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Abstract

Bayesian statistics is a powerful approach to learning real-world phenomena, its

strength lying in its ability to quantify uncertainty explicitly by treating unknown

quantities of interest as random variables. In this thesis, we consider questions regarding

three quite different aspects of Bayesian learning.

Firstly, we consider approximate Bayesian computation (ABC), a computational

method suitable for computing approximate posterior distributions for highly complex

models, where the likelihood function is intractable but can be simulated from. Previous

authors have proved consistency and provided rates of convergence in the case where

all summary statistics converge at the same rate as each other. We generalize to the

case where summary statistics may converge at different rates, and provide an explicit

representation of the shape of the ABC posterior distribution in our general setting.

We also show under our general setting that local linear post-processing can lead to

significantly faster contraction rates of the pseudo-posterior.

We then focus on the application of Bayesian statistics to natural language process-

ing. The class of context-free grammars, which are standard in the modelling of natural

language, have been shown to be too restrictive to fully describe all features of natu-

ral language. We propose a Bayesian non-parametric model for the class of 2-multiple

context-free grammars, which generalise context-free grammars. Our model is inspired

by previously proposed Bayesian models for context-tree garammars and is based on

the hierarchical Dirichlet process. We develop a sequential Monte Carlo algorithm to

make inference under this model and carry out simulation studies to assess our method.

Finally, we consider some consistency issues related to Bayesian nonparametric mix-

ture models. It has been shown that these models are inconsistent for the number of

clusters. In the case of Dirichlet process (DP) mixture models, this problem can be

mitigated when a prior is put on the model’s concentration hyperparameter α, as is

common practice. We prove that Pitman–Yor process (PYP) mixture models (which

generalise DP mixture models) remain inconsistent for the number of clusters when
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a prior is put on α, in the special case where the true number of components in the

data generating mechanism is equal to 1 and the discount parameter σ ∈ (0, 1) is a

fixed constant. When considering the space over partitions induced by BNP mixture

models, point estimators such as the maximum a posteriori (MAP) are commonly used

to summarise the posterior clustering structure of such models, which alone can be

complex and difficult to interpret. We prove consistency of the MAP partition for DP

mixture models when the concentration parameter, αn, goes deterministically to zero,

and when the true partition is made of only one cluster.
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Chapter 1

Introduction

In this thesis, I consider various aspects of Bayesian statistics, including Bayesian com-

putation, Bayesian nonparametric modelling, and Bayesian asymptotics. In Section 1.1

I introduce the general context, review some of the relevant literature, and motivate the

problems that we will be considering. In Section 1.2 I outline my main contributions.

1.1 Background

In a statistical analysis, data y1:n = (y1, . . . , yn) ∈ Y is typically assumed to have been

generated from some probability distribution P (·|θ) which can by characterized by a

parameter θ ∈ Θ, where Θ denotes some parameter space equipped with a metric,

d. The goal is to make inference on θ given y1:n i.e. to make conclusions about the

underlying probabilistic model describing the data. We will use Y1:n when referring to

data as a random variable, and y1:n when referring to a particular observation of data.

Throughout, we will assume that P emits a density with respect to some measure,

which we denote p(y|θ).

In this thesis, we consider the Bayesian approach to the problem, which differs from

the so-called frequentist approach in that, instead of directly seeking estimates of one

“true” parameter θ0, the inference is based on a probability distribution over Θ. A

Bayesian model consists of a prior density π(θ) which describes our prior belief and
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uncertainty about the parameter θ and a likelihood density p(y|θ) (as described above)

which describes the generative distribution of data given some parameter θ ∈ Θ, which

can be combined together to form a posterior density π(θ|y1:n) using Bayes’ rule:

π(θ|y1:n) =
p(y1:n|θ)π(θ)∫
p(y1:n|θ)π(θ)dθ

. (1.1)

The Bayesian approach can be easily applied to complex models and, unlike the fre-

quentist approach, provides explicit measures of the uncertainty over the parameter

space. For an extensive introduction to Bayesian statistics see Robert et al. (2007).

The first step of a Bayesian analysis consists of choosing an appropriate likelihood

density p(y|θ) on Y and a suitable prior density π(θ) on the parameter space Θ. If

one has some prior belief of where the true parameter is concentrated, this should

be incorporated into the prior distribution. Otherwise, a prior distribution with high

variance could be a more suitable choice.

One then computes the posterior density π(θ|y1:n) using Equation (1.1). Since the

likelihood function p(y1:n|θ) is typically unavailable in closed form, this is often done

using computational methods. These include simulation-based methods based on Monte

Carlo estimates, and approximate methods, where one designs some pseudo-posterior

distribution which is “close” to the true posterior, and from which estimates can more

easily be made.

A Bayesian posterior can be summarised by a point estimate, for example, the pos-

terior mean, E (θ|y1:n) =
∫
θdΠ(θ|y1:n) or the maximum a posteriori (MAP) estimator,

θ̂n = arg maxπ (θ|y1:n) . Point estimates, however, do not make full use of the power of

the posterior, and in particular, lack a measure of uncertainty. A more comprehensive

representation of the posterior would be to provide either its density (if available), or a

large sample of draws from it.
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1.1.1 Bayesian asymptotics

Since Bayesian posterior computation is often approximate, before drawing statistical

conclusions from them it is crucial to validate their reliability. One way of doing this is

by studying their asymptotic properties. We adopt what is called a frequentist-Bayesian

point of view and assume the existence of a true parameter θ0.

A posterior distribution is said to be consistent if its mass concentrates on increas-

ingly small neighbourhoods around the true parameter as the amount of data goes to

infinity. Formally, posterior consistency is defined as follows.

Definition 1. The posterior distribution is said to be consistent at θ0 ∈ Θ with respect

to a metric d on Θ if for any ϵ > 0, the posterior probability of an ϵ−neighbourhood of

θ0, Nϵ = {θ : d(θ, θ0) < ϵ} converges to 1:

Π(Nϵ|y1:n)→ 1

in P (·|θ0)−probability as n goes to infinity.

Consistency is a minimal requirement for a posterior distribution to be considered

reliable. A first result of Doob (1949) shows that when d is a metric and (Θ, d) is a

complete separable space, the posterior is guaranteed to concentrate on a neighbourhood

Θ0 of θ0 as long as Θ0 has strictly positive measure under the prior and as long as θ is

identifiable. In other words, the posterior is consistent everywhere except for a set of

values having measure zero under the prior. This result is interesting but weak since it

fails on a null set which is unknown and which depends on the prior.

In the case of independent and identically distributed data, Schwartz’s theorem

(Schwartz (1965)) guarantees consistency for finite dimensional models under testing

conditions of the model and under the condition that the prior puts enough positive

mass around the true parameter (in the sense of Kullback-Leibler divergence). Barron

et al. (1999) extend this to the non-iid case.

A more refined asymptotic property than consistency is posterior contraction rates
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(also known as posterior concentration rates). They provide a measure of how fast the

posterior distribution shrinks around the true parameter, and are defined as follows.

Definition 2. A rate of contraction of the posterior distribution with respect to a metric

d on Θ is defined as a sequence (ϵn)n≥1 such that

Π(θ : d(θ, θ0) ≤Mnϵn|y1:n)→ 1

in P (·|θ0)−probability as n goes to infinity, where Mn is any monotone increasing se-

quence. The best possible (i.e. the smallest) sequence (ϵn)n≥1 satisfying the above is

called the optimal rate of contraction.

In their seminal paper, Ghosal et al. (2000) develop a general methodology to obtain

posterior contraction rates, which is extended to the case of non iid observations in

Ghosal and Van Der Vaart (2007).

Finally, one may be interested in the asymptotic shape of the posterior distribution.

It is well-known that in finite-dimensional regular models the MLE θ̂n has the following

Gaussian limiting distribution in P (·|θ0)−probability:

√
n(θ̂n − θ0)→ N (0, In(θ0)

−1), (1.2)

where In is the Fisher information matrix. Note that the above is a frequentist result:

the “true” parameter θ0 is a fixed constant and randomness is due to the data which is

distributed according to the likelihood model. The Bernstein-von Mises Theorem due

to Laplace (1810) provides a Bayesian analogue of Equation (1.2) for finite-dimensional

models. It states that under some regularity conditions, the posterior distribution has

the following Gaussian limit in Π(·|y1:n)− probability:

(
√
n(θ − θ̂n)|y1:n)→ N (0, In(θ0)

−1).

Note that the above is a Bayesian result: unlike in Equation (1.2) where randomness
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comes from the data yn, the Bernstein-von Mises Theorem considers data y1:n (and

thus θ̂n) to be fixed, and randomness comes from the posterior distribution over the

parameter space Θ.

As we will describe in detail in the next section, a common modelling choice in

Bayesian statistics involves defining the parameters to be of infinite dimension. Such

models are referred to as Bayesian nonparametric (BNP) models. While general results

such as Schwartz’ theorem and the Bernstein Von Mises theorem are widely applied

to finite models, they are not always applicable in nonparametric settings. Providing

asymptotic guarantees for Bayesian nonparametric models can be challenging, and is

often done in a case by case basis (see, for example Walker and Hjort (2001), Walker

(2003), Walker (2004), and Lijoi et al. (2007) for consistency results, and see Rousseau

(2016), Ray and van der Vaart (2021) and Franssen and van der Vaart (2022) for

Bernstein Von Mises results in BNP settings). General asymptotic results also fail to

hold in situations where Bayesian computation is based on estimations of some pseudo-

posterior distribution which approximates the true posterior.

1.1.2 Bayesian nonparametrics

A Bayesian nonparametric model is defined as a Bayesian model over the space of

infinitely many parameters (Bernardo and Smith (2009)). Bayesian nonparametric

models are popular for their flexibility and are particularly useful when dealing with

highly complex data.

The most popular Bayesian nonparametric prior is the Dirichlet process (DP), in-

troduced by Ferguson (1973). There are several equivalent representations of the DP.

Sethuraman (1994) defines the DP in a constructive way called the “stick breaking”

representation as follows.

Definition 3. If Vi ∼iid Beta(1, α) for i = 1, . . ., if pj = Vj

∏j−1
i=1 (1−Vi) for j = 1, 2, . . .,

5



and θ1, θ2, . . . ∼iid Q0 then the discrete random probability measure

G =
∞∑
j=1

pjδθj

is distributed according to a Dirichlet process with concentration parameter α and base

distribution Q0. We write G ∼ DP (α,Q0).

Blackwell and MacQueen (1973) provide a characterization of the DP based on the

generative distribution of data points drawn from draws from it: if (θ1, . . . , θn, θn+1) ∼ G

and G ∼ DP (α,Q0), then conditional on (θ1, . . . , θn), the (n + 1)th observation θn+1

is equal to θj with probability
nj

α+n
(where nj represents the number of components in

(θ1, . . . , θn) that take the same value as θj) and is distributed according to Q0 with

probability α
α+n

. This process is commonly referred to as the “Chinese restaurant

process” due to an analogy of customers sitting at tables in a Chinese restaurant: when

a customer (the element θn+1) enters a restaurant, they sit at the jth table (i.e. take

the value θj) with probability
nj

α+n
, and sit at a new unoccupied table (i.e. take a new

and unique value) with probability ( α
α+n

).

Although the Dirichlet process itself is a measure on the space of discrete measures,

it can be used to model continuous data by convolving it with some kernel. Given a

class of kernels k(y|θ), Lo (1984) defines the Dirichlet process mixture model as a model

with density defined by f(y), where

G ∼ DP (α,Q0)

f(y) =

∫
k(y|θ)G(dθ). (1.3)

In Dirichlet process mixture models, each observation is associated with one component

θ ∈ Θ and then distributed according to k(y|θ) conditional on θ. DP mixture models

are thus perfectly suited to modelling clustered data: two data points belong to the

same cluster if they are both associated with the same component θ ∈ Θ. Unlike the

case of finite mixture models, where the G in (1.3) is a finite discrete measure, they
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allow for an unbounded number of components. The complexity of the model may grow

as the training data becomes available.

Grouped structure in data is common across a broad range of domains, including

genetics (Gabriel et al. (2002)) where the groups are the halotypes of binary markers of

the human genome, information retrieval (Blei et al. (2003)) where the groups are the

topics of a set of documents, or natural language processing (Liang et al. (2007)) where

the groups are the parts of speech of a grammar. Teh et al. (2004) extend the DP

mixture model further with their hierarchical Dirichlet process (HDP) model, where

separate groups are modeled with separate Dirichlet processes. The Dirichlet processes

are linked together with a common base distribution, which itself is modeled with

another Dirichlet process. Mathematically, their model can be represented as follows.

G0 ∼ DP (α0, Q0)

Gj ∼ DP (αj, G0) ∀j ∈ J

where J represents the number of groups one wishes to model. If G0 were some con-

tinuous distribution, the probability of different groups sharing components would be

zero. On the other hand, if G0 were a finite discrete measure, the model would be too

restrictive. The use of a Dirichlet process as a common base distribution allows both

across-group and within-group clustering, without compromising model flexibility. Beal

et al. (2001) propose a closely related model to the HDP, which is a hidden Markov

model where the transitions are modeled using a HDP (one considers the states of the

hidden Markov model to be the groups). Finkel et al. (2007) use an adaptation of the

HDP model for three models over trees, with various dependency assumptions among

the children at each branch.

While the DP remains the most standard Bayesian nonparametric prior, numerous

extensions exist. Pitman–Yor processes (PYPs) are a simple extension of Dirichlet

processes, developed by Perman et al. (1992) and further investigated by Pitman (1995)

and Pitman and Yor (1997). PYPs introduce an extra parameter σ ∈ [0, 1) (called the
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discount parameter), that allows for flexible control of the clustering behavior, and can

be characterized by a “stick-breaking” construction, identical to that of the Dirichlet

process in Definition 3, except with the Vi’s distributed as Vi ∼ind Beta(1− σ, α + iσ).

When G is distributed according to a Pitman–Yor process with concentration parameter

α, base distribution Q0, and with discount parameter σ we write G ∼ PY P (α, σ,Q0).

The PYP can also be characterized by the generative distribution of data points drawn

from draws from it, and by its corresponding Chinese restaurant process analogy: a new

customer (the value θn+1) sits at the jth table (i.e. takes the value θj) with probability

nj−σ

α+n
, and sits at a new unoccupied table (i.e. takes a new and unique value) with

probability (α+nσ
α+n

). The Dirichlet process mixture model and hierarchical Dirichlet

process model described above can be trivially adapted to PYPs by replacing DPs by

PYPs.

Beyond the Dirichlet process and the Pitman–Yor process, other nonparametric

priors do exist, for instance, the class of Gibbs-type priors (De Blasi et al. (2013)),

which naturally generalise DPs and PYPs, but these are beyond the scope of this

thesis.

1.1.3 Bayesian modelling for grammars

The goal of natural language processing (NLP) is to develop algorithms that allow com-

puters to understand natural language. NLP applications include speech recognition,

translation, and language understanding, among others, and due to the large quantity

of linguistic data available on the internet have enjoyed a significant amount of research

attention over the last twenty years (Manning and Schutze (1999)).

One object of interest when studying linguistic data are the parse trees which de-

scribe the structure of each sentence in the language. An example of a parse tree for

the English sentence “They solved the problem with Bayesian statistics” is provided in

Figure 1.1.

A grammar is what defines the structure of a language. Chomsky (1956) defined a
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formal grammar G to be four-tuple (A,B,R,S) where A is the set of terminal symbols

(the words in the language), and where B,R and S are related to their underlying

structure. In particular, when considering the parse trees of the sentences in a language,

the symbol S is the start symbol at every root node, B is the set of nonterminal symbols

at internal nodes, and R is the set of rules which define which branching patterns can

occur.

Inferring the grammar that best describes some natural language based on a finite set

of sentences is a challenging task. We approach this problem by using probabilistic grammars

which are defined as formal grammars which additionally have some set J of proba-

bilities, with one probability assigned to each of the rules in R. The probability of any

sentence is defined to be the product of the probabilities assigned to each of the rules

in that sentence’s parse tree.

Chomsky (1956) classified grammars in terms of the complexity of the rules that

they allow. In order of increasing complexity he defined the following four classes of

grammars.

Regular ⊂ Context-free ⊂ Context-sensitive ⊂ Recursively enumerable (1.4)

The more complex a grammar model is the more features of a language it may be

able to capture. However, the more complex the grammar model, the more expensive

the inference may be in terms of computational time. It is common for natural language

to be modeled using context-free grammars, and probabilistic context-free grammars

have been a core modelling technique for many aspects of linguistic structure (Charniak

(1996), Collins (2003)). All of the rules of a context-free grammar (when in its Chomsky

normal form) must be written in one of the following two forms

Bj → Bk1Bk2 (1.5)

9



Figure 1.1: A parse tree for the sentence They solved the problem with Bayesian statistics.

Bj → ak (1.6)

where Bj, Bk1 , Bk2 ∈ B and where ak ∈ A. Figure 1.1 illustrates a sentence and its

parse tree generated from a context-free grammar describing the English language. In

this grammar, S is the nonterminal [Sentence], B is the set of English parts of speech

(for example [Noun], [Verb], [Proposition], etc.), and A is the set of English words.

Elements of the set R include

[Noun-Phrase]→ [Determiner] [Noun]

and

[Proper-Noun]→ “Bayesian”.

Traditionally, estimation of probabilistic context-free grammars has been done using

variants of the inside-outside algorithm (Baker (1979), Lari and Young (1990)) which is

based on the frequentist technique of expectation maximization (EM) estimation. De-
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spite the fact that the majority of early work in statistical NLP has been non-Bayesian,

it can be argued that the Bayesian approach is perfectly suited to NLP. Indeed by an

appropriate choice of prior, Bayesian methods can favor sparseness which is typical of

linguistic data. Johnson et al. (2007) show that a finite Bayesian model for probabilis-

tic context-free grammars can infer linguistic structure in situations where maximum

likelihood methods such as the Inside-Outside algorithm only produce a trivial gram-

mar, using the example of the sparse grammar describing the morphology of the Bantu

language Sesotho. Furthermore, by using nonparametric priors, the Bayesian approach

allows the number of nonterminal symbols and rules to be learned adaptively with the

data, providing flexible models with an unbounded number of latent parameters.

All of the rules in a context-free grammar involve overwriting one nonterminal sym-

bol (the Bj on the left-hand side of Equation (1.5) and Equation (1.6)) with either a

pair of nonterminal symbols (as in Equation (1.5)) or with a single terminal symbol

(as in Equation (1.6)). The rules of a context-free grammar can thus be modeled as

a multi-group mixture: two rules are in the same group if and only if they both over-

write the same nonterminal symbol. Liang et al. (2007) model the different groups of

rules separately whilst maintaining a global link across all rules by means of hierar-

chical Dirichlet processes, in their HDP-PCFG model. Goldwater et al. (2006) extend

this to model parse trees for context-free grammars with various different dependency

assumptions across child nodes.

Despite the extensive work on natural language inference based on context-free

grammars, it is well-known that these models do not capture all features of human

natural language. Shieber (1985) demonstrate this for the particular case of the Swiss

German language. Since the class of context-sensitive grammars, which comes above

the class of context-free grammars in terms of complexity, is considered too complex in

practice for simple inference purposes, researchers have proposed intermediate classes of

grammars that lie in between context-free and context-sensitive in terms of complexity.

Examples of these include head grammars (Pollard (1984)), tree-adjoining grammars

(Joshi et al. (1969)), and 2-multiple context-free grammars (Seki et al. (1991)). Until
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now, no Bayesian model has been proposed for these extensions, and all inference has

been frequentist.

1.1.4 BNP mixtures

Mixture models are commonly used in statistical analysis of heterogeneous data where

observations are assumed to come from a number of different populations or groups. Due

to their flexibility and simplicity, they are popular across a wide range of applications,

including healthcare (Ramı́rez et al. (2019)), econometrics (Frühwirth-Schnatter et al.

(2012)), and ecology (Attorre et al. (2020)).

In a mixture model, each observation is assumed to come from exactly one group,

and each group is characterized by some density, which usually comes from some para-

metric family. Mathematically, a mixture model over data y1:n can be characterized by

the distribution F ⋆ with pdf with respect to some measure µ

f ⋆(y) =
t∑

j=1

p⋆jk(y|ϕ⋆
j), t ∈ N (1.7)

where the p⋆j are probability weights in (0, 1) summing to one, and where the k(·|ϕ⋆
j) are

probability kernels, each depending on some parameter ϕ⋆
j . The above may alternatively

be expressed as a convolution of the component-specific kernel k(·|ϕ) with the discrete

mixing measure G⋆ =
∑t

j=1 p
⋆
jδϕ⋆

j
:

f ⋆(y) =

∫
k(y|ϕ)G⋆(dϕ). (1.8)

Mixture models can be used for density estimation (Escobar and West (1995), Fer-

guson (1973)), regression (Müller et al. (1996)), and model-based clustering (Fraley and

Raftery (2002)). When using mixture models for model-based clustering, one focuses

on the groups to which each data point has been assigned, which naturally induce a

partition in the data: two data points belong to the same cluster of the partition if and

only if they have both been assigned to the same group. We denote this partition of the
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data by A = (A1, . . . , AKn), where Kn denotes the number of clusters in the partition.

For a recent review on model-based clustering for mixture models, see Grün (2019). For

a recent review on mixture models in general, see Fruhwirth-Schnatter et al. (2019).

In this thesis, we consider nonparametric mixture models, with nonparametric priors

on the mixing measure G of Equation (1.8).

Consistency results for BNP mixtures

As described in Section 1.1.1 general consistency results are not necessarily applicable to

nonparametric models. Extensive research has led to consistency in density estimation

for Dirichlet process mixtures (Ghosal et al. (1999) Ghosal and Van Der Vaart (2007)

Kruijer et al. (2010), and other types of priors (Lijoi et al. (2005)). Nguyen (2013)

proves consistency for mixing measures for finite mixtures and for BNP mixtures, and

provides their corresponding contraction rates.

It is important to realise that consistency of the posterior distribution for the data-

generating density and even for the mixing measure does not imply consistency of

the inferred number of clusters. Empirically, many researchers have observed that DP

mixture posteriors tend to overestimate the number of clusters (West and Escobar, 1993;

Lartillot and Philippe, 2004; Onogi et al., 2011). More recently, Miller and Harrison

(2013, 2014) proved that the posterior distribution on the number of clusters does

not concentrate to the number of components in DP and PYP mixtures. A possible

explanation for this inconsistency result can be found in a result proved by Rousseau

and Mengersen (2011), that in overfitted finite or infinite mixture models, the weights

attributed to extra clusters go to zero as the number of observations grows. Provided

that the weights for the extra components are infinitesimally small, any mixture can

be approximated arbitrarily well by a mixture with a larger number of components.

Despite the above inconsistency results, it is possible to achieve posterior consistency

for the number of clusters in DP and PYP mixtures. Guha et al. (2021) introduce a

fast and simple post-processing procedure for DP mixtures which provides clustering
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consistency. Alamichel et al. (2022) extend this result to PYP mixtures. Ascolani

et al. (2022) show that posterior consistency for the number of clusters can be achieved

in certain cases for a DP mixture model by putting a prior on the DP concentration

parameter α. DP mixtures modeled in this way can be considered as mixtures of DP

mixtures (Antoniak, 1974) and are commonly used in practice.

Beyond the distribution over the number of clusters, an interesting question in clus-

ter analysis is the distribution over the partition space across clusters induced by BNP

mixture models. This space is large and complex: the number of possible clusterings

of n items grows exponentially according to B(n), the Bell number of n items (Bell

(1934)). Since it would be infeasible to describe the posterior density of all the unique

partitions, it is common practice to find a point estimator to concisely represent the

posterior.

The optimal Bayes estimate of the clustering under the 0-1 loss function is equiva-

lent to the maximum a-posteriori (MAP) clustering estimator (Binder (1978)), and is

commonly used in Bayesian model-based procedures (Broët et al. (2002), Kim et al.

(2006), Li et al. (2007)). The 0-1 loss function may be described intuitively as follows:

no loss is incurred if the clustering estimate equals the true clustering and a loss of

one is incurred for any other clustering estimate. Rajkowski (2019) investigate the-

oretical properties of the MAP partition in the particular case of Gaussian Dirichlet

process mixture models (where the cluster means have Gaussian distribution and, for

each cluster, the observations within the cluster have Gaussian distribution). Along

with some nice theoretical properties, they prove that model mis-specification can lead

to non-consistency of the MAP partition.

1.1.5 Bayesian computation

In a Bayesian analysis, many quantities of interest can be written in the form

I =

∫
h(θ)dΠ(θ|y1:n), (1.9)
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i.e. as an expectation of some quantity h(θ) with respect to the posterior distribution.

