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Significance

Among the strongest interferon-
induced proteins is ISG15, which 
structurally resembles a head-to-
tail dimer of ubiquitin (Ub). 
ISG15-specific E1-, E2-, and 
E3-type activities catalyze 
ISGylation of host proteins. This 
requires a prior proteolytic 
conversion of pro-ISG15 to its 
mature form by USP18. USP18 is 
also capable of deISGylation. 
Application of activity-based 
protein profiling shows that the 
deubiquitinase USP16 can 
likewise convert pro-ISG15 to 
mature ISG15, as well as 
deISGylate host substrates. 
Prominent substrates for 
USP16-mediated deISGylation 
include enzymes involved in 
metabolism, suggesting a 
possible role for the ISGylation 
cycle in the control of 
metabolism in response to 
interferons. Multiple DUBs thus 
control the levels of ISGylation 
upon exposure to interferons, as 
would occur during virus 
infection or inflammation.
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Interferon-induced ubiquitin (Ub)-like modifier ISG15 covalently modifies host and viral 
proteins to restrict viral infections. Its function is counteracted by the canonical deISGylase 
USP18 or Ub-specific protease 18. Notwithstanding indications for the existence of other 
ISG15 cross-reactive proteases, these remain to be identified. Here, we identify deubiq-
uitinase USP16 as an ISG15 cross-reactive protease by means of ISG15 activity-based 
profiling. Recombinant USP16 cleaved pro-ISG15 and ISG15 isopeptide-linked 
model substrates in vitro, as well as ISGylated substrates from cell lysates. Moreover, 
interferon-induced stimulation of ISGylation was increased by depletion of USP16. The 
USP16-dependent ISG15 interactome indicated that the deISGylating function of USP16 
may regulate metabolic pathways. Targeted enzymes include malate dehydrogenase, 
cytoplasmic superoxide dismutase 1, fructose-bisphosphate aldolase A, and cytoplasmic 
glutamic-oxaloacetic transaminase 1. USP16 may thus contribute to the regulation of a 
subset of metabolism-related proteins during type-I interferon responses.

ISG15 | activity-based probe | USP16 | ISGylation | metabolism

The innate immune system serves as a first line of defense against viral and bacterial 
infections. Its activation initiates the release of type-I interferons (mainly IFN-α and 
IFN-β), which induces transcription of more than 300 interferon-stimulated genes (ISGs). 
These ISGs encode different proteins, such as cytokines, chemokines, transcription factors, 
as well as enzymes that regulate the host immune response. One of the most strongly 
induced proteins is ISG15 (ISG of ~15 kDa), a ubiquitin (Ub)-like modifier. The structure 
of ISG15 resembles that of a linear Ub dimer (1, 2).

ISG15 is translated as a 17.8-kDa precursor protein, which is then processed to mature 
ISG15 by exposure of its carboxy-terminal Leu-Arg-Leu-Arg-Gly-Gly motif (3). This con­
version is essential to enable the covalent modification of substrate proteins with ISG15. 
Mature ISG15 can be secreted from cells and act as a cytokine (4–7). Upon interaction of 
ISG15 with intracellular target proteins it can modulate their functions (8, 9) and stability 
(10). ISG15 can also be conjugated covalently to ε-amines of target proteins via the ISG15 
conjugation cycle (ISGylation), a process analogous to ubiquitination. ISG15 conjugation 
is mediated by a sequential E1-E2-E3 enzyme cascade, which includes an E1, UBE1L 
(UBA7) (11), an E2, UBE2L6 (12, 13), and the E3s HERC5 (14), TRIM25 (15), and 
HHARI (16) in human cells and mHERC6 (17, 18) in murine cells. ISGylation of proteins 
regulates their turnover (19–21) and influences complex formation (22, 23).

