
1. Introduction
Hyperspectral imaging (HSI) data is a two-dimensional pixelated data set, where each pixel stores a one-dimensional 
array of spectral data, forming a three-dimensional datacube. HSI data provides vast quantities of spatial and 
spectral information and has been widely applied in various fields, such as remote sensing (Blackburn, 2006), 
vegetation and water source control (Adam et al., 2010; Govender et al., 2007), food safety (Carrasco et al., 2003; 
Feng & Sun, 2012; Gowen et al., 2007), and biomedical sciences (Afromowitz et al., 1988; Carrasco et al., 2003; 
Gendrin et al., 2008). In mineral sciences, scanning electron microscopy (SEM) is one of the most used micro-
analysis techniques. SEM provides measurements of surface morphology (by the detection of secondary elec-
trons), elemental composition (by X-ray spectroscopy), crystallography (by backscattered electrons), chemical 
bonding (by Auger electrons), and electronic state (by cathodoluminescence) (Goldstein et al., 2017; Zaefferer & 
Habler, 2017). X-ray emission can be analyzed by energy dispersive X-ray spectroscopy (EDS), where an X-ray 
spectrum is recorded for each pixel scanned by an electron beam over the sample surface, building up an HSI 
data set. HSI-EDS data is frequently used for chemical phase identification. By integrating over manually defined 
intervals of the EDS spectra for each pixel, elemental distribution maps are generated in qualitative and quantita-
tive manners. Traditionally, phase identification is conducted by analyzing the elemental maps superimposed on 
morphological SEM images “by hand.” However, this process is time-consuming and prone to error, particularly 
for large data sets. Furthermore, the resulting qualitative information only relies on subjective human interpreta-
tion, reducing the reliability and reproducibility, particularly when dealing with unknown samples. Automating 
this process with high accuracy and reliability is critical for studying natural materials.

Multivariate statistical analysis (MSA) is a popular choice for automated solutions (Bosman et al., 2006; Kannan 
et  al.,  2018; Kotula et  al.,  2003; Malinowski & Howery, 1980; Teng & Gauvin, 2020). Principal component 
analysis (PCA) and non-negative matrix factorization (NMF) are two widely used MSA algorithms for the 
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exploration of the HSI-EDS data (Jany et al., 2017; Kotula et al., 2003; Rossouw et al., 2015, 2016; Teng & 
Gauvin, 2020). These algorithms aim to extract the underlying features from the available HSI-EDS data by 
reducing the dimensionality of the data, where high-dimensional pixel-wise data points are linearly projected 
onto a basis in a low-dimensional space (Hotelling, 1933; Kotula et al., 2003; Potapov & Lubk, 2019; Tipping & 
Bishop, 1999). With these algorithms, phase masks are typically produced, which divide the data set into regions 
belonging to the different components of the MSA models. Although able to perform without a priori assump-
tions, this approach contains inherent mathematical limitations (e.g., the restrictions of orthogonality and parsi-
mony), which may lead to non-intuitive and non-interpretable results (Kotula et al., 2003; Stork & Keenan, 2010). 
Clustering has been explored as an alternative approach. Clustering is an unsupervised technique that organizes 
entities into clusters or groups whose members bear similarities (Funk et al., 2001; Rui & Wunsch, 2005; Stork & 
Keenan, 2010). Some centroid-based clustering algorithms, such as k-means and fuzzy clustering, are commonly 
applied for phase characterization (Duan et al., 2016; Durdziński et al., 2015; MacRae et al., 2007; Martineau 
et al., 2019; Parish, 2019; Vekemans et al., 2004; Yan et al., 2006). Nevertheless, such algorithms have some 
intrinsic drawbacks for HSI data. For example, k-means has problems analyzing data with varying sizes and 
densities. Whilst fuzzy clustering does allow pixels to belong to multiple clusters and yield probabilistic interpre-
tations, the values of the pixel within each cluster are usually based on Euclidean distance to the centroids, which 
is not always appropriate for measuring the similarity between data points (e.g., when the shapes of clusters are 
non-flat manifolds) (Wang et al., 2002). On the other hand, clustering algorithms that use non-Euclidean metrics 
can measure the non-Euclidean relationships between data points and may offer better performance. For instance, 
a density-based clustering algorithm (i.e., HDBSCAN, McInnes et al., 2017) has recently been applied to tackle 
the issue of data with varying densities (Blanco-Portals et al., 2022; Li et al., 2019). Other types of clustering 
techniques, such as distribution-based algorithms, have attracted less attention for analyzing HSI-EDS data so far.

In recent years, modern machine learning (ML) techniques have been successfully applied to analyzing electron 
microscopy data sets (Ede, 2021), including image denoising (Antczak, 2018; Han et al., 2021; Yoon et al., 2019), 
image classification (Aguiar et al., 2019; Vasudevan et al., 2018; Yokoyama et al., 2020), and semantic segmen-
tation (Roberts et al., 2019; Roels & Saeys, 2019; Urakubo et al., 2019; Yu et al., 2020). However, the gener-
alization of the workflows to different material systems, data types, and measurement conditions may require 
sizable modification. One of the common aims for electron microscopic studies is to extract the underlying phase 
or structural information from electron microscopic data without a priori knowledge. To this end, unsupervised 
or self-supervised learning emerges as a plausible solution. Self-supervised learning is a type of algorithm that 
acquires supervisory signals from the data itself (Yann & Ishan, 2021). In self-supervised learning, models are 
trained to capture the underlying patterns of the input data without relying on labels (Yann & Ishan, 2021). Thus, 
the combination of self-supervised or unsupervised algorithms (i.e., dimensionality reduction and clustering) 
can leverage the inherent structure in the HSI data to explore or identify physically sensible features (Chen 
et al., 2021). Autoencoder is a neural network that can be used for self-supervised tasks. Autoencoders can learn 
low-dimensional representations efficiently by copying its input to its output (Hinton & Salakhutdinov, 2006). 
With autoencoders, the dimensionality of the data can be reduced without losing essential features. Despite being 
widely employed in other types of HSI data (Lin et al., 2013; C. Tao et al., 2015; X. Tao et al., 2022) and some 
electron microscopic data (Ede, 2020; McAuliffe et al., 2020), autoencoders have had limited applications in 
HSI-EDS data.