For example, the expected value of θ under the posterior corresponds to the case where

h(θ) = θ. Since posterior distributions are generally impossible to calculate directly,

numerical methods must be used.

Even if the posterior distribution is unavailable in closed form, it can be possible

to simulate from it. We can estimate I of Equation 1.9 using a Monte Carlo estimator

ÎMC
T , defined as

ÎMC
T =

1

T

T∑
t=1

h(θt) θt ∼iid Π(·|y1:n).

Monte Carlo estimators have zero bias, and under the very general conditions of the

Laws of Large Numbers, they converge to the truth, I, as the number of simulated

data points T goes to infinity. Despite these nice properties, however, they are rarely

used in practice: their variances can be quite large, and in many cases, it is impossi-

ble to simulate directly from the posterior distribution. An alternative solution is to

use importance sampling, where data is simulated from an alternative sampling distri-

bution, and weights are associated with each simulated data point to correct for the

difference between the sampling distribution and the posterior distribution (see for ex-

ample Geweke (1989)). Given a sampling distribution γ that emits a density (which we

also denote γ) with respect to some measure, an importance sampling estimator ÎIST is

defined as

ÎIST =
1

T

T∑
t=1

h(θt)π(θt|y1:n)

γ(θt)
, θt ∼iid γ

The quality of ÎISt depends crucially on the choice of γ, and is unbiased and consistent

as long as the support of Π(·|θ) is contained in the support of γ.

In the case of more complex models, it is often difficult to design an importance

sampling distribution γ that places a large number of samples in regions of high posterior

density. Classes of algorithms suitable for these situations include Markov chain Monte
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Carlo (MCMC) algorithms and sequential Monte Carlo (SMC) algorithms.

The basic idea of MCMC methods is to simulate a Markov chain whose stationary

distribution is the target posterior distribution. Monte Carlo estimates can then be

formed using the elements in the chain (usually after discarding the first few elements

of the chain, referred to as the “burn-in” time). Gibbs sampling (Gelfand and Smith

(1990)) is an MCMC method useful when the parameter θ is of dimension greater or

equal to two, and where it is possible to simulate from conditional distributions of its

components. Each transition of the Markov chain involves resampling a component of

the parameter vector from its conditional distribution.

The Metropolis Hastings method (Robert et al. (1999)) first introduced by Metropo-

lis and Ulam (1949) is an MCMC method based on using a suitable transition kernel

and acceptance probability in order to ensure a “detailed balance” condition, which is

necessary for the stationary distribution of the Markov chain to be equal to the target

distribution. A large number of extensions have been introduced, for example, adap-

tive versions (Roberts and Rosenthal (2009)), where the best choice of the parameters

is learned during the convergence of the chain, and parallel tempering (Geyer (1991))

which uses a sequence of Markov chains running in parallel with earlier chains in the

sequence easier to sample from, with neighbouring chains close in distribution, and

which allows neighbouring chains to swap state in order to improve mixing. The last

chain of the sequence has stationary distribution equal to the target.

SMC methods also involve the construction of a sequence of intermediate distribu-

tions f0(θ), f1(θ), . . . , fT (θ), in such a way that the final distribution fT (θ) corresponds

to the Bayesian posterior target distribution Π(·|y1:n). In SMC, one simulates M par-

ticles on Θ which are then propagated from f0 to fT so that in the end, one obtains

sets of vectors of the form (θ
(m)
0 , θ

(m)
1 , . . . , θ

(m)
T ) for all m ∈ {1, . . . ,M}, where θ

(m)
i is

distributed according to fi for any i in {0, . . . , T} and for any m ∈ {1, . . . ,M}. In par-

ticular, the set {θ(1)T , . . . , θ
(M)
T } will be a sample from the target posterior distribution,

from which Monte Carlo estimates may be made.

For t ∈ {1, . . . , T} a common choice for the distribution ft is the partial posterior
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distribution Π(·|y1:t), and a common choice for f0 is the prior distribution Π(·). At time

step t, each of the particles can then be propagated from ft−1 to ft using importance

sampling, with sampling distribution Π(·|y1:t−1) and with weight p(yt|θ), in such a way

that the re-weighted sample will be distributed according to Π(·|y1:t). Practically, an

additional re-weighting step is necessary to avoid particle degeneracy (i.e. to avoid the

weights of all but one particle becoming so small that they no longer have an adequate

influence on the final MC sample. It has been proved that SMC is guaranteed to fail

without this step, see Liu et al. (1998) and Liu and Liu (2001)). Pseudocode for a very

basic SMC sampler, the Bootstrap sampler, is provided in Algorithm 1.

Due to the increasing availability and power of computational resources, SMC meth-

ods have become very popular since the 1990s, and there is a rich literature on the con-

struction of their algorithms (see for example Gilks and Berzuini (2001), Neal (2001),

Doucet et al. (2001), and Chopin (2002), among others). Unlike other alternatives such

as MCMC algorithms, SMC algorithms can process the data sequentially. This makes

them perfectly suited to situations where the dimension of the data is large and it would

be unrealistic to process all of it in one go, or where data arrives sequentially and one

wishes to make estimates online.
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Algorithm1: Bootstrap Filter

1. initialisation, t = 0

• For i = 1, . . . ,M sample θi0 ∼ Π(·) and set t = 1.

2. Importance sampling step

• For i = 1, . . . ,M, sample θ̃it ∼ Π
(
·|y1:(t−1)

)
and set θ̃i0:t =

(
θi0:t−1, θ̃

i
t

)
.

• For i = 1, . . . ,M evaluate the importance weights

w̃i
t =

p(yt|θ̃it)∑M
i=1 p(yt|θ̃it)

.

3. Selection step

• Resample with replacement M particles (θi0:t; i = 1, . . . ,M) from the set(
θ̃i0:t; i = 1, . . . ,M

)
according to the importance weights.

• Set t← t + 1 and go to step 2.

1.1.6 Approximate Bayesian computation (ABC)

In the case of highly complex or high-dimensional problems, the simulation-based meth-

ods described above can be too expensive computationally. In certain situations, they

can even be mathematically impossible. For example, when the likelihood function

cannot be evaluated, one has no way of calculating acceptance probabilities for the

Metropolis-Hastings algorithm, or of calculating weights of the SMC algorithm. Fur-

thermore, the decomposition required for Gibbs sampling is generally unavailable. In

these cases, a more approximate method of inference is necessary. Previous solutions to

these problems include Laplace approximations (Tierney and Kadane (1986)) and varia-

tional Bayes methods (Jaakkola and Jordan (2000)). However, Laplace approximations

require unrealistic prior knowledge of the posterior distribution, and variational Bayes
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models replace the true posterior distribution with a much simpler pseudo-posterior

which may fail to capture important features of the true model.

Approximate Bayesian computation (ABC) methods, proposed by Tavaré et al.

(1997) in the context of population genetics, have been referred to by Marin et al. (2012)

as “the most satisfactory approach to intractable likelihood problems.” The basic idea is

simple. Instead of evaluating the likelihood function, one simulates a set of M parameter

and data pairs from the prior and likelihood function
(
(θ1, z1), . . . , (θM , zM)

)
. For all

of the i′s for i ∈ {1, . . . ,M} for which zi is sufficiently “close” to the observed data y,

the parameter θi is stored. The set of stored parameters is a Monte Carlo sample from

the ABC pseudo-posterior distribution. In the special case where by “close” we mean

“equal to”, the pseudo-posterior distribution will be the true posterior distribution.

Otherwise, it will be some approximation of the true posterior distribution. The most

basic accept/reject ABC algorithm (Tavaré et al. (1997)) given in Algorithm 2.

Algorithm2: Accept/reject ABC

1. Simulate θi (i = 1, . . . ,M) from Π(·)

2. Simulate zi = (zi1, . . . , z
i
n) (i = 1, . . . ,M) from P (·|θi)

3. Accept the θi satisfying |η(yi)− η(zi)| ≤ ϵ, where η(·) is a statistic and ϵ is a

tolerance level.

Defining an approximation to the likelihood as

p̃ϵ,θ (η(y)) :=

∫
1{∥η(y)−η(z)∥≤ϵ}dP (z|θ), (1.10)

this ABC accept/reject algorithm produces samples from the following pseudo-posterior

density (when marginalizing out the simulated data η(z)):

πϵ(θ) ∝ π(θ)p̃ϵ,θ (η(y)) . (1.11)

ABC methods are relatively recent and have enjoyed a large amount of research
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attention in the past two decades, both from a theoretical point of view and from a

computational point of view.

As with any approximate statistical method, it is crucial to understand the asymp-

totic behavior of ABC posterior estimations in order to validate their reliablilty. Li and

Fearnhead (2018b) and Frazier et al. (2018) have considered the asymptotic properties

of ABC, with ABC tolerances decreasing as the number of observations goes to infinity.

Both papers have shown that convergence of ABC point estimators depends on the

relationship between the rate of convergence of the summary statistics and that of the

tolerance.

Frazier et al. (2018) have additionally proved posterior consistency of the ABC

posterior, and both Frazier et al. (2018) and Li and Fearnhead (2018a) have proved

results on the asymptotic shape of the ABC posterior distribution. These results again

depend on the relationship between the rate of convergence of the summary statistics

and that of the tolerance. In particular, posterior consistency is only proved in the case

where all summary statistics converge at a rate that is much faster than that of the

tolerance. The shape of the asymptotic ABC posterior distribution is only proved in

situations where all dimensions of the summary statistics converge at the same rate as

each other: either they all converge at a “slow” rate relative to ϵ, or they all converge

at a “fast” rate relative to ϵ.

1.2 Contributions and thesis outline

This thesis comprises three main chapters, each representing independent work. Chap-

ter 2 focuses on the asymptotic properties of ABC methods (and is based on work in

preparation for submission to the Electronic Journal of Statistics). Chapter 3 considers

the natural language processing application of Bayesian nonparametric models (and is

unsubmitted, unpublished work). Chapter 4 presents consistency results for Bayesian

nonparametric mixture models (and is partially based on work published at the Ad-

vances in Approximate Bayesian Inference conference and partially based on work in
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progress). In the next subsections, I briefly summarise the methodologies, the results,

and the impact of each of the following chapters. I also outline which parts were carried

out as part of a collaboration.

1.2.1 Asymptotic properties of ABC

In Chapter 2, I present joint work with C. Robert, J. Rousseau and R. Ryder on the

asymptotic properties of ABC methods. We consider the ABC posterior as the tolerance

parameter ϵ decreases with increasing data: as ϵ converges to zero, the ABC summary

statistics converge to their limiting values. As outlined in Subsection 1.1.6, previous

results have focused on settings where the summary statistics all converge at the same

rate. Either they all converge “slowly” relative to ϵ, or they all converge “quickly”

relative to ϵ. We generalise to the more realistic case where different components of the

summary statistics converge at different rates. We prove posterior consistency under

this set-up, even when certain summary statistics do not converge at all, and provide a

closed-form expression for the asymptotic ABC posterior distribution. We prove similar

but stronger results in the case of ABC after post-processing.

I was the lead researcher for the two theorems and the simulation study that deal

with ABC before post-processing. This was the first project of my DPhil, and I had

guidance from C. Robert, J. Rousseau and R. Ryder. The results regarding ABC

posteriors after post-processing are due to J. Rousseau and R. Ryder, and are not my

work.

1.2.2 Bayesian nonparametric models for grammars

In Chapter 3, I present joint work with R. Ryder and J. Rousseau on Bayesian modelling

of grammars. We focus on the class of 2-multiple context-free grammars (2-MCFGs).

As discussed in Subsection 1.1.3, although the majority of work on grammar modelling

in the literature has focused on the class of context-free grammars, more general classes

would be necessary in order to capture all features of natural language. 2-MCFGs allow,
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for example, cross-dependencies across words in sentences, a feature which is impossible

to capture using context-free grammars. We propose a model for 2-MCFGs based on

the hierarchical Dirichlet process, inspired by previously proposed models for context-

free grammars. We develop a sequential Monte Carlo algorithm to make inferences and

illustrate our method with synthetic and real data.

I was the lead researcher for this project, both for modelling and implementation.

Many ideas came from regular discussions with R. Ryder and J. Rousseau.

1.2.3 Consistency results for BNP mixtures

In Chapter 4, I present joint work with J. Arbel, L. Alamichel and G. Kon Kam King on

the topic of consistency of Bayesian nonparametric mixture models. First, we consider

the question of consistency for the number of clusters. In our first theorem, we prove

that, unlike the case of DP mixture models, PYP mixture models (which generalise

DP mixture models) remain inconsistent for the number of clusters when a prior is put

on α, in the special case where the true number of components in the data generating

mechanism is equal to 1 and the discount parameter σ ∈ (0, 1) is a fixed constant. We

illustrate this result with a simulation study. Secondly, we consider the MAP estimator

over the space of partitions. We prove consistency of the MAP partition for DP mixture

models when the concentration parameter, αn goes deterministically to zero, and when

the true partition is made of only one cluster. This second result is complimentary to

that of Rajkowski (2019) who prove a negative result in the case of a fixed concentration

parameter.

I was the overall lead researcher for this project. The first theorem was joint work

with J. Arbel, and the second theorem was my individual work. The simulation study

included in the Appendix section was carried out by L. Alamichel and G. Kon Kam

King and was not my work.
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Chapter 2

Asymptotic properties of

approximate Bayesian computation

(ABC)

Abstract

Approximate Bayesian computation (ABC) is a computational method suitable for

computing posterior distributions in situations highly complex models, where the like-

lihood function is intractable but can be simulated from. Previous authors have proved

consistency and provided rates of convergence in the case where all summary statistics

converge at the same rate as each other. We generalize to the case where summary

statistics may converge at different rates, and provide an explicit representation of the

shape of the ABC posterior distribution in our general setting. We also show under our

general setting that local linear post-processing can lead to significantly faster contrac-

tion rates of the pseudo-posterior.
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2.1 Introduction

Likelihood-free methods in Bayesian statistics are methods for posterior inference in

situations where likelihoods are intractable or unavailable in closed form, but may be

simulated from. Such situations are typical of real-life applications, when models are

defined by complex generative processes. This can result in likelihoods involving high

dimensional integrals which are impossible to compute in a reasonable amount of time.

Examples of such likelihood-free methods include simulated methods of moments (Duffie

and Singleton, 1990), indirect inference (Gourieroux et al., 1993), synthetic likelihood

(Wood, 2010) and approximate Bayesian computation (ABC) (Sisson et al., 2018). In

this work, we focus on the latter. At its core, ABC relies on simulating many data sets

from the prior predictive. The data sets are summarized by a low dimensional statistic,

and only those within a small pseudo distance (the tolerance) of the observed data are

kept.

ABC was first introduced in the context of population genetics (Pritchard et al.,

1999). It has since then been applied in research areas as diverse as population genetics

(Pritchard et al., 1999), protein networks (Ratmann et al., 2007), epidemiology (Tanaka

et al., 2006) , inference for extremes (Bortot et al., 2007), dynamical systems (Toni et al.,

2009), and Gibbs random fields (Grelaud et al., 2009). Due to its increasing popularity

in applied statistics, recent research has focused on the theoretical properties of ABC

methods.

Fearnhead and Prangle (2012) consider the question of summary statistic choice, and

find that summary statistics should ideally have the same dimension as the parameter

to be estimated. Li and Fearnhead (2018b) and Frazier et al. (2018) have considered

the asymptotic properties of ABC, with ABC tolerances decreasing as the amount of

information in the data goes to infinity. Both papers have shown that convergence

of ABC posteriors depends on the relationship between the rate of convergence of

the summary statistics and that of the tolerance and they have proved results on the

asymptotic shape of the ABC posterior distribution. These results again depend on
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the relationship between the rate of convergence of the summary statistics and that of

the tolerance. In particular, posterior consistency is only proved in the case where all

summary statistics converge at a rate that is much faster than that of the tolerance.

The shape of the asymptotic ABC posterior distribution is only proved in situations

where all dimensions of the summary statistics converge at the same rate.

In this work, we extend the results of Frazier et al. (2018) to the case where different

components of the summary statistics converge at different rates, with some possibly

not converging at all. We first prove consistency of the ABC posterior where different

components of the summary statistics are allowed to converge at heterogeneous rates.

We next prove a general result on the asymptotic shape of the ABC posterior in the

same context and our results cover the more realistic case where certain summary

statistics do not converge at all.

A well known technique to reduce the curse of the dimension of the set of summary

satistics is based on non linear regressions, typically a post processing step, as intro-

duced by Blum and François (2009); see also Blum (2010). Recently Li and Fearnhead

(2018a) have shown, in the special case of asymptotically normal summary statistics

all concentrating at the same rate, that the local linear postprocessing step proposed

in Blum and François (2009) leads to a significant improvement in the behaviour of the

ABC posterior. However since the post - processing step aimed at reducing the impact

of the dimension of the summary statistics, it is important to study its efficiency in a

context where the summary statistics are not as well behaved as considered in Li and

Fearnhead (2018a). We fill this gap by showing that local linear post-processing induces

significant improvement even when summary statistics have heterogeneous behaviour.

In Section 2.2 we provide details of our set-up, state the assumptions that we will be

using and introduce key notation. In Section 2.3 we state our result on the asymptotic

form of the ABC posterior and in Section 2.4 we study its consequence on the local

linear regression post-processing strategy. In Section 2.5 we illustrate these results

empirically. A short discussion is provided in Section 2.6. The details of proofs of

theoretical results are left to the appendix.
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2.2 Background

We observe data y ∈ Rn and assume that they arise from the model {Pθ(·) : θ ∈ Rd},

where Pθ(·) is a density function. We denote by θ0 ∈ Rd the unknown true value of

interest that generated the observed data y. We denote by π(·) the prior density on

parameter space, and by Π(·) the corresponding cumulative density function.

The idea of ABC is to make inference on the posterior distribution using Monte

Carlo samples of parameter-data pairs (θi, zi) ∈ Rd × Rn, simulated from the forward

model. Distances between observed data y and simulated data zi determine the role θi

will play in the estimation of θ0.

When the dimension of data n is large, it is inefficient to compute distances on

the raw data. It is thus common practice to instead compute distances between lower

dimension summary statistics of the observed and simulated data. We thus define a

summary function η : Rn → Rk from data space to summary space, where k < n.

Summary statistics will typically be sample moments or quantiles of the data, although

many other summary statistics have been considered in the literature. In this work, we

consider the Euclidean distance.

Although more sophisticated ABC algorithms now exist, we will focus on the simple

accept/reject ABC algorithm (Tavaré et al., 1997) ; Pritchard et al. (1999), described in

Algorithm 1 below. Algorithm 1 generates a reference table from the model consisting

of (parameter, summary statistic) pairs. For a given tolerance level ϵ, parameters

corresponding to data within a distance ϵ of the observed data are accepted. Parameters

corresponding to data further away from ϵ of the observed data are rejected. The

accepted values form a sample of the ABC posterior distribution which is then used to

estimate quantities of interest by Monte Carlo.

Frazier et al. (2018) and Li and Fearnhead (2018b) suggest that the tolerance, ϵ

should depend on n, the dimension of the data, and should tend to zero as n goes to

infinity. Indeed, as n increases, information about underlying parameters accumulates

in samples. If a simulated parameter is close in distance to θ0, than data generated from
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Observed data y, summary statistics η, threshold ϵ for i = 1, . . . ,M do

end
Simulate θi ∼ Π(·) Simulate zi = (zi1, . . . , z

i
n) ∼ Pθi(·) if ∥η(y)− η(zi)∥ ≤ ϵ

then

end
Accept θi

Algorithm 1: Accept/reject ABC

it should be close in distance to the observed data, y. Hereafter, we will thus denote

the ABC tolerance by ϵn, and let limn→∞ ϵn = 0.

Defining an approximation to the likelihood as

p̃ϵn,θ (η(y)) :=

∫
1{∥η(y)−η(z)∥≤ϵn}dPθ(z), (2.1)

this ABC accept/reject algorithm produces samples from the following pseudo-posterior

distribution (when marginalizing out the simulated data η(z)):

πϵn(θ) ∝ π(θ)p̃ϵn,θ (η(y)) . (2.2)

We will show that properties of the asymptotic ABC posterior depend on the rela-

tionship between ϵn and the rate at which summary statistics converge to some well-

defined limit. We formalize the notion of convergence of summary statistics in Assump-

tion 1 below.

Assumption 1. There exists some Lipschitz continuous mapping b : Rd → Rk such

that, for all 1 ≤ j ≤ k, there exists some sequence vnj such that

vnj (b(θ)j − η(z)j) = OP (1).

Without loss of generality, we assume vn1 ≤ vn2 ≤ . . . ≤ vnk.

In this work, we consider the novel setting where, for some 1 ≤ k0 < k, the statistics

from 1 to k0 converge at slow rates and the statistics from k0 + 1 to k converge at fast
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rates, i.e.

lim
n→∞

vnjϵn = 0 ∀1 ≤ j ≤ k0

lim
n→∞

vnjϵn =∞ ∀k0 < j ≤ k.

Throughout this chapter, for any vector g, we let g(1) = (g1, . . . , gk0) denote the

vector of length k0 of all components gj of g with j ≤ k0. We let g(2) = (g(k0+1), . . . , gk)

denote the vector of length (k − k0) of all components gj of g with j ≥ (k0 + 1). We

also write Dn = diag(vn,j, j ≤ k); Dn,1 its upper k0 sub-matrix and Dn,2 its lower k−k0

sub-matrix. Set Zn(θ) the random variable Dn(η(z)− b(θ)) with z ∼ Pθ.

In addition to Assumption 1, our results rely on the following assumptions, which

we discuss in Remarks 1 and 2. We show that these assumptions are verified on a toy

example in Example 1.

Assumption 2. The matrix ∇b(2)(θ0) is of full rank, where ∇ represents the gradient

operator.

Assumption 3. There exist some constant δ > 0, some strictly positive bounded Lips-

chitz continuous function γ : Rk0 → R+, some constant R > 0, and some o(1) sequence

Ln such that, for all compact sets K ∈ Rk0 , and for all 1 ≥ t > 0,

sup
∥θ−θ0∥<δ

sup
m∈K

∣∣∣∣∣∣
Pθ

(∑k0
j=1

(Zn,j(θ)−m)2

v2n,j
< t2ϵ2n

)
tRLn

− γ(m)

∣∣∣∣∣∣ = o(1).

Assumption 4. There exist κ > d, some function c : Θ→ R+, such that the following

is true for all n ≥ 1, for all u > u0 and for all θ ∈ Θ.

max
j≥k0+1

Pθ (|Zn,j(θ)| > u) ≤ c(θ)u−κ;

∫
Θ

c(θ)π(θ)dθ <∞
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Assumption 5. For all M > 0, there exist monotone nonincreasing functions M2, > 0,

κ > d and a non decreasing sequence un ≥ u0 > 0 such that, un = o(vn,k0+1ϵn) and for

all n large enough, u ≥ un, ∥θ − θ0∥ ≤ δn, and j > k0

sup
∥z∥≤M

Pθ

(
|Zn,j(θ)| > u|Zn,(1)(θ) = z

)
≤M2u

−κ,

with (
vn,k0
vn,k0+1

)κ−d

(ϵnvn,k0+1)
−d = o(Ln)

3.

Remark 1. Assumption 2 guarantees that enough summary statistics have a fast rate of

convergence. Assumption 3 guarantees sufficient stability of the summary statistics with

slow rates of convergence. Typically, Ln will be a sequence proportional to
∏k0

i=1 vniϵn

and R will equal to k0. (See Example 1 below). Assumption 4 controls the tail behavior

of the summary statistics with fast rates of convergence. Assumption 4 is similar to the

tail assumption Frazier et al. (2018) and we refer to their discussion on this assumption.

It holds true in particular if lim supnEθ(∥Zn,(1)∥κ) < ∞. Assumption 5 is implied by

Assumption 3 and Assumption 4 in the particular case where the vectors of slow and

fast converging summary statistics are mutually independent, but holds more generally

than that.

Remark 2. Our Assumptions are slightly weaker than those of Li and Fearnhead

(2018b) and of Frazier et al. (2018). While in Assumption 1 we require just stochastic

boundedness, these authors require central limit theorems for the summary statistics.

More importantly we do not impose, as in Li and Fearnhead (2018b) that the summary

statistics concentrate at the same rate nor do we impose some limiting distribution for

the fast ones. However γ in Assumption 3 can be thought of as the limiting density of

the the slow (first k0) summary statistics. Compared to Frazier et al. (2018), we do

not impose that ϵn is either smaller or larger than all summary statistics. While our

Assumption 3 and Assumption 4 apply only to the summary statistics with slow and
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fast rates of convergence respectively, Frazier et al. (2018) make similar assumptions

for the full vector of summary statistics.