ISG15 is deconjugated by specific proteases in a process termed deISGylation, anal­
ogous to Ub removal by deubiquitinases (DUBs). The major deISGylating enzyme 
identified in mammalian cells is USP18 (24), a member of the Ub-specific protease 
(USP) family, but USP18 does not remove Ub from ubiquitinated proteins. The sub­
strate specificity, structure, and the role of USP18 in innate immunity have been 
well-characterized (25–28). While USP18 processes pro-ISG15, ablation of USP18 
protease activity in vivo does not impair the ISGylation machinery (28), indicating that 
other proteases with deISGylase activity must exist. Since Ub and ISG15 share a com­
mon protein fold and an identical C-terminal tail (Leu-Arg-Leu-Arg-Gly-Gly), other 
members from the Ub-specific peptidase (USP) family, similar to USP18, may be able 
to process pro-ISG15 into its mature form. Indeed, in vitro experiments showed covalent 
interactions of USP2, USP5, USP13, USP14, and USP21 with ISG15-based probes 
(29–31). The deISGylase activity of USP5, USP14, and USP21 was confirmed in vitro 
(29, 32). However, whether the ISG15 cross-reactivity of these DUBs extends to living 
cells remains to be determined. Because pro-ISG15 processing continues in the absence 
of USP18 activity, we explored ISG15-cross-reactive DUBs and addressed the possible 
biological relevance of their deISGylase activity.
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To identify deISGylating enzymes in an unbiased manner, we 
used ISG15 activity-based protein profiling (ABPP) assays to 
detect deISGylating enzymes in human HAP1 cell lysates. USP18, 
USP5, and USP14 were identified as deISGylating enzymes in 
this assay, corroborating previous studies. We identified USP16, 
a DUB that regulates the ubiquitination of H2A (33), RPS27a 
(34), and IKKβ (35), as an ISG15-cross-reactive DUB. USP16 
cleaved both pro-ISG15 and isopeptide-linked ISG15-based flu­
orescence polarization (FP) substrates in vitro, as well as endoge­
nous ISGylated substrates in a cell lysate.

In order to identify ISGylated substrates of USP16, we performed 
an ISG15 interactome analysis using anti-ISG15 immunoprecipita­
tion combined with mass spectrometry in HAP1 cells following 
treatment with type I interferon (IFN-I). USP16 knockout (KO) 
cells served as controls. Malate dehydrogenase, cytoplasmic (MDH1), 
superoxide dismutase (SOD) 1, fructose-bisphosphate aldolase A 
(ALDOA), and cytoplasmic glutamic-oxaloacetic transaminase 1 
(GOT1) were identified and confirmed as ISGylated substrates tar­
geted by USP16, suggesting a role for USP16 as a deISGylase in 
immunometabolic pathways.

Results

Activity-Based Pull-Down Assay Identifies USP16 as an ISG15 
Cross-Reactive DUB. To identify ISG15-reactive proteases, 
we performed pull-down assays with an ISG15 activity-based 
probe using protein lysates from human HAP1 cells, with or 
without interferon-α2 (IFN) stimulation. Proteases that reacted 
with the biotinylated (human) C-terminal domain ISG15 
propargylamide (Biotin-hISG15CTD-PA) probe (36) were 
recovered on Streptavidin beads. After washing, elution, and in-
solution trypsin digestion, samples were analysed by label-free 
LC-MS/MS (Fig. 1A and Dataset S1). Pull-down efficiency was 
confirmed by immunoblotting using an anti-biotin antibody 
prior to analysis by LC-MS/MS (SI Appendix, Fig. S1). The LC-
MS/MS data were processed by cross-comparative analysis of 
Biotin-hISG15CTD-PA versus “no probe” samples (Fig. 1B), and 
cross-comparative analysis of IFN-stimulated versus control cells 
(Fig. 1C). In the lysates from IFN-stimulated cells, four proteases: 
USP18, USP14, USP5, and USP16, were significantly enriched in 
the hISG15CTD-PA probe-treated samples (Fig. 1B). USP18 was 
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Fig. 1. Activity-based pull-down assay identifies USP16 as an ISG15 cross-reactive DUB (A) Streamlined workflow for identification of ISG15-reactive proteases in 
lysates of HAP1 cells. (B and C) Volcano plots of a comparative proteomic analysis of the trypsin digests of the materials retrieved by Streptavidin beads. Comparison 
of biotin-based immunoprecipitation of Biotin-hISG15CTD-PA probe labeled versus unlabeled IFN-α2 stimulated HAP1 WT cell lysate (B) and comparison of biotin-
based immunoprecipitation of IFN-α2 stimulated versus unstimulated cell lysates labeled with Biotin-hISG15CTD-PA probe (C). The identified Ub/ISG15 proteases 
are shown in red. The statistical cutoff values used for the proteomic analyses are FDR: 0.01 and s0: 0.1. (D) 5 μM of recombinant human USP16 catalytic domain 
(CD, aa 196-823) reacts with 5 μM of Rhodamine-tagged Ub-PA, as well as human ISG15CTD-PA, mouse ISG15CTD-PA, and mouse full-length ISG15-PA probes in 10 
μL volume at 37 °C for 1 h. After reaction with the probe, samples were denatured, resolved by SDS-PAGE, scanned for fluorescence, and stained with InstantBlue 
Coomassie dye. The probe-labeled USP16 CD is indicated by red asterisks. Representative data of three (n = 3) independent experiments. See also SI Appendix, Fig. S1.D
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the only hISG15CTD-PA-reactive protease that was significantly 
enriched in the IFN-stimulated cells (Fig. 1C).

