-fibration. In order to capture this compositional structure,

we first introduce the notion of ‘copy-composition’ (in §5.2.1), alongside corresponding bicategories

through which the composition of copy-discard categories factorizes. These latter bicategories are

obtained as a variant of theCopara construction [54, §2] (dual to the internal parameterization of

§3.2.1), and so we additionally introduce coparameterized Bayesian lenses (§5.2.3), proving that

coparameterized Bayesian updates compose optically (§5.2.4), as in the non-coparameterized case.

Besides the relative entropy, our other examples of loss models are given by maximum likelihood

estimation (§5.3.3.2), the free energy (which gives us in §5.3.3.3 a characterization of autoencoders),

and the ‘Laplace’ approximation to the free energy (§5.3.3.4). It is this latter loss model which will,

in Chapter 7, finally yield the dynamical semantics for predictive coding.

We begin with a discussion of compositional approximate inference from the ‘lens’ perspective,

focusing on the relative entropy.

5.1. Compositional approximate inference, via the chain rule for
relative entropy

In Chapter 4, we observed that the Bayesian inversion of a composite stochastic channel is (almost

surely) equal to the ‘lens composite’ of the inversions of the factors; that is, Bayesian updates

compose optically (‘BUCO’, Theorem 4.3.14). Formalizing this statement for a given category C

yields a fibration of Bayesian lenses as a Grothendieck construction of the indexed category of

state-dependent channels (Definition 4.3.8), and Bayesian inversion almost surely yields a section :

of the corresponding fibration (Corollary 4.3.15). This section : picks out a special class of Bayesian

lenses, which we call exact as they compute ‘exact’ inversions (Definition 4.3.13), but although
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the category BayesLenspCq has many other morphisms, its construction is not extravagant: by

comparison, we think of the non-exact lenses as representing approximate inference systems. This

is particularly necessary in computational applications, because computing exact inversions is

usually intractable, but this creates a new problem: choosing an approximation, and measuring

its performance. In this chapter, we formalize this process, by attaching loss functions to Bayesian

lenses, thus creating another fibration, of statistical games. Sections of this latter fibration encode

compositionally well-behaved systems of approximation that we call loss models.

A classic example of a loss model will be supplied by the relative entropy, which in some sense

measures the ‘divergence’ between distributions: the game here is then to minimize the divergence

between the approximate and exact inversions. If π and π1
are two distributions on a space X ,

with corresponding density functions pπ and pπ1 (both with respect to a common measure), then

their relative entropy Dpπ, π1q is the real number given by Ex„π rlog pπpxq ´ log pπ1pxqs1. Given

a pair of channels α, α1 : AÑ‚ B (again commensurately associated with densities), we can extend

D to a mapDα,α1 : A Ñ R` in the natural way, writing a ÞÑ D
`

αpaq, α1paq
˘

. We can assign such

a map Dα,α1 to any such parallel pair of channels, and so, following the logic of composition in

C2
, we might hope for the following equation to hold for all a : A and composable parallel pairs

α, α1 : AÑ‚ B and β, β1 : BÑ‚ C :

Dβ‚α,β1‚α1paq “ E
b„αpaq

“

Dβ,β1pbq
‰

`Dα,α1paq

The right-hand side is known as the chain rule for relative entropy, but, unfortunately, the

equation does not hold in general, because the composites β ‚ α and β1 ‚ α1
each involve an extra

expectation:

Dβ‚α,β1‚α1paq “ E
c„β‚αpaq

“

log pβ‚αpaqpcq ´ log pβ1‚α1paqpcq
‰

“ E
c„β‚αpaq

„

log E
b„αpaq

rpβpc|bqs ´ log E
b„α1paq

“

pβ1pc|bq
‰

ȷ

However, we can satisfy an equation of this form by using ‘copy-composition’: if we write B to

denote the canonical ‘copying’ comultiplication on B, and define β ‚2 α :“ pidB bβq ‚ B ‚ α, as

depicted by the string diagram

α β
A

B

C

1

For details about this ‘expectation’ notation E, see 5.3.19.
2

In which, following the Chapman-Kolmogorov rule, a composite channel β ‚ α can be expressed as the expectation of

β under α, i.e. a ÞÑ Eb„αpaq rβpbqs.
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then Dβ‚2α,β1‚2α1paq does equal the chain-rule form on the right-hand side:

Dβ‚2α,β1‚2α1paq “ E
b„αpaq

E
c„βpbq

“

log pβpc|bqpαpb|aq ´ log pβ1pc|bqpα1pb|aq
‰

“ E
b„αpaq

„

E
c„βpbq

“

log pβpc|bq ´ log pβ1pc|bq
‰

` log pαpb|aq ´ log pα1pb|aq

ȷ

“ E
b„αpaq

“

Dβ,β1pbq
‰

`Dα,α1paq

where the second line follows by the linearity of expectation. This result exhibits a general pattern

about copy-discard categories (Definition 3.1.3) such as C: composition ‚ can be decomposed into

first copying , and then discarding . If we don’t discard, then we retain the ‘intermediate’

variables, and this results in a functorial assignment of relative entropies to channels.

The rest of this chapter is dedicated to making use of this observation to construct loss models,

including (but not restricted to) the relative entropy. The first complication that we encounter

is that copy-composition is not strictly unital, because composing with an identity retains an

extra variable. To deal with this, in §5.2, we construct a bicategory of copy-composite channels,

extending the Copara construction, and build coparameterized (copy-composite) Bayesian lenses

accordingly; we also prove a corresponding BUCO result. In §5.3, we then construct 2-fibrations

of statistical games, defining loss functions internally to any copy-discard category C that admits

“bilinear effects”. Because we are dealing with approximate systems, the 2-dimensional structure of

the construction is useful: loss models are allowed to be lax sections. We then characterize the

relative entropy, maximum likelihood estimation, the free energy, and the ‘Laplacian’ free energy

as such loss models.

Unsurprisingly, each of these loss functions are moreover (lax) monoidal, and, assuming C is

symmetric monoidal, each of the constructions mentioned here result in monoidal (2-)fibrations.

We explore this monoidal structure in §5.4.

5.2. ‘Copy-composite’ Bayesian lenses

5.2.1. Copy-composition by coparameterization

In a locally small copy-discard category C (Definition 3.1.3), every object A is equipped with a

canonical comonoid structure p A, Aq, and so, by the comonoid laws (Definition 3.4.21), it is

almost a triviality that the composition functions ‚ : CpB,Cq ˆ CpA,Bq Ñ CpA,Cq factorize as

CpB,Cq ˆ CpA,Bq
pidB b´qˆC

´

idA, B

¯

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ CpB bB,B b Cq ˆ CpA,B bBq ¨ ¨ ¨

¨ ¨ ¨
‚
ÝÑ CpA,B b Cq

CpidA,projCq
ÝÝÝÝÝÝÝÑ CpA,Cq
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where the first factor copies the B output of the first morphism and tensors the second morphism

with the identity on B, the second factor composes the latter tensor with the copies, and the

third discards the extra copy of B3
. This is, however, only almost trivial, since it witnesses the

structure of Chapman-Kolmogorov style composition in categories of stochastic channels such as

KℓpDq, the Kleisli category of the (finitary) distributions monad D : Set Ñ Set (§4.1.1.1). There,

given channels c : AÑ‚ B and d : BÑ‚ C , the composite d ‚ c is formed first by constructing the

‘joint’ channel, denoted d ‚2 c and defined by pd ‚2 cqpb, c|aq :“ dpc|bqcpb|aq, and then discarding

(marginalizing over) b : B, giving

pd ‚ cqpc|aq “
ÿ

b:B

pd ‚2 cqpb, c|aq “
ÿ

b:B

dpc|bqcpb|aq .

Of course, the channel d ‚2 c is not a morphism AÑ‚ C , but rather AÑ‚ B b C; that is, it is

coparameterized by B, in a sense formally dual to the notion of parameterization of §3.2.1.

Moreover, as noted above, ‚2 is not strictly unital: given the composites idB ‚2f and f‚2 idA,

we need 2-cells that discard the coparameters introduced by the copying; and, inversely, we need

2-cells f ÞÑ idB ‚2f and f ÞÑ f‚2 idA that introduce them. The former are of course given by the

discarding structure

f
A

B

M

B

ÞÑ f
A

B

M

“ f
A

B

M

(5.1)

f
A

B

M

A

ÞÑ f
A

B

M

“ f
A

B

M

(5.2)

while the latter are given by copying:

f
A

B

M

ÞÑ f
A

B

M

B

(5.3)

3

We define projC :“ B b C BbidC
ÝÝÝÝÝÝÑ I b C

λC
ÝÝÑ C , using the comonoid counit B and the left unitor λC of C’s

monoidal structure.
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f
A

B

M

ÞÑ f
A

B

M

A

(5.4)

These putative 2-cells clearly need access to copies of the domain and codomain of f , and hence

are not available in the standard Copara construction obtained by formally dualizing Para. For

this reason, we construct a bicategory Copara2pCq as a variant of the Copara construction, in

which a 1-cell A Ñ B may be any morphism AÑ‚ M bB in C, and where horizontal composition

is precisely copy-composition. We will henceforth drop the cumbersome notation ‚2, and write

simply ‚ for horizontal composition inCopara2pCq, matching the composition operator of C itself.

(Later, if we need to be explicit about horizontal composition, we will sometimes use the symbol ˛.)

Theorem 5.2.1. Let pC,b, Iq be a copy-discard category. Then there is a bicategory Copara2pCq

as follows. Its 0-cells are the objects of C. A 1-cell f : A ÝÑ
M

B is a morphism f : A Ñ M bB in

C. A 2-cell φ : f ñ f 1
, with f : A ÝÑ

M
B and f 1 : A ÝÝÑ

M 1
B, is a morphism φ : AbM bB Ñ M 1

of C, satisfying the change of coparameter axiom:

f 1A

B

M 1

“ f
A

B

M 1
φ

Given 2-cells φ : f ñ f 1
and φ1 : f 1 ñ f2

, their vertical composite φ1 d φ : f ñ f2
is given by

the following string diagram:

φ φ1

The identity 2-cell idf : f ñ f on f : A ÝÑ
M

B is given by the projection morphism projM :

AbM bB Ñ M obtained by discarding A and B, as in footnote 3.

The horizontal composite g ˝ f : A ÝÝÝÝÝÝÑ
MbBbN

C of 1-cells f : A ÝÑ
M

B then g : B ÝÑ
N

C is given
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by the following string diagram in C:

f
A g

C

N

M

B

Strictly speaking, we define the coparameter of g ˝ f to be pM bBq bN . The identity 1-cell idA on

A is given by the inverse of the left unitor of the monoidal structure on C, i.e. idA :“ λ´1
A : A ÝÑ

I
A,

with coparameter thus given by the unit object I .

The horizontal composite γ ˝ φ : pg ˝ fq ñ pg1 ˝ f 1q of 2-cells φ : f ñ f 1
and γ : g ñ g1

is

given by the string diagram

φ

γ

A

M

B

N

C

N 1

B

M 1

.

Proof. To show thatCopara2pCq is a bicategory, we need to establish the unitality and associativity

of vertical composition; verify that horizontal composition is well-defined and functorial; establish

the weak unitality and associativity of horizontal composition; and confirm that the corresponding

unitors and associator satisfy the bicategorical coherence laws. Then, to prove thatCopara2pCq

is moreover monoidal, we need to demonstrate that the tensor as proposed satisfies the data of a

monoidal bicategory. However, since the monoidal structure is inherited from that of C, we will

elide much of this latter proof, and demonstrate only that the tensor is functorial; the rest follows

straightforwardly but tediously.

We begin by confirming that vertical composition d is unital and associative. To see that d is

unital, simply substitute the identity 2-cell (given by projection onto the coparameter) into the

string diagram defining d and then apply the comonoid counitality law twice (once on the left,

once on the right). The associativity of d requires that φ2 d pφ1 d φq “ pφ2 d φ1q d φ, which
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corresponds to the following graphical equation:

φ φ1 φ2 “ φ1 φ2φ

To see that this equation is satisfied, simply apply the comonoid coassociativity law twice (once

left, once right).

Next, we check that horizontal composition ˝ is well-defined, which amounts to checking whether

the horizontal composite of 2-cells satisfies the change of coparameter axiom. Again, we reason

graphically. Given 2-cells φ and γ between composable pairs of 1-cells f, f 1
and g, g1

, our task is to

verify that

f 1A
g1

C

N 1

M 1

B

“ f g

γ ˝ φ

N 1

B

M 1

A

C

.

Since φ and γ satisfy change of coparameter ex hypothesi, the left hand side is equal to the morphism

f
A

M 1

φ

g
C

N 1
γ

B

.
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By comonoid coassociativity, this is in turn equal to

f g

φ

γ N 1

B

M 1

A

C

which, by the definition of ˝, is precisely equal to

f g

γ ˝ φ

N 1

B

M 1

A

C

and so this establishes the result.

We now verify that ˝ so defined is functorial on 2-cells, beginning with the preservation of

composition. We need to validate the equation pγ1 ˝ φ1q d pγ ˝ φq “ pγ1 d γq ˝ pφ1 d φq (for

appropriately composable 2-cells). This amounts to checking the following equation, which can be

seen to hold by two applications of comonoid coassociativity:

φ

γ

A

M

B

N

C

φ1

γ1

N2

B

M2

“

φ φ1

γ γ1

A

M

B

N

C

B

M2

N2

It is easy to verify that ˝ preserves identities, i.e. that idg ˝ idf “ idg˝f ; just substitute the identity

2-cells into the definition of ˝ on 2-cells, and apply comonoid counitality four times.
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Next, we establish that horizontal composition is weakly associative, which requires us to supply

isomorphisms αf,g,h : ph ˝ gq ˝ f ñ h ˝ pg ˝ fq natural in composable triples of 1-cells h, g, f .

Supposing the three morphisms have the types f : A ÝÑ
M

B, g : B ÝÑ
N

C , and h : C ÝÑ
O
D, we can

choose af,g,h to be the 2-cell represented by the morphism

Ab
`

pM bBq b ppN b Cq bOq
˘

bD
proj
ÝÝÑ pM bBq b ppN b Cq bOq ¨ ¨ ¨

¨ ¨ ¨
αC

pMbBq,pNbCq,O
ÝÝÝÝÝÝÝÝÝÝÑ ppM bBq b pN b Cqq bO ¨ ¨ ¨

¨ ¨ ¨
αC

pMbBq,N,C
bidO

ÝÝÝÝÝÝÝÝÝÝÝÑ pppM bBq bNq b Cq bO

where the first factor is the projection onto the coparameter and αC
denotes the associator of

the monoidal structure pb, Iq on C. In the inverse direction, we can choose the component

α´1
f,g,h : h ˝ pg ˝ fq ñ ph ˝ gq ˝ f to be the 2-cell represented by the morphism

Ab
`

pppM bBq bNq b Cq bO
˘

bD
proj
ÝÝÑ pppM bBq bNq b Cq bO ¨ ¨ ¨

¨ ¨ ¨
αC,´1

pMbBq,N,C
bidO

ÝÝÝÝÝÝÝÝÝÝÝÑ ppM bBq b pN b Cqq bO ¨ ¨ ¨

¨ ¨ ¨
αC,´1

pMbBq,pNbCq,O
ÝÝÝÝÝÝÝÝÝÝÑ pM bBq b ppN b Cq bOq

where αC,´1
denotes the inverse of the associator on pC,b, Iq. That the pair of αf,g,h and α

´1
f,g,h

constitutes an isomorphism in the hom category follows from the counitality of the comonoid

structures. That this family of isomorphisms is moreover natural follows from the naturality of the

associator on pC,b, Iq.

We come to the matter that motivated the construction of Copara2pCq: the weak unitality of

copy-composition, witnessed here by the weak unitality of horizontal composition. We need to

exhibit two families of natural isomorphisms: the left unitors with components λf : idB ˝f ñ f ,

and the right unitors with components ρf : f ˝idA ñ f , for each morphism f : A ÝÑ
M

B. Each such

component will be defined by a projection morphism, and weak unitality will then follow from the

counitality of the comonoid structures. More explicitly, λf is witnessed by projM : AbMbBbB Ñ

M ; its inverse λ´1
f is witnessed by projMbB : A b M b B Ñ M b B; ρf is witnessed by

projM : AbAbMbB Ñ M ; and its inverse ρ´1
f is witnessed by projAbM : AbMbB Ñ AbM .

Checking that these definitions give natural isomorphisms is then an exercise in counitality that

we leave to the reader.

All that remains of the proof thatCopara2pCq is indeed a bicategory is to check that the unitors

are compatible with the associator (i.e., pidg ˝λf qdαg,idB ,f “ ρg˝idf ) and that associativity is order-

dependent (i.e., the associator α satisfies the pentagon diagram). The latter follows immediately
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from the corresponding fact about the associator αC
on pC,b, Iq. To demonstrate the former, it is

easier to verify that pidg ˝λf q d αg,idB ,f d pρ´1
g ˝ idf q “ idg˝f . This amounts to checking that the

following string diagram is equally a depiction of the morphism underlying idg˝f :

idf

ρ´1
g

A

M

B

N

C

λf

idg
N

B

M

(Note that here we have elided the associator from the depiction. This is allowed by comonoid

counitality, and because string diagrams are blind to bracketing.) Substituting the relevant

morphisms into the boxes, we see that this diagram is equal to

A

M

B

N

C
N

B

M

and six applications of counitality give us idg˝f . This establishes that Copara2pCq is a bicategory.

Remark 5.2.2. When C is symmetric monoidal, Copara2pCq inherits a monoidal structure,

elaborated in Proposition 5.4.1.

Remark 5.2.3. In order to capture the bidirectionality of Bayesian inversion we will need to

consider left- and right-handed versions of the Copara2 construction. These are formally dual,

and when C is symmetric monoidal (as in most examples) they are isomorphic. Nonetheless, it

makes formalization easier if we explicitly distinguish Coparal2pCq, in which the coparameter is

placed on the left of the codomain (as above), from Coparar2pCq, in which it is placed on the right.

Aside from the swapping of this handedness, the rest of the construction is the same.
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We end this section with three easy (and ambidextrous) propositions relating C andCopara2pCq.

Proposition 5.2.4. There is an identity-on-objects lax embedding p´q : C ãÑ Copara2pCq,

mapping f : X Ñ Y to f : X ÝÑ
I
Y , which (in the left-handed case) has the underlying morphism

X
f
ÝÑ Y

λ´1
Y

ÝÝÑ I b Y (where λ is the left unitor of the monoidal structure on C). The laxator

ιpgq ˝ ιpfq Ñ ιpg ˝ fq discards the coparameter obtained from copy-composition.

Remark 5.2.5. We will define the notion of lax functor in Definition 5.2.8 below. A lax embedding

is a lax functor that is an embedding in the sense of Remark 2.4.5: that is, a lax functor that is

faithful on hom categories.

Proposition 5.2.6. There is a ‘discarding’ functor p´q : Copara2pCq Ñ C, which takes any

coparameterized morphism and discards the coparameter.

Proposition 5.2.7. p´q is a section of p´q . That is, idC “ C p´q
ãÝÝÝÑ Copara2pCq

p´q
ÝÝÝÑ C; more

suggestively, this can be written p´q “ p´q .

5.2.2. Lax functors, pseudofunctors, their transformations, and indexed
bicategories

In order to define bicategories of statistical games, coherently with loss functions like the relative

entropy that compose by copy-composition, we first need to define coparameterized (copy-

composite) Bayesian lenses. Analogously to non-coparameterized Bayesian lenses, these will

be obtained by applying a Grothendieck construction to an indexed bicategory [19, Def. 3.5] of

state-dependent channels, Stat2. Constructing copy-composite Bayesian lenses in this way is the

subject of §5.2.3; in this section, we supply the necessary higher-categorical prerequisites.

An indexed category is a homomorphism of bicategories with codomain Cat and locally trivial

domain, and analogously an indexed bicategory will be a homomorphism of tricategories with

codomain Bicat (appropriately defined) and locally ‘2-trivial’ domain. In order to stay as close as

possible to the matter at hand, we do not give here an explicit definition of ‘tricategory’ or indeed

of ‘indexed bicategory’, and instead refer the reader to [19, §3]. The definition of Stat2 will of

course provide an example of an indexed bicategory, but in order to state it we will nonetheless

need to extend the notion of pseudofunctor from Definition 4.2.10 to the case where the domain is

a true bicategory; and we will also need morphisms of pseudofunctors, called pseudonatural (or

strong) transformations.
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We will begin by defining the notion of lax functor, of which pseudofunctors constitute a

special case. Just as a lax monoidal functor F is equipped with a natural family of morphisms

F pXq b F pY q Ñ F pX b Y q (the laxator; cf. Definition 3.1.11), a lax functor is a weak functor

equipped with a natural family of 2-cells F pgq ˛ F pfq ñ F pg ˝ fq; this lax functoriality will be

important when we come to study loss models in §5.3.2.

Definition 5.2.8 (Johnson and Yau [145, Def. 4.1.2]). Suppose B and C are both bicategories. A lax

functor F : B Ñ C is constituted by

1. a function F0 : B0 Ñ C0 on 0-cells;

2. for each pair of 0-cells a, b : B, a functor Fa,b : Bpa, bq Ñ CpF0a, F0bq;

3. for each 0-cell b : B, a natural transformation

1 Bpb, bq

CpF0b, F0bq
idF0b

idb

Fb,b

F1

witnessing lax unity, with component 2-cells Fb : idF0b ñ Fb,bpidbq;

4. for each triple of 0-cells a, b, c : B, a natural transformation

Bpb, cq ˆ Bpa, bq Bpa, cq

CpF0b, F0cq ˆ CpF0a, F0bq CpF0a, F0cq

˝

Fa,cFb,cˆFa,b

˛

F2

witnessing lax functoriality and called the laxator4, with component 2-cells

Fg,f : Fb,cpgq ˛ Fa,bpfq ñ Fa,cpg ˝ fq

where ˝ and ˛ denote horizontal composition in B and C respectively;

satisfying the following conditions:

4

By analogy with the laxator of a lax monoidal functor (Definition 3.1.11). Since monoidal category is a special case of

bicategory, the notion of lax functor (between bicategories) generalizes the notion of lax monoidal functor (between

monoidal categories).
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(a) coherence with the left and right unitality of horizontal composition, so that for all 1-cells

f : a Ñ b the following diagrams commute:

idF0b ˛Fa,bpfq Fa,bpfq

Fb,bpidbq ˛ Fa,bpfq Fa,bpidb ˝fq

λC
Fa,bpfq

Fa,bpλBf qFb˛Fa,bpfq

Fidb,f

Fa,bpfq ˛ idF0a Fa,bpfq

Fa,bpfq ˛ Fa,apidaq Fa,bpf ˝ idaq

ρC
Fa,bpfq

Fa,bpρBf qFa,bpfq˛Fa

Ff,ida

where λB, λC and ρB, ρC are the left and right unitors for the horizontal composition in B

and C respectively;

(b) coherence with the associativity of horizontal composition, so that for all 1-cells f : a Ñ b,

g : b Ñ c, and h : c Ñ d, the following diagram commutes:

pFc,dphq ˛ Fb,cpgqq ˛ Fa,bpfq Fc,dphq ˛ pFb,cpgq ˛ Fa,bpfqq

Fb,dph ˝ gq ˛ Fa,bpfq Fc,dphq ˛ Fa,cpg ˝ fq

Fa,dpph ˝ gq ˝ fq Fa,dph ˝ pg ˝ fqq

αC
Fc,dphq,Fb,cpgq,Fa,bpfq

Fc,dphq˛Fg,f

Fh,g˝f

Fh,g˛Fa,bpfq

Fh˝g,f

Fa,dpαB
h,g,f q

where αB
and αC

are the associators for the horizontal composition in B and C respectively.

A pseudofunctor is a lax functor F for which F1 and F2 are natural isomorphisms
5
.

The variable laxness of lax functors is recapitulated in the laxness of their morphisms; again, we

begin with the weakest case.

Definition 5.2.9. Suppose F and G are lax functors B Ñ C. A lax transformation α : F Ñ G

consists of

1. a 1-cell αb : Fb Ñ Gb in C for each 0-cell b : B;

2. a natural transformation αb,c : αb
˚G ñ αc˚F (where αb

˚
denotes pre-composition by αb,

and αc˚ denotes post-composition by αc) for each pair b, c of objects in B, with component

5

Compare Definition 4.2.10, treating C there as a bicategory with discrete hom-categories.
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2-cells

Fb Fc

Gb Gc

Ff

αb αc

Gf

αf

for each 1-cell f : b Ñ c in B;

satisfying conditions of lax unity and lax naturality whose precise general form the reader may

find in Johnson and Yau [145, Def. 4.2.1].

A strong transformation (or pseudonatural transformation) is a lax transformation for which the

component 2-cells constitute natural isomorphisms.

It is notable that, unlike natural transformations, lax transformations do not compose, not

even laxly; see Johnson and Yau [145, Motivation 4.6.1]. This means that there is no bicategory

of bicategories, lax functors, and lax transformations, analogous to Cat. However, strong

transformations between pseudofunctors do compose, weakly, up to isomorphism. These

isomorphisms collect into 3-cells known as modifications, producing a tricategory Bicat whose

0-cells are bicategories, 1-cells are pseudofunctors, 2-cells strong transformations, and 3-cells

modifications. This tricategory constitutes the codomain of an indexed bicategory.

Remark 5.2.10. There is another notion of composable morphism between lax functors, called icon,

which yields a bicategoryBicatic of bicategories, lax functors, and icons. Icons are, however, more

restrictive than lax transformations, as their 1-cell components must be identities. Nonetheless,

this restriction is satisfied by loss models as defined in §5.3.2, and so morphisms of loss models will

be icons.

5.2.3. Coparameterized Bayesian lenses

With that categorical background out of the way, we are able to define copy-composite Bayesian

lenses, starting with the corresponding indexed bicategory. Let disc denote the functor Set Ñ Cat

taking sets to discrete categories (cf. Definition 4.2.2).

Definition 5.2.11. We define the indexed bicategory Stat2 : Coparal2pCq co op Ñ Bicat fibrewise

as follows.

(i) The 0-cells Stat2pXq0 of each fibre Stat2pXq are the objects C0 of C.

(ii) For each pair of 0-cells A,B, the hom-category Stat2pXqpA,Bq is defined to be the functor

category Cat
`

disc CpI,Xq,Coparar2pCqpA,Bq
˘

.
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(iii) For each 0-cell A, the identity functor idA : 1 Ñ Stat2pXqpA,Aq is the constant functor on

the identity on A in Coparar2pCq; i.e. disc CpI,Xq
!

ÝÑ 1
idA
ÝÝÑ Coparar2pCqpA,Aq.

(iv) For each triple A,B,C of 0-cells, the horizontal composition functor ˝A,B,C is defined by

˝A,B,C : Stat2pXqpB,Cq ˆ Stat2pXqpA,Bq ¨ ¨ ¨

¨ ¨ ¨
“
ÝÑ Cat

`

disc CpI,Xq,Coparar2pCqpB,Cq
˘

ˆ Cat
`

disc CpI,Xq,Coparar2pCqpA,Bq
˘

¨ ¨ ¨

¨ ¨ ¨
ˆ
ÝÑ Cat

`

disc CpI,Xq2,Coparar2pCqpB,Cq ˆ Coparar2pCqpA,Bq
˘

¨ ¨ ¨

¨ ¨ ¨
Cat

´

,˝
¯

ÝÝÝÝÝÝÑ Cat
`

disc CpI,Xq,Coparar2pCqpA,Cq
˘

¨ ¨ ¨

¨ ¨ ¨
“
ÝÑ Stat2pXqpA,Cq

whereCat p , ˝q indicates pre-composition with the universal (Cartesian) copying functor in

pCat,ˆ,1q and post-composition with the horizontal composition functor of Coparar2pCq.

For each pair of 0-cells X,Y in CoparalpCq, we define the reindexing pseudofunctor Stat2,X,Y :

CoparalpCqpX,Y q op Ñ Bicat
`

Stat2pY q,Stat2pXq
˘

as follows.

(a) For each 1-cell f in CoparalpCqpX,Y q, we obtain a pseudofunctor Stat2pfq : Stat2pY q Ñ

Stat2pXq which acts as the identity on 0-cells.

(b) For each pair of 0-cellsA,B in Stat2pY q, the functor Stat2pfqA,B is defined as the precompo-

sition functorCat
`

disc CpI, f q,Coparar2pCqpA,Bq
˘

, where p´q is the discarding functor

Coparal2pCq Ñ C of Proposition 5.2.6.

(c) For each 2-cell φ : f ñ f 1
in Coparal2pCqpX,Y q, the pseudonatural transformation

Stat2pφq : Stat2pf 1q ñ Stat2pfq is defined on 0-cells A : Stat2pY q by the discrete natural

transformation with components Stat2pφqA :“ idA, and on 1-cells c : Stat2pY qpA,Bq by

the substitution natural transformation with constitutent 2-cells Stat2pφqc : Stat2pfqpcq ñ

Stat2pf 1qpcq in Stat2pXq which acts by replacing Cat
`

disc CpI, f q,Coparar2pCqpA,Bq
˘

by Cat
`

disc CpI, f 1 q,Coparar2pCqpA,Bq
˘

; and which we might alternatively denote by

Cat
`

disc CpI, φ q,Coparar2pCqpA,Bq
˘

.

Notation 5.2.12. We will write f : A
X

ÝÑ
M
‚ B to denote a state-dependent coparameterized channel

f with coparameterM and state-dependence on X .

Remark 5.2.13. We could give an alternative definition of Stat2, for which the definition above

would give a sub-indexed bicategory, by defining the state-dependence on the whole hom-category
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Copara2pCqpI,Xq rather than just CpI,Xq. However, doing this would cause the reindexing

pseudofunctors to introduce coparameters (from the now-coparameterized priors), which would

contradict the type signature of coparameterized Bayesian inversion: imagine the equation of

Definition 5.2.18 below but without the discarding on the right-hand side.

Remark 5.2.14. Similarly, the same definitions would go through upon substituting CoparapCq

for Copara2pCq; but, as noted above, we need copy-composition for the relative entropy.

As we saw in §4.2.2, lenses in 1-category theory are morphisms in the fibrewise opposite of a

fibration. Analogously, our bicategorical Bayesian lenses are obtained as 1-cells in the bicategorical

Grothendieck construction of (the pointwise opposite of) the indexed bicategory Stat2; this yields

a 2-fibration. So as not to over-complicate the presentation, we do not present all the details of this

construction, and refer the reader instead to Baković [19, §6].

Definition 5.2.15. Fix a copy-discard category pC,b, Iq. We define the bicategory of coparameter-

ized Bayesian lenses in C, denotedBayesLens2pCq or simplyBayesLens2, to be the bicategorical

Grothendieck construction of the pointwise opposite of the corresponding indexed bicategory

Stat2, with the following data:

(i) A 0-cell in BayesLens2 is a pair pX,Aq of an object X in Coparal2pCq and an object A in

Stat2pXq; equivalently, a 0-cell in BayesLens2 is a pair of objects in C.

(ii) The hom-categoryBayesLens2
`

pX,Aq, pY,Bq
˘

is the product categoryCoparal2pCqpX,Y qˆ

Stat2pXqpB,Aq.

(iii) The identity on pX,Aq is given by the pair pidX , idAq.

(iv) For each triple of 0-cells pX,Aq, pY,Bq, pZ,Cq, the horizontal composition functor is given
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by

BayesLens2
`

pY,Bq, pZ,Cq
˘

ˆ BayesLens2
`

pX,Aq, pY,Bq
˘

“ Coparal2pCqpY,Zq ˆ Stat2pY qpC,Bq ˆ Coparal2pCqpX,Y q ˆ Stat2pXqpB,Aq

„
ÝÑ

ÿ

g:Coparal
2pCqpY,Zq

ÿ

f :Coparal
2pCqpX,Y q

Stat2pY qpC,Bq ˆ Stat2pXqpB,Aq

ř

g

ř

f Stat2pfqC,Bˆid
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

ÿ

g:Coparal
2pCqpY,Zq

ÿ

f :Coparal
2pCqpX,Y q

Stat2pXqpC,Bq ˆ Stat2pXqpB,Aq

ř

˝
Coparal2pCq

˝Stat2pXq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
ÿ

g˝f :Coparal
2pCqpX,Zq

Stat2pXqpC,Aq

„
ÝÑ BayesLens2

`

pX,Aq, pZ,Cq
˘

where the functor in the penultimate line amounts to the product of the horizontal

composition functors on Coparal2pCq and Stat2pXq.

Proposition 5.2.16. There is a projection pseudofunctorπLens : BayesLens2pCq Ñ Coparal2pCq

mapping each 0-cell pX,Aq to X , each 1-cell pf, f 1q to f , and each 2-cell pφ,φ1q to φ. This

pseudofunctor is a 2-fibration in the sense of Baković [19, Def. 4.7].

Proof. The claim follows as a consequence of Baković [19, Theorem 6.2].

Remark 5.2.17. When C is symmetric monoidal, Stat2 acquires the structure of a monoidal indexed

bicategory (Definition 5.4.2 and Theorem 5.4.4), and hence BayesLens2 becomes a monoidal

bicategory (Corollary 5.4.5).

5.2.4. Coparameterized Bayesian updates compose optically

So that our generalized Bayesian lenses are worthy of the name, we should also confirm that

Bayesian inversions compose according to the lens pattern (‘optically’) in the coparameterized

setting. Such confirmation is the subject of the present section.

Definition 5.2.18. We say that a coparameterized channel γ : AÑ‚ MbB admits Bayesian inversion
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if there exists a dually coparameterized channel ρπ : BÑ‚ AbM satisfying the graphical equation

γ

π

A M B

“ ρπ

γ

π

A M B

.

In this case, we say that ρπ is the Bayesian inversion of γ with respect to π.

With this definition, we can supply the desired result that “coparameterized Bayesian updates

compose optically”.

Theorem 5.2.19. Suppose pγ, γ:q : pA,AqÝÑ
M
| pB,Bq and pδ, δ:q : pB,BqÝÑ

N
| pC,Cq are

coparameterized Bayesian lenses in BayesLens2. Suppose also that π : IÑ‚ A is a state on

A in the underlying category of channels C, such that γ:
π is a Bayesian inversion of γ with respect

to π, and such that δ:
γπ is a Bayesian inversion of δ with respect to pγπq ; where the notation p´q

represents discarding coparameters. Then γ:
π ‚ δ:

γπ is a Bayesian inversion of δ ‚ γ with respect to

π. (Here ‚ denotes copy-composition.) Moreover, if pδ ‚ γq
:
π is any Bayesian inversion of δ ‚ γ with

respect to π, then γ:
π ‚ δ:

γπ is pδγπq -almost-surely equal to pδ ‚γq
:
π : that is, pδ ‚γq

:
π

pδγπq
„ γ:

π ‚ δ:
γπ .

Proof. We only need to show that γ:
π ‚ δ:

γπ is a Bayesian inversion of δ ‚ γ with respect to π; the

‘moreover’ claim follows immediately because Bayesian inversions are almost surely unique (by

Proposition 4.1.29). Thus, δ ‚ γ ‚ π has the following depiction;

δ

B N C

γ

A M

π

188



Since γ:
π is a Bayesian inversion of γ with respect to π, this is equal to

δ

B N C

γ:
π

γ

π

A M

.

By the coassociativity of copying, this in turn is equal to

δ

B N C

γ:
π

γ

π

A M

.
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And since δ:
γπ is a Bayesian inversion of δ with respect to pγπq , this is equal to

B

γ:
π

A M C

δ:
γπ

N

γ

π

δ

which establishes the result.

In order to satisfy this coparameterized Bayes’ rule, a Bayesian lens must be of ‘simple’ type.

Definition 5.2.20. We say that a coparameterized Bayesian lens pc, c1q is simple if its domain

and codomain are ‘diagonal’ (duplicate pairs of objects) and if the coparameter of c is equal to

the coparameter of c1
. In this case, we can write the type of pc, c1q as pX,XqÝÑ

M
| pY, Y q or simply

XÝÑ
M
| Y .

Remark 5.2.21. In Remark 5.2.13, we explained that we should restrict the type of state-dependent

coparameterized morphisms so that they cohere with the coparameterized Bayes’ rule of Definition

5.2.18. The restriction here to simple lenses is by contrast not enforced by the type system, an

oversight which (like the failure to restrict to supports noted in Remark 4.1.20) is comparatively

inelegant, but which is forced upon us by the Grothendieck construction, which does not have a

place for such constraints. We expect that the use of (a bicategorical instance of) dependent optics

[43, 50, 276] would allow such a constraint to be enforced (alongside support objects), at the cost of

requiring yet more high-powered categorical machinery, of which there is probably enough in this

thesis. We therefore leave this avenue unexplored for now.

190



By analogy with Corollary 4.3.15, we have the following important consequence of Theorem

5.2.19.

Corollary 5.2.22. SupposeCoparal2pCq:
is a subbicategory ofCoparal2pCq all of whose channels

admit Bayesian inversion. Then there is almost surely a pseudofunctor : : Coparal2pCq: Ñ

BayesLens2 mapping each 1-cell to its almost-surely unique corresponding exact Bayesian lens.

Moreover, : is a section of the 2-fibration πLens : BayesLens2 Ñ Coparal2pCq induced by the

bicategorical Grothendieck construction.

5.3. Statistical games for local approximate inference

5.3.1. Attaching losses to lenses

Statistical games are obtained by attaching to Bayesian lenses loss functions, representing ‘local’

quantifications of the performance of approximate inference systems. Because this performance

depends on the system’s context (i.e., the prior π : IÑ‚ X and the observed data b : B), a loss

function at its most concrete will be a function CpI,Xq ˆB Ñ R. To internalize this type in C, we

may recall that, when C is the category sfKrn of s-finite kernels or the Kleisli category KℓpDď1q

of the subdistribution monad
6
, a density function pc : X ˆ Y Ñ r0, 1s for a channel c : XÑ‚ Y

corresponds to an effect (or costate) X b YÑ‚ I . In this way, we can see a loss function as a kind of

state-dependent effect B X
ÝÑ‚ I (and not a coparameterized one).

Loss functions will compose by sum, and so we need to ask for the effects in C to form a monoid.