Example 1. We verify all of the assumptions for a simple uniform toy example. We

assume that the data follows a continuous unit uniform distribution with unknown lo-

cation parameter θ ∈ R : zi ∼ U
(
θ − 1

2
, θ + 1

2

)
, i ∈ {1, . . . , n}. We put a standard

uniform prior on the parameter: θ ∼ U(0, 1). We take the first k1 summary statistics

to be the first k1 observations. These do not converge, so we have b(θ)i = 0 and vni = 1

for i ∈ {1, . . . , k1}. We take ηk1+1(z) = z̄n =
∑n

i=1 zi/n and ηk1+2(z) = maxi≤n zi.

The statistic η(z)k1+1 converges at the rate vn,k1+1 =
√
n to θ and η(z)k1+2 at the rate

vn,k1+2 = n to 1/2 + θ. We consider ϵn = o(1) and we consider two scenarii. Scenario

1: 1/n << ϵn << 1/
√
n Scenario 2: 1/

√
n << ϵn << o(1).

In Scenario 1 k0 = k1 + 1 and η(1)(z) = (z1, . . . , zk1 , z̄n) ∈ Rk1+1 while in scenario

2, k0 = k1 and η(1)(z) = (z1, . . . , zk1) ∈ Rk1. Assumptions 1 and 2 are trivially verified

in both scenarii. Using the same notation as before, we are then in the setting where

∀i ≤ k0, limn→∞ vniϵn = 0 and limn→∞ vn(k0+1)ϵn =∞.

We now prove that assumptions 3-5 are verified. We treat the case of scenario 1,

which is more difficult.

Let K1 be a compact subset of (−1/2, 1/2)k1 and K = K1 × [−M,M ]. We have

Zn,(1) = (z1 − θ, · · · , zk1 − θ,
√
n(z̄n − θ)) and Z̄n,(2) = n(ηk1+2 − θ − 1/2). Let m ∈ K

Pθ

(∥∥(Zn,(1)(θ)−m
∥∥ ≤ tϵn

)
= Eθ

(
Pθ((z̄n −mk1+1)

2 ≤ t2ϵ2n −
k1∑
j=1

(Zn,j −mj)
2|z1, · · · , zk1

)

= 2

Eθ

1∑k1
j=1(Zn,j−mj)2≤t2ϵ2n

√√√√t2ϵ2n −
k1∑
j=1

(Zn,j −mj)2φ(mk1+1)(1 + o(1))


= 2φ(mk1+1)

k1∏
i=1

(fθ(mi) + o(1))

∫
1∑k1

j=1(zj−mj)2≤t2ϵ2n

√√√√t2ϵ2n −
k1∑
j=1

(zj −mj)2dz1 · · · dzk1

= φ(mk1+1)

k1∏
i=1

(fθ(mi) + o(1))(tϵn)k1
∫ 1

0

uk
1(1− u2)du
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and Assumption 3 is verified, with Ln = 2ϵk1n
∫ 1

0
uk
1(1−u2)du, and γ(m) = φ(mk1+1)

∏k1
i=1 fθ(mi).

We also have

Pθ (|n(ηk1+2 − θ − 1/2)| ≥ u) = Pr
(

max
i

(zi − θ) ≤ 1/2− u/n
)

= (1− u/n)n ≤ e−u

so that Assumption 4 holds for all κ > 0.

Here Zn,(2) and Zn,(1) are not independent, but we can verify Assumption 5. First

note that, with z(n) = maxi zi and for all m ∈ Rk1+1, writing

Pθ(n|z(n) − θ − 1/2| > u|Zn,(1) = z) = Pθ(z(n) ≤ θ + 1/2− u/n|Zn,(1) = m)

≤ Pθ( max
i≥k1+1

zi ≤ θ + 1/2− u/n|Zn,(1) = m)

= Pθ( max
i≥k1+1

zi ≤ θ + 1/2− u/n|z̄n − θ = mk1+1/
√
n)

Hence without loss of generality we can work with k1 = 0. Consider the change of

variables xi = zi − θ for i ≥ 2 and x1 = z̄n − θ, whose distribution is independent of θ.

The joint density of x = (x1, · · · , xn) if given by

fx(x) =
∏
i≥2

1(−1/2,1/2)(xi)1nx1−(n−1)x̄n−1∈(−1/2,1/2), x̄n−1 =
∑
i≥2

xi/(n− 1)

This leads to for all m ∈ R,

P

(
max
i≥2

xi ≤ 1/2− u/n|x1 = m/
√
n

)
=

∫
[−1/2,1/2−u/n]n−1 1

√
nm−(n−1)x̄n−1∈(−1/2,1/2)dx2 · · · dxn∫

[−1/2,1/2]n−1 1
√
nm−(n−1)x̄n−1∈(−1/2,1/2)dx2 · · · dxn

(2.3)

We also have that

∫
[−1/2,1/2]n−1

1√nm−(n−1)x̄n−1∈(−1/2,1/2)dx2 · · · dxn

= P (|
√
n− 1x̄n−1 −m

√
n/(n− 1)| ≤ 1/(2

√
n− 1)) ≳

e−6m2

√
n

,

31



which plugged into (2.3) implies

P

(
max
i≥2

xi ≤ 1/2− u/n|x1 = m/
√
n

)
≲
√
ne6m

2

∫
[−1/2,1/2−u/n]n−1

dx2 · · · dxn

≲
√
ne6m

2

e−u ≲ e6m
2

e−u/2 ∀u ≥ log n := un

Therefore as soon as ϵn >> log n/n, Assumption 5 holds true for all κ > 0.

2.3 Main theorems

Our first result, Theorem 2.3.0.1 below is a Bayesian consistency result. It asserts

that the ABC posterior density of any set which does not include the parameter which

generated the observations, θ0, behaves like an oP (1) random variable. Since the ABC

posterior will differ from the true posterior given the observations, such a result is

crucial if one wishes to quantify uncertainty based on the ABC posterior.

Theorem 2.3.0.1. Under Assumptions 1, 2, 3, and 4 our ABC posterior distribution

concentrates: There exists some monotone decreasing sequence λn with λn → 0 such

that

∫
∥θ−θ0∥≥λn

πϵn(θ|η(y))dθ = oP (1).

The rate of concentration of the ABC posterior, λn, is of the same order as the

sequence λ̄n of Assumption 4. Thus, following Remark 1 on the form of the function

ρ(·, ·) and the sequence Ln, we typically will have that, the faster the rate of the

convergence of the fast statistics, vn(k0+1), the faster the rate λn will be. The greater the

quantity of slow converging statistics, k0, and the slower the slow converging statistics

converge, the slower the rate λn will be.

Our second result, Theorem 2.3.0.2 completely characterises the shape of the ABC

posterior.

32



Theorem 2.3.0.2. Under Assumptions 1, 2, 3, 4 and 5, the asymptotic ABC posterior

may be expressed in closed form as

πϵn(θ|η(y)) ∝ 1{∥∇b(2)(θ0)(θ−θ0)∥≤ϵn}

(
1−

∥∥∇b(2)(θ0)(θ − θ0)
∥∥2

ϵ2n

)R
2

, (2.4)

where R is the positive constant defined in Assumption 3.

As discussed in Remark 1, R will typically be equal to k0, the number of summary

statistics which converge at the slow rate. In the special case where R = 0, the shape

of the ABC posterior distribution simplifies to a uniform distribution over the ellipsoid

{θ :
∥∥∇b(2)(θ0)(θ − θ0)

∥∥ ≤ ϵn}. This is consistent with results in Frazier et al. (2018)

and in Li and Fearnhead (2018a) for the case where all statistics converge at the fast

rate (i.e. where k0 = 0).

Redundant summary statistics which do not converge at all play exactly the same

role on the shape of the asymptotic ABC posterior as summary statistics which converge

at the slow rate.

The larger R is, the more concentrated the theoretical mass of (2.4) will be around

θ0. However, we will see in Lemma 2.7.1.3 that large R leads to low acceptance rate in

Algorithm 1, and thus high Monte Carlo error.

Interestingly, the number of summary statistics which converge at the fast rate (i.e.

k − k0) will have no impact on the the rate of posterior concentration nor on the the

shape of the ABC posterior (beyond the requirement (k − k0) > d by Assumption 2).

2.4 Local linear regression correction

ABC practitioners routinely use post-processing to improve the quality of the pseudo-

posterior. Beaumont2002 introduced the idea of a local linear regression on the ABC

output; empirical studies have since shown that this post-processing step can vastly

ameliorate the pseudo-posterior, for a negligible computational overhead. In this sec-
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tion, we give results on the asymptotic behaviour of the regression-adjusted pseudo-

posterior.

In general, post-processing corrections use the following idea: Consider the pseudo

model

θ = m(S) + u, (θ, S) ∼ πϵn(θ, dS) ∝ π(dθ)Pθ(dS)1|S−S0|≤ϵn

and samples (θt, St) from the above distribution. Our distribution of interest is the

distribution of m(S0) + u. To approximate it, we learn the model m and consider the

residuals ût = θt −m(St); the corrected ABC posterior samples are:

θt = θt + m(S0)−m(St).

The regression adjustment we consider here corresponds to the locally linear model

case, where m(S) = (B, β0)
T (S, 1) so that the targeted B ∈ Rd×k, β0 ∈ Rd minimizes

L(B, β0) = En[∥θ − θ0 − β0 −BT (S − S0)∥2] (2.5)

Let β(j) the jth row of B, β(1)(j) (resp. β(2)(j)) the first k0 components of β(j) (resp.

the last k − k0) .

In addition to the assumptions 1-5 we also assume the following:

A1 The function θ → Eθ(Zn(θ)) is locally Lipschitz on a neighbourhood of θ0 with

Lipschitz constant L.

A2 There exists ϵ > 0 such that

sup
∥θ−θ0∥≤ϵ

Eθ

(
∥Zn(θ)∥4

)
<∞.

We then have the following theorem.

Theorem 2.4.0.1. Under assumptions 1-5 and assuming that [A1] and [A2] above

hold, then on a set of y whose probability goes to 1, any minimizer in B of L(B, β0)
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verifies

C11D
−1
n,1β(1)(j) = O(ϵn/vn,1), ∇b2(θ0)Tβ(2)(j) = ej + O(1/vn,1), (2.6)

where ej is the j-th vector in the canonical basis of Rd and

C1,1 = En((Zn,(1)(θ)− En(Zn,(1)(θ)))(Zn,(1)(θ)− En(Zn,(1)(θ)))T ).

Let B∗ be the limit of B(j) with minimal L2 norm (by rows), then B∗(j) = (0, · · · , 0,Γ2ej)

with Γ2 = ∇b2(θ0)[∇b2(θ0)T∇b2(θ0]−1.

Moreover if

θ′ = θ −B∗(S − S0), with(θ, S) ∼ πϵn(θ, dS)

then

θ′j − θ0j = eTj Γ2D
−1
n,2(Zn,(2)(θ)− Zn,(2)(θ0)) + Op(ϵ

2
n).

An important consequence of Theorem 2.4.0.1 is that the oracle post-processing,

i.e. the post processing associated to B∗, leads to a posterior contraction rate of order

max(vn,k0+1, ϵ
2
n). In comparison, Vanilla ABC leads to a posterior contraction rate of

order max(vn,k0+1, ϵn). The linear post-processing thus corresponds to what would be

obtained if ϵn was replaced by ϵ2n, without increasing the order of the computational

cost . This shows the importance of the post-processing as a tool towards dimension

reduction, and interestingly the local linear approach already leads to a significant

theoretical improvement, even in the general and more realistic framework of summary

statistics which have different concentration properties. The proof of Theorem 2.4.0.1

is provided in Section 2.7.4.
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2.5 Simulation study

2.5.1 Simulations with reject ABC

We perform accept/reject ABC to obtain Monte Carlo samples from the ABC posterior

of Example 1. All of the assumptions of Section 2.2 are satisfied, and so, by Theorem

2.3.0.2, the asymptotic shape of the ABC posterior is available in closed form. The goal

of this simulation study is to provide empirical support to this theoretical result.

We recall the data distribution, the prior distribution, and the summary statis-

tics used in Example 1. Data are distributed according to a continuous unit uniform

distribution with unknown location parameter θ0 ∈ R : yi ∼ U(θ − 1
2
, θ + 1

2
) ∀i ∈

{1, 2, . . . , n}. We put a uniform prior on the parameter: θ ∼ U(0, 1). We use the fol-

lowing vector of summary statistics.

η(y) =

(
y1, . . . , yk0 ,

(
max

(k0+1)≤i≤n
yi + min

(k0+1)≤i≤n
yi

)
/2

)

We have b(θ)i = 0 and vni = 1 for all 1 ≤ i ≤ k0 and we have b(θ)k0+1 = θ and

vn(k0+1) = n. We set the tolerance to be ϵn = C√
n

where C is some constant. We are

then in the regime where limn→∞ vniϵn = 0 ∀i ≤ k0, and limn→∞ vn(k0+1)ϵn = ∞. We

use the Euclidean norm for distances.

By Lemma 2.7.1.3 we have that this choice for the sequence ϵn is equivalent to

setting the sequence of ABC acceptance probabilities to be as follows.

αn ∝ Lnϵ
d
n ∝ ϵk0+d

n ∝ n− k0+1
2 (2.7)

By Theorem 2.3.0.2, we have the following closed-form expression for the ABC

posterior for this example, where C is the constant which satisfies ϵn = C√
n
.
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πϵn(θ|η(y)) ∝ 1{∥θ−θ0∥< C√
n
}

(
1− n ∥θ − θ0∥2

C2

) k0
2

(2.8)

We perform 3 experiments, one for each of k0 = 1, 5, 10, and let n take values in

the range {105, 2(105), 3(105), 4(105), 5(105)}. In each case, we ensure that αn = 0.3 for

n = 105. When n increases, αn decreases accordingly.

Figure 2.1 (left) shows the shapes of the empirical ABC posterior distributions

for k0 = 1. Different coloured curves indicate different values of n. Figure 2.1 (right)

shows the shapes of the corresponding theoretical ABC posterior distributions of (2.8).

Figures 2.2 and 2.3 show the same as the above, with k0 = 5 and k0 = 10 respectively.

The similarity between the shapes corresponding to the simulated and to the theoretical

ABC posterior curves supports Theorem 2.3.0.2.

The reason why we chose αn = 0.3 for n = 105 regardless of k0 was to keep the

sizes of reference tables reasonable. If, alternatively, ϵn for n = 105 were kept constant

across different choices for k0, acceptance rates for large k0 would be much smaller than

acceptance rates for large k0. Low acceptance rates are costly in terms of computational

time.

It may seem counter intuitive that the ABC posterior for k0 = 1 is more concentrated

than the ABC posterior for k0 = 5 and for k0 = 10 for fixed n. We emphasise that a

fixed acceptance probability implies smaller ϵn for small k0 and larger ϵn for large k0.

ABC posteriors must therefore not be compared accross different values of k0 in this

study.

2.5.2 Simulations with postprocessing

We return to the example of estimating the location parameter of uniform observa-

tions. The data are iid Xi ∼ U(θ, θ + 1) distribution; we observe n = 104 realizations.

This time, we consider the statistics S4 = 1√
n

∑√
n

i=1 Xi and S5 = min1≤i≤nXi. The
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Figure 2.1: Simulated (left) and theoretical (right) ABC posterior for k0 = 1 based on
10000 simulations. Black, red, green, dark blue, and light blue curves correspond to
n = 105, n = 2(105), n = 3(105), n = 4(105), and n = 5(105), respectively.

Figure 2.2: Simulated (left) and theoretical (right) ABC posterior for k0 = 5 based on
10000 simulations. Black, red, green, dark blue, and light blue curves correspond to
n = 105, n = 2(105), n = 3(105), n = 4(105), and n = 5(105), respectively.

Figure 2.3: Simulated (left) and theoretical (right) ABC posterior for k0 = 10 based
on 10000 simulations. Black, red, green, dark blue, and light blue curves correspond to
n = 105, n = 2(105), n = 3(105), n = 4(105), and n = 5(105), respectively.
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Figure 2.4: Posterior risk for various values of ϵ for the example of Section 2.5.2. Both
ϵ and the posterior risk are shown on the log scale.

convergence rates are thus n−1/4 for S4 and n−1 for S5.

We compute the posterior risk E[(θ − θ0)
2]1/2, where θ is drawn from the pseudo-

posterior for decreasing values of ϵn both without and with post-processing. Recall

that we expect the risk to decrease at rate ϵn in the Vanilla ABC case, but at rate ϵ2n

with the post-processing, until the risk reaches a plateau when ϵn becomes smaller than

vn,k0+1 = n−1.

Figure 2.4 shows the posterior risk on the log-log scale (the log is in base 10). Note

that as expected, the posterior risk decreases when ϵ decreases. For the Vanilla ABC, the

plateau is never reached for computational reasons. A linear regression estimates that

in this example, the risk decreases at rate ϵγ with γ = 0.95, very close to the theoretical

value of γ = 1. For ABC with post-processing, segmented regression (as implemented

in the R package segmented Muggeo (2003)) estimates that the risk decreases at rate

ϵγ with γ = 1.87, again close to the theoretical value of γ = 2. With post-processing,

the plateau is reached for ϵ ≈ 10−1.6: there is thus no point in decreasing ϵ beyond

this value, as we would lose Monte Carlo accuracy but not improve the accuracy of the

pseudo-posterior.
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2.6 Discussion

We prove posterior consistency, and provide a closed-form expression for the shape of

the asymptotic ABC posterior distribution. Unlike in previous work, our results ap-

ply to the general case where different components of the summary statistics converge

at different rates. In particular, we cover the case where certain components of the

summary statistics do not converge at all. This set-up corresponds well to practical sit-

uations in applied statistics where large numbers of statistics are used, with potentially

varying convergence rates. We also show, under our very general setting that a local

linear post-processing approach can lead to significantly faster contraction rates of the

pseudo-posterior.

Our theoretical proofs provide, as a byproduct, insight into the effect summary

statistic choice and parameter dimension have on the Monte Carlo error. By Lemma

2.7.1.3, acceptance probability is directly proportional to the sequence Ln. As men-

tioned in Remark 1, Ln will typically take the form Ln =
∏k0

i=1 ϵnvni. Thus, we will

typically have that the greater the number of slow summary statistics, the faster the

acceptance probability will shrink to zero, and so the greater the Monte Carlo error will

be. Lemma 2.7.1.3 also illustrates the curse of dimensionality, with acceptance probabil-

ity decreasing rapidly for large parameter dimension d. This observation is consistent

with previous work (Fearnhead and Prangle, 2012)) which suggests making different

estimations of subvectors of the vector of parameters separately.

In order for our results to hold true, at least d summary statistics must be used

that converge at the fast rate (Assumption 2). Interestingly, adding additional fast

converging statistics (i.e. k − k0 > d) will neither change the shape of the asymptotic

ABC posterior nor increase the Monte Carlo error.

Throughout our proofs, we make the strong assumption that ∇b(2)(θ0) is of full

rank, i.e. sufficiently many summary statistics converge at the fast rate relative to

the tolerance (see Assumption 2). Asymptotic results on the ABC posterior in a more

general setting where this assumption is lifted will be left to future research.
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The local-linear model is one of many post-processing methods for ABC posteriors.

An interesting future line of research would be to assess the asymptotic properties of

other post-processing methods, for example, the nonlinear conditional heteroscedastic

model (Blum and François (2009)).
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2.7 Appendix

2.7.1 Statements of lemmas

We consider the following sets: Let ∥θ − θ0∥ ≤ λn and define wn(θ) = ∥∇b2(θ0)(θ −

θ0)/ϵn∥2 together with

An(θ) :=
{
z;
∥∥η(2)(z)− b(2)(θ)

∥∥ ≤ δnϵn(1 ∨
√
wn(θ))/4

}
En(θ) := {z; ∥η(y)− η(z)∥ ≤ ϵn}; Ẽn := {z;

∥∥η(1)(y)− η(1)(z)
∥∥ ≤ ϵn}

E ′
n(θ) := {z;

∥∥η(1)(y)− η(1)(z)
∥∥ ≤ ϵn (1− wn(θ)− δn)

1
2} if wn(θ) < 1− δn

E ′′
n(θ) := {z;

∥∥η(1)(y)− η(1)(z)
∥∥ ≤ ϵn (1− wn(θ) + δn)

1
2}

Obviously Ẽn(θ) ⊂ En(θ) and E ′
n(θ) ⊂ En”(θ) ⊂ Ẽn(θ) where the last inequality holds

if δn < wn(θ) < 1− δn.

Lemma 2.7.1.1. We can choose λn, δn = o(1) such that the following inequalities hold:

for all M > 0, y ∈ Ωn(M),

1. if wn(θ) ≥ 1 + δn and ∥θ − θ0∥ ≤ λn

En(θ) = En(θ) ∩ An(θ)c.

2. if wn(θ) ≤M1 for M1 > 0,

Pθ(E
′
n(θ) ∩ An(θ)) ≤ Pθ(En(θ) ∩ An(θ)) ≤ Pθ(E

′′
n(θ) ∩ An(θ))

Lemma 2.7.1.2. Let M1,M > 0, we have for y ∈ Ωn(M),

sup
∥θ−θ0∥≤M1/vn,k0

Pθ(Ẽn(θ))

Ln

= O(1).
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Lemma 2.7.1.3. For a given bandwidth ϵn, where ϵn < λn, the average probability of

accepting in our accept/reject ABC algorithm, αn is as follows.

αn =

∫
π(θ)Pθ (∥η(y)− η(z)∥ ≤ ϵn) dθ ≍ Lnϵ

d
n

2.7.2 Proof of Theorem 2.3.0.1

Let M0 be an arbitrarily large constant, λ̄n ≥M0ϵn be a sequence going to 0 and such

that (λ̄nvn,k0+1)
−κ = o(Lnϵ

d
n), with Ln defined in Assumption 3 and κ in Assumption

4. Note that such a λ̄n exists since v−κ
n,k0+1 = o(Lnϵ

d
n). Consider the event

Ωn(M) = {y; ∥Zn(θ0)∥ ≤M}, Zn(θ0) = Dn(η(y)− b(θ0)).

For all ϵ > 0, there exists Mϵ > 0 such that P0(Ωn(Mϵ)
c) ≤ ϵ. We fix ϵ and consider

M = Mϵ. Hereafter we consider y ∈ Ωn(M).

∫
∥b(2)(θ)−b(2)(θ0)∥≥2λ̄n

πϵn (θ|η(y)) dθ =

∫
∥b(2)(θ)−b(2)(θ0)∥≥2λ̄n

π(θ)Pθ (∥η(y)− η(z)∥ ≤ ϵn) dθ∫
π(θ)Pθ (∥η(y)− η(z)∥ ≤ ϵn) dθ

.

(2.9)

We first consider the numerator of (2.9). Decomposing, we can see that

∥η(y)− η(z)∥ ≥
∥∥η(2)(y)− η(2)(z)

∥∥ ≥ ∥∥b(2)(θ)− b(2)(θ0)
∥∥

−
(∥∥η(2)(y)− b(2)(θ0)

∥∥+
∥∥η(2)(z)− b(2)(θ)

∥∥) .
Recall that vn,jϵn →∞ for j > k0, and when θ belongs to the set {

∥∥b(2)(θ)− b(2)(θ0)
∥∥ ≥
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2λ̄n}. Putting these together, we have on Ωn(M):

∥η(y)− η(z)∥ ≤ ϵn ⇒
(∥∥η(2)(y)− b(2)(θ0)

∥∥+
∥∥η(2)(z)− b(2)(θ)

∥∥) ≥ 2λ̄n − ϵn

which in turns implies that

∥∥η(2)(y)− b(2)(θ0)
∥∥ ≥ 2(λ̄n − ϵn) ≥ 2(1− 1/M0)λ̄n.

Thus as soon as M0 > 2

∫
∥b(2)(θ)−b(2)(θ0)∥≥2λ̄n

π(θ)Pθ (∥η(y)− η(z)∥ ≤ ϵn) dθ ≤
∫

π(θ)Pθ

(∥∥b(2)(θ)− η(2)(z)
∥∥ > λ̄n

)
dθ

≤ (k − k0)
1

(λ̄nvn,k0+1)κ

∫
π(θ)c(θ)π(θ)dθ = o(Lnϵ

d
n), (2.10)

where the final inequality above comes from Assumption 4.

To lower bound the denominator of (2.9), we simply apply Lemma 2.7.1.3:

∫
π(θ)Pθ (∥η(y)− η(z)∥ ≤ ϵn) dθ ≥ CLnϵ

d
n. (2.11)

Going back to (2.9), applying (2.10) and (2.11) we find that

∫
∥b(2)(θ)−b(2)(θ0)∥≥2λ̄n

πϵn (θ|η(y)) dθ = o(1).