In this work, we introduce a self-supervised ML approach that automatically identifies unknown phases and 
unmixes the overlapped chemical signals for each potential phase with only one HSI-EDS data set. This approach 
leverages a neural network autoencoder to extract underlying features of data through dimensionality reduction. 
A probabilistic Gaussian mixture model is used to identify inherent clusters, followed by factor analysis through 
non-negative factorization to distinguish chemical signals from the background. We name this new approach 
Spectral Interpretation using Gaussian Mixtures and Autoencoder (SIGMA). It is shown that SIGMA works 
on various HSI-EDS data sets with no need for user expertise in machine learning while bringing a significant 
improvement of accuracy and reliability.

Here, we evaluate SIGMA using two HSI-EDS data sets, both motivated by the types of data typically encoun-
tered in studies of particulate matter air pollution. Such samples pose a particular challenge to interpretation using 
HSI-EDS as they comprise complex mixtures of unknown, overlapping phases, deposited in an uncontrolled 
manner on non-ideal, non-planar substrates (e.g., air filters or leaf substrates), and commonly contain grains 
that are smaller than the electron beam interaction volume. The two samples chosen are: (a) a synthetic mixture 
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containing seven known minerals and (b) a sample representing a potential source of vehicular particulate matter. 
The synthetic mixture sample data set demonstrates the reliability and accuracy of this approach. SIGMA is 
further examined using the real-world particulate matter data set, where the complex nature of the sample compli-
cates the identification of the individual pollution particles. Additionally, SIGMA is built into a user-friendly 
Python code and can produce results within 30 min for a regular computer or even faster using graphic processing 
units (GPUs).

2. Materials and Methods
Throughout the paper, scalars are represented by italics, for example, k. Vectors and matrices are represented by 
boldface lowercase characters, for example, 𝐴𝐴 𝐱𝐱  , and boldface uppercase characters, for example, 𝐴𝐴 𝐗𝐗  , respectively.

2.1. Data Sets

Before introducing the two individual data sets, we discuss two inherent features of the samples. First, the two 
raw EDS data sets have relatively low average counts per pixel (a) to demonstrate the ability of SIGMA to extract 
meaningful information from low-quality data and (b) to suit the need for quick EDS analyses (or analyses 
over large areas), where the precision of measurements is subjected to statistical error. Second, the two samples 
demonstrated in this study are of the same type, that is, mineral particles are deposited on a substrate. In this case, 
particles are spatially stacked on top of each other, forming a unique morphology. As a result, upon data acqui-
sition, the EDS spectrum collected in each pixel most likely includes emissions of X-rays from multiple mineral 
particles and the background, as the electron-specimen interaction volume is larger than the volume of the indi-
vidual particles. The desire to unmix these overlapped signals further is the motivation for using an additional 
NMF step subsequent to the clustering step (as discussed later).

The synthetic mixture sample is composed of seven mineral phases, including calcium carbonate (CaCO3), 
orthoclase feldspar (KAlSi3O8), magnetite (Fe3O4), aluminum oxide (Al2O3), silicon oxide (SiO2), titanium 
oxide (TiO2), and zinc carbonate (ZnCO3). All mineral phases were ground into particles less than ∼50 μm, 
followed by individual measurements of single-phase EDS spectra for validation. Note that the single-phase 
EDS spectra (denoted as ground truth spectra later) were measured from separate samples where only pure 
minerals exist. Then, all minerals were physically mixed, forming a synthetic mixture sample, and deposited 
onto carbon tape mounted on a standard aluminum SEM stub. The dimensions of the acquired EDS data set are 
279 × 514-pixel × 1,547-spectral-channel, and the average counts per pixel is 29.94.

The particulate matter specimen was collected by scraping the inside of an exhaust pipe of a petrol-powered vehi-
cle in Lahore, Pakistan using an A5 paper. More details about the specimen can be found in Sheikh et al. (2022). 
The dimensions of the raw EDS data set are 738 × 672-pixel × 1,595-spectral-channel, and the average counts 
per pixel is 35.08.

Both specimens were carbon-coated before collecting the EDS data to prevent charging. Backscattered electron 
(BSE) images were collected at an accelerating voltage of 15 keV using a Thermofisher Quanta-650F scanning 
electron microscope at the University of Cambridge, Department of Earth Sciences. EDS raw data were measured 
using two Bruker XFlash 6|30 EDS detectors installed in the same SEM.

2.2. Data Pre-Processing and Normalization

The data pre-processing consists of three sequential steps: (optional) smoothing, z-score normalization, and soft-
max normalization. Figure 1 shows an example of the Fe signal intensity maps and the associated histograms after 
each pre-processing or normalization step.

Prior to the normalization steps, the synthetic mixture data set is binned into the dimensions of 
139 × 257-pixel × 1,547-spectral-channel. Elemental intensity maps (i.e., X-ray lines of Al Kα, C Kα, Ca Kα, Fe 
Kα, K Kα, O Kα, Si Kα, Ti Kα, and Zn Lα) are extracted, where the width of the energy windows is defined as 
the double full-width-at-half-maximum (FWHM) of individual elemental peaks with no background subtraction. 
This yields a datacube with the size of 139 × 257 × 9 for further processing. Each elemental map (with the size 
of 139 × 257 × 1) is then smoothed individually by applying a 3 × 3 mean filter, where each pixel is replaced by 
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the average of pixel values in the surrounding 3 × 3 pixel area, as shown in Figure 1b. Note that the key elements 
here are determined by manually identifying the presence of peaks in the sum spectrum of all pixels.