These data agree with the prior identification of USP18 as an 
interferon-inducible deISGylase (24, 37). It also corroborates the 
ability of USP18, USP14, and USP5 to react with a human 
full-length ISG15 activity-based probe (29–31). Since USP16 was 
not previously identified as an ISG15-cross-reactive DUB, we 
verified its ability to bind to both Ub- and ISG15-based probes. 
Purified recombinant human USP16 was incubated with rhoda­
mine (Rho)-tagged Ub-propargylamide (Rho-Ub-PA) and 
ISG15-propargylamide (Rho-ISG15-PA) activity-based probes 
[human ISG15CTD-PA (26), mouse ISG15CTD-PA (26) and 
full-length mouse ISG15FL-PA (38)], followed by Sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Binding 
to Ub- and ISG15-based probes was confirmed by the presence 
of the corresponding USP16-probe adducts (Fig. 1D).

USP16 Cleaves ISG15-Related Substrates In Vitro. To determine 
whether USP16 shows catalytic activity toward ISG15, we tested 
several in  vitro substrates that are recognized and converted  
by deISGylases. We first determined whether USP16 cleaves the  
1 to 165 amino acid precursor of human ISG15 (pro-ISG15) (3, 
39). We used purified recombinant full-length human USP16 (FL; 
aa 22-823) and its catalytic domain (CD; aa 196-823). We included 
deISGylase USP18 and USP5 as positive controls. Recombinant 
USP7 served as a negative control. The two forms of USP16 cleaved 
pro-ISG15 as efficiently as recombinant USP18. USP5 was less 
efficient at cleavage, while USP7 was incapable of cleavage at all 
(Fig. 2A).

We further assessed the isopeptidase activity of USP16 with 
Ub-based and full-length ISG15-based FP assay substrates. In 
these substrates, the C-terminal carboxylate of Ub or full-length 
ISG15 is linked to the lysine ε amine of a fluorescent TAMRA- 
Lys-Gly peptide, thus mimicking Ub/ISG15 isopeptide-linked 
substrates (25, 40). We tested purified recombinant USP16FL 
and USP16CD along with USP18, USP5, and USP7 (Fig. 2B 
and SI Appendix, Fig. S2A). USP16FL and CD showed cleavage 
of the ISG15FP substrate at 12.5 nM and completely converted 
the UbFP substrate at this concentration. USP18 processed the 
ISG15FP substrate more efficiently than USP16FL or USP16CD. 
While USP5 and USP7 converted the UbFP substrate at sub- 
nanomolar concentrations, they showed no reactivity to the 
ISG15FP substrate even at 100 nM. USP16 thus has clear iso­
peptidase activity toward the ISG15FP substrate in vitro.

To determine whether USP16 can remove ISG15 from endoge­
nous ISGylated substrates, we prepared lysates from interferon- 
β stimulated HAP1 cells deficient for USP18 (USP18KO) 
(SI Appendix, Fig. S2B) and incubated these with purified recombi­
nant USP16CDWT or catalytically inactive mutant USP16CDC205S. 
Wild-type USP16 reduced the amount of ISG15-conjugated pro­
teins in the cell lysate, but as expected, the protease-deficient Cys 
to Ser mutant did not. We conclude that USP16 deconjugates 
ISG15 from natural ISGylated substrates through its protease 
activity (Fig. 2C). In conclusion, we show that recombinant 
USP16 can cleave pro-ISG15 and ISG15FP substrates in vitro 
and deconjugate endogenous ISGylated proteins in cell lysates.

Loss of USP16 Leads to Increased Cellular ISGylation. Having 
validated USP16 as an ISG15-cross-reactive DUB, we next 
examined its deISGylation function in living cells by siRNA-
mediated depletion of USP16. Silencing of USP16 in HAP1 
cells with three different siRNAs increased ISGylation after 
stimulation with IFN-β, while the expression level of USP18 
remained unchanged (Fig. 3A). Next, we used CRISPR/Cas9 to 

target either exon 6 (KO #A) or exon 4 (KO #B) of USP16 to 
generate USP16KO HAP1 cell lines. The KO was confirmed by 
labeling with a USP16-specific Rhodamine-M20-PA probe (41) 
(SI Appendix, Fig. S3A) and by immunoblotting (SI Appendix, 
Fig. S3B). USP16KO HAP1 cell lines showed increased levels of 
ISGylation after stimulation with IFN-β (Fig. 3B).