By Assumption 2, the transformation b(·)(2) is bijective, which implies that

∫
∥θ−θ0∥≥2a

−1
2 λ̄n

πϵn (θ|η(y)) dθ = o(1),

where a is defined to be the largest eigenvalue of the matrix ∇b(2)(θ0)T∇b(2)(θ0).
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Defining λn to be 2a
−1
2 λ̄n, we have our result.

2.7.3 Proof of Theorem 2.3.0.2

Proof. The ABC posterior, πϵn(θ|η(y)), can be expressed as

πϵn(θ|η(y)) =
π(θ)Pθ(En)∫

Rd π(θ)Pθ(En)dθ
, En = {∥η(z)− η(y)∥ ≤ ϵn},

We define m(y, θ) to be m(y, θ) = Zn,(1)(θ0) +Dn,(1)(b(1)(θ)− b(1)(θ0)). We then can

define the quantity hn(θ) to be

hn(θ) := Lnγ(m(y, θ))1∥∇b(2)(θ0)(θ−θ0)∥≤ϵn

(
1−

∥∥∇b(2)(θ0)(θ − θ0)
∥∥2

ϵ2n

)R
2

,

where γ : Rk0 → R+, Ln and R are defined in Assumption 3. Note that m(y, θ) =

Zn,(1)(θ0)+Dn,(1)∇b(1)(θ−θ0) satisfies ∥m(y, θ)∥ ≤M+Cvn,k0ϵn ≤ C ′ for some C,C ′ > 0

on Ωn(M) ∩ {
∥∥∇b(2)(θ0)(θ − θ0)

∥∥ ≤ ϵn}. In particular since vn,k0ϵn = o(1),

m(y, θ) = Zn,(1)(θ0) + o(1). (2.12)

Moreover, by Theorem 2.3.0.1, πϵn(∥θ − θ0∥ > λn|y) = oP0(1) and it is enough to

control

∆n =

∫
∥θ−θ0∥<λn

∣∣∣∣∣ Pθ(En)∫
∥θ−θ0∥<λn

Pθ(En)dθ
− hn(θ)∫

∥θ−θ0∥<λn
hn(θ)dθ

∣∣∣∣∣ dθ.
To prove our theorem, it will thus be sufficient to prove that ∆n = o(1).

In order to facilitate our demonstration, we define quantities wn(θ), Vn(θ), and V ′
n(θ)

as wn(θ) = ∥∇b(θ0)(θ−θ0)∥2
ϵ2n

, Vn(θ) = Ln1{wn(θ)≤1}(1−wn(θ))
R
2 , V ′

n(θ) = Ln1{wn(θ)+δn≤1}(1−

wn(θ) − δn)
R
2 , where Ln = o(1) is defined in Assumption 3, R is the constant defined

in Assumption 3, and where δn is an o(1) sequence defined in Lemma 2.7.1.1. The

quantity hn(θ) may then be expressed more simply as hn(θ) = Vn(θ)γ(m0(y)).
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We have,

∆n =

∫
∥θ−θ0∥<λn

∣∣∣∣∣ Pθ(En)∫
∥θ−θ0∥<λn

Pθ(En)dθ
− hn(θ)∫

∥θ−θ0∥<λn
hn(θ)dθ

∣∣∣∣∣ dθ
≤
∫
∥θ−θ0∥<λn

Pθ(En)

∣∣∣∣∣ 1∫
∥θ−θ0∥<λn

Pθ(En)dθ
− 1∫

∥θ−θ0∥<λn
hn(θ)dθ

∣∣∣∣∣+
|Pθ(En)− hn(θ)|∫
∥θ−θ0∥<λn

hn(θ)dθ
dθ

≤ 2

∫
∥θ−θ0∥<λn

|Pθ(En)− hn(θ)|dθ∫
∥θ−θ0∥<λn

hn(θ)dθ
:=

2Nn

Dn

,

In order to show that ∆n = o(1), we show that Nn = o(ϵdn) and Dn ≥ Cϵdn.

Recall that δn = o(1) slowly. We then split the integral over |θ − θ0| ≤ λn into

wn(θ) ≤ 1− ζ, 1− ζ ≤ wn(θ) ≤ 1 +
√
δn and wn(θ) ≥ 1 +

√
δn, where ζ > 0 is a fixed

but arbitrarily small constant. This leads to Nn ≤ N1 + N2 + N3 with

N1 =
1

Ln

∫
wn(θ)≤1−ζ

|Pθ(En)− hn(θ)|dθ

N2 =
1

Ln

∫
1−ζ≤wn(θ)≤1+δn

|Pθ(En)− hn(θ)|dθ

N3 =
1

Ln

∫
wn(θ)>1+δn

1∥θ−θ0∥≤λnPθ(En)dθ, (2.13)

where the reduced integrand of N3 above comes from the fact that hn(θ) = 0 when

wn(θ) > 1.

From Lemma 2.7.1.1, Pθ(En) ≤ Pθ(Ẽn) and using Lemma 2.7.1.2, Pθ(Ẽn) ≤ CLn

uniformly over wn(θ) ≤ 2 . By definition of hn we also have that hn(θ) ≤ Lnγ(m(y; θ))

and when wn(θ) ≤ 2 and on Ωn(M), γ(m(y; θ) ≤ sup∥m∥≤2M γ(m) < ∞ so that hn/Ln

is uniformly bounded. Hence on Ωn, there exists C > 0 such that using the change of

variable u = ∇b2(θ0)(θ − θ0) and using the polar coordinates of u,

N2 ≤ C

∫
11−ζ≤wn(θ)≤1+δndθ ≲ C

∫ ϵn(1+deltan)1/2

ϵn(1−ζ)1/2
rd−1dr ≲ ϵdnζ. (2.14)

We now study N1. Firstly, we make use of the inequalities of Lemma 2.7.1.1 to

46



upper and lower bound the quantity Pθ(En). We have

Pθ(En) = Pθ(En ∩ An) + Pθ(En ∩ Ac
n) ≤ Pθ(E

′′
n ∩ An) + Pθ(Ẽn ∩ Ac

n)

≤ Pθ(E
′′
n) + Pθ(Ẽn ∩ Ac

n), (2.15)

and

Pθ(En) ≥ Pθ(En ∩ An) ≥ Pθ(E
′
n ∩ An)

= Pθ(E
′
n)− Pθ(E

′
n ∩ Ac

n) ≥ Pθ(E
′
n)− Pθ(Ẽn ∩ Ac

n). (2.16)

Combining (2.15) and (2.16), and using the triangle inequality, we find

|Pθ(En)− hn(θ)| ≤ max {|Pθ(E
′
n)− hn(θ)|, |Pθ(E

′′
n)− hn(θ)|}+ Pθ(Ẽn ∩ Ac

n).

Without loss of generality we assume that max {|Pθ(E
′
n)− hn(θ)|, |Pθ(E

′′
n)− hn(θ)|} =

Pθ(E
′
n)− hn(θ)|. It then follows that

N1 ≤
1

Ln

∫
wn(θ)≤1−ζ

|Pθ(E
′
n)− hn(θ)|dθ +

1

Ln

∫
wn(θ)≤1−ζ

Pθ(Ẽn ∩ Ac
n)dθ

Now using (2.27),

Pθ(E
′
n) = Pθ

(
k0∑
j=1

[Zn,j(θ)−mj(y; θ) + O(vn,k0ϵ
2
n)]2

v2n,j
≤ ϵ2n(1− wn(θ)− δn)

)

To be able to apply Assumption 3, we need to replace (1 − wn(θ) − δn) by a constant

t. To do so we consider the slices Si = {θ : ti < 1− wn(θ)− δn ≤ ti+1}, where

t1 = ζ, ti+1 = (1 + ζ)ti i ≤ Tζ − 1,

and Tζ is the smallest integer satisfying
√
ζ(1 + ζ)Tζ ≥ 1. We note that the union of

sets ∪(Tζ−1)
i=1 Si covers wn(θ) ≤ 1−ζ and that the sequence {t1, . . . , tTζ

} has the following
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properties.

ti+1

ti
= 1 + ζ = 1 ∀i ∈ {1, . . . , (Tζ − 1)} (2.17)

ti
ti+1

= 1− ζ

ζ + 1
= 1 ∀i ∈ {1, . . . , (Tζ − 1)}. (2.18)

Then, using that for θ ∈ Si,

Pθ(E
′
n) ≤ Pθ

(
k0∑
j=1

[Zn,j(θ)−mj(y; θ) + O(vn,k0ϵ
2
n)]2

v2n,j
≤ ϵ2nti+1

)

Pθ(E
′
n) ≥ Pθ

(
k0∑
j=1

[Zn,j(θ)−mj(y; θ) + O(vn,k0ϵ
2
n)]2

v2n,j
≤ ϵ2nti

)

and that using assumption 3, we bound on Ωn(M), uniformly over wn(θ) ≤ 1− ζ,

Pθ(E
′
n) ≤ Lnt

R/2
i+1 (γ(mj(y; θ) + O(vn,k0ϵ

2
n)) + o(1)

Pθ(E
′
n) ≥ Lnt

R/2
i (γ(mj(y; θ) + O(vn,k0ϵ

2
n)) + o(1)

Moreover γ is uniformly continuous over any compact and since ∥mj(y; θ)+O(vn,k0ϵ
2
n)∥ ≤

2M for M large enough,

Pθ(E
′
n) ≤ Lnt

R/2
i+1 (γ(mj(y; θ)) + o(1))

Pθ(E
′
n) ≥ Lnt

R/2
i (γ(mj(y; θ)) + o(1))

which in turns implies that uniformly over wn(θ) ≤ 1− ζ,

|Pθ(E
′
n)− hn(θ)|
Ln

≤ |tR/2
i+1 − t

R/2
i |γ(mj(y; θ)) + o(1) ≤ Rζ(ζR/2−1 + 1) sup

∥m∥≤2M

γ(m) + o(1)

≲ ζR/2∧1 + o(1).
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We thus have

N1 ≤
1

Ln

∫
wn(θ)≤1−ζ

Pθ(Ẽn ∩ Ac
n)dθ + O(ζR/2∧1ϵdn).

We now study Pθ(Ẽn ∩ Ac
n). By definition and on Ωn(M) ∩ Ac

n ,

∥D−1
n,(2)Zn,(2)(θ)∥ ≥ δnϵn

4
− M

vn,k0+1

≥ δnϵn
8

as soon as vn,k0+1δnϵn goes to infinity. Hence

Pθ(Ẽn ∩ Ac
n) ≤ Pθ

({
∥D−1

n,(2)Zn,(2)(θ)∥ ≥ δnϵn
8

}
∩
{
∥η(z)(1) − η(y)(1)∥ ≤ ϵn

})

Using the proof of Lemma 2.7.1.2, when wn(θ) ≤ 1,

η(1)(z)−η(1)(y) = D−1
n,1[Zn,(1)(θ)−m(y; θ)+O(vn,1ϵ

2
n)] = D−1

n,1[Zn,(1)(θ)−m(y; θ)]+o(ϵn)

Moreover m(y; θ) = Zn,(1)(θ0) + O(ϵn), so that ∥η(1)(z) − η(1)(y)∥ ≤ ϵn implies that

∥D−1
n,1[Zn,(1)(θ)−Zn,(1)(θ0)]∥ ≤M1ϵn for some M1 > 0. We then have using ∥Zn,(1)(θ0)∥ ≤

M

Pθ(Ẽn ∩ Ac
n) ≤ Eθ

(
1∥D−1

n,1[Zn,(1)(θ)−Zn,(1)(θ0)]∥≤M1ϵn
Pθ

(
∥D−1

n,(2)Zn,(2)(θ)∥ ≥ δnϵn
8

∣∣Zn,(1)

))
≤

k∑
j=k0+1

Eθ

(
1∥D−1

n,1[Zn,(1)(θ)−Zn,(1)(θ0)]∥≤M1ϵn
Pθ

(
|Zn,j(θ)| ≥ vn,jδnϵn

8(k − k0)

∣∣Zn,(1)

))
≤ (k − k0)ρ̄n(vn,k0+1δnϵnt0)Pθ

(
∥D−1

n,1[Zn,(1)(θ)− Zn,(1)(θ0)]∥ ≤M1ϵn
)

= o(Ln)

uniformly in θ, where the last two bounds come from Assumption 5 and Lemma 2.7.1.2.

Finally this leads to

N1 = o(ϵdn).
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We now control N3. Recall that

N3 =
1

Ln

∫
wn(θ)>1+δn

1∥θ−θ0∥≤λnPθ(En)dθ.

We have, from Lemma 2.7.1.1,

N3 =
1

Ln

∫
wn(θ)>1+δn

1∥θ−θ0∥≤λnPθ(En∩Ac
n)dθ ≤ 1

Ln

∫
wn(θ)>1+δn

1∥θ−θ0∥≤λnPθ(Ẽn∩Ac
n)dθ.

We then bound, for ∥θ − θ0∥ ≤ λn and y ∈ Ωn(M),

Pθ(Ẽn ∩ Ac
n) = Eθ

[
1Ẽn

(Zn,(1))Pθ

(∥∥η(2)(z)− b(2)(θ)
∥∥ > δnϵn

√
wn(θ)/4

∣∣∣Zn,(1)

)]
≤

k∑
j=k0+1

Eθ

[
1Ẽn

(Zn,(1))Pθ

(
|Zn,jθ)| > vn,jδnϵn

√
wn(θ)/4

∣∣∣Zn,(1)

)]

≤
k∑

j=k0+1

ρ̄(vn,jδnϵn
√

wn(θ)/4)Pθ

[
Ẽn

]

since vn,jδnϵn
√
wn(θ) ≳ vn,k0+1δnϵn → ∞. This implies that there exists m1 > 0 such

that

N3,1 :=
1

Ln

∫
wn(θ)>1+δn

1∥θ−θ0∥≤M1/vn,k0
Pθ(En ∩ Ac

n)dθ

≲
1

(vn,k0+1δn)κ

∫
m1ϵn≤∥θ−θ0∥≤M1/vn,k0

∥θ − θ0∥−κPθ(Ẽn)dθ

= O((Ln(vn,k0+1δn)−κ)

∫ M1/vn,k0

m1ϵn

rd−1−κdr

= O(Ln(vn,k0+1δnϵn)−κϵdn) = o(Lnϵ
d
n)
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since κ > d. We also have

N3,2 :=
1

Ln

∫
λn≥∥θ−θ0∥≤M1/vn,k0

Pθ(En ∩ Ac
n)dθ

≲
1

(vn,k0+1δn)κ

∫
M1/vn,k0

≤∥θ−θ0∥≤λn

∥θ − θ0∥−κPθ(Ẽn)dθ

= O((vn,k0+1δn)−κ)

∫ λn

M1/vn,k0

rd−1−κdr

≲
v−d+κ
n,k0

(vn,k0+1δn)κ
≲ ϵdnδ

−κ
n

(
vn,k0
vn,k0+1

)κ−d

(ϵnvn,k0+1)
−d = o(Lnϵ

d
n)

by assumption on vn,k0 , vn,k0+1, ϵn.

We now consider the order of Dn.

Dn :=
1

Ln

∫
∥θ−θ0∥<λn

hn(θ)dθ

=

∫
∥θ−θ0∥<λn

1{wn(θ)≤1}(1− wn(θ))
R
2 γ
(
η(1)(y)− b(1)(θ0)

)
dθ

≥ C

∫
∥θ−θ0∥<λn

1{wn(θ)≤1}(1− wn(θ))
R
2 dθ

≥ C

∫
1
2
≤wn(θ)≤1

1

2
dθ

= (C + o(1))ϵdn. (2.19)

The third line of the set of equations above comes from the fact that γ(·) is lower

bounded by a positive constant.

Combining the upper bound on Nn and (2.19), we have

∆n =
Nn

Dn

=
o(ϵdn)

C(ϵdn)
= o(1). (2.20)

We thus have that the ABC posterior, πϵn(θ), converges in distribution to

hn(θ)∫
∥θ−θ0∥<λn

hn(θ)dθ
∝ 1{∥∇b(2)(θ0)(θ−θ0)∥≤ϵn}

(
1−

∥∥∇b(2)(θ0)(θ − θ0)
∥∥2

ϵ2n

)R
2
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as wanted.

2.7.4 Proof of Theorem 2.4.0.1

Proof. Let m0 = Eθ0(Zn(θ0)). Minimizing in B, β0 , L(β, β0) is equivalent to minimizing

in B

En[∥θ − En(θ)−BS̃∥2] =
d∑

j=1

En[(θ̃j − β(j)T S̃]2],

which we write
∑d

j=1 Lj(β(j)) and where β(j) is the j-th row of B, θ̃ = θ −En(θ) and

S̃ = S − En(S). We can thus study the terms Lj separately. Let j ≤ d, we have

Lj(β(j)) = Vn(θj) + β(j)TEn(S̃S̃T )β(j)− 2β(j)TEn(S̃θ̃j)

S̃ = ϵn(∇b(θ0)u + ϵnR(u)) + D−1
n [Zn(θ)− En(Zθ)] (2.21)

where ϵ2nR(u) = b(θ(u))−En(b(θ(u))−ϵn∇b(θ0)u = O(ϵ2n∥u∥2). We first study En(S̃S̃T ).

First note that

En(Zθ) = En(Eθ(Zn(θ)) = Eθ0(Zn(θ0) + O(∥θ − θ0∥) = m0 + O(∥θ − θ0∥). (2.22)

Then writing Z̃n(θ) = Zn(θ)− En(Zn(θ)),

En(S̃S̃T ) = ϵ2n∇b(θ0)En(uuT )∇b(θ0)T + D−1
n Z̃n(θ)Z̃n(θ)TD−1

n

+ 2ϵnD
−1
n En(Z̃n(θ)uT )∇b(θ0)T + 2ϵ2nD

−1
n En(Z̃n(θ)R(u)T ) + O(ϵ3nEn(∥u∥∥R(u)∥)

Since for any function H(u), using Z̃n(θ) = Zn(θ)−Eθ(Zn(θ)) +Eθ(Zn(θ))−En(Zn(θ))

together with (2.22)

En(Z̃n(θ)H(u)) = En([Eθ(Zn(θ))− En(Zn(θ))]H(u)) = O(ϵnEn(∥u∥|H(u)|),
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we obtain that

En(S̃S̃T ) = ϵ2n∇b(θ0)En(uuT )∇b(θ0)T + D−1
n Z̃n(θ)Z̃n(θ)TD−1

n

+ O

(
ϵ2n
En(∥u∥3|)

vn,1

) (2.23)

We write S̃(1) = (S̃1, . . . , S̃k0) and S̃(2) = S̃k0+1, . . . , S̃J .

En(S̃(2)S̃
T
(2)) = ϵ2n∇b2(θ0)En(uuT )∇b2(θ0)T + O

(
ϵ2n
vn,1

+
1

v2n,k0+1

)
= ϵ2n∇b2(θ0)En(uuT )∇b2(θ0)T + o(ϵ2n),

and

En[S̃(1)S̃
T
(1)] = D−1

n,1C1,1D
−1
n,1 + ϵ2n∇b1(θ0)En(uuT )∇b1(θ0)T + O(ϵ3n) + O(

ϵ2n
vn,1

)

En(S̃(2)S̃
T
(1)) = ϵ2n∇b2(θ0)En(uuT )∇b1(θ0)T + D−1

n,2C2,1D
−1
n,1 + O

(
ϵ2n
vn,1

)
Also

En(S̃θ̃j) = ϵ2n∇b(θ0)En(uuj) + ϵnD
−1
n En(Z̃n(θ)uj) + O

(
ϵ3n
)

= ϵ2n∇b(θ0)En(uuj) + ϵnD
−1
n O(ϵn) + O

(
ϵ3n
) (2.24)

Finally we obtain that

Lj(β(j)) = Vn(θj) + β(1)(j)
T [D−1

n,1C1,1D
−1
n,1 + ϵ2n∇b1(θ0)En(uuT )∇b1(θ0)T + O(ϵ2n/vn,1)]β(1)(j)

+ ϵ2nβ(2)(j)
T∇b2(θ0)En(uuT )∇b2(θ0)Tβ(2)(j) + 2β(1)(j)

TD−1
n,1C1,2D

−1
n,2β(2)(j)

− 2ϵ2nβ(j)T∇b(θ0)En(uuj) + O
(
ϵ3n
)

+ O(ϵ2n/vn,1)

with C = En(Z̃n(θ)Z̃n(θ)T ), C1,1 is the top left submatrix of dimension k0, C2,2 the

bottom right with dimension k − k0 and C1,2 the top right with dimensions k0, k − k0.
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Note that ∇b2(θ0)En(uuT )∇b2(θ0) = ∇b2(θ0)[Eh(uuT ) + o(1)]∇b2(θ0), is positive semi-

definite where

Eh(uuT ) =

∫
B2

uuT (1− ∥∇b2(θ0)u∥2)R/2du∫
B2

(1− ∥∇b2(θ0)u∥2)R/2du
, B2 = {u ∈ Rd; ∥∇b2(θ0)u∥ ≤ 1}.

Minimizing Lj(β(j)) boils down to minimizing in β̃2 = β(2)(j), β̃1 = D−1
n,1β(1)(j)/ϵn

L̃(β̃) = β̃T
1 [C1,1 + D−1

n,1∇b1(θ0)En(uuT )∇b1(θ0)TD−1
n,1 + O(1/v3n,1)]β̃1

+ βT
2 ∇b2(θ0)En(uuT )∇b2(θ0)Tβ2 + 2ϵ−1

n β1C1,2D
−1
n,2β2 − 2βT

2 ∇b2(θ0)En(uuj)

− 2ϵnβ
T
1 Dn,1∇b2(θ0)En(uuj) + O(1/vn,1)

= β̃T
1 C1,1β̃

T
1 + βT

2 ∇b(θ0)En(uuT )∇b2(θ0)Tβ2 − 2βT
2 ∇b2(θ0)En(uuj) + O(1/vn,1)

Any minimum verifies

C11β̃1 = O(1/vn,1), ∇b2(θ0)Tβ2 = En(uuT )−1En(uuj) + O(1/vn,1)

In particular the minimum with smaller norm satisfies at the limit

β∗
1 = 0, ∇b2(θ0)Tβ∗

2 = En(uuT )−1En(uuj) = ej

which is the j-th vector in the canonical bases of Rd. This proves the first part of

Theorem 2.4.0.1. We now study θ′ − θ0 = θ − θ0 −B∗(S − S0) .

We have for all j ≤ d

θ′j − θ0j = θj − θ0j − (β∗
2(j))T∇b2(θ0)(θ − θ0) + β∗

2(j)TD−1
n,2(Zn,(2)(θ)− Zn,(2)(θ0)) + O(ϵ2n)

= β∗
2(j)TD−1

n,2(Zn,(2)(θ)− Zn,(2)(θ0)) + O(ϵ2n)
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2.7.5 Proof of Lemma 2.7.1.1

Proof. Throughout this proof C denotes a generic constant whose value is of no impor-

tance and can vary from one line to the next.

Let δn = o(1) such that δnvn,k0+1ϵn → ∞. Let M > 0 and consider y ∈ Ωn(M),

then for all ∥θ − θ0∥ ≤ λn = o(1),

∥∥η(2)(z)− η(2)(y)
∥∥2 =

∥∥∥∇2(θ0)(θ − θ0)(1 + O(λn))) + D−1
n,(2)(Zn,(2)(θ)− Zn,(2)(θ0)

∥∥∥2
≥ ϵ2n

wn(θ)(1− Cλn) +

∥∥∥∥∥D
−1
n,(2)(Zn,(2)(θ)− Zn,(2)(θ0)

ϵn

∥∥∥∥∥
2

− 2
√

wn(θ)(1− Cλn)

∥∥∥∥∥D
−1
n,(2)(Zn,(2)(θ)− Zn,(2)(θ0)

ϵn

∥∥∥∥∥
Hence if wn(θ) ≥ 1 + δn, on An,∥∥∥∥∥D

−1
n,(2)Zn,(2)(θ)

ϵn

∥∥∥∥∥ ≤ δn
√

wn(θ)/4

so that

∥∥η(2)(z)− η(2)(y)
∥∥2 ≥ ϵ2nwn(θ)

(
1− Cλn − δn

√
1 + Cλn/2

)
(2.25)

≥ ϵ2n(1 + δn)(1− Cλn − δn
√

1 + Cλn/2) > ϵ2n (2.26)

if wn(θ) > 1 + δn and as soon as Cλn < δn/3 and δn is small enough. Hence part 1 of

Lemma 2.7.1.1 is proved.