Moreover, we need this monoid to be ‘bilinear’ with respect to channels, so that Stat-reindexing

(cf. Definition 4.3.2) preserves sums. These conditions are formalized in the following definition.

Definition 5.3.1. Suppose pC,b, Iq is a copy-discard category. We say that C has bilinear effects if

the following conditions are satisfied:

(i) effect monoid: there is a natural transformation ` : Cp´, IqˆCp“, Iq ñ Cp´b“, Iq making

ř

A:C CpA, Iq into a commutative monoid with unit 0 : IÑ‚ I ;

(ii) bilinearity: pg ` g1q ‚ ‚ f “ g ‚ f ` g1 ‚ f for all effects g, g1
and morphisms f such that

pg ` g1q ‚ ‚ f exists.

Example 5.3.2. A trivial example of a category with bilinear effects is supplied by any Cartesian

category, such as Set, in which there is a unique effect for each object, so the effect monoid

6

Weaken the definition of the distribution monad D : Set Ñ Set so that distributions may sum to any number in the

unit interval.
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structure is given only by the product of objects, and bilinearity follows from the terminality of the

unit object 1.

Example 5.3.3. We might hope that KℓpDď1q has bilinear effects, but this is not the case, because

the sum of two effects may exceed 1: the effects only form a partial monoid
7
. But if M is any

monoid in Set, then there is a monad DM taking each setX to the set DM pXq of formalM -linear

combinations of elements of X . This is the freeM -module on X , just as traditionally DX is the

free convex space on X , and the monad structure is obtained from the adjunction in the same

way [137, §2]. An effect YÑ‚ I then corresponds to a function Y Ñ M , and the monoid structure

follows from the monoid structure onM ; bilinearity follows from the linearity of the (free) module

structure:

pg ` g1q ‚ ‚ fpxq “
ÿ

y

`

gpyq ` g1pyq
˘

¨ fpy|xq

“
ÿ

y

gpyq ¨ fpy|xq ` g1pyq ¨ fpy|xq

“
ÿ

y

gpyq ¨ fpy|xq `
ÿ

y

g1pyq ¨ fpy|xq

“ g ‚ fpxq ` g1 ‚ fpxq

Example 5.3.4. The category sfKrn of s-finite kernels [270] has bilinear effects. An effect YÑ‚ I

is a measurable function Y Ñ r0,8s, and bilinearity follows from the linearity of integration:

pg ` g1q ‚ ‚ fpxq “

ż

y

`

gpyq ` g1pyq
˘

fpdy|xq

“

ż

y
gpyq fpdy|xq ` g1pyq fpdy|xq

“

ż

y
gpyq fpdy|xq `

ż

y
g1pyq fpdy|xq

“ g ‚ fpxq ` g1 ‚ fpxq

We will typically assume sfKrn as our ambient C for the examples below.

Example 5.3.5. Given a category C with bilinear effects, we can lift the natural transformation `,

and hence the bilinear effect structure, to the fibres of StatC , using the universal property of the

7

Indeed, an effect algebra is a kind of partial commutative monoid [141, §2], but we do not need the extra complication

here.
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product of categories:

`X : StatpXqp´, Iq ˆ StatpXqp“, Iq ùù Set
`

CpI,Xq, Cp´, Iq
˘

ˆ Set
`

CpI,Xq, Cp“, Iq
˘

p¨,¨q
ùùñ Set

`

CpI,Xq, Cp´, Iq ˆ Cp“, Iq
˘

Set
`

CpI,Xq,`
˘

ùùùùùùùùùùñ Set
`

CpI,Xq, Cp´ b “, Iq
˘

“
ùñ StatpXqp´ b “, Iq

Here, p¨, ¨q denotes the pairing operation obtained from the universal property. In this way, each

StatpXq has bilinear effects. Note that this lifting is (strictly) compatible with the reindexing of Stat,

so that `p´q defines an indexed natural transformation. This means in particular that reindexing

distributes over sums: given state-dependent effects g, g1 : B
Y
ÝÑ‚ I and a channel c : XÑ‚ Y , we have

pg `Y g
1qc “ gc `X g1

c. We will thus generally omit the subscript from the lifted sum operation,

and just write `.

We are now ready to construct the bicategory of statistical games.

Definition 5.3.6. Suppose pC,b, Iq has bilinear effects, and let BayesLens2 denote the

corresponding bicategory of (copy-composite) Bayesian lenses. We will write SGameC to denote

the following bicategory of (copy-composite) statistical games in C:

• The 0-cells are the 0-cells pX,Aq of BayesLens2;

• the 1-cells, called statistical games, pX,Aq Ñ pY,Bq are triples pc, c1, Lcq consisting of a

1-cell pc, c1q : pX,Aq ÞÑ pY,Bq in BayesLens2 and a loss Lc : B X
ÝÑ‚ I in StatpXqpB, Iq;

• given 1-cells pc, c1, Lcq, pe, e1, Leq : pX,Aq Ñ pY,Bq, the 2-cells pc, Lcq ñ pe, Leq are pairs

pα,Kαq of a 2-cell α : pc, c1q ñ pe, e1q in BayesLens2 and a loss Kα : B
X
ÝÑ‚ I such that

Lc “ Le `Kα
;

• the identity 2-cell on pc, c1, Lcq is pidpc,c1q, 0q;

• given 2-cells pα,Kαq : pc, c1, Lcq ñ pd, d1, Ldq and pβ,Kβq : pd, d1, Ldq ñ pe, e1, Leq,

their vertical composite is pβ ˝ α,Kβ `Kαq, where ˝ here denotes vertical composition in

BayesLens2;

• given 1-cells pc, c1, Lcq : pX,Aq Ñ pY,Bq and pd, d1, Ldq : pY,Bq Ñ pZ,Cq, their horizontal

composite is

`

pd, d1q � pc, c1q, Ldc ` Lc ˝ d1
c

˘

; and
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– given 2-cells pα,Kαq : pc, c1, Lcq ñ pe, e1, Leq and pβ,Kβq : pd, d1, Ldq ñ pf, f 1, Lf q,

their horizontal composite is pβ � α,Kβ
c `Kα ˝ d1

cq, where � here denotes horizontal

composition in BayesLens2.

Remark 5.3.7. In earlier work (such as versions 1 and 2 of our preprint [250]), we gave a more

elaborate but less satisfying definition of “statistical game”, as a Bayesian lens equipped with a

function from its ‘context’ to R (which we also called a loss function). The construction given here

shows that the complicated earlier notion of context, which follows the ideas of ‘Bayesian open

games’ [36], is actually unnecessary for the purposes of statistical games. Considering a Bayesian

lens in KℓpDq of type pX,Aq Ñ pY,Bq, its ‘context’ is an element of DX ˆ SetpDY,DBq. By

comparison, a corresponding loss function of the type given above is equivalently a function with

domain DX ˆ B, and so we have replaced the dependence on ‘continuations’ in SetpDY,DBq

with a simple dependence on B.

Theorem 5.3.8. Definition 5.3.6 generates a well-defined bicategory.

The proof of this result is that SGameC is obtained via a pair of bicategorical Grothendieck

constructions: first to obtain Bayesian lenses; and then to attach the loss functions. The proof

depends on the following intermediate result that our effect monoids can be ‘upgraded’ to monoidal

categories; we then use the delooping of this structure to associate (state-dependent) losses to

(state-dependent) channels, after discarding the coparameters of the latter.

Lemma 5.3.9. Suppose pC,b, Iq has bilinear effects. Then, for each object B, CpB, Iq has the

structure of a symmetric monoidal category. The objects of CpB, Iq are its elements, the effects.

If g, g1
are two effects, then a morphism κ : g Ñ g1

is an effect such that g “ g1 ` κ; the identity

morphism for each effect idg is then the constant 0 effect. Likewise, the tensor of two effects is their

sum, and the corresponding unit is the constant 0. Precomposition by any morphism c : AÑ‚ B

preserves the monoidal category structure, making the presheaf Cp´, Iq into a fibrewise-monoidal

indexed category C op Ñ MonCat (cf. Remark 4.2.21).

As already indicated, this structure lifts to the fibres of Stat.

Corollary 5.3.10. For each object X in a category with bilinear effects, and for each object

B, StatpXqpB, Iq inherits the symmetric monoidal structure of CpB, Iq; note that morphisms of

state-dependent effects are likewise state-dependent, and that tensoring (summing) state-dependent

effects involves copying the parameterizing state. Moreover, Statp´qp“, Iq is a fibrewise-monoidal

indexed category

ř

X:C op StatpXq op Ñ MonCat.
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Using this corollary, we can give the abstract proof of Theorem 5.3.8. There are two further

observations of note: first, that we can deloop a monoidal category into a bicategory with one

object; second, that we can extend Statp´qp“, Iq to Stat2 via discarding.

Proof of 5.3.8. Recall from Proposition 3.1.24 that every monoidal category M can be transformed

into a one-object bicategory, its delooping BM, with the 1-cells and 2-cells being the objects

and morphisms ofM, vertical composition being composition inM, and horizontal composition

being the tensor. This delooping is functorial, giving a 2-functor B : MonCat Ñ Bicat which,

following Corollary 5.3.10, we can compose after Statp´qp“, Iq (taking its domain as a locally

discrete 2-category) to obtain indexed bicategories; we will assume this transformation henceforth.

Next, observe thatwe can extend the domain ofStatp´qp“, Iq to
ř

X:Coparal
2pCq co op Stat2pXq co op

by discarding the coparameters of the (coparameterized) state-dependent channels as well as the

coparameter on any reindexing, as in the following diagram of indexed bicategories:

ř

X:Coparal
2pCq co op Stat2pXq co op

ř

X:C op StatpXq op Bicat

ř

Stat2p´qp“,Iq

Statp´qp“,Iq

Here, the 2-cell indicates also discarding the coparameters of the ‘effects’ in Stat2p´qp“, Iq.

If we let L denote the composite functor in the diagram above, we can reason as follows:

L :
ř

X:Coparal
2pCq co op Stat2pXq co op Ñ Bicat

sum/product
ś

X:Coparal
2pCq co op BicatStat2pXq co op

ś
ş

ś

X:Coparal
2pCq co op 2Fib pStat2pXqq

forget

Coparal2pCq co op Ñ Bicat
op

G : Coparal2pCq co op Ñ Bicat

where the first step uses the adjointness of (dependent) sums and products; the second applies the

bicategorical Grothendieck construction in the codomain; the third forgets the 2-fibrations, to leave

only the total bicategory; and the fourth step takes the pointwise opposite. We can thus write the

action of G as GpXq “
`ş

LpX,´q
˘ op

.

Since each bicategory LpX,Bq has only a single 0-cell, the 0-cells of eachGpXq are equivalently

just the objects of C, and the hom-categories GpXqpA,Bq are equivalent to the product categories

Stat2pXqpB,Aq ˆ StatpXqpB, Iq. That is to say, a 1-cell A Ñ B in GpXq is a pair of a state-

dependent channel B
X
ÝÑ‚ A along with a correspondingly state-dependent effect on its domain B.

We therefore seem to approach the notion of statistical game, but in fact we are already there:
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SGameC is simply

ş

G, by the bicategorical Grothendieck construction. To see this is only a matter

of further unfolding the definition.

Remark 5.3.11. There are two notable details that the abstractness of the preceding proof obscures.

Firstly, the horizontal composition of effects in SGameC is strict. To see this, let pc, ιq : A Ñ B

and pd, κq : B Ñ C and pe, λq : C Ñ D be 1-cells in GpXq, and for concision write the horizontal

composite of effects by concatenation, so that κι “ κ` ι ˝ d (by the Grothendieck construction).

Then strict associativity demands that λpκιq “ pλκqι. This obtains as follows:

λpκιq “ λ` pκιq ˝ e

“ λ` pκ` ι ˝ d q ˝ e

“ λ` pκ ˝ e ` ι ˝ d ˝ e q

“ λ` pκ ˝ e ` ι ˝ pd ˝ eq q

“ λ` pκ ˝ e ` ι ˝ pe ˝ op dq q

“ pλ` κ ˝ e q ` ι ˝ pe ˝ op dq

“ pλκqι

by Grothendieck

by Grothendieck

by bilinearity

by functoriality

by “pointwise opposite”

by monoid associativity

by Grothendieck

Since the identity effect is the constant 0, it is easy to see that horizontal composition is strictly

unital on effects:

0κ “ 0 ` κ ˝ id “ κ “ κ` 0 ˝ d “ κ0

Secondly, note that the well-definedness of horizontal composition in SGameC depends

furthermore on the distributivity of reindexing over sums (cf. Example 5.3.5). Suppose we have

1-cells and 2-cells in SGameC as in the following diagram:

pX,Aq pY,Bq pZ,Cq

pc,Lcq

pc1,Lc1
q

pd,Ldq

pd1,Ld1
q

pα,Kαq pβ,Kβq

Then, writing � for horizontal composition in SGameC and ˝ for composition in Stat2 (and leaving

the discarding of coparameters implicit):

Ld
1

� Lc
1

“ pLd `Kβq � pLc `Kαq

“ pLd `Kβqc ` pLc `Kαq ˝ dc

“ Ldc `Kβ
c ` pLc ˝ dcq ` pKα ˝ dcq

“ Ldc ` pLc ˝ dcq `Kβ
c ` pKα ˝ dcq

“ Ld � Lc `Kβ �Kα

ex hypothesi

by Grothendieck

by distributivity and bilinearity

by commutativity of the effect monoid

by Grothendieck
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Remark 5.3.12. Of course, we don’t strictly need to use BayesLens2 in the preceding; the

structure equally makes sense if we work only with ‘marginalized’ lenses in BayesLens. In this

case, although BayesLens is a 1-category, one still obtains 2-cells between statistical games,

because it remains possible to consider their differences.

5.3.2. Inference systems and loss models

In the context of approximate inference, one often does not have a single statistical model to evaluate,

but a whole family of them. In particularly nice situations, this family is actually a subcategory

D of C, with the family of statistical models being all those that can be composed in D. The

problem of approximate inference can then be formalized as follows. Since both BayesLens2 and

SGameC were obtained by bicategorical Grothendieck constructions, we have a pair of 2-fibrations

SGameC
πLoss
ÝÝÝÑ BayesLens2

πLens
ÝÝÝÑ Coparal2pCq. Each of πLoss, πLens, and the discarding functor

p´q can be restricted to the subcategory D. The inclusion p´q : D ãÑ Coparal2pDq restricts to

a section of this restriction of p´q ; the assignment of inversions to channels inD then corresponds

to a 2-section of the 2-fibration πLens (restricted to D); and the subsequent assignment of losses is a

further 2-section of πLoss. This situation is depicted in the following diagram of bicategories:

SGameD SGameC

BayesLens2|D BayesLens2

Coparal2pDq Coparal2pCq

D C

πLoss

πLens

πLoss|D

πLens|D

|D

This motivates the following definitions of inference system and loss model, although, for the sake of

our examples, we will explicitly allow the loss-assignment to be lax: if L is a loss model and c and d

are composable lenses, then rather than an equality or natural isomorphism Lpdq ˛Lpcq – Lpd� cq,

we will only require a natural transformation Lpdq ˛ Lpcq ñ Lpd � cq.

Before defining loss models and inference systems, it helps to recall the concept of essential

image: a generalization of the notion of image from functions to functors.

Definition 5.3.13 ([196]). Suppose F : C Ñ D is an n-functor (a possibly weak homomorphism

of weak n-categories). The image of F is the smallest sub-n-category of D that contains F pαq for

all k-cells α in C, along with any pk ` 1q-cells relating images of composites and composites of

images, for all 0 ď k ď n. We say that a sub-n-category D is replete if, for any k-cells α in D
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and β in C (with 0 ď k ă n) such that f : α ñ β is a pk ` 1q-isomorphism in C, then f is also a

pk ` 1q-isomorphism in D. The essential image of F , denoted impF q, is then the smallest replete

sub-n-category of D containing the image of F .

With these concepts in mind, we state our definitions.

Definition 5.3.14. Suppose pC,b, Iq is a copy-delete category. An inference system in C is a pair

pD, ℓq of a subcategory D ãÑ C along with a section ℓ : D Ñ BayesLens2|D of πLens|D , where

D is the essential image of the canonical lax inclusion p´q : D ãÑ Coparal2pDq.

Definition 5.3.15. Suppose pC,b, Iq has bilinear effects and B is a subbicategory ofBayesLens2.

A loss model for B is a lax section L of the restriction πLoss|B of πLoss to B. We say that L is a strict

loss model if it is in fact a strict 2-functor, and a strong loss model if it is in fact a pseudofunctor.

Remark 5.3.16. We may often be interested in loss models for which B is in fact the essential

image of an inference system, but we do not stipulate this requirement in the definition as it is not

necessary for the following development.

In order for two loss models F and G to be comparable, they must both be sections of the same

fibration of statistical games. One consequence of this is that both F and G must map each 0-cell

pX,Aq in the bicategory of lenses to the same 0-cell in the bicategory of games, which (by the

definition of the bicategory of games) must again be pX,Aq. In such circumstances, the relevant

type of morphism of lax functors is the icon, whose definition we now review.

Definition 5.3.17 (Johnson and Yau [145, Def. 4.6.2]). Suppose F and G are lax functors B Ñ C

such that, for all b : B, Fb “ Gb. An icon (or identity component oplax natural transformation)

α : F Ñ G consists of a family of natural transformations

Bpa, bq CpFa, Fbq “ CpGa,Gbq

Fa,b

Ga,b

αa,b

for each pair a, b of 0-cells in B, satisfying coherence conditions corresponding to unity and oplax

naturality, and whose component 2-cells we write as αf : Ff ñ Gf for each 1-cell f in B.

Lax functors B Ñ C and icons between them constitute the objects and morphisms of a category,

BicaticpB, Cq, which we can use to construct categories of loss models. Moreover, owing to the

monoidality of `, this category will be moreover monoidal: a property that we will use to define
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the free energy loss model below. (Note that this monoidal structure, on the category of loss models,

is distinct from the monoidal structure that we will attach to loss models themselves in §5.4.)

Proposition 5.3.18. Loss models for B constitute the objects of a symmetric monoidal category

`

LosspBq,`, 0
˘

. The morphisms of LosspBq are icons between the corresponding lax functors, and

they compose accordingly. The monoidal structure is given by sums of losses.

Proof sketch. From Johnson and Yau [145, Theorem 4.6.13], we know that icons compose, forming

the morphisms of a category. Next, note that for any two loss models F and G and any k-cell

α (for any k P t0, 1, 2u), F pαq and Gpαq must only differ on the loss component, and so we can

sum the losses; this gives the monoidal product. The monoidal unit is necessarily the constant 0

loss. Finally, observe that the structure is symmetric becauase effect monoids are commutative (by

Definition 5.3.1).

5.3.3. Examples

Each of our examples involves taking expectations of log-densities, and so to make sense of them it

first helps to understand what we mean by “taking expectations”.

Notation 5.3.19 (Expectations). Written as a function, a density p on X has the type X Ñ R`;

written as an effect, the type is XÑ‚ I . Given a measure or distribution π on X (equivalently, a

state π : IÑ‚ X), we can compute the expectation of p under π as the composite p ‚ π. We write the

resulting quantity as Eπrps, or more explicitly as Ex„π

“

ppxq
‰

. We can think of this expectation as

representing the ‘validity’ (or truth value) of the ‘predicate’ p given the state π [142].

5.3.3.1. Relative entropy and Bayesian inference

For our first example, we return to the subject with which we opened this paper: the compositional

structure of the relative entropy. We begin by giving a precise definition.

Definition 5.3.20. Suppose α, β are both measures on X , with α absolutely continuous with

respect to β. Then the relative entropy or Kullback-Leibler divergence from α to β is the quantity

DKLpα, βq :“ Eα
”

log α
β

ı

, where
α
β is the Radon-Nikodym derivative of α with respect to β.

Remark 5.3.21. When α and β admit density functions pα and pβ with respect to the same base

measure dx, then DKLpα, βq can equally be computed as Ex„α

“

log pαpxq ´ log pβpxq
‰

. It it this

form that we will adopt henceforth.

199



Proposition 5.3.22. Let B be a subbicategory of simple lenses in BayesLens2, all of whose

channels admit density functions with respect to a common measure and whose forward channels

admit Bayesian inversion (and whose forward and backward coparameters coincide), and with

only structural 2-cells. Then the relative entropy defines a strict loss model KL : B Ñ SGame.

Given a lens pc, c1q : pX,Xq ÞÑ pY, Y q, KL assigns the loss function KLpc, c1q : Y
X
ÝÑ‚ I defined, for

π : IÑ‚ X and y : Y , by the relative entropy KLpc, c1qπpyq :“ DKL

`

c1
πpyq, c:

πpyq
˘

, where c:
is the

exact inversion of c.

Proof. Being a section of πLoss|B , KL leaves lenses unchanged, only acting to attach loss functions.

It therefore suffices to check that this assignment of losses is strictly functorial. Writing ‚ for

composition in C, ˝ for horizontal composition in Stat2, � in BayesLens2, and ˛ for horizontal

composition of losses in SGame, we have the following chain of equalities:

KL
`

pd, d1q � pc, c1q
˘

π
pzq “ E

px,m,y,nq„pc1˝d1
cqπpzq

”

log ppc1˝d1
cqπpx,m, y, n|zq

´ log p
pc:˝d:

cqπ
px,m, y, n|zq

ı

“ E
py,nq„d1

c‚πpzq
E

px,mq„c1
πpyq

”

log pc1
π

px,m|yq pd1
c‚π

py, n|zq

´ log p
c:
π

px,m|yq p
d:
c‚π

py, n|zq

ı

“ E
py,nq„d1

c‚πpzq

”

log pd1
c‚π

py, n|zq ´ log p
d:
c‚π

py, n|zq

` E
px,mq„c1

πpyq

”

log pc1
π

px,m|yq ´ log p
c:
π

px,m|yq

ı ı

“ DKL

`

d1
c‚πpzq, d:

‚πpzq
˘

` E
py,nq„d1

c‚πpzq

“

DKL

`

c1
πpyq, c:

πpyq
˘‰

“ KLpd, d1qc‚πpzq `
`

KLpc, c1q ˝ d1
c

˘

π
pzq

“
`

KLpd, d1q ˛ KLpc, c1q
˘

π
pzq

The first line obtains by definition of KL and �; the second by definition of ˝; the third by the log

adjunction (log ab “ log a` log b) and by linearity of E; the fourth by definition of DKL; the fifth

by definition of KL and of ˝; and the sixth by definition of ˛.

This establishes that KL
`

pd, d1q � pc, c1q
˘

“ KLpd, d1q ˛ KLpc, c1q and hence that KL is strictly

functorial on 1-cells. Since we have assumed that the only 2-cells are the structural 2-cells (e.g.,

the horizontal unitors), which do not result in any difference between the losses assigned to the

corresponding 1-cells, the only loss 2-cell available to be assigned is the 0 loss; which assignment is

easily seen to be vertically functorial. Hence KL is a strict 2-functor, and moreover a section of

πLoss|B as required.
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Successfully playing a relative entropy game entails minimizing the divergence from the

approximate to the exact posterior. This divergence is minimized when the two coincide, and so

KL represents a form of approximate Bayesian inference.

Remark 5.3.23. We opened the chapter by observing that the relative entropy satisfies a chain

rule defined not on Bayesian lenses, but simply on pairs of channels: to formalize this simpler case,

we do not need the full machinery of statistical games (which is useful when we have bidirectional

inference systems); but we do need some of it.

If c and c1
are parallel channels XÑ‚ Y , then DKL pcp´q, c1p´qq defines an effect XÑ‚ I . This

means we can use the statistical games idea to equip parallel (copy-composite) channels in C with

such non-state-dependent loss functions; and the relative entropy will again form a strict section

of the resulting Grothendieck fibration.

Therefore, let B be the bicategory whose 0-cells are the objects of C, but whose 1-cells and

2-cells are parallel pairs of 1-cells and 2-cells in Copara2pCq; equivalently, the subbicategory of

Copara2pCq2 which is diagonal on 0-cells.

Next, letK denote the indexed bicategory B co op Ñ Bicat obtained as the composite

B co op proj1
ÝÝÝÑ Copara2pCq co op

co op

ÝÝÝÝÑ C op Cp´,Iq
ÝÝÝÝÑ MonCat

B
ÝÑ Bicat

where proj1 indicates the projection of the 1st factor of the parallel pairs of 1-cells and 2-cells.

Applying the Grothendieck construction to K yields a 2-fibration

ş

K
πK
ÝÝÑ B. The 0-cells of

ş

K are the objects of C. The 1-cells X Ñ Y are triples pc, c1, Lq where c and c1
are parallel

coparameterized channelsXÑ‚ Y and L is an effect (loss function)XÑ‚ I . Given composable 1-cells

pc, c1, Lq : X Ñ Y and pd, d1,Mq : Y Ñ Z , their horizontal composite is defined on the parallel

channels as copy-composition, and on the loss functions asM ‚c `L (where ‚ here is composition

in C). 2-cells are pairs of 2-cells in Copara2pCq and differences of losses.

Finally, the relative entropy DKL defines a strict section of πK , mapping the parallel pair pc, c1q

to

`

c, c1, DKLpc, c1q
˘

. Its chain rule is thus formalized by the horizontal composition in

ş

K .

5.3.3.2. Maximum likelihood estimation

A statistical system may be more interested in predicting observations than updating beliefs. This

is captured by the process of maximum or marginal likelihood estimation.

Definition 5.3.24. Let pc, c1q : pX,Xq ÞÑ pY, Y q be a simple lens whose forward channel c admits

a density function pc. Then its log marginal likelihood is the loss function given by the marginal

log evidenceMLEpc, c1qπpyq :“ ´ log pc ‚πpyq.
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Proposition 5.3.25. Let B be a subbicategory of lenses inBayesLens2 all of which admit density

functions with respect to a common measure, and with only structural 2-cells. Then the assignment

pc, c1q ÞÑ MLEpc, c1q defines a lax loss modelMLE : B Ñ SGame.

Proof. We adopt the notational conventions of the proof of Proposition 5.3.22. Observe that

MLE
`

pd, d1q � pc, c1q
˘

π
pzq “ ´ log pd ‚c ‚πpzq “ MLEpd, d1qc‚πpzq .

By definition, we have

`

MLEpd, d1q ˛ MLEpc, c1q
˘

π
pzq “ MLEpd, d1qc‚πpzq `

`

MLEpc, c1q ˝ d1
c

˘

π
pzq

and hence by substitution

`

MLEpd, d1q ˛ MLEpc, c1q
˘

π
pzq “ MLE

`

pd, d1q � pc, c1q
˘

π
pzq `

`

MLEpc, c1q ˝ d1
c

˘

π
pzq .

Therefore,MLEpc, c1q˝d1
c constitutes a 2-cell fromMLEpd, d1q˛MLEpc, c1q toMLE

`

pd, d1q�pc, c1q
˘

,

and hence MLE is a lax functor. It is evidently moreover a section of πLoss|B, and, like KL, acts

trivially on the (purely structural) 2-cells.

Successfully playing a maximum likelihood game involves maximizing the log-likelihood that the

system assigns to its observations y : Y . This process amounts to choosing a channel c that assigns

high likelihood to likely observations, and thus encodes a valid model of the data distribution.

5.3.3.3. Autoencoders via the free energy

Many adaptive systems neither just infer nor just predict: they do both, building a model of their

observations that they also invert to update their beliefs. In machine learning, such systems are

known as autoencoders, as they ‘encode’ (infer) and ‘decode’ (predict), ‘autoassociatively’ [161]. In

a Bayesian context, they are known as variational autoencoders [154], and their loss function is the

free energy [80].

Definition 5.3.26. The free energy loss model is the sum of the relative entropy and the likelihood

loss models: FE :“ KL ` MLE. Given a simple lens pc, c1q : pX,Xq ÞÑ pY, Y q admitting Bayesian

inversion and with densities, FE assigns the loss function

FEpc, c1qπpyq “ pKL ` MLEqpc, c1qπpyq

“ DKL

`

c1
πpyq, c:

πpyq
˘

´ log pc ‚πpyq
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Note that this means that optimizing the free energy is not guaranteed to optimize either KL

orMLE individually, although by definition FE is an upper bound on them both (and hence often

known in machine learning by the alternative name, the evidence upper bound, thinking of MLE as

encoding a measure of ‘evidence’).

Remark 5.3.27. Beyond its autoencoding impetus, another important property of the free energy

is its improved computational tractability compared to either the relative entropy or the likelihood

loss. This property is a consequence of the following fact: although obtained as the sum of terms

which both depend on an expensive marginalization
8
, the free energy itself does not. This can be

seen by expanding the definitions of the relative entropy and of c:
π and rearranging terms:

FEpc, c1qπpyq “ DKL

`

c1
πpyq, c:

πpyq
˘

´ log pc ‚πpyq

“ E
px,mq„c1

πpyq

“

log pc1
π

px,m|yq ´ log p
c:
π

px,m|yq
‰

´ log pc ‚πpyq

“ E
px,mq„c1

πpyq

“

log pc1
π

px,m|yq ´ log p
c:
π

px,m|yq ´ log pc ‚πpyq
‰

“ E
px,mq„c1

πpyq

“

log pc1
π

px,m|yq ´ log
pcpm, y|xqpπpxq

pc ‚πpyq
´ log pc ‚πpyq

‰

“ E
px,mq„c1

πpyq

“

log pc1
π

px,m|yq ´ log pcpm, y|xq ´ log pπpxq
‰

(5.5)

“ DKL

`

c1
πpyq, π b 1

˘

´ E
px,mq„c1

πpyq

“

log pcpm, y|xq
‰

Here, 1 denotes the measure with density 1 everywhere. Note that when the coparameter is trivial,

FEpc, c1qπpyq reduces to

DKL

`

c1
πpyq, π

˘

´ E
x„c1

πpyq

“

log pcpy|xq
‰

.

Remark 5.3.28. The name free energy is due to an analogy with the Helmholtz free energy in

thermodynamics, as we can write it as the difference between an (expected) energy and an entropy

term:

FEpc, c1qπpyq “ E
px,mq„c1

πpyq

“

´ log pcpm, y|xq ´ log pπpxq
‰

´ SXbM

“

c1
πpyq

‰

“ E
px,mq„c1

πpyq

“

Epc,πqpx,m, yq
‰

´ SXbM

“

c1
πpyq

‰

“ U ´ TS

where we call Epc,πq : X bM b Y
X
ÝÑ‚ I the energy, and where SXbM : I

XbM
ÝÝÝÝÑ‚ I is the Shannon

entropy. The last equality makes the thermodynamic analogy: U here is the internal energy of the

system; T “ 1 is the temperature; and S is again the entropy.

8

Evaluating the pushforward c ‚ π involves marginalizing over the intermediate variable; and evaluating c:
πpyq also

involves evaluating c ‚ π.
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5.3.3.4. The Laplace approximation

Although optimizing the free energy does not necessitate access to exact inversions, it does still

entail computing an expectation under the approximate inversion (cf. equation (5.5) of Remark

5.3.27 above), which may remain non-trivial. When one is interested in optimizing a model by

gradient descent, this becomes particularly pressing, as one needs to form an estimate of the

gradient of this expectation with respect to the parameters (which is not in general equal to the

expectation of the gradient of the energy). In machine learning, optimizing variational autoencoders

typically involves a “reparameterization trick” [155, §2.5] to circumvent this difficulty, but in the

context of neuroscientific modelling (where one is concerned with biological plausibility), this

option is not generally available.

An alternative strategy is to make simplifying assumptions, enabling the desired computations

without totally sacrificing biological realism. In the context of predictive coding, a typical such

assumption is that all measures are Gaussian [21, 33, 48, 104, 216]. This is motivated not only by

hypotheses about the nature of biological noise (related to the Central Limit Theorem), but also by

expediency, as a Gaussian distribution is determined by just two sufficient statistics: its mean and

variance. If one first restricts to lenses with Gaussian channels, and then to lenses whose inversion

morphisms are constrained to emit ‘tightly-peaked’ Gaussians (i.e., with small variances), then one

can eliminate the expectation from the expected energy, and simply evaluate the energy at the

posterior mean.

The conceptual justification for this approximation is due to Laplace [163, p.367], who observed

that, given a function of the form fpxq “ enhpxq
with h having a maximum at x0, the only

non-negligible contributions to its integral as n Ñ 8 are those near to x0
9
. Consequently, the

function h can be approximated by the quadratic form obtained from its its 2nd-order Taylor

expansion about x0, so that, in the one-dimensional (univariate) case,

ż

fpxq dx « enhpx0q

ż

e´ 1
2σ2 px´x0q2 dx

for σ “
`

n B2
xhpx0q

˘´1{2
. Notably, the integrand on the right-hand side is a Gaussian function: it

has the form of the density of a normal distribution.

In the present context, we are generally interested in expectations of the form Ex„π

“

gpxq
‰

,

which correspond to integrals

ş

gpxq elog pπpxq dx. It is possible to extend the foregoing reasoning

to this case: supposing that log pπpxq 9nhpxq for some function h with a maximum at x0, then as

9

A demonstration of this can be found on Wikipedia at https://en.wikipedia.org/w/index.php?
title=Laplace%27s_method&oldid=1154930495.
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n Ñ 8, we can approximate both g and h by their 2nd-order expansions, thereby approximating π

by a Gaussian and g by a quadratic form.

This method of approximating integrals is known as Laplace’s method, and it has been widely

applied in statistics
10
[22, 101, 151, 280] [176, Chp. 27], in some circumstances, even yielding exact

posteriors [267, §10.2]. For further exposition (and more rigour) in the finite-dimensional case, we

refer the reader to Bruijn [46, Ch. 4] and Olver [200, §3.7]; for the general case in Banach spaces,

the reader may consult Piterbarg and Fatalov [211]. And for an analysis of the specific case of

approximating Bayesian posteriors (beyond the exact case), with consideration of the approximation

errors, one may refer to Kass, Tierney, and Kadane [150] or the technical report accompanying

Tierney and Kadane [263].

This latter situation is of course closely related to the matter at hand. Here, rather than

approximating the posterior by a Gaussian, we assume it to have Gaussian form.

Remark 5.3.29. We say that a channel c : XÑ‚ Y is Gaussian if cpxq is a Gaussian measure for

every x in its domain. We denote the mean and variance of cpxq by µcpxq and Σcpxq respectively,

and write its (log) density function as

log pcpy|xq “
1

2

A

ϵcpy, xq, Σcpxq
´1ϵcpy, xq

E

´ log
a

p2πqn detΣcpxq

having also defined the ‘error’ function ϵc : Y ˆX Ñ Y by ϵcpy, xq “ y ´ µcpxq. In §7.1, we give

a full definition of a category of (nonlinear) Gaussian channels.

We will still be concerned with approximating expectations Ex„dpyq

“

gpxq
‰

by the quadratic

expansion of g, and so to license Laplace’s method we need an analogue of the condition n Ñ 8.

This will be supplied by the further assumption that Σdpyq has small eigenvalues: that is, we work

in the limit tr pΣdpyqq Ñ 0. With these two assumptions, we can write

E
x„dpyq

“

gpxq
‰

9

ż

x:X
gpxq exp

A

ϵdpx, yq, Σdpyq
´1ϵdpx, yq

E

dx

and observe that as tr pΣdpyqq Ñ 0, we must have tr
´

Σdpyq
´1
¯

Ñ 8. Thus, by Laplace’s

reasoning, the contributions to the integral are only appreciably non-zero near the mean µdpyq.

This licenses the approximation of g by its quadratic expansion around µdpyq, and leads to the

following approximation of the free energy, known in the predictive coding literature as the

Laplace approximation [101]. (Consistent with the other examples in this chapter, we consider the

coparameterized case.)

10

In statistics, making Gaussian assumptions about Bayesian posteriors, or equivalently using second-order approxima-

tions to log posteriors, is also known as variational Laplace [101].

205



Definition 5.3.30. A Cartesian space is an object X that is isomorphic to Rn for some n : N.

Proposition 5.3.31 (Laplacian free energy). Suppose pγ, ρq : pX,Xq ÞÑ pY, Y q is a Bayesian lens

with Gaussian channels between finite-dimensional Cartesian spaces, for which, for all y : Y and

Gaussian priors π : IÑ‚ X , the eigenvalues of Σρπpyq are small. Then the free energy FEpγ, ρqπpyq

can be approximated by the Laplacian free energy

FEpγ, ρqπpyq « LFEpγ, ρqπpyq (5.6)

:“ Epγ,πq

`

µρπpyq, y
˘

´ SXbM

“

ρπpyq
‰

(5.7)

“ ´ log pγpµρπpyq, yq ´ log pπpµρπpyq|Xq ´ SXbM

“

ρπpyq
‰

where we have written the argument of the density pγ in ‘function’ style; where p´qX denotes the

projection onto X ; and where SXbM rρπpyqs “ Epx,mq„ρπpyqr´ log pρπpx,m|yqs is the Shannon

entropy of ρπpyq. The approximation is valid when Σρπ satisfies

Σρπpyq “

´

B2
px,mqEpγ,πq

¯

pµρπpyq, yq
´1 . (5.8)

We call Epγ,πq the Laplacian energy.