The increased ISGylation observed in USP16KO cells could be 
an indirect effect caused by increased IFN signaling, for instance 
as a result of reduced USP18-dependent negative feedback by the 
USP18-IFNAR2-STAT2 inhibitory complex (42). To address this 
possibility by experiment, we examined whether the USP16KO 
HAP1 cells showed increased and/or prolonged IFN-induced 
phosphorylation of the transcription factors STAT1 and STAT2, 
or enhanced expression of ISGs (43, 44). The levels and kinetics 
of STAT1 and STAT2 phosphorylation were indistinguishable for 
USP16KO and WT cells (SI Appendix, Fig. S3C). Moreover, 
USP16KO cells did not show changes in interferon-induced 
ISG15 and USP18 mRNA (SI Appendix, Fig. S3D), nor altered 
levels of the interferon-induced proteins RIG-I, MDA5, and 
USP18 (SI Appendix, Fig. S3E). The set of deISGlyases detected 
by the hISG15ct-PA probe was not affected by the USP16KO 
(SI Appendix, Fig. S3F). The protein levels and activity of USP16 
were unaffected by treatment with IFN-β, in sharp contrast to 
those of USP18 (SI Appendix, Fig. S4 A and B).

Taken together, a KO of USP16 enhances IFN-β-induced 
ISGylation and reduces deISGylation without affecting interferon 
signaling, notwithstanding the presence of USP18. Indeed, the deIS­
Gylating activity of USP18, and therefore ISGylation, does not 
regulate the IFN-I response (45). Furthermore, loss of USP16 cannot 
be compensated by the activity of USP18. ProISG15 can be effi­
ciently converted to its conjugatable form in the absence of USP16.

Analysis of the USP16-Dependent ISG15 Interactome Connects 
USP16 to Cellular Metabolism. To obtain global insights in the 
cellular pathways and functions that may be regulated by the 
deISGylase activity of USP16, we analysed the ISG15 interactome 
in HAP1 WT and HAP1 USP16KO cells (both USP16KO 
clone #A and #B) by immuno-precipitation of ISG15, followed 
by identification of the retrieved proteins by mass spectrometry  
(IP-MS) (36). Duplicate dishes were stimulated with IFN-β, with 
unstimulated cells serving as controls. Cell lysates were subjected 
to immunoprecipitation with anti-human ISG15 antibody, the 
immunoprecipitates were digested with trypsin, and the digests 
subjected to label-free quantitative proteomic analysis (Fig. 4A 
and Dataset  S2). The analysis of the ISG15 interactomes, in 
HAP1 WT cells (SI  Appendix, Fig.  S5A) and USP16KO cells 
(SI Appendix, Fig. S5B), shows enrichment of the bait (ISG15) 
and significant enrichment of typical ISGylated proteins, mostly 
ISGs, upon treatment with IFN-I in agreement with previous 
studies (46). Comparison of the ISG15 interactomes of USP16KO 
and WT cells uncovered a USP16-regulated ISG15 interactome 
of 142 proteins that showed at least a >1.5 fold difference of the 
Log2 intensities (USP16KO cells treated with IFN-I versus WT 
cells treated with IFN-I) (Fig. 4B and Dataset S3).

To identify enriched Gene Ontology (GO) terms, we performed 
PANTHER GO-slim analysis, focusing on cellular compartments 
(CC), molecular functions (MF), and biological processes (BP) 
(47–49). The analysis confirmed that the proteins identified as reg­
ulated in a USP16-sensitive manner were strongly enriched for 
enzymes that function in metabolic processes in the cytoplasm and 
in mitochondria (Fig. 4C and SI Appendix, Fig. S6). STRING inter­
action network analysis (50) also showed a large interconnected set 
of cytoplasmatic and mitochondrial proteins (Fig. 4D). Two highly 
interconnected clusters were identified by the Cytoscape plug-in D
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MCODE (51), consisting of 15 proteins involved in carbon and 
pyruvate metabolism, and 9 proteins involved in hydrogen-peroxide 
metabolic processes (Fig. 4E). Importantly, all of these proteins were 
found to be ISGylated in previous proteomic studies (14, 36, 52–
56) (Dataset S4). Collectively, our analysis therefore suggests that 
the USP16-dependent ISG15 interactome is associated with cellular 
metabolism.