We now prove part 2. Let θ be such that wn(θ) ≤ M1. We omit θ in the notations

En, E
′
n, An, Ẽn. Using the same computations as above , on An, if wn(θ) > 1,

∥∥η(2)(z)− η(2)(y)
∥∥2 ≥ ϵ2nwn(θ)

(
1− Cλn − δn

√
1 + Cλn/2

)
≥ ϵ2nwn(θ)(1− δn)
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and similarly

∥∥η(2)(z)− η(2)(y)
∥∥2 ≤ ϵ2nwn(θ)(1 + Cλn)(1 + δn/4)2 ≤ ϵ2nwn(θ)(1 + δn).

Also if δn ≤ wn(θ) ≤ 1,

∥∥η(2)(z)− η(2)(y)
∥∥2 ≥ ϵ2n

(√
wn(θ)(1− Cλn)− δn/4

)2
∥∥η(2)(z)− η(2)(y)

∥∥2 ≤ ϵ2n

(√
wn(θ)(1 + Cλn) + δn/4

)2
so that if,

∥∥η(1)(z)− η(1)(y)
∥∥2 ≤ ϵ2n(1− wn(θ)− δn), wn(θ) ≤ 1 and

∥η(z)− η(y)∥2 ≤ ϵ2n[Cλn +
√

1 + Cλnδn/2− δn ≤ ϵ2n

by choosing λn ≤ cδn with c small enough. Hence E ′
n∩An ⊂ En∩An. Similar arguments

imply that En ∩ An ⊂ En” ∩ An.

2.7.6 Proof of Lemma 2.7.1.2

Proof. We have

η(1)(z)− η(1)(y) = D−1
n,1[Zn,(1)(θ)− Zn,(1)(θ0)] + b(1)(θ)− b(1)(θ0)

so that if ∥θ − θ0∥ ≤ v−1
n,k0

M1 ∧ δn,

η(1)(z)−η(1)(y) = D−1
n,1[Zn,(1)(θ)−m(y; θ)+O(v−1

n,k0
∧vn,k0δ2n)] = D−1

n,1[Zn,(1)(θ)−m(y; θ)+o(1)]
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where m(y; θ) = Zn,(1)(θ0)+Dn,1∇b1(θ0)(θ−θ0). and on Ωn(M) ∥m(y; θ)+o(1)∥ ≤ 2M

by choosing M large enough.

Pθ(Ẽn) = Pθ

(
k0∑
j=1

[Zn,j(θ)−mj(y; θ) + o(1)]2

v2n,j
≤ ϵ2n

)

It implies in particular that with K the ball in Rk0 centered at 0 and with radius 2M ,

uniformly over ∥θ − θ0∥ ≤ λn,

∣∣∣∣∣Pθ(Ẽn)

Ln

− γ(mj(y; θ) + o(1))

∣∣∣∣∣ ≤ sup
m∈K

∣∣∣∣∣∣
Pθ

(∑k0
j=1

[Zn,j(θ)−mj ]
2

v2n,j
≤ ϵ2n

)
Ln

− γ(m)

∣∣∣∣∣∣ (2.27)

= o(1), (2.28)

where the last equality comes from Assumption 3.

It follows in particular that

sup
∥θ−θ0∥≤λn

∥∥∥∥∥Pθ(Ẽn)

Ln

∥∥∥∥∥ ≤ sup
m∈K

γ(m) + o(1) = O(1).
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2.7.7 Proof of Lemma 2.7.1.3

Proof. We have

αn =

∫
π(θ)Pθ (∥η(z)− η(y)∥ < ϵn) dθ

=

∫
∥θ−θ0∥<λn

hn(θ)dθ + o
(
Lnϵ

d
n

)
= Lnγ

(
η(1)(y)− b(1)(θ0)

) ∫
∥θ−θ0∥<λn;wn(θ)≤1

(1− wn(θ))
R
2 dθ + o

(
Lnϵ

d
n

)
= Lnϵ

d
nγ
(
η(1)(y)− b(1)(θ0)

)
det
(
∇b(2)(θ0)T∇b(2)(θ0)

) ∫
u≤1

(1− u2)
R
2 du + o

(
Lnϵ

d
n

)
= Lnϵ

d
nγ
(
η(1)(y)− b(1)(θ0)

) 1

2
det
((
∇b(2)(θ0)∇b(2)(θ0)

) 1
2

)
Beta

(
1

2
,
R

2
+ 1

)
+ o

(
Lnϵ

d
n

)
= (C + o(1))Lnϵ

d
n.

The third line of the set of equations above comes from (2.20). The fourth line

comes from the definition of hn(θ). The fifth line comes from a change of variables.
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Chapter 3

A Bayesian non-parametric model

for 2-multiple context free

grammars

Abstract

The class of context-free grammars is believed to be too restrictive to fully describe

all features of natural language. The class of context-sensitive grammars, on the other

hand, is too complex to be practical: modelling with them would require an unrealistic

amount of computational time. Various mildly context-free grammar formalisms, which

may be placed between context-free grammars and context-sensitive grammars in terms

of complexity, have thus been proposed in the last few decades. We consider the class

of 2-multiple context-free grammars (2-MCFGs) (Seki et al. (1991)), which properly

include the class of context-free grammars.

We propose a Bayesian non-parametric model for 2-MCFGs within which a model

for context-free grammars is naturally embedded. Our model is inspired by that of

Ryder et al. (2023) for context-free grammars, and is based on hierarchical Dirichlet

processes. We develop a sequential Monte Carlo algorithm to make inference under this
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model. We carry out simulation studies to assess our method.

3.1 Introduction

Informally, a grammar is what defines the structure of a language. It tells us which

way words from a language may be joined together in order to form sentences from

the language that are valid according to the language’s syntax. Grammars were first

formalised by Chomsky (1956), who defined them as consisting of the following four

components.

• A set B of nonterminal symbols

• A set A of terminal symbols

• A set R of rules, each of the form

R : (A ∪ B)⋆B(A ∪ B)⋆ → (A ∪ B)⋆ (3.1)

where ⋆ represents the Kleene star operator, which is defined as the set of strings

formed by concatenating one or more of the elements of the set it is applied to.

• A distinguished start nonterminal symbol S where S ∈ B

The terminal symbolsA are the words of the grammar’s language, while the nonterminal

symbols and the rules describe in a generative way (as we will explain in later sections)

how valid sentences may be formed according to the grammar. The symbol S is used

at the beginning of the sentence-generating process. In Section 3.2.1 and Section 3.2.2

we will describe in detail how sentences (strings of terminal symbols) may be formed

from two special cases of grammars.

Definition 4. Given a Chomsky grammar G = (B,A,R, S), the language L(G) is the

set of strings of terminal symbols that can be generated from the grammar G.
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In general, for any grammar, only a subset of the set of possible rules in the above

definition will be allowed. The complexity of a grammar is measured by the complexity

of the set of rules the grammar allows. Chomsky (1956) classified grammars in terms

of the complexity of the rules that they allow. In order of increasing complexity he

defined the following four classes of grammars.

Regular ⊂ Context-free ⊂ Context-sensitive ⊂ Recursively enumerable

The more complex a grammars model is, the more features of a language it may be

able to capture. However, the more complex the grammar model, the more expensive

the inference may be in terms of computational time. It is standard for human natural

language to be modeled using context-free grammars, and there is a vast literature on

efficient algorithms for context-free grammar models (Lari and Young (1990), Johnson

et al. (2007)). It is well known, however, that context-free grammars do not capture all

features of human natural language. Shieber (1985) demonstrate this for the particular

case of the Swiss German language. Furthermore, recent research suggest that the

vocalisations of Muriqui monkeys is more complex than context-free (Chatain et al.

(2021)).

Since the class of context-sensitive grammars, which comes above the class of context-

free grammars in terms of complexity, is considered too complex in practice for simple

inference purposes, researchers have proposed intermediate classes of grammars which

lie in between context-free and context-sensitive in terms of complexity. Examples of

these include head grammars (Pollard (1984)), tree-adjoining grammars (Joshi et al.

(1969)), and multiple context-free grammars (Seki et al. (1991)). In this work, we will

consider the class of 2-multiple context-free grammars (2-MCFGs), which is properly

included in the class of context-sensitive grammars, and which properly includes the

class of context-free grammars.

The standard method for making inference on parameters in computational lin-

guistics is based on expectation-maximization techniques, such as the inside-outside
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algorithm for context-free grammars and its variants (Lari and Young (1990)). In the

case of context-free grammars, some researchers have turned to Bayesian methods of

inference (Johnson et al. (2007), Goldwater and Griffiths (2007)). These have the ad-

vantage of taking into account the uncertainty of all parameters in the framework of a

single probabilistic model. When modelling grammars, an important question to con-

sider is the number of latent parameters that describe the structure of the grammar.

While including too few parameters corresponds to a lack of expressiveness of the model,

including too many parameters can be computationally expensive, unrealistic, and can

lead to over-fitting. This choice may be bypassed by putting a nonparametric prior on

the space of parameters, which allows the number of latent parameters to be learned

adaptively with the data. Nonparametric priors also have the advantage of naturally

penalizing grammars with too many parameters.

As we will describe in detail in later sections, each rule in a 2-MCFG can be associ-

ated with one nonterminal symbol from the set B. The rules of a 2-MCFG can then be

modeled as grouped data, where each group corresponds to the set of rules associated

with each of the nonterminal symbols. Dirichlet process mixture models (Antoniak

(1974)) are a popular nonparametric model for grouped data. More sophisticated vari-

ants of the DP mixture model such as the Dirichlet process hidden Markov model (Beal

et al. (2002)) and the hierarchical Dirichlet process (Teh et al. (2006)) (HDP) relax the

independence assumption across groups. Liang et al. (2007) and Finkel et al. (2007)

have used HDPs to model context-free grammars. While Liang et al. (2007) perform

inference by variational Bayes, Finkel et al. (2007) use MCMC techniques to model

context-free grammars. In this work, we propose a hierarchical Dirichlet process model

for 2-MCFGs and perform inference on parameters by sequential Monte Carlo (SMC).

To the best of our knowledge, no previous work has attempted a Bayesian approach to

model 2-MCFGs.

The remainder of this chapter is organized as follows. In Section 3.2 we provide

some background information, with formal definitions of context-free grammars, 2-

multiple context-free grammars, and probabilistic 2-multiple context-free grammars.
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In Section 3.3 we describe our Bayesian model in detail and in Section 3.4 we describe

our sequential Monte Carlo inference scheme. Results of our simulation studies are

presented in Section 3.5, and a discussion is provided in Section 3.6. Details of our

SMC scheme are left to appendix Section 3.7.

3.2 Background

As previously mentioned, the main focus of this work is the modelling of the class of

2-multiple context-free grammars, which is an extension of the class of context-free

grammars. In this section, we describe in detail the type of rules that are allowed in

each of these classes of grammars and show how parse trees and their corresponding

sentences can be formed from them. We then introduce the concept of probabilistic

grammars, which allows us to model grammars using statistical techniques.

3.2.1 Context-free grammars

There are a number of different ways of formalising the rules of context-free grammar

that are weakly equivalent (i.e. that result in exactly the same set of possible sentences).

In this work, we express all context-free grammars in Chomsky normal form. All of the

rules of a context-free grammar in Chomsky normal form must be written in one of the

following two forms.

Bj → Bk1Bk2 (3.2)

Bj → ak (3.3)

where Bj, Bk1 , Bk2 ∈ B and where ak ∈ A.

Rules of the form of Equation 3.2 are called production rules and rules of the form of

Equation 3.3 are called emission rules. For context-free grammars in Chomsky normal

form, production rules replace one nonterminal symbol with a pair of nonterminal
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symbols. Emission rules replace one nonterminal symbol with one terminal symbol.

The structure of a sentence generated from a context-free grammar in Chomsky

normal form may be represented by a tree, where the root of the tree is associated

with the nonterminal symbol S, where each internal node of the tree is associated with

a nonterminal symbol from B and each leaf of the tree is associated with a terminal

symbol fromA. Given a context-free grammar, trees are generated as follows. Associate

the root node of the tree with the nonterminal symbol S. Pick a rule of the form (3.2)

or (3.3) with S on the left-hand-side. If the rule is of the form (3.3), i.e. S → ak, add

a branch stemming to the terminal symbol emitted by the rule. Otherwise, if the rule

is of the form (3.2), i.e. S → Bk1Bk2 , add two branches stemming to child nodes, and

associate each of the child nodes with the nonterminal symbols Bk1 and Bk2 . Next, select

any remaining leaf node of the tree which is associated with a nonterminal symbol, say

Bk1 . Repeat the above, picking a rule this time with Bk1 on the left-hand-side and

extending the tree as before. Continue this process until all of the leaf nodes of the tree

are associated with terminal symbols.

Given a standard tree as described above, we define its corresponding evaluated tree

to be a tree of the same size shape, and structure, but where each node is associated

with a string of terminal symbols. An evaluated tree is formed from a standard tree

as follows. First, starting from the bottom of the tree, associate all nodes that emit

leaves with the single terminal symbol that they emit. Next, associate any internal node

that produces a pair of internal nodes with the concatenation of the strings of terminal

symbols associated with its two child nodes. For example, suppose that we had a

subtree consisting of the following three rules: Bj → Bk1Bk2 , Bk1 → aj1 and Bk2 → aj2 .

The string associated with Bk1 in the tree would be aj1 , the string associated with Bk2

in the tree would be aj2 and the string associated with Bj in the tree would be aj1aj2 .

Carry out this process from the bottom to the top of the tree. The string of terminal

symbols associated with the root node of the tree will be the complete sentence that

the tree represents.

A sentence is grammatical if there exists a sequence of rules which produce it or
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Figure 3.1: Left: A tree generated from the context-free grammar GD,1 (see Example
2). The rules used to generate the tree are (in order): S → SS, S → SS, , S →
B1B1, , S → B3B3, , S → B2B2, B1 → a, , B1,→ a, B3 → c, B3,→ c, B2 →
b, , B2,→ b. Right: The evaluated version of the context-free tree. At the root of
the tree, one reads the sentence aaccbb, which is the sentence associated with the tree.

equivalently, a tree which evaluates to it. There may be multiple trees that evaluate to

the same grammatical sentence.

Example 2 (Doubles language). Consider the following context-free grammar.

GD,1 = (A,B,R, S)

A = {a, b, c}

B = {S,B1, B2, B3}

R = {S → SS, S → B1B1 S → B2B2, S → B3B3

B1 → a, B2 → b, B3 → c}

The grammar GD,1 describes is the language consisting of strings of symbols from A

where each element is repeated twice (for example aabbccaa, bbaabbbbcc or ccaa, etc).

We refer to the language produced by GD,1 as the “doubles” language.

L(GD,1) = {ζ1ζ1 · · · ζnζn|n ∈ N, ζi ∈ A ∀i ∈ {1, . . . , n}}
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3.2.2 2-Multiple context-free grammars (2-MCFGs)

Formally, a 2-MCFG may be represented by a five-tuple G = (A,B,F ,R, S) where

A,B and S are as in the case of context-free grammars, where F is some multiset of

permutations over 5 elements which we will describe, and where all of the rules in R

must take one of the following two forms.

Bj → fj[Bk1 , Bk2 ], fj ∈ F (3.4)

Bj → (ak1 , ak2) (3.5)

where Bj, Bk1 , Bk2 ∈ B, and where (ak1 , ak2) ∈ {A×ϵ}∪{ϵ×A}∪A
⊗

2 (where ϵ denotes

the empty symbol). Rules of the form of Equation 3.4 are called production rules and

rules of the form of Equation 3.5 are called emission rules. Production rules replace

one nonterminal symbol with two nonterminal symbols from B and one permutation f

from F . Emission rules replace one nonterminal symbol either with a pair of terminal

symbols from A, or with one terminal symbol from A and one empty symbol ϵ.

The structure of a sentence generated from a 2-MCFG can be represented by a

tree, where the root node is associated with the symbol S, where each internal node

is associated with a nonterminal symbol from B and with a permutation from F , and

where leaves of the tree are associated either with elements from A or the empty symbol

ϵ. Given a 2-MCFG, trees are generated as follows. Associate the root node of the tree

with the nonterminal symbol S. Pick a rule of the form (3.4) or (3.5) with S on the left-

hand-side. If the rule is of the form (3.5), add two branches to the node, one stemming

to the symbol ak1 and one stemming to the symbol ak2 . Otherwise, if the rule is of

the form (3.4), associate the node with the permutation involved in that rule (fj), and

add two branches to the node, one stemming to the nonterminal symbol Bk1 and one

stemming to the symbol Bk2 . Next, select any remaining leaf node of the tree which is

associated with a nonterminal symbol, say Bk1 . Repeat the above, picking a rule this

time with Bk1 on the left-hand side and extending the tree as before. Continue this

process until all of the leaf nodes of the tree are associated with terminal symbols.
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Recall that in the case of context-free grammars, each node of the evaluated version

of a tree is associated with a string of terminal symbols, in such a way that the root

node of the evaluated tree is associated with the sentence that the tree represents. In

the case of evaluated 2-MCFG trees, each node is associated with a pair of strings of

terminal symbols. The sentence that a 2-MCFG tree represents will be the sentence

formed by concatenating the two strings associated with the root node of the evaluated

version of that tree.

We represent each node of an evaluated 2-MCFG tree by ⟨ζ1|ζ2⟩ where ζ1 and ζ2

are strings of terminal symbols and where “|” is a special symbol that indicates where

the string of terminal symbols ζ1ζ2 is split. Whenever an emission rule Bj → (ak1 , ak2)

takes place at some node of the standard tree, we associate that node in the evaluated

tree with the pair ⟨ak1|ak2⟩.

For a production rule Bj → [Bk1 , Bk2 ], let ⟨ζ1,1|ζ1,2⟩ and ⟨ζ2,1|ζ2,2⟩ be the pairs of

strings associated with the child nodes corresponding to Bk1 and Bk2 respectively in

the evaluated tree. Recall that fj ∈ F is a permutation over 5 elements. Associate

to Bj in the evaluated tree the pair of strings ⟨fj(ζ1,1, ζ1,2, ζ2,1, ζ2,2, |)⟩. For example,

suppose that Bk1 were associated with the pair ⟨ab|d⟩, that Bk2 were associated with the

pair ⟨c|ϵ⟩, and that fj = (15342). Then we would associate Bj with the output of the

permutation fj when applied to the vector v := (ab, d, c, ϵ, “|”)). In this example, the

output of fj when applied to v gives ⟨ab|cϵd⟩ (and since ϵ refers to the empty symbol,

this is equivalent to ⟨ab|cd⟩). We refer to this process of associating strings of terminals

to the nodes of the tree as evaluating the tree.
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Example 3 (Doubles language). Consider the following 2-MCFG.

GD,2 = (A,B,F ,R, S)

A = {a, b, c}

B = {S}

F = {fD = (12534)}

R = {S → fD[S, S], S → (a, a), S → (b, b), S → (c, c)}

Observe that the grammar only allows one permutation, fD, which concatenates

both strings associated with the first child node and puts them on the left-hand side, and

concatenates both strings associated with the second child node and puts them on the

right-hand side. As in the grammar GD,1 of Example 2, the grammar GD,2 describes the

“doubles” language.

L(GD,2) = {ζ1ζ1 · · · ζnζn|n ∈ N, ζi ∈ A ∀i ∈ {1, . . . , n}}

Example 4 (Copy language). Consider the following 2-MCFG.

GC = (A,B,F ,R, S)

A = {a, b, c}

B = {S}

F = {fC = (13524)}

R = {S → fC [S, S], S → (a, a), S → (b, b), S → (c, c)}

Observe that the grammar only allows one permutation, fC , which concatenates the

left-hand side string associated with the first child node with the left-hand side string

associated with the second child node and puts this on the left-hand side, and concate-

nates the right-hand side string associated with the first child node with the right-hand

side string associated with the second child node, and puts this on the right-hand side.
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Figure 3.2: Left: A tree generated from the 2-MCFG grammar GC (see Example 4).
The rules used to generate the tree are (in order): S → fC [S, S], S → fC [S, S], , S →
(a, a), , S → (c, c), , S → (b, b). Right: The evaluated version of the 2-MCFG tree. At
the root of the tree, one reads the sentence acbacb, which is the sentence associated
with the tree.

The grammar GC describes the language which consists of two identical strings of

terminal symbols concatenated (for example bcbc, abcabc or bccbcc, etc). Indeed, it

is straightforward to show recursively that in the evaluated tree, each internal node is

associated with a pair ⟨ζ|ζ⟩ for some ζ ∈ A⋆. We refer to the language produced by GC
as the “copy” language.

L(GC) = {ζ2|ζ ∈ A⋆}

Remark 3. 2-multiple context-free grammars are a special case of the more general

class of m−multiple context-free grammars, where m may be any posistive integer (Seki

et al. (1991)). The class of m−multiple context-free grammars, for some arbitrary

m ∈ N may be defined just as the definition for 2-MCFGs, but with each nonterminal

symbol being associated with an m−tuple of strings of terminal symbols (rather than a

pair of strings of nonterminal symbols). Emission rules in m−MCFGs emit m terminal

symbols (rather than 2 nonterminal symbols). It can be proved that m1−MCFGs are

properly included in m2-MCFGs for any m1 < m2 (Seki et al. (1991)).

Remark 4. Context-free grammars are equivalent to 1-MCFGs.
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3.2.3 Probabilistic 2-MCFGs

A probabilistic grammar is a grammar that additionally assigns some probability to each

of its rules. A probabilistic 2-MCFG may be written as a 6-tuple G = (A,B,F ,R, S,J ),

where A,B,F ,R and S are as in the definition for 2-MCFGs, and where J denotes a

collection of probability distributions over the elements of the set R. In 2-MCFGs, each

rule can be associated with the nonterminal symbol Bj on the left-hand side of the rule

of the form of Equation 3.5 and Equation 3.4. The elements of J are the distributions

over rules associated with each of the nonterminal symbols in B, in such a way that for

each element Bj of B, there exists an element PRj
in J that is a probability distribution

over rules associated with Bj.

Given a probabilistic grammar, we define the probability of any tree, τ generated

from that grammar to be the product of the rules associated with the nodes of that

tree. We have

Pτ (τ) :=
∏
x∈τ ′
PRj(x)

(
R

q(x)
j(x)

)

where τ ′ denotes the set of internal nodes of the tree τ , where j(x) denotes the nonter-

minal symbol associated with the node x and where q(x) denotes the index of the rule

associated with the node x.

For any sentence in a grammar’s language there may be one or more distinct trees

that can be generated from the grammar that, when evaluated, form it. For probabilistic

grammars, the probability of any sentence in the grammar’s language is defined to be

the sum over the probabilities of with each of the trees that form that sentence.

3.3 Model

As stated in Section 3.2.2, a 2-MCFG consists of the five-tuple G = (A,B,F ,R, S). In

our setting, the set of terminal symbols, A, and the set of permutations F are given
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and finite. The set of nonterminal symbols B and the set of rules R on the other hand,

are random and countably infinite.

We modelA with the categorical distribution PA with parameters µ̄a = (µ1
a, . . . µ

|A|
a ),

with µj
a ≥ 0 ∀j and

∑|A|
j=1 µ

j
a = 1 in such a way that PA(aj) = µj

a, where aj repre-

sents the jth nonterminal symbol. In a similar way, we model the set of 120 possible

permutations over 5 elements with the categorical distribution PF , with parameters

µ̄f = (µ1
f , . . . , µ

120
f ).

Let PB represent the distribution over the countably infinite set of nonterminal

symbols B. We model this distribution with a Dirichlet process, with base measure H1

and with scaling parameter α1. We model H1 with a standard normal distribution (since

we will only be interested in its partitions, any continuous distribution will work). We

then have, using standard notation

PB ∼ DP (α1, H1) , H1 = N(0, 1).

As described in Section 3.2.2, each rule will be associated with one of the nonter-

minal symbols (i.e. the nonterminal symbol on the left-hand-side of the expressions of

Equation 3.4 and Equation 3.5). To each of the infinitely many nonterminal symbols

in the grammar, we assign a distribution over its associated rules. We thus obtain

infinitely many rule distributions. Without loss of generality, we describe our model for

the distribution of rules associated with the nonterminal symbol Bj, which we denote by

PRj
. The distributions over rules associated with other nonterminal symbols Bi, i ̸= j

are modelled in an identical way.

We model the distribution PRj
with a Dirichlet process, with base measure H2 and

with scaling parameter α2. Since rules from R include elements from A,B, and F ,

the distributions PA, PB and PF are nested within the distribution PR. Again using
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standard notation, we have

PRj
|H2 ∼ DP (α2, H2)

H2|pe, pϵ,PA,PF = (1− pe)P
⊗

2
B ⊗ PF + pe

(
(1− pϵ)P

⊗
2

A +
pϵ
2

(δϵ ⊗ PA + PA ⊗ δϵ)
)

pe ∼ Beta(ae, be)

pϵ ∼ Beta(aϵ, bϵ)

PA ∼ Categorical(µ1
a, . . . , µ

|A|
a )

PF ∼ Categorical(µ1
f , . . . , µ

120
f )

(µ1
a, . . . , µ

|A|
a ) ∼ Dirichlet(γ1

a, . . . , γ
|A|
a )

(µ1
f , . . . , µ

120
f ) ∼ Dirichlet(γ1

f , . . . , γ
120
f ).

