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ABSTRACT

Most sensory stimuli are temporal in structure. How action potentials encode the information incoming from sensory stimuli
remains one of the central research questions in neuroscience. Although there is evidence that the precise timing of spikes
represents information in spiking neuronal networks, information processing in spiking networks is still not fully understood.
One feasible way to understand the working mechanism of a spiking network is to associate the structural connectivity of
the network with the corresponding functional behaviour. This work demonstrates the structure-function mapping of spiking
networks evolved (or handcrafted) for a temporal pattern recognition task. The task is to recognise a specific order of the input
signals so that the Out put neurone of the network spikes only for the correct placement and remains silent for all others. The
minimal networks obtained for this task revealed the twofold importance of autapses in recognition; first, autapses simplify the
switching among different network states. Second, autapses enable a network to maintain a network state, a form of memory.
To show that the recognition task is accomplished by transitions between network states, we map the network states of a
functional spiking neural network (SNN) onto the states of a finite-state transducer (FST, a formal model of computation that
generates output symbols, here: spikes or no spikes at specific times, in response to input, here: a series of input signals).
Finally, based on our understanding, we define rules for constructing the topology of a network handcrafted for recognising
a subsequence of signals (pattern) in a particular order. The analysis of minimal networks recognising patterns of different
lengths (two to six) revealed a positive correlation between the pattern length and the number of autaptic connections in
the network. Furthermore, in agreement with the behaviour of neurones in the network, we were able to associate specific
functional roles of ’locking,’ ’switching,’ and ’accepting’ to neurones.

Introduction
In biological neural networks, the problem of temporal pattern recognition refers to identifying a sequence of input signals
or spikes that carry information. The brain processes such sequences elegantly and responds quickly1–3. Biological nervous
systems can efficiently differentiate spike patterns distributed across time and space4. However, little is known about how
individual neurones contribute to processing temporal signals. Interpreting a sequence of spikes generated by a neurone (or a
group of neurones) to determine the spatial or temporal structure of a stimulus is a fundamental problem in neuroscience5.
Analogue sensory information from different modalities, including olfactory, auditory, and visual input, is encoded in the
form of spikes6, and processed precisely by the brain with incredible speed7. The timing of the spikes captures the varying
transient intensities of the stimulus, and even a single spike represents remarkable information after stimulus onset8, 9. These
results suggest that temporal features of spikes can precisely represent a stimulus and convey information in biological and
artificial spiking neural networks10. In the last 15 years, it has been established that sensory information is represented by the
precise timing of spikes in the somatosensory, auditory, visual, and olfactory systems9, 11–17. Furthermore, several studies have
shown that information processing in the nervous system is linked to transitions from one spiking behaviour to another5, 18–23.
However, despite extensive research, the association between structural connectivity and the functional behaviour of neural
systems remains unclear. Understanding how spiking neural networks process information to gain insight into the computational
capabilities of a biological brain is one of the most challenging problems in computational neuroscience24, 25. A possible way
to study the complex computational processing capabilities of the brain is to artificially produce networks with biologically
plausible neurones that can perform a computational task.

From a computational perspective, processing temporal spike patterns is a general computational task performed by the
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brain26, 27. There are two common ways of learning to recognise temporal patterns: (i) adjusting conduction delays28–31, (ii)
selecting conduction delays from a spectrum of existing delays20, 32, 33. Spiking neural networks (SNNs) are documented to
differentiate temporal patterns by exploiting different time delays and pathways in the network6. In neural systems, time delays
can be adjusted at the level of synapse, axon, or soma. Adjusting these delays at one or more levels in the network can uncover
features of a signal34. On the other hand, it is possible that signals produced at different timings arrive together at the readout
neurone, generating a maximal response. This phenomenon is used for edge detection in the visual system35. Moreover, delays
in the network can also be used to identify keywords in continuous speech36. This work provides a new way of learning to
recognise temporal patterns by evolving (constructing following the rules borrowed from the natural evolution of population
and selection) the topology and connection weights of a population of SNNs, without changing or selecting conduction delays.