DeISGylation of Discrete Substrates by USP16. To confirm that 
selected members of the USP16-sensitive ISG15 interactome 
are indeed ISGylated and cleaved by USP16, we performed in 
cellulo ISGylation assays by cotransfection of hUBE1L, UBCH8, 
HERC5, and Flag-hISG15 in HEK293T cells (14, 57). Ectopic 
overexpression of USP16 WT, unlike its catalytically inactive 
mutant USP16C205S, decreased overall ISGylation slightly, while 

overexpression of USP18 WT had stronger effects, as expected 
(Fig. 5A).

Next, we cotransfected Myc-tagged substrates, selected from the 
two most interconnected clusters identified by the Cytoscape 
plug-in MCODE analysis (Fig. 4E), together with expression con­
structs for the ISGylation machinery. The latter include hUBE1L, 
UBCH8, HERC5, and Flag-hISG15. Immunoprecipitation with 
anti-Myc beads and immunoblotting allowed us to calculate the 
relative amounts of ISGylated protein. We determined the ratio of 
the intensity of the ISGylated bands (anti-Flag immunoblot) and 
the intensity of total protein (anti-Myc immunoblot) and compared 
these to the normalized amounts of ISGylated protein encoded by 
the constructs used for transfection. Expression of USP16 WT sig­
nificantly decreased ISGylation of the metabolic enzymes identified 
by mass spectrometry (GOT1, ALDOA, SOD1, and MDH1). 
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Fig. 2. USP16 cleaves ISG15-related substrates in vitro. (A) Human proISG15 is cleaved by recombinant human USP18, USP7, USP5, USP16FL, and USP16CD 
as analyzed by SDS-PAGE and InstantBlue Coomassie staining. The position of marker proteins is indicated. Representative data of two (n = 2) independent 
experiments. (B) Catalytic activity of recombinant human USP18, USP16FL, and USP16CD toward isopeptide-linked Ub-FP and ISG15-FP substrates. The indicated 
amounts of USP16 FL/CD were incubated with 200 nM Ub-FP or ISG15-FP. Substrate cleavage was monitored by a change in FP [in millipolarization units (mP)]. 
Representative data of two (n = 2) independent experiments. (C) ISG15 deconjugation in lysates of HAP1 USP18KO cells. HAP1 USP18KO cells were stimulated 
with IFN-β to induce ISGylation. 40 μg of cell lysate in 10 μL was incubated with recombinant USP16 CDWT or USP16CDC205S at final concentrations of 5 μM at 
37 °C for 2 h. Proteins were separated by SDS-PAGE and immunoblotted with anti-human ISG15 antibody. Probing for β-actin served as a loading control. The 
position of marker proteins is indicated. Representative data of two (n = 2) independent experiments. See also SI Appendix, Fig. S2.
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Although expression of USP16C205S affected the level of ISGylation 
to some degree, this effect was never as pronounced as that seen 
with USP16 WT (Fig. 5 B–E). In summary, GOT1, ALDOA, 
SOD1, and MDH1 are ISGylated by the UBE1L-UBCH8-HERC5 
cascade in HEK293T cells and are subject to USP16-dependent 
cleavage.

Discussion

Activity-based probes used to profile Ub and Ub-like processing 
enzymes have accelerated the discovery of novel members of these 
families (57–60). Probes generated for different Ubls provided 
evidence for Ub/Ubl cross-reactivity of several DUBs. For instance, 
recombinant USP2, USP5, USP13, and USP14 react covalently 
with an ISG15-vinylsulfone (ISG15-VS) probe (31). This showed 
that additional cellular deISGylases may exist, in addition to 
USP18. Also, USP21 has deISGylase activity, as evident from processing 
of an ISG15-AMC substrate and by in vitro deconjugation of ISGylated 
proteins from IFN-β stimulated HeLa cells (32). Pull-down experiments 
performed with immobilized ISG15-propargylamide (ISG15-PA) 
and ISG15-dehydroalanine (ISG15-Dha) identified the previously 
reported cross-reactive DUBs USP5, USP14 and USP21 (30, 58). 
DeISGylase activity for USP5 and USP14 was confirmed using 
the ISG15-AMC hydrolysis assay. Our study now expands the set 
of deISGylases by identification of USP16 as an ISG15-cross-
reactive DUB in human HAP1 cell lysates. Importantly, we 
demonstrate activity of USP16 on several ISGylated substrates 
with potential links to (immuno)metabolism.