Proof. Recall that we can write the free energy FEpγ, ρqπpyq as the difference between expected

energy and entropy:

FEpγ, ρqπpyq “ E
px,mq„ρπpyq

“

´ log pγpm, y|xq ´ log pπpxq
‰

´ SXbM

“

ρπpyq
‰

“ E
px,mq„ρπpyq

“

Epγ,πqpx,m, yq
‰

´ SX
“

ρπpyq
‰

Next, since the eigenvalues of Σρπpyq are small for all y : Y , we can approximate the expected

energy by its second-order Taylor expansion around the mean µρπpyq, following Laplace:

FEpγ, ρqπpyq « E
px,mq„ρπpyq

«

Epγ,πqpµρπpyq, yq `
@

ϵρπpx,m, yq,
`

Bpx,mqEpγ,πq

˘

pµρπpyq, yq
D

`
1

2

A

ϵρπpx,m, yq,
´

B2
px,mqEpγ,πq

¯

pµρπpyq, yq ¨ ϵρπpx,m, yq

E

ff

´ SXbM

“

ρπpyq
‰

paq
“ Epγ,πqpµρπpyq, yq `

B

E
px,mq„ρπpyq

“

ϵρπpx,m, yq
‰

,
`

Bpx,mqEpγ,πq

˘

pµρπpyq, yq

F

`
1

2
tr
”´

B2
px,mqEpγ,πq

¯

pµρπpyq, yq Σρπpyq

ı

´ SXbM

“

ρπpyq
‰

pbq
“ Epγ,πqpµρπpyq, yq `

1

2
tr
”´

B2
px,mqEpγ,πq

¯

pµρπpyq, yq Σρπpyq

ı

´ SXbM

“

ρπpyq
‰
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where

´

B2
px,mq

Epγ,πq

¯

pµρπpyq, yq is the Hessian of Epγ,πq with respect to px,mq evaluated at

pµρπpyq, yq. The equality marked paq holds first by the linearity of expectations and second because

E
px,mq„ρπpyq

«

A

ϵρπpx,m, yq,
´

B2
px,mqEpγ,πq

¯

pµρπpyq, yq ¨ ϵρπpx,m, yq

E

ff

“ E
px,mq„ρπpyq

«

tr
”´

B2
px,mqEpγ,πq

¯

pµρπpyq, yq ϵρπpx,m, yq ϵρπpx,m, yqT
ı

ff

“ tr

„

´

B2
px,mqEpγ,πq

¯

pµρπpyq, yq E
px,mq„ρπpyq

”

ϵρπpx,m, yq ϵρπpx,m, yqT
ı

ȷ

“ tr
”´

B2
px,mqEpγ,πq

¯

pµρπpyq, yq Σρπpyq

ı

(5.9)

where the first equality obtains because the trace of an outer product equals an inner product;

the second by linearity of the trace; and the third by the definition of the covariance Σρπpyq. The

equality marked pbq above then holds because Epx,mq„ρπpyq

“

ϵρπpx,m, yq
‰

“ 0.

Next, note that the entropy of a Gaussian measure depends only on its covariance,

SXbM

“

ρπpyq
‰

“
1

2
log det p2π eΣρπpyqq ,

and that the energy Epγ,πqpµρπpyq, yq does not depend on Σρπpyq. We can therefore write down

directly the covariance Σ˚
ρπpyq minimizing FEpγ, ρqπpyq as a function of y. We have

BΣρπ
FEpγ, ρqπpyq

pbq
«

1

2

´

B2
px,mqEpγ,πq

¯

pµρπpyq, yq `
1

2
Σρπ

´1

by equation pbq above. Setting BΣρπ
FEpγ, ρqπpyq “ 0, we find the optimum as expressed by

equation (5.8):

Σ˚
ρπpyq “

`

B2
xEpγ,πq

˘

pµρπpyq, yq
´1 .

Finally, by substituting Σ˚
ρπpyq in equation (5.9), we obtain the desired expression, equation (5.6):

FEpγ, ρqπpyq « Epγ,πq pµρπpyq, yq ´ SXbM rρπpyqs “: LFEpγ, ρqπpyq .

Remark 5.3.32. The usual form of the Laplace model in the literature omits the coparameters. It

is of course easy to recover the non-coparameterized form by takingM “ 1.

As well as being an approximation to a particular statistical game, the Laplacian free energy

defines a lax loss model.
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Proposition 5.3.33. Let B be a subbicategory of BayesLens2 of Gaussian lenses between

Cartesian spaces whose backward channels have small variance, and with only structural 2-cells
11
.

Then LFE defines a lax loss model B Ñ SGame.

Proof. Again we follow the notational conventions of the proof of Proposition 5.3.22. Additionally,

if ω is a state on a tensor product such as X b Y , we will write ωX and ωY to denote its X and Y

marginals. We will continue to write c to denote the result of discarding the coparameters of a

coparameterized channel c.

Observe that, by repeated application of the linearity of E, the log adjunction, and the definitions

of ‚ and ˝,

`

LFEpd, d1q ˛ LFEpc, c1q
˘

π
pzq

“ LFEpd, d1qc‚πpzq `
`

LFEpc, c1q ˝ d1
c

˘

π
pyq

“ LFEpd, d1qc‚πpzq ` E
py,nq„d1

c‚πpzq

“

LFEpc, c1qπpyq
‰

“ ´ log pd
`

µd1
c‚π

pzq, z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚πpzq

”

log pd1
c‚π

py, n|zq ´ log pc
`

µc1
π

pyq, y
˘

´ log pπ
`

µc1
π

pyqX
˘

` E
px,mq„c1

πpyq

“

log pc1
π

px,m|yq
‰

ı

“ ´ log pd
`

µd1
c‚π

pzq, z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚πpzq

“

´ log pc
`

µc1
π

pyq, y
˘

´ log pπ
`

µc1
π

pyqX
˘‰

` E
py,nq„d1

c‚πpzq

”

log pd1
c‚π

py, n|zq ` E
px,mq„c1

πpyq

“

log pc1
π

px,m|yq
‰

ı

“ ´ log pd
`

µd1
c‚π

pzq, z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚πpzq

“

´ log pc
`

µc1
π

pyq, y
˘

´ log pπ
`

µc1
π

pyqX
˘‰

` E
py,nq„d1

c‚πpzq
E

px,mq„c1
πpyq

“

log pd1
c‚π

py, n|zq ` log pc1
π

px,m|yq
‰

“ ´ log pd
`

µd1
c‚π

pzq, z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚πpzq

“

´ log pc
`

µc1
π

pyq, y
˘

´ log pπ
`

µc1
π

pyqX
˘‰

` E
px,m,y,nq„pc1˝d1

cqπpzq

“

´ log ppc1˝d1
cqπpx,m, y, n|zq

‰

“ ´ log pd
`

µd1
c‚π

pzq, z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚πpzq

“

´ log pc
`

µc1
π

pyq, y
˘

´ log pπ
`

µc1
π

pyqX
˘‰

´ SXMYN

“

pc1 ˝ d1
cqπpzq

‰

11

An example of B here is obtained by restrictingBayesLens2 to the category FdGauss of Definition 7.1.9, and by

excluding all but the structural 2-cells
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“ ´ log pd
`

µd1
c‚π

pzq, z
˘

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

` E
py,nq„d1

c‚πpzq

“

Epc,πq

`

µc1
π

pyq, y
˘‰

´ SXMYN

“

pc1 ˝ d1
cqπpzq

‰

“ Epd,c‚πqpµd1
c‚π

pzq, zq ` E
py,nq„d1

c‚πpzq

“

Epc,πq

`

µc1
π

pyq, y
˘‰

´ SXMYN

“

pc1 ˝ d1
cqπpzq

‰

where XMYN is shorthand for X bM b Y bN .

Now, writing Eµ
pc,πq

pyq :“ Epc,πq

`

µc1
π

pyq, y
˘

, by the Laplace assumption, we have

E
py,nq„d1

c‚πpzq

“

Eµ
pc,πq

pyq
‰

« Eµ
pc,πq

pµd1
c‚π

pzqY q `
1

2
tr
”´

B2
yE

µ
pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqY Y

ı

and so we can write

`

LFEpd, d1q ˛ LFEpc, c1q
˘

π
pzq

« Epd,c‚πqpµd1
c‚π

pzq, zq ` Eµ
pc,πq

pµd1
c‚π

pzqY q ´ SXMYN

“

pc1 ˝ d1
cqπpzq

‰

`
1

2
tr
”´

B2
yE

µ
pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqY Y

ı

“ ´ log pd
`

µd1
c‚π

pzq, z
˘

´ log pc
`

µc1
π

pµd1
c‚π

pzqY q, µd1
c‚π

pzqY
˘

´ log pπ
`

µc1
π

pµd1
c‚π

pzqY qX
˘

´ SXMYN

“

pc1 ˝ d1
cqπpzq

‰

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

`
1

2
tr
”´

B2
yE

µ
pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqY Y

ı

“ Epd‚c,πq

`

µpc1˝d1
cqπpzq, z

˘

´ SXMYN

“

pc1 ˝ d1
cqπpzq

‰

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

`
1

2
tr
”´

B2
yE

µ
pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqY Y

ı

“ LFE
`

pd, d1q � pc, c1q
˘

π
pzq ´ log pc ‚π

`

µd1
c‚π

pzqY
˘

`
1

2
tr
”´

B2
yE

µ
pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqY Y

ı

.

Therefore, if we define a loss function κ by

κπpzq :“
1

2
tr
”´

B2
yE

µ
pc,πq

¯

`

µd1
c‚π

pzqY
˘

Σd1
c‚π

pzqY Y

ı

´ log pc ‚π

`

µd1
c‚π

pzqY
˘

then κ constitutes a 2-cell LFEpd, d1q ˛ LFEpc, c1q ñ LFE
`

pd, d1q � pc, c1q
˘

, as required.

Effectively, this proposition says that, under the stated conditions, the free energy and the

Laplacian free energy coincide. Consequently, successfully playing a Laplacian free energy game

has the same autoencoding effect as playing a free energy game in the sense of §5.3.3.3.

Remark 5.3.34. We formalized the idea of a Gaussian having small or tightly-peaked variance as

meaning its covariance matrix Σ has small eigenvalues. We do not specify precisely what ‘small’

means here: only, it must be enough to license the use of Laplace’s method. Of course, as the
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eigenvalues approach 0, the Gaussian approaches a Dirac delta distribution. In this case, one may

truncate the approximating expansion at first order and just work with the means — in fact, the

inversions become deterministic — and indeed, this is the choice made in some of the predictive

coding literature [33].

5.4. Monoidal statistical games

In Remark 4.3.18, we noted that the canonical section : taking a channel c to the lens equipped

with its exact inversion c:
is not monoidal, because inverting the tensor of two channels with

respect to a joint state is in general not the same as inverting the two channels independently with

respect to the marginals, owing to the possibility of correlations. At the same time, we know from

Proposition 4.3.11 that the category BayesLensC of non-coparameterized Bayesian lenses in C

is nonetheless a monoidal category (and it is moreover symmetric monoidal when C is); and we

saw in Corollary 5.3.10 that Stat, and hence BayesLensC , are additionally fibrewise monoidal.

In this section, we establish analogous results for copy-composite Bayesian lenses, and statistical

games and loss models in turn, as well as demonstrating that each of our loss models is accordingly

monoidal. This monoidal structure on loss models can then be used to measure the error obtained

by inverting channels independently with respect to the marginals of a joint prior.

Because statistical games are defined over copy-composite channels, our starting point must be

to establish a monoidal structure on Copara2pCq.

Proposition 5.4.1. If the copy-discard category C is symmetric monoidal, then Copara2pCq

inherits a monoidal structure pb, Iq, with the same unit object I as in C. On 1-cells f : A ÝÑ
M

B

and f 1 : A1 ÝÝÑ
M 1

B1
, the tensor f b f 1 : AbA1 ÝÝÝÝÑ

MbM 1
B bB1

is defined by

f
A

f 1

A1

M

M 1

B

B1

.

On 2-cells φ : f ñ g and φ1 : f 1 ñ g1
, the tensor φ b φ1 : pf b f 1q ñ pg b g1q is given by the
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string diagram

φ

φ1

A

A1

M

M 1

B

B1

N 1

N

.

Proof. To establish that pCopara2pCq,b, Iq is a monoidal bicategory, we need to show that b is a

pseudofunctor Copara2pCq ˆ Copara2pCq Ñ Copara2pCq and that I induces a pseudofunctor

1 Ñ Copara2pCq, such that the pair of pseudofunctors satisfies the relevant coherence data. We

will omit the coherence data, and only sketch that the pseudofunctor b is well defined, leaving a

full proof for later work. (In the sequel here, we will not make very much use of this tensor.)

First, we confirm that b is locally functorial, meaning that our definition gives a functor on

each pair of hom categories. We begin by noting that b is well-defined on 2-cells, that φ b φ1

satisfies that change of coparameter axiom for f b f 1
; this is immediate from instantiating the

axiom’s string diagram. Next, we note that b preserves identity 2-cells; again, this is immediate

upon substituting identities into the defining diagram. We therefore turn to the preservation of

composites, which requires that pγ d φq b pγ1 d φ1q “ pγ b γ1q d pφb φ1q, and which translates

to the following graphical equation:

φ γ

φ1 γ1

A

A1

M

M 1

B

B1

O

O1

“

φ

φ1

A

A1

M

M 1

B

B1

γ

φ1 O1

O

It is easy to see that this equation is satisfied: use the naturality of the symmetry of pC,b, Iq. This

establishes that b is locally functorial.

Next, we confirm that b is horizontally (pseudo) functorial. First, we note that idf b idf 1 “

idfbf 1 by the naturality of the symmetry of pC,b, Iq. Second, we exhibit a multiplication natural
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isomorphism, witnessing pseudofunctoriality, with components µg,g1,f,f 1 : pg b g1q ˝ pf b f 1q ñ

pg ˝ fq b pg1 ˝ f 1q for all composable pairs of 1-cells g, f and g1, f 1
. Let these 1-cells be such that

pg b g1q ˝ pf b f 1q has the underlying depiction

f
A g

C

N

M

B

f 1A1

g1 C 1

N 1

M 1

B1

and so pg ˝ fq b pg1 ˝ f 1q has the depiction

f 1A1

g1 C 1

N 1

M 1

B1
f

A g

C

N

M

B

.

It is then easy to see that defining µg,g1,f,f 1 and its inverse µ´1
g,g1,f,f 1 as the 2-cells with the following
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respective underlying depictions gives us the desired isomorphism:

N 1

B1

N

B

M

M 1

C

B1

M

N

C 1

N 1

B

M 1

A

A1

and

N 1

M 1

B1

N

M

B

C

N

M

B

C 1

N 1

M 1

B1

A

A1

.

The naturality of this definition is a consequence of the naturality of the symmetry of pC,b, Iq.

That this tensor satisfies the monoidal bicategory axioms — of associativity, unitality, and

coherence — follows from the fact that the monoidal structure pb, Iq satisfies correspondingly

decategorified versions of these axioms; we leave the details to subsequent exposition.

Following the monoidal Grothendieck recipe, establishing thatBayesLens2 is monoidal entails

establishing that Stat2 is a monoidal indexed bicategory. But first we must define the latter concept,

by categorifying Definition 4.2.19.

Definition 5.4.2. Suppose pB,b, Iq is a monoidal bicategory. Wewill say thatF : B co op Ñ Bicat

is amonoidal indexed bicategorywhen it is equippedwith the structure of aweakmonoid object in the

3-category of indexed bicategories, indexed pseudofunctors, indexed pseudonatural transformations,

and indexed modifications.

More explicitly, we will take F to be a monoidal indexed bicategory when it is equipped with

(i) an indexed pseudofunctor µ : F p´q ˆ F p“q Ñ F p´b “q called the multiplication, i.e.,

(a) a family of pseudofunctors µX,Y : FX ˆ FY Ñ F pX b Y q, along with

(b) for any 1-cells f : X Ñ X 1
and g : Y Ñ Y 1

in B, a pseudonatural isomorphism

µf,g : µX 1,Y 1 ˝ pFf ˆ Fgq ñ F pf b gq ˝ µX,Y ;

(ii) a pseudofunctor η : 1 Ñ FI called the unit;

as well as three indexed pseudonatural isomorphisms — an associator, a left unitor, and a right

unitor — which satisfy weak analogues of the coherence conditions for a monoidal indexed category

[189, §3.2], up to invertible indexed modifications.
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Remark 5.4.3. Because it is not our main purpose, and because the coherence data for higher-

dimensional structures rapidly becomes cumbersome, the preceding definition only suggests the

form of this coherence data. Unfortunately, we are not presently aware of a full explicit definition

in the literature of the concept of monoidal indexed bicategory.

Using this notion, we can establish that Stat2 is monoidal.

Theorem 5.4.4. Stat2 is a monoidal indexed bicategory, in the explicit sense of Definition 5.4.2.

Proof sketch. We only check the explicit requirements of the preceding definition, and expect that

the higher coherence data is satisfied by the fact that each of our high-dimensional structures is

obtained from a well-behaved lower-dimensional one using canonical categorical machinery.

In this way, the multiplication µ is given first by the family of pseudofunctors µX,Y : Stat2pXqˆ

Stat2pY q Ñ Stat2pX b Y q which are defined on objects simply by tensor

µX,Y pA,Bq “ AbB

since the objects do not vary between the fibres of Stat2, and on hom categories by the functors

Stat2pXqpA,Bq ˆ Stat2pY qpA1, B1q

“ Cat
`

disc CpI,Xq,Coparar2pCqpA,Bq
˘

ˆ Cat
`

disc CpI, Y q,Coparar2pCqpA1, B1q
˘

– Cat
`

disc CpI,Xq ˆ disc CpI, Y q,Coparar2pCqpA,Bq ˆ Coparar2pCqpA1, B1q
˘

Catpdisc CpI,projXqˆdisc CpI,projY q,bq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ Cat

`

disc CpI,X b Y q2,Coparar2pCqpAbA1, B bB1q
˘

Catp ,idq
ÝÝÝÝÝÝÑ Catpdisc CpI,X b Y q,Coparar2pCqpAbA1, B bB1q

“ Stat2pX b Y qpAbA1, B bB1q .

where Cat p , idq indicates pre-composition with the universal (Cartesian) copying functor. For

all f : X Ñ X 1
and g : Y Ñ Y 1

in Coparal2pCq, the pseudonatural isomorphisms

µf,g : µX 1,Y 1 ˝
`

Stat2pfq ˆ Stat2pgq
˘

ñ Stat2pf b gq ˝ µX,Y

are obtained from the universal property of the product ˆ of categories. The unit η : 1 Ñ Stat2pIq

is the pseudofunctor mapping the unique object of 1 to the monoidal unit I . Associativity and

unitality of this monoidal structure follow from the functoriality of the construction, given the

monoidal structures on C and Cat.
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Just as the monoidal Grothendieck construction induces a monoidal structure on categories of

lenses for monoidal pseudofunctors [189], we obtain a monoidal structure on the bicategory of

copy-composite bayesian lenses.

Corollary 5.4.5. The bicategory of copy-composite Bayesian lenses BayesLens2 is a monoidal

bicategory. The monoidal unit is the object pI, Iq. The tensor b is given on 0-cells by pX,Aq b

pX 1, A1q :“ pX bX 1, AbA1q, and on hom-categories by

BayesLens2
`

pX,Aq, pY,Bq
˘

ˆ BayesLens2
`

pX,Aq, pY,Bq
˘

“ Coparal2pCqpX,Y q ˆ Stat2pXqpB,Aq ˆ Coparal2pCqpX 1, Y 1q ˆ Stat2pX 1qpB1, A1q

„
ÝÑ Coparal2pCqpX,Y q ˆ Coparal2pCqpX 1, Y 1q ˆ Stat2pXqpB,Aq ˆ Stat2pX 1qpB1, A1q

b ˆµ op

X,X1

ÝÝÝÝÝÝÑ Coparal2pCqpX bX 1, Y b Y 1q ˆ Stat2pX bX 1qpB bB1, AbA1q

“ BayesLens2
`

pX,Aq b pX 1, A1q, pY,Bq b pY 1, B1q
˘

.

And similarly, we obtain a monoidal structure on statistical games.

Proposition 5.4.6. The bicategory of copy-composite statistical games SGame is a monoidal

bicategory. The monoidal unit is the object pI, Iq. The tensor b is given on 0-cells as for the tensor

of Bayesian lenses, and on hom-categories by

SGame
`

pX,Aq, pY,Bq
˘

ˆ SGame
`

pX 1, A1q, pY 1, B1q
˘

“ BayesLens2
`

pX,Aq, pY,Bq
˘

ˆ StatpXqpB, Iq

ˆ BayesLens2
`

pX 1, A1q, pY 1, B1q
˘

ˆ StatpX 1qpB1, Iq

„
ÝÑ BayesLens2

`

pX,Aq, pY,Bq
˘

ˆ BayesLens2
`

pX 1, A1q, pY 1, B1q
˘

ˆ StatpXqpB, Iq ˆ StatpX 1qpB1, Iq

b ˆµX,X1

ÝÝÝÝÝÝÑ BayesLens2
`

pX,Aq b pX 1, A1q, pY,Bq b pY 1, B1q
˘

ˆ StatpX bX 1qpB bB1, I b Iq

„
ÝÑ SGame

`

pX,Aq b pX 1, A1q, pY,Bq b pY 1, B1q
˘

where here µ indicates the multiplication of the monoidal structure on Stat (cf. Proposition 4.3.6).

Having obtained a monoidal structure on statistical games, we are in a position to ask for

monoidal structures on inference systems and loss models:

Definition 5.4.7. A monoidal inference system is an inference system pD, ℓq for which ℓ is a lax

monoidal pseudofunctor. A monoidal loss model is a loss model L which is a lax monoidal lax

functor.
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To make sense of this definition, we need a notion of lax monoidal structure appropriate for

strong (pseudo-) and lax functors: a lax-functor generalization of the notion of lax monoidal

functor
12
from Definition 3.1.11. Just as a lax monoidal structure on a functor is given by equipping

the functor with natural transformations, a lax monoidal structure on a lax functor is given by

equipping it with pseudonatural transformations. The general structure is given by Moeller and

Vasilakopoulou [189, §2.2] for the case of pseudofunctors; the lax case is similar.

In the following remark, we instantiate this structure for loss models.

Remark 5.4.8. A loss model L : B Ñ SGame is lax monoidal when it is equipped with strong

transformations

B ˆ B SGame ˆ SGame

B SGame

bB bG

LˆL

L

λ and

1

B SGame

pI,Iq

pI,Iq

L

λ0

where bB and bG denote the monoidal products on B ãÑ BayesLens2 and SGame respectively,

and when λ and λ0 are themselves equipped with invertible modifications satisfying coherence

axioms, as in Moeller and Vasilakopoulou [189, §2.2].

Note that, because L must be a (lax) section of the 2-fibration πLoss|B : SGame|B Ñ B, the

unitor λ0 is forced to be trivial, picking out the identity on the monoidal unit pI, Iq. Likewise, the

laxator λ : Lp´q b Lp“q ñ Lp´ b “q must have 1-cell components which are identities:

LpX,Aq b LpX 1, Aq “ pX,Aq b pX 1, A1q “ pX bX 1, AbA1q “ L
`

pX,Aq b LpX 1, Aq
˘

The interesting structure is therefore entirely in the 2-cells. We follow the convention of [145,

Def. 4.2.1] that a strong transformation is a lax transformation with invertible 2-cell components.

Supposing that pc, c1q : pX,Aq ÞÑ pY,Bq and pd, d1q : pX 1, A1q ÞÑ pY 1, B1q are 1-cells in B, the

corresponding 2-cell component of λ has the form λc,d : L
`

pc, c1q b pd, d1q
˘

ñ Lpc, c1q b Lpd, d1q,

hence filling the following square in SGame:

pX,Aq b pX 1, A1q pY,Bq b pY 1, B1q

pX,Aq b pX 1, A1q pY,Bq b pY 1, B1q

Lpc,c1qbLpd,d1q

Lppc,c1qbpd,d1qq

λc,d

Intuitively, these 2-cells witness the failure of the tensor Lpc, c1q b Lpd, d1q of the parts to account

for correlations that may be evident to the “whole system” L
`

pc, c1q b pd, d1q
˘

.

12

Note that, although lax functors themselves generalize lax monoidal functors (as bicategories generalize monoidal

categories), lax monoidal lax functors are different again, adding another dimension (as monoidal functors add a

dimension to functors): a lax monoidal lax functor is equivalently a homomorphism of one-object tricategories.

216



Just as there is a notion of monoidal natural transformation accompanying the notion of monoidal

functor (recall Definition 3.1.13), there is a notion of monoidal icon between lax monoidal lax

functors
13
, from which we obtain a symmetric monoidal category of monoidal loss models.

Proposition 5.4.9. Monoidal loss models and monoidal icons form a subcategory MonLosspBq of

LosspBq, and the symmetric monoidal structure p`, 0q on the latter restricts to the former.

5.4.1. Examples

In this section, we present the monoidal structure on the loss models considered above. Because

loss models L are (lax) sections, following Remark 5.4.8, this monoidal structure is given in each

case by a lax natural family of 2-cells λc,d : L
`

pc, c1q b pd, d1q
˘

ñ Lpc, c1q b Lpd, d1q, for each

pair of lenses pc, c1q : pX,Aq ÞÑ pY,Bq and pd, d1q : pX 1, A1q ÞÑ pY 1, B1q. Such a 2-cell λc,d is

itself given by a loss function of type B bB1 XbX 1

ÝÝÝÝÑ‚ I satisfying the equation L
`

pc, c1q b pd, d1q
˘

“

Lpc, c1q b Lpd, d1q ` λc,d; we can think of it as measuring the difference between the joint game

L
`

pc, c1q b pd, d1q
˘

and the “mean field” games Lpc, c1q and Lpd, d1q taken together.

Following Johnson and Yau [145, Eq. 4.2.3], lax naturality requires that λ satisfy the following

equation of 2-cells, whereK denotes the laxator (with respect to horizontal composition ˛) with

componentsKpe, cq : Le ˛ Lc ñ Lpe � cq:

pY,Bq b pY 1, B1q

pX,Aq b pX 1, A1q pZ,Cq b pZ 1, C 1q

Lpcbdq Lpebfq

L
´

pe�cqbpf�dq

¯

Lpe�cqbLpf�dq

Kpebf,cbdq

λpe�c,f�dq

“

pY,Bq b pY 1, B1q

pX,Aq b pX 1, A1q pY,Bq b pY 1, B1q pZ,Cq b pZ 1, C 1q

Lpcbdq Lpebfq

Lpe�cqbLpf�dq

LcbLd LebLf

λpc,dq λpe,fq

Kpe,cqbKpf,dq

13

The notion of monoidal icon can be obtained by weakening the notion of monoidal pseudonatural transformation

given by Moeller and Vasilakopoulou [189, §2.2].
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Since vertical composition in SGame is given on losses by `, we can write this equation as

λpe � c, f � dq `Kpeb f, cb dq

“ λpe, fq ˛ λpc, dq `Kpe, cq bKpf, dq

“ λpe, fqcbd ` λpc, dq ˝ pe1 b f 1qcbd `Kpe, cq bKpf, dq . (5.10)

In each of the examples below, therefore, we establish the definition of the laxator λ and check that

it satisfies equation 5.10.

We will often use the notation p´qX to denote projection onto a factorX of a monoidal product.

5.4.1.1. Relative entropy

Proposition 5.4.10. The loss model KL of Proposition 5.3.22 is lax monoidal. Supposing that

pc, c1q : pX,Xq ÞÑ pY, Y q and pd, d1q : pX 1, X 1q ÞÑ pY 1, Y 1q are lenses in B, the corresponding

component λKLpc, dq of the laxator is given, for ω : IÑ‚ X bX 1
and py, y1q : Y b Y 1

, by

λKLpc, dqωpy, y1q :“ E
px,x1,m,m1q „

pc1
ωX

b d1
ω
X1

qpy,y1q

„

log
pωXbωX1 px, x

1q

pωpx, x1q

ȷ

` log
ppcbdq ‚ωpy, y1q

ppcbdq ‚pωXbωX1 qpy, y1q
.

(Note that the first term has the form of a “posterior mutual information” and the second a

log-likelihood ratio.)

Proof. We have

`

KLpcq b KLpdq
˘

ω
py, y1q

“ E
px,mq„c1

ωX
pyq

”

log pc1
ωX

px,m|yq ´ log p
c:
ωX

px,m|yq

ı

` E
px1,m1q„d1

ω
X1

py1q

„

log pd1
ω
X1

px1,m1|y1q ´ log p
d:
ω
X1

px1,m1|y1q

ȷ

“ E
px,x1,m,m1q „

pc1
ωX

b d1
ω
X1

qpy,y1q

„

log pc1
ωX

b d1
ω
X1

px, x1,m,m1|y, y1q ´ log p
c:
ωX

b d:
ω
X1

px, x1,m,m1|y, y1q

ȷ

and

`

KLpcb dqωpy, y1q

“ E
px,x1,m,m1q „

pc1
ωX

b d1
ω
X1

qpy,y1q

”

log pc1
ωX

b d1
ω
X1

px, x1,m,m1|y, y1q ´ log p
pcbdq

:
ω

px, x1,m,m1|y, y1q

ı

.
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Using Bayes’ rule, we can rewrite the exact inversions in these expressions, obtaining

`

KLpcq b KLpdq
˘

ω
py, y1q

“ E
px,x1,m,m1q „

pc1
ωX

b d1
ω
X1

qpy,y1q

”

log pc1
ωX

b d1
ω
X1

px, x1,m,m1|y, y1q ´ log pcpy,m|xq ´ log pdpy1,m1|x1q

´ log pωX pxq ´ log pωX1 px
1q ` log pc ‚ωX

pyq ` log pd ‚ωX1
py1q

ı

and

`

KLpcb dqωpy, y1q

“ E
px,x1,m,m1q „

pc1
ωX

b d1
ω
X1

qpy,y1q

”

log pc1
ωX

b d1
ω
X1

px, x1,m,m1|y, y1q ´ log pcpy,m|xq ´ log pdpy1,m1|x1q

´ log pωpx, x1q ` log ppcbdq ‚ωpy, y1q

ı

.

We define λKLpc, dqωpy, y1q as the difference from
`

KLpcb dqωpy, y1q to
`

KLpcq b KLpdq
˘

ω
py, y1q,

and so, with a little rearranging, we obtain the expression above:

λKLpc, dqωpy, y1q :“
`

KLpcb dqωpy, y1q ´
`

KLpcq b KLpdq
˘

ω
py, y1q

“ E
px,x1,m,m1q „

pc1
ωX

b d1
ω
X1

qpy,y1q

„

log
pωXbωX1 px, x

1q

pωpx, x1q

ȷ

` log
ppcbdq ‚ωpy, y1q

ppcbdq ‚pωXbωX1 qpy, y1q
.

Next, we need to validate lax naturality. Since KL is strict on losses, we need only check that

λKLpe � c, f � dq “ λKLpe, fqcbd ` λKLpc, dq ˝ pe1 b f 1qcbd .

By definition, we have

`

λKLpe, fqcbd
˘

ω
pz, z1q

“ E
py,y1,n,n1q „

pe1
cb f 1

dqωpz,z1q

«

log
ppcbdq ‚pωXbωX1 qpy, y

1q

ppcbdq ‚ωpy, y1q

ff

` log
ppebfq ‚pcbdq ‚ωpz, z1q

ppebfq ‚pcbdq ‚pωXbωX1 qpz, z1q

and

`

λKLpc, dq ˝ pe1 b f 1qcbd
˘

ω
pz, z1q

“ E
py,y1,n,n1q „

pe1
cb f 1

dqωpz,z1q

»

—

—

–

E
px,x1,m,m1q „

pc1
ωX

b d1
ω
X1

qpy,y1q

„

log
pωXbωX1 px, x

1q

pωpx, x1q

ȷ

` log
ppcbdq ‚ωpy, y1q

ppcbdq ‚pωXbωX1 qpy, y1q

fi

ffi

ffi

fl

.
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And so we also have

λKLpe � c, f � dqωpz, z1q

“ E
px,x1,m,m1q „

`

pc1˝e1
cqbpd1˝f 1

dq

˘

ω
pz,z1q

„

log
pωXbωX1 px, x

1q

pωpx, x1q

ȷ

` log
ppebfq ‚pcbdq ‚ωpz, z1q

ppebfq ‚pcbdq ‚pωXbωX1 qpz, z1q

“
`

λKLpc, dq ˝ pe1 b f 1qcbd
˘

ω
pz, z1q `

`

λKLpe, fqcbd
˘

ω
pz, z1q

thereby establishing the lax naturality of λKL, by the commutativity of `.

Remark 5.4.11. Although KL is lax monoidal, its laxness arises from the state-dependence of the

inversions, and we saw in the opening of this chapter, and then more formally in Remark 5.3.23,

that in its simplest form the relative entropy does not depend on the inversions; in some sense, the

statistical game structure is extraneous.

In Remark 5.3.23, we saw thatDKL defines a strict section of a 2-fibration

ş

K
πK
ÝÝÑ B, attaching

relative entropies to parallel pairs of channels and capturing their chain rule compositionally.

Since this section does not involve any inversions, we may thus wonder whether it is more than

lax monoidal: and indeed it is! DKL is in fact a strong monoidal section which is moreover

strict monoidal on the losses themselves. The laxator simply maps pc, c1, DKLpc, c1qq and

pd, d1, DKLpd, d1qq to pc b d, c1 b d1, DKLpc, c1q ` DKLpd, d1qq; and indeed it is easy to verify

that DKLpcb d, c1 b d1q “ DKLpc, c1q `DKLpd, d1q.

5.4.1.2. Maximum likelihood estimation

Proposition 5.4.12. The loss modelMLE of Proposition 5.3.25 is lax monoidal. Supposing that

pc, c1q : pX,Xq ÞÑ pY, Y q and pd, d1q : pX 1, X 1q ÞÑ pY 1, Y 1q are lenses in B, the corresponding

component λMLEpc, dq of the laxator is given, for ω : IÑ‚ X bX 1
and py, y1q : Y b Y 1

, by

λMLEpc, dqωpy, y1q :“ log
ppcbdq ‚pωXbωX1 qpy, y

1q

ppcbdq ‚ωpy, y1q
.

Proof. To obtain the definition of λMLEpc, dq, we consider the difference from MLEpc b dq to

MLEpcq b MLEpdq:

λMLEpc, dqωpy, y1q :“ MLEpcb dqωpy, y1q ´
`

MLEpcq b MLEpdq
˘

ω
py, y1q

“ ´ log ppcbdq ‚ωpy, y1q ` log pc ‚ωX
pyq ´ log pd ‚ωX1

py1q

“ log
ppcbdq ‚pωXbωX1 qpy, y

1q

ppcbdq ‚ωpy, y1q
.
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To demonstrate lax naturality, recall that MLE is a lax section, so we need to consider the

corresponding ˛-laxator. From Proposition 5.3.25, the laxatorKMLEpe, cq : MLEpeq ˛ MLEpcq ñ

MLEpe � cq is given byKMLEpe, cq :“ MLEpcq ˝ e1
c. Next, observe that

λMLEpe � c, f � dqωpz, z1q “ log
p`

pe‚cq bpf‚dq

˘

‚pωXbωX1 q
pz, z1q

p`
pe‚cq bpf‚dq

˘

‚ω
pz, z1q

“ log
ppebfq ‚pcbdq ‚pωXbωX1 qpz, z

1q

ppebfq ‚pcbdq ‚ωpz, z1q

“ λMLEpe, fqpcbdq‚ωpz, z1q .

Consequently, we need to verify the equation

MLEpcb dq ˝ peb f 1qcbd “ λMLEpc, dq ˝ pe1 b f 1qcbd `
`

MLEpcq b MLEpdq
˘

˝ pe1 b f 1qcbd

which, by bilinearity of effects, is equivalent to verifying

MLEpcb dq “ λMLEpc, dq ` MLEpcq b MLEpdq .

But, since ` is commutative, this is satisfied by the definition of λMLEpc, dq as a 2-cell of type

MLEpcb dq ñ MLEpcq b MLEpdq.

5.4.1.3. Free energy

Since KL andMLE are both lax monoidal, it follows that so is FE.

Corollary 5.4.13. The loss model FE of Definition 5.3.26 is lax monoidal. Supposing that pc, c1q :

pX,Xq ÞÑ pY, Y q and pd, d1q : pX 1, X 1q ÞÑ pY 1, Y 1q are lenses in B, the corresponding component

λFEpc, dq of the laxator is given, for ω : IÑ‚ X bX 1
and py, y1q : Y b Y 1

, by

λFEpc, dqωpy, y1q :“ E
px,x1q„pc1

ωX
bd1

ω
X1

qpy,y1q

„

log
pωXbωX1 px, x

1q

pωpx, x1q

ȷ

.

Proof. FE is defined as KL`MLE, and hence λFE is obtained as λKL ` λMLE
. Since ` is functorial,

it preserves lax naturality, and so λFE is also lax natural. λFE is thus a strong transformation

FEp´q b FEp“q ñ FEp´ b “q, and hence FE is lax monoidal by Remark 5.4.8.

5.4.1.4. Laplacian free energy

In order to demonstrate that the lax monoidal structure on FE is not destroyed by the Laplace

approximation, we prove explicitly that LFE is also lax monoidal.
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Proposition 5.4.14. The loss model LFE of Propositions 5.3.31 and 5.3.33 is lax monoidal.

Supposing that pc, c1q : pX,Xq ÞÑ pY, Y q and pd, d1q : pX 1, X 1q ÞÑ pY 1, Y 1q are lenses in B, the

corresponding component λLFEpc, dq of the laxator is given, for ω : IÑ‚ XbX 1
and py, y1q : Y bY 1

,

by

λLFEpc, dqωpy, y1q :“ log
pωXbωX1 pµpcbdq1

ω
py, y1qXX 1q

pωpµpcbdq1
ω

py, y1qXX 1q

where µpcbdq1
ω

py, y1qXX 1 is the pX bX 1q-mean of the Gaussian distribution pc1
ωX

b d1
ωX1

qpy, y1q.

Proof. We have

LFEpcb dqωpy, y1q

“ ´ log pcbdpµpc1bd1qωpy, y1q, y, y1q ´ log pωpµpc1bd1qωpy, y1qXX 1q

´ SXX 1MM 1

“

pc1 b d1qωpy, y1q
‰

“ ´ log pcpµc1
ωX

pyq, yq ´ log pdpµd1
ω
X1

py1q, y1q ´ pωpµpc1bd1qωpy, y1qXX 1q

´ SXM
“

c1
ωX

pyq
‰

´ SX 1M 1

”

d1
ωX1

py1q

ı

and

`

LFEpcq b LFEpdq
˘

ω
py, y1q

“ LFEpcqωX pyq ` LFEpdqωX1 py
1q

“ ´ log pcpµc1
ωX

pyq, yq ´ pωX pµcωX
pyqXq ´ SXM

“

c1
ωX

pyq
‰

´ log pdpµd1
ω
X1

py1q, y1q ´ pωX1 pµd1
ω
X1

py1qX 1q ´ SX 1M 1

”

d1
ωX1

py1q

ı

so that

λLFEpc, dqωpy, y1q “ LFEpcb dqωpy, y1q ´
`

LFEpcq b LFEpdq
˘

ω
py, y1q

“ log
pωXbωX1 pµpcbdq1

ω
py, y1qXX 1q

pωpµpcbdq1
ω

py, y1qXX 1q

as given above.

