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Molecular layer-by-layer re-stacking of
MoS2–In2Se3 by electrostatic means:
assembly of a new layered photocatalyst†
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Yiyang Li, a Ping-Luen Ho,a Winson C. H. Kuo,c Robert A. Taylor,d

Keita Taniya, e Qi Wei,f Mingjie Li,f Michail Stamatakis *b and
Shik Chi Edman Tsang *a

2D-layered transition metal chalcogenides are useful semiconductors for a wide range of opto-

electronic applications. Their similarity as layered structures offers exciting possibility to modify their

electronic properties by creating new heterojunction assemblies from layer-by-layer restacking of

individual monolayer sheets, however, the lack of specific interaction between these layers could induce

phase segregation. Here, we employed a chemical method using n-BuLi to exfoliate MoS2 and In2Se3

into their monolayer-containing colloids in solution. The bulky Se atoms can be selectively leached from

In2Se3 during Li treatment which gives positively charged surface monolayers in neutral pH whereas the

strong polarization of Mo–S with moderate S leaching gives a negatively charged surface. Specific inter-

layer electrostatic attraction during their selective assembly gives a controllable atomic AB-type of layer

stacking as supported by EXAFS, STEM with super-EDX mapping, TAS/TRPL and DFT calculations. Using

this simple but inexpensive bottom-up solution method, a new photocatalyst assembled from layers for

photo water splitting can be tailor-made with high activity.

Introduction

2D layered metal chalcogenides have recently attracted great
research interest, due to their chemical versatility and their
highly tunable electronic and optical properties.1–7 The layered
structure of these materials can grant unique properties out-
performing their bulk forms, for example, a direct band gap can
be brought by the monolayer rather than the indirect band gap
of multilayers.8 Group IIIA chalcogenides have recently demon-
strated outstanding visible light responsivity and electronic

structure tunability in theoretical studies.9 Amongst them,
indium selenide (In2Se3) has been recognized as an intriguing
material. Its reported intrinsic ferroelectricity is said to gener-
ate an internal driving force for the spatial separation of
photoexcited electrons.10 On the other hand, the monolayer
Group VIB chalcogenides can be metallic or semiconducting
depending on their phase. This compelling behavior is due to
an interplay between the d-electron count and ligand field
splitting in different coordination environments.

The monolayer 2D metal chalcogenides can be synthesised
on solid substrates by bottom-up techniques, via (metalorganic)
chemical vapour deposition (MOCVD/CVD),11–13 or electro-
chemical methods. For their bulk structures, within each layer
of metal chalcogenide, the metals and the chalcogenides are
covalently bonded, while the van der Waals interaction holds
the different layers together.14 As a result, top-down synthetic
protocols to break the weak interlayer interaction for the
preparation of monolayer structures such as mechanical methods
and exfoliation methods are also commonly reported.15,16 A simple
liquid exfoliation method by using solvent or mixed solvent
molecules has been reported, which can apply to a wide range of
layered structures.17 However, the method is unable to prepare
single monolayers but only multilayers. Previous works using
chemical exfoliation methods by intercalation chemistry can
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prepare high quality monolayer materials in solution.18–20 Besides
the increased surface area, the monolayer thickness of the materi-
als also leads to new compelling electronic and optical properties.21

These exfoliated monolayer materials have been recognised as
potential candidates for various applications.17,22,23

Chemical exfoliation methods using n-butyl lithium treatment
with the metal chalcogenides have been widely applied to exfoliate
MoS2 monolayers.2,24 As Li0 from n-butyl lithium (n-BuLi) interca-
lates into the inter-layers, their distance will swell, and they can
subsequently be physically separated into monolayers by sonication.
However, they are subjected to rapid restacking at high concen-
tration or upon drying.25,26 Further modulation of the properties of
these monolayers by other materials to form heterojunctions is
known to be an excellent strategy to tailor chemical properties and
stability.27 For example, the difference of the chemical potential
between the two semiconductors causes band bending at the inter-
face of the junction, which promotes the effective separation of
electron–hole pairs in photoexcitation.28,29 Heterojunction for-
mation can be accomplished by assembling the two materials
together, as in the case of MoS2/p-Si,30 MoS2/SnS2