Then, z-score normalization is separately applied to each elemental map (with the size of 139 × 257 × 1), convert-
ing the mean and the standard deviation of the intensity values into 0 and 1 in each elemental map, respectively, 
as shown in Figure 1c. Consequently, for each elemental intensity map, regions with intensity values above the 
average will become positive, while intensity values lower than average will become negative. With respect to a 
single 9-channel pixel (with the size of 1 × 1 × 9), the higher the positive value is, the more “above-average” the 
element composition is, in comparison with the same channel of other pixels. With z-score normalization, pixels 
in each elemental map incorporate the elemental information across the entire measured area.

Next, each 9-channel pixel (regarded as a vector with the size of 1 × 1 × 9) is normalized to 0–1 interval using 
the softmax function. Softmax function (Bishop & Nasrabadi, 2006), or normalized exponential function, is a 
function that maps a feature vector of real values 𝐴𝐴 𝜼𝜼  into a vector of probabilities 𝐴𝐴 𝝁𝝁  that sum to one, which can 
be expressed as:

𝜇𝜇𝑛𝑛 =
exp(𝜂𝜂𝑛𝑛)

∑

𝑗𝑗
exp(𝜂𝜂𝑗𝑗)

 

where 𝐴𝐴 𝐴𝐴𝑛𝑛  represents the nth value in a feature vector 𝐴𝐴 𝜼𝜼  , and 𝐴𝐴 𝐴𝐴𝑛𝑛  represents the nth probability in a vector of proba-
bilities 𝐴𝐴 𝝁𝝁  . In the current case, as shown in Figure 1d, each 9-channel pixel vector (with the size of 1 × 1 × 9) will 
be transformed into a probability vector. Due to the characteristic of the exponential function, channels in a pixel 
with positive z-scores are emphasized, and those with negative z-scores are downplayed. Therefore, the values 
in a 9-channel pixel indicate the relative degrees of “above average” for individual elements. This can help the 
following machine learning model to extract underlying features from the data set. Figure 2 displays elemental 
intensity maps of the synthetic mixture data set after the sequential pre-processing and normalization steps.

2.3. Overview of SIGMA Workflow

An overview of the SIGMA workflow is illustrated in Figure  3. SIGMA aims to identify the phases and 
their single-phase spectra from HSI-EDS data sets. To this end, SIGMA is designed with three primary 

Figure 1. Elemental intensity maps and the associated histograms: (a) raw data; (b) smoothed data using a 3 × 3 mean filter; (c) data after smoothing and z-score 
normalization, and (d) data after smoothing, z-score, and softmax normalization.
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steps: dimensionality reduction, clustering, and unmixing. First, a neural network autoencoder is trained 
to reduce the dimensionality of the input (i.e., the pre-processed and normalized pixels) but also to keep the 
relationships in the high-dimensional space. Then, high-dimensional elemental pixels are transformed into 
two-dimensional (2D) latent representations using the trained encoder (Figure  3a). In the second step, clus-
tering is performed on the 2D representations using Gaussian mixture modeling (GMM) to distinguish chem-
ically different clusters in the latent space. As a result, chemically similar pixels are grouped into several 
clusters (Figure 3b). After summing the EDS spectra of pixels within each cluster, we obtain a sum spectrum 
for each cluster (denoted as “cluster-spectrum” later). Consequently, the initial pixel-wise HSI-EDS data set 
(with the dimension of 139 × 257-pixel × 1,547-spectral-channel) can be simplified to several cluster-spectra 
(12-cluster × 1,547-spectral-channel for the current case, as discussed later in Section 3.3). In the third step, 
NMF is applied to unmix the single-phase spectra from the cluster-spectra (Figure 3c). In such a workflow, the 
algorithm not only identifies the locations of all unknown phases but also isolates the background-subtracted 
EDS spectra of individual phases.

2.4. Neural Network Autoencoder

Autoencoder is a neural network architecture that consists of two neural networks: an encoder and a decoder. The 
encoder 𝐴𝐴 𝐴𝐴𝜙𝜙(𝐱𝐱) with parameters 𝐴𝐴 𝝓𝝓  converts the input 𝐴𝐴 𝐱𝐱  to a low-dimensional representation 𝐴𝐴 𝒛𝒛  , and the decoder 

𝐴𝐴 𝐴𝐴𝜃𝜃(𝐳𝐳) with parameters 𝐴𝐴 𝜽𝜽  attempts to map the representation 𝐴𝐴 𝒛𝒛  back to a reconstruction of the initial input 𝐴𝐴 �̂�𝐱  . Upon 
training, autoencoder aims to minimize the error in reproducing the initial input 𝐴𝐴 𝐱𝐱  , that is, the reconstruction loss:

𝐿𝐿(𝐱𝐱, �̂�𝐱) = ‖𝐱𝐱 − �̂�𝐱‖
2
= ‖𝐱𝐱 − 𝑔𝑔𝜃𝜃(𝑓𝑓𝜙𝜙(𝐱𝐱))‖

2 

The critical attribute of designing an autoencoder is through an information bottleneck (Tishby & Zaslavsky, 2015). 
The bottleneck forces the model to learn a compressed representation that contains the underlying information of 
the data. As a result, autoencoder is often applied to dimensionality reduction (Hinton & Salakhutdinov, 2006). 
Due to its non-linear characteristic, the autoencoder can learn representations that capture more complicated 
features than traditional methods, such as PCA, which only employs linear transformation on the data.