We need to verify lax naturality, which means checking the equation

λLFEpe� c, f � dq `κpeb f, cb dq “ λLFEpe, fqcbd `λLFEpc, dq ˝ pe1 b f 1qcbd `κpe, cq bκpf, dq

where κ is the ˛-laxator with components κpe, cq : LFEpeq ˛ LFEpcq ñ LFEpe � cq given by

κpe, cqπpzq “
1

2
tr
”´

B2
yE

µ
pc,πq

¯

`

µe1
c‚π

pzqY
˘

Σe1
c‚π

pzqY Y

ı

´ log pc ‚π

`

µe1
c‚π

pzqY
˘

.

222



(see Proposition 5.3.33). We have

λLFEpe � c, f � dq “ log
pωXbωX1 pµpcbdq1

ω
pµpebfq1

pcbdq‚ω
pz, z1qY Y 1qXX 1q

pωpµpcbdq1
ω

pµpebfq1
pcbdq‚ω

pz, z1qY Y 1qXX 1q

“ λLFEpc, dqωpµpebfq1
pcbdq‚ω

pz, z1qY Y 1qXX 1q

and, by the Laplace approximation,

`

λLFEpc, dq ˝ pe1 b f 1qcbdqωpz, z1q

“ E
py,y1,n,n1q „

pe1
cb f 1

dqωpz,z1q

”

λLFEpc, dqωpy, y1q

ı

« λLFEpc, dqωpµpebfq1
pcbdq‚ω

pz, z1qY Y 1q

`
1

2
tr
”´

B2
py,y1qλ

LFEpc, dqω

¯´

µpebfq1
pcbdq‚ω

pz, z1qY Y 1

¯

Σpebfq1
pcbdq‚ω

pz, z1qpY Y 1qpY Y 1q

ı

.

We also have

`

κpe, cq b κpf, dq
˘

ω
pz, z1q

“ κpe, cqωX pzq ` κpf, dqωX1 pz
1q

“
1

2
tr
”´

B2
yE

µ
pc,ωXq

¯

`

µe1
c‚ωX

pzqY
˘

Σe1
c‚ωX

pzqY Y

ı

´ log pc ‚ωX

`

µe1
c‚ωX

pzqY
˘

`
1

2
tr

„

´

B2
y1E

µ
pd,ωX1 q

¯

`

µf 1
d‚ω

X1
pz1qY 1

˘

Σf 1
d‚ω

X1
pz1qY 1Y 1

ȷ

´ log pd ‚ωX1

`

µf 1
d‚ω

X1
pz1qY 1

˘

“
1

2
tr
” ´

B2
py,y1qE

µ
pcbd,ωXbωX1 q

¯

`

µpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qY Y 1

˘

Σpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qpY Y 1qpY Y 1q

ı

´ log ppcbdq ‚pωXbωX1 q

`

µpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qY Y 1

˘

.

The left-hand side of the lax naturality equation is therefore given by

`

λLFEpe � c, f � dq ` κpeb f, cb dq
˘

ω
pz, z1q

“ λLFEpc, dqωpµpebfq1
pcbdq‚ω

pz, z1qY Y 1q

`
1

2
tr
”´

B2
py,y1qE

µ
pcbd,ωq

¯

`

µpebfq1
pcbdq‚ω

pz, z1qY Y 1

˘

Σpebfq1
pcbdq‚ω

pz, z1qpY Y 1qpY Y 1q

ı

´ log ppcbdq‚ω

`

µpebfq1
pcbdq‚ω

pz, z1qY Y 1

˘
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while the right-hand side is given by

`

λLFEpe, fqcbd ` λLFEpc, dq ˝ pe1 b f 1qcbd ` κpe, cq b κpf, dq
˘

ω
pz, z1q

“ log
ppcbdq ‚pωXbωX1 qpµpebfq1

pcbdq‚ω
pz, z1qY Y 1q

ppcbdq ‚ωpµpebfq1
pcbdq‚ω

pz, z1qY Y 1q

` λLFEpc, dqωpµpebfq1
pcbdq‚ω

pz, z1qY Y 1q

`
1

2
tr
”´

B2
py,y1qλ

LFEpc, dqω

¯´

µpebfq1
pcbdq‚ω

pz, z1qY Y 1

¯

Σpebfq1
pcbdq‚ω

pz, z1qpY Y 1qpY Y 1q

ı

`
1

2
tr
” ´

B2
py,y1qE

µ
pcbd,ωXbωX1 q

¯

`

µpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qY Y 1

˘

Σpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qpY Y 1qpY Y 1q

ı

´ log ppcbdq ‚pωXbωX1 q

`

µpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qY Y 1

˘

“ ´ log ppcbdq ‚ωpµpebfq1
pcbdq‚ω

pz, z1qY Y 1q ` λLFEpc, dqωpµpebfq1
pcbdq‚ω

pz, z1qY Y 1q

`
1

2
tr
”´

B2
py,y1qλ

LFEpc, dqω

¯´

µpebfq1
pcbdq‚ω

pz, z1qY Y 1

¯

Σpebfq1
pcbdq‚ω

pz, z1qpY Y 1qpY Y 1q

ı

`
1

2
tr
” ´

B2
py,y1qE

µ
pcbd,ωXbωX1 q

¯

`

µpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qY Y 1

˘

Σpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qpY Y 1qpY Y 1q

ı

.

The difference from the left- to the right-hand side is thus

1

2
tr
”´

B2
py,y1qE

µ
pcbd,ωq

¯

`

µpebfq1
pcbdq‚ω

pz, z1qY Y 1

˘

Σpebfq1
pcbdq‚ω

pz, z1qpY Y 1qpY Y 1q

ı

´
1

2
tr
” ´

B2
py,y1qE

µ
pcbd,ωXbωX1 q

¯

`

µpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qY Y 1

˘

Σpebfq1
pcbdq‚pωXbω

X1 q
pz, z1qpY Y 1qpY Y 1q

ı

´
1

2
tr
”´

B2
py,y1qλ

LFEpc, dqω

¯´

µpebfq1
pcbdq‚ω

pz, z1qY Y 1

¯

Σpebfq1
pcbdq‚ω

pz, z1qpY Y 1qpY Y 1q

ı

.

Now, by definition Σpebfq1
pcbdq‚ω

“ Σpebfq1
pcbdq‚pωXbω

X1 q
, and so by the linearity of the trace and of

derivation, this difference simplifies to

1

2
tr
” ´

B2
py,y1q

´

Eµ
pcbd,ωq

´ Eµ
pcbd,ωXbωX1 q

´ λLFEpc, dqω

¯¯

`

µpebfq1
pcbdq‚ω

pz, z1qY Y 1

˘

Σpebfq1
pcbdq‚ω

pz, z1qpY Y 1qpY Y 1q

ı

.
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Recall from the proof of Proposition 5.3.33 that Eµ
pc,πq

pyq :“ Epc,πq

`

µc1
π

pyq, y
˘

, and hence

`

Eµ
pcbd,ωq

´ Eµ
pcbd,ωXbωX1 q

˘

py, y1q

“
`

Epcbd,ωq ´ Epcbd,ωXbωX1 q

˘`

µpcbdq1
ω

py, y1q, y, y1
˘

“ ´ log pωpµpcbdq1
ω

py, y1qXX 1q ` log pωXbωX1 pµpcbdq1
ω

py, y1qXX 1q

“ log
pωXbωX1 pµpcbdq1

ω
py, y1qXX 1q

pωpµpcbdq1
ω

py, y1qXX 1q

“ λLFEpc, dqωpy, y1q

so that Eµ
pcbd,ωq

´Eµ
pcbd,ωXbωX1 q

´ λLFEpc, dqω “ 0. This establishes that λLFE is lax natural.

5.5. Discussion

Having established the basic structure of statistical games and a handful of examples, there is much

more to be done, and so in this section we discuss a number of seemingly fruitful avenues of future

research.

An important such avenue is the link between this structure and the similar structure of

diegetic open (economic) games [51], a recent reformulation of compositional game theory [119],

which can also be understood as a constituting a fibration over lenses. Accordingly, the close

connection between game theory and reinforcement learning [25, 128] suggests that algorithms

for approximate inference (such as expectation-maximization) and reinforcement learning (such

as dynamic programming) are more than superficially similar. More broadly, we expect all three

of active inference, game theory, and reinforcement learning to fit into the general programme

of categorical systems theory [192] (with cybernetic extensions [54, 251]), and we expect that

reframing these disciplines in this way will elucidate their relationships. In Chapter 7, we supply

functorial dynamical semantics for approximate inference — a form of approximate inference

algorithm — but we leave the expression of this in systems-theoretic terms to future work. Likewise,

we leave to the future the study of the performance and convergence of algorithms built upon these

compositional foundations
14
.

Another avenue for further investigation concerns mathematical neatness. First, we seek an

abstract characterization of copy-composition and Copara2: Owen Lynch has suggested to us

14

It is not clear that the fixed points of jointly optimizing the factors of a composite statistical game are the same

as those of the optimization of the composite. If one is only concerned with optimizing the inversions, then the

lens-like composition rule tells us that we may proceed by backward induction, first optimizing the factor nearest the

codomain, and then optimizing each remaining factor in turn back towards the domain. But the problem is harder if

we also wish to optimize the forward channels, as the inversion nearest the codomain still depends on the forward

channel nearest the domain.
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that the computation by compilers of “static single-assignment form” (SSA) [152] by compilers may

have a similar structure, and so we expect an abstract characterization to capture both SSA and our

examples; we also hope that a more abstract approach will alleviate some of the higher-categorical

complexity resulting from the weakness of copy-composition. Second, the explicit constraint

defining simple coparameterized Bayesian lenses is inelegant; as indicated in Remark 5.2.21, we

expect that using dependent optics [43, 50, 276] may help to encode this constraint in the type

signature, at the cost of higher-powered mathematical machinery.

Finally, we seek further examples of loss models, and more abstract (and hopefully universal)

characterizations of those we already have; for example, it is known that the Shannon entropy has

a topological origin [40] via a “nonlinear derivation” [169], and we expect that we can follow this

connection further. In following this path, we expect to make use of the duality between algebra

and geometry [180, 194] (and their intersection in (quantitative) categorical logic [55, 140]), for

as we have already noted, loss functions have a natural algebraic structure. We consider such

investigations part of the nascent field of categorical information geometry.
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6. Open dynamical systems, coalgebraically

In Chapter 3, we saw how to compose neural circuits together using an algebraic approach

to connectomics. These neural circuits are dynamical systems, formalized as sets of ordinary

differential equations. However, simply specifying these sets obscures the general compositional

structure of dynamical systems themselves, the revelation of which supports a subtler intertwining

of syntax and semantics, form and function—or, as it happens, algebra and coalgebra. In this

chapter we begin by introducing categorical language for describing general dynamical systems

‘behaviourally’. These systems will be ‘closed’ (non-interacting), and so we then explain how the

language of coalgebra, and specifically polynomial coalgebras, can be used to open them up.

However, traditional coalgebraic methods are restricted to discrete-time dynamical systems,

whereas we are also interested in the continuous-time systems that are commonly used in science,

such as our earlier neural circuits. This motivates the development of a class of generalized

polynomial coalgebras that model open systems governed by a general time monoid, and which

therefore encompass systems of dynamically interacting ordinary differential equations. In order to

account for stochastic dynamics, we generalize the situation still further, by redefining the category

of polynomial functors so that it can be instantiated in a nondeterministic setting. This will show us

how to define open Markov processes coalgebraically, and we also demonstrate related categories

of open random dynamical systems.

Finally, we use the polynomial setting to package these systems into monoidal bicategories of

‘hierarchical’ cybernetic systems, of which some are usefully generated differentially. In the next

chapter, these bicategories will provide the setting in which we cast the dynamical semantics of

approximate inference.

Remark 6.0.1. The story told in this chapter is of a form similar to that of categorical systems

theory [191, 192], in which systems on interfaces collect into (doubly) indexed (double) categories.

That story tells a general tale, but here we are interested in a specific case: coalgebraic systems

with polynomial interfaces whose time evolution is governed by an arbitrary monoid and which

may have non-determinism or side effects governed by a monad. Such systems appear to sit at a
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sweet spot of scientific utility; in particular, the next chapter will use them to formalize models of

predictive coding. In future work, we intend to connect the two stories, expressing our generalized

polynomial coalgebras in the double-categorical framework.

6.1. Categorical background on dynamics and coalgebra

In this section, we introduce the backgroundmaterial needed for our development of open dynamical

systems as polynomial coalgebras.

6.1.1. Dynamical systems and Markov chains

We begin by recalling a ‘behavioural’ approach to dynamical systems popularized by Lawvere

and Schnauel [164] (who give a pedagogical account). These systems are ‘closed’ in the sense that

they do not require environmental interaction for their evolution. Later, when we consider open

systems, their ‘closures’ (induced by interaction with an environment) will constitute dynamical

systems of this form.

The evolution of dynamics is measured by time, and we will take time to be represented by

an arbitrary monoid pT,`, 0q. This allows us to consider time-evolution that is not necessarily

reversible, such as governed by N or R`, as well as reversible evolution that is properly governed

by groups such as Z or R. With this in mind, we give a classic definition of dynamical system, as a

T-action.

Remark 6.1.1. We will work in an abstract category E whose objects are considered to be “state

spaces”; its morphisms will determine the nature of the dynamical evolution. Therefore, for

deterministic systems, we can take E simply to be Set, or alternatively some other Cartesian

category or category of comonoid homomorphisms. For stochastic systems, we may take E to be

a copy-discard category such as KℓpDq or sfKrn, or some other category whose morphisms are

considered to be stochastic maps. For differential systems, we will require E to be equipped with a

tangent bundle endofunctor T; more on this in §6.3.2.

Definition 6.1.2. Let pT,`, 0q be a monoid, representing time. Let X : E be some space, called

the state space. Then a closed dynamical system ϑ with state space X and time T is an action of

T on X . When T is also an object of E , then this amounts to a morphism ϑ : T ˆ X Ñ X (or

equivalently, a time-indexed family of X-endomorphisms, ϑptq : X Ñ X), such that ϑp0q “ idX

and ϑps ` tq “ ϑpsq ˝ ϑptq. In this dynamical context, we will refer to the action axioms as the

flow conditions, as they ensure that the dynamics can ‘flow’.
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Note that, in discrete time, this definition implies that a dynamical system is governed by a single

transition map.

Proposition 6.1.3. In discrete time T “ N, any dynamical system ϑ is entirely determined by its

action at 1 : T. That is, letting the state space be X , we have ϑptq “ ϑp1q˝t
where ϑp1q˝t

means

“compose ϑp1q : X Ñ X with itself t times”.

Proof. The proof is by induction on t : T. We must have ϑp0q “ idX and ϑpt` sq “ ϑptq ˝ϑpsq. So

for any t, we must have ϑpt` 1q “ ϑptq ˝ ϑp1q. The result follows immediately; note for example

that ϑp2q “ ϑp1 ` 1q “ ϑp1q ˝ ϑp1q.

An ordinary differential equation 9x “ fpxq defines a vector field x ÞÑ px, fpxqq on its state

space X , and its solutions xptq for t : R define in turn a closed dynamical system, as the following

example sketches.

Example 6.1.4. Let T denote a tangent bundle functor E Ñ E on the ambient category of spaces

E . Suppose X : U Ñ TU is a vector field on U , with a corresponding solution (integral curve)

χx : R Ñ U for all x : U ; that is, χ1ptq “ Xpχxptqq and χxp0q “ x. Then letting the point x vary,

we obtain a map χ : R ˆU Ñ U . This χ is a closed dynamical system with state space U and time

R.

So far, we have abstained from using much categorical language. But these closed dynamical

systems have a simple categorical representation.

Proposition 6.1.5. Closed dynamical systems with state spaces in E and time T are the objects of

the functor category CatpBT, Eq, where BT is the delooping of the monoid T. (Recall delooping

from Prop. 3.1.24.) Morphisms of dynamical systems are therefore natural transformations.

Proof. The category BT has a single object ˚ and morphisms t : ˚ Ñ ˚ for each point t : T; the

identity is the monoidal unit 0 : T and composition is given by `. A functor ϑ : BT Ñ E therefore

picks out an object ϑp˚q : E , and, for each t : T, a morphism ϑptq : ϑp˚q Ñ ϑp˚q, such that

the functoriality condition is satisfied. Functoriality requires that identities map to identities and

composition is preserved, so we require that ϑp0q “ idϑp˚q and that ϑps` tq “ ϑpsq ˝ ϑptq. Hence

the data for a functor ϑ : BT Ñ E amount to the data for a closed dynamical system in E with

time T, and the functoriality condition amounts precisely to the flow condition. A morphism of

closed dynamical systems f : ϑ Ñ ψ is a map on the state spaces f : ϑp˚q Ñ ψp˚q that commutes
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with the flow, meaning that f satisfies f ˝ ϑptq “ ψptq ˝ f for all times t : T; this is precisely the

definition of a natural transformation f : ϑ Ñ ψ between the corresponding functors.

By changing the state space category E , this simple framework can represent different kinds of

dynamics. For example, by choosing E to be a category of stochastic channels, such as KℓpDq or

sfKrn, we obtain categories of closed Markov processes.

Example 6.1.6 (Closed Markov chains and Markov processes). A closed Markov chain is given by

a stochastic transition map XÑ‚ X , typically interpreted as a Kleisli morphism X Ñ PX for some

probability monad P : E Ñ E (cf. §4.1.5 on probability monads). Following the discussion above, a

closed Markov chain is therefore an object in Cat
`

BN,KℓpPq
˘

. With more general time T, one

obtains closed Markov processes: objects in Cat
`

BT,KℓpPq
˘

. More explicitly, a closed Markov

process is a time-indexed family of Markov kernels; that is, a morphism ϑ : T ˆX Ñ PX such

that, for all times s, t : T, ϑs`t “ ϑs ‚ ϑt as a morphism in KℓpPq. Note that composition ‚ in

KℓpPq is typically given by the Chapman-Kolmogorov equation, so this means that

ϑs`tpy|xq “

ż

x1:X
ϑspy|x1qϑtpdx

1|xq .

6.1.2. Coalgebra

We saw above that a closed discrete-time deterministic dynamical system is a function X Ñ X ,

and that a closed discrete-time Markov chain is a function X Ñ PX . This suggests a general

pattern for discrete-time dynamical systems, as morphisms X Ñ FX for some endofunctor F :

such a morphism is called a coalgebra for the endofunctor F .

Definition 6.1.7. Let F : E Ñ E be an endofunctor. A coalgebra for F , or F -coalgebra, is a pair

pX, cq of an object X : E and a morphism c : X Ñ FX .

A morphism of F -coalgebras or coalgebra morphism pX, cq Ñ pX 1, c1q is a morphism f : X Ñ

X 1
that commutes with the coalgebra structures; i.e., that makes the following diagram commute:

X X 1

FX FX 1

f

c c1

Ff

F -coalgebras and their morphisms constitute a category, denoted CoalgpF q. The identity

morphism on pX, cq is simply the identity morphism idX : X Ñ X .
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Remark 6.1.8. In §3.4.1, we briefly discussed the notion of coalgebra for a comonad, which is a

coalgebra in the sense of the preceding definition that additionally satisfies axioms dual to those

defining algebras for a monad (Definition 3.4.16). In our dynamical applications, the endofunctors

not in general be comonads, and so it does not make sense to demand such axioms.

Remark 6.1.9. At the same time, the duality of algebra and coalgebra underlies the subtle powers

of the field of coalgebraic logic, in which the algebraic structure of logical syntax is used to define

constraints on or propositions about the behaviours of dynamical systems[62, 72, 138, 162, 207].

These tools are particularly useful in setting of formal verification, where it is desirable to prove

that systems behave according to a specification (for instance, for safety reasons).

With the notion of F -coalgebra to hand, we immediately obtain categories of closed discrete-time

deterministic systems and Markov chains:

Example 6.1.10. The category of closed discrete-time deterministic dynamical systems in E is the

category Coalgpidq of coalgebras for the identity endofunctor idE : E Ñ E .

Example 6.1.11. Let P : E Ñ E be a probability monad on E . The category of Markov chains is

the category CoalgpPq of P-coalgebras.

Of course, polynomial functors are endofunctors Set Ñ Set, so they come with a notion of

coalgebra, and we may ask how such objects behave.

Example 6.1.12. Suppose p : Set Ñ Set is a polynomial functor. A coalgebra for p is a

function c : X Ñ pX for some set X . By Definition 3.5.2, we can write p as

ř

i:pp1q y
pris

, and

hence the p-coalgebra c has the form c : X Ñ
ř

i:pp1q X
pris

. Such a function corresponds to a

choice, for each x : X , of an element of pp1q which we denote copxq and an associated function

cux : prc1pxqs Ñ X . We can therefore write c equivalently as a pair pco, cuq where cu is the

coproduct

ř

x c
u
x :

ř

x prcopxqs Ñ X . We think of p as defining the interface of the dynamical

system represented by c, with pp1q encoding the set of possible ‘outputs’ or ‘configurations’ of the

system, each pris the set of possible ‘inputs’ for the system when it is in configuration i : pp1q, and

X as the dynamical state space. The coalgebra c can then be understood as an open discrete-time

dynamical system: the map cu takes a state x : X and a corresponding input in prcopxqs and returns

the next state; and the map co takes a state x : X and returns the system’s corresponding output or

configuration copxq.
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A pair of functions co : X Ñ pp1q and cu :
ř

x prcopxqs Ñ X is precisely a morphism

c : XyX Ñ p of polynomials, and so we have established a mapping from p-coalgebras pX, cq to

morphisms XyX Ñ p. In fact, we have a stronger result.

Proposition 6.1.13. There is an isomorphism of hom-sets PolypAyB, pq – SetpA, pBq natural

in A,B, p, and hence adjunctions p´qyB % p´q ˝ B : Poly Ñ Set and Ayp´q % p ˝ p´q :

Poly op Ñ Set.

Proof sketch. In Example 6.1.12, we established a mapping SetpA, pBq Ñ PolypAyB, pq for the

case where A “ B; the general case is analogous. The inverse mapping follows directly from

Proposition 3.5.4. Naturality in A and B follows from naturality of pre-composition; naturality in

p follows from naturality of post-composition.

Polynomial coalgebras therefore constitute a type of open discrete-time dynamical systems. But

what if we want open continuous-time dynamical systems: do these fit into the coalgebra formalism?

In a different direction, what if we want open Markov chains? In discrete time, we should be able to

consider coalgebras for composite endofunctors pP , but what if we want to do this in general time?

Let us turn now to answering these questions.

6.2. Open dynamical systems on polynomial interfaces

In this section, we begin by incorporating dynamical systems in general time into the coalgebraic

framework, before generalizing the notion of polynomial functor to incorporate ‘side-effects’ such

as randomness. The resulting framework will allow us to define types of system of interest, such as

open Markov processes, quite generally using coalgebraic methods, and in the subsequent sections

we will make much use of the newly available compositionality.

6.2.1. Deterministic systems in general time

In this section, let us suppose for simplicity that the ambient category E is Set. We will begin by

stating our general definition, before explaining the structures and intuitions that justify it.

Definition 6.2.1. A deterministic open dynamical system with interface p : Poly, state space

S : Set and time T : Set is a morphism β : SyS Ñ rTy, ps of polynomials, such that, for any

section σ : p Ñ y of p, the induced morphism

SyS
β
ÝÑ rTy, ps

rTy,σs
ÝÝÝÝÑ rTy, ys

„
ÝÑ yT

is a ◁-comonoid homomorphism.
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To see how such a morphism β is like an ‘open’ version of the closed dynamical systems

of §6.1.1, note that by the tensor-hom adjunction, β can equivalently be written with the type

TybSyS Ñ p. In turn, such a morphism corresponds to a pair pβo, βuq, where βo is the component

‘on configurations’ with the type T ˆ S Ñ pp1q, and βu is the component ‘on inputs’ with the

type

ř

t:T
ř

s:S prβopt, sqs Ñ S. We will call the map βo the output map, as it chooses an output

configuration for each state and moment in time; and we will call the map βu the update map, as it

takes a state s : S, a quantity of time t : T, and an input in prβopt, sqs, and returns a new state. We

might imagine the new state as being given by evolving the system from s for time t, and the input

as supplied while the system is in the configuration corresponding to ps, tq.

It is, however, not sufficient to consider merely such pairs β “ pβo, βuq to be our open dynamical

systems, for we need them to be like ‘open’ monoid actions: evolving for time t then for time s

must be equivalent to evolving for time t` s, given the same inputs. It is fairly easy to prove the

following proposition, whose proof we defer until after establishing the categories CoalgTppq,

when we prove it in an alternate form as Proposition 6.2.4.

Proposition 6.2.2. Comonoid homomorphisms SyS Ñ yT correspond bijectively with closed

dynamical systems with state space S, in the sense given by functors BT Ñ Set.

This establishes that seeking such a comonoid homomorphism will give us the monoid action

property that we seek, and so it remains to show that a composite comonoid homomorphism of the

form rTy, σs ˝ β is a closed dynamical system with the “right inputs”. Unwinding this composite,

we find that the condition that it be a comonoid homomorphism corresponds to the requirement

that, for any t : T, the closure βσ : T ˆ S Ñ S of β by σ given by

βσptq :“ S
βoptq˚σ
ÝÝÝÝÝÑ

ÿ

s:S

prβopt, sqs
βu

ÝÑ S

constitutes a closed dynamical system on S. The idea here is that σ gives the ‘context’ in which we

can make an open system closed, thereby formalizing the “given the same inputs” requirement

above.

With this conceptual framework in mind, we are in a position to render open dynamical systems

on p with time T into a category, which we will denote by CoalgTppq. Its objects will be pairs

pS, βq with S and β an open dynamical on p with state space S; we will often write these pairs

equivalently as triples pS, βo, βuq, making explicit the output and update maps. Morphisms will be

maps of state spaces that commute with the dynamics:
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Proposition 6.2.3. Open dynamical systems over p with time T form a category, denoted

CoalgTppq. Its morphisms are defined as follows. Let ϑ :“ pX,ϑo, ϑuq and ψ :“ pY, ψo, ψuq be

two dynamical systems over p. A morphism f : ϑ Ñ ψ consists in a morphism f : X Ñ Y such

that, for any time t : T and section σ : pp1q Ñ
ř

i:pp1q

pris of p, the following naturality squares

commute:

X
ř

x:X

prϑopt, xqs X

Y
ř

y:Y

prψopt, yqs Y

ϑoptq˚σ ϑuptq

f f

ψoptq˚σ ψuptq

The identity morphism idϑ on the dynamical system ϑ is given by the identity morphism idX on

its state space X . Composition of morphisms of dynamical systems is given by composition of the

morphisms of the state spaces.

Proof. We need to check unitality and associativity of composition. This amounts to checking that

the composite naturality squares commute. But this follows immediately, since the composite of

two commutative diagrams along a common edge is again a commutative diagram.

We can alternatively state Proposition 6.2.2 as follows, noting that the polynomial y represents

the trivial interface, exposing no configuration to any environment nor receiving any signals from

it:

Proposition 6.2.4. CoalgT
idpyq is equivalent to the classical category CatpBT,Setq of closed

dynamical systems in Set with time T.

Proof. The trivial interface y corresponds to the trivial bundle id1 : 1 Ñ 1. Therefore, a dynamical

system over y consists of a choice of state space S along with a trivial output map ϑo “ :

T ˆ S Ñ 1 and a time-indexed update map ϑu : T ˆ S Ñ S. This therefore has the form of a

classical closed dynamical system, so it remains to check the monoid action. There is only one

section of id1, which is again id1. Pulling this back along the unique map ϑoptq : S Ñ 1 gives

ϑoptq˚ id1 “ idS . Therefore the requirement that, given any section σ of y, the maps ϑu ˝ ϑoptq˚σ

form an action means in turn that so does ϑu : TˆS Ñ S. Since the pullback of the unique section

id1 along the trivial output map ϑoptq “ : S Ñ 1 of any dynamical system in CoalgT
idpyq is the

identity of the corresponding state space idS , a morphism f : pϑp˚q, ϑu, q Ñ pψp˚q, ψu, q in

CoalgT
idpyq amounts precisely to a map f : ϑp˚q Ñ ψp˚q on the state spaces in Set such that the
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naturality condition f ˝ ϑuptq “ ψuptq ˝ f of Proposition 6.1.5 is satisfied, and every morphism in

CatpBT,Setq corresponds to a morphism in CoalgT
idpyq in this way.

Now that we know that our concept of open dynamical system subsumes closed systems, let us

consider some more examples.

Example 6.2.5. Consider a dynamical system pS, ϑo, ϑuq with outputs but no inputs. Such a

system has a ‘linear’ interface p :“ Oy for some O; alternatively, we can write its interface p as

the ‘bundle’ idO : O Ñ O. A section of this bundle must again be idO, and so ϑoptq˚ idO “ idS .

Once again, the update maps collect into to a closed dynamical system in CatpBT,Setq; just now

we have outputs ϑo : T ˆ S Ñ pp1q “ O exposed to the environment.

Proposition 6.2.6. When time is discrete, as with T “ N, any open dynamical system pX,ϑo, ϑuq

over p is entirely determined by its components at 1 : T. That is, we haveϑoptq “ ϑop1q : X Ñ pp1q

and ϑuptq “ ϑup1q :
ř

x:X prϑopxqs Ñ X . A discrete-time open dynamical system is therefore a

triple pX,ϑo, ϑuq, where the two maps have types ϑo : X Ñ pp1q and ϑu :
ř

x:X prϑopxqs Ñ X .

Proof. Suppose σ is a section of p. We require each closure ϑσ to satisfy the flow conditions, that

ϑσp0q “ idX and ϑσpt`sq “ ϑσptq ˝ϑσpsq. In particular, we must have ϑσpt`1q “ ϑσptq ˝ϑσp1q.

By induction, this means that we must have ϑσptq “ ϑσp1q˝t
(compare Proposition 6.1.3). Therefore

we must in general have ϑoptq “ ϑop1q and ϑuptq “ ϑup1q.

Remark 6.2.7. Note that the preceding proposition means that the objects of CoalgNppq are

the objects of the traditional category Coalgppq of p-coalgebras. In fact, we have more than this:

CoalgNppq – Coalgppq; cf. Example 6.1.12 and Proposition 6.1.13.

Example 6.2.8. We can express ‘open’ vector fields in this framework. Suppose therefore thatX is

a differentiable manifold (and write X equally for its underlying set of points), and let 9x “ fpx, aq

and b “ gpxq, with f : X ˆ A Ñ TX and g : X Ñ B. Then, as for the ‘closed’ vector fields

of Example 6.1.4, this induces an open dynamical system pX,
ş

f, gq : CoalgRpByAq, where
ş

f : R ˆX ˆA Ñ X returns the pX,Aq-indexed solutions of f .

Example 6.2.9. The preceding example is easily extended to the case of a general polynomial

interface. Suppose similarly that 9x “ fpx, axq and b “ gpxq, now with f :
ř

x:X prgpxqs Ñ TX

and g : X Ñ pp1q. Then we obtain an open dynamical system pX,
ş

f, gq : CoalgRppq, where

now

ş

f : R ˆ
ř

x:X prgpxqs Ñ X is the ‘update’ and g : X Ñ pp1q the ‘output’ map.
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By letting the polynomial p vary, it is quite straightforward to extendCoalgTppq to an opindexed

category CoalgT
.

Proposition 6.2.10. CoalgT
extends to an opindexed category CoalgT : Poly Ñ Cat. On

objects (polynomials), it returns the categories above. On morphisms of polynomials, we simply

post-compose: given φ : p Ñ q and β : SyS Ñ rTy, ps, obtain SyS Ñ rTy, ps Ñ rTy, qs in the

obvious way.

When we introduced Poly in §3.5, it was as a “syntax for interacting adaptive systems”, and

we know that we can understand Poly multicategorically, as it has a monoidal structure pb, yq

allowing us to place systems’ interfaces side-by-side (and which therefore gives us a multicategory,

OPoly by Proposition 3.3.4). We motivated our development of coalgebraic dynamical systems as

a compositional extension of the sets of ordinary differential equations that we used to formalize

rate-coded neural circuits (Definition 3.3.10), and we have seen that linear circuit diagrams embed

into Poly (Remark 4.2.33).

One may wonder, therefore, whether the opindexed categoriesCoalgT
might supply the general

“semantics for interacting adaptive systems” that we seek: more precisely, is CoalgT
a Poly-

algebra? This question can be answered affirmatively, asCoalgT
is lax monoidal: more precisely,

it is a strong monoidal opindexed category.

Proposition 6.2.11. CoalgT
is a monoidal opindexed category pPoly,b, yq Ñ pCat,ˆ, 1q.

Proof. We need to define a natural family of functors µp,q : CoalgTppq ˆ CoalgTpqq Ñ

CoalgTppb qq constituting the laxator, and a unit η : 1 Ñ CoalgTpyq, along with associators α

and left and right unitors λ and ρ satisfying the pseudomonoid axioms of Definition 4.2.19.

The unit η : 1 Ñ CoalgTpyq is given by the trivial system p1, !, !q with the trivial state space

and the trivial interface: the output map is the unique map 1 Ñ 1 (the identity); likewise, the

update map is the unique map 1 ˆ 1 Ñ 1. Note that 1 ˆ 1 – 1.

The laxator µp,q is given on objects pX,ϑq : CoalgTppq and pY, φq : CoalgTpqq by the

µp,qpϑ, φq :“
`

XY, pϑφq
˘

where the state space XY “ X ˆ Y and pϑφq is the system given by

the right adjunct of

XY yXY b Ty
„b y
ÝÝÝÝÑ XyX b Y yY b Ty b Ty XyXbswapbTy

ÝÝÝÝÝÝÝÝÝÝÑ XyX b Ty b Y yY b Ty ϑ5bφ5

ÝÝÝÝÑ pb q

under the tensor-hom adjunction in Poly, where ϑ5
and φ5

are the corresponding left adjuncts of

ϑ and φ, and where „ is the isomorphismXY yXY
„
ÝÑ XyX bY yY . On morphisms f : pX,ϑq Ñ
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pX 1, ϑ1q and g : pY, φq Ñ pY 1, φq, µp,q acts as µp,qpf, gq :“ f ˆg; functoriality hence follows from

that of ˆ.

Next, we need to define µ on morphisms ζ : p Ñ p1
and ξ : q Ñ q1

of polynomials, giving

natural isomorphisms µζ,ξ : µp1,q1 ˝
`

CoalgTpζq ˆCoalgTpξq
˘

ñ CoalgTpζ b ξq ˝µp,q . But it is

easy to see in fact that µp1,q1 ˝
`

CoalgTpζq ˆ CoalgTpξq
˘

“ CoalgTpζ b ξq ˝ µp,q , as both sides

act by post-composing ζ b ξ.

The associator is defined componentwise on objects as

αp,q,r :
´

pXY qZypXY qZ pϑbφqbψ
ÝÝÝÝÝÝÑ rppbqqbr,Tys

¯

ÞÑ

´

XpY ZqyXpY Zq ϑbpφbψq
ÝÝÝÝÝÝÑ rpbpqbrq,Tys

¯

and on morphisms as αp,q,r : pf ˆ gq ˆ h ÞÑ f ˆ pg ˆ hq, implicitly using the associators of b on

Poly and ˆ on Set.

Likewise, the left unitor is defined by

λp :
´

1Xy1X
µy,ppη,ϑq
ÝÝÝÝÝÑ ry b p,Tys

¯

ÞÑ

´

XyX
ϑ
ÝÑ rp,Tys

¯

implicitly using the left unitors of b on Poly and ˆ on Set; and the right unitor is defined dually,

using the corresponding right unitors on Poly and Set.

That the associators and unitors satisfy the indexed monoidal category axioms follows from

the satisfaction of the monoidal category axioms by pPoly,b, yq and pSet,ˆ, 1q. (But it is easy,

though laborious, to verify this manually.)

Remark 6.2.12. We emphasize that the functor CoalgT
is lax monoidal—the laxators are not

equivalences—since not all systems over the parallel interface p b q factor into a system over p

alongside a system over q.

With this indexed monoidal structure, we can show that, as we might hope from a general

semantics for interacting dynamical systems, Coalg subsumes our earlier linear circuit algebra of

rate-coded neural circuits.

Proposition 6.2.13. There is an inclusion ι of monoidal indexed categories as in the diagram

`

LinCirc,`, p0, 0q
˘

pSet,ˆ, 1q

pPoly,b, yq pCat,ˆ,1q

R

CoalgR

ι

where R is the algebra from Proposition 3.3.12.
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Proof sketch. ι is defined by a family of functors ιpno,niq
: Rpno, niq Ñ CoalgRpRnoyR

ni
q, where

each set Rpno, niq is treated as the corresponding discrete category; this means that ιpno,niq
is

trivially functorial, and needs only be defined on objects (rate-coded neural circuits). Each such

circuit pλ, α, β, γ,W q defines an ‘open’ ordinary differential equation by Definition 3.3.10 with

inputs i : Rni
. ιpno,niq

is then defined by taking this ordinary differential equation to a corresponding

open dynamical system following Example 6.2.8, where the output space is the same as the state

space Rno
and the output map is idRno .

We then need to check that this definition of ι is natural, meaning that the following diagram

commutes for each linear circuit diagram pA,Bq : pno, niq Ñ pmo,miq, where CoalgRpA,Bq is

defined by treating pA,Bq as a lens and hence a morphism of monomials of the type indicated.

Rpno, niq Rpmo,miq

CoalgRpRnoyR
ni

q CoalgRpRmoyR
mi

q

RpA,Bq

CoalgRpA,Bq

ιpno,niq ιpmo,miq

To see that this diagram commutes, observe that we can write a rate-coded neural circuit κ as

a morphism RnoyTR
no

Ñ RnoyR
ni

of polynomials, where T is the tangent bundle functor; and

observe that the action of RpA,Bq is to post-compose the lens pA,Bq after κ, as in RnoyTR
no κ

ÝÑ

RnoyR
ni pA,Bq

ÝÝÝÑ RmoyR
mi
. Now, ιpno,niq

acts by taking κ to a system RnoyR
no

Ñ rTy,RnoyR
ni

s,

and CoalgRpA,Bq post-composes rTy, pA,Bqs, so we obtain the system

RnoyR
no ιpno,niqpκq

ÝÝÝÝÝÝÑ rTy,RnoyR
ni

s
rTy,pA,Bqs
ÝÝÝÝÝÝÑ rTy,RmoyR

mi
s .