Since the base distribution H2 is quite complex, let us describe it in words. Under

H2, a rule will be an emission rule (Equation 3.5) with probability pe and a production

rule (Equation 3.4) with probability (1− pe).

• If a rule is an emission rule, with probability (1 − pϵ) it will emit two terminal

symbols from the distribution PA, with probability pϵ
2

it will emit the empty

symbol ϵ on the left and a terminal symbol from PA on the right, and with

probability pϵ
2

it will emit a terminal symbol from PA on the left and the empty

symbol on the right. The symbol δϵ indicates the Dirac distribution on the empty

symbol, ϵ.

• If a rule is a production rule, it will produce two nonterminal symbols from PB

and one permutation from the categorical distribution PF .

To improve model flexibility, we put prior distributions on the model’s hyperparam-

eters pe, pϵ, µ̄a and µ̄f , as demonstrated above.
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We model trees through the joint distribution of the rules associated with each of

their internal nodes. Since sentences are deterministic given trees, this defines a model

over the sentences from the language associated with a 2-MCFG.

Remark 5. Our model consists of mutually nested Dirichlet processes. Although sepa-

rate DP distributions are used for rules associated with separate nonterminal symbols,

they are all closely related due to the use of the same base distribution. Since the non-

terminal component of the base distribution is itself modelled with a DP, our model can

be described as an adaptation of Teh et al. (2006)’s Hierarchical Dirichlet process.

3.4 Implementation

Let ȳ = (y1, . . . , yT ) be a set of observed sentences, let lt be the length of the tth sentence

and let τt be the tree describing its structure. Let ait represent the ith word of the tth

sentence, in such a way that yt = a1:ltt .

As described in Section 3.2.2, all internal nodes of τt are associated with a non-

terminal symbol and a rule. Let Bj(x) denote the nonterminal symbol associated with

the node x. We assume that rules are listed in the order in which they appear in the

generative process for trees, as described in Section 3.7.2. We then let q(x) denote the

number of rules associated with the nonterminal symbol Bj(x) that appear before the

rule associated with the node x in this list, and let R
q(x)+1
j(x) denote the rule associated

with the node x.

The posterior distribution we wish to estimate is then

Π (τ1:T |ȳ) ∝
T∏
t=1

∏
x∈τ ′t

PRj(x)

(
R

q(x)+1
j(x) |R

1:q(x)
j(x) , B1:j(x)

)
,

where τ ′t in the above product denotes the set of internal nodes in τt and where PRj(x)

denotes the distribution over rules with the nonterminal symbol Bj(x) on the left-hand

side (described in Section 3.3).
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To estimate this distribution over trees, we use sequential Monte Carlo (SMC)

(Chopin et al. (2020)). Before describing our SMC sampling scheme in detail, we

formally define complete and partial trees, extension of trees, and evaluation of trees.

Definition 5. We define a 2-MCFG complete tree to be a tree structure where all

internal nodes are associated with a nonterminal symbol and a production rule, and all

leaves are associated with a nonterminal symbol and an emission rule. For any subtree

of a complete tree consisting of a parent node and its direct child nodes z1, z2, the rule

associated with x must take the form

Bj(x) → f
q(x)+1
j(x) [Bj(z1), Bj(z2)],

where Bj(x) is the nonterminal symbol associated with the node x and where Bj(zi) is

the nonterminal symbol associated with the node zi for i ∈ {1, 2}.

Definition 6. We define a 2-MCFG partial tree to be a tree structure identical to a

2-MCFG complete tree, except that leaf nodes are no longer required to be associated

with emission rules.

Remark 6. 2-MCFG partial trees may be transformed into 2-MCFG complete trees by

adding nonterminal symbols and rules to their leaf nodes recursively until all leaf nodes

are associated with emission rules.

From now on, we will refer to 2-MCFG complete trees and 2-MCFG partial trees

as complete trees and partial trees respectively.

Definition 7. We define an extension of some partial tree τ to be a tree that strictly

contains τ and that has additional nodes branching from one or more of the leaf nodes

of τ.

Definition 8. An evaluated complete tree is a tree structure where each node is asso-

ciated with a pair of strings of terminal symbols. The sentence that the tree represents

is obtained by concatenating the pair of terminal symbols associated with the root node.
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In order to simulate a sentence from some 2-MCFG, a tree must first be generated

in a top-to-bottom fashion (i.e. starting at the root node and moving down). Once

the tree is complete, it is evaluated from bottom to top (i.e. starting at the leaf nodes

and moving up), in order to obtain the sentence at the root node. For details on how

trees are constructed and evaluated, see Subsection 3.2.2. Note that the only random

part of this process is the generation of the trees. Once a tree has been generated, its

evaluation is deterministic.

At each time step t < T of our SMC scheme, we target some intermediate distri-

bution over the set of trees, {τ1, . . . , τt} (and the rules and symbols used within them).

At any node x ∈ τt, we define τt,x to be the partial tree consisting of all of the nodes

of τt added before the node x in the construction of the tree τt (see Section 3.7.2 for

details on the order at which rules are added to a tree under our SMC scheme).

At step t, the transition kernel is

K (τt|τ1:t−1, yt, lt) =
∏
x∈τ ′t

P⋆
Rj(x)

(
R

q(x)+1
j(x) |τt,x, R

1:q(x)
j(x) , B1:j(x), yt, lt

)

where, as before, j(x) denotes the nonterminal symbol associated with the node x,

q(x)+1 denotes the index of the rule associated with the node x, the term B1:j(x) denotes

the set of “observed” nonterminals, and R
1:q(x)
j(x) denotes the set of “observed” rules which

have Bj(x) on the left-hand-side. The distributions P⋆
Rj(x)

(
R

q(x)+1
j(x) |τt,x, R

1:q(x)
j(x) , B1:j(x), yt, lt

)
are described in detail in Section 3.7.3 in a case by case fashion. They are closely re-

lated to the distributions PRj(x)

(
R

q(x)+1
j(x) |R

1:q(x)
j(x) , B1:j(x)

)
of our model, but have extra

constraints due to the fact that, when evaluated, it must represent the sentence yt.

We re-weight with

wt =
∏
x∈τ ′t

w̃x,

where w̃x is described in Section 3.7.3. By the careful design of the factors w̃x of the

75



weights, we have

P⋆
Rj(x)

(
R

q(x)+1
j(x) |τt,x, R

1:q(x)
j(x) , B1:j(x), yt, lt

)
× w̃x = PRj(x)

(
R

q(x)+1
j(x) |R

1:q(x)
j(x) , B1:j(x)

)
.

It follows that

K (τt|τ1:t−1, yt, lt)× wt =
∏
x∈τ ′t

PRj(x)

(
R

q(x)+1
j(x) |R

1:q(x)
j(x) , B1:j(x)

)
.

At iteration t, we are thus targeting

Πt(τt|yt, lt) ∝ Πt−1 (τt−1|yt−1, lt−1)×K (τt|τ1:t−1, yt, lt)× wt

∝ Πt−1 (τt−1|yt, lt)×
∏
x∈τ ′t

PRj(x)

(
R

q(x)+1
j(x) |R

1:q(x)
j(x) , B1:j(x)

)

and at the end, we reach

Π (τ1:T |ȳ) =
T∏
t=1

∏
x∈τ ′t

PRj(x)

(
R

q(x)+1
j(x) |R

1:q(x)
j(x) , B1:j(x)

)

as hoped.

3.5 Simulation studies

We illustrate our model and inference method with two simulation studies: one using

artificial data from the copy grammar of Example 4 and one using real data that

describes the vocalizations recorded from Muriqui monkeys.

3.5.1 Artificial data: copy grammar

We consider artificial data consisting of T sentences each of length 30 simulated from

the copy grammar of Example 4, i.e. from the set GC = {ζ2|ζ ∈ A⋆}, where A is

defined to be an alphabet consisting of three letters: A = {a, b, c}. The sentences were
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Figure 3.3: Proportion of the 1000 sentences simulated from the posterior predictive
that belong to GC , for various values for the number of observed sentences, T ranging
from 1 to 30, where posteriors were based on observed sentences of length 30 and 1000
particles.

simulated in such a way that each of the letters of the alphabet appeared with equal

probability.

We applied our model and SMC algorithm to this data, using 1000 particles. We

used the following Beta hyperparameters for the prior probability of an emission rule:

ae = be = 10 and the following Beta hyperparameters for the prior probability of

emitting the empty symbol: aϵ = 10 and bϵ = 1. We used the following Dirichlet

hyperparameters for the prior probability over terminal symbols: µi
a = 1, i ∈ {1, . . . , 3},

and the following Dirichlet hyperparameters for the prior probability over permutations:

µi
f = 0.01, i ∈ {1, . . . , 120}.

First, with α1 = α2 = 0.5, we considered posterior estimation from various values

of T (the number of observed sentences), ranging from 1 to 30. In each setting, 1000

sentences were simulated from the posterior predictive distribution. Figure 3.3 displays

the proportion of the simulated sentences that belong to the copy grammar GC , for

each of the settings of T. Observe that the proportion of correctly estimated sentences

increases with the number of observations. This indicates that (with enough data), the

posterior concentrates on grammars that represent the copy language.

Next, with T = 200, we considered various different settings for the Dirichlet process
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Figure 3.4: Proportion of the 1000 sentences simulated from the posterior predictive
that belong to GC , for various values of α1 = α2 ranging from 0.1 to 2.4, where posteriors
were based on 200 observed sentences of length 30 and 1000 particles.

parameter over rules, α1, and the Dirichlet process parameter over nonterminal symbols,

α2, ranging from 0.1 to 2.4, where for each setting, these two parameters were equal to

each other. In each setting, 1000 sentences were simulated from the posterior predictive

distribution. Figure 3.4 displays the proportion of the simulated sentences that belong

to the copy grammar GC , for each of the settings of α1 and of α2. Observe that for small

values of α1 and α2 the proportion is very high, whereas as soon as α1 and α2 exceed

0.5, the majority of the time, the proportion is very low. This could be explained by the

fact that large Dirichlet process parameters α1 and α2 favor more complex equivalent

forms of GC with more rules and nonterminal symbols. A larger number of observations

is necessary to make inference on a more complex grammar.

Finally, we considered the particular setting where T = 200 and α1 = α2 = 0.5, and

looked more closely at the rules of the MAP grammar. Over 99% of the emission rules

were of one of the following three forms:

B1 → (c, c)

B1 → (b, b)

B1 → (a, a)
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and over 99% of the production rules were of the form

B1 → f 1
1 [B1, B1],

where f 1
1 is the permutation (13524), coinciding perfectly with the copy grammar as

defined in Example 4.

3.5.2 Real data: Muriqui monkey grammar

We consider real data consisting of 647 “sentences” of Muriqui monkey vocalizations,

recorded and transcribed by experts (Demolin et al. (2016)). After the consolidation

of the data, the set of “words” is the alphabet of three different types of calls of the

monkeys, which we denote by X, r, and p : we have A = {X, r, p}.

Defining an “rp block” to be any maximal substring of the form rp+ (i.e. one r

followed by a string of p’s of length at least equal to one), we say that a sequence is an

increasing rp sequence if each rp block in it is either the same length or one p longer

than the previous rp block, i.e. if the sequence is of the form

(rp)ξ1(rp2)ξ2 · · · (rpN)ξN ξ1, . . . , ξN ≥ 1, N ∈ N.

Demolin et al. (2016) empirically observed the presence of such increasing rp sequences

in this data, and noted that they were significantly more prevalent than decreasing rp

sequences (defined similarly). Following this observation, Chatain et al. (2023) show

using probabilistic methods that the language of Muriqui monkeys is likely to be more

complex than the standard class of context-free grammars. In particular, they show that

when sentences are simulated from the optimal context-free grammar (under the BIC

criterion), the proportion of increasing sequences in the simulated data is significantly

lower than the proportion of increasing sentences in the data (with empirical p-value

< 10−7) and that, furthermore the sub-language consisting of increasing sequences

(without any noise) is context-sensitive, i.e. more complex the standard context-free
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rrrrrprprpr rrrrprprprprp
rrrrprprprprprprpp rrprprpXpXpXrr
rXprprprprprprpp XrprprprprprprpprpXX
rXprprprprprprppp rrrprprprpprp
XXprprprprprprpprppXX Xprpprpprppprppp
XrpXrprpXrprprpXX Xpprprprprprpp
XrpprpprpprprpprpXpX XXXrrpXpXprpprpprpprrXX
XXXpprpprpprpXXX XXXrrpXpXprpprpprpprrXX
XXXpprpprpprpXXX XXprpprppXprpprpprpX
Xrprpprpprp Xrprpprpprppprppp

Figure 3.5: A random sample from the subset of the data with at least three consecutive
rp+ blocks. The increasing rp subsequences are underlined

class.

The goal of this simulation study is to investigate how well our model and SMC

inference scheme pick up the increasing rp sequence feature of the data. Due to the

limitations of computational time and memory, we consider as our observations only the

subset of the data consisting of the 105 sentences that contain at least three consecutive

rp+ blocks, i.e. sentences that contain subsequences of the form (rp+)3. Figure 3.5

provides a random sample from this reduced dataset, with all increasing subsequences

underlined.

We apply our 2-MCFG model and SMC inference scheme to the data, using 20000

particles and using the same model hyperparameters as in the Section 3.5.1: ae = be =

10, aϵ = 10, bϵ = 1, µi
a = 1, i ∈ {1, . . . , 3}, µi

f = 0.01, i ∈ {1, . . . , 120}, and α1 =

α2 = 0.5. We then simulate 1000 sentences from the posterior predictive distribution,

and for the sake of comparison, we simulate 1000 sentences from the prior predictive

distribution.

Figure 3.6 shows the proportion of sentences in the observed data, in simulated

data from the prior predictive distribution, and in simulated data from the posterior

predictive distribution that contain N consecutive rp+ blocks for N ∈ {1, . . . , 10}. Note

that the reason why the proportion is 100% for the observed data for N ∈ {1, 2, 3} is

because we took, as our observations, only sentences that had at least 3 consecutive
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Data Prior predictive
Posterior predic-
tive

Increasing 0.65 0.05 0.21
Decreasing 0.18 0.04 0.13

Table 3.1: Proportion of sentences: in the data (left), simulated from the prior predictive
(middle), and simulated from the posterior predictive (right) that contain increasing rp
sequences (first row) and decreasing rp sequences (second row)

rp+ blocks. We observe that the proportion of rp+ blocks of every length is greater in

the data simulated from the posterior predictive than in the data simulated from the

prior predictive (yet still not as great as in the observed data).

We next look more specifically at the proportion of sentences that have at least one

increasing rp sequence (of any length), and the proportion of sentences that have at

least one decreasing rp sequence (of any length). Table 3.1 provides the proportion of

sentences with increasing and decreasing rp sequences in the observed data, in the data

simulated from the prior predictive, and in the data simulated from the posterior pre-

dictive. In the data, there is a significant asymmetry between increasing and decreasing

subsequences: 65 % of sentences include an increasing subsequence, but only 18 % of

the sentences include a decreasing subsequence. This matches the observations of De-

molin et al. (2016) and Chatain et al. (2023). Under the prior predictive, as expected,

there is no significant difference between increasing and decreasing subsequences. Both

types are rare, at respectively 5% and 4%. Under the posterior predictive, we observe

an asymmetry between increasing and decreasing subsequences, which occur in respec-

tively 21% and 13% of the sentences. This difference is notable, even though it is not

as large as the one observed in the original data. These observations show a similar

trend to that of Figure 3.6: they indicate that the posterior predictive is significantly

influenced by the data for these key statistics of interest, but that the amount of data is

possibly not large enough to match the massive asymmetries observed in the real data.
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Figure 3.6: Proportion of sentences in the data (black), simulated from the prior predic-
tive (green), and simulated from the posterior predictive (red) that contain sequences
of the form (rp+)N for N ∈ {1, . . . , 10}.

3.6 Discussion

We have proposed a Bayesian model for 2-MCFGs based on the hierarchical Dirichlet

process and have developed a sequential Monte Carlo algorithm to make inference. This

is the first time that a Bayesian model has been applied to this class of grammars.

Our method performed well in the simulation study based on the “copy” grammar,

recovering the correct grammar as soon as the Dirichlet parameters, α1 and α2 were

reasonable (both between 0.1 and 1) and as soon as the number of observed sentences,

T, was large enough (over 10).

In the case of the simulation study based on the grammar describing the linguistic

structure of Muriqui monkey vocalizations, our method succeeded to some extent, in

picking up the increasing sequence feature present in the language. Indeed, the pro-

portion of sentences simulated from the posterior predictive distribution exhibiting this

feature was much higher than the proportion of sentences simulated from the prior

predictive distribution exhibiting this feature. However, the proportions related to the

posterior predictive were significantly lower than the proportions related to the ob-

served data, suggesting, perhaps, that 105 sentences were not enough information to

fully learn every feature of the data. This is not surprising: while an exact representa-

tion of the monkey grammar in terms of 2-MCFG rules and nonterminal symbols, if it
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exists, remains unknown, it is unlikely that it would be as sparse as the copy grammar,

which was chosen specifically for its simplicity.

It could be interesting to explore how the model or SMC algorithm could be altered

to improve efficiency, and thus allow more data to be processed in a reasonable amount

of time. One possible extension to our model would be to use hierarchical Pitman–Yor

processes rather than hierarchical Dirichlet processes to model nonterminal symbols and

rules. Indeed, numerous authors have commented on the fact that PYPs produce power-

law distributions, that are closely related to those seen in natural language (Goldwater

and Griffiths (2007), Teh et al. (2006)).

This work was motivated by previous results that showed in various cases that

grammars describing certain natural languages are more complex than the standard

class of context-free grammars. An interesting future line of researchers would be to

use this model and SMC inference mechanism to calculate marginal likelihoods, and

thus to make model choice using Bayes factors between context-free and 2-MCFG,

in a similar way as Ryder et al. (2023) make model choice between the regular and

context-free grammars.
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3.7 Appendix

3.7.1 Evaluating partial trees

Recall that partial trees are trees that include one or more leaf nodes that are not

associated with an emission rule. We represent each node of an evaluated partial tree

by ⟨ζ1|ζ2⟩ where ζ1 and ζ2 are strings of terminal symbols and numbers, and where “|”

is a special symbol that indicates where the string of terminal symbols and numbers

ζ1ζ2 is split. This differs from the case of evaluated complete trees, where ζ1 and ζ2

must be strings of terminal symbols only.

Definition 9. An evaluated partial tree is a tree structure where each node is associated

with a pair of strings of numbers and terminal symbols. For example, some node x of

an evaluated partial tree may be associated with the 2-tuple ⟨ab4, 1⟩, where a, b ∈ A.

An evaluated partial tree is formed from a partial tree as follows. First, whenever an

emission rule Bj → (ak1 , ak2) takes place at some node of the partial tree, we associate

that node in the evaluated partial tree with the pair ⟨ak1|ak2⟩. Whenever a production

rule Bj → [Bk1 , Bk2 ] takes place at some node, we first must define the strings ζ ′1, ζ
′
2, ζ

′
3

and ζ ′4 as follows.

• If Bk1 is associated with a rule, let ⟨ζ1|ζ2⟩ be the strings associated with it in the

evaluated partial tree.

– If ζ1 is a string of terminal symbols or the empty symbol only (i.e. no

numbers), set ζ ′1 := ζ1. Otherwise set ζ ′1 := 1.

– If ζ2 is a string of terminal symbols or the empty symbol only (i.e. no

numbers), set ζ ′2 := ζ2. Otherwise set ζ ′2 := 2.

If Bk1 is not associated with a rule, set ζ ′1 := 1 and set ζ ′2 := 2.

• If Bk2 is associated with a rule, let ⟨ζ3|ζ4⟩ be the strings associated with it in the

evaluated partial tree.
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Figure 3.7: Left: A partial tree generated from the 2-multiple context-free grammar GD,2

(see Example 3). The rules used to generate the tree are (in order): S → fD[S, S], S →
fD[S, S], S → (a, a), S → (b, b). Right: The evaluated version of the 2-MCFG partial
tree.

– If ζ3 is a string of terminal symbols or the empty symbol only (i.e. no

numbers), set ζ ′3 := ζ3. Otherwise set ζ ′3 := 3.

– If ζ4 is a string of terminal symbols or the empty symbol only (i.e. no

numbers), set ζ ′4 := ζ4. Otherwise set ζ ′4 := 4.

If Bk2 is not associated with a rule, set ζ ′3 := 3 and set ζ ′4 := 4.

Recall that fj ∈ F is a permutation over 5 elements. Associate Bj in the evaluated

partial tree with the pair of strings ⟨fj(ζ ′1, ζ ′2, ζ ′3, ζ ′4, |)⟩. For example, suppose that

Bk1 were associated with the pair ⟨12|a1a2⟩ (where a1, a2 ∈ A), that Bk2 were not

yet associated with a rule, and that fj = (15342). Then we would associate Bj with

the output of the permutation fj when applied to the vector v := (ζ ′1, ζ
′
2, ζ

′
3, ζ

′
4, “|”) =

(1, a1a2, 3, 4, “|”). In this example, the output of fj when applied to v gives ⟨1|34a1a2⟩.

This process is repeated from the bottom to the top of the partial tree, until every

node in the evaluated partial tree is associated with a pair of strings of terminal symbols

and numbers.

3.7.2 Order of the rules

Here we provide details on the order in which nodes and their associated symbols and

rules are added to form the tree τt at time t of our SMC sampling scheme. Let’s use the
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symbol ζ to represent some indicator (to be overwritten) that describes where we are in

a partial tree at any given time. The symbol ζ will always represent both a particular

node of the tree and a side (either left or right). Given ζ and an evaluated partial tree,

we then can always identify a string of numbers and terminal symbols (since each node

of the evaluated partial tree is associated with two strings of numbers and terminal

symbols, one for each side).

We start by initialising ζ to be the left-hand side string of the root node of the

partially evaluated tree. If the left-hand string of the root node is either empty or

already contains terminal symbols only, we set ζ to be the right-hand string of the root

node. Next, we identify the first number appearing in the string associated with ζ.

For example, if the string were cde32g, the number to be identified would be 3. We

then identify which child node and which side corresponds to the selected number. The

number 3, for example, would mean to identify the left-hand side of the second child

node. We reset ζ to be equal to the identified node and side. We continue moving down

the tree in this way until ζ is set to be one of the strings associated with a leaf node.

We then draw a rule from the transition kernel (details are provided in Subsection

3.7.3). If this rule is a production rule, we continue as before by identifying the first

integer symbol of the string associated with ζ, and overwriting ζ to be the correspond-

ing child node and side of the extended partially evaluated tree. We extend the tree

downwards like this, overwriting ζ each time as long as the rule is a production rule.

When the rule is an emission rule, we replace ζ with the emitted symbol. Note that

under the transition kernel, emission rules take one of the following three forms

Bj → (ϵ, aj2)

Bj → (aj1 , ϵ)

Bj → (aj1 , aj2),

where aj1 , aj2 ∈ A. Note that since ζ only points to one side of the emission rule at

a time, it is possible for one of the symbols (the symbol to which ζ points last), to
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initially be unspecified. It will only be when ζ points to the node and side associated

with that symbol that the value it takes may be specified. When specified, it will be

the word ait where i is such that, at the time of emission, ait has not yet been emitted,

and the words a1:i−1
t already have been emitted.

We then re-evaluate the extended partial tree (as in Section 3.7.1). We continue

the process from the beginning (starting again at the left-hand side of the root node)

until all leaf nodes are associated with emission rules, and all symbols a1:ltt have been

emitted. The resulting tree is τt is complete, and the sentence yt may be formed by

concatenating the two strings associated with its evaluated version’s root node.

3.7.3 Transition kernel and weights

As described in Section 3.4, the posterior distribution we wish to estimate is

Π (τ1:T |ȳ) ∝
T∏
t=1

∏
x∈τ ′t

PRj(x)

(
R

q(x)+1
j(x) |R

1:q(x)
j(x) , B1:j(x)

)
,

where

PRj(x)

(
R

q(x)+1
j(x) |R

1:q(x)
j(x) , B1:j(x)

)
=

1

α2 + q(x)

α2H2 +

q(x)∑
i=1

δiRj(x)


H2 = (1− pe)P

⊗
2

B ⊗ PF + pe

(
(1− pϵ)P

⊗
2

A +
pϵ
2

(δϵ ⊗ PA + PA ⊗ δϵ)
)
.