Recombinant USP18, USP16, and USP5 can cleave pro-ISG15. 
Proteolytic processing of the ISG15 precursor protein is required 
to expose the C-terminal GlyGly motif essential for protein 

conjugation (3, 39). Since loss of either USP18 or USP16 does 
not reduce ISGylation (Fig. 3 and SI Appendix, Fig. S2B), 
pro-ISG15 processing does not depend on a single enzyme, but 
is a promiscuous process. ISG15-cross-reactive DUBs, including 
USP16 and USP5, likely compensate for the loss of USP18 to 
ensure conversion of pro-ISG15 to ISG15.

We further provide evidence for a deISGylating function of endog­
enous USP16. We saw enhanced ISGylation in IFN-treated HAP1 
cells upon siRNA-mediated silencing and CRISPR/Cas9-mediated 
deletion of USP16. Interferon signaling itself was not affected by 
USP16KO or knockdown. Treatment with IFN-β did not alter 
expression of USP16 or its enzymatic activity as detected by ABPP 
in HeLa and HAP1 cells, indicating that USP16 is not an interferon- 
inducible gene. This is in sharp contrast to the main deISGlyase, 
USP18, and may reflect a different spectrum of activity. Perhaps 
USP16 deISGylates substrates also in the absence of strong IFN 
responses, consistent with cell type-dependent basal expression of 
ISGs (59). The loss of USP16 did not affect type I interferon signa­
ling. Therefore, unlike USP18 (42), USP16 appears not to be impli­
cated in an interferon-based feedback mechanism. Of note, USP18 
mediates negative regulation of IFN signaling in a protease-independent 
manner. This observation also aligns with recent findings that show 
uncoupling of ISGylation from activation of the IFN-I response path­
way (45, 60).

What is the molecular basis for USP16 cross-reactivity? In the 
absence of a solved structure for USP16, its sequence specifies 
both a Zinc-finger (ZnF) domain (aa 22-143) and a Ub-specific 
protease (USP) domain (aa 196-822). The USP domain is 
responsible for the catalytic activity of USP16, and the ZnF 
domain has been proposed to recognize glycine at the C-terminal 
tail of free Ub. This may serve as a sensor for free Ub in cells to 
regulate Ub-dependent processes (61, 62). Recombinant human 
USP16 FL (aa 22-823) and CD (aa 196-823) show similar enzy­
matic activity toward full-length pro-ISG15 and ISG15-FP. The 
pro-ISG15 processing activity of recombinant human USP16 is 
thus independent of the ZnF domain. However, the ISG15-based 
reagents used in this study do not contain the free C-terminal 
tail of ISG15. It is therefore still unclear whether the ZnF 
domain of USP16 binds free ISG15 in the same mode as free 
Ub, and if it plays a regulatory role in ISG15-dependent pro­
cesses in cells.

The specificity of mouse USP18 for mouse ISG15 is mediated 
by interaction between a hydrophobic patch in USP18 and a 
hydrophobic region in the C-terminal domain of ISG15. The 
C-terminal domain of ISG15 is necessary and sufficient for USP18 
binding (26). In our study, the C-terminal domain of human 
ISG15 was sufficient for reaction with human USP5, USP14, 
USP16, and USP18. This domain must therefore determine 
ISG15 cross-reactivity of DUBs. Human USP18 reacts with 
mouse ISG15-PA (26). Likewise, recombinant human USP16 
displayed cross-species reactivity toward the mouse ISG15-PA 
probe (Fig. 1D). While this work was under review, it was shown 
that recombinant USP16 cleaves ISG15(CTD)-KG-TAMRA 
model substrates (63), corroborating our findings in Fig. 2B. 
USP16 was also shown to recognize Fubi (63, 64). A high-resolution 
structure of USP16 in complex with Ub, Fubi, and ISG15, not 
available as of today, could establish the molecular basis for these 
interactions.