This is precisely the system obtained by applying ιpmo,miq
to pA,Bq ˝ κ, and hence ι is natural.

Finally, it is easy to check that ι is a monoidal natural transformation (Definition 3.1.13), which

by Moeller and Vasilakopoulou [189, Proposition 3.6] entails that ι is a morphism of monoidal

indexed categories. That it is additionally an inclusion follows from the evident fact that each

functor ιpno,niq
is an embedding.

At some point during the preceding exposition, the reader may have wondered in what sense

these open dynamical systems are coalgebras. To answer this, recall from Proposition 6.1.13 that a

polynomial morphism SyS Ñ q is equivalently a function S Ñ qS and hence by Example 6.1.12

a q-coalgebra. Then, by setting q “ rTy, ps, we see the connection immediately: the objects of

CoalgTppq are rTy, ps-coalgebras that satisfy the ◁-comonoid condition, and the morphisms of

CoalgTppq are coalgebra morphisms.
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In the following subsection, we generalize the constructions above to allow for non-deterministic

(‘effectful’) feedback, using a generalization of the category Poly.

6.2.2. Polynomials with ‘effectful’ feedback, and open Markov processes

The category Poly of polynomial functors Set Ñ Set can be considered as a category of

‘deterministic’ polynomial interaction; notably, morphisms of such polynomials, which we take to

encode the coupling of systems’ interfaces, do not explicitly incorporate any kind of randomness

or uncertainty. Even if the universe is deterministic, however, the finiteness of systems and their

general inability to perceive the totality of their environments make it a convenient modelling

choice to suppose that systems’ interactions may be uncertain; this will be useful not only in

allowing for stochastic interactions between systems, but also to define stochastic dynamical

systems ‘internally’ to a category of polynomials.

To reach the desired generalization, we begin by recalling thatPoly is equivalent to the category

of Grothendieck lenses for the self-indexing of Set (Example 4.2.30). We define our categories of

generalized polynomials from this perspective, by considering Kleisli categories indexed by their

“deterministic subcategories”. This allows us to define categories of Grothendieck lenses which

behave like Poly when restricted to the deterministic case, but also admit uncertain inputs. In

order to apply the Grothendieck construction, we begin by defining an indexed category.

Definition 6.2.14. Suppose E is a category with all limits, and supposeM : E Ñ E is a monad

on E . Define the indexed category EM{´ : E op Ñ Cat as follows. On objects B : E , we define

EM{B to be the full subcategory of KℓpMq{B on those objects ιp : EÑ‚ B which correspond

to maps E
p
ÝÑ B

ηB
ÝÝÑ MB in the image of ι. Now suppose f : C Ñ B is a map in E . We

define EM{f : EM{B Ñ EM{C as follows. The functor EM{f takes objects ιp : EÑ‚ B to

ιpf˚pq : f˚EÑ‚ C where f˚p is the pullback of p along f in E , included into KℓpMq by ι.

To define the action of EM{f on morphisms α : pE, ιp : EÑ‚ Bq Ñ pF, ιq : FÑ‚ Bq, note

that since we must have ιq ‚ α “ ιp, we can alternatively write α as the B-dependent sum

ř

b:B αb :
ř

b:B prbs Ñ
ř

b:BMqrbs. Then we can define pEM{fqpαq accordingly as pEM{fqpαq :“
ř

c:C αfpcq :
ř

c:C prfpcqs Ñ
ř

c:CMqrfpcqs.

Definition 6.2.15. We define PolyM to be the category of Grothendieck lenses for EM{´. That

is, PolyM :“
ş

EM{´ op
, where the opposite is again taken pointwise.

Example 6.2.16. When E “ Set andM “ idSet, Definition 6.2.14 recovers our earlier definition

of Poly.
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Example 6.2.17. WhenM is a monad on Set, we find that the objects of PolyM are the same

polynomial functors as constitute the objects of Poly. The morphisms f : p Ñ q are pairs pf1, f
7q,

where f1 : B Ñ C is a function in Set and f 7
is a family of morphisms qrf1pxqsÑ‚ prxs in KℓpMq,

making the following diagram commute:

ř

x:BMprxs
ř

b:B qrf1pxqs
ř

y:C qrys

B B C

f 7

qηB
˚p

f1

{

Remark 6.2.18. Consequently, we can think of PolyM as a dependent version of the category of

M -monadic lenses, in the sense of Clarke et al. [65, §3.1.3].

Remark 6.2.19. Any monad pM,µ, ηq on Set induces a comonad pM̄, δ, ϵq on the category Poly

of polynomial functors Set Ñ Set, and PolyM can be recovered as the coKleisli category of this

comonad, PolyM – coKℓpM̄q. We heard of this idea from David Spivak.

On objects (polynomial functors), M̄ : Poly Ñ Poly acts to map p :
ř

i:pp1q pris Ñ pp1q

to M̄p :
ř

i:pp1q Mpris Ñ pp1q. Given a morphism of polynomials φ : p Ñ q, M̄ returns the

morphism M̄pφq whose forward component is again φ1 and whose backward component is defined

by M̄pφq
7

i :“ Mpφ7

iq for each i in pp1q.

The counit ϵ : M̄ ñ idPoly is defined for each p as the morphism ϵp : M̄p Ñ p whose

forward component is idpp1q and whose backward component is given for each i : pp1q by the unit

ηpris : pris Ñ Mpris of the monadM . Similarly, the comultiplication δ : M̄M̄ ñ M̄ is defined for

each p as the morphism δp : M̄M̄p Ñ M̄p whose forward component is again the identity and

whose backward components are given by the multiplication of the monad µ, i.e. pδ7
pqi :“ µpris.

Finally, the coKleisli category coKℓpM̄q has the same objects as Poly. A morphism p Ñ q in

coKℓpM̄q is a morphism M̄p Ñ q in Poly. Composition in coKℓpM̄q is the usual composition in

the forward direction and Kleisli composition in the backward direction.

Remark 6.2.20. Since E is assumed to have all limits, it must have a product structure pˆ, 1q.

WhenM is additionally a monoidal monad (Definition 4.1.16), then PolyM acquires a tensor akin

to that defined for Poly in Proposition 3.5.7, and which we also denote by pb, Iq: the definition

only differs by substituting the structure pb, Iq on KℓpMq for the product pˆ, 1q on Set. This

monoidal structure follows as before from the monoidal Grothendieck construction: EM{´ is lax

monoidal, with laxator taking p : EM{B and q : EM{C to pb q : EM{pB b Cq.

On the other hand, for PolyM also to have an internal hom rq, rs requires each fibre of EM{´

to be closed with respect to the monoidal structure. In cases of particular interest, E will be
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locally Cartesian closed, and restricting EM{´ to the self-indexing E{´ gives fibres which are thus

Cartesian closed. In these cases, we can think of the broader fibres of EM{´, and thusPolyM itself,

as being ‘deterministically’ closed. This means, for the stochastic examplePolyP forP a probability

monad, we get an internal hom satisfying the adjunctionPolyPppb q, rq – PolyPpp, rq, rsq only

when the backwards components of morphisms pb q Ñ r are ‘uncorrelated’ between p and q.

Remark 6.2.21. For PolyM to behave faithfully like the category Poly of polynomial functors of

sets and their morphisms, we should want the substitution functors EM{f : EM{C Ñ EM{B to

have left and right adjoints (corresponding respectively to dependent sum and product). Although

we do not spell it out here, it is quite straightforward to exhibit concretely the left adjoints. On

the other hand, writing f˚
as shorthand for EM{f , we can see that a right adjoint only obtains

in restricted circumstances. Denote the putative right adjoint by Πf : EM{B Ñ EM{C , and for

ιp : EÑ‚ B suppose that pΠfEqrys is given by the set of ‘partial sections’ σ : f´1tyu Ñ ME of p

over f´1tyu as in the commutative diagram:

f´1tyu tyu

ME B C
f

{

ηB
˚p

σ

Then we would need to exhibit a natural isomorphism EM{Bpf˚D,Eq – EM{CpD,ΠfEq. But

this will only obtain when the ‘backwards’ components h7
y : Drys Ñ MpΠfEqrys are in the image

of ι—otherwise, it is not generally possible to pull f´1tyu out ofM .

Despite these restrictions, we do have enough structure at hand to instantiateCoalgT
inPolyM .

The only piece remaining is the composition product ◁, but for our purposes it suffices to define

its action on objects, which is identical to its action on objects in Poly1
, and then to consider

◁-comonoids in PolyM . The comonoid laws force the structure maps to be deterministic (i.e., in

the image of ι), and so ◁-comonoids in PolyM are just ◁-comonoids in PolyidSet
.

Finally, we note that, even if the internal hom r´,´s is not available in general, we can define

morphisms β : SyS Ñ rTy, ps: these again just correspond to morphisms Ty b SyS Ñ p, and the

condition that the backwards maps be uncorrelated between Ty and p is incontrovertibly satisfied

becauseTy has a trivial exponent. Unwinding such a β according to the definition ofPolyM indeed

gives precisely a pair pβo, βuq of the requisite types; and a comonoid homomorphism SyS Ñ yT in

PolyM is precisely a functorBT Ñ KℓpMq, thereby establishing equivalence between the objects

of CoalgTppq established in PolyM and the objects of CoalgT
C ppq.

1

We leave the full exposition of ◁ in PolyM to future work.
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Henceforth, therefore, we will write CoalgT
M to denote the instantiation of CoalgT

in PolyM .

We will call the objects of CoalgT
M ppq pM -coalgebras with time T, and to get a sense of how, in

the case whereM is a probability monad, they provide a notion of open Markov process, we can

read off the definition a little more explictly.

Proposition 6.2.22. A pM -coalgebra with time T consists of a triple ϑ :“ pS, ϑo, ϑuq of a state

space S : E and two morphisms ϑo : T ˆ S Ñ pp1q and ϑu :
ř

t:T
ř

s:S prϑopt, sqs Ñ MS, such

that, for any section σ : pp1q Ñ
ř

i:pp1q pris of p in E , the maps ϑσ : T ˆ S Ñ MS given by

ÿ

t:T
S

ϑoptq˚σ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

s:S

prϑopt, sqs
ϑu
ÝÑ MS

constitute an object in the functor category Cat
`

BT,KℓpMq
˘

, where BT is the delooping of T

and KℓpMq is the Kleisli category ofM . (Once more, we call the closed system ϑσ , induced by a

section σ of p, the closure of ϑ by σ.)

Following Example 6.1.6 and the intuition of Example 6.2.9, we can see how this produces an

open version of a Markov process.

Since stochastic dynamical systems are often alternatively presented as random dynamical

systems, we now briefly consider how these can be incorporated into the coalgebraic framework.

6.2.3. Open random dynamical systems

In the analysis of stochastic systems, it is often fruitful to consider two perspectives: on one side,

one considers explicitly the evolution of the distribution of the states of the system, by following

(for instance) a Markov process, or Fokker-Planck equation. On the other side, one considers the

system as if it were a deterministic system, perturbed by noisy inputs, giving rise to the frameworks

of stochastic differential equations and associated random dynamical systems.

Whereas a (closed) Markov process is typically given by the action of a time monoid on an

object in a Kleisli category of a probability monad, a (closed) random dynamical system is given

by a bundle of closed dynamical systems, where the base system is equipped with a probability

measure which it preserves: the idea being that a random dynamical system can be thought of as

a ‘random’ choice of dynamical system on the total space at each moment in time, with the base

measure-preserving system being the source of the randomness [13].

This idea corresponds in non-dynamical settings to the notion of randomness pushback [109,

Def. 11.19], by which a stochastic map f : A Ñ PB can be presented as a deterministic map

f 5 : Ω ˆ A Ñ B where pΩ, ωq is a measure space such that, for any a : A, pushing ω forward
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through f 5p-, aq gives the state fpaq; that is, ω induces a random choice of map f 5pω, -q : A Ñ B.

Similarly, under nice conditions, random dynamical systems and Markov processes do coincide,

although they have different suitability in applications.

In this section, we sketch how the generalized-coalgebraic structures developed above extend also

to random dynamical systems. We begin by defining the concept of measure-preserving dynamical

system, which itself requires the notion of measure space (in order that measure can be preserved);

we define the corresponding category abstractly, using a notion of slice category dual to that of

Definition 3.2.10.

Definition 6.2.23. Suppose X is an object of a category E . The slice of E under X , denoted X{E ,

is the category whose objects pA, iq are morphisms X
i

ÝÑ A out of X in E , and whose morphisms

f : pA, iq Ñ pB, jq are the evident triangles:

X

A B
f

i j

There is a projection functor F : X{E Ñ E mapping each object pA, iq to A and each morphism

f : pA, iq Ñ pB, jq to f : A Ñ B.

We can use this notion to define a notion of ‘pointed’ category.

Definition 6.2.24. Let pC,b, Iq be a monoidal category, D be a subcategory D ãÑ C, and let F

denote the projection I{C Ñ C. We define the category D˚ to be the pullback category over the

diagram D ãÑ C F
ÐÝ I{C.

The category D˚ has objects ‘pointed’ by corresponding states in C, and its morphisms are those

that preserve these states. The category of measure spaces is obtained as an example accordingly.

Example 6.2.25. Consider the deterministic subcategory Meas ãÑ sfKrn. The pointed category

Meas˚ obtained from Definition 6.2.24 is the category whose objects are measure spaces pM,µq

with µ a measure 1Ñ‚ M , and whose morphisms f : pM,µq Ñ pN, νq are measure-preserving

maps; i.e., measurable functions f : M Ñ N such that ν “ f ‚ µ in sfKrn. Likewise, if P is a

probability monad on E , then we have E ãÑ KℓpPq and hence can understand E˚ as a category of

abstract measure spaces.

Proposition 6.2.26. There is a projection functor U : E˚ Ñ E taking measure spaces pB, βq

to the underlying spaces B and their morphisms f : pA,αq Ñ pB, βq to the underlying maps
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f : A Ñ PB. We will write B to refer to the space in E underlying a measure space pB, βq, in the

image of U .

Proof. The functor is obtained as the projection induced by the universal property of the pullback.

Definition 6.2.27. Let pB, βq be a measure space in E ãÑ KℓpPq. A closed metric or measure-

preserving dynamical system pϑ, βq on pB, βq with time T is a closed dynamical system ϑ with

state spaceB : E such that, for all t : T, Pϑptq˝β “ β; that is, each ϑptq is a pB, βq-endomorphism

in 1{KℓpPq.

Proposition 6.2.28. Closed measure-preserving dynamical systems in E with time T form the

objects of a category CatpBT, E˚q whose morphisms f : pϑ, αq Ñ pψ, βq are maps f : ϑp˚q Ñ

ψp˚q in E between the state spaces that preserve both flow and measure, as in the following

commutative diagram, which also indicates their composition:

Pϑp˚q Pϑp˚q

1 Pψp˚q Pψp˚q 1

Pλp˚q Pλp˚q

α

β

γ

α

β

γ

Pϑptq

Pψptq

Pλptq

Pf Pf

Pg Pg

Proof. The identity morphism on a closed measure-preserving dynamical system is the identity

map on its state space. It is easy to check that composition as in the diagram above is thus both

associative and unital with respect to these identities.

As we indicated in the introduction to this section, closed random dynamical systems are bundles

of deterministic systems over metric systems.

Definition 6.2.29. Let pϑ, βq be a closed measure-preserving dynamical system. A closed random

dynamical system over pϑ, βq is an object of the slice category CatpBT, Eq{ϑ; it is therefore a

bundle of the corresponding functors.

Example 6.2.30. The solutions Xpt, ω;x0q : R` ˆ Ω ˆ M Ñ M to a stochastic differential

equation dXt “ fpt,Xtqdt` σpt,XtqdWt, whereW : R` ˆ Ω Ñ M is a Wiener process inM ,
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define a random dynamical system R` ˆ Ω ˆM Ñ M : pt, ω, xq ÞÑ Xpt, ω;x0q over the Wiener

base flow θ : R` ˆ Ω Ñ Ω : pt, ωq ÞÑ W ps` t, ωq ´W pt, ωq for any s : R`.

We can use the same trick, of opening up closed systems along a polynomial interface, to define

a notion of open random dynamical system — although at this point we do not have an elegant

concise definition.

Definition 6.2.31. Let pθ, βq be a closed measure-preserving dynamical system in E with time

T, and let p : PolyidE be a polynomial in E . Write Ω :“ θp˚q for the state space of θ, and let

π : S Ñ Ω be an object (bundle) in E{Ω. An open random dynamical system over pθ, βq on the

interface pwith state space π : S Ñ Ω and time T consists in a pair of morphisms ϑo : TˆS Ñ pp1q

and ϑu :
ř

t:T

ř

s:S

prϑopt, sqs Ñ S, such that, for any section σ : pp1q Ñ
ř

i:pp1q

pris of p, the maps

ϑσ : T ˆ S Ñ S defined as

ÿ

t:T
S

ϑop´q˚σ
ÝÝÝÝÝÑ

ÿ

t:T

ÿ

s:S

prϑop´, sqs
ϑu
ÝÑ S

form a closed random dynamical system in CatpBT, Eq{θ, in the sense that, for all t : T and

sections σ, the following diagram commutes:

S
ř

s:S

prϑopt, sqs S

Ω Ω

π π

θptq

ϑoptq˚σ ϑuptq

Proposition 6.2.32. Let pθ, βq be a closed measure-preserving dynamical system in E with time

T, and let p : PolyidE be a polynomial in E . Open random dynamical systems over pθ, βq on

the interface p form the objects of a category RDynTpp, θq. Writing ϑ :“ pπX , ϑ
o, ϑuq and

ψ :“ pπY , ψ
o, ψuq, a morphism f : ϑ Ñ ψ is a map f : X Ñ Y in E making the following diagram

commute for all times t : T and sections σ of p:

X
ř

x:X

prϑopt, xqs X

Ω Ω

Y
ř

y:Y

prψopt, yqs Y

πX πX

θptq

ϑoptq˚σ ϑuptq

ψoptq˚σ ψuptq

πY πY

f f
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Identities are given by the identity maps on state-spaces. Composition is given by pasting of

diagrams.

Proposition 6.2.33. The categoriesRDynTpp, θq collect into a doubly-indexed category of the

formRDynT : PolyidE ˆ CatpBT, E˚q Ñ Cat. By the universal property of the product ˆ in

Cat, it suffices to define the actions ofRDynT
separately on morphisms of polynomials and on

morphisms of closed measure-preserving systems.

Suppose therefore that φ : p Ñ q is a morphism of polynomials. Then, for each measure-

preserving system pθ, βq : CatpBT, E˚q, we define the functor RDynTpφ, θq : RDynTpp, θq Ñ

RDynTpq, θq as follows. Let ϑ :“ pπX : X Ñ Ω, ϑo, ϑuq : RDynTpp, θq be an object (open

random dynamical system) in RDynTpp, θq. Then RDynTpφ, θqpϑq is defined as the triple

pπX , φ1 ˝ ϑo, ϑu ˝ φo˚φ7q : RDynTpq, θq, where the two maps are explicitly the following

composites:

T ˆX
ϑo
ÝÑ pp1q

φ1
ÝÑ qp1q ,

ÿ

t:T

ÿ

x:X

qrφ1 ˝ ϑopt, xqs
ϑo˚φ7

ÝÝÝÝÑ
ÿ

t:T

ÿ

x:X

prϑopt, xqs
ϑu
ÝÑ X .

On morphisms f : pπX : X Ñ Ω, ϑo, ϑuq Ñ pπY : Y Ñ Ω, ψo, ψuq, the imageRDynTpφ, θqpfq :

RDynTpφ, θqpπX , ϑ
o, ϑuq Ñ RDynTpφ, θqpπY , ψ

o, ψuq is given by the same underlying map

f : X Ñ Y of state spaces.

Next, suppose that ϕ : pθ, βq Ñ pθ1, β1q is a morphism of closed measure-preserving

dynamical systems, and let Ω1 :“ θ1p˚q be the state space of the system θ1
. By Proposition

6.2.28, the morphism ϕ corresponds to a map ϕ : Ω Ñ Ω1
on the state spaces that preserves

both flow and measure. Therefore, for each polynomial p : PolyidE , we define the functor

RDynTpp, ϕq : RDynTpp, θq Ñ RDynTpp, θ1q by post-composition. That is, suppose given

open random dynamical systems and morphisms over pp, θq as in the diagram of Proposition 6.2.32.

ThenRDynTpp, ϕq returns the following diagram:

X
ř

x:X

prϑopt, xqs X

Ω1 Ω1

Y
ř

y:Y

prψopt, yqs Y

θ1ptq

ϑoptq˚σ ϑuptq

ψoptq˚σ ψuptq

f f

ϕ˝πY

ϕ˝πX

ϕ˝πY

ϕ˝πX
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That is, RDynTpp, ϕqpϑq :“ pϕ ˝ πX , ϑ
o, ϑuq and RDynTpp, ϕqpfq is given by the same

underlying map f : X Ñ Y on state spaces.

6.3. Cilia: monoidal bicategories of cybernetic systems

Whereas it is the morphisms (1-cells) of process-theoretic categories—such as categories of lenses,

or the categories of statistical games to be defined in Chapter 7—that represent open systems, it is

the objects (0-cells) of the opindexed categories CoalgT
M

2
that play this rôle; in fact, the objects of

CoalgT
M each represent both an open system and its (polynomial) interface. In order to supply

dynamical semantics for statistical games—functors from categories of statistical games to categories

of dynamical systems—we need to cleave the dynamical systems from their interfaces, making the

interfaces into 0-cells and systems into 1-cells between them, thereby letting the systems’ types

and composition match those of the games. Doing this is the job of this section, which we first

perform in the case of the general categories CoalgT
M , followed by the specific case of systems

generated differentially, as in the vector-field Examples 6.2.8 and 6.2.9.

6.3.1. Hierarchical bidirectional dynamical systems

To construct “hierarchical bidirectional systems”, we will associate to each pair of objects pA,Sq

and pB, T q of a category of (for our purposes, Bayesian) lenses a polynomial vAyS , ByT w whose

configurations correspond to lenses and whose inputs correspond to the lenses’ inputs. The

categoriesCoalgT
P
`

vAyS , ByT w
˘

will then form the hom-categories of bicategories of hierarchical

inference systems called cilia3, and it is in these bicategories that we will find our dynamical

semantics.

Throughout this subsection, we will fix a category C of stochastic channels, defined by C :“

KℓpPq as the Kleisli category of a probability monad P : E Ñ E , which we will also take to define

a category PolyP of polynomials with stochastic feedback. We will assume P to be a monoidal

monad, and we will write the monoidal structure on C as pb, Iq. Finally, we will assume that C is

enriched in its underlying category of spaces E .

Definition 6.3.1. Let BayesLens be the category of Bayesian lenses in C. Then for any pair of

objects pA,Sq and pB, T q in BayesLens, we define a polynomial vAyS , ByT w in PolyP by

vAyS , ByT w :“
ÿ

l:BayesLens
`

pA,Sq,pB,T q

˘

yCpI,AqˆT .

2

or, more precisely, their corresponding opfibrations

ş

CoalgT
M

3

‘Cilia’, because they “control optics”, like the ciliary muscles of the eye.

247



Remark 6.3.2. We can think of vAyS , ByT w as an ‘external hom’ polynomial for BayesLens,

playing a rôle analogous to the internal hom rp, qs in PolyP . Its ‘bifunctorial’ structure—with

domain and codomain parts—is what enables cleaving systems from their interfaces, which are

given by these parts. The definition, and the following construction of the monoidal bicategory, are

inspired by the operadOrg introduced by Spivak [240].

Remark 6.3.3. Note that vAyS , ByT w is strictly speaking a monomial, since it can be written

in the form IyJ for I “ BayesLens
`

pA,Sq, pB, T q
˘

and J “ CpI, Aq ˆ T . However, we have

written it in polynomial form with the view to extending it in future work to dependent lenses and

dependent optics [43, 276] and these generalized external homs will in fact be true polynomials.

Proposition 6.3.4. Definition 6.3.1 defines a functor BayesLens op ˆ BayesLens Ñ PolyP .

Suppose c :“ pc1, c
7q : pZ,Rq ÞÑ pA,Sq and d :“ pd1, d

7q : pB, T q ÞÑ pC,Uq are Bayesian lenses.

We obtain a morphism of polynomials vc, dw : vAyS , ByT w Ñ vZyR, CyUw as follows. Since the

configurations of vAyS , ByT w are lenses pA,Sq ÞÑ pB, T q, the forwards map acts by pre- and

post-composition:

vc, dw1 :“ d � p´q � c : BayesLens
`

pA,Sq, pB, T q
˘

Ñ BayesLens
`

pZ,Rq, pC,Uq
˘

l ÞÑ d � l � c

For each such l, the backwards map vc, dw
7

l has type CpI, Zq b U Ñ CpI, Aq b T in C, and is

obtained by analogy with the backwards composition rule for Bayesian lenses. We define

vc, dw
7

l :“ CpI, Zq b U
c1˚bU
ÝÝÝÝÑ CpI, Aq b U

bU
ÝÝÝÑ CpI, Aq b CpI, Aq b U ¨ ¨ ¨

¨ ¨ ¨
CpI,Aqbl1˚bU
ÝÝÝÝÝÝÝÝÝÑ CpI, Aq b CpI,Bq b U

CpI,Aqbd7bU
ÝÝÝÝÝÝÝÝÑ CpI, Aq b CpU, T q b U ¨ ¨ ¨

¨ ¨ ¨
CpI,AqbevU,T
ÝÝÝÝÝÝÝÝÑ CpI, Aq b T

where l1 is the forwards part of the lens l : pA,Sq ÞÑ pB, T q, and c1˚ :“ CpI, c1q and l1˚ :“ CpI, l1q

are the push-forwards along c1 and l1, and evU,T is the evaluation map induced by the enrichment

of C in E .

Less abstractly, with C “ KℓpPq, we can write vc, dw
7

l as the following map in E , depicted as a
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string diagram:

vc, dw
7

l “

c1˚

l1˚

d5

PZ

U

PT

PA

str

Here, we have assumed that KℓpPqpI, Aq “ PA, and define d5 : PB ˆ U Ñ PT to be the image

of d7 : PB Ñ KℓpPqpU, T q under the Cartesian closure of E , and str : PAˆ PT Ñ P
`

PAˆ T q

the (left) strength of the monoidal monad P .

The morphism vc, dwl acts to ‘wrap’ the lens l by pre-composing with c and post-composing with

d. The backwards component vc, dw
7

l therefore acts to take the inputs of the resulting composite

d � l � c to appropriate inputs for l; that is, it maps a pair pπ, uq to pc1 ‚ π, d7

l1‚c1‚πpuqq.

Proof. We need to check that the mappings defined above respect identities and composition. It is

easy to see that the definition preserves identities: in the forwards direction, this follows from the

unitality of composition in BayesLens; in the backwards direction, because pushing forwards

along the identity is again the identity, and because the backwards component of the identity

Bayesian lens is the constant state-dependent morphism on the identity in C.

To check that the mapping preserves composition, we consider the contravariant and covariant

parts separately. Suppose b :“ pb1, b
7q : pY,Qq ÞÑ pZ,Rq and e :“ pe1, e

7q : pC,Uq ÞÑ pD,V q

are Bayesian lenses. We consider the contravariant case first: we check that vc � b, ByT w “

vb, ByT w ˝ vc,ByT w. The forwards direction holds by pre-composition of lenses. In the backwards

direction, we note from the definition that only the forwards channel c1 plays a rôle in vc,ByT w
7

l ,

and that rôle is again pre-composition. We therefore only need to check that pc1 ‚ b1q˚ “ c1˚ ˝ b1˚,

and this follows immediately from the functoriality of CpI,´q.

We now consider the covariant case, that vAyS , e � dw “ vAyS , ew ˝ vAyS , dw. Once again, the

forwards direction holds by composition of lenses. For simplicity of exposition, we consider the

backwards direction (with C “ KℓpPq) and reason graphically. In this case, the backwards map on
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the right-hand side is given, for a lens l : pA,Sq ÞÑ pB, T q by the following string diagram:

l1˚

e5

PA

V

d5
˚d1˚

str

PU

PA

It is easy to verify that the composition of backwards channels here is precisely the backwards

channel given by e � d—see Theorem 4.3.14—which establishes the result.

Remark 6.3.5. Above, we claimed that a monoidal monad P : E Ñ E on a symmetric monoidal

category pE ,ˆ, 1q is equipped with a (left) strength strX,Y : X ˆ PY Ñ P
`

X ˆ Y q, in the sense

of Definition 3.2.4. This can be obtained from the unit η and the laxator α of the monad as follows:

strX,Y : X ˆ PY ηXˆidPY
ÝÝÝÝÝÝÑ PX ˆ PY

αX,Y
ÝÝÝÑ PpX ˆ Y q

Using the monad laws, a strength obtained in this way can be shown to satisfy the following axioms

(that the strength commutes with the monad structure), and so one may say that P is a strong

monad:
AˆB

Aˆ PB PpAˆBq

idA ˆηB

strA,B

ηAˆB

Aˆ PPB PpAˆ PBq PPpAˆBq

Aˆ PB PpAˆBq

AˆµB

strA,PB PpstrA,Bq

µAˆB

strA,B

Now that we have an ‘external hom’, we might expect also to have a corresponding ‘external

composition’, represented by a family of morphisms of polynomials; we establish such a family

now, and it will be important in our bicategorical construction.

Definition 6.3.6. We define an ‘external composition’ natural transformation c, with components

vAyS , ByT w b vByT , CyUw Ñ vAyS , CyUw
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given in the forwards direction by composition of Bayesian lenses. In the backwards direction, for

each pair of lenses c : pA,Sq ÞÑ pB, T q and d : pB, T q ÞÑ pC,Uq, we need a map

c7

c,d : CpI, Aq b U Ñ CpI, Aq b T b CpI,Bq b U
˘

which we define as follows:

c7

c,d :“ CpI, Aq b U
b

ÝÝÝÝÑ CpI, Aq b CpI, Aq b U b U ¨ ¨ ¨

¨ ¨ ¨
CpI,Aqbc1˚bUbU
ÝÝÝÝÝÝÝÝÝÝÝÑ CpI, Aq b CpI,Bq b U b U ¨ ¨ ¨

¨ ¨ ¨
CpI,Aqb bCpI,BqbUbU
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ CpI, Aq b CpI,Bq b CpI,Bq b U b U

¨ ¨ ¨
CpI,AqbCpI,Bqbd7bUbU
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ CpI, Aq b CpI,Bq b CpU, T q b Y b U

¨ ¨ ¨
CpI,AqbCpI,BqevU,T bU
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ CpI, Aq b CpI,Bq b T b U

¨ ¨ ¨
CpI,AqbswapbU
ÝÝÝÝÝÝÝÝÝÝÑ CpI, Aq b T b CpI,Bq b U

where c1˚ and evU,T are as in 6.3.4.

With C “ KℓpPq, we can equivalently (and more legibly) define c7

c,d by the following string

diagram:

c7

c,d :“

d5

c1˚

str

PA

PT

PB

U

PA

U

where d5
and str are also as in Proposition 6.3.4.

We can therefore understand c7

c,d as mapping forward and backward inputs for the composite

lens d � c to appropriate inputs for the constituent lenses c and d; that is, c7

c,d maps pπ, uq to

pπ, d7
c1‚πpuq, c1 ‚ π, uq. The resulting inputs to the lens c are therefore pπ, d7

c1‚πpuqq, and those to

d are pc1 ‚ π, uq. (This is precisely as the law of lens composition stipulates: the forwards input to

d is obtained by pushing forwards through d; and the backwards input to c is obtained from the

backwards component of d.)
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We leave to the reader the detailed proof that this definition produces a well-defined natural

transformation, noting only that the argument is analogous to that of Proposition 6.3.4: one observes

that, in the forwards direction, the definition is simply composition of Bayesian lenses (which is

immediately natural); in the backwards direction, one observes that the definition again mirrors

that of the backwards composition of Bayesian lenses.

Next, we establish the structure needed to make our bicategory monoidal.

Definition 6.3.7. We define a distributive law d of v´,“w over b, a natural transformation with

components

vAyS , ByT w b vA1yS
1

, B1yT
1

w Ñ vAyS bA1yS
1

, ByT bB1yT
1

w ,

noting that AyS bA1yS
1

“ pAbA1qypSbS1q
and ByT bB1yT

1

“ pB bB1qypTbT 1q
. The forwards

component is given simply by taking the tensor of the corresponding Bayesian lenses, using the

monoidal product (also denoted b) inBayesLens. Backwards, for each pair of lenses c : pA,Sq ÞÑ

pB, T q and c1 : pA1, S1q ÞÑ pB1, T 1q, we need a map

d7

c,c1 : CpI, AbA1q b T b T 1 Ñ CpI, Aq ˆ T ˆ CpI, A1q ˆ T 1

for which we choose

CpI, AbA1q b T b T 1 bTbT 1

ÝÝÝÝÝÝÑ CpI, AbA1q b CpI, AbA1q b T b T 1 ¨ ¨ ¨

¨ ¨ ¨
CpI,projAqbCpI,projA1 qbTbT 1

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ CpI, Aq b CpI, A1q b T b T 1 ¨ ¨ ¨

¨ ¨ ¨
CpI,AqbswapbT 1

ÝÝÝÝÝÝÝÝÝÝÑ CpI, Aq b T b CpI, A1q b T 1

where swap is the symmetry of the tensor b in C. Note that d7

c,c1 so defined does not in fact depend

on either c or c1
.

We now have everything we need to construct a monoidal bicategory CiliaTP of dynamical

hierarchical inference systems in C, following the intuition outlined at the beginning of this section.

We call systems over such external hom polynomials cilia, as they “control optics”, akin to the

ciliary muscles of the eye. In future work, we will study the general structure of these categories

and their relationship to categorical systems theory [191, 192] and related work in categorical

cybernetics [51].

Definition 6.3.8. Let CiliaTP denote the monoidal bicategory whose 0-cells are objects

pA,Sq in BayesLens, and whose hom-categories CiliaTP
`

pA,Sq, pB, T q
˘

are given by
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CoalgT
P
`

vAyS , ByT w
˘

. The identity 1-cell idpA,Sq : pA,Sq Ñ pA,Sq on pA,Sq is given by

the system with trivial state space 1, trivial update map, and output map that constantly emits

the identity Bayesian lens pA,Sq ÞÑ pA,Sq. The composition of a system pA,Sq Ñ pB, T q then a

system pB, T q Ñ pC,Uq is defined by the functor

CiliaTP
`

pA,Sq, pB, T q
˘

ˆ CiliaTP
`

pB, T q, pC,Uq
˘

“ CoalgT
P
`

vAyS , ByT w
˘

ˆ CoalgT
P
`

vByT , CyUw
˘

λ
ÝÑ CoalgT

P
`

vAyS , ByT w b vByT , CyUw
˘

CoalgT
P pcq

ÝÝÝÝÝÝÝÑ CoalgT
P
`

vAyS , CyUw
˘

“ CiliaTP
`

pA,Sq, pC,Uq
˘

where λ is the laxator and c is the external composition morphism of Definition 6.3.6.

Themonoidal structure pb, yq onCiliaTP derives from the structures onPolyP andBayesLens,

justifying our overloaded notation. On 0-cells, pA,Sq b pA1, S1q :“ pAbA1, S b S1q. On 1-cells

pA,Sq Ñ pB, T q and pA1, S1q Ñ pB1, T 1q, the tensor is given by

CiliaTP
`

pA,Sq, pB, T q
˘

ˆ CiliaTP
`

pA1, S1q, pB1, T 1q
˘

“ CoalgT
P
`

vAyS , ByT w
˘

ˆ CoalgT
P
`

vA1yS
1

, B1yT
1

w
˘

λ
ÝÑ CoalgT

P
`

vAyS , ByT w b vA1yS
1

, B1yT
1

w
˘

CoalgT
P pdq

ÝÝÝÝÝÝÝÑ CoalgT
P
`

vAyS bA1yS
1

, ByT bB1yT
1

w
˘

“ CiliaTP
`

pA,Sq b pA1, S1q, pB, T q b pB1, T 1q
˘

where d is the distributive law of Definition 6.3.7. The same functors

CiliaTP
`

pA,Sq, pB, T q
˘

ˆCiliaTP
`

pA1, S1q, pB1, T 1q
˘

Ñ CiliaTP
`

pA,SqbpA1, S1q, pB, T qbpB1, T 1q
˘

induce the tensor of 2-cells; concretely, this is given on morphisms of dynamical systems by taking

the product of the corresponding morphisms between state spaces.

We do not give here a proof that this makes CiliaTP into a well-defined monoidal bicategory;

briefly, the result follows from the facts that the external composition c and the tensor b are

appropriately associative and unital, thatCoalgT
P is lax monoidal, that v´,“w is functorial in both

positions, and that v´,“w distributes naturally over b.

Before we move on, it will be useful to spell out concretely the elements of a ‘cilium’ (a 1-cell)

pA,Sq Ñ pB, T q in CiliaTP .
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Proposition 6.3.9. Suppose P is a monad on a Cartesian closed category E . Then a 1-cell ϑ :

pA,Sq Ñ pB, T q in CiliaTP is given by a tuple ϑ :“ pX,ϑo1, ϑ
o
2, ϑ

uq of

• a choice of state space X ,

• a forwards output map ϑo1 : T ˆX ˆA Ñ PB in E ,

• a backwards output map ϑo2 : T ˆX ˆ PAˆ T Ñ PS in E , and

• an update map ϑu : T ˆX ˆ PAˆ T Ñ PX in E ,

satisfying the ‘flow’ condition of Proposition 6.2.22.

Proof. The result follows immediately upon unpacking the definitions, using the Cartesian closure

of E .