Recall that every node of an evaluated tree represents a certain number of terminal

symbols in the form of two strings of terminal symbols. The partial trees τt,x for x ∈ τt

have been defined such that, if they were to be extended to form a complete tree, with

positive probability, the sentence associated with that complete tree would be yt. We

encode this condition by associating each node x of a partial tree with two numbers,

mx and Mx. The number mx is the minimal number of terminal symbols that the node

x of the partial tree will represent in the complete tree, and the number Mx represents
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the maximal number of terminal symbols that the node must represent, in order for the

probability that the partial tree produces the sentence s to be nonzero. The numbers

mx and Mx depend on the current partial tree τt,x and the length of the final sentence

lt, and are updated every time when new rules are added to the partial tree. See Section

3.7.4 for details on how this is done.

Mathematically, we have the following expression for the transition kernel.

K(τt|τ1:t−1, yt, lt) =
∏
x∈τ ′t

P⋆
Rj(x)

(
R

q(x)+1
j(x) |τt,x, R

1:q(x)
j(x) , B1:j(x), yt, lt

)

where the probabilities in the above product may be expressed in the form

P⋆
Rj(x)

(
R

q(x)+1
j(x) |τt,x, R

1:q(x)
j(x) , B1:j(x), yt, lt

)
= (1− p⋆e)H

⋆
2,p + p⋆eH

⋆
2,e,

where p⋆e is a probability in [0, 1] and H⋆
2,p and H⋆

2,e are distributions. The quantities

p⋆e, H
⋆
2,p and H⋆

2,e depend on the conditions mx and Mx and are provided explicitly at

the end of this section.

Under the transition kernel P ⋆
Rj(x)

, certain rules in R are not allowed (due to the

constraints as described above), and are given zero probability. Production rules that

are allowed are given probability proportional to their probability under H2. In other

words, there exists some constant α⋆ ∈ (0, 1] (provided below) such that for any pro-

duction rule Rp in the support of the transition kernel, the following holds.

α⋆H⋆
2,p(R

p) = α2H2(R
p)

After any production rule, the particle is re-weighted with

w⋆ =
α⋆

α2 + q(x)

(
1 +

q(x)⋆

α2H2(Rp)

)
,

where q(x)⋆ is the number of times that the rule Rp has already been “observed”,

and H2(R
p) is the density of Rp under the base distribution H2. The factor q(x)⋆

H2(Rp)
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adjusts the weight to take into account the fact that under the target distribution,

extra probability is given to rules that have already been observed. The factor 1
α2+q(x)

is a normalizing constant.

Because of the way the order at which the rules involved in the transition kernel are

emitted is defined (see Section 3.7.2), when terminal symbols from A are emitted under

the transition kernel, the values that they take are completely deterministic (they will

be the terminal symbols that correspond to the words in the sentence in the order at

which they are processed). Because of this, under the transition kernel, emission rules

that are allowed are given probability proportional to a variant of H2 that does not

involve the distribution PA: there exists some constant α⋆ ∈ (0, 1] such that for any

emission rules Re in the support of the transition kernel, the following holds

α⋆H⋆
2,e(R

e) = α2H2\A(Re)

H2\A(Re) := (1− pϵ)δ
⊗

2
A (Re) +

pϵ
2

(δϵ ⊗ δA + δA ⊗ δϵ) (Re),

where δA is the Dirac distribution on a symbol from the set A.

After an emission rule, in the case where one of the two emitted symbols symbols is

the empty symbol ϵ, and one of the emitted symbols is an element aj1 ∈ A, the particle

is re-weighted with

w⋆ =
α⋆

α2 + q(x)

(
µj1
a +

q(x)⋆

α2H2(Re)

)
,

and in the case where both of the emitted symbols are elements aj1 , aj2 ∈ A, the particle

is re-weighted with

w⋆ =
α⋆

α2 + q(x)

(
µj1
a µ

j2
a +

q(x)⋆

α2H2(Re)

)
,

where µj1
a = PA(aj1)µ

j2
a = PA(aj2), and where H2(R

e) is the probability density function

associated with the base distribution, H2, evaluated at Re. The factors µj1
a and µj2

a adjust

the weight to take into account the fact that under the target distribution, the emitted
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terminal symbols are not deterministic and are distributed according to PA. As in the

case of production rules, the factor q(x)⋆

H2(Re)
adjusts the weight to take into account the

fact that under the target distribution, extra probability is given to rules that have

already been observed and the factor 1
α2+q(x)

is a normalizing constant.

In order to write down α⋆, p⋆e, H
⋆
2,p and H⋆

2,e in closed form, we consider separately

all of the different cases, in terms of the constraints mx and Mx at node x.

1. mx = 1,Mx > 2

The rule may be any type of emission rule or production rule.

H⋆
2,p = P

⊗
2

B ⊗ PF

H⋆
2,e = (1− pϵ)δ

⊗
2

A +
pϵ
2

(δϵδA + δAδϵ)

p⋆e = pe

α⋆ = α2

2. mx = 1,Mx = 2

The rule cannot be a production rule but may be any type of emission rule.

H⋆
2,e = (1− pϵ)δ

⊗
2

A +
pϵ
2

(δϵδA + δAδϵ)

p⋆e = 1

α⋆ = α2pe

3. mx = 1,Mx = 1

The rule must be an emission rule emitting one symbol from A and one empty
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symbol ϵ.

H⋆
2,e =

1

2
(δϵδA + δAδϵ)

p⋆e = 1

α⋆ = α2pepϵ

4. mx = 2,Mx = 2

The rule must be an emission rule emitting two symbols from A.

p⋆e = 0

α⋆ = α2pe(1− pϵ)

5. mx = 2,Mx > 2

The rule may be an emission rule emitting two symbols from A, or may be any

type of production rule.

H⋆
2,p = P

⊗
2

B ⊗ PF

H⋆
2,e = δ

⊗
2

A

p⋆e = (1− pϵ)pe/(1− pe + (1− pϵ)pe)

α⋆ = α2(1− pe + (1− pϵ)pe)

6. mx > 2,Mx > 2

The rule must be a production rule.

H⋆
2,p = P

⊗
2

B ⊗ PF

p⋆e = 0

α⋆ = α2(1− pe)
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3.7.4 Updating mx and Mx

At the root of the tree, mx and Mx will not change, and will both be equal to the

length of the full sentence, lt. This is because, even when the tree is not yet complete,

we know that the strings of terminal symbols at the root node of the complete version

of the tree together will be equal to the final sentence.

Whenever new rules are added to a partial tree, mx and Mx of all nodes x of the

partial tree must be updated. Updates first take place locally at the node at which a

new rule has been applied, and then at the remaining nodes in the tree as a consequence

of this change. Throughout this subsection, we use the notation zi to denote the ith

child of some node (for i ∈ {1, 2}).

First, let’s look at the updates that take place locally when a rule is applied at

some node of the tree. Recall that there are two different types of rules possible in our

sampling scheme: production rules, and emission rules. We consider these two types

separately.

1. Production rule at the node x:

The value mx is updated as follows.

• mx ← max (mx, 2)

The maxima and minima of the child nodes of the new production rule are then

initialised as follows.

• mzi ← 1, i ∈ {1, 2}

• Mzi ←Mx − 1, i ∈ {1, 2}

2. Emission rule at the node x:

• If the emission rule consists of two symbols from the set A :
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The values mx and Mx are updated as follows.

Mx ← 2

mx ← 2

• Else if the emission rule consists of one symbol from the set A and one empty

symbol:

The value Mx is updated as follows.

Mx ← 1

Now, we look at the updates that take place in the tree as a consequence of an

update to a particular node. Our updates are based on the following definition.

Definition 10. We say that a partial tree is fully updated if, for all subtrees of the

partial tree consisting of one single parent x and its direct child nodes (zi, i ∈ {1, 2}),

the following are satisfied.

mx ≥ mz1 + mz2 (3.6)

mz1 ≥ mx −Mz2 (3.7)

mz2 ≥ mx −Mz1 (3.8)

and similarly

Mx ≤Mz1 + Mz2

Mz1 ≤Mx −mz2

Mz2 ≤Mx −mz1

We demonstrate how updates are made for all nodes of the tree in the case where mx

has been updated (increased). The case where Mx is updated (decreased) is analogous.
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Suppose that mx has been increased. Updating the tree involves simply applying

the following two steps.

1. • Set v be the parent node of x. Let zi, i ∈ {1, 2} be the child nodes of v (in

such a way that x will be one of the zi, i ∈ {1, 2}).

• Update mv.

mv ← max (mv,mz1 + mz2)

• Moving up the tree, reset v to be the parent node of v of the previous step,

and reset z1 and z2 to be the child nodes of the new v.

• Repeat the above two points until v is set to S.

2. For all subtrees of the partial tree consisting of a single parent v and its direct

children zi, i ∈ {1, 2}, starting from the topmost subtree and moving down the

partial tree, do the following.

Mz1 ←Mv −mz2

Mz2 ←Mv −mz1

Step 1 ensures that Equation 3.6 of the definition of a fully updated tree is satisfied,

and Step 2 ensures that Equation 3.7 and Equation 3.8 of the definition is satisfied.
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Chapter 4

On consistency issues for Bayesian

clustering using nonparametric

priors
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Abstract

Bayesian nonparametric (BNP) mixture models are popular for modelling complex

data. Their posterior distributions exhibit nice theoretical properties, concentrating

at the optimal minimax rate to the true data-generating distribution, and extensive

research has been devoted to developing this theory. However it has been shown that

these models are inconsistent for the number of clusters. In the case of Dirichlet process

(DP) mixture models, this problem can be mitigated when a prior is put on the model’s

concentration hyperparameter α, as is common practice. We prove that Pitman–Yor

process (PYP) mixture models (which generalise DP mixture models) remain inconsis-

tent for the number of clusters when a prior is put on α, in the special case where the

true number of components in the data generating mechanism is equal to 1 and the

discount parameter σ ∈ (0, 1) is a fixed constant.

When considering the space over partitions induced by BNP mixture models, point

estimators such as the maximum a posteriori (MAP) are commonly used to summarise

the posterior clustering structure of such models, which alone can be complex and

difficult to interpret. We prove consistency of the MAP partition for DP mixture models

when the concentration parameter, αn, goes deterministically to zero, and when the true

partition is made of only one cluster.

4.1 Introduction

Mixture models, popular for their flexibility and simplicity, are commonly used in the

statistical analysis of heterogeneous data where observations are assumed to come from

a number of different populations. Since in a mixture, each observation is assumed to

come from one population, such models naturally induce a clustering: two data points

belong to the same cluster if they come from the same population.

Classical methods for cluster analysis include agglomerative hierarchical clustering

(where two groups chosen to optimize some criterion are merged at each stage of the

algorithm) or K-means clustering (where data points are moved from one group to
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another until there is no further improvement in the sum of squares criterion, Mac-

Queen (1967)). Although there has been a considerable amount of research into the

development of these classical methods, they are largely heuristic.

Another solution is to use model-based methods, for which statistical properties may

be formally inferred. In finite mixture models, the clusters are related to the components

of mixtures. Fraley and Raftery (2002) review a general methodology for model-based

clustering using finite mixture models. Data is fit with a number of different mixture

models, each with a different number of components, and the best model is selected in

terms of some criterion, such as the Akaike information criterion (AIC) or the Bayes

information criterion (BIC). This method, however, may be computationally expensive

since many models must be fit. A Bayesian approach could alternatively be taken

by putting a parametric prior (such as a Poisson) on the number of components, but

inference can be challenging when the dimensionality or the amount of data becomes

large (although new strategies have been proposed recently, see Miller and Harrison,

2018).

In this work, we consider infinite mixture models where the mixing measure is mod-

eled with a nonparametric prior. In such models, the number of components possible

has no upper bound. Inference may be performed in a unified way without the need

for strong assumptions on the number of components and with no need to fit multiple

models.

While the most standard nonparametric prior remains the Dirichlet process (DP)

introduced by Ferguson (1973), many extensions now exist. The Pitman–Yor process

(PYP, Pitman and Yor, 1997) is a natural extension of the DP with an extra parameter

increasing model flexibility. Compared with DP mixtures, PYP mixtures are better

suited when the sizes of clusters are more evenly distributed. Due to the interpretability

of their hyperparameters, ease of implementation, and nice mathematical properties,

Bayesian nonparametric (BNP) priors are widely used in practice, and in the last two

decades, a huge amount of research has focused on their properties (see for example

Ghosal and van der Vaart, 2017; Müller et al., 2018). The use of the DP as a mixing
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measure was first introduced by Lo (1984). Thanks to the wide variety of efficient

computational methods which have been introduced for their inference (Escobar and

West, 1998; MacEachern and Müller, 1998; Neal, 2000; Blei et al., 2006), nonparametric

mixture models have become common in a wide range of modelling applications.

In the context of density estimation, under certain conditions the posterior distri-

bution of DP mixture models concentrates at the true data-generating density at the

minimax-optimal rate in L1 and Hellinger norms (Ghosal and van der Vaart, 2017;

Ghosal et al., 1999). This holds for other types of Bayesian nonparametric priors, such

as PYP priors (Lijoi et al., 2005). Nguyen (2013) further proved posterior consistency

of the mixing distribution in the Wasserstein metric for DP and PYP mixture models.

It is important to realise that consistency of the posterior distribution for the data-

generating density and even for the mixing measure does not imply consistency of

the inferred number of clusters. Empirically, many researchers have observed that DP

mixture posteriors tend to overestimate the number of clusters (West and Escobar, 1993;

Lartillot and Philippe, 2004; Onogi et al., 2011). More recently, Miller and Harrison

(2013, 2014) proved that the posterior distribution on the number of clusters does not

concentrate to the number of components in DP and PYP mixtures. Alamichel et al.

(2022) extended this result to the case of Gibbs-type processes. A possible explanation

for this inconsistency result can be found in a result proved by Rousseau and Mengersen

(2011), that in overfitted finite or infinite mixture models, the weights attributed to

extra clusters go to zero as the number of observations grows. Provided that the weights

for the extra components are infinitesimally small, any mixture can be approximated

arbitrarily well by a mixture with a larger number of components.

Despite the above inconsistency results, it is possible to achieve posterior consistency

for the number of clusters in the mixture models we consider. Guha et al. (2021)

introduce a fast and simple post-processing procedure for DP mixtures which provides

clustering consistency. Alamichel et al. (2022) extend this result to PYP mixtures.

Ascolani et al. (2022) show that posterior consistency for the number of clusters can

be achieved in certain cases for a DP mixture model by putting a prior on the DP
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concentration parameter α. DP mixtures modeled in this way can be considered as

mixtures of DP mixtures (Antoniak, 1974) and are commonly used in practice.

Beyond the distribution over the number of clusters, an interesting question in clus-

ter analysis is the distribution over the partition space across clusters induced by BNP

mixture models. This space is large and complex: the number of possible clusterings

of n items grows exponentially according to B(n), the Bell number of n items (Bell

(1934)). Since it would be infeasible to describe the posterior density of all the unique

partitions, it is common practice to find a point estimator to concisely represent the

posterior.

Some authors have proposed BNP model clustering estimators based on pairwise

probabilities that items belong to the same cluster. Medvedovic et al. (2001) and

Medvedovic and Sivaganesan (2002) have proposed methods that make use of the pos-

terior similarity matrix. For a sample of size n, the elements of this n × n matrix

represent the probability that two data points are in the same cluster. Classical hi-

erarchical clustering algorithms are then applied based on this similarity matrix. The

disadvantage of these methods is that they require sampling from the posterior cluster-

ing distribution (usually through Markov chain Monte Carlo). Posterior probabilities

of individual partitions are difficult to compute reliably from Monte Carlo samples.

Another approach is to find the partition that minimizes the posterior risk associated

to some loss function. That is, the partition that minimizes

l(c′|y) =
∑
c∈C

l(c′, c)π(c|y)

for some choice of loss function l(c′, c), where C is the set of all possible partitions.

Binder (1978) discusses loss functions for Bayesian clustering. Dahl (2006) and Lau

and Green (2007) propose loss functions that penalize miss-assigned groups. Wade

and Ghahramani (2018) provide a discussion on types of loss functions and methods of

finding the optimal partition.

The optimal Bayes estimate of the clustering under the 0-1 loss function is equiva-
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lent to the maximum a-posteriori (MAP) clustering estimator (Binder (1978)), and is

commonly used in Bayesian model-based procedures (Broët et al. (2002), Kim et al.

(2006), Li et al. (2007)). The 0-1 loss function may be described intuitively as follows:

no loss is incurred if the clustering estimate equals the true clustering and a loss of one

is incurred for any other clustering estimate. Many fast algorithms have been developed

for finding the MAP estimator, making it often more convenient than other estimator

choices in practice. Dahl (2009) proposes a fast and efficient search algorithm that

is guaranteed to find the MAP clustering for univariate product partition models (of

which the Dirichlet process mixture model is a special case when one integrates over

the model parameters). Fuentes-Garćıa et al. (2019) propose an alternative algorithm

for finding the MAP clustering which is motivated by Hopfield’s network.

Rajkowski (2019) investigate theoretical properties of the MAP partition in the

particular case of Gaussian Dirichlet process mixture models (where the cluster means

have Gaussian distribution and, for each cluster, the observations within the cluster

have Gaussian distribution). Along with some nice theoretical properties, they prove

that model mis-specification can lead to non-consistency of the MAP partition.

Our contributions are as follows. In Theorem 4.3.0.1 we show that Ascolani et al.

(2022)’s result cannot be directly extended to PYP mixtures: we prove inconsistency

for the number of clusters for well-specified Pitman–Yor process mixture models with a

prior on the concentration parameter α, when the true number of clusters in the data

generating mechanism, t, is equal to one, and when the discount parameter σ ∈ (0, 1)

is a fixed constant. In Theorem 4.3.0.2, we prove consistency of the MAP partition for

well-specified DP mixture models when the concentration parameter αn goes to zero at

an appropriate rate, and when the true partition is made of only one cluster.

Note that these two results deal with quite different settings.

• (i) While Theorem 4.3.0.1 considers the distribution over the number of clusters

induced, Theorem 4.3.0.2 considers the MAP estimator over the whole space of

partitions.
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• (ii) While Theorem 4.3.0.1 deals with PY mixture models, Theorem 4.3.0.2 deals

with DP mixture models.

• (iii) While in Theorem 4.3.0.1 we assume a prior distribution on the PY concen-

tration parameter α, in Theorem 4.3.0.2 the DP concentration parameter αn goes

to zero as n→∞.

The remainder of this chapter is organized as follows. In Section 4.2 we recall formal

definitions for Dirichlet process and Pitman–Yor process mixture models, and introduce

the notation that we will be using throughout the chapter. In Section 4.3 we present

our two theoretical results, whose proofs are given in Section 4.4. In Section 4.5 we

provide a short discussion. The proofs of the lemmas used in our proofs, as well as a

short simulation study to illustrate Theorem 4.3.0.1, are left to the appendix sections

4.6.1 and 4.6.2 respectively.

4.2 Preliminaries

Formally, we assume data y1:n is iid from a distribution P ⋆ with pdf with respect to

some measure µ

p⋆(y) =
t∑

j=1

ρ⋆jk(y|ϕ⋆
j) t ∈ N, (4.1)

where the ρ⋆j are probability weights in (0, 1) summing to one, and where the k(·|ϕ⋆
j) are

probability kernels, each depending on some parameter ϕ⋆
j . The above may alternatively

be expressed as a convolution of the component-specific kernel k(·|ϕ) with the discrete

mixing measure G⋆ =
∑t

j=1 ρ
⋆
jδϕ⋆

j
:

p⋆(y) =

∫
k(y|ϕ)G⋆(dϕ).

We consider the well-specified case where the kernel density k(·|ϕ) is known, but

where the integer t, the weights ρ⋆j , and the latent variables ϕ⋆
j in Equation (4.1) are all

unknown. In order to allow for an unbounded number of components t in the mixture,

101



we consider nonparametric mixture models, with nonparametric priors on the mixing

measure G.

The most standard BNP prior is the Dirichlet process (DP). When G is a draw from

a DP, we write G ∼ DP (α,Q0), where α > 0 is the concentration parameter and where

Q0 is the base distribution. The DP is characterized by the generative distribution

of data points drawn from it: if (ϕ1, . . . , ϕn, ϕn+1) ∼ G and G ∼ DP (α,Q0), then

conditional on (ϕ1, . . . , ϕn), the (n+1)th observation ϕn+1 is equal to ϕj with probability

nj

α+n
(where nj represents the number of components in (ϕ1, . . . , ϕn) that take the same

value as ϕj) and is distributed according to Q0 with probability α
α+n

.

The Pitman–Yor process (PYP) is a generalization of the DP, with an extra parame-

ter that allows for the sizes of clusters to be more evenly distributed. When G is a draw

from a PYP, we write G ∼ PY P (α, σ,Q0), where α and Q0 are as in for the case of DPs

and where σ is the additional discount parameter. The PYP is also characterized by

the generative distribution of data points drawn from it: if (ϕ1, . . . , ϕn, ϕn+1) ∼ G and

G ∼ PY P (Q0, α, σ), then conditional on (ϕ1, . . . , ϕn), the (n+ 1)th observation ϕn+1 is

equal to ϕi with probability
nj−σ

α+n
and is distributed according to Q0 with probability

α+nσ
α+n

. If σ = 0 we get the DP.

We consider the distributions over partitions, τ induced by the DP and the PYP. For

every pair of numbers (n, s) ∈ N2 with s ≤ n, we let τs(n) denote the set of partitions

of {1, . . . , n} into s non empty subsets. Conditional on parameter α (and possibly of

σ) DP and PYP mixture models induce the following prior distributions on the space

of partition for any n ∈ N, and any A(n) = {A(n)
1 , . . . , A

(n)
s } ∈ τs(n), s ≤ n:

ΠDP (A(n)|α) =
αs

α(n)

s∏
j=1

(aj − 1)!, (4.2)

ΠPY P (A(n)|α, σ) =
σs−1(1 + α

σ
)(s−1)

(1 + α)(n−1)

s∏
j=1

(1− σ)(aj−1), (4.3)

respectively, where α(n) = α · · · (α+n−1) is the ascending factorial (with the convention

that α(0) = 1) and aj = |A(n)
j | stands for the cardinality of the set A

(n)
j . We consider
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partitions A(n) such that (1) aj ̸= 0 for j = 1, . . . , s (2) A
(n)
i ∩ A

(n)
j = ∅ for i ̸= j and

(3) ∪sj=1A
(n)
j = {1, . . . , n}. The A

(n)
j , j = 1, . . . s represent the clusters.

Conditionally on the partition A(n), the probability densities of the data y1:n =

(y1, . . . , yn) and of the cluster-specific parameters ϕ1:s = (ϕ1, . . . , ϕs) are

p(y1:n|ϕ1:s, A
(n)) =

s∏
j=1

∏
i∈A(n)

j

k(yi|ϕj), π(ϕ1:s|A(n)) =
s∏

j=1

q0(ϕj),

where q0 is the density of the base measure Q0 of the DP and the PYP.

As previously mentioned, BNP mixture models with fixed hyperparameters are in-

consistent in the number of clusters induced. In order to achieve consistency for the

number of clusters induced, Ascolani et al. (2022) consider Dirichlet process mixture

models with a prior on the concentration parameter α:

Yi|ϕi
ind∼ k(·|ϕi), ϕi|G

iid∼ G G|α ∼ DP(α,Q0), α ∼ ζ, (4.4)

where ζ is a prior distribution on α.

In our Theorem 4.3.0.1, we consider an extension of Ascolani et al. (2022)’s model,

which are Pitman–Yor mixture models with a prior on the concentration parameter

α > 0 and with a fixed discount parameter σ ∈ (0, 1):

Yi|ϕi
ind∼ k(·|ϕi), ϕi|G

iid∼ G G|α, σ ∼ PYP(α, σ,Q0), α ∼ ζ. (4.5)

We use the standard notation Kn to denote the number of clusters in a sample of size

n. Under our model (4.5), Kn has the following prior distribution

ΠPY P (Kn = s|σ) =

∫ ∑
A(n)∈τs(n)

ΠPY P (A(n)|α, σ)ζ(dα)

where ΠPY P (A(n)|α, σ) is as Equation (4.3) above.