31 and MoS2/
WSe2.32 An exciting method to intercalate with metal atoms to form
new covalent interactions has recently been reported.33

Currently, these stacked single layered MoS2 heterojunction
materials are mainly synthesised via cost and energy intensive
chemical/physical vapour deposition (CVD/PVD) methods.34,35

However, it is more desirable to create multiple heterojunctions
from both single layers of A and B of different chalcogenides in
solution to form an extensive alternative AB type of restacking
with high degree of materials’ interfaces. Nevertheless, the lack
of specific interaction(s) between two layered materials and the
cost/duration of layer-by-layer deposition without phase segre-
gation would be practically difficult to achieve.

In this work, we have demonstrated the self-assembly of
exfoliated In2Se3 and MoS2 species by electrostatic interaction.
Due to the larger size of the selenide compared to the sulphide,
the intralayer covalent interaction would be much weaker for
In2Se3 compared to MoS2. This difference in bond strength
leads to a higher amount of anion being reduced and leached
during exfoliation by n-BuLi, resulting in a positively charged
surface of anion defective monolayer In2Se3. On a different
note, MoS2 is more chemically stable against oxidative leaching
possesses a negatively charged monolayer, due to the covalency
between polarizing hard Mo4+ cations and polarizable soft S2�

anions. Thus, multi heterojunctions can be self-assembled
in solution based upon the different chemical affinity of the two
metal chalcogenides towards lithium intercalation. The formation of
this self-assembled multi-heterojunction material is demonstrated
by various structural characterization techniques, such as Extended
X-ray absorption fine structure (EXAFS), Density functional theory
(DFT) calculations and Super energy-dispersive X-ray spectroscopy
(Super-EDX). Subsequently, the optical properties of the heterojunc-
tion are investigated via time-resolved photoluminescence (TRPL)
and transient absorption spectroscopy (TAS). It is proved that the
formed multi-heterojunction materials from restacking of indivi-
dual monolayers displays improved activity towards photocatalytic
water splitting compared to their parent layers.

Results and discussion
Exfoliating MoS2 and In2Se3

The preparation of exfoliated MoS2 (ex-MoS2) In2Se3 (ex-In2Se3)
and restacked MoS2–In2Se3 multi-heterojunction materials is
summarized in the methods section along with their experi-
mental testing procedure for water splitting. Bulk MoS2 and
a-In2Se3 were chemically exfoliated by lithium intercalation in
our previous work.20,36,37 Typically, characteristic diffraction
peaks of collected supernatant colloids are gradually broadened
when probed by X-ray diffraction and eventually disappear to a
baseline when single layer fakes are formed in the topmost
supernatant upon exfoliation and sonication. The TEM images
show the sheet-like morphology of the exfoliated samples
(Fig. S1, ESI†). Corresponding typical atomic force microscopy
(AFM) height profiles and images of the Li treated bulk samples
in ESI† Fig. S2 show the formation of single layers of expected
monolayer thickness for prolonged treatment.38 ESI† Fig. S3
shows the absence of a diffraction peak upon Li treatment. The
XRD intermittent diffractogram also confirms the low-intensity
peaks between 201 to 301 in ex-In2Se3 attributable to InxSey

species formed due to leached Se.39

Atomic-resolution high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) of a selected
thin flake of topmost supernatant of ex-MoS2, viewed along
[001] is provided in Fig. 1a, based on Z contrast intensity
differences between each column. The corresponding HAADF-
STEM simulated image (Fig. 1b) according to the Dr Probe
image simulation software package40 and atomistic modelling
(Fig. 1c) confirm its single monolayer pattern. Similarly, the
HAADF-STEM image, simulated image and atomistic model for
monolayer In2Se3 are also presented (Fig. 1d–f). The TEM image
and fast Fourier transform diffraction pattern of bulk In2Se3 are
provided in ESI† Fig. S4 along with its simulation for compar-
ison. A HAADF-STEM image of bulk In2Se3 and its simulation is
also provided in Fig. S5 (ESI†).