6.3.2. Differential systems

Approximate inference doctrines describe how systems play statistical games, and are particularly

of interest when one asks how systems’ performance may improve during such game-playing. One

prominent method of performance improvement involves descending the gradient of a statistical

game’s loss function, and we will see below that this method is adopted by both the Laplace and

the Hebb-Laplace doctrines. The appearance of gradient descent prompts questions about the

connections between such statistical systems and other ‘cybernetic’ systems such as deep learners or

players of economic games, both of which may also involve gradient descent [51, 74]; indeed, it has

been proposed [54] that parameterized gradient descent should form the basis of a compositional

account of cybernetic systems in general
4
.

In order to incorporate gradient descent explicitly into our own compositional framework,

we follow the recipes above to define here first a category of differential systems opindexed by

polynomial interfaces and then a monoidal bicategory of differential hierarchical inference systems.

We then show how we can obtain dynamical from differential systems by integration, and sketch

how this induces a “change of base” from dynamical to differential hierarchical inference systems.

4

Our own view on cybernetics is somewhat more general, since not all systems that may be seen as cybernetic are

explicitly structured as gradient-descenders, and nor even is explicit differential structure always apparent. In earlier

work, we suggested that statistical inference was perhaps more inherent to cybernetics [251], although today we

believe that a better, though more informal, definition of cybernetic system is perhaps “an intentionally-controlled

open dynamical system”. (Slightly more formally, we can understand this as “an open dynamical system clad in a

controller”, with the possible ‘cladding’ collected into a fibration over systems of each given type.) Nonetheless, we

acknowledge that this notion of “intentional control” may generally be reducible to a stationary action principle,

again indicating the importance of differential structure. We leave the statement and proof of this general principle

to future work.
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Differential systems require differential structure, but we are here still concerned with statistical

systems whose time evolution is stochastic. This means that a differential system will be given by

a stochastic vector field: a stochastic section of the tangent bundle over the system’s state space.

However, as we have seen, the state spaces of stochastic systems are naturally found in a category

of measurable spaces, but such a categorical setting does not generally supply differential structure

too, and without this we cannot define tangent bundles. This poses our first hurdle.

We will not here entirely vault this hurdle, for the interplay of randomness and smoothness is

subtle and untangling it is not our purpose in this thesis. However, we can overcome it in a manner

which is satisfactory for our present needs, by noting that all our state spaces of later interest will

be Euclidean, meaning that we can equip them with their standard Borel measurable structure. In

future work, we hope to generalize this situation, possibly using the notion of relative monad [8].

Definition 6.3.10. Let Euc denote the category whose objects are finite-dimensional Euclidean

spaces Rn and whose morphisms are smooth maps between them.

Euclidean spaces are trivially manifolds: the tangent space over each point x P Rn is again

Rn. Hence, if X is a Euclidean space, then the tangent bundle TX Ñ X is simply the projection

X ˆX Ñ X mapping px, vq to x. As in general differential geometry, T yields a functor Euc Ñ

Euc.

Proposition 6.3.11. The tangent bundle functor T : Euc Ñ Euc maps each Euclidean space Rn

to Rn ˆ Rn and each smooth map f : Rm Ñ Rn to its differential df : Rm ˆ Rm Ñ Rn ˆ Rn,

which in turn maps px, vq to
`

fpxq, Bxfpvq
˘

, where Bxf denotes the (total) derivative of f at x,

which can be represented by its nˆm Jacobian matrix.

Remark 6.3.12. Differentials compose by pushforward, which yields the chain rule of differential

calculus. Earlier we have seen that chain rules indicate the presence of a fibration, and indeed this

is also the case here: T is properly a functor into the fibration of vector bundles over the category

of spaces; composing this functor with the projection out of the fibration yields the endofunctor

we have sketched in the preceding proposition.

Ordinary differential equations define vector fields, which are (deterministic) sections of the

tangent bundle over a space; these are deterministic closed differential systems. We are interested

in open differential systems that may have effectful (e.g. stochastic) evolution: for openness, we will

use the trick of §6.2; for stochasticity, we will need stochastic sections, which means transporting

the tangent bundles into a category of stochastic maps and considering their sections there.
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Proposition 6.3.13. There is a functor J : Euc Ñ Meas that takes each Euclidean space and

exhibits it as a measurable space equipped with its standard Borel σ-algebra, and which takes each

smooth map and exhibits it as a measurable function. This functor preserves products.

Proposition 6.3.14 (Heunen et al. [131, §III.B]). There is a functor R : Meas Ñ QBS which is

full and faithful when restricted to the subcategory Borel ãÑ Meas of standard Borel spaces.

Using these functors, we can transport a tangent bundle πX : TX Ñ X in Euc to QBS, as

RJπX . Then, if we let P : QBS Ñ QBS denote the probability monad on quasi-Borel spaces

introduced in Example 4.1.31, we can take the sections of RJπX in KℓpPq to be the stochastic

vector fields over the spaceX . Moreover, sinceQBS is finitely complete and Cartesian closed, it is

sufficiently structured that we may instantiate the categoryPolyP of polynomials with P-effectful

feedback.

Using these two ideas, we may define our desired categories of stochastic differential systems.

Recall that morphisms AyB Ñ p in PolyP correspond to morphisms AÑ‚ pB in KℓpPq.

Notation 6.3.15. In this section, let us write pr´q to denote the functor RJ : Euc Ñ QBS.

Definition 6.3.16. For each p : PolyP , define a categoryDiffSysppq as follows. Its objects are

pairs pM,mq of a Euclidean spaceM : Euc and a morphismm : ĂMy
ĄTM Ñ p of polynomials in

PolyP , such that for any section σ : p Ñ y of p, the composite morphism σ ˝ m : ĂMy
ĄTM Ñ y

corresponds to a stochastic section mσ : ĂMÑ‚ ĄTM of the tangent bundle TM Ñ M under RJ .

A morphism α : pM,mq Ñ pM 1,m1q inDiffSysppq is a smooth map α :M Ñ M 1
in Euc such

that the following diagram commutes:

ĂM pĄTM

ĂM 1 pĆTM 1

m

rα

m1

pĂTα

We obtain a monoidal opindexed category from this data in much the same way as we did for

CoalgT
.

Proposition 6.3.17. DiffSys defines an opindexed category PolyP Ñ Cat. Given a morphism

φ : p Ñ q of polynomials, DiffSyspφq : DiffSysppq Ñ DiffSyspqq acts on objects by

postcomposition and trivially on morphisms.

Proposition 6.3.18. The functor DiffSys is lax monoidal pPolyP ,b, yq Ñ pCat,ˆ,1q.
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Proof sketch. Note that T is strong monoidal, with TpR0q – R0
and TpMq ˆ TpNq – TpM ˆNq,

that RJ preserves products, and that RJpR0q “ 1. The unitor 1 Ñ DiffSyspyq is given by the

isomorphism
ĂR0y

ĆTR0
– 1y1 – y induced by the strong monoidal structure of T. The laxator

λp,q : DiffSysppq ˆ DiffSyspqq Ñ DiffSyspp b qq is similarly determined: given objects m :

ĂMy
ĄTM Ñ p and n : rNy

ĄTN Ñ q, take their tensor m b n : pĂM b rNqy
ĄTMbĄTN Ñ p b q

and precompose with the induced morphism p ČM ˆNqy
ČTpMˆNq Ñ pĂM b rNqy

ĄTMb ĄTM
; proceed

similarly on morphisms of differential systems. The satisfaction of the unitality and associativity

laws follows from the monoidality of T.

We now define a monoidal bicategoryDiffCilia of differential hierarchical inference systems,

following the definition of Cilia above.

Definition 6.3.19. LetDiffCilia denote the monoidal bicategory whose 0-cells are the objects

pA,Sq of BayesLensKℓpPq and whose hom-categories DiffCilia
`

pA,Sq, pB, T q
˘

are given by

DiffSys
`

vAyS , ByT w
˘

. The identity 1-cell idpA,Sq : pA,Sq Ñ pA,Sq on pA,Sq is given by

the differential system y Ñ vAyS , ByT w with state space R0
, trivial backwards component, and

forwards component that picks the identity Bayesian lens on pA,Sq. The composition of differential

systems pA,Sq Ñ pB, T q then pB, T q Ñ pC,Uq is defined by the functor

DiffCilia
`

pA,Sq, pB, T q
˘

ˆ DiffCilia
`

pB, T q, pC,Uq
˘

“ DiffSys
`

vAyS , ByT w
˘

ˆ DiffSys
`

vByT , CyUw
˘

λ
ÝÑ DiffSys

`

vAyS , ByT w b vByT , CyUw
˘

DiffSyspcq
ÝÝÝÝÝÝÑ DiffSys

`

vAyS , CyUw
˘

“ DiffCilia
`

pA,Sq, pC,Uq
˘

where λ is the laxator of Proposition 6.3.18 and c is the external composition morphism of Definition

6.3.6.

The monoidal structure pb, yq onDiffCilia is similarly defined following that of CiliaTP . On

0-cells, pA,Sq b pA1, S1q :“ pAbA1, SbS1q. On 1-cells pA,Sq Ñ pB, T q and pA1, S1q Ñ pB1, T 1q

(and their 2-cells), the tensor is given by the functors

DiffCilia
`

pA,Sq, pB, T q
˘

ˆ DiffCilia
`

pA1, S1q, pB1, T 1q
˘

“ DiffSys
`

vAyS , ByT w
˘

ˆ DiffSys
`

vA1yS
1

, B1yT
1

w
˘

λ
ÝÑ DiffSys

`

vAyS , ByT w b vA1yS
1

, B1yT
1

w
˘

DiffSyspdq
ÝÝÝÝÝÝÝÑ DiffSysP

`

vAyS bA1yS
1

, ByT bB1yT
1

w
˘

“ DiffCilia
`

pA,Sq b pA1, S1q, pB, T q b pB1, T 1q
˘
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where d is the distributive law of Definition 6.3.7.

Following Proposition 6.3.9, we have the following characterization of a differential hierarchical

inference system pA,Sq Ñ pB, T q in KℓpPq.

Proposition 6.3.20. A 1-cell δ : pA,Sq Ñ pB, T q in DiffCilia is given by a tuple δ :“

pX, δo1, δ
o
2, δ

7q of

• a choice of state space X : Euc;

• a forwards output map δo1 : rX ˆA Ñ PB,

• a backwards output map δo2 : rX ˆ PAˆ T Ñ PS,

• a stochastic vector field δ7 : rX ˆ PAˆ T Ñ PĄTX .

At least for deterministic differential systems, we can obtain continuous-time dynamical systems

from differential systems by integration. We may then discretize these flows to give discrete-time

dynamical systems.

Proposition 6.3.21. For the purposes of this proposition, let P be the identity monad on a

finitely complete category E of manifolds, let pr´q be the corresponding inclusion Euc ãÑ E ,

and letDiffSys be instantiated accordingly. Then integration induces an indexed functor Flow :

DiffSys Ñ CoalgR
P .

Proof. Suppose pM,mq is an object in DiffSysppq. The morphism m : ĂMy
ĄTM Ñ p consists of

functionsm1 : ĂM Ñ pp1q andm7 :
ř

x:ĂM
prm1pxqs Ñ ĄTM . Since, for any section σ : p Ñ y, the

induced mapmσ : ĂM Ñ ĄTM is a vector field on a compact manifold, it generates a unique global

flow Flowppqpmqσ : R ˆ ĂM Ñ ĂM [167, Thm.s 12.9, 12.12], which factors as

ÿ

t:R

ĂM
m˚

1 σ
ÝÝÝÑ

ÿ

t:R

ÿ

x:ĂM

prm1pxqs
Flowppqpmqu

ÝÝÝÝÝÝÝÑ ĂM .

We therefore define the system Flowppqpmq to have state space
ĂM , output mapm1 (for all t : R),

and update map Flowppqpmqu. Since Flowppqpmqσ is a flow for any section σ, it immediately

satisfies the monoid action condition. On morphisms α : m Ñ m1
, we define Flowppqpαq by

the same underlying map on state spaces; this is again well-defined by the condition that α is

compatible with the tangent structure. Given a morphism φ : p Ñ q of polynomials, both the

reindexing DiffSyspφq and CoalgR
Ppφq act by postcomposition, and so it is easy to see that

CoalgR
Ppφq ˝ Flowppq – Flowpqq ˝ DiffSysPpφq naturally.

258



Remark 6.3.22. The question of integration of stochastic systems is more vexed and we will not

treat it in this thesis.

Not only may we integrate a differential system to obtain a continuous-time dynamical system,

we can also variously discretize the continuous-time system to obtain a discrete-time one.

Proposition 6.3.23. Any map f : T1 Ñ T of monoids induces an indexed functor (a natural

transformation) CoalgT
P Ñ CoalgT1

P .

Proof. We first consider the induced functor CoalgT
Pppq Ñ CoalgT1

P ppq, which we denote by

∆p
f . Note that we have a morphism rfy, ps : rTy, ps Ñ rT1y, ps of polynomials by substitution

(precomposition). A system β in CoalgT
P is a morphism SyS Ñ rTy, ps for some S, and so we

define ∆p
f pβq to be rf, ps ˝ β : SyS Ñ rTy, ps Ñ rT1y, ps. To see that this satisfies the monoid

action axiom, consider that the closure∆p
f pβqσ for any section σ : p Ñ y is given by

ÿ

t:T1

S
βopfptqq˚σ
ÝÝÝÝÝÝÝÑ

ÿ

t:T1

ÿ

s:S

prβopfptq, sqs
βu

ÝÑ S

which is an object in the functor category Cat
`

BT1,KℓpPq
˘

since f is a monoid homomorphism.

On morphisms of systems, the functor∆p
f acts trivially.

To see that ∆f collects into an indexed functor, consider that it is defined on each polynomial p

by the contravariant action rf, ps of the internal hom r´,“s, and that the reindexing CoalgTpφq

for any morphism φ of polynomials is similarly defined by the covariant action rTy, φs. By

the bifunctoriality of r´,“s, we have rT1y, φs ˝ rfy, ps “ rfy, φs “ rfy, qs ˝ rTy, φs, and so

CoalgT1

P pφq ˝ ∆p
f “ ∆q

f ˝ CoalgT
P .

Corollary 6.3.24. For each k : R, the canonical inclusion ιk : N ãÑ R : i ÞÑ ki induces a

corresponding ‘discretization’ indexed functor Disck :“ ∆ι : CoalgR
P Ñ CoalgN

P .

Remark 6.3.25. From Proposition 6.3.21 and Corollary 6.3.24 we obtain a family of composite

indexed functors DiffSys
Flow
ÝÝÝÑ CoalgR

P
Disck
ÝÝÝÑ CoalgN

P taking each differential system to a

discrete-time dynamical system in C. Below, we will define approximate inference doctrines in

discrete time that arise from processes of (stochastic) gradient descent, and which therefore factor

through differential systems, but the form in which these are given—and in which they are found

in the informal literature (e.g., Bogacz [33])—is not obtained via the composite Disck ˝ Flow for any

k, even though there is a free parameter k that plays the same rôle (intuitively, a ‘learning rate’).

Instead, one typically adopts the following scheme, sometimes known as Euler integration or the

Euler method.
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Euler integration induces a family of indexed functors Eulerk : DiffSys Ñ CoalgN
P , for

k : R, which we illustrate for a single system pRn,mq over a fixed polynomial p, with m :

RnyRnˆRn
Ñ p. This system is determined by a pair of morphisms m1 : Rn Ñ pp1q and

m7 :
ř

x:Rn prm1pxqsÑ‚ Rn ˆ Rn, and we can write the action ofm7
as px, yq ÞÑ px, vxpyqq.

Using these, we define a discrete-time dynamical system β over p with state space Rn. This

β is given by an output map βo, which we define to be equal to m1, β
o :“ m1, and an update

map βu :
ř

x:Rn prβopxqsÑ‚ Rn, which we define by px, yq ÞÑ x` k vxpyq. Together, these define a

system in CoalgN
Pppq, and the collection of these systems β produces an indexed functor by the

definition Eulerkppqpmq :“ β.

By contrast, the discrete-time system obtained viaDisck ˝Flow involves integrating a continuous-

time system for k units of real time for each unit of discrete time: although this in general produces

a more accurate simulation of the trajectories implied by the vector field, it is computationally

more arduous; to trade off simulation accuracy against computational feasibility, one may choose a

more sophisticated discretization scheme than that sketched above, or at least choose a “sufficiently

small” timescale k.

Finally, we can use the foregoing ideas to translate differential hierarchical inference systems to

dynamical hierarchical inference systems.

Corollary 6.3.26. The indexed functors Disck : CoalgR
P Ñ CoalgN

P , Flow : DiffSys Ñ

CoalgR
P , and Eulerk : DiffSys Ñ CoalgN

P induce functors (respectively) HDisck : CiliaRP Ñ

CiliaNP , HFlow : DiffCilia Ñ CiliaRP and HEulerk : DiffCilia Ñ CiliaNP by change of base of

enrichment.
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7. Approximate inference doctrines for
predictive coding

The construction of the predictive coding models that underlie the theory of the Bayesian brain

involves mapping a (‘generative’) statistical model, representing how the modeller believes the

brain to understand the world, to a dynamical system which plays the rôle of the neural circuits

which are hypothesized to instantiate that model. This dynamical system is then simulated and the

resulting trajectories studied: for instance, to compare with experimental neural or psychological

data, or to judge against a synthetic benchmark.

Typically, both the generative model and the resulting dynamical systems are ‘modular’, and

the mapping from the former to the latter preserves this structure: that is to say, predictive coding

forms an example of functorial semantics, of which we saw a rudimentary example in §3.3, when we

considered an algebra of rate-coded neural circuits. This chapter makes this functoriality explicit,

which we hope to have a useful scientific consequence: it often seems to be the case that researchers

manually derive complicated dynamical systems from their statistical models [21, 48, 76, 108, 148,

264, 265] [205, Chapter 5], but once functoriality is established, this manual labour is unnecessary;

the functor represents a machine with which the process may be automated.

We call such functors approximate inference doctrines. In defining them, we bring together the

statistical games of Chapter 5 (which supply the ‘syntax’ of generative models) and the open

dynamical systems of Chapter 6 (which supply the ‘semantics’), and we explain precisely how these

doctrines may factorize through the various components we have seen: the stochastic channels,

the inference systems, the loss models, the differential systems, and the cilia. This is the work of

§7.3, which also establishes the functoriality of predictive coding under the (Laplacian) free energy

principle. Before we get there, we construct some final pieces of technical machinery, aspects of

which we have seen before: stochastic channels with Gaussian noise, to model functions of the

form fpxq ` ω with ω Gaussian-distributed (§7.1); and externally parameterized Bayesian lenses,

so that our constructions have the freedom to learn (§7.2).
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7.1. Channels with Gaussian noise

Our motivating examples from the predictive coding literature in computational neuroscience are

defined over a subcategory of channels between Cartesian spaces with additive Gaussian noise

[33, 48, 101]; typically one writes x ÞÑ fpxq ` ω, with f : X Ñ Y a deterministic map and ω

sampled from a Gaussian distribution over Y . This choice is made, as we saw in §5.3.3.4, because

it permits some simplifying assumptions, and the resulting dynamical systems resemble known

neural circuits.

In this section, we develop some categorical language in which we can express such Gaussian

channels, expanding on the informal definition given in Remark 5.3.29. We do so by thinking of

x ÞÑ fpxq ` ω as a map parameterized by a noise source, and so to construct a category of such

channels, we can use the Para construction, following Proposition 3.2.3. Because the noise comes

from the parameter, we need a category whose objects are spaces equipped with measures. For this,

we can use the ‘pointing’ construction introduced in §6.2.3; as we saw in Example 6.2.25, this gives

us a category of measure spaces. The next step is to spell out an actegory structure that induces

the parameterization we seek.

Proposition 7.1.1. Suppose pC,b, Iq is a monoidal category, and supposeD ãÑ C is a subcategory

to which the monoidal structure restricts. Then there is aD˚-actegory structureD˚ Ñ CatpD,Dq

on D as follows. For each pM,µq : D˚, define pM,µq ˚ p´q : D Ñ D by pM,µq ˚X :“ M b p´q.

For each morphism f : pM,µq Ñ pN, νq in D˚, define f ˚ p´q :“ f b p´q.

Proof sketch. The action on morphisms is well-defined because each morphism f : pM,µq Ñ

pN, νq in D˚ projects to a map f :M Ñ N in D; it is clearly functorial. The unitor and associator

of the actegory structure are inherited from the monoidal structure, and they satisfy the actegory

axioms for the same reason.

Remark 7.1.2. Note that the construction of ˚ is easily extended to an action on the whole of C.

We will however be concerned only with the action of D˚ on D.

When we instantiate ˚ in the context of Meas ãÑ sfKrn, the resulting Para bicategory

Parap˚q can be thought of as a bicategory of maps each of which is equipped with an independent

noise source; the composition of maps takes the product of the noise sources, and 2-cells are

noise-source reparameterizations.

In this case, the actegory structure ˚ is moreover symmetric monoidal, and the 1-categorical

truncation Parap˚q1 (cf. Proposition 3.2.8) is a copy-delete category, as we now sketch.
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Proposition 7.1.3. Suppose pC,b, Iq is a symmetric monoidal copy-discard category, and let

the symmetry and copy-discard structure restrict to D ãÑ C. Then Parap˚q1 is also a symmetric

monoidal copy-delete category.

Proof sketch. The monoidal structure is defined following Proposition 3.2.5. We need to define a

right costrength ρ with components pN, νq ˚ pX b Y q
„
ÝÑ X b ppN, νq ˚ Y q. Since ˚ is defined by

forgetting the pointing and taking the monoidal product, the costrength is given by the associator

and symmetry in D:

pN, νq˚pXbY q “ NbpXbY q
„
ÝÑ NbpYbXq

„
ÝÑ pNbY qbX

„
ÝÑ XbpNbY q “ XbppN, νq˚Y q

As the composite of natural isomorphisms, this definition gives again a natural isomorphism; the

rest of the monoidal structure follows from that of the monoidal product on C.

We now need to define a symmetry natural isomorphism βX,Y : X b Y
„
ÝÑ Y bX in Parap˚q.

This is given by the symmetry of the monoidal product inD, under the embedding ofD inParap˚q

that takes every map to its parameterization by the monoidal unit.

The rest of the copy-delete structure is inherited similarly from C via D.

When C is a category of Markov kernels, we will typically think of the morphisms of Parap˚q1

as kernels whose uncertainty arises from a noisy parameter. To formalize this we can push forward

the noise to obtain again a morphism in C. This yields a functor Push : Parap˚q1 Ñ C.

Proposition 7.1.4. There is a strict monoidal functor Push : Parap˚q1 Ñ C. Given a morphism

in Parap˚q1 represented by f : X
pΩ,µq
ÝÝÝÑ Y , let Pushpfq be the composite f ‚ pµb idXq : XÑ‚ Y

in C.

Proof sketch. First, the given mapping preserves identities: the identity in Parap˚q is trivially

parameterized, and is therefore taken to the identity in C. Themapping also preserves composites, by

the naturality of the unitors of the symmetric monoidal structure on C. That is, given f : X
pΩ,µq
ÝÝÝÑ Y

and g : Y
pΘ,νq
ÝÝÝÑ Z , their composite g ˝ f : X

pΘbΩ,νbµq
ÝÝÝÝÝÝÝÑ Z is taken to

X
„
ÝÑ‚ 1 b 1 bX

νbµbidX
ÝÝÝÝÝÝÑ‚ Θ b Ω bX

g˝f
ÝÝÑ‚ Z

where here g ˝ f is treated as a morphism in C. Composing the images of g and f under the given

mapping gives

X
„
ÝÑ‚ 1 bX

µbidX
ÝÝÝÝÑ‚ Ω bX

f
ÝÑ‚ Y

„
ÝÑ‚ 1 b Y

νbY
ÝÝÝÑ‚ Θ b Y

g
ÝÑ‚ Z
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which is equal to

X
„
ÝÑ‚ 1 b 1 bX

νbµbidX
ÝÝÝÝÝÝÑ‚ Θ b Ω bX

idΘ bf
ÝÝÝÝÑ‚ Θ b Y

g
ÝÑ‚ Z

which in turn is equal to the image of the composite above.

Since the monoidal structure on Parap˚q is inherited from that on C (with identical objects), the

embedding is strict monoidal.

Remark 7.1.5. Note that Push is not an embedding, since the mapping on hom sets need not

be injective: pushing forward the noise of two parallel morphisms in Parap˚q1 may yield equal

morphisms in C without the noise sources being isomorphic, and hence without the original

morphisms being equivalent in Parap˚q; that is to say, the parameterization of noise sources is

not generally unique.

We now restrict our attention to Gaussian morphisms in C “ sfKrn.

Definition 7.1.6. We say that f : XÑ‚ Y in sfKrn is Gaussian if, for any x : X , the measure fpxq

is Gaussian
1
. Similarly, we say that f : X

pΩ,µq
ÝÝÝÑ Y in Parap˚q is Gaussian if its image under Push

is Gaussian. We will write Gauss to denote the subcategory of sfKrn generated by Gaussian

kernels and their composites; likewise, we will write Gauss˚ to denote the Gaussian subcategory

ofParap˚q. Given a separable Banach spaceX , we will writeGausspXq for the space of Gaussian

states on X .

Example 7.1.7. Random functions of the form x ÞÑ fpxq ` ω, where ω : Ω is distributed

according to a Gaussian, are therefore morphisms in Gauss˚. Under the embedding into Gauss,

the corresponding kernel emits, for each x : X , a Gaussian distribution with mean fpxq ` µω ,

where µω is the mean of the Gaussian random variable ω, and variance the same as that of ω.

Remark 7.1.8. In general, Gaussian morphisms are not closed under composition: pushing a

Gaussian distribution forward along a nonlinear transformation will not generally result in another

Gaussian. For instance, consider the Gaussian functions x ÞÑ fpxq ` ω and y ÞÑ gpyq ` ω1
.

Their composite in Gauss˚ is the morphism x ÞÑ g
`

fpxq ` ωq
˘

` ω1
; even if g

`

fpxq ` ωq
˘

is

Gaussian-distributed, the sum of two Gaussians is in general not Gaussian, and so g
`

fpxq`ωq
˘

`ω1

will not be Gaussian. This non-closure underlies the power of statistical models such as the

variational autoencoder, which are often constructed by pushing a Gaussian forward along a

1

We admit Dirac delta distributions, and therefore deterministic morphisms, as Gaussian, since delta distributions can

be seen as Gaussians with infinite precision.
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learnt nonlinear transformation [155], in order to approximate an unknown distribution; since

sampling from Gaussians is relatively straightforward, this method of approximation can be

computationally tractable. The Gauss construction here is an abstraction of the Gaussian-

preserving transformations of Shiebler [232], and is to be distinguished from the category with

the same name introduced by Fritz [109], whose morphisms are affine transformations (which do

preserve Gaussianness) and which are therefore closed under composition; there is nonetheless an

embedding of Fritz’sGauss into ourGauss.

For Laplacian statistical games (in the image of LFE), and for the associated approximate inference

doctrines, we are interested only in Gaussian channels between finite-dimensional Cartesian spaces

Rn for n : N.

Definition 7.1.9. Denote by FdGauss the full subcategory ofGauss spanned by the objects Rn

for n : N.

Proposition 7.1.10. Every channel c : XÑ‚ Y inFdGauss admits a density function pc : Y ˆX Ñ

r0, 1s with respect to the Lebesgue measure on Y . Moreover, since Y “ Rn for some n : N,

this density function is determined by two maps: the mean µc : X Ñ Rn, and the covariance

Σc : X Ñ Rnˆn
in E . We call the pair pµu,Σcq : X Ñ Rn ˆ Rnˆn

the statistical parameters of c

(to be distinguished from any parameterization in the category-theoretic sense of §3.2).

Proof. The density function pc : Y ˆX Ñ r0, 1s is defined by

log pcpy|xq “
1

2

A

ϵcpy, xq, Σcpxq
´1 ϵcpy, xq

E

´ log
a

p2πqn detΣcpxq

where the ‘error’ function ϵc : Y ˆX Ñ Y is defined by ϵcpy, xq :“ y ´ µcpxq.

7.2. Externally parameterized Bayesian lenses and statistical games

The statistical games of Chapter 5 are simply Bayesian lenses equipped with loss functions. Given a

statistical game, its lens is therefore fixed, and the only way to a high score on its loss is through its

openness to the environment—the dependence on a prior and an observation. But this seems like a

strange model of adaptive or cybernetic systems, which should also be free to change themselves

in order to improve their performance.

Indeed, this changing-oneself is at the heart of the construction of approximate inference

doctrines, and in order to incorporate it into the structure, there must be some more freedom in
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the model: the freedom to choose the lens. This freedom is afforded by the use of parameterized

statistical games, and in particular, externally parameterized statistical games, in the sense of §3.2.2.

Remark 7.2.1. It is of course possible to define an actegorical (internal) parameterization of

statistical games, but this seems to prove more complicated than necessary for our purposes.

In advance of our use of external parameterization in the construction of approximate inference

doctrines, recall that we denote the external parameterization of an enriched category C in its base

of enrichment E by PC. This section is dedicated to exhibiting the external parameterizations

PBayesLens2 and PSGame of Bayesian lenses and statistical games, and the notion of

parameterized loss model.

Remark 7.2.2. BecauseBayesLens2 andSGame are both bicategories, they are weakly enriched

in Cat. Consequently, following Remark 3.2.12, P has the type Cat-Cat Ñ pCat-Catq-Cat,

or equivalently, Bicat Ñ Tricat. This means that, in full generality, PBayesLens2 and

PSGame are tricategories: if B is a bicategory, then the hom-bicategory PBpa, bq is the

bicategoryCat{Bpa, bq. Because we are now working with weakened structures (weak enrichment,

bicategories, lax loss models), we take this to be a lax slice of Cat.

We pause to define this new notion, generalizing our earlier Definition 3.2.10 (slice category).

Definition 7.2.3. SupposeX is a 0-cell in a bicategory B. The lax slice of B overX , denoted B{X ,

is the following bicategory. Its 0-cells are pairs pA, pq where A is a 0-cell and p is a 1-cell A Ñ X

in B. A 1-cell pA, pq Ñ pB, qq is a pair pf, ϕq where f is a 1-cell A Ñ B and ϕ is a 2-cell p ñ q ˝ f

in B, as in the diagram

A B

X

f

p q

ϕ .

A 2-cell pf, ϕq ñ pg, γq is a 2-cell α : f ñ g in B such that

p q ˝ f g ˝ g
ϕ q˝α

“ p q ˝ g
γ

.

(In this definition, ˝ denotes horizontal composition in B.) The horizontal composition in B{X is

given in the obvious way by the horizontal composition of the relevant 1- and 2-cells. Likewise,

vertical composition in B{X is vertical composition in B. (It is easy to check that these definitions

all satisfy the relevant axioms, hence constituting a valid bicategory.)
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We will see how this structure works in practice in our examples of parameterization below.

Remark 7.2.4. To avoid venturing into 3- and 4-dimensional category theory, we will restrict the

hom-bicategories of PBayesLens2 and PSGame to be locally discrete, with the parameterizing

objects being mere sets (treated as discrete categories). Strictly speaking, our parameterizing sets

will be the underlying sets of differential manifolds — specifically, the trivial manifoldsRn — and we

could treat them properly as parameterizing categories by using their groupoidal (path) structure,

but we do not pursue this here. (Alternatively, we could follow the idea of Proposition 3.2.8 and

truncate the hom-categories by quotienting by connected components; but this turns the 1-cells

into equivalence classes of functors, which are again more complicated than we have the need or

appetite for here.)

Restricting P to discrete parameterization means that we instantiate PBayesLens2 and

PSGame as follows. Both being constructed overCopara2pCq, we build up fromPCopara2pCq,

after first sketching the horizontal composition of externally parameterized bicategories.

Remark 7.2.5. Given a bicategory B, horizontal composition in PB is obtained from the strong

monoidal structure of the covariant self-indexing (which follows from the universal property of

the product of categories) and the horizontal composition in B. For each triple of 0-cells a, b, c : B,

the composition pseudofunctor is given by

PBpb, cq ˆ PBpa, bq “ Cat{Bpb, cq ˆ Cat{Bpa, bq ¨ ¨ ¨

¨ ¨ ¨
„
ÝÑ Cat{

`

Bpb, cq ˆ Bpa, bq
˘ Cat{˝a,b,c

ÝÝÝÝÝÝÑ Cat{Bpa, cq “ PBpa, cq .

Observe that this generalizes the lower-dimensional case of Definition 3.2.11: first, we take the

product of the parameterizing functors, and then we compose in their codomain.

Example 7.2.6. The 0-cells of PCopara2pCq are the 0-cells of Copara2pCq, which are in turn

the objects of C. A 1-cell from X to Y is a choice of (discrete) parameterizing category (hence a

set) Θ, along with a functor Θ Ñ Copara2pCqpX,Y q. More intuitively, we can think of such a

1-cell as a morphism in C that is both (externally) parameterized and (internally) coparameterized,

and write it as f : X
Θ

ÝÑ
M

Y , denoting a 1-cell with parameter Θ (in the base of enrichment of C),

domain X , codomain Y , and coparameterM .

A 2-cell from f : X
Θ

ÝÑ
M

Y to f 1 : X
Θ1

ÝÝÑ
M 1

Y is a pair pϕ, φq of a functor ϕ : Θ Ñ Θ1
and a

natural transformation φ : f ñ f 1 ˝ ϕ. The functor ϕ changes the parameterization; and the
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natural transformation φ permits additionally a compatible change of coparameterization, being

given by a natural family of 2-cells in Copara2pCq

φθ :
`

fθ : X
θ

ÝÑ
M

Y
˘

ñ
`

f 1ϕpθq : X
ϕpθq
ÝÝÑ
M 1

Y
˘

indexed by the parameters θ : Θ. (With discrete parameterization, such a family is trivially

natural.) Recalling the definition of Copara2 in Theorem 5.2.1, this means that each component

φθ corresponds to a morphismX bM b Y Ñ N in C satisfying the change of coparameter axiom

with respect to fθ and f 1ϕpθq
.

Horizontal composition inPCopara2pCq is as sketched in Remark 7.2.5: given 1-cells f : X
Θ

ÝÑ
M

Y and g : Y
Ω

ÝÑ
N

Z , their composite is the evident g ˝ f : X
Θ

ÝÑ
M

Y
Ω

ÝÑ
N

Z whose parameter is the

product Ω ˆ Θ and whose coparameter is the tensor ofM and N . The horizontal composition

of 2-cells is likewise by first forming the product of their parameters. Vertical composition in

PCopara2pCq is given by the horizontal composition in each lax slice hom (bi)category.

The structure of PBayesLens2 and PSGame follows the same pattern.

Example 7.2.7. The 0-cells of PBayesLens2 are the same pairs pX,Aq as in BayesLens2. A

1-cell from pX,Aq to pY,Bq is a biparameterized Bayesian lens: a pair pc, c1q of a biparameterized

forwards channel c : X
Θ

ÝÑ
M
‚ Y and a biparameterized inversion (state-dependent) channel c1 :

B
Θ;X
ÝÝÝÑ
M 1

‚ A; here we have denoted the state-dependence and the parameterization together as Θ;X .

(Note that in all our examples, the forwards and backwards coparameters will be equal, i.e.,M “ M 1
;

cf. Remark 5.2.21 on dependent optics.)

A 2-cell from pc, c1q : pX,Aq
Θ

ÝÝÝÑ
M,M 1

| pY,Bq to pd, d1q : pX,Aq
Ω

ÝÝÝÑ
N,N 1

| pY,Bq is a triple pα, α1, α
1q

such that α is a functor Θ Ñ Ω, pα, α1q is a 2-cell c ñ d inPCopara2pCq (cf. Example 7.2.6), and

pα, α1q is a 2-cell c1 ñ d1
in PStat2pXqpB,Aq. The latter means that α1

is a family of 2-cells in

Copara2pCqpB,Aq

α1θ
π :

`

c1θ
π : B

θ;π
ÝÝÑ
M 1

A
˘

ñ
`

d1αpθq
π : B

αpθq;π
ÝÝÝÝÑ
N 1

A
˘

natural in θ : Θ and indexed by π : CpI,Xq. (The preceding example shows how this corresponds

to an indexed natural family of change-of-coparameter morphisms in C.)

Horizontal composition in PBayesLens2 is of course by taking the product of the parameters

and then applying horizontal composition in BayesLens2; and vertical composition is horizontal

composition in the lax slices making up each hom (bi)category.
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Example 7.2.8. Statistical games are obtained by attaching loss functions to Bayesian lenses, and

hence to understand parameterized statistical games having elaborated parameterized Bayesian

lenses in the preceding example, it suffices to exhibit parameterized loss functions.

A parameterized statistical game pX,Aq
Θ

ÝÝÝÑ
M,M 1

pY,Bq consists of a parameterized Bayesian

lens pX,Aq
Θ

ÝÝÝÑ
M,M 1

| pY,Bq along with a parameterized loss function B
Θ;X
ÝÝÝÑ‚ I in PStatpXqpB, Iq.

Since StatpXqpB, Iq is a discrete category, such a loss function is given by a function Θ0 Ñ

StatpXqpB, Iq, or equivalently (by the Cartesian closure of Set) a function Θ0 ˆ CpI,Xq Ñ

CpB, Iq. In the case where C “ sfKrn, this means a function Θ0 ˆ sfKrnp1, Xq ˆ B Ñ R`

which is measurable in B.

A 2-cell from the parameterized statistical game pc, c1,Kq : pX,Aq
Θ

ÝÝÝÑ
M,M 1

pY,Bq to pd, d1, Lq :

pX,Aq
Ω

ÝÝÝÑ
N,N 1

pY,Bq is a quadruple pα, α1, α
1, α̃q where pα, α1, α

1q is a 2-cell of Bayesian lenses

and α̃ is a family of parameterized loss functions B
Θ;X
ÝÝÝÑ‚ I such thatKθ “ Lαpθq ` α̃θ , naturally in

θ : Θ.

Horizontal and vertical composition of parameterized statistical games and their 2-cells follow

the pattern of the preceding examples.

Because P is functorial, we can consider parameterized versions of the inference systems and

loss models that we introduced in §5.3.2. We can think of parameterization as introducing a ‘hole’

in a structure (such as an extra input to a system), and parameterized inference systems and loss

models are inference systems and loss models that account for (and possibly modulate) such holes.