USP16 was initially identified as a DUB that removes Ub from 
lysine119 of H2A (33, 65). Many other ubiquitinated substrates 
for USP16 have been identified so far (66). The USP16-dependent 
ISG15 interactome identified in our experiments contained 
mostly cytoplasmic proteins, suggesting that USP16 exerts its 
function there. None of the reported substrates of USP16-mediated 
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Fig. 3. Loss of USP16 increases cellular ISGylation. (A) Knockdown of USP16. 
HAP1 WT cells were transfected with either control siRNA (siCTR) or three 
different siRNAs (siUSP16#1, siUSP16#2, and siUSP16#3) against USP16 
for 72 h. IFN-β (1,000 U/mL) was added for 24 h prior to harvesting. Lysates 
were resolved by SDS-PAGE. Immunoblot analysis was performed using the 
indicated antibodies. (B) ISG15 deconjugation in lysates of HAP1 WT and 
USP16KO cells. Both HAP1 WT and USP16KO cells were stimulated with 1,000 
U/mL of IFN-β for 24 h. Cell lysates were resolved by SDS-PAGE and analysed 
by immunoblotting using the indicated antibodies. For panels A and B, β-actin 
served as a loading control. Representative data of three (n = 3) independent 
experiments. See also SI Appendix, Figs. S3 and S4.
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immunoprecipitation mass spectrometry (IP-MS) used to analyze the ISG15 interactome. HAP1 WT and USP16KO cells were stimulated by 1,000 U/mL of IFN-β 
for 48 h to produce ISGylated substrates (two biological replicates). (B) Volcano plot showing all proteins identified for the IFN-β stimulated USP16KO samples, 
compared to the IFN-β stimulated WT HAP1 cells. Dashed lines indicate a cutoff at a difference of the Log2 intensities bigger than 1.5 and a P value of 0.05  
(−log10 = 1.3), n = 2 independent experiments. Proteins in red showed increased interaction with ISG15 in the USP16KO cells compared to the WT cells. These 
are termed the “USP16-dependent ISG15 interactome”. Proteins indicated in blue showed decreased levels in the USP16KO cells compared to WT cells. (C) GO 
enrichment analysis of the USP16-dependent ISG15 interactome. The bar graph shows the most significantly overrepresented GO terms for CC in light green, 
MF in purple, and BP in dark blue, compared against the annotated human proteome. The full GO terms for MF are found in SI Appendix, Fig. S7A and BP are 
found in SI Appendix, Fig. S7B. (D) STRING network analysis of the USP16-dependent ISG15 interactome, with a STRING interaction confidence of 0.4 or higher. 
Cytoscape software was used to visualize the interaction network. Color and node size indicate the differences (of the Log2-transformed intensities) in abundance 
for USP16KO HAP1 cells compared with the WT HAP1 control upon IFN-β treatment. (E) Cluster 1 and cluster 2 contain multiple proteins involved in carbon and 
pyruvate metabolism and hydrogen peroxide metabolic process, respectively. MCODE was used to extract the most highly interconnected clusters (clusters 1 
and 2) from the network shown in (D). See also SI Appendix, Figs. S5 and S6.D
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deubiquitination were found in the USP16-dependent ISG15 
interactome from IFN-β-stimulated HAP1 cells.

ISGylation is a key element of the innate immune response by 
modification of host or viral proteins, in order to restrict the replica­
tion or spread of pathogens (67). However, ISGylation has also been 
linked to mitochondrial functions and cellular metabolism (68, 69), 
which may also be important for innate immunity. The enrichment 
of the USP16-dependent ISG15 interactome for metabolic enzymes 
that function in the cytoplasm and in mitochondria is consistent with 
a role for ISG15 in the regulation of cellular metabolism and 