An Infrequent but direct visualization of a sulphur vacancy by
HAADF-STEM of the prepared monolayer MoS2 by Li treatment
was reported due to oxidative leaching of the sulphur atom to Li+

and S2� in solution (Fig. S6, ESI†).20,36,37 However, the EDX
analysis of exfoliated MoS2 indicated a Mo : S ratio of 1 : 1.8 for
the sample, which is close to the theoretical 1 : 2.0 in bulk
MoS2.41 The retainment of a monolayer MoS2 structure with
good stoichiometry reflects the stronger bonding between Mo
and S against such leaching with only a small degree of anion
defects. It is interesting to see that for ex-In2Se3, both K and L
emission lines of the EDX results (ESI† Fig. S7 and Table S1)
revealed an In : Se ratio of 87 : 13, which is significantly deviated
to the expected ratio of 2 : 3 in bulk In2Se3. This suggests that a
considerable proportion of the Se is leached out during the
exfoliation/sonication process. Electron paramagnetic resonance
(EPR) data (Fig. S8, ESI†) indeed confirmed that ex-In2Se3 gives a
strong signal at g = 2.0004, similar to the g-value of a trapped
electron (g = 2.0023) in Se vacant site whereas the bulk In2Se3

phase is EPR silent. This signal in ex-In2Se3 gives a strong
experimental support to the formation of Se vacancies.42,43 Such
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an observation is echoed in the X-ray photoelectron spectroscopy
(XPS) of bulk and ex-In2Se3 (Fig. S9, ESI†). The indium spin–orbit
coupling peaks of 3d5/2 and 3d3/2 for bulk In2Se3 are at 444.9
and 452.5 eV, respectively, corresponding to published values in
the literature.44,45 They are clearly shifted to higher energy of
446.1 and 453.7 eV, indicating an increase in positive charge of
the In species, caused by the reduction in the number of selenide
counter anions. On the other hand, the Se XPS peak, composed
of 3d5/2 and 3d3/2, has decreased in binding energy from 58.2
to 55.5 eV for bulk and ex-In2Se3, respectively. Because of the
reduced Se population, the average charge each selenide ion

receives from indium has increased, resulting in the decreased
XPS peak energy.

MoS2–In2Se3 multi-heterojunction

The zeta potentials of ex-MoS2 and ex-In2Se3 solutions were
measured (Fig. 2f and ESI† Table S2) to be �35.0 mV and
+21.3 mV, respectively. It is well-accepted that the more electro-
negative sulphur atoms found on top and bottom of the
exposed monolayer when compared to the trigonal prismatic
sandwich molybdenum atoms is expected to induce a negative
surface charge for this molecular structure. On the other hand,

Fig. 2 (a) TEM image of MoS2–In2Se3 multi-heterojunction and its EDX mapping of Mo (b) and S (c), In (d), Se (e). (f) Zeta potential of ex-In2Se3 and
ex-MoS2. (g–i) Fourier transform of k3-weighted Mo (g), In (h), Se (i) K-edge of EXAFS spectra of MoS2–In2Se3 multi-heterojunction.

Fig. 1 (a) HAADF-STEM image viewed along [001] plane of monolayer MoS2. (b) An HAADF image simulation. (c) Atomic model of 2H-MoS2 for
simulation. (d) HAADF-STEM image viewed along [001] plane of monolayer In2Se3. (e) An HAADF image simulation and (f) atomic model of 2H-In2Se3 for
simulation. Colour scheme: Red = Mo, Green = S, Blue = In, Yellow = Se.
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the positively charged surface of an ex-In2Se3 flake clearly
harmonises with the expected substantial anion defective mono-
layer, as discussed. Such a large difference in the chemical
propensity of different chalcogens towards Li can enable self-
assembly of ex-In2Se3 and ex-MoS2 monolayers to prepare multi-
heterojunction via layer-by-layer re-stacking using their opposite
zeta potential in a solution of controlled pH.