Figure 2. Normalized elemental intensity maps after the sequential pre-processing and normalization techniques, that is, smoothing, using a 3 × 3 mean filter, and 
normalization using z-score and softmax. The associated backscattered electron (BSE) image of the same measured area.
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For both synthetic and particulate matter data sets (9 and 8 elemental channels, respectively), the encoder block 
consists of three fully connected layers with 512, 256, and 128 neurons, respectively. Each layer is followed by a 
layer normalization (LayerNorm) layer (Ba et al., 2016) and a Leaky Rectified Linear Unit (LeakyReLU) with a 
slope of −0.02 as activation function. LayerNorm is a technique that normalizes distributions of neuron outputs in 
the intermediate layers of a neural network; it can enhance the training speed of neural networks (Ba et al., 2016). 
Different from ReLU, which gives zeros as outputs for negative inputs, LeakyReLU outputs a small linear compo-
nent for each negative input (in this case, inputs are multiplied by 0.02 for negative values). This provides small 
positive gradients for negative outputs during training, avoiding the “dying ReLU” issue (Lu et al., 2020). The 
decoder block uses the reversed structure of the encoder. The autoencoder was trained with Adam (Kingma & 
Ba, 2014) as optimizer function and squared L2 norm as loss function. Figure 4a shows the training history of 
the autoencoder used for the synthetic mixture data set. The loss values for the training (85% data), validation 
(15% data), and all data sets converge progressively within 100 epochs. Note that the autoencoder architecture can 
vary according to the number of pixels and the number of the elemental channels of the data set. Here, we used 
cross-validation for hyperparameter selection to determine recommended values that are appropriate for the vast 
majority of cases likely to be encountered by typical users. The proposed architecture is suitable for data sets with 
8–11 input elemental channels, which falls in the regime of typical mineralogical analyses.

Figure 3. Workflow of SIGMA showing phase identification and signal unmixing on an HSI-EDS data set. (a) A neural network autoencoder is trained to learn good 
representations of elemental pixels in the 2D latent space. (b) The trained encoder is then used to transform high-dimensional elemental pixels into low-dimensional 
representations, followed by clustering using Gaussian mixture modeling in the informative latent space. (c) Non-negative matrix factorization is applied to unmix the 
single-phase spectra for all clusters.
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2.5. Gaussian Mixture Modeling

Gaussian mixture modeling (GMM) is an unsupervised probabilistic technique that fits clusters as a linear super-
position of K Gaussian distributions (Bishop & Nasrabadi, 2006), which can be expressed as:

𝑝𝑝(𝐱𝐱) =

𝐾𝐾
∑

𝑘𝑘=1

𝑤𝑤𝑘𝑘𝑁𝑁
(

𝐱𝐱|𝝁𝝁
𝑘𝑘
,𝚺𝚺𝑘𝑘

)

 

where 𝐴𝐴 𝐴𝐴𝑘𝑘  is the weighting coefficient, and 𝐴𝐴 𝐴𝐴
(

𝐱𝐱|𝝁𝝁
𝑘𝑘
,𝚺𝚺𝑘𝑘

)

 denotes the kth Gaussian component of the mixture and 
is parametrized with the mean 𝐴𝐴 𝝁𝝁

𝑘𝑘
 and the covariance 𝐴𝐴 𝚺𝚺𝑘𝑘  . Clustering through GMMs is achieved by applying 

the maximum likelihood via expectation-maximization (EM) algorithm (Bishop & Nasrabadi, 2006; Dempster 
et al., 1977), where the models attempt to learn optimal solutions for parameters (i.e., 𝐴𝐴 𝝁𝝁

𝑘𝑘
 , 𝐴𝐴 𝚺𝚺𝑘𝑘  , and 𝐴𝐴 𝐴𝐴𝑘𝑘  for each 

Gaussian distribution) to model the empirical data distribution. In clustering using GMM, data points are proba-
bilistically assigned to clusters, therefore providing the confidence of the assignment, which makes the clustering 
process physically meaningful.

One big challenge for clustering using GMM is to determine the number of clusters. We use the Bayesian infor-
mation criterion (BIC) (Bishop & Nasrabadi, 2006) and the elbow method (Wit et al., 2012) to quantitively deter-
mine the optimal number of clusters. BIC is a metric that measures the trade-off between the model complexity 
and the goodness of fit (i.e., maximum likelihood) to the data points, which is defined as:

BIC = 𝑝𝑝 ln(𝑁𝑁) − 2 ln
(

�̂�𝐿
)

 

where 𝐴𝐴 𝐴𝐴  is the number of parameters in the GMM model, 𝐴𝐴 𝐴𝐴  is the number of data points for the clustering using 
GMM, and 𝐴𝐴 �̂�𝐿 is the mean likelihood for the GMM model. Note that 𝐴𝐴 𝐴𝐴  is directly determined by the number of 
clusters. The elbow method is to locate the “elbow” of the BIC curve as the optimal number of clusters (K) based 
on the law of diminishing marginal returns (Wit et al., 2012). Figure 4b shows the result of the elbow method, 
where the optimal number of clusters is 12, that is, when K > 12, the model fitting does not benefit from the 
increase of the number of clusters.

2.6. Matrix Factorization

Matrix factorization is a simple, non-parametric method that has been widely applied to discover underlying 
latent features of the data (He et al., 2005). In this study, PCA and NMF, two well-known matrix factorization 
techniques, are employed for the tasks of dimensionality reduction and factor analysis. PCA is used as a baseline 
method to evaluate the performance of the autoencoder for dimensionality reduction. NMF is included in the 
current workflow for unmixing the signals of sum EDS spectra processed by GMM.

Figure 4. (a) Training history for the autoencoder trained on the training data, validation data, and all data. (b) Bayesian 
information criterion (BIC) scores as a function of the number of clusters (K) of GMM, showing a preference for K = 12, 
marked in red. Note that the data here is associated with the clustering results in Figure 6.
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2.6.1. Principal Component Analysis

Assuming directions with the largest variances having important features, principal component analysis (PCA) 
computes an orthogonal basis to re-express the given data set (Jolliffe, 2002; Potapov & Lubk, 2019; Shlens, 2014). 
The computed orthonormal basis vectors are referred to as principal components. One common way to figure out 
principal components is to apply singular value decomposition (SVD) to the data matrix 𝐴𝐴 𝐗𝐗  :

𝐗𝐗 = 𝐔𝐔𝐔𝐔𝐔𝐔
𝐓𝐓 

where the n × m matrix 𝐴𝐴 𝐗𝐗  is composed of n elemental channels and m pixels, the columns of the n × m matrix 
𝐴𝐴 𝐔𝐔  and the m × m matrix 𝐴𝐴 𝐕𝐕  are orthonormal, and the m × m matrix 𝐴𝐴 𝚺𝚺 is a diagonal matrix with positive values. 