mitochondrial function. This characteristic of the USP16-dependent 
ISG15-interactome is quite distinct from the previously studied 
USP18-dependent ISG15 interactome, in which primarily proteins 
involved in interferon signaling, innate immune responses, and virus 
defense responses are enriched (36). ISGylated metabolic enzymes 
GOT1, ALDOA, SOD1 and MDH1 were confirmed as bona fide 
targets of USP16 deISGylase activity (Fig. 6). Three of the enzymes 
are involved in gluconeogenesis (GOT1, MDH1, and ALDOA). The 
consequences of their USP16-dependent deISGylation may affect 
immunometabolism in general and cellular gluconeogenesis in 
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Fig. 5. Validation of selected proteins as ISGylated substrates for deISGylation by USP16. (A) DeISGylation assay in HEK293T cells that overexpress USP16 or 
USP18. Cellular ISGylation was achieved by cotransfecting an ISGylation plasmid mixture including 2 μg HA-UBE1L, 2 μg Flag-UBCH8, 2 μg S-HERC5, and 2 μg Flag 
ISG15 in HEK293T cells in 6-cm dishes for 24 h. Empty vector (4 μg; lane 3), USP16 WT/C205S, or USP18 WT/C64A were cotransfected with plasmids encoding the 
ISGylation machinery as indicated. Cell lysates were resolved by SDS-PAGE and analysed by immunoblotting using the indicated antibodies. Representative data 
of three (n = 3) independent experiments. (B–E) Validation of (Myc)2-GOT1 (B), (Myc)2-ALDOA1 (C), (Myc)2-SOD1 (D), and (Myc)2-GOT1 (E) as ISGylated substrates 
for USP16-mediated deISGylation by staining the immunoblot with anti-Flag antibodies to detect Flag-ISG15. Plasmids encoding (Myc)2-tagged substrates 
protein were cotransfected with plasmids encoding ISGylation machinery, and GFP empty vector (EV), GFP-USP16WT or GFP-USP16C205S mutant in HEK293T 
cells in 6 cm dishes for 24 h. (Myc)2-tagged proteins were immunoprecipitated from the cell lysates by Myc trap beads. The retrieved proteins were interrogated 
by immunoblot using the indicated antibodies. Quantification of the amounts of ISGylated protein in lanes 2 to 4 by detection with the anti-Myc and anti-Flag 
antibodies. The ratio of anti-flag vs. anti-Myc protein intensity was normalized to the EV control. Bar graphs report mean; error bars reflect ± SD of three (n = 3) 
independent experiments. All P values were calculated using Student’s t test: **P < 0.05, ***P < 0.001, and NS = not significant.
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particular. Antagonists of USP16 could be important tool compounds 
to study immunometabolism.

Materials and Methods

ABPP with the Biotin-ISG15-PA Probe. ABPP was performed as previously 
described (70). HAP1 cells were lysed using glass beads in lysis buffer (GBL: 
50 mM Tris, pH 7.5, 5 mM MgCl2, 0.5 mM EDTA, and 250 mM Sucrose). Protein 
concentrations were determined using the Pierce BCA Assay. One milligram of 
protein was labelled with Biotin-ISG15-PA at the predetermined optimum ratio 
and incubated for 30 min (Viva Biotech Ltd) at 37 °C. The reaction was quenched 
by addition of 5% (w/v) SDS and 10% NP-40 to each sample. Samples were then 
diluted by adding NP-40 lysis buffer, and NeutrAvidin Agarose beads (Thermo 
Fisher) were added prior incubation for 16 h at 4 °C (with rotation). The beads were 
washed with NP-40 Lysis four times in total. Probe-labelled proteins were eluted 
from the beads by addition of LSLB with 3 mM biotin and boiled (10 min, 95 °C). 
Eluted materials were subjected to immunoblotting and LC/MS/MS analysis (70).

Immunoprecipitation to Recover the ISG15 Interactome. Immuno­
precipitations were performed as described (36) with the following modifications. 
HAP1 cells were lysed with lysis buffer (20 mM Hepes pH 8.0, 150 mM NaCl, 0.2% 
NP-40, 10% glycerol, 5 mM NEM, phosphatase, and protease inhibitor cocktails; 
25 × 106 cells per condition) and subjected to immunoprecipitation using 5 µg of 
anti-ISG15 antibody (Boston Biochem #A-380) and 25 μL of protein G Sepharose 
slurry (Invitrogen; #15920-10) for 16 h at 4 °C. Beads were washed 4 times with 

lysis buffer. Immune complexes were eluted with 2X Laemmli sample buffer. One-
tenth of the eluates was used for immunoblotting with the indicated antibodies. 
The remaining eluate was prepared for analysis by MS as previously described (71) 
using suspension traps (S-Traps). Proteins were reduced with 200 mM DTT in 0.1 
M Tris pH 7.8, followed by alkylation with 200 mM iodoacetamide in 0.1 M Tris pH 
7.8 in the dark. Samples were acidified by addition of 12% phosphoric acid and 
captured on S-TrapTM midi columns (C02-midi, ProtiFi). Columns were washed 
with 90% methanol in 100 mM triethylammonium bicarbonate by centrifugation 
at 4,000 g. Captured proteins were digested with trypsin (1:100 w/w) overnight at 
room temperature. Peptides were dried and dissolved in Buffer A (98% MilliQ-H2O, 
2% CH3CN, and 0.1% TFA).

Additional descriptions of the methods are listed in SI Appendix, SI Methods.

Data, Materials, and Software Availability. All study data are included in the 
article and/or supporting information. The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange Consortium via the PRIDE partner 
repository with the dataset identifier PXD043553 (72).
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