As a result of mixing two solutions containing individual
MoS2 and In2Se3 monolayers for a period of time a solid
precipitate was collected. TEM images (Fig. 2a) show thicker
patches compared to the single layer fakes (Fig. S1, ESI†). Its
EDX mapping (Fig. 2b–e) has shown a homogeneous mixture
between the Mo, S, In and Se, indicative of restacking of the
individual layers. Mo, In and Se K-edge extended X-ray absorption
fine structure (EXAFS) analyses of the MoS2–In2Se3 multi-
heterojunction sample were carried out. All the fitting parameters
along with their k-space data and fits have been provided in ESI†
Fig. S10 and Table S3a–c. First, Mo–S and Mo–Mo short and long
scattering paths can be well-fitted for the Mo K-edge data (Fig. 2g).
For Mo–S and Mo–Mo, the average coordination number for both
paths is found to approach 6.0, which is similar to that for the
MoS2 structure.46 However, additional interactions between Mo–
Se and Mo–In can be clearly evident, with small but distinctive
coordination numbers of 0.38 and 0.30, respectively. Moreover,
the scattering path of In–Se is determined with an average
coordination number of 2.85 according to In K-edge data
(Fig. 2h), which is significantly lower than the theoretical mono-
layer figure for In2Se3 of 4.0 but is consistent with the Se leached
monolayer. Interestingly as shown in Fig. 2i, an additional

scattering path of In–S is deduced with a coordination number
of 1.15. This clearly depicts the scrambling of atoms between
these monolayers in their mixture. It appears that MoS2 has
mostly retained its structure in the multi-heterojunction sample,
while In2Se3 shows noteworthy integration into the MoS2 species
due to its substantial defective nature as discussed above.
Although the bond length for Mo–Se obtained from data fitting
of the Mo and Se K-edge (Fig. 2i) differs only by 0.01 Å, their
evaluated coordination number diverges. One possible final
assembly structure according to EXAFS data is an alternating
restacking of the apparently intact MoS2 monolayer with deco-
rated Se-defect In2Se3 layer-by-layer by electrostatic interaction:
the missing Se sites of defective In2Se3 with exposed In atoms
have been substituted by S atoms from MoS2 at the interface. The
rigidity of individual layers is not yet known, hence it would
be interesting to determine the spatial arrangement in future.
Nevertheless, this results in the clear emergence of Mo–S/Se–In
motifs at the interface of the MoS2–In2Se3 multi-heterojunction.

Density functional theory (DFT) calculations

Layer-by-layer periodic DFT calculations of these two hetero-
geneous metal chalcogenide monolayers in a 2H arrangement
(trigonal prismatic) were carried out to guide our understanding
of the restacked structure using the Perdew–Burke–Ernzerhof
(PBE),47 exchange correlation functional and a D3 dispersion
correction48 by means of the Vienna Ab initio Simulation Package
(VASP).49 Most structures were obtained from the Materials
Project open dataset,50 and the crystal structure manipulations
were done by using the Python Materials Genomics package

Fig. 3 (a) Bulk model for MoS2–In2Se3 monolayer stacking. (b) Stacking of alternative MoS2 layer with a 12.5% Se substitution into S of ‘‘In2Se’’ layer.
Colour scheme: Red = Mo, Green = S, Blue = In, Yellow = Se. (c) Experimental HAADF-STEM image of MoS2–In2Se3. (d) Simulated HAADF-STEM image
with (c). (e) Super EDX of MoS2–In2Se3 near surface assembly. The upper left side of figures are HAADF and (f) elements mapping by EDX superimposed
on the experimental images as insets. Colour scheme: Red = Mo, Green = S, Blue = In, Yellow = Se. Although the layer assembly was not flat with
reference to the beam direction (distorting peak sizes), one can see the Mo–S and In–Se in 2H arrangements resembling to their atomic distances (g). It is
also interesting to reveal that the intimate Mo–Se (2.6 Å) and Mo–In (4.2 Å) atomic distances resembles to that in the optimised DFT model with 12.5% S
substitution with Se within experimental error.
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(pymatgen)51 and Atomic Simulation Environment (ASE).52 For
bulk geometry relaxation, a plane-wave basis set was used with a
kinetic energy cut-off of 520 eV, and electronic and force con-
vergence tolerances of 10�6 eV and 10�3 eV�Å�1, respectively,
were imposed. Further computational details and a description
of the computational models are provided in the ESI.† Calcula-
tions were applied to validate the model and to ensure its
stability.