Example 7.2.9. Suppose pD, ℓq is an inference system in C. P acts on the canonical inclusion

p´q : D ãÑ Coparal2pDq to return the inclusion Pp´q : PD ãÑ PCoparal2pDq, which maps

a parameterized channel d : X
Θ
ÝÑ‚ Y to its trivially coparameterized form d : X

Θ
ÝÑ
I
‚ Y .

ℓ then maps a channel d to a lens pd, ℓdq. If d is parameterized byΘ, then its inversion ℓd under ℓ

will be parameterized accordingly, so that the whole lens pd, ℓdq has parameter Θ. This mapping is

the action of the pseudofunctor Pℓ : PD Ñ PBayesLens2|D , induced by the parameterization

of ℓ.

However, in the next section, we will want approximate inference systems that do not just

preserve an existing parameterization, but which also add to it, equipping (possibly parameterized)

morphisms with inversions that may have their own distinct capacity for improvement or learning.

For this reason, we make the following definition.
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Definition 7.2.10. Suppose pC,b, Iq is a copy-delete category. A parameterized inference system

in C is a pair pB, ℓq of a sub-bicategory B ãÑ PC along with a (strong functorial) section ℓ : B Ñ

PBayesLens2|B of the restriction PpπLensq|B to B of the parameterized 2-fibration PpπLensq :

PBayesLens2 Ñ PCoparal2pCq, where B is the essential image of the restriction to B of the

(parameterized) canonical lax inclusion Pp´q : PC ãÑ PCoparal2pCq. We say lax parameterized

inference system when ℓ is a lax functor.

A trivial example of a lax parameterized inference system is obtained by taking the parameters

to be hom categories, and the choice functor to be the identity, as the following example shows.

Example 7.2.11. The following data define a lax parameterized inference system ℓ acting on

the entirety of PC. First, let PpX,Y,Mq denote the full subcategory of Stat2pXqpY,Xq on those

objects (state-dependent morphisms) with coparameterM . Then ℓ is defined as follows.

(i) Each 0-cell X is mapped to the 0-cell pX,Xq.

(ii) Each 1-cell c : X
Θ

ÝÑ
M
‚ Y is mapped to the parameterized lens pc, c1q : pX,Xq

ΘˆPpX,Y,Mq
ÝÝÝÝÝÝÝÝÑ

M
| pY, Y q

whose forward channel is chosen by

Θ ˆ PpX,Y,Mq
proj1
ÝÝÝÑ Θ

c
ÝÑ Coparal2pCqpX,Y q

and whose inverse channel c1 : Y
PpX,Y,Mq;X
ÝÝÝÝÝÝÝÝÑ

M
‚ X is chosen by

Θ ˆ PpX,Y,Mq
proj2
ÝÝÝÑ PpX,Y,Mq ãÑ Stat2pXqpY,Xq

(iii) Each 2-cell pa, αq :
`

c : X
Θ

ÝÑ
M
‚ Y

˘

ñ
`

d : X
Θ1

ÝÝÑ
M 1

‚ Y
˘

is mapped to the 2-cell pa ˆ α˚, α, αq,

where α˚ is the functor defined by post-composing with α taken as a family of 2-cells in

Coparar2pCq and hence in PpX,Y,Mq.

Proof. First, we confirm that the mapping is well-defined on 1-cells (taking it to be evidently so on

0-cells): in general, the coparameters in PCopara2pCq may depend on the parameters, but here

the parameters arise from the embedding p´q : PC Ñ PCopara2pCq. The only coparameters

are therefore those that arise by copy-composition, and their type is thus not parameter-dependent.

It is therefore legitimate to map a 1-cell c : X
Θ

ÝÑ
M

Y to a lens with type pX,Xq
ΘˆPpX,Y,Mq
ÝÝÝÝÝÝÝÝÑ

M
| pY, Y q.

Next, we check well-definedness on 2-cells. Note that the 2-cell pa, αq :
`

c : X
Θ

ÝÑ
M
‚ Y

˘

ñ
`

d :

X
Θ1

ÝÝÑ
M 1

‚ Y
˘

in PCoparal2pCq is constituted by a family of morphisms αθ : X bM b YÑ‚ M 1
, and

that a 2-cell

`

YÝÑ
M
‚ X

˘

ñ
`

YÝÝÑ
M 1

‚ X
˘

in Coparar2pCq has an underlying morphism of the same
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type; hence each αθ witnesses such a 2-cell in Coparar2pCq. In particular, for each π : IÑ‚ X in C,

and for each state-dependent ρ : Y
X

ÝÑ
M
‚ X , αθ yields a 2-cell from ρπ to

α˚pθ, ρqπ :“ ρπ
Y

X

M 1

αθ

.

The functor α˚ is thus defined by mapping pθ, ρq : Θ ˆ PpX,Y,Mq to α˚pθ, ρq : PpX,Y,M 1q; its

own action on 2-cells is likewise by parameterized post-composition. Finally, note that d1
is also

given by evaluation, and so α also defines an indexed natural family of 2-cells

αθ,ρπ :
`

c1ρ
π “ ρπ : YÝÑ

M
‚ X

˘

ñ
`

d1α˚pθ,ρq
π “ α˚pθ, ρqπ : YÝÝÑ

M 1
‚ X

˘

as required (cf. Example 7.2.7). Therefore, paˆ α˚, α, αq defines a 2-cell in PBayesLens2. This

is compatible with ℓ being a section of PπLens, as paˆ α˚, α, αq ÞÑ pa, αq.

To establish lax unity, we need to exhibit a family of 2-cells piX , iX1, i
1
Xq : idpX,Xq ñ pidX , id

1
Xq

natural inX , where idpX,Xq is the identity lens on pX,Xq inPBayesLens2 with trivial parameter

1, idX is the likewise trivially parameterized identity on X in PC, and id1
X is the parameterized

state-dependent channel id1
x : X

1ˆPpX,X,1q
ÝÝÝÝÝÝÝÝÑ

1
‚ X defined by the inclusion

1 ˆ PpX,X, 1q
„
ÝÑ PpX,X, 1q ãÑ Stat2pXqpX,Xq .

Clearly id1
X is not constantly the identity morphism, and this is why ℓ is only laxly unital. By

defining the functor iX : 1 Ñ 1 ˆ PpX,X, 1q to pick the element idX , the 2-cell iX1 to be the

identity on idX , and likewise i1x, we obtain the required family of witnesses.

Lax functoriality is witnessed by a family of 2-cells

pfdc, fdc1, f
1
dcq : pd, d1q � pc, c1q ñ pd ‚ c, pd ‚ cq1q

natural in c : X
Θ

ÝÑ
M
‚ Y and d : Y

Φ
ÝÑ
N
‚ Z . We define the functor

fdc : Θ ˆ PpX,Y,Mq ˆ Φ ˆ PpY,Z,Nq Ñ Θ ˆ Φ ˆ PpX,Z,M bNq

by composition, fdcpθ, ρ, ϕ, χq :“ pθ, ϕ, ρ ˝ χcθq; it is the fact that not all morphisms XÑ‚ Z factor

through Y that makes ℓ lax functorial. With fdc so defined, we can set both fdc1 and f
1
dc to be

identity 2-cells, and thus obtain the requisite witnesses.
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On the other hand, the only parameterized loss models we encounter will be those of §5.3.3

under the action of P. This is because the ability to change is part of the system itself, rather than

part of how we measure the system
2
: we do not seek to “move the goalpoasts”. (In future work, we

may consider systems whose performance is dependent on some broader context; but not here.)

Therefore, our parameterized loss models will all be of the following form.

Example 7.2.12. IfL is a loss model for B, then its parameterizationPL assigns to a parameterized

Bayesian lens pc, c1q : pX,Aq
Θ

ÝÝÝÑ
M,M 1

| pY,Bq the correspondingly parameterized statistical game

`

c, c1, Lpcq
˘

. The parameterized loss function Lpcq thus also has parameter Θ and depends

accordingly on it, with type Lpcq : B
Θ;X
ÝÝÝÑ‚ I . For each θ : Θ, its component is the loss function

Lpcqθ : B
X
ÝÑ‚ I which is assigned to the lens pcθ, c1θq by L (as a loss model applied to an

unparameterized lens).

Remark 7.2.13. Before we move on to examples of approximate inference doctrines, let us note the

similarity of the notions of externally parameterized lens (Example 7.2.7), cilia (Definition 6.3.8), and

differential cilia (Definition 6.3.19): both of the latter can be considered as externally parameterized

lenses with extra structure, where the extra structure is a morphism or family of morphisms back

into (an algebra of) the parameterizing object: in the case of differential cilia, this ‘algebra’ is the

tangent bundle; for (dynamical) cilia, it is trivial; and forgetting this extra structure returns a mere

external parameterization. Notably, the ‘input’ on the external hom polynomial defining both types

of cilia (Definition 6.3.1) corresponds precisely to the domain of the loss function of a statistical

game; and so the domains of the update maps of either type of cilia correspond to the domains of

parameterized loss functions. We will make use of this correspondence in defining approximate

inference doctrines in the next section.

7.3. Approximate inference doctrines

We are at last in a position to build the bridge between abstract statistical models and the dynamical

systems that play them: functors from a copy-discard category of parameterized channels to a

category of cilia that factorize through an inference system (modelling how the system inverts the

channels) and possibly a loss model (encoding how well the system is doing). In the round, we can

think of the resulting approximate inference doctrines as “dynamical algebras” for categories of

parameterized stochastic channels (considered as statistical models), which take the parameters

2

Physically speaking, we adopt the ‘Schrödinger’ perspective on change rather than the ‘Heisenberg’ perspective.
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as part of the dynamical state space so that they might improve themselves. This line of thinking

leads us to the following definitions.

Definition 7.3.1. Let pC,b, Iq be a copy-discard category, and let pB, ℓq be a parameterized

inference system in C.

(a) An approximate inference doctrine is a pseudofunctor B Ñ CiliaT that factors through ℓ, as

B Pp´q |B
ÝÝÝÝÝÑ B ℓ

ÝÑ impℓq
D
ÝÑ CiliaT .

We say lax approximate inference doctrine if D is instead a lax functor.

(b) An approximate inference doctrine with loss L is an approximate inference doctrine along with

a loss modelL for impℓq, a pseudofunctorDL : impLq Ñ CiliaT, and an icon λ : D ñ DL˝L,

as in the diagram

B B impℓq CiliaT

impLq

DℓPp´q |B

L

DL
λ .

We say lax approximate inference doctrine with loss if L and DL are lax functors.

(c) A differential approximate inference doctrine with loss L is an approximate inference doctrine

with loss L such that DL factors through a differential system, as in the diagram

B B impℓq CiliaT

impLq CiliaT

DiffCilia

DℓPp´q |B

DL

∇
ş

L
λ

δ

.

We say lax differential approximate inference doctrine when L,∇ and

ş

are lax functors.

The different factors of a differential approximate inference doctrine with loss encode the different

stages by which a dynamical system is constructed from a statistical model: the parameterized

inference system ℓ equips a parameterized channel with a parameterized inversion; the loss model

L equips the resulting lens with a loss function; the functor∇ translates this statistical game to a
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differential system, possibly representing gradient descent on the loss; and finally the functor

ş

turns this differential system into a dynamical system that ‘flows’, possibly by integration.

With these definitions to hand, we come to our motivating neuroscientific examples. First (§7.3.1),

we formalize predictive coding using the Laplace approximation to the free energy [21, 33, 104],

which we saw in §5.3.3.4 forms a lax loss model for Gaussian lenses. This approximation allows the

resulting dynamical systems to exhibit some biological plausibility, with prediction errors computed

linearly and the dynamical updates obtained as affine transformations of prediction errors. We call

this the Laplace doctrine.

Apart from requiring Gaussian channels, the Laplace doctrine is agnostic about how predictions

are actually generated, and it does not produce systems which are able to improve their predictions;

they have no ‘synaptic’ plasticity, and thus do not learn. To remedy this, our second example

of an approximate inference doctrine (§7.3.2) is more opinionated about the predictive forward

channels, restricting them to be of the form x ÞÑ θ hpxq ` ω where θ is a square matrix on Y , h

is a differentiable function X Ñ Y , and ω is distributed according to a Gaussian on Y ; compare

this with the form of the firing rate dynamics of rate-coded neural circuits in Definition 3.3.10.

The ‘synaptic’ parameter (or weight matrix) θ can then be learnt, and this is incorporated into the

state space of the systems produced by the corresponding Hebb-Laplace doctrine, which formalizes

another standard scheme in the neuroscience literature [33]. The name of this doctrine indicates

another aspect of the biological plausibility of this scheme: the θ-updates can be seen as a form of

Hebbian learning [127].

Remark 7.3.2. In what follows, in order to focus on exemplification, we omit a full treatment of

all the higher-categorical structure. This means that we do not consider the action of the doctrines

on 2-cells, and leave leave the full elaboration of the 2-dimensional structure to future work. Our

main concern in this final part is the scientific question of the compositional structure of predictive

coding, and one further mathematical consequence of this is that the inference systems on which

the doctrines are based will not be unital: the schemes that are presented in the literature involve

mappings which do not preserve identity channels.

7.3.1. Predictive coding circuits and the Laplace doctrine

Notation 7.3.3. Any category C embeds into its external parameterization PC by mapping every

morphism to its trivially parameterized form; in a mild abuse of notation, we will denote the image

of this embedding simply by C. In this section, we will work with the trivial parameterization of
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the subcategory FdGauss of sfKrn of Gaussian kernels between finite-dimensional Cartesian

spaces (Definition 7.1.9). Hence, when we write FdGauss , it denotes the image of FdGauss

under Pp´q .

We begin by presenting the action of the Laplace doctrine on a (non-coparameterized
3
) Gaussian

channel c. Below, we will see how the resulting system is obtained from a differential approximate

inference doctrine with the Laplacian free energy loss.

Proposition 7.3.4. Suppose c : XÑ‚ Y is a morphism in FdGauss, and fix a “learning rate”

λ : R. Then the following data define a system Lλpcq : pX,Xq Ñ pY, Y q in CiliaN, following the

representation of Proposition 6.3.9.

(i) the state space is X ;

(ii) the forwards output map Lλpcqo1 : X ˆX Ñ GausspY q is defined by

Lλpcqo1 : X ˆX
proj2
ÝÝÝÑ X

c
ÝÑ GausspY q ;

(iii) the inverse output map Lλpcqo2 : X ˆ GausspXq ˆ Y Ñ GausspXq is defined by

Lλpcqo2 : X ˆ GausspXq ˆ Y Ñ R|X| ˆ R|X|ˆ|X| ãÑ GausspXq

px, π, yq ÞÑ
`

x,Σc1px, π, yq
˘

where the inclusion picks the Gaussian state with the indicated statistical parameters, whose

covariance Σc1px, π, yq :“
`

B2
xEpc,πq

˘

px, yq´1
is defined following equation (5.8) of Lemma

5.3.31 (with trivial coparameterizationM “ 1);

(iv) the update map Lλpcqu : X ˆ GausspXq ˆ Y Ñ GpXq is defined by

Lλpcqu : X ˆ GausspXq ˆ Y Ñ X ãÑ GpXq

px, π, yq ÞÑ x` λ Bxµcpx, yqT ηcpx, yq ´ λ ηπpxq

where the inclusion X ãÑ GpXq is given by the unit of the Giry monad G which takes each x : X

to the corresponding delta distribution, and where ηcpx, yq :“ Σcpxq´1 ϵcpy, xq and ηπpxq :“

Σ´1
π ϵπpxq.

3

Note that all coparameterized channels of interest are obtained as the copy-composites of non-coparameterized

channels.
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Remark 7.3.5. Note that the update map Lλpcqu is actually deterministic, in the sense that it is

defined as a deterministic map followed by the unit of the probability monad. However, the general

stochastic setting is necessary, because the composition of system depends on the composition

of Bayesian lenses; recall Definition 6.3.6, which defines the bidirectional composition of cilia.

Intuitively, we can consider a composite system Lλpdq ˝ Lλpcq and note that the forward inputs to

the d component and the backward inputs to the c component will be sampled from the stochastic

outputs of c and d respectively. Because these inputs are passed to the corresponding update maps,

the updates inherit this stochasticity.

Remark 7.3.6. The terms ηcpx, yq “ Σcpxq´1 ϵcpy, xq in the update map of the Laplace doctrine

can be understood as precision-weighted error terms: the inverse covariance Σcpxq´1
encodes the

‘precision’ of the distribution (consider the univariate case); and the term ϵcpy, xq “ y ´ µcpxq

encodes the ‘error’ between the observation y and the predicted mean µcpxq. The representation

of prediction errors is a hallmark of predictive coding schemes.

To define an approximate inference doctrine, we need a (parameterized) inference system. For

predictive coding, this will be obtained by assigning to each channel c an inversion whose parameter

represents the mean of the emitted posterior; this parameter will later be learned by the resulting

doctrine. In order for this assignment to be functorial, we restrict the posteriors emitted by this

inference system to have diagonal covariance, meaning that there will be no correlations between

dimensions. This formalizes what is known in the literature as a mean field assumption [48, 101],

without which those earlier works would not have been able to make implicit use of functoriality.

Proposition 7.3.7 (Mean field Laplace). As long as ‚ denotes copy-composition, the following

data define a (non-unital) strong parameterized inference system ℓ on FdGauss. Each 0-cell

X is mapped to pX,Xq. Each 1-cell c : XÝÑ
M
‚ Y is mapped to the parameterized lens pc, c1q :

pX,Xq
XˆM
ÝÝÝÝÑ
M
| pY, Y q whose forward channel is c and whose parameterized backward channel

c1 : Y
XˆM ;X
ÝÝÝÝÝÑ

M
‚ X emits the Gaussian with mean px,mq : X ˆM determined by the parameter and

which minimizes the (mean-field) Laplacian free energy. Thus, writing

`

µx,mc1
π

pyq,Σx,mc1
π

pyq
˘

for the

statistical parameters of c1x,m
π pyq, ℓ assigns

µx,mc1
π

pyq :“ px,mq and Σx,mc1
π

pyq :“

˜

`

B2
xEpc,πq

˘

px,m, yq´1 0

0
`

B2
mEpc,πq

˘

px,m, yq´1

¸

.
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where B2
denotes the diagonal Hessian

4
It is the diagonal structure of Σx,mc1

π
that justifies the

‘mean-field’ moniker.

Proof. First, we note that ℓ fails to be unital because, for each identity channel idX : X
X
ÝÑ‚ , the

mean of the assigned inversion id1
X is determined by the parameter X , rather than the input. If

this parameter happens to equal to the input, then id1
X will actually act as the identity channel.

This is because we can understand the identity channel as the limit as σ Ñ 0 of a Gaussian with

mean equal to the input x and variance σ1X (where 1X is the identity matrix on X). Informally,

we have Σx
pid1

Xqπ
px1q “

`

B2
xEpidX ,πqpx, x

1q´1 “ 0, and so pid1
Xqx acts as the Dirac delta distribution

on the parameter x; but of course in general the parameter x need not equal the forward input.

Next, we show that ℓ is strongly functorial (as long as ‚ is always interpreted as copy-composition).

If c : XÝÑ
M
‚ Y and d : YÝÑ

N
‚ Z are composable Gaussian channels, then the statistical parameters of

the composite approximate inversion c1 ˝ d1
c : Z

Y NXM ;X
ÝÝÝÝÝÝÝÑ

MYN
‚ X are µy,n,x,m

pc1˝d1
cqπ

pzq “ px,m, y, nq and

Σy,n,x,m
pc1˝d1

cqπ
pzq “ diag

»

—

—

—

–

`

B2
xEpc,πq

˘

px,m, yq´1
`

B2
mEpc,πq

˘

px,m, yq´1
`

B2
yEpd,c‚πq

˘

px,m, y, n, zq´1
`

B2
nEpd,c‚πq

˘

px,m, y, n, zq´1

fi

ffi

ffi

ffi

fl

.

Note that, by interpreting ‚ as copy-composition, we have

Epd,c‚πqpx,m, y, n, zq “ ´ log pdpn, z|yq ´ log pcpm, y|xq ´ log pπpxq .

On the other hand, ℓ assigns to d ‚ c : XÝÝÝÝÑ
MYN

‚ Z the lens

`

d ‚ c, pd ‚ cq1
˘

whose inversion

pd ‚ cq1 : Z
XMYN ;X
ÝÝÝÝÝÝÝÑ

MYN
‚ X is defined by the statistical parameters µx,m,y,n

pd‚cq1
π

pzq “ px,m, y, nq and

Σx,m,y,n
pd‚cq1

π
pzq “ diag

»

—

—

—

–

`

B2
xEpd‚c,πq

˘

px,m, y, n, zq´1
`

B2
mEpd‚c,πq

˘

px,m, y, n, zq´1
`

B2
yEpd‚c,πq

˘

px,m, y, n, zq´1
`

B2
nEpd‚c,πq

˘

px,m, y, n, zq´1

fi

ffi

ffi

ffi

fl

where

Epd‚c,πqpx,m, y, n, zq “ ´ log pdpn, z|yq ´ log pcpm, y|xq ´ log pπpxq

“ Epd,c‚πqpx,m, y, n, zq .

Consequently, Σx,m,y,n
pd‚cq1

π
pzq “ Σy,n,x,m

pc1˝d1
cqπ

pzq. It therefore suffices to take the laxator ℓpdq � ℓpcq ñ

ℓpd ‚ cq to be defined by the isomorphism pY ˆNq ˆ pX ˆMq
„
ÝÑ pX ˆMq ˆ pY ˆNq.

4

That is, B2
xfpxq can be represented as the matrix with diagonal equal to the diagonal of the Hessian matrix B

2
xfpxq

and with all other coefficients 0.
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Remark 7.3.8. Note that the preceding inference system requires ‚ to be interpreted as copy-

composition everywhere, which is not strictly in accordance with our earlier usage (which mixed

copy-composition with ordinary composition in the state-dependence). Resolving this irregularity

is the subject of ongoing work.

Proposition 7.3.9. Stochastic gradient descent with respect to themean parameter of Laplacian free

energy games in the image of ℓ yields a strong functor∇ : L Ñ DiffCilia, where L is the essential

image of LFE restricted to the essential image of ℓ. If c :“ pc, c1, Lcq : pX,Xq
XˆM
ÝÝÝÝÑ
M

pY, Y q is

such a game (a 1-cell) in L, then∇c is the differential cilium pX,Xq
XˆM
ÝÝÝÝÑ pY, Y q with state space

equal to the parameter X ˆM defined as follows.

For each px,mq : XˆM ,∇c outputs the non-coparameterized Bayesian lens ℓpcqx,m : pX,Xq ÞÑ

pY, Y q obtained by taking the dynamical state px,mq as the parameter of the lens and discarding

any coparameters.

The ‘update’ vector field p∇cqu : pX ˆ Mq Ñ GausspXq Ñ YÑ‚ TpX ˆ Mq is obtained

by taking the negative gradient of the loss function Lc : Y
GausspXˆMq;X
ÝÝÝÝÝÝÝÝÝÝÝÑ‚ I with respect to the

posterior mean parameter, evaluated at the posterior mean:

pX ˆMq Ñ GausspXq Ñ Y Ñ TpX ˆMq

px,m, π, yq ÞÑ ´
`

Bpx,mqEpc,πq

˘

px,m, yq .

(This yields a morphism in sfKrn via the embedding Meas ãÑ sfKrn; it is clearly measurable as

it is a continuous function between Cartesian spaces.)

Proof. Since the state space X ˆM is the space of means of the Laplacian posteriors, the ‘update’

action of∇c, the open vector field p∇cqu, is defined as the (negative) gradient of Lc with respect

to these means (so that the associated flow performs gradient descent). The parameterized loss

function Lc : Y
XˆM ;X
ÝÝÝÝÝÑ‚ I encodes the Laplacian free energy associated to the parameterized lens

pc, c1q, and corresponds (by Example 5.3.4) to the function

X ˆM Ñ GausspXq Ñ Y Ñ r0,8s

px,m, π, yq ÞÑ LFEpc, c1x,mqπpyq

where

LFEpc, c1x,mqπpyq “ Epc,πqpx,m, yq ´ SXbM rc1x,m
π pyqs .
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The entropy SXbM rc1x,m
π pyqs does not depend on the mean of c1x,m

π pyq, and so the gradient of

LFEpc, c1x,mqπpyq with respect to px,mq is simply

`

Bpx,mqEpc,πq

˘

px,m, yq. Hence defining p∇cqu

as stated yields

p∇cqu : px,m, π, yq ÞÑ ´
`

Bpx,mqEpc,πq

˘

px,m, yq .

We now show that ∇ is strongly functorial with respect to composition of 1-cells in L. First, we

check that ∇ satisfies the strong unity axiom, which means we need a 2-isomorphism idpX,Xq ñ

∇pidpX,Xqq in DiffCilia. Note that the cilium idpX,Xq has trivial state space 1, trivial update map,

and outputs the identity lens pX,Xq ÞÑ pX,Xq. Likewise, the identity game idpX,Xq has trivial

parameter 1, loss function equal to 0, and lens being the (trivially coparameterized copy-composite)

identity lens pX,Xq ÞÑ pX,Xq. Since the loss function is constantly 0with trivial parameter,∇ acts

to return a cilium pX,Xq
1
ÝÑ pX,Xq again with trivial state space and which constantly outputs the

identity lens; its update map is likewise trivial. Therefore we take the 2-cell idpX,Xq ñ ∇pidpX,Xqq

to be witnessed by the identity id1 : 1 Ñ 1, which satisfies strong unity a fortiori.

Finally, we check that ∇ satisfies the strong functoriality axiom, meaning that we seek a 2-

isomorphism ∇pd, d1, Ldq ˝ ∇pc, c1, Lcq ñ ∇
`

pd, d1, Ldq ˝ pc, c1, Lcq
˘

for each pair of composable

Laplacian free energy games pc, c1, Lcq : pX,Xq
XˆM
ÝÝÝÝÑ
M
| pY, Y q and pd, d1, Ldq : pY, Y q

Y ˆN
ÝÝÝÑ
N
| pZ,Zq.

Note that the composite game has the type pX,Xq
pY ˆNqˆpXˆMq
ÝÝÝÝÝÝÝÝÝÝÑ

MYN
| pZ,Zq, that by the universal

property of ˆ we have an isomorphism pY ˆNq ˆ pX ˆMq – pX ˆMq ˆ pY ˆNq, and that

the product of Gaussians is again Gaussian. Note also that the parameterized loss function Ld ˝ Lc

equals

pY ˆNq ˆ pX ˆMq Ñ GausspXq Ñ Z Ñ r0,8s

py, n, x,m, π, zq ÞÑ pLcqx,mπ ˝ d1y,n
c‚π pzq ` pLdq

y,n
c‚πpzq .

On the other hand, the update map of the composite cilium

`

∇pd, d1, Ldq ˝ ∇pc, c1, Lcq
˘u

equals

pX ˆMq ˆ pY ˆNq Ñ GausspXq Ñ‚ Z Ñ T
`

pX ˆMq ˆ pY ˆNq
˘

px,m, y, n, π, zq ÞÑ
`

p∇cuq
x,m
π ‚ d1y,n

c‚π pzq, p∇duq
y,n
c‚πpzq

˘ .

The desired 2-isomorphism ∇pd, d1, Ldq ˝ ∇pc, c1, Lcq ñ ∇
`

pd, d1, Ldq ˝ pc, c1, Lcq
˘

is thus

witnessed by a map pY ˆ Nq Ñ pX ˆ Mq Ñ pX ˆ Mq ˆ pY ˆ Nq, which we take to be the

symmetry swap of the categorical product. Computing the gradient of the L terms in Ld ˝ Lc with

respect to the mean of the joint Gaussian pχ, ρq yields the update map

pY ˆNq ˆ pX ˆMq Ñ GausspXq Ñ‚ Z Ñ T
`

pY ˆNq ˆ pX ˆMq
˘

py, n, x,m, π, zq ÞÑ
`

p∇duq
y,n
c‚πpzq, p∇cuq

x,m
π ‚

ÐÝ
d
y,n
c‚πpzq

˘
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which is clearly equal to

`

∇pd, d1, Ldq ˝ ∇pc, c1, Lcq
˘u

upon composition with swap. It therefore

only remains to check that the two cilia output the same Bayesian lenses pX,Xq ÞÑ pZ,Zq, up to

swap. This follows from the strong functoriality of ℓ.

Remark 7.3.10. Although we have defined ∇ manually, we expect that it can alternatively be

obtainedmore abstractly, from a proper treatment of stochastic gradient descent applied to statistical

games. We leave this to future work.

Finally, to obtain the dynamical systems with which we started this subsection (in Proposition

7.3.4), we use Euler integration, using the functor Eulerλ of Remark 6.3.25.

Corollary 7.3.11. Fix a real number λ : R. By defining Lλ :“ Eulerλ ˝ ∇ ˝ LFE one obtains

Laplacian predictive coding as a differential approximate inference doctrine, the Laplace doctrine

for the mean field Laplace inference system ℓ. The systems of Proposition 7.3.4 are obtained in its

image.

Proof. Suppose c : XÑ‚ Y is a morphism in FdGauss. It is not coparameterized, so ℓ assigns to it

the parameter spaceX , which becomes the state space of the cilium Lλpcq. By definition, this cilium

emits the same lens — and therefore has the same output maps — as those given in Proposition

7.3.4. We therefore only need to check that

`

∇pcqu
˘x

π
pyq “ ´

`

BxEpc,πq

˘

px, yq

“ Bxµcpx, yqT ηcpx, yq ´ ηπpxq .

Recall from Proposition 5.3.31 that

Epc,πqpx, yq “ ´ log pcpy|xq ´ log pπpxq

“ ´
1

2

@

ϵcpy, xq, Σc
´1ϵcpy, xq

D

´
1

2

@

ϵπpxq, Σπ
´1ϵπpxq

D

` log

b

p2πq|Y | detΣc ` log

b

p2πq|X| detΣπ .

It is then a simple exercise in vector calculus to show that

´
`

BxEpc,πq

˘

px, yq “ Bxµcpx, yqT ηcpx, yq ´ ηπpxq

as required.
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7.3.2. Synaptic plasticity with the Hebb-Laplace doctrine

The Laplace doctrine constructs dynamical systems that produce progressively better posterior

approximations given a fixed forwards channel, but natural adaptive systems—brains in particular—

do more than this: they also refine the forwards channels themselves, in order to produce better

predictions. In doing so, these systems better realize the abstract nature of free energy games, for

which improving performance means improving both prediction as well as inversion. To be able to

improve the forwards channel requires allowing some freedom in its choice, which means giving it

a nontrivial parameterization.

The Hebb-Laplace doctrine that we introduce in this section therefore modifies the Laplace

doctrine by fixing a class of parameterized forwards channels and performing stochastic gradient

descent with respect to both these parameters as well as the posterior means; we call it the Hebb-

Laplace doctrine as the particular choice of forwards channels results in their parameter-updates

resembling the ‘local’ Hebbian plasticity known from neuroscience, in which the strength of the

connection between two neurons is adjusted according to their correlation [79, 118, 127, 218, 233].

(Here, we could think of the ‘neurons’ as encoding the level of activity along a basis vector.)

We begin by defining the category of these parameterized forwards channels, after which we

proceed by modifying the mean-field Laplace inference system and the Laplace doctrine accordingly.

Definition 7.3.12 (‘Neural’ channels). LetH denote the subbicategory of PFdGauss˚ generated

by 1-cells XÑ‚ Y of the form

ΘX Ñ Gauss˚pX,Y q

θ ÞÑ

´

x ÞÑ θ hpxq ` ω
¯

where X and Y are finite-dimensional Cartesian spaces, h is a differentiable map X Ñ Y , ΘX is

the vector space of square matrices on X , and ω is sampled from a Gaussian distribution on Y .

Proposition 7.3.13 (Mean field Hebb-Laplace). Taking ‚ as copy-composition, the following data

define a (non-unital) strong parameterized inference system ℓ on H. Each 0-cell X is mapped

to pX,Xq. Each (parameterized) 1-cell c : X
Θ

ÝÑ
M
‚ Y is mapped to the parameterized lens pc, c1q :

pX,Xq
ΘˆpXˆMq
ÝÝÝÝÝÝÝÑ

M
| pY, Y q whose forward channel is given by projecting Θ fromΘˆ pX ˆMq and

applying c, and whose backward channel is defined as in Proposition 7.3.7 (mean-field Laplacian

inference).
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Proof. The only difference from Proposition 7.3.7 is in the forward channel; but these are just taken

fromH, and so they compose strongly by assumption.

Like the Laplace doctrine, the Hebb-Laplace doctrine is obtained by stochastic gradient descent

with respect to the parameters.

Proposition 7.3.14. Let L denote the essential image of LFE restricted to the essential image of ℓ.

Let c :“ pc, c1, Lcq : pX,Xq
ΘˆpXˆMq
ÝÝÝÝÝÝÝÑ

M
pY, Y q be a 1-cell in L. Then stochastic gradient descent

yields an identity-on-objects strong functor ∇ : L Ñ DiffCilia mapping c to the differential

cilium ∇pcq : pX,Xq
ΘˆpXˆMq
ÝÝÝÝÝÝÝÑ pY, Y q defined as follows.

For each triple of parameters pθ, x,mq : Θ ˆ pX ˆMq, ∇c outputs the non-coparameterized

Bayesian lens ℓpcqθ,x,m : pX,Xq ÞÑ pY, Y q obtained by taking the dynamical state pθ, x,mq as the

parameter of the lens and discarding any coparameters.

The vector field p∇cqu is obtained by taking the gradient of the loss function Lc with respect to

the ‘synaptic’ parameter θ : Θ and the posterior mean px,mq : X ˆM , evaluated at pθ, x,mq:

Θ ˆ pX ˆMq Ñ GausspXq Ñ Y Ñ TpΘ ˆ pX ˆMqq

pθ, x,m, π, yq ÞÑ ´
`

Bpθ,x,mqEpc,πq

˘

pθ, x,m, yq .

Proof. The proof is almost identical to that of Proposition 7.3.9: the sole difference is that now we

also take gradients with respect to the synaptic parameter θ : Θ, but the reasoning is otherwise the

same.

Finally, we obtain dynamical systems by Euler integration.

Definition 7.3.15. Fix a real number λ : R. The Hebb-Laplace doctrine is obtained as the composite

Hλ :“ Eulerλ ˝ ∇ ˝ LFE, yielding a differential approximate inference doctrine for the mean field

Hebb-Laplace inference system ℓ.

Corollary 7.3.16. Suppose c : X Θ
ÝÑ‚ Y is a channel in H defined by cθpxq “ θ hpxq ` ω, for some

differentiable h and Gaussian noise ω. Then the update map Hλpcqu is given by

Θ ˆX Ñ GausspXq Ñ Y Ñ Θ ˆX

pθ, x, π, yq ÞÑ

ˆ

θ ´ λ ηcθpx, yqhpxqT

x` λ BxhpxqT θT ηcθpx, yq ´ λ ηπpxq

˙

where ηcθpx, yq “ Σ´1
cθ
ϵcθpy, xq and ηπpxq “ Σ´1

π ϵπpxq are the precision-weighted error terms.
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Proof. Following Corollary 7.3.11 (the Laplace doctrine), We just need to check that

`

Bpθ,xqEpcθ,πq

˘

px, yq “

ˆ

BθEpcθ,πq

BxEpcθ,πq

˙

px, yq “

ˆ

ηcθpx, yqhpxqT

´BxhpxqT θT ηcθpx, yq ` λ ηπpxq

˙

.

This amounts to verifying that Bxµcθpxq “ θ Bxhpxq and that BθEpcθ,πqpx, yq “ ηcθpx, yqhpxqT .

The former holds by the linearity of derivation since µcθpxq “ θ hpxq by definition; and the latter

holds because

BθEpcθ,πqpx, yq “
´Bθ

2

@

ϵcθpy, xq, Σ´1
cθ
ϵcθpy, xq

D

“
´Bθ

2

@

y ´ θ hpxq, Σ´1
cθ

`

y ´ θ hpxq
˘D

“ Σ´1
cθ

`

y ´ θ hpxq
˘

hpxqT

“ Σ´1
cθ
ϵcθpy, xqhpxqT

“ ηcθpx, yqhpxqT

as required.

Remark 7.3.17. From a biophysical point of view, the Hebb-Laplace doctrine so defined has

a notably suboptimal feature: the ‘synaptic’ forwards parameter θ : Θ is updated on the same

timescale λ as the parameter x : X that encodes the posterior mean, even though the latter

parameter is typically interpreted as encoding the activity of a population of neurons, which

therefore changes on a faster timescale than those neurons’ synapses. Not only is this important

for reasons of biological plausibility, but also for mathematical reasons: we should understand the

backwards activity as bundled over the forwards synapses, and a change in the parameter θ should

induce a corresponding ‘transport’ of x. An appropriately geometric treatment of compositional

approximate inference and predictive coding, resulting in bundles of open dynamical systems, is

again something that we leave to future work.
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8. Future directions

A powerful motivation propelling the development of this thesis was the belief that science, and

particularly the cognitive sciences, will benefit from being supplied with well-typed compositional

foundations. In this final chapter, we survey a number of new vistas that we have glimpsed from

the vantage point of our results, and indicate routes that we might climb in order to see them better.

One important benefit of the categorical framework is that it helps us express ideas at a useful

level of abstraction, and thereby compare patterns across systems and phenomena of interest. As a

result, although our primary system of interest is the brain, we are aware that much of our work is

more diversely applicable, and so our survey here is similarly not restricted to neural systems. At

the same time, as neural systems are our finest examples of natural intelligence, we attempt to stay

grounded in current neuroscience.

Beyond the evident shortcomings of the work that we have presented—which we review

momentarily—we first consider how to use the categorical language of structure to incorporate

structure better into our models themselves (§8.1), with a particular focus on the brain’s “cognitive

maps” (§8.1.3). We will see that the compositional consideration of the structure of open systems

naturally leads us to consider societies of systems (§8.2), and hence the relationships between

compositional active inference and single- and multi-agent reinforcement learning and economic

game theory (§8.2.3), although our first priority in this section is the incorporation of action (§8.2.1)

and planning (§8.2.2) into the framework of statistical games. From our abstract vantage point, there

is little difference between societies of agents and collective natural systems such as ecosystems
1
,

and so we then consider the prospects for a compositional mathematics of life (§8.3). Finally, we

close with some thoughts on matters of fundamental theory (§8.4).