For PCA, the columns of 𝐴𝐴 𝐔𝐔  represent the principal components, and rows of 𝐴𝐴 𝚺𝚺𝚺𝚺
𝐓𝐓  are “scores” describing the 

contributions of the corresponding principal components to the data set.

By assuming that the most important features only remain in the principal components with the first i largest 
variances, one can conduct dimensionality reduction by dropping some of the principal components with lower 
variances (i.e., less informative principal components). In this study, although the heuristic interpretation of the 
Scree plot (Figure S1 in Supporting Information S1) suggests retaining the first three principal components with 
the three largest variances (i = 3), we opt to retain the first two principal components (i = 2), that is, the dimen-
sion of data points is reduced from nine to two, for direct comparison with the performance of dimensionality 
reduction using autoencoder.

2.6.2. Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) (Lee & Seung, 1999) decomposes a non-negative data matrix 𝐴𝐴 𝐗𝐗  into a 
product of non-negative matrices 𝐴𝐴 𝐒𝐒 and 𝐴𝐴 𝐀𝐀  :

𝐗𝐗 ≈ 𝐒𝐒𝐒𝐒 

where the data matrix 𝐴𝐴 𝐗𝐗  consists of n pixels and m elemental channels (i.e., all pixels are included in the data 
matrix) in a typical MSA analysis using NMF (Kotula et al., 2003), the columns of the n × k matrix 𝐴𝐴 𝐒𝐒 represent 
components or latent factors, and the k × m matrix 𝐴𝐴 𝐀𝐀 contains the scores.

Here, instead of analyzing the pixel-wise data set, NMF is applied to unmixing the sum spectra of the GMM-clusters 
(called “cluster-spectra”) on the synthetic mixture data set, that is, 1,547 × 12 data matrix 𝐴𝐴 𝐗𝐗  that consists of 12 
cluster-spectra with 1,547 spectral-channels, the 1,547 × 12 matrix 𝐴𝐴 𝐒𝐒 is composed of 12 pseudo-spectra compo-
nents, and the 12 × 12 matrix 𝐴𝐴 𝐀𝐀  contains the associated abundance coefficients. It should be noted that the NMF 
here is applied without involving dimensionality reduction (i.e., the number of pseudo-spectra components is 
equal to the number of clusters) because no prior knowledge is provided. The optimal approximation of 𝐴𝐴 𝐗𝐗  is 
obtained through minimizing the Frobenius norm of the matrix difference. In addition, a regularization term (i.e., 
elementwise L1 norm) is applied to penalize the model yielding a trivial solution (i.e., 𝐴𝐴 𝐒𝐒 = 𝐗𝐗  and 𝐴𝐴 𝐀𝐀 = 𝐈𝐈  , where 

𝐴𝐴 𝐈𝐈  is an identity matrix) and facilitates more sparse solutions. Thus, the objective function for the unmixing NMF 
can be expressed as:

min
𝐒𝐒,𝐀𝐀≥0

‖𝐗𝐗 − 𝐒𝐒𝐀𝐀 ‖

2

𝐹𝐹
+ 𝜌𝜌R(𝐒𝐒) = min

𝐒𝐒,𝐀𝐀≥0

∑

𝑖𝑖, 𝑖𝑖

(𝐗𝐗𝑖𝑖𝑖𝑖 − (𝐒𝐒𝐀𝐀)𝑖𝑖𝑖𝑖)2 + 𝜌𝜌

∑

𝑖𝑖,𝑖𝑖

𝐒𝐒𝑖𝑖𝑖𝑖 

where 𝐴𝐴 𝐴𝐴  is a hyperparameter determining the impact of the regularization term.

2.7. Software and Package

The entire workflow of SIGMA was built in Python 3.7. Hyperspy 1.6.5 (https://doi.org/10.5281/zenodo.5608741) 
was employed to read and pre-process the HSI-EDS data sets. Scikit-learn 1.0.2 (Pedregosa et al., 2011) was used 
for PCA, NMF, and GMM. The autoencoder was implemented using Pytorch 1.10.0 (Paszke et al., 2019).

3. Results and Discussion
3.1. Non-Linear Dimensionality Reduction

We first use a neural network autoencoder to reduce the dimensionality of the nine-dimensional (9D) data points 
(9-elemental-channel pixels) before clustering. Although clustering directly in the 9D space is feasible, it might 
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suffer from the problem of the curse of dimensionality (Bellman et al., 1957; Molchanov & Linsen, 2018), that is, 
data points in the high-dimensional space become sparse. In the current case, initial 9D pixels that belong to the 
same cluster may be still far from each other in the 9D space, limiting the performance of clustering algorithms. 
Reducing the dimensionality of the data can facilitate better clustering results. The aim of dimensionality reduc-
tion is to reduce redundancy and figure out the underlying structure of the data (Sumithra & Surendran, 2015). 
The reduced representations should keep relations as much in the high dimensional space with minimal loss of 
information. Some linear dimensionality reduction methods, such as PCA, are typically used to deal with this 
problem but usually come with the compromise of information loss and mixture of the underlying clusters during 
the process. This assumes that the data can be represented as a linear combination of a smaller set of intrinsic 
components; it is not applicable if there exist non-linear relationships among high-dimensional data. On the other 
hand, non-linear dimensionality reduction methods, such as autoencoder, can overcome these problems.

Figure 5 compares the ability of PCA and autoencoder to capture the underlying 2D structure of the synthetic 
mixture data set (35,723 data points). In Figure 5a, data points are linearly projected onto the first two principal 
components with the highest variances, forming a distribution with a three-pointed-star shape. Only three clus-
ters are conceivable in the PCA-modeled latent space. On the other hand, the autoencoder (Figure 5b) splits data 
points into more clusters in the 2D latent space due to its capability to learn non-linear transformation. This may 
bring physical meaning to the latent space, which PCA lacks (discussed in the later section). Figure 5c shows 
the distribution of the pixel-wise data points in the autoencoder-modeled latent space, providing brief density 
information of the empirical distribution.