Restacking of alternating monolayers of intact In2Se3 and
MoS2 is first subjected to geometry optimisation (Fig. 3a). The
bond lengths and coordination numbers obtained in this
optimised model were clearly found to deviate from the derived
bond lengths and coordination numbers from EXAFS fitting.
Given the substantial Se defective structures determined by
EDX, a model was built by removing the top or/and bottom Se
layers of In2Se3, and alternating this ‘‘In2Se’’ with MoS2 layers
with different degrees of Se substitution into S at the interface
(Fig. 3b). This model incorporates the Mo–S/Se–In motifs in
line with the EXAFS fitting into the structure. Using the 2H
MoS2, three sub-models with 6.3%, 12.5% and 25.0% of S
substituted by Se atoms were generated, and subject to geo-
metry relaxation, with the bond distances between pairs of
atoms summarized in Table 1. The results are promising, with
most bond distances best matched to the EXAFS data for the
12.5% case, evidenced by the highest R-factor. Such a DFT
optimised structure was then used to simulate an expected
HAADF image (Fig. 3c), which also shows a good agreement
with the experimental image in Fig. 3d. To further confirm the
inter-atomic mixing between the two phases, high-resolution
super-EDX mapping using a ThermoFisher Themis Z300 scan-
ning transmission electron microscope equipped with highly
sensitive Super-X energy dispersive X-ray spectrometer contain-
ing a high-speed, high-throughput, quad-silicon drift detector
optimized for rapid X-ray collection (0.9 srad) and when com-
bined with STEM to enable EDS spectral mapping down to the
atomic scale. This facility was particularly employed to obtain
the spatial elemental mapping of the near surface multi-
heterojunction. The images reveal distinct dispersion of S, Se,
Mo, In atoms on a selected flake surface according to their
characteristic EDX emissions (Fig. 3e, f and ESI† Fig. S11). Such
spatial differentiation of Super-EDX, allows us to delve into an

atomic level (Fig. 3g). The corresponding spatial atomic dis-
tances between Mo–Se and Mo–In (2.6 Å and 4.2 Å) match with
the optimised DFT model (2.6 Å and 4.0 Å) within experimental
errors.

As stated, experimentally from EDX, we found that In2Se3

has a higher tendency to form anion defects compared to MoS2.
The vacancy formation energies for In2Se3 and MoS2 have
also been calculated to understand the energy cost associated
with anion defect formation, with their bulk phase used as the
reference point to justify our experimental results. It was
calculated as Ef = Esys-vac � Esys + mi, where Esys-vac and Esys are
the total energies of the vacancy-containing and the stoichio-
metric configurations, respectively, and mi is the chemical
potential of the atom i removed to generate the vacancy. This
calculation was done on all atoms in bulk MoS2, In2Se3, and
stacked MoS2–In2Se3 multi-heterojunctions, with the results
summarized in Table S4 (ESI†). Coincidentally, the calculated
anion vacancy formation energies for MoS2 and In2Se3 are
2.86 eV and 0.53 eV, respectively, comparatively much lower
than those for cations at energies higher than 3 eV. This aligns
with the fact that Mo and S have higher bonding strengths
compared to In and Se and the selective oxidative leaching of
bulky Se atoms rather than S can also be justified theoretically.
Thus, defect formation during the Li treatment will therefore be
more energy costly in MoS2 compared to In2Se3. Likewise, this
fact agrees with our observation of a highly Se defective
exfoliated ex-In2Se3.

Photocatalysis of water splitting

MoS2 is known to catalyze photo-water splitting to H2/O2 due to
its facile polarization.41,53 In order to demonstrate the potential
use of modified MoS2 layers upon formation of multi-hetero-
junction with other metal chalcogenide layers, photo-catalytic
water splitting was studied with different weight ratios of ex-
In2Se3 and ex-MoS2 (Fig. 4a). The photo-catalytic water splitting
has its maximum seen at a 1 : 1 weight ratio between a mixture
of ex-MoS2 and ex-In2Se3, compared to the different weight
ratio. Evidently, the re-stacking of alternating layers of MoS2