Artificial spiking neural networks can process a large amount of data using an efficient spiking communication mechanism
among neurones such that information is transmitted only when a neurone spikes9. Due to their similarities to biological
networks, SNNs are widely used to model information processing in animal brains. SNNs have been shown to be computationally
more powerful, especially in terms of speed and accuracy, and can solve problems more efficiently than non-spiking neural
networks37, 38. Furthermore, SNNs are considered robust to noise and damage, and their functionality degrades gracefully39, 40.
To understand the learning and information processing mechanism of SNNs, we first need to obtain networks that can perform a
specific computational task. Considering the fact that information received from the majority of sensory modalities is temporal
in structure, in this work we evolved the structural topology and connection weights of a population of SNNs using a genetic
algorithm to recognise temporal patterns. This task can be accomplished by recurrent connections (a form of memory) or delays
in the network29, 41. In general, a recurrent connection can be of any size. However, the shortest possible recurrent connection
observed in the nervous system is a self-connection. Self-connections (autaptic connections or autapses) are recurrent synaptic
connections between the axon and dendrites or soma of a single neurone (either excitatory or inhibitory). Discovered five
decades ago42, autapses can be observed in the mammalian brain in the neocortex, hippocampus, and cerebellum43. Recent
studies suggest possible roles of autapses in the synchronisation of networks44, flexible working memory networks45, and
coherence resonance46. However, their functional role remains unknown47.

The computational task for SNNs in this work is to recognise a given subsequence of signals in a continuous stream of input
signals. A single Out put neurone spikes for the correct input pattern while remaining silent for other input patterns. We show
the importance of autapses by revealing their possible functional role in state maintenance—a form of memory in the network.
Furthermore, SNNs with autaptic connections tend to evolve a simplified switching mechanism to recognise patterns of lengths
three and four48. Consistent with the evolved networks, we define rules for constructing the topology of a network by hand to
recognise patterns up to length six with six interneurones, demonstrating a perfect linear relation between the number of signals
in the pattern and the number of interneurones in the network. We show that autapses are crucial for switching the network
between states and maintaining a network state. Furthermore, we indicate that the pattern length to be recognised correlates
positively with the number of autaptic connections in the network. More specifically, recognising a pattern of n signals requires
a network of n interneurones with n-1 autaptic connections. Finally, we demonstrate that, in addition to the other neurones
(N1, N2, . . . ), a successful recogniser network must have three specialised neurones: a Lock, a Switch, and an Accept neurone.
The activity of Lock prevents Out put from spiking, except when the network receives the second to last correct input signal
and allows the Out put neurone to spike in response to the correct last input. The Switch neurone is responsible for transitions
between the network start state and inter-signal network states. The Accept neurone forces spike(s) in the Out put neurone if
the lock is released by the penultimate signal in the pattern to be recognised and switches the network back to the Start state by
activating the Switch neurone.

Methods

The SNNs in this work consist of adaptive exponential integrate and fire neurones (AdEx) with a set of parameters that result
in tonic spiking when a constant input current is injected into the neurone49. Each AdEx neurone has four state variables:
membrane potential V , excitatory conductance gE, and inhibitory conductance gI, and adaptation w, along with 14 parameters
(Table 1):

Out of the 14 parameters, four bifurcation parameters are responsible for the spiking behaviour: the adaptation conductance
a, the spike-triggered adaptation b, the adaptation time constant τw, and the resting potential Vr. The remaining scaling
parameters are: the total capacitance C, the total leak conductance gl , the effective rest potential El , the inhibitory Ein and the
excitatory Eex reversal potential, the threshold slope factor ∆T , the effective threshold potential VT , and the two time constants
for excitatory synapses τex and inhibitory synapses τin.
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The exponential term in equation 1 defines the spike generation mechanism and the ascent of the action potential. In the
mathematical description of the model, a spike is fired at time t f when the membrane potential crosses an arbitrary firing
threshold value (larger than VT , say +30 mV). When this happens, the integration of the differential equations (Equations 1 to 4)
is stopped, the spike time t f is recorded, and the voltage is reset to a fixed value Vr. This reset describes the descent of the
action potential, given by:

at t = t f reset V −→Vr

Simultaneously, when a spike is recorded at time t f , the adaptation current w increases by an amount b:

at t = t f reset w −→ w+b

The interaction between the differential equations of the AdEx model and the above two discrete resets can generate a
variety of spiking behaviours49. In this work, we use the parameters (Table 1) for producing tonic spiking when a step current is
injected into a neurone. The state variables are integrated with a time step of 1 ms using Euler integration (using a time step of
0.1 ms or more precise integration algorithms did not affect the results in preliminary experiments, and was not practical from
the point of view of computational time, even when using high throughput computing resources made available for this project).
The membrane potential is affected by noise; at each time step, a random value is added to it, drawn from a normal distribution
with a mean of 0 and a standard deviation of 1 mV.

Parameter Value
El effective rest potential -70 mV
Ein inhibitory reversal potential -70 mV
Eex excitatory reversal potential 0 mV
Vr reset voltage -58 mV
VT effective threshold potential -50mV
Vth spike detection threshold 0 mV
∆T threshold slope factor 2 mV
C total capacitance 0.2 nF
gl total leak conductance 10 nS
a adaptation conductance 2 nS
b spike-triggered adaptation 0 pA
τw adaptation time constant 30 ms
τex excitatory time constant 5 ms
τin inhibitory time constant 5 ms

Table 1. AdEx parameters for tonic spiking

Evolution of networks for recognising a pattern of length 3. To obtain networks that recognise a pattern of
three signals in a particular order, we used a genetic algorithm originally developed for evolving gene regulatory networks50, 51,
where the topologies of the networks in the population are encoded as linear genomes. Each genome contains a list of genetic
elements such that each element has three attributes: a type (input I, output O, dendrite D, or axon terminal A), a sign (+, -),
and coordinates (x, y) (Figure 1). A sequence of D elements followed by a sequence of A elements encodes one neurone in the
network. To determine the total synaptic strength (weight) of a connection between two neurones in the network, we aggregate
the affinity between all A elements of the presynaptic neurone and all D elements of the postsynaptic neurone. Each element
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has (x,y) coordinates in an abstract affinity space; the smaller the Euclidean distance between two elements i and j, the larger
the contribution to the synaptic strength given by sis j

2(5−di, j)
10di, j+1 . If the signs (si and s j) are the same (different), the contribution is

positive (negative). The pre-post connection is established only if the absolute value of the sum of the weight contributions is
above a cut-off threshold (to prevent full connectivity); a positive (negative) sum results in an excitatory (inhibitory) connection.
In this work, a given presynaptic neurone can excite some of its targets and inhibit others – violating Dale’s principle52).
However, any violating neurone in the evolved network can be transformed to follow Dale’s principle by dividing it into two
parts, one excitatory and one inhibitory (each having the same number of incoming connections, with the same weights, as the
original neurone), so that network performance is not compromised48.

.

Figure 1. The structure of a random linear genome in the population, encoding a network with three interneurones, three input
nodes and one Out put neurone. A sequence of D elements (dendrites) followed by a sequence of A elements (axon terminals)
is considered one neurone. Each element has a type (I, O, D, A), a sign (+, -) and (x, y) coordinates in 2D space. The strength
of a connection between two elements is defined as an inverse function of the Euclidean distance between their coordinates

We use the genetic algorithm50 with a constant population size of 300. The initial population is created with random
topologies encoded as linear genomes. Subsequent generations are created with a size two tournament selection and an elite
count of 10 individuals. Four genetic operators, point mutation, deletion, duplication, and crossover, are described in a previous
work40, and their probabilities can be found therein. A recurrent SNN for recognising a pattern of three signals was found
to require at least three interneurones, one Out put neurone and three input nodes. The inputs are not allowed to connect to
Out put directly, and only the interneurones are allowed to have self-loops (autaptic connections). During evolution, the genetic
algorithm can add/remove connections by moving the (x,y) coordinates associated with each genetic element.