3.2. Clustering in Two-Dimensional Latent Space

We perform GMM clustering directly to the 2D representation of pixels in the latent space modeled by the 
autoencoder. In this process, chemically similar pixels are grouped into the same cluster. Figure 6 shows the 
clustering result for a GMM having K = 12 components, where data points in different clusters are marked in 
different colors with 95% confidence ellipses superimposed. Each data point is assigned to the cluster for which 
the posterior probability 𝐴𝐴 𝐴𝐴(𝐶𝐶𝑘𝑘|𝐱𝐱) is the highest, that is, given a data point 𝐴𝐴 𝐱𝐱  , the probability that it belongs to the 
cluster 𝐴𝐴 𝐴𝐴𝑘𝑘  is the highest. The clustering result yields areas that point out compositional differences, which makes 
the latent space physically meaningful. For example, cluster #8, located in the middle of the latent space, contains 
a similar elemental signal to the averaged signals of all pixels, indicating no elemental fluctuation in this area. 
On the other hand, clusters with one or two enriched elemental signals tend to locate in the margin of the latent 
space, for example, clusters #1 and #2 in the upper middle are Fe-rich, and cluster #7 on the left shows a strong Zn 
signal. Interestingly, the elemental signals of pixels increase from the center to the point within clusters, that is, 
the composition of a pixel will smoothly change from the average to element-rich signals. Furthermore, gradual 
transitions of elemental intensity among clusters are observed; the Al signal decreases as the cluster changes from 
cluster #3 to #4 to #5. Note that only clusters (and their sum spectra) that may contain meaningful mineral phases 
are labeled and presented; four unlabeled clusters that belong to background signals are circled with a dotted line.

Figure 5. Two-dimensional visualizations of the synthetic mixture data set. The latent space is modeled by (a) PCA by taking the first two principal components and 
(b) autoencoder, where each data point represents the associated pixel in the high-dimensional elemental intensity vector space; (c) the associated latent space histogram 
showing the data point distribution.
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3.3. Unmixing Overlapped EDS Spectra

A key limitation of the GMM clustering result is that none of the cluster-spectra corresponds to the single-phase 
spectra measured separately. The detection of multiple-phase EDS signals can be explained by the unique surface 
morphology of the sample. In both synthetic mixture and particulate matter samples, mineral particles are 
spatially piled or stacked on top of each other. During EDS signal collection, these particles may contribute to 
the emission of X-rays due to the electron-specimen interaction. As a result, each pixel may include signals from 
multiple phases and the background. Upon GMM clustering, the mixture of multiple-phase signals is observed 
in the sum spectra of pixels in each cluster (Figure 6). Thus, although having compositional signals, clusters still 
contain potential background and mixed-phase signals and fail to match any single-phase spectrum.

To obtain background-subtracted signals, we apply NMF to unmix the individual cluster-spectra. In this study, 
“unmixing” refers to distinguishing underlying EDS spectra of individual phases (called “components”) from 
the superposed spectra that consist of a mixture of the contribution of each phase and determining the associated 
weights of each spectrum component (called “abundance”). The mixture of the spectra 𝐴𝐴 𝐱𝐱i  is approximated using 
a linear mixing model (Bioucas-Dias et al., 2012):

𝐱𝐱i =

𝑘𝑘
∑

𝑖𝑖=1

𝑎𝑎𝑖𝑖𝐬𝐬𝑖𝑖 + 𝐧𝐧 

where 𝐴𝐴 𝐬𝐬𝑖𝑖  is the underlying components of individual spectra, 𝐴𝐴 𝐴𝐴𝑖𝑖  is the abundance coefficients, and 𝐴𝐴 𝐧𝐧  is additive 
noise. To examine the accuracy of the unmixing performance, we compare these 12 pseudo-spectra Different 
from typical MSA approaches that analyze the pixel-wise data set (Benhalouche et al., 2019; Kotula et al., 2003), 
NMF is applied here to the sum spectra of the GMM-clusters (called “cluster-spectra”) on the synthetic mixture 

Figure 6. Visualization of latent space clustered using Gaussian mixture modeling. Each cluster is marked with a different color and overlapped with the associated 
95% confidence ellipse. Locations and the sum EDS spectrum of the pixels in each cluster are illustrated. The blue dotted lines denote the average spectrum of all pixels 
in the synthetic mixture data set. Note that the average spectrum is normalized to the scale of the sum spectra.
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data set, that is, 1,547 × 12 data matrix 𝐴𝐴 𝐗𝐗  that consists of 12 cluster-spectra with 1,547 spectral-channels (see 
Methods for more details). This unmixing procedure is valid because the dimensionality reduction and clustering 
steps effectively simplify the input of NMF from a 1,547 × 35,723 data matrix (with noisy spectra) down to a 
1,547 × 12 data matrix, each column of which is the sum of spectra from chemically similar pixels and, therefore, 
significantly reduces statistical unambiguity of spectra (i.e., becomes significantly less noisy). In this case, pixels 
in a GMM cluster are considered the same type of spatial mixture of mineral particles; for example, all pixels in 
cluster #2 are assumed to consist of Fe3O4 and CaCO3. Thus, only 12 types of mixtures of mineral particles are 
assumed to exist (as K = 12 is specified for GMM) and are used for NMF unmixing to figure out the underlying 
single-phase spectra, reducing the risk of identifying noisy features for NMF.