Before we wade into the thick of it, let us note three prominent examples of the aforementioned

evident shortcomings.

Firstly, the current presentation of copy-composite stochastic channels, and the bicategories of

lenses and statistical games that result from them, is quite inelegant: the necessity of coparameters

1

After all, a single multicellular organism is itself a kind of society of agents.
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introduces substantial complexity that is never repaid, because all coparameters arise from the

copy-composition of ordinary channels. This complexity infects the notion of approximate inference

doctrine, which could benefit both from simplification and from further exemplification, ideally by

examples drawn from beyond neuroscience.

Secondly, the generative models that we have considered are somehow ‘static’, despite our

interest in dynamical systems, and this warrants a satisfactory exploration of dynamical generative

models.

Thirdly, although we considered “lower level” neural circuit models in §3.3, we did not explicitly

connect our approximate inference doctrines to these more ‘biological’ models. A satisfactory

account of the Bayesian brain would of course span from abstract principles to detailed biology, a

relationship the elaboration of which we sadly we leave to future work.

Fortunately, although these three shortcomings may be pressing, we expect that the pursual of a

research programme akin to that sketched below would result in overcoming them.

8.1. Structured worlds

8.1.1. Bayesian sensor fusion

A situation that is common in natural embodied systems but which is not yet well treated by

current statistical and machine learning methods
2
, particularly those that are most popular in

computational neuroscience, is that of sensor fusion. In this situation, one has a number of sensors

(such as cameras or retinal ganglion cells) which report spatially situated data, and where the sensor

fields overlap in the space; the problem is then how to combine these “local views” of the space

into a coherent global picture. Mathematically, fusing ‘local’ data into a ‘global’ representation is

the job of sheaves: a sheaf is a “spatially coherent data type”—something like a bundle for which

‘local’ sections can always be uniquely glued together into a global section—and sheaf theory and

the related fields of applied topology and cohomology allow us to judge when it is possible to

form a consensus, and quantify the obstructions to the formation of consensus; recent work has

also begun to suggest algorithms and dynamics by which we can construct consensus-forming

distributed sensor systems [123].

Sheaves therefore allow us to construct and tomeasure spatially structured data types, but missing

from the current sheaf-theoretic understanding of sensor fusion is a thorough treatment of belief

and uncertainty, especially from a Bayesian perspective. Since biological systems contain many

2

This is beginning to change: recently, the use of sheaf-theoretic and other applied-topological devices has started to

penetrate machine learning [31, 266].
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distributed sensor types, and each of these systems is constituted by many cells, the mathematics

of neural representations may be expected to be sheaf-theoretic. A first possible extension of the

work presented here, therefore, is to extend statistical games and approximate inference doctrines

(and hence the classes of model that they encompass) to structured data types such as sheaves.

Because statistical games and approximate inference doctrines are defined using lenses over an

abstract category of stochastic channels, we expect that the first step will be to consider categories

of channels between sheaves; recently, there has been work on categorifying lenses [63, 64], and we

expect that this may prove relevant here. We also expect that at this point the fibrational structure

of statistical games will again prove utile in order that losses may be correctly counted on any

overlaps. Fortunately, being similarly structured, sheaves and fibrations are natural partners, and so

we expect that a second spatial extension of the present work will be to exploit the latent geometric

structure of fibrations of statistical games.

In this context, we may also encounter connections to sheaf-theoretic approaches to ‘contextual-

ity’, in which answers to questions depend on (the topology of) how they are asked, and which

seems to lie at the heart of quantum nonlocality. It is notable that lenses originated in database

theory [34, 99] and that contextuality can also be observed in database systems [1, 58], and so at

this point, it may be possible to uncover the mathematical origins of ‘quantum-like’ psychological

effects [6, 49, 153], and relate them formally to other kinds of perceptual bistability that have

been interpreted in a Bayesian context [144, 170]. Sheaves come with a cohomology theory that

permits the quantification of the ‘disagreements’ that underlie such paradoxes [5, 45, 75], and

dynamical systems can be designed accordingly to minimize disagreements and thus seek consensus

[123–125]. We hope that these tools will supply new and mathematically enlightening models of

these psychological phenomena, while at the same time also suggesting new connections to work

on quantum-theoretic formulations of the free-energy framework itself [90, 91].

The adoption of a sheaf-theoretic framework in this way may furthermore illuminate connections

between computational neuroscience and machine learning. Graph neural networks [156, 157,

285], and their generalization in ‘geometric’ deep learning [44], are increasingly used to apply the

techniques of deep learning to arbitrarily structured domains, and, as indicated above, recent work

has found sheaves to supply a useful language for their study [31]. In a similar fashion, we expect

connections here to the structure of message passing algorithms [83, 190, 208, 283, 285] (also hinted

at by Sergeant-Perthuis [229]) and less conventional structured machine learning architectures

such as capsule networks [223]. Finally, each category of sheaves is naturally a topos [177], and
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hence comes with its own rich internal language, modelling dependent type theory (cf. §2.3.4).

8.1.2. Learning structure and structured learning

Having considered the incorporation of structured data into the process of inference, we can

consider the incorporation of structure into the process of learning, and here we make an important

distinction between structured learning and learning structure. By the former, we mean extending

the process of learning to a structured setting (such as the sheaf-theoretic one of the preceding

section), whereas by the latter, we mean learning the underlying structures themselves. This latter

process is also known in the literature as structure learning [143, 260, 262], but in order to avoid

ambiguity, we swap the order of the two words.

The observation at the end of the preceding section, that each category of sheaves forms a topos,

is pertinent here, as dependent type theory formalizes a notion of logical ‘context’, containing

the “axioms that are valid in the present situation”, and determining which (non-tautological)

statements can be derived. In the categorical semantics of dependent type theory, the context is

witnessed by the object over which a slice category is defined, and so in some sense it defines

the “shape of the universe”. By the Grothendieck construction, there is a correspondence between

sheaves and certain bundles (objects of slice categories), and so (very roughly speaking) we can

think of structured inference and learning as taking place in appropriate slice categories.

In the same way that we motivated random dynamical systems (qua bundles, §6.2.3) through “pa-

rameterization by a noise source”, we can think of bundle morphisms as generalized parameterized

maps. The problem of learning structure then becomes a problem of generalized parameter-learning,

and much like this can be formalized by a ‘reparameterization’ in the Para construction (§3.2.1),

in this more general setting it is formalized by the “generalized reparameterization” of base-change

between topoi (cf. Remark 4.2.29). Base-change synthesizes notions of parallel transport, allowing

us to translate spatially-defined data coherently between spaces—and, in particular, along changes

of structure; recall our earlier remark about the importance of parallel transport to a biophysically-

plausible Hebb-Laplace doctrine (Remark 7.3.17). In this setting therefore, we expect that work on

functorial lenses [63], as well as work on functorial data migration [236, 242], may prove relevant.

At the same time, we expect this line of enquiry to clarify the relationships between our formalism

of approximate inference and other related work on the categorical foundations of cybernetics [51,

54], which have typically been studied in a differential rather than probabilistic setting [74]. We

expect the connection to be made via information geometry [9, 10, 195], where Bayesian inference

can be understood both using gradient descent [199] and as a kind of parallel transport [225].
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8.1.3. Compositional cognitive cartography

Natural systems such as animals learn the structure of their environments as they explore them. We

will come below (§8.2.1) to the question of how to incorporate action—and hence exploration—into

the compositional framework that we have developed here, but meanwhile we note that the

topos-theoretic developments sketched above may provide a suitable setting in which to understand

the neural basis for navigation, and help explain how ostensibly ‘spatial’ navigation processes and

circuits are invariably involved in more abstract problem solving [24, 26, 27, 116, 178].

There are two key observations underlying this proposal. Firstly, a topos is not only a richly

structured category of spaces (or spatial types), but it can also be understood as a categorified space

itself [234]: in this context, we can call each categorified space a ‘little’ topos, and the category of

spaces itself is the corresponding ‘big’ topos; changes in spatial structure—witnessed by base-change

between little topoi—thus correspond to trajectories within the space represented by the big topos.

Secondly, under the free energy principle, there is a close relationship between beliefs about the

geometry of an environment and beliefs about expected future trajectories in that environment

[148]: fundamentally, this is also the idea underlying the “successsor representation” [78] of the

cognitive map, which says roughly that the brain’s representation of where it is is equivalently a

representation of where it soon expects to be [47, 256, 257]. Although there have been studies in the

informal scientific literature attempting to connect free-energy models of navigation, exploration,

and the cognitive map with the successor representation [185], and to place both of these in less

overtly spatial contexts [47, 205], there has not yet been a comprehensive mathematical treatment

explaining the structures that underlie this nexus.

By placing such a mathematical treatment in a topos-theoretic context, it may be possible to

make sense of the “logic of space” of topoi to explain why animals’ abstract problem-solving makes

use of their abilities for spatial navigation: in particular, proving a proposition is mathematically

analogous to finding a path from premise to conclusion. Moreover, in a spatial topos, the “truth

values” are no longer simply binary, but encode where a proposition is (believed to be) true; the

(sub)object classifier of a spatial topos encodes something like the “internal universe” of that topos,

or “the universe according to the system”.

To be successful, this mathematical treatment should be attentive to the results and proposals of

computational and theoretical neuroscience, and so we now turn to our second key observation: the

relationship between (believed) geometry and (expected) dynamics. This will require an extension

of statistical games and approximate inference to dynamical generative models; until this point,
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our treatment has merely supplied inference (or ‘recognition’ [48]) dynamics to static models.

Through this extension, we should expect a connection to other work on dynamical inference, such

as filtering [105, 147] and particularly its emerging compositional treatment [271, 272].

Under the free-energy principle, and similarly under the successor representation, the expected

dynamics is a geodesic flow, which is by geodesy determined by beliefs about the spatial geometry.

But these beliefs in turn are not static: they depend on what the agent believes will happen [76,

186], and this has been suggested as an explanation for the ‘predictive’ nature of the cognitive

map [148]. The cognitive map has its central locus in the hippocampus [88, 193, 198], which we

may therefore understand as representing the base space over which the big topos is sliced; and

since changes-of-plan seem therefore to induce changes-of-base, we might see the ‘functional’

connectivity of the brain [245] as witnessing this mathematical structure.

Because the internal universe of the topos represented by the cognitive map is inherently

context-dependent, it seems to fit naturally with the subjectivist metaphysics implied by the free

energy framework—that the universe as experienced by an agent is a construction of that agent’s

internal model, as updated by approximate inference—and thus to provide a natural setting for the

mathematical study of phenomenology. Moreover, as categories of sheaves, agents’ internal topoi

encode the consensus formed by the distributed circuits and sensors that constitute their beliefs,

and this points a way towards understanding how societies of agents are able to inhabit shared

spaces about which they form a consensus between themselves: the mathematics of this shared

universe should be little different from the mathematics of a single agent’s internal universe.

Such multi-agent adaptive systems have been studied in the context of reinforcement learning (of

which more below), but this potential for the formation of ‘nested’ systems with shared universes

implied by consensus is not the only connection between cognitive cartography and reinforcement

learning, as it is in reinforcement learning that the successor representation originates. We therefore

hope that this line of enquiry may illuminate the relationship between reinforcement learning and

compositional active inference, to the basis of which we now turn.

8.2. Societies of systems

Adaptive agents being necessarily in interaction with an external environment, we saw in the

previous section how consideration of the compositional structure of agents’ internal maps of their

worlds easily leads to the consideration of societies of agents. However, in order for us to study
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these, we first need to make the more basic step of incorporating action into the compositional

framework: a collection of purely passive agents is no society.

8.2.1. Active inference

The doctrines of approximate inference introduced in this thesis are inherently perceptual. As

we described in Remark 4.0.1, the forwards channel of a statistical game points “towards the

environment”, predicting the expected incoming sense-data, whereas the backwards channel points

from the environment into the agent, terminating in the agent’s most causally abstract beliefs. In

other contemporary work on categorical cybernetics, the orientation appears different: the forwards

channel of an open (economic) game, for instance, points along the direction of interaction in the

environment, in the direction of causality, from observations to actions [36, 119]; there is no room

for prediction and its inversion, and the two kinds of game seem somehow perpendicular.

In resolution of this apparent disagreement, we can observe that an open economic game does

have a perpendicular direction: a second
3
dimension inhabited by the strategies. That is to say, an

open economic game is a lens externally parameterized by strategies, a function from the latter

to the former, and therefore formally much like our cilia (§6.3). This resemblence becomes even

closer when one considers the recent ‘diegetic’ formulation of open games, in which strategies

themselves can be updated using a backwards map from the arena of the game back into strategies

(or rather, strategy updates).

This suggests one way in which we can incorporate action and thereby shape the framework

of this thesis into a framework for active inference: the forwards channel should predict not only

sense-data incoming from the environment, but also the actions to be taken by the agent. Indeed

this matches the usual informal presentation of active inference, which adopts a channel of the

form XÑ‚ S b A, where S is the space of sense-data, A the space of possible actions, and X the

‘latent’ space.

Yet at this point the formal similarity between compositional active inference and compositional

game theory again begins to recede, as a channel XÑ‚ S bA is more like a “stochastic span” than

an open economic game’s player model Σ Ñ rS,As. Moreover, we expect our active inference

systems to have a richer variety of patterns of interaction, being embodied in a world—in part,

this motivated our adoption of polynomial functors for structuring interaction. We therefore

expect the compositional theory of active inference to have forwards channels rather of the form

3

Or third, if one remembers the monoidal structure.
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XÑ‚
ř

a:A Sras, so that an agent’s sensorium depends on the configuration (or ‘action’) that it has

chosen.

This was the approach we sketched in our earlier work-in-progress on Polynomial Life [252],

where we suggested that polynomial functors supply a formalization of the notion of “Markov

blanket” used in the informal active inference literature to characterize the interaction boundaries

of adaptive systems [102, 158, 203] (a formalization that is situated at a useful level of technical

flexibility, being neither as abstract as the very general notion of interface adopted by categorical

systems theory [192], nor as concrete as simple products of spaces). In this way, we believe that a

fruitful direction in which to pursue a compositional theory of active inference is, like our theory

of open dynamical systems, as a Poly-algebra of statistical games. Fortunately, although the types

prove somewhat different, the structural resemblence between active inference and economic games

is maintained: in both cases, one has categories of lenses into the arena of interaction, indexed

by a category of interfaces, and thus in philosophical (and thus we expect also mathematical)

concordance with Myers’ double-categorical view of systems theory [192].

Once again, this line of enquiry naturally leads on to the consideration of multi-agent systems.

But before we come to that, there remain important questions about single-agent systems, and the

connection between single-agent active inference and the cousin of economic games, reinforcement

learning.

8.2.2. What is the type of a plan?

Each active inference system has an internal ‘latent’ state space equipped (by its generative model)

with a prior distribution, which represents the systems’s initial beliefs about the likelihood of

those states. As we have seen, the system can perceive, changing that distribution better to match

incoming sense data. And as we hope to see, it should also be able to act, affecting its environment

so that future states better match its initial beliefs. Perception and action are thus in general the

two dual ways in which a system can minimize its free energy, akin to the two degrees of freedom

available in a free energy game.

But a system that acts must necessarily be motivated towards some goal, even if that goal is

simply “stay alive” or “perform action a”, and even though this goal may be adjusted by the system’s

perceptions. In order to realize its goal, whatever it may be, the system must enact a plan, however

trivial—and the informal literature on active inference encodes the plan into the system’s latent

prior. When it comes to static models, the prior may be simply a (static) distribution over the state

space itself; but in the dynamical case, it is typically a distribution over trajectories of states.
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Such a distribution is often [76, 148] taken to encode likelihoods of hypothetical courses of action,

which one might call a policy4: the system then perceives and acts in order to implement its policy.

But the construction of this policy may involve a lot of data, such as the specification of goal states

and the accumulation of the “expected free energy” of trajectories in the context of those goals,

and so it seems unnecessarily crude to hide all of this data inside a single undifferentiated choice of

prior distribution.

This prompts us to ask, what is the form of this data, and how can we incorporate it into the

compositional framework? In other words, what is the type of a plan? These seem to us to be key

questions for future work.

8.2.3. Reinforcement learning, open games, and ecosystems

There is known to be a close relationship between active inference in Markov decision problems

(MDPs) and reinforcement learning [73], and it is through this relationship that one sees particularly

clearly the strangeness of encoding all the data of an agent’s policy in a single ‘prior’ state. This

relationship is seemingly not superficial, as there are hints of a deep structural connection.

First, recall that the standard algorithm for obtaining a Bellman-optimal policy for an MDP is

backward induction (otherwise known as dynamic programming) [214, 284]5. It is now known that

backward induction is structured according a similar bidirectional pattern (the optic pattern) to

that of both Bayesian inference and reverse differentiation [128], and that MDPs themselves fit into

the associated general framework of open games [36] (which are governed by the same pattern).

Second, in the informal active inference approach to MDPs, the system in question counterfactually

evaluates policies using a backward-induction-like process, accumulating free energies in order to

score them [73]. It is this process that results in the prior discussed above, which is then updated

by the agent’s inference process. Future work will need to untangle this knot of interrelated

bidirectional processes; and as usual in categorical modelling, this means first writing them all

down precisely. We hope that, having done so, we will see how the whole picture emerges, and

how it relates to the developing geometric (or ‘diegetic’) framework in categorical cybernetics

[51] (possibly involving the further development of our notion of ‘cilia’ from §6.3). In particular,

since the free energy principle underlying active inference asserts a certain informal universality

(on which more in §8.3.1), we might also hope that the satisfactory development of compositional

4

In the language of polynomial functors, this seems to be something like a distribution over the cofree comonad on the

system’s polynomial interface.

5

Also see [29, 89, 106, 128, 261] for other presentations.
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active inference might exhibit a universal property: that any other doctrine of cybernetic systems

factors uniquely through it.

The story of these connections will initially be told from the perspective of a single agent,

as backward induction only considers how to find a single policy for a single MDP; although

this policy may involve multiple agents, the implied global search entails a common controller:

the procedure doesn’t consider the factorisation of the agents. But casting this account into the

emerging framework of compositional active inference will point towards a bridge to multi-agent

reinforcement learning. For example, multi-agent RL often studies the emergence of collaboration,

and we might expect to see this represented in the formal structure, thereby understanding how to

incorporate the factorisation of agents into the compositional framework for backward induction

(which in turn may be helpful for designing collaborative ‘edge’ AI systems).

The resulting general account of multi-agent intelligence will encompass both reinforcement

learning and active inference, allowing us to understand their relative strengths and differences.

One seeming difference (at this early stage, and following our thinking above) is that compositional

active inference envisages the latent state spaces of agents as their “internal universes”, which

come along with sufficient structure that we might consider them as Umwelten (i.e., their subjective

worlds, in the sense of biosemiotics; see §8.3.2 below). Consequently, we should be able to study how

agents might come to consensus, thereby resolving their disagreements. And because agents are

embodied in a shared world within which they act, this process might involve planning cooperation,

at which point the teleological structure of compositional game theory may become important, as

cooperating agents will have to bet on spatiotemporally distributed actions. We hope therefore that

one distal outcome of this work will be a new and beneficial understanding of corporate activity.

Below, in §8.3, we will discuss how active inference and the free energy principle aim not only

to be theories of brains or other prominent intelligent systems, but rather universal theories of all

adaptive things. Consequently, their compositional treatment should extend in the ‘multi-agent’ case

not just to corporate activity, but to ecosystems more broadly. And, following the multicategorical

algebra latent throughout this thesis, it will undoubtedly prove natural, once we have considered a

single level of nesting of systems into ecosystems, to let the hierarchy continue to infinity, producing

a fractal-like structure. At this point, we should expect once more to make contact with topics such

as higher categories and type theory, particularly in operadic or opetopic (i.e., ‘directed’) forms;

synthetic approaches to mathematical physics; and iterated parameterization in categorical systems

theory.
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It almost goes without saying that we should expect any framework resulting from this work to

capture existing models of collective active inference, such as recent work on spin glasses [129].

8.3. The mathematics of life

We move on to consider the relationships between compositional active inference and the

contemporary mathematics of life. We hope that compositional active inference may supply

part of the story of a modern theory of autopoiesis, the ability for life to recreate itself [274].

8.3.1. Bayesian mechanics and the free energy principle

Recently, it has been suggested in various venues [102, 204] that the free energy framework provides

a ‘universal’ way to understand the behaviour of adaptive systems, in the sense that, given a random

dynamical system, it may be possible to write down a generative model such that the dynamics

of the system can be modeled as performing inference on this model. In the language of the

conjectured compositional framework for active inference, we may be able to describe a canonical

statistical game that each given random dynamical system can be seen as playing.

If this is true, we should be able to express this canonicity precisely: in particular, it should

correspond to a universal property. Since approximate inference doctrines already gives us functorial

ways to turn statistical games into dynamical systems, this suggests we should seek functors that

associate to each random dynamical system a statistical game; and we should expect these functors

to be adjoint (as morphisms of categories indexed by the systems’ interfaces). The desired universal

property would then be expressed by the adjunction. (Notably, adjunctions are at the heart of

recent synthetic approaches to mathematical physics [228].) This would constitute an important

mathematical step to establishing the universality of the free energy principle, or to establishing

the conditions that must be satisfied by any satisfactory successor.

Bayesian mechanics promises to build upon the nascent understanding of random dynamics via

inference [224] to supply a new theory of mechanics for statistical systems [215]. The present

formulation of Bayesian mechanics is constructed using mathematical tools from physics, but not

(yet) the kinds of compositional tool promoted in this thesis and further described above. We expect

that developments along the lines sketched here will unify the on-going development of Bayesian

mechanics (and the resulting understanding of non-equilibrium systems) with the new synthetic

understanding of mathematical physics. By casting all dynamics as abstract inference, we should
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also expect this line of enquiry to begin to quantify the persistence of things and imbue much of

physics with an élan vital.

8.3.2. Biosemiotics

It is increasingly acknowledged that biological systems are characterized not only by information-

processing, but by communication [20]: an often overlooked fact about ‘information’ in the strict

mathematical sense is that it is only meaningful in context. In the original Nyquist-Hartley-Shannon

conception of information, this context is the communication of a predefined message over a noisy

channel [126, 197, 230]; but more generally, we might think of this context as simply “a question”, in

which case it is easy to see that information answering one question may not be useful in answering

another; or, in a more computational setting, we can see that the bits of an encrypted signal are

only useful in revealing the message if one has the decryption key.

Still, one often encounters descriptions of signals as containing n bits of information, without a

clear specification of about what. Mathematically, the confusion arises because information theory

is framed by classical probability, and the assumed context is always the problem of trying to

communicate a probability distribution over a pre-defined spaceX ; and once the space is fixed, the

only question that can be asked is “what is the distribution?” (Mathematically, this is to say that in

the Markov category of classical stochastic channels, there are no non-trivial effects or costates.)

Yet, in the shared universe that we inhabit, there are more questions than this: in quantum

theory, for instance, one can ask many questions of the state of a system, by projecting the state

onto the subspace representing one’s question. (These projections are the non-trivial effects or

costates of quantum probability.) This act of projection is an act of interpretation of the message

encoded by the state at hand.

The emerging ‘biosemiotic’ reconceptualization of life explicitly acknowledges the importance

and universality of communication in context [20], proposing that in any such situation the

interpreting system necessarily has an internal representation of the external world (its Umwelt)

which is updated by interpreting incoming signals. We can in principle reconstruct the external

world by understanding it as “that which a collection of systems agrees about”: perhaps, then,

the shared universe (as determined topos-theoretically) of a fusion of active inference agents

is a good model of this ‘semiosphere’. It seems therefore that the mathematics resulting from

our work on internal universes and their interactions — and, more broadly, many of the formal

ingredients of compositional active inference — is well aligned with the informal structures of

biosemiotics, and so it may be desirable to re-express biosemiotics accordingly. In doing so, perhaps
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the mathematics for a modern Bayesian subjectivist metaphysics will be found
6
: for instance,

by expressing communication and its phenomenology as a geometric morphism (a generalized

base-change) between agents’ internal universes. More pragmatically, perhaps we will be able to

say precisely when some object may act as a symbol, and how systems may (learn to) manipulate

such symbols.

8.4. Fundamental theory

Future work connected to this thesis need not only be in applications; a number of purely theoretical

questions raise themselves, too.

8.4.1. Geometric methods for (structured) belief updating

Themathematics of ‘belief’ is in large part about replacing definite points with ‘fuzzier’ distributions

over them. In dependent type theory, we replace points with ‘terms’ (non-dependent terms are

exactly points): so a type theory with belief should somehow encompass “fuzzy terms”. Just as we

can replace points with distributions, we can replace dependent points with dependent distributions.

However, the standard replacement (moving from a category of functions to a category of stochastic

channels) obscures some of the ‘universal’ categorical structure that underpins the rules of type

theory. This standard replacement also misses something else: while it does allow for fuzzy terms,

it omits a model of fuzzy types; and we might well want to express beliefs about things whose

identity we are not quite sure. (This omission also seems to be related to the loss of universal

structure.)

There seem to be a couple of related resolutions to this puzzle. The first is to notice that replacing

points by distributions yields another space: the space of distributions over the original space; this

is akin to the move in dynamics from working with the random motion of states to working with

the deterministic motion of the distribution over states. This space of distributions has a particular

geometry (its information geometry), and hence we should expect corresponding flavours of topos

and type theory. As we have indicated above, there is a move in fundamental mathematical physics

(cf. Schreiber [228]) to work ‘synthetically’, expressing concepts using the universal structures

of higher topoi. This has proven particularly fruitful in the context of differential systems, but

it is interesting that stochastic and differential structures bear a number of similarities
7
: what

6

Perhaps getting to the structural heart of the theory known as QBism [112, 113].

7

Both conditional probability and differential calculus exhibit “chain rules” of similar types, which give rise to backwards

actions that compose via the lens rule: in the former case, Bayesian inversion; in the latter, reverse differentiation.

Categories that admit a differentiation operation have begun to be axiomatized (as differential categories [30]
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are we to make of this? Does Bayesian inversion induce a canonical geometric morphism, by

which structured models may be coherently updated? We have already indicated above signs of a

relationship between inference and parallel transport; it seems that it may at least be fruitful to

consider ‘metric’ topoi, appropriately enriched.

The second resolution is to work with topoi as we work with random dynamical systems, by

noticing that randomness is often like “an uncertain parameterization”. By parameterizing a topos

with a category of noise sources, we may obtain a notion of “stochastic topos” in which the standard

operations of dependent type theory are available, but where each type and term may depend on

the realization of the noise source, thereby giving us notions of fuzzy term and fuzzy type. The

mathematics of such uncertainly parameterized topoi is as yet undeveloped, although we expect

that they should bear a relationship to the “topoi of beliefs” of the foregoing first resolution similar

to the relationship of Fokker-Planck to random dynamical systems.

Finally, we note that higher topoi behave abstractly somewhat like vector spaces (with sheaves like

categorified functionals). Since distributions are themselves like vectors, perhaps this observation

is a first step towards relating the resolutions.

8.4.2. Dynamics

Chapter 6 has supplied the beginnings of a compositional coalgebraic theory for open stochastic

and random dynamical systems in general time, and we hope that this theory could provide a

home for a modern account of non-equilibrium systems, with the category of polynomial functors

supplying a satisfactory account of these systems’ interfaces (i.e., the boundaries across which

information flows, along which they compose, and through which they interact).

In this context, and in parallel to the abstract questions above, there are similar questions to be

asked specifically of dynamical systems. For instance, what is the precise relationship between

the category of Markov processes on an interface, and the category of random dynamical systems

on that interface? We know that categories of deterministic discrete-time polynomial coalgebras

are topoi [240], so does the same hold in general time? To what extent is the logic of our systems

related to coalgebraic logics [72, 138, 162, 207, 275]?

Besides these ‘parallel’ questions, there are a number of more technical ones. For instance, our

current definition of “Markov process on a polynomial interface” is somewhat inelegant, and we

and reverse-derivative categories [66]), and categories whose morphisms behave like stochastic channels are also

presently being axiomatized (in the framework of Markov categories [109]), but the connections between these

various formalisms are not yet clear. The similar structures indicate that the two families of axiomatisation may

have a common generalization.
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seek to simplify it. Similarly, we believe that there is a better definition of “random dynamical

system on a polynomial interface” that may be obtained by a (different) generalization of the

category of polynomial functors, using random variables. And we know that a topology for the

cofree comonoid on an interface can be generated by the corresponding free monoid, which may

be relevant for understanding the topological structure of open systems. An important set of open

questions about open random dynamical systems in this framework comes from attempting to

import notions about random systems from the classical ‘closed’ setting: fundamentally, we ask,

does this framework indeed supply a satisfactory setting in which to understand stochastic systems

away from equilibrium?

8.4.3. Computation

The early 21
st
century understanding of biological systems as information-processing involves

treating them as computational, but remarkably lacks a precise concept of what it means for a

system to compute, other than in the context of artificial machines. To us, it seems that a crisper

understanding of computation in general might begin with the slogan that “computation is dynamics

plus semantics”, which is philosophically aligned with the semiotic understanding of biological

information-processing sketched above: for example, we know that attractor networks in the brain

can informally be understood as computational [11], but these are ‘continuous’ systems for which

we do not yet have a good corresponding concept of algorithm (and it is upon algorithms that our

current understanding is built). But what more is an algorithm than a description of a discrete-time

open dynamical system? The quality that makes an algorithm computational is that its states

or its outputs correspond to some quantity of interest, and that it reaches a fixed point (it halts)

at the target quantity when the computation is complete. If this intuition is correct, then a new

understanding of computation may follow the semiotic understanding of information-processing

that we propose above: perhaps we could say more precisely that computation is the dynamics of

semiosis? The time is right for such a reconceptualization, as human-made systems increasingly

move away from von Neumann architectures towards more biosimilar ones (such as memristors,

optical processors, neuromorphic technology, graph processors, or even many-core and mesh-based

evolutions of classical processors).
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A. Auxiliary material

A.1. From monads to multicategories

The assignment of domain and codomain to the morphisms of a small category C constitutes a

pair of functions C1 Ñ C0, which we can write as a span, C0
cod

ÐÝÝ C1
dom
ÝÝÑ C0. Similarly, the

assignment of domain and codomain to the morphisms of a multicategoryM constitutes a span

M0
cod

ÐÝÝ M1
dom
ÝÝÑ ListpM0q. This observation was used by Leinster [168] to construct a general

framework for constructing multicategories, replacing List with an arbitrary ‘Cartesian’ monad T ,

which opens the way to a connection between monad algebras and multicategory algebras. In this

section, we explore this connection, starting by defining categories of spans.

Definition A.1.1. Suppose A and B are two objects in a category C. We will write a span from A

to B as pX,xq : A
xA

ÐÝÝ X
xB
ÝÝÑ B, and callX the apex of the span and xA, xB its legs or projections.

The category of spans from A to B, denoted SpanpA,Bq has spans pX,xq as objects, and the

morphisms f : pX,xq Ñ pX 1, x1q are morphisms f : X Ñ X 1
in C that commute with the spans,

as in the following diagram:

X

A B

X 1

xA

x1
A

xB

x1
B

f

We can treat the categories SpanpA,Bq as the hom categories of a bicategory.

Definition A.1.2. Suppose C is a category with all pullbacks. The bicategory of spans in C, denoted

Span, has for objects the objects of C, and for hom-categories the categories SpanpA,Bq of spans

from A to B. Given spans pX,xq : A Ñ B and pY, yq : B Ñ C , their horizontal composite
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pY, yq ˝ pX,xq : A Ñ C is the pullback span defined by

X ˆB Y

X Y

A B C

projX

xA

projY

yCxB yB

{

.

If pX 1, x1q : A Ñ B and pY 1, y1q : B Ñ C are also spans with f : pX,xq ñ pX 1, x1q and

g : pY, yq ñ pY 1, y1q vertical morphisms, the horizontal composite of f and g is also defined by

pullback as f ˆB g : pY, yq ˝ pX,xq ñ pY 1, y1q ˝ pX 1, x1q. The identity span on an object A is

pA, idq : A ùù A ùù A.

If the ambient category C is not clear from the context, we will write SpanC to denote the

bicategory of spans in C.

Remark A.1.3. Note that Span really is a bicategory rather than a 2-category: since the horizontal

composition of spans is defined by pullback, it is only defined up to isomorphism. Consequently,

the composition of spans can in general only be associative and unital up to isomorphism, rather

than the strict equality required by a 2-category.

Now, recall that ‘monad’ is another name for “monoid in a bicategory”, where the bicategory has

so far been taken to be Cat: but it need not be.

Remark A.1.4. Since CC
is the endomorphism monoid on C in the bicategory Cat, we can

generalize the preceding definition of monad to any bicategory B: a monad in a bicategory B is

simply a monoid in B, as defined in Remark 3.4.9. That is, a monad in B is a monoid object in

the monoidal category

`

Bpb, bq, ˝, idb
˘

for some choice of 0-cell b : B, where ˝ denotes horizontal

composition. Explicitly, a monad pt, µ, ηq inB is a 1-cell t : b Ñ b, a multiplication 2-cellµ : t˝t ñ t,

and a unit 2-cell η : idb ñ t, such that the associativity and unitality diagrams commute in Bpb, bq:

ttt tt

tt t

µt

tµ

µ

µ

and

t tt t

t

µ

ηt tη

With thismore general notion ofmonad, we obtain anothermonadic definition of “small category”,

to add to the explicit Definition 2.1.2 and the monad-algebraic Example 3.4.19.

Proposition A.1.5. Small categories are monads in SpanSet.
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Proof. Amonad inSpanSet is a choice of object C0 andmonoid inSpanSetpC0, C0q. Such a monoid

is a span of sets C : C0
cod

ÐÝÝ C1
dom
ÝÝÑ C0 along with functions ‚ : C1 ˆC0 C1 Ñ C1 and id : C0 Ñ C1.

The set C1 ˆC0 C1 is the apex of the pullback span C ˝ C as in

C1 ˆC0 C1

C1 C1

C0 C0 C0

cod dom domcod

{

so that ‚ and id make the following diagrams commute:

C1 ˆC0 C1

C1 C1

C0 C1 C0

cod dom

cod dom

‚ and

C0

C0 C1 C0

id

cod dom

This means that codpg ‚ fq “ codpgq and dompg ‚ fq “ dompfq, and codpidxq “ dompidxq “ x.

It is easy to check that pC, ‚, idq therefore constitutes the data of a small category; moreover, the

functions ‚ and id must satisfy the monoid axioms of associativity and (right and left) unitality,

which correspond directly to the categorical axioms of associativity and unitality.

As we indicated at the opening of this section, by generalizing to a category of ‘spans’ of the

form A Ð X Ñ TB, we can use the preceding result to produce generalized multicategories

whose morphisms have domains “in the shape of T ”. Since the horizontal composition of spans is

by pullback, we need an extra condition on the monad T to ensure that pullbacks of T -spans are

well-defined. This condition is known as ‘Cartesianness’.

Definition A.1.6. A Cartesian natural transformation between functors F and G is a natural

transformation α : F ñ G for which every naturality square is a pullback:

Fa Ga

Fb Gb

αa

GfFf

αb

{

A Cartesian monad is a monad pT : C Ñ C, µ, ηq such that C has all pullbacks, T preserves

these pullbacks (sending pullback squares to pullback squares), and µ and η are Cartesian natural

transformations.
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Definition A.1.7. Suppose T is a monad on C. A T -span from A to B is a span from A to TB in

C. The category of T -spans from A to B, denoted SpanT pA,Bq has T -spans as objects, and the

morphisms f : pX,xq Ñ pX 1, x1q are morphisms f : X Ñ X 1
in C that commute with the spans,

as in the diagram

X

A TB

X 1

xA

x1
A

xB

x1
B

f .

Definition A.1.8. Suppose pT, µ, ηq is a Cartesian monad on C. The bicategory of T -spans

in C, denoted SpanT , has for objects the objects of C, and for hom-categories the categories

SpanT pA,Bq of T -spans from A to B. Given T -spans pX,xq : A Ñ B and pY, yq : B Ñ C , their

horizontal composite pY, yq ˝ pX,xq : A Ñ C is the outer T -span in the diagram

X ˆTB TY

X TY

A TB TTC

TC

projX

xA

projTY

TyCxB TyB

{

µC

.

If pX 1, x1q : A Ñ B and pY 1, y1q : B Ñ C are also T -spans with f : pX,xq ñ pX 1, x1q and

g : pY, yq ñ pY 1, y1q vertical morphisms, the horizontal composite of f and g is defined as

f ˆTB Tg accordingly. The identity span on an object A is A
idA

ÐÝÝ A
ηA
ÝÑ TA.

With these notions to hand, the general concept of T -multicategory is easy to define.

Definition A.1.9 (Leinster [168, Def. 4.2.2]). Suppose T is a Cartesian monad on C. A T -

multicategory is a monad in the bicategory SpanT of T -spans.

And of course we can recover our earlier examples of category shapes accordingly.

Example A.1.10. The identity monad on a category with all pullbacks is trivially a Cartesian

monad. Therefore, taking T “ idSet to be the identity monad on Set, we immediately see that an

idSet-multicategory is a small category.

Example A.1.11 (Leinster [168, Examples 4.1.4 and 4.2.7]). The free monoid monad List : Set Ñ

Set is Cartesian. Unpacking the definitions, we find that a List-multicategory is precisely a

multicategory as in Definition 3.3.1.
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At this point, we can sketch how multicategory algebras correspond to monad algebras, referring

the reader to Leinster [168, §4.3] for the details. The basic picture is that, if T : C Ñ C is a Cartesian

monad and M is a T -multicategory, then one can obtain functorially a monad TM on the slice

C{M0 of C over the objectM0 ofM-objects. The algebras α : TMpX, pq Ñ pX, pq of this monad

are morphisms α : TMX Ñ X as in the commuting diagram

TMX X

TX M1

TM0 M0

p

coddomTp

{

α

where TMpX, pq is defined as the bundle TMX Ñ M0 on the right leg of the pullback square.

To get a sense for how this works, consider the case where T “ idSet: a T -multicategory is then

simply a small category C, and as Leinster [168, Example 4.3.2] shows, its algebras are functors

C Ñ Set.
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