The task of the networks is to recognise a pattern of three signals in a continuous stream of signals in which all signals (A,
B, and C) occur with equal probability. In an input sequence, the length (duration) of a signal is 6 ms, followed by a silence
interval of 24 ms. During evolution, each network in the population is evaluated for six sequences of signals. Four out of these
six sequences are generated randomly with an equiprobable occurrence of the three signals (A, B, and C). The remaining two
sequences are created by concatenating hard-to-differentiate patterns (ABA, ABB, ABC, BBC) in random order. The fitness
function rewards the spiking of the Out put neurone in the correct inter-stimulus interval after the occurrence of the correct
pattern ABC and penalises spikes in all other intervals. The inter-stimulus interval is defined as the interval between the onsets
of two consecutive stimuli.

f f itness = 1− (R− kP) (5)

where R is the normalised reward given by the number of inter-stimulus intervals after C in which the Out put neurone spikes
after receiving the correct pattern ABC divided by the total number of correct patterns in the input sequence. The penalty
P is the number of inter-stimulus intervals in which the Out put neurone spikes incorrectly, divided by the total number of
inter-stimulus intervals in the sequence (which is one less than the total number of signals in the sequence). As this denominator
is large, the normalised penalty P is amplified by a constant k = 4.

Evolution tends to produce superfluous connections that can be pruned without impairing the performance of the network48.
To aid the network analysis, we prune the evolved networks by removing a random connection and testing if the performance
of the network is compromised. If it is, the connection is put back and labelled vital. Otherwise, the excessive connection is
removed from the network. This process is repeated until only vital connections remain in the network.

Pruning revealed structural similarities between the networks obtained from different independent evolutionary runs; thus,
the networks that recognised a pattern of three signals were either equal or isomorphic. Moreover, the recognition of a pattern
depends on the transitions between the network states. Therefore, the states of an evolved network can be mapped onto the
states of the corresponding finite state transducer (FST), accepting a string of three letters.
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Handcrafting networks for recognising patterns of length four and above. Understanding the working
mechanism of three-signal networks allowed handcrafting network topologies that recognise longer patterns. For example,
a network topology recognising a pattern of three signals can be extended so that it recognises a pattern of four signals by
adding a new input, an inter-neurone and six synaptic connections (Figure 2b-c). In the extended network, the input stimuli are
renamed ABCD. The newly added input A and the neurone N4 connect to the existing network; input A connects to N4 with an
excitatory connection, input B (previously named input A and connected to neurone N3) excites N2 (the switch neurone), and
input B also connects to the newly added neurone N4 with an inhibitory connection. The neurone N4 connects to N3 and to
itself with excitatory connections, and the neurone N4 and N2 (the switch) inhibit each other and thus are mutually exclusive
in terms of their activation state. In networks recognising longer patterns, two more connections are essential for seamless
switching back to the start state after receiving the last input signal. Therefore, these connections are introduced in networks
recognising patterns of length four and above: (i) the last input excites the switch neurone, and (ii) the lock (N3) neurone
inhibits the Accept (N1) neurone. These general rules can be used to extend the topology of a four-signal network to obtain the
topology for recognising patterns of lengths five and six (Figure 2d-e).