and In2Se3 with different potential energy levels should, in
principle, have a strong promoting effect on photo water
splitting due to the enhanced exciton separation by the 1 : 1
multi-heterojunction. To confirm such optical interactions, a
combination of ultraviolet photoelectron spectroscopy (UPS)
and a Tauc plot were uesd to understand the position of the
valence band and the conduction band of the materials. From
the UPS spectra of ex-In2Se3 (ESI† Fig. S12a and b), its Fermi
energy and cut-off energy are evaluated to be 5.81 and 20.97 eV,
respectively. While for ex-MoS2 (ESI† Fig. S12c and d), they are
evaluated to be 5.20 and 19.90 eV, respectively. The energies of
the valence band of ex-MoS2 and ex-In2Se3 can be evaluated to
be 2.40 eV and 1.62 eV above standard hydrogen electrode
(SHE), respectively. From the Tauc plot (ESI† Fig. S13), the
band gaps of the ex-MoS2 and ex-In2Se3 sample are assessed to
be 1.86 eV and 1.71 eV, respectively.54,55 Then, a band-edge

Table 1 Comparison of bond length obtained from EXAFS fitting and
optimised DFT model. All atomic distances are in Å

Bond EXAFS/Å
Monolayer
stackinga 6.3%b 12.5%b 25.0%b

Mo–In 3.97 (Mo K-edge) 5.94 4.16 4.07 4.23
Mo–Se 2.60 (Mo K-edge) 4.70 2.52 2.52 2.52

2.61 (Se K-edge)
Mo–S 2.40 (Mo K-edge) 2.40 2.37 2.37 2.37
Mo–Mo 3.17 (Mo K-edge) 3.16 3.11 3.10 3.11
In–Se 2.64 (In K-edge) 2.55 2.69 2.63 2.61

2.60 (Se K-edge)
In–S 3.01 (In K-edge) 4.34 2.85 2.88 2.74

R-factor 0.748 0.987 0.994 0.980

a MoS2–In2Se3 monolayer stacking (Fig. 3a). b Alternating MoS2 and
‘‘In2Se’’ layer with different degree of Se substitution of S.
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diagram for the MoS2–In2Se3 multi-heterojunction was con-
structed (Fig. 4b).

Time-resolved photoluminescence (TRPL) was performed to
determine the lifetime of the excitons (Fig. 4c). The typical
TRPL profile could be fitted with single or multifunctional
exponential decay curve. As far as the high background noise
as concern, there could introduce a significantly higher degree of
errors if a multifunctional decay curve is fitted. As a result, for
simplicity, we have used a single exponential fit for the comparison.
It is found that the lifetime obtained from fitting a single-
exponential decay to the MoS2–In2Se3 multi-heterojunction
emission (726 ps) is indeed significantly longer than that for
ex-MoS2 (356 ps) and ex-In2Se3 (558 ps). Transient absorption
spectroscopy (TAS) is used to investigate the behaviour of the
photoexcited charges in the heterojunction. 2D TAS spectra
(ESI† Fig. S14) show that the photoexcitation dynamic process
of the conduction band electrons of the MoS2–In2Se3 hetero-
junction is similar to that of ex-MoS2 with generally lower
intensities. This reiterates the similarity between the structure of
the more retained MoS2 in the MoS2–In2Se3 multi-heterojunction.
Photo-induced absorption (PIA, i.e., DA 4 0) decay is monitored to
examine the dynamic population of the excited states in the
conduction band for both a MoS2–In2Se3 heterojunction and ex-
MoS2. PIA signals probed at 550 nm and 705 nm (Fig. 4d and ESI†
Fig. S15) both show that the recombination lifetimes of the carriers
in MoS2–In2Se3 are longer than that of ex-MoS2 (240 ps for MoS2–
In2Se3 and 110 ps for MoS2), consistent with the results from TRPL.
The defective In2Se layers can therefore exert a promoting effect on

the lifetime of the excitons when decorated on MoS2 layers, which
in turn explains the higher catalytic activity for water splitting when
compared to the ex-In2Se3 and ex-MoS2.

Conclusion

In conclusion, we have identified a new chemical method
which can prepare layer-by-layer assembly from monolayer
sheets in solution. The specific electrostatic attraction between
different chalcogenide layers and different leaching and polar-
ization extents can be used to prepare an AB-type of restacking
without much phase segregation. To demonstrate the potential
use of such assembled materials, a photocatalyst with atomic
layer-by-layer stacking with chemically exfoliated MoS2 and
In2Se3 is for the first time made, which is demonstrated to give
enhanced photocatalytic activity for photo water splitting due to
prolonged exciton lifetime. It is anticipated that the described
atomic layer-by-layer re-stacking in the chemical solution
method may also be useful to synthesise mixed chalcogenide
layers of other optoelectronic interests.