Figure 7 shows the unmixed 12 pseudo-spectra components with the real single-phase spectra that are measured 
separately. All seven phases are identified, and the associated spectra show an average cosine similarity of 83.0% 
to the experimental single-phase spectra, where the ground truth spectra are normalized to the same scales as the 
pseudo-spectra. Note that cosine similarity is a metric to measure the similarity between two vectors (i.e., spectra 
in this case). Given two vectors 𝐴𝐴 𝐱𝐱  and 𝐴𝐴 𝐲𝐲  , cosine similarity can be formulated as:

cosine similarity(𝐱𝐱, 𝐲𝐲) = cos(𝜃𝜃) =
𝐱𝐱 ⋅ 𝐲𝐲

‖𝐱𝐱‖‖𝐲𝐲‖
 

Figure 7. NMF components showing the underlying pseudo-spectra. Certain pseudo-spectra components are in excellent agreement (i.e., average cosine 
similarity = 83.0%) with ground truth single-phase spectra measured from the individual mineral particles before the mixture. Note that the real single-phase spectra are 
marked in orange and normalized to the same scales as the associated pseudo-spectra.
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where 𝐴𝐴 𝐴𝐴  is the angle between the two vectors, 𝐴𝐴 ‖𝐱𝐱‖ and 𝐴𝐴 ‖𝐲𝐲‖ represent the L2 norm of 𝐴𝐴 𝐱𝐱  and 𝐴𝐴 𝐲𝐲  . If the two given 
vectors are exactly the same, the cosine similarity will be 1 (or 100%); if they are decorrelated, the cosine simi-
larity will be 0 (or 0%).

However, the unmixing process is not perfect. First, some phases are not properly unmixed, for example, TiO2 
and ZnCO3 in components #10 and #12, respectively. This may result from the relatively small amount of these 
phases in the data set. In the GMM clustering step, pixels with similar elemental signals are grouped into the same 
cluster. Clusters that include pixels from minor phases would have lower signal intensity in the sum spectrum, for 
example, the Ti-rich cluster #6 only contains 455 pixels yielding the Ti peak with height ∼2.4 a.u., whereas the 
Fe-rich cluster #1 contains 3,936 pixels yielding the Fe peak with height ∼41.7 a.u. (as shown in Figure 6). This 
leads to imbalanced signal intensity scales among different cluster-spectra, for example, the intensities of peaks 
in the Fe-rich cluster are much higher than in the Ti-rich cluster. Consequently, cluster-spectra with major phases 
(higher intensity scales) tend to acquire better approximation upon optimization with the criterion of the Frobe-
nius norm. In contrast, cluster-spectra with minor phases (lower intensity scales) may yield relatively inaccurate 
unmixed pseudo-spectra, or even be overlooked by the algorithm. Second, some components may have little or no 
physical meaning, that is, showing compositions with unrealistic intensity ratios and/or a combination of elemen-
tal peaks. These components do not correspond to any ground truth phase and may be interpreted as the general 
background, noise introduced by instrument artifacts, or noisy features due to the low-quality initial data set. For 
instance, component #7 (containing only the potassium peak) does not fit any measured phase and is regarded as 
part of the signal from KAlSi3O8. Also, components #4, showing a strong oxygen signal, may be interpreted as 
the component that captures instrumental artifacts or noisy features. Third, some components are repetitive. For 
example, components #9 and #11 are similar to component #3 (Fe3O4) but have extra peaks.

These problems can be mitigated by analyzing the abundance coefficients (𝐴𝐴 𝐴𝐴𝑖𝑖  ) and the intensity of peaks in the 
pseudo-spectra. According to the linear mixing model, each cluster can be approximated by a linear combination 
of underlying spectra weighted by abundance coefficients. Figure 8 shows the analysis of the abundance coef-
ficients for each component, indicating the importance of the contribution of each component. As shown in 
Figure 8a, cluster #1 can be approximated using components #3 and #4 with an abundance coefficient of 13.9 

Figure 8. Bar charts of abundance coefficients and pixel distributions showing the importance of NMF components for each cluster. The underlying single-phase 
spectrum of each cluster of (a) Fe3O4, (b) KAlSi3O8, (c) TiO2, and (d) SiO2 can be identified according to the abundance coefficients.
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and 5.9, respectively; component #4 is responsible for the oxygen signal in 
component #3. Therefore, cluster #1 most likely is Fe3O4. In most cases, 
abundance coefficients are sparse, that is, only one or two components are 
dominant, as shown in Figures 8b–8d. As a result, most physically mean-
ingless components with low abundance coefficients may be intrinsically 
excluded when drawing inferences. Similar abundance coefficient analyses 
can be conducted for all clusters, producing a phase map for the synthetic 
mixture data set (Figure 9).

3.4. Benchmarking

We compare SIGMA with some other standard approaches with the synthetic 
mixture sample data set (Table 1). Two MSA methods are used as the base-
line (i.e., independent component analysis (ICA, Hyvärinen & Oja,  2000; 
Seung & Lee, 2001)) and NMF, where the selection of the number of compo-
nents for NMF/ICA is based on the Scree plot of PCA (Figure S1 in Support-
ing Information  S1). Additionally, clustering directly on 9D pixels using 
GMM followed by unmixing using NMF (denoted as GMM-NMF) is also 
employed to demonstrate the importance of the dimensionality reduction step 
by autoencoder.

The two MSA methods have poorer performance in both phase identification and spectrum accuracy. ICA iden-
tifies 2 of 7 phases with an average 36.5% similarity (Figure S2 in Supporting Information S1), while NMF 
identifies 3 of 7 phases with an average 64.3% similarity (Figure S3 in Supporting Information S1). Two reasons 
are conceivable. First, the properties of non-negativity and statistical dependence of sources in HSI-EDS data 
sets may be the cause of failure of the ICA algorithms (Nascimento & Dias, 2005). Second, for ICA and NMF, 
low average counts per pixel of the data set (i.e., noisy EDS spectra) may pose a challenge for the algorithms to 
identify components of single-phase spectra. From the Scree plot (Figure S1 in Supporting Information S1), the 
substantial drop in the explained variance ratio of the first three principal components reflects the influence of 
the noisy input. Consequently, only three NMF/ICA components can be identified. Although a higher number 
of components can be assigned, it does not yield more meaningful components; they are similar, noisy spectra, 
instead. On the other hand, SIGMA identifies all phases (7 of 7) in the synthetic mixture sample and achieves 
better average similarity (83.0%) to the ground truth single-phase spectra than the common standard methods. 
However, without non-linear dimensionality reduction, GMM-NMF can only detect 6 of 7 phases and yield an 
average 72.9% similarity (Figure S4 in Supporting Information S1). The drop in performance demonstrates the 
importance of dimensionality reduction using autoencoder.