The structural topology and the sign of the connections are fixed in the handcrafted networks. We use a genetic algorithm
to optimise only the weights of connections. Here, an individual’s genome is the adjacency list of the handcrafted network.
In the initial generation, a population of 100 individuals sharing the same structural topology is created. The weights of the
excitatory (inhibitory) connections are drawn from a uniform distribution U[0, 10] (U[-10, 0]). The population size is kept
constant during evolution with 10 individuals in the elite. The only mutation operator is adding a random number drawn from a
normal distribution N[mean=0, SD=1] to the connection weight chosen with a probability of 0.1. Subsequent generations are
created with a size two tournament selection and the fitness function is identical to the one for evolving both the topology and

Figure 2. Networks recognising patterns of lengths 2 to 6. The first two networks in panels a and b were obtained with
artificial evolution. The table below each network shows transitions between network states, represented by the number of
active neurones. The topology is extended by hand to recognise patterns of lengths 4, 5, and 6 (c-e).
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the connection weights (Equation 5), rewarding spikes in the correct inter-stimulus interval and penalising spikes elsewhere.
The number of possible patterns increases exponentially with the length of the pattern. There are nn possible orderings

for n signals. For example, a pattern of four signals has 44 = 256 (AAAA to DDDD) possible permutations, and a pattern
of six signals has 66 = 46656 (AAAAAA to FFFFFF). This means that when n is large, a given permutation will occur less
frequently in a random input stream of signals, and some patterns may not occur at all (so the networks cannot be penalised for
recognising them). We have therefore designed a genetic algorithm that runs in two stages. Consider evolving networks for
recognising a pattern of length four in a given order. In the first stage, the networks are optimised only for patterns similar to
the target pattern ABCD. These similar patterns have the form AXXX, XXXD, where XXX in AXXX (XXXD) is replaced by
all 27 possible patterns of BCD (ABC). A sequence of 10,000 signals is created by randomly concatenating the 54 patterns
(ABBB to ADDD, AAAD to CCCD). Once the genetic algorithm converges for the first one (finds a network that only responds
to the correct pattern ABCD and remains silent for all other patterns), the second stage begins by identifying hard-to-recognise
patterns. This requires evaluating the network for a large random sequence with an equiprobable occurrence of signals A, B,
C and D. A pattern is considered hard if the network responds incorrectly to multiple occurrences (at least 40% of the total
number of occurrences) of a given pattern in a random sequence. Evolution continues with the fitness function in which the
penalty coefficient is equal to 50 and the input sequence of 10,000 signals is created by randomly concatenating the 54 patterns
(AXXX + XXXD) and hard patterns with equal probability. The second stage (identification of hard patterns, evolution) repeats
until the algorithm converges and no hard patterns remain.

Results

States of the network correspond to the states of a finite state transducer. To understand how the evolved
networks work, we show that the activity of a network can be mapped onto the states of a finite state transducer (FST)39, 48.
An FST is a finite state machine generally used for analysing time-structured data53. For example, an FST that accepts a
string of three letters needs to have four distinct states (Figure 3b), and so does an SNN evolved to recognise a pattern of
three signals (Figure 3a). We established an association between the network states of a pruned network and the states of the
corresponding minimal FST. This association can also be obtained for an evolved network, but the mapping is more complex
due to superfluous connections48, 54. The Start state of the network corresponds to the continuous spiking of the neurones N3
and N2 (Figure 3c). Once the network receives the first correct symbol A, it goes into the hA (for “had A”) state, maintained by
continuous spiking of the N3 neurone only. The presence of an excitatory loop on N3 preserves the network state until the next
signal (A, B, or C) is received. If the network receives another A, it remains in the hA state. However, if the network receives a
B, it transforms to the hAB state retained by no activity in the network (all neurones in the network are quiescent). If C rather
than B arrives after A, the network goes back to the Start state from the hA state.

Suppose that the network is in the hAB state and a signal C arrives. As a result, the Accept neurone spikes several times and
activates the Out put neurone. The Accept neurone also activates the Switch neurone to transform the network back into the
Start state. On the other hand, receiving a signal B when the network is in the hAB state activates the neurone N2 (explained by
the weak excitatory connection from input B to N2), which in turn activates N3, transforming the network into the Start state,
represented by continuous spiking of N2 and N3. Furthermore, if the network receives an A while in the hAB state, the network
switches back to the hA state characterised by continuous spiking of N3.