After having observed data y1:n, we consider the posterior distribution ΠPY P (Kn =
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s|y1:n, σ). To prove our result, we start with the joint distribution which, for every s ∈ N

has density with respect to the product measure µ
⊗

n times the counting measure

pPY P (y1:n, s|σ) =
∑

A(n)∈τs(n)

ΠPY P (A(n)|σ)
s∏

j=1

p(y
A

(n)
j

) (4.6)

where ΠPY P (A(n)|σ) =
∫

ΠPY P (A(n)|α, σ)ζ(dα) and p(y
A

(n)
j

) =
∫ ∏

i∈A(n)
j

k(yi|ϕ)q0(ϕ)dϕ

is the marginal likelihood for the subset of observations identified by A
(n)
j , given that

they are clustered together.

Throughout, for xn and zn two n−dependent random variables such that zn ̸= 0 ∀n,

we use the notation xn = o(zn) if xn

zn
→ 0 as n→∞.

4.3 Theoretical results

Both of our results rely on the following assumption on the base measure Q0 of the

BNP random measure.

Assumption 6. The base measure Q0 is absolutely continuous with respect to the

Lebesgue measure, and its density q0 is bounded.

Throughout, we assume kernels of the form

k(y|ϕ) = g(y − ϕ), y ∈ R.

Our Theorem 4.3.0.1, relies on the following assumptions on the function g.

Assumption 7. The function g is positive on some interval [a, b] and 0 elsewhere.

Assumption 8. The function g is differentiable with bounded derivative in (a, b).

The above two assumptions require that the kernel is a location-family distribution

with positive density on a bounded support. This class is fairly general and includes as
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special cases uniform distributions and truncated normal distributions. Our Theorem

4.3.0.2 assumes that the kernel must either be a Gaussian, a truncated Gaussian, a

uniform, or a triangular distribution, which are all common classes.

For our Theorem 4.3.0.1, we will require three additional assumptions on the prior

ζ of α, identical to the assumptions used by Ascolani et al. (2022), which we re-state

below.

Assumption 9. The prior ζ is absolutely continuous with respect to the Lebesgue mea-

sure. Its density is also denoted by ζ.

Assumption 10. There exist ϵ, δ, β such that, for all α ∈ (0, ϵ) it holds that δαβ ≤

ζ(α) ≤ αβ

δ
.

Assumption 11. There exist D, ν, κ > 0 such that
∫
αsζ(α)dα < Dκ−sΓ(ν + s + 1)

for every s ≥ 1.

As demonstrated in Ascolani et al. (2022), Assumptions (9) - (11) are satisfied by

common families of distributions, such as uniform distributions over (0, c) with c > 0,

or gamma distributions with shape ν and rate κ.

Theorem 4.3.0.1. Suppose that the kernel k, the density q0 and the prior ζ over

the concentration parameter α satisfy Assumptions (6) - (11) stated above. For every

distribution on data P ⋆ with density p⋆ as in (4.1), for the number of components t = 1,

we have

ΠPY P (Kn = 1|y1:n) ̸→ 1

uniformly in P ⋆ as n→∞.

Theorem 4.3.0.1 shows that, unlike for the case of DP mixture models, PYP mixture

models with fixed nonzero σ remain inconsistent for the number of clusters even when

a prior is put on the concentration parameter α. Our negative result holds for data

with one mixture component (t = 1 when the mixture is described by (4.1)), and

when the discount parameter σ is a nonzero constant in (0, 1). The proof rests on
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analysing the ratio Π(Kn=s|y1:n)
Π(Kn=1|y1:n) , as consistency cannot hold if it does not converge to

0 as n → ∞. Following the strategy of Ascolani et al. (2022), this ratio can be split

into the product of two quantities, one capturing the impact of the prior distribution

on the concentration parameter α, and the other independent of the prior on α. In the

Dirichlet process case with a prior on α, the first quantity goes to 0 and the second

remains bounded. We show that in the Pitman–Yor case, the σ parameter enters the

first quantity and prevents it from vanishing as n → ∞, destroying consistency and

highlighting a fundamental difference between the DP and PY processes.

Theorem 4.3.0.2. Suppose that the density q0 satisfies Assumption (6) stated above,

and suppose that the DP concentration parameter αn = o
(

1
log(n)

)
. For every distribu-

tion on data P ⋆ with density p⋆ as in (4.1), for Gaussian, truncated Gaussian, uniform,

or triangular kernels k, and for the number of components t = 1, we have

P ⋆

{
∃A(n) ̸= A(n)⋆ such that

ΠDP

(
A(n)|y1:n

)
ΠDP (A(n)⋆|y1:n)

> 1

}
→ 0

as n→∞ where A(n)⋆ represents the true partition of the data (i.e. one single cluster).

Theorem 4.3.0.2 considers the whole space of partitions (not just the number of

clusters induced), and more specifically the MAP point estimator of that space. Our

result holds when the concentration parameter, αn, is sent deterministically to 0 at rate

1
log(n)

, as is done, for example in Ohn and Lin (2023). Our result holds for Gaussian,

truncated Gaussian, uniform or triangular kernels, which are all common classes.

Our result holds for data with one mixture component (t = 1 when the mixture is

described by (4.1)), but seems to generalise to any value, t under some assumptions of

the separability of the cluster components. This is a topic of ongoing work.

106



4.4 Proof of Theorem 4.3.0.1 and Theorem 4.3.0.2

Without loss of generality, through a linear rescaling, we assume [a, b] = [−c, c]. For

convenience, we rewrite the assumptions on g and Q0 as

T1. ∃m,M such that 0 < m ≤ g(y) ≤M <∞ for every y ∈ [−c, c];

T2. g is differentiable on (−c, c) and ∃R such that |g
′(y)

g(y)
| ≤ R <∞ for every y ∈ (−c, c);

T3. ∃U > 0 such that h(y) := q0(y) + q0(−y) ≤ U for every y ∈ [0, 2c];

T4. ∃L > 0 such that q0(ϕ) ≥ L for every ϕ in a neighbourhood of ϕ⋆
j , for every j.

4.4.1 Statement of lemmas

The proof of Theorem 4.3.0.1 relies on the following simple lemma, used by and proved

by Ascolani et al. (2022). It justifies working with ratios, which allows us to avoid

calculations of marginal likelihoods of the observed data.

Lemma 4.4.1.1. The convergence Π(Kn = t|y1:n)→ 1 as n→∞ holds if and only if

one has

∑
s ̸=t

Π(Kn = s|y1:n)

Π(Kn = t|y1:n)
→ 0 as n→∞.

The proof of Theorem 4.3.0.2 relies on the remaining five lemmas, stated below.

The proofs for Lemma 4.4.1.2 and Lemma 4.4.1.3 are provided in the appendix. Lemma

4.4.1.4 and Lemma 4.4.1.5 are used by and proved by Ascolani et al. (2022), and we

refer the reader to that paper for their proofs. Lemma 4.4.1.6 comes from Rajkowski

(2019) (for the case of Gaussian kernels). We refer the reader to that paper for its

proof, which is straightforward to extend to other kernels, such as truncated Gaussian,

uniform or triangular kernels.
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Lemma 4.4.1.2. Let s and n be any positive integers with s ≤ n, let x be any posi-

tive real number, and let {aj}1≤j≤s be any set of s strictly positive integers satisfying∑s
j=1 aj = n. Then,

arg max
{aj}1≤j≤s

s∏
j=1

(aj − 1)! = {ãj}1≤j≤s, (4.7)

where ã1 = ã2 = · · · = ãs−1 = 1, and ãs = n− s + 1 (up to a permutation). We have

s∏
j=1

(ãj − 1)! = (n− s)!.

Lemma 4.4.1.3. Let s and n be any positive integers with s ≤ n, and let {aj}1≤j≤s be

any set of s strictly positive integers satisfying
∑s

j=1 aj = n. Then,

arg min
{aj}1≤j≤s

s∏
j=1

(aj + 1) = {ãj}1≤j≤s, (4.8)

where ã1 = ã2 = · · · = ãs−1 = 1, and ãs = n− s + 1 (up to a permutation). We have

s∏
j=1

(ãj + 1) = 2s−1(n− s + 2).

Lemma 4.4.1.4. Under model (4.1) with t = 1, there exists W > 0 and n′ ∈ N such

that for all n ≥ n′ it holds

∫
R

∏
i∈{1,...,n}

g(yi − ϕ)

g(yi − ϕ⋆
1)
q0(ϕ)dϕ ≥ WZn

n
√

log(n)

where, with y(n) denoting the maximum observed data-point, Zn is defined as

Zn := min[1, n
√

log(n){c + ϕ⋆
1 − y(n)}].
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Furthermore, Zn → 1 in P ⋆-probability as n→∞.

Lemma 4.4.1.5. Under y1:n iid from a distribution with pdf as in Equation 4.1 with

t = 1, it holds

E


s∏

j=1

∫
Rs

∏
i∈A(n)

j

g(yi − ϕj)

g(yi − ϕ⋆
1)
q0(ϕs)dϕs

 ≤
(
U

m

)s s∏
j=1

1

aj + 1

where (ϕ1, . . . , ϕs) ∈ Rs, where A(n) = {A(n)
1 , . . . , A

(n)
n } is a partition of the set {1, . . . , n}

into s ≤ n clusters, and where m and U are defined in T1 and T3.

Lemma 4.4.1.6. When modeling DP mixtures of the form of Equation (4.1), with

Gaussian, truncated Gaussian, uniform of triangular kernels, the MAP partition divides

the data into clusters whose convex hulls are disjoint. In particular, the MAP partition

respects the ordering of the data.

4.4.2 Proof of Theorem 4.3.0.1

Proof. By Lemma 4.4.1.1, it will be sufficient to prove that Π(Kn=s|y1:n)
Π(Kn=1|y1:n) ̸→ 0 pointwise

in y1:n as n→∞, for some s > 1. We will prove this using s = 2.

In order to prove our result, we make use of results of the asymptotic behavior of

certain quantities under the Dirichlet process mixture model of Ascolani et al. (2022),

which can be described by Equation (4.4). Throughout this proof we will thus use the

subscript DP to indicate that a quantity is related to the Dirichlet process model, and

we will use the subscript PY P to indicate that a quantity is related to the Pitman–Yor

model, whenever there is ambiguity.

Under our Pitman–Yor mixture model, by applying Equation (4.6), we have

ΠPYP(Kn = 2|y1:n)

ΠPYP(Kn = 1|y1:n)
=

∫
σ
(
1 + α

σ

) ζ(α)
(1+α)(n−1)

dα∫ ζ(α)
(1+α)(n−1)

dα

∑
A(n)∈τ2(n)

∏2
j=1(1− σ)(aj−1)p(y

A
(n)
j

)

(1− σ)(n−1)p(y1:n)

= CPYP(n, 1, 2)RPYP(n, 1, 2)

109



where

CPYP(n, 1, 2) :=

∫
σ
(
1 + α

σ

) ζ(α)
(1+α)(n−1)

dα∫ ζ(α)
(1+α)(n−1)

dα

and

RPYP(n, 1, 2) :=

∑
A(n)∈τ2(n)

∏2
j=1(1− σ)(aj−1)p(y

A
(n)
j

)

(1− σ)(n−1)p(y1:n)
.

Similarly, under the Dirichlet process mixture model of Ascolani et al. (2022), one

gets
Π(Kn = s|y1:n)DP

Π(Kn = t|y1:n)DP

= CDP(n, t, s)RDP(n, s, t),

where CDP(n, t, s) is an integral in α over all of the terms involving α, and RDP(n, t, s)

contains all of the remaining factors:

CDP(n, t, s) :=

∫
[αsζ(α)/α(n)]dα∫
[αtζ(α)/α(n)]dα

and

RDP(n, t, s) :=

∑
A(n)∈τs(n)

∏s
j=1(aj − 1)!

∏s
j=1 p(y

A
(n)
j

)∑
B∈τt(n)

∏t
j=1(bj − 1)!

∏t
j=1 p(yBj

)
.

Ascolani et al. (2022) prove that

CDP(n, t, s)→ 0 as n→∞ ∀0 < t < s. (4.9)

Now, since our expression RPYP(n, 1, 2) above does not depend on α, it is identical

to the corresponding expression in the setup of Miller and Harrison (2014), who prove

that it does not converge to zero as n→∞. What is left to show is that our expression

CPYP(n, 1, 2) above does not converge to zero as n→∞.
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We then have,

CPYP(n, 1, 2) =

∫
σ
(
1 + α

σ

) ζ(α)
(1+α)(n−1)

dα∫ ζ(α)
(1+α)(n−1)

dα

= σ +

∫
α ζ(α)

(1+α)(n−1)
dα∫ ζ(α)

(1+α)(n−1)
dα

= σ +

∫
α2 ζ(α)

(α)(n)
dα∫

α ζ(α)
(α)(n)

dα

= σ + CDP(n, 1, 2)→ σ as n→∞,

where the final line above comes from the special case of Equation (4.9) where t = 1

and s = 2.

4.4.3 Proof of Theorem 4.3.0.2

Proof. Throughout this proof, we let E denote expectation with respect to the distri-

bution of the data, P ⋆ (whose pdf p⋆ is given in Equation (4.1)). Recall that we denote

the jth cluster of A(n) by A
(n)
j , and we denote the cardinality of A

(n)
j by aj. We use the

notation [n] to represent the cluster of A(n)⋆, which is of cardinality n. For any cluster,

say B of the data, let yB denote the data in that cluster, and let p(yB) denote the

marginal likelihood of all of the data in that cluster:

p(yB) =

∫ ∏
i∈B

k(yi|ϕ)q0(ϕ)dϕ.

We define the set Ωn := {y1:n|Zn > 1
2
}, where Zn is defined in Lemma 4.4.1.4. On

the set Ωn, by Lemma 4.4.1.4, it holds that

p⋆(y[n])

p(y[n])
≤

n
√

log(n)

WZn

≤
2n
√

log(n)

W
, (4.10)

where W is a fixed constant. Therefore, on the set Ωn, for any partition A(n) with s
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clusters, we have

P ⋆

(
ΠDP (A(n)|y1:n)

ΠDP (A(n)⋆|y1:n)
> 1

)
= P ⋆

(
αs
n

αn

∏s
j=1(aj − 1)!

(n− 1)!

∏s
j=1 p(y

A
(n)
j

)

p(y[n])
> 1

)

= P ⋆

(
αs
n

αn

∏s
j=1(aj − 1)!

(n− 1)!

∏s
j=1 p(y

A
(n)
j

)

p⋆(y[n])

p⋆(y[n])

p(y[n])
> 1

)

≤ P ⋆

(
αs
n

αn

∏s
j=1(aj − 1)!

(n− 1)!

∏s
j=1 p(y

A
(n)
j

)

p⋆(y[n])

2n
√

log(n)

W
> 1

)

≤ αs−1
n

∏s
j=1(aj − 1)!

(n− 1)!

2n
√

log(n)

W
E

(∏s
j=1 p(y

A
(n)
j

)

p⋆(y[n])

)

≤ αs−1
n

∏s
j=1(aj − 1)!

(n− 1)!

2n
√

log(n)

W

(
U

m

)s s∏
j=1

1

aj + 1

≤ αs−1
n

∏s
j=1(ãj − 1)!

(n− 1)!

2n
√

log(n)

W

(
U

m

)s s∏
j=1

1

ãj + 1

= αs−1
n

(s− 1)!

(n− 1)!

2n
√

log(n)

W

(
U

m

)s s∏
j=1

1

2s−1(n− s + 2)

= αs−1
n

(s− 1)!

(n− 1)!

2n
√

log(n)

W

(
U

m

)s
1

2n

=
(s− 1)!

(n− 1)!

1

W

(
U

m

)s

αs−1
n

√
log(n). (4.11)

The first line of the above comes from applying Bayes’ rule to the numerator and to

the denominator, with the prior distributions on partitions given in Equation (4.2), the

third line comes from applying Equation (4.10), the fourth line comes from using the

Markov inequality, the fifth line comes from Lemma 4.4.1.5, the sixth line comes from

Lemma 4.4.1.2 and Lemma 4.4.1.3, the eighth line comes form the fact that the function

h(s) = 1
2s−1(n−s+2)

is strictly decreasing in s (since h(s+1)
h(s)

= 1
2
n−s+2
n−s+1

< 1 ∀s < 1) and

thus takes its maximal value at s = 2 (recall that we consider values of s in the range

{2, . . . , n}), and the final line comes from simply rearranging the terms.

Now, by Lemma 4.4.1.6, we have that the MAP partition must respect the ordering

of the observations. For s ∈ {1, . . . , n}, let A(\)
s denote the set of partitions that have
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s clusters and that respect the ordering of the data. Note that the cardinality of the

set A(\)
s is equal to (n−1)!

(n−s)!
.

We then have,

P ⋆

(
∃A(n) ̸= A(n)⋆ such that

ΠDP

(
A(n)|y1:n

)
ΠDP (A(n)⋆|y1:n)

> 1

)

≤ P ⋆

({
∃A(n) ̸= A(n)⋆ such that

ΠDP

(
A(n)|y1:n

)
ΠDP (A(n)⋆|y1:n)

> 1

}
∩ Ωn

)
+ P ⋆ (Ωc

n)

≤
∑

s∈{2,...,n}

∑
A(n)∈A(\)

s

P ⋆

({
ΠDP

(
A(n)|y1:n

)
ΠDP (A(n)⋆|y1:n)

> 1

}
∩ Ωn

)
+ P ⋆ (Ωc

n)

≤
∑

s∈{2,...,n}

(n− 1)!

(n− s)!

(s− 1)!

(n− 1)!

1

W

(
U

m

)s

αs−1
n

√
log(n) + P ⋆ (Ωc

n)

≤ 1

W

(
U

m

)2

αn

∞∑
i=0

(
Uαn

m

)i√
log(n) + P ⋆ (Ωc

n)

=
U

mW

(
Uαn

m

1− Uαn

m

)√
log(n) + P ⋆ (Ωc

n)

→ 0

as n→∞. The third line of the above comes from Lemma 4.4.1.6, the fourth line comes

from applying Equation 4.11, and the final line comes from the fact that αn = o
(

1
log(n)

)
combined by the fact that By Lemma 4.4.1.4, P ⋆ (Ωc

n)→ 0 as n→∞.

4.5 Discussion

In our Theorem 4.3.0.1 we have proved inconsistency for the number of clusters when

fitting single-component mixtures with Pitman–Yor mixture models with a prior on the

concentration parameter α and fixed discount parameter σ. Our result holds when the

true number of clusters in the data-generating mechanism is one. While hinting at what

to expect, further study would be needed to fully understand clustering consistency for a
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data-generating mechanism with an arbitrary number of components. While our result

is limited to the setting where the discount parameter σ is kept fixed, it is common in

practice to put a prior on both PY parameters α and σ in PY mixture models. We

carried out a short simulation study (see Section 4.6.2), which suggests inconsistency

in this case, but consistency when keeping α fixed and putting a prior on σ. Both

situations are the subject of current investigation.

In our Theorem 4.3.0.2, we have proved the posterior consistency for the MAP par-

tition when fitting a single-component mixture with Dirichlet process mixture models

when concentration parameter αn goes to zero as the number of obersvations goes to

infinity. This result seems to generalise to multi-component mixtures, in particular

when one imposes strong assumptions on the separability of the mixture components,

as is done by Ascolani et al. (2022). This is a topic of ongoing work.

Our result contrasts the inconsistency result of Rajkowski (2019) who consider the

concentration parameter α to be a fixed constant, highlighting the crucial impact of the

treatment of α when considering consistency. While it is not uncommon to choose αn

to be a decreasing sequence, it would be arguably more natural in a Bayesian setting

to put a prior on α, as is done by Ascolani et al. (2022). It would be interesting to

investigate if consistency of the MAP partition holds in such a setting.

The MAP is a very basic estimator and has been criticized by some authors as

not being optimal in the context of partitioning data (Wade and Ghahramani (2018)).

Indeed, a clustering of the data that differs from the true clustering by just one data

point is assigned the same loss as a clustering of the data that is completely different.

An interesting future research question could be the asymptotic behavior of other clus-

tering estimators, such as the estimator that minimizes Binder’s loss or the variation

of information (VI) loss introduced in Wade and Ghahramani (2018).
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4.6 Appendix

4.6.1 Proof of Lemmas

Proof of Lemma 4.4.1.2

Proof. Suppose that at least two of the ãj are greater than one. Without loss of

generality, ã1 ̸= 1 and ã2 ̸= 1 with ã1 ≥ ã2. Now let {âj}sj=1 be another set of strictly

positive integers satisfying
∑s

j=1 âj = n, defined by â1 = ã1+1, â2 = ã2−1, and âj = ãj

for j = 3, . . . , s. Then,∏s
j=1(âj − 1)!∏s
j=1(ãj − 1)!

=
ã1!

(ã1 − 1)!

(ã2 − 2)!

(ã2 − 1)!
=

ã1
ã2 − 1

> 1.

This contradicts {ãj}sj=1 being the set of integers maximising
∏s

j=1(aj−1)!. We conclude

that ãj = 1 for all except one cluster.

Proof of Lemma 4.4.1.3

Proof. Suppose that at least two of the ãj are greater than one. Without loss of

generality, ã1 ̸= 1 and ã2 ̸= 1 with ã1 ≥ ã2. Now let {âj}sj=1 be another set of strictly

positive integers satisfying
∑s

j=1 âj = n, defined by â1 = ã1+1, â2 = ã2−1, and âj = ãj

for j = 3, . . . , s. Then, ∏s
j=1(âj + 1)∏s
j=1(ãj + 1)

=

(
ã1 + 2

ã1 + 1

)
ã2

ã2 + 1
< 1,

since for any a < b, one has a
a+1

< b
b+1

(here, a = ã2 and b = ã1 + 1). This contradicts

{ãj}sj=1 being the set of integers minimising
∏s

j=1(aj + 1). We conclude that ãj = 1 for

all except one cluster.
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4.6.2 Simulation studies

Single-component mixture

We illustrate Theorem 4.3.0.1 using data generated from the following single-component

Gaussian location “mixture” model

p⋆(y) = N (y|µ,Σ)

where µ = (0.8, 0.8) and Σ = 0.05 I2. We adapt the Importance Conditional Sampler

for PYP mixtures of Canale et al. (2022), using the same prior specification on µ and

Σ as Malsiner-Walli et al. (2016), provided below.

G ∼ PYP(α, σ,Q0), µ ∼ N (b0, B0)

Σ−1 ∼ W(c0, C0), C0 ∼ W(Q0, Q0)

We put a Gamma(200, 20) prior on the concentration parameter α, and keep the

discount parameter constant at σ = 0.5. The Gamma prior on α satisfies the conditions

of our proof. We consider data sets of size n ∈ {50, 200, 500, 2000}.

Figure 4.1 illustrates the result of our theorem, showing inconsistency of the number

of clusters under this set-up.

Multi-component mixture

We investigate a possible extension of Theorem 4.3.0.1 where the number of components

may be greater than one using data generated from a Gaussian location mixture with

t = 3 components,

f(y) =
3∑

i=1

piN (y|µi,Σ),
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Figure 4.1: Posterior distribution of the number of clusters Kn under a Pitman–Yor pro-
cess single-component mixture for various choices of n and with α ∼ Gamma(200, 20)
and fixed σ = 0.5 (i.e. under the set-up of our Theorem 4.3.0.1). We observe that the
posterior does not concentrate on the true value Kn = 1.

where p = (p1, p2, p3) = (0.5, 0.3, 0.2), µ1 = (0.8, 0.8), µ2 = (0.8,−0.8), µ3 = (−0.8, 0.8)

and Σ = 0.05I2. We use a similar algorithm and prior specification to that used in the

single-component case.

Figure 4.2 (a) illustrates the result proved in Miller and Harrison (2014), that

Pitman–Yor mixture models with fixed parameters α and σ are inconsistent for the

number of clusters. Figure 4.2 (b), (c) and (d) illustrate cases not covered by current

theoretical results. Figure 4.2 (b) shows inconsistency in the case where the parameter

σ is fixed but when a prior is put on the parameter α. This suggests that our Theorem

4.3.0.1 may generalise to multi-component mixture models. Figure 4.2 (c) shows consis-

tency in the case when the parameter α is fixed and a prior is put on the parameter σ.

Figure 4.2 (d) shows inconsistency in the case where a prior is put on both parameters

α and σ.
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(a) Fixed α = 10 and σ = 0.5 (b) α ∼ Gamma(200, 20) and fixed σ = 0.5
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(c) Fixed α = 10 and σ ∼ Unif(0, 1) (d) α ∼ Gamma(200, 20) and σ ∼ Unif(0, 1)

Figure 4.2: Posterior distribution of the number of clusters Kn under a Pitman–
Yor process mixture for various choices of n and with (a) fixed parameters α and
σ; (b) α ∼ Gamma(200, 20) and fixed σ; (c) fixed α and σ ∼ Unif(0, 1); and (d)
α ∼ Gamma(200, 20) and σ ∼ Unif(0, 1), where the true data-generating process has 3
components.
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