Methods
Exfoliation of MoS2

ex-MoS2 single layers in solution was prepared based on our
previous reports,20,36,37 which is routed from a lithium
intercalation-sonication method. Bulk-MoS2 (2.00 g) was

Fig. 4 (a) Rate of photocatalytic water splitting at 270 1C for 9 : 1, 3 : 1, 1 : 1, 1 : 3, and 1 : 9 weight ratio between ex-MoS2 and ex-In2Se3. (b) Band diagram
of MoS2–In2Se3 multi-heterojunction. (c) TRPL of ex-MoS2, MoS2–In2Se3 and ex-In2Se3. The solid lines are fit of data with single-exponential decay. (d)
PIA of MoS2–In2Se3 and ex-MoS2 probed at 550 nm under 400 nm excitation. The solid lines are fit of data with single-exponential decay.
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vigorously stirred in 16 mL of 1.6 M n-butyllithium/hexane
under a nitrogen atmosphere for 48 hours. After washing with
hexane to remove the unreacted n-butyllithium, the lithiated
MoS2 (LixMoS2) was separated by centrifugation and followed
by drying in vacuo at 70 1C. The solid was then immersed into
250 mL of water and sonicated for 6 hours. The suspension was
then centrifuged at 5000 rpm for 15 minutes to remove the
unexfoliated precursors and only the supernatant was collected.
HCl (37%) was then added dropwise to the collected supernatant
until precipitates are formed at a pH of around 7. The solid was
separated by centrifugation at 5000 rpm for 15 minutes and the
exfoliated 2D-MoS2 was obtained after drying in vacuo overnight
at 70 1C.

Exfoliation of In2Se3

The method of synthesizing ex-In2Se3 is developed adapted from
the same method on the synthesis of monolayer MoS2. Exfoliated
2D-In2Se3 is prepared with the standard lithium intercalation-
sonication method. Bulk-In2Se3 (2.00 g) was vigorously stirred in
16 mL of 1.6 M n-butyllithium/hexane under a nitrogen atmo-
sphere for 72 hours. After washing with hexane to remove the
unreacted n-butyllithium, the lithiated In2Se3 (LixIn2Se3) was
separated by centrifugation and followed by drying in vacuo at
70 1C. The solid was then immersed into 250 mL of water and
sonicated for 6 hours (with a power output of 35 W and an
operating frequency at 37 kHz, Elma Schmidbauer, Germany).
The suspension was then centrifuged at 5000 rpm for 15 minutes
to remove the unexfoliated precursors and only the supernatant
was collected. HCl (37%) was then added dropwise to the collected
supernatant until precipitates were formed at a pH of around 7.
The solid was separated by centrifugation at 5000 rpm for
15 minutes and the exfoliated 2D-In2Se3 was obtained after drying
in vacuo overnight at 70 1C.

Synthesis of MoS2–In2Se3

The multi-heterojunction was fabricated through a facile elec-
trostatic self-assembly approach.56 Five MoS2–In2Se3 samples
were prepared with different weight ratios: 9 : 1, 3 : 1, 1 : 1, 1 : 3
and 1 : 9 for prolonged precipitation. The as-prepared 2D-MoS2

sample (250 mg) was first added to aqueous HCl solution (100 mL,
1.5 M) and sonicated for 1 hour, followed by vigorous stirring for
4 hours for further protonation. The resulting acidified suspension
was separated by centrifugation at 5000 rpm for 15 minutes and
was washed with deionised water until neutral to remove super-
fluous HCl. The acidified sample was re-dispersed into 100 mL of
deionised water. According to the weight ratio, a certain amount of
ex-In2Se3 portion was added. The mixture was sonicated for
30 minutes and then stirred vigorously for another 4 hours. The
resulting product was allowed to precipitate and centrifuged at
5000 rpm for 15 minutes and was dried in vacuo overnight at 70 1C.
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