Specialised role of neurones in the network and the importance of autapses. The pruned networks obtained
from independent evolutionary runs for recognising a pattern of three signals were equal or isomorphic39, 48, allowing us to
discover their working mechanism. All resulting networks accomplished the task with four neurones (three interneurones and
one Out put neurone) and 11 connections (three inhibitory and eight excitatory). Furthermore, networks capable of maintaining
network states exhibited self-excitatory loops on at least two interneurones39, 48. To describe the working mechanism of the
networks, first, the role of self-excitatory loops (autapses) is identified. Then, specific roles are associated with the interneurones
on the basis of their spiking behaviour. Finally, we demonstrate the contribution of each connection to pattern recognition. The
existence of self-excitatory loops enables the evolved networks to maintain network states irrespective of the silent intervals
between signals. These recurrent connections permit three active states: the hA state by persistent spiking of the Lock neurone,
and the hABC/Start states by causing tonic spiking of the Lock and Switch neurones (Figure 3a). The only difference between
the Start and the hABC state is the intermittent spiking of the Out put neurone. During the evolutionary process, both the Lock
and the Switch neurones form self-excitatory loops with sufficient weights to prevent spiking activity from dying out in the
absence of input activity (Figure 3d). In summary, the ability of the network to maintain a state for longer silent intervals
requires the formation of autapses in these minimal networks40, 48.

The interneurones have specialised roles of locking, switching and accepting. Self-excitation of the Lock neurone prevents
the Out put neurone from spiking, except when the second to last correct input signal (for example, B in ABC) shuts down the
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Figure 3. The working mechanism of a network evolved in the presence of membrane potential noise. (a) The states of the
network and the corresponding activity of the neurones in the pruned network. (b) The minimal finite-state transducer that
recognises ABC. (c) The activity of the network. (d) The topology of the pruned evolved network.

Lock neurone, enabling the Out put neurone to spike for the last correct input signal (C in ABC). If the penultimate correct
input signal releases the Lock, the Accept neurone activates the Out put neurone on receiving the last correct input. The Accept
neurone also sends a signal to the Switch neurone, transforming the network back to the Start state. The Switch neurone is
responsible for the transitions between the Start state (when Switch is active) and the intermediate states hA and hAB (when
Switch is quiescent).

Contribution of each connection to pattern recognition. The contribution of each synaptic connection to the
recognition of input patterns is determined by its effect on the behaviour of postsynaptic neurones. The excitatory connection
from the input A to the neurone N3 (A → N3) activates N3, N3 excites itself with an autaptic connection N3 → N3 and inhibits
N2 with an inhibitory connection N3 → N2, thus putting the network in the hA state in which only the neurone N3 spikes
continuously (Figure 3c-d). The continuous spiking of N3 also prevents the Out put neurone from spiking (due to an inhibitory
connection N3 → Out put). When signal A is followed by B, the inhibitory connection (B → N3) forces N3 (which maintains
the state hA) to stop spiking, and the network goes into a quiescent state hAB. The input B is connected to N2 with a weak
excitatory connection. This connection prevents an incorrect response of the network to a repeated signal B in the correct pattern
ABC. The weight of this connection is adjusted so that the first B cannot activate the Switch neurone due to the continued
inhibition of N3 (N3 → N2). However, when N3 is released by the first B in the correct order, the second B can activate the
Switch neurone, which in turn activates the neurone N3. As a result, the network goes back into the Start state (continuous
spiking of both neurones N3 and N2). The positive connection from the input C to N1 triggers several spikes in the neurone N1,
and N1 passes the activity to the Out put neurone. Consequently, the Out put spikes in response to the last correct input if the
lock has been released by the second to last correct symbol. N1 also activates the N2/Switch neurone, which in turn activates
the N3/Lock neurone, thus transforming the network back into the Start state.

Performance of the handcrafted network for patterns of six signals. The analysis of a network handcrafted
for recognising a pattern of six signals shows that the network accomplishes the