3.5. Testing SIGMA on Exhaust Pipe Residue Particulate Matter Data Set

We evaluate the performance of SIGMA on the exhaust pipe residue particulate matter data set, where particles 
with various compositions and sizes are distributed on the substrate. Exposure to particles containing heavy 

metals, particularly, Fe-bearing ultrafine particles can have serious health 
implications. Inhalation of Fe-rich nanoparticles is a major health risk for 
cardiovascular diseases (Dusseldorp et  al.,  1995; Maher et  al.,  2020) and 
has been found to enter the human brain through olfactory transport (Maher 
et al., 2016). The toxicity of Fe-bearing ultra-fine particles is linked to their 
size, composition, and distribution. Thus, it is critical to identify and quantify 
the abundant presence of Fe-bearing ultrafine particles in urban microenvi-
ronments. In a previous study (Sheikh et al., 2022), the task to identify these 
particles was manually conducted by individually analyzing backscattered 
electron (BSE) images and their associated EDS elemental maps, which is an 
inefficient and time-consuming process.

Here, SIGMA offers huge potential for automated identification of potential 
Fe-bearing particles with background-subtracted compositional informa-

Figure 9. Backscattered electron image of the synthetic mixture data set and 
the corresponding phase map according to the NMF unmixing analysis. Note 
that red and dark blue represent the same phase of Fe3O4 but are unmixed from 
different clusters.

Table 1 
Benchmark Results Comparing SIGMA With Previous Standard Methods

Method
Number of phases 

identified

Average spectrum 
similarity to 
ground truth

ICA (Hyvärinen & Oja, 2000) 2 of 7 36.5%

NMF (Kotula et al., 2003) 3 of 7 64.3%

GMM-NMF 6 of 7 72.9%

SIGMA 7 of 7 83.0%

Note. The bold values hightlight the performance of SIGMA.
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tion (Figure 10). Figure 10a shows the backscattered electron (BSE) image. After pre-processing and normal-
izing (the same procedure in the synthetic mixture data set), the data set is built into elemental intensity maps 
with the dimensions of 396 × 336-pixel × 8-spectral-channel (i.e., X-ray lines of O Kα, Fe Kα, Mg Kα, Ca 
Kα, Al Kα, C Kα, Si Kα, and S Kα). Then, an autoencoder is trained to learn the 2D representation of pixels. 
Figure 10b shows the autoencoder-modeled 2D latent space and the result of GMM clustering (K = 13), where 
data points that belong to different clusters are marked with different colors. Again, the clusters yield phys-
ically meaningful areas, indicating compositional information for pixels. The distribution of pixels forms a 
pointed-star shape, where the center refers to the averaged signals, and the arms represent certain element-rich 
clusters.

In this specimen, our main goal was to identify Fe-bearing ultrafine particles; therefore, we primarily focus 
on the Fe-rich phase (green cluster observed in the top right of the latent space). Figures 10c and 10c′ show 
the spatial distribution of Fe-rich pixels and the associated size distribution obtained by manual analysis (i.e., 
using a thresholding technique on the Fe intensity map); Figure 10d and 10d′ show the SIGMA analysis of the 
spatial distribution of Fe-rich pixels and the associated size distribution. SIGMA can not only identify most of 
the particles recognized by the manual analysis but also detect some overlooked particles that may be locations 
with multiple mineral particles stacked on each other. Prior to the unmixing step, although containing the Fe Kα 
peak well above the average, the sum spectrum (Figure 10e) appears to include overlapped signals from the back-
ground. After NMF unmixing, the background-subtracted Fe-oxide spectrum is successfully identified through 
abundance coefficient analysis (Figure 10f). We can see that SIGMA is capable of not only identifying potential 
Fe-bearing particles but also unmixing and isolating its chemical signal from the matrix in an automated manner.

Figure 10. Phase identification and elemental signal unmixing on particulate matter data set using SIGMA. (a) Backscattered electron (BSE) image; (b) 2D latent 
space modeled by autoencoder showing the GMM clustering result, where clusters are marked with different colors and overlapped with the associated 95% confidence 
ellipses; (c) manually identified pixel distribution of Fe-bearing particles and (c′) associated size distribution; (d) pixel distribution in the Fe-rich cluster of the latent 
space and (d′) associated size distribution of the Fe-rich particles. Note that the equivalent diameter is defined as the diameter of the circle that has the same area of 
the region. Normalized sum spectrum of the Fe-rich cluster (e) before NMF unmixing (overlaid with the average spectrum of the blue dotted line) and (f) after NMF 
unmixing.
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4. Conclusions
We have developed a self-supervised approach for automated phase identification and hyperspectral unmixing 
with only one hyperspectral image—energy dispersive X-ray spectroscopy (HSI-EDS) data set. Specifically, we 
apply non-linear dimensionality reduction to the HSI data set using a neural network autoencoder and analyze 
the underlying structure of the data using Gaussian mixture modeling (GMM) clustering. Non-negative matrix 
factorization (NMF) is employed cluster-by-cluster to isolate the background-subtracted EDS signals from the 
matrix. We evaluate this approach with two HSI-EDS data sets. For the known synthetic mixture data set, all 
seven major phases are identified and verified by the individually measured EDS spectra, revealing the accuracy 
(i.e., average cosine similarity = 83.0%) of our technique. For the particulate matter data set, the performance 
of this approach is further demonstrated by distinguishing potential Fe-bearing particles from several unknown 
chemical phases with different particle sizes. Furthermore, the proposed approach can be applied to more general 
HSI data sets, such as electron energy loss spectroscopy (EELS), scanning tunneling microscopy (STM), and 
time-of-flight secondary ion mass spectrometry (ToF-SIMS), providing a reliable analysis in a fully automated 
manner.

Data Availability Statement
We wrapped the entire SIGMA as a Python module and have built it into a user-friendly notebook with GUI 
(available at Zenodo: https://doi.org/10.5281/zenodo.7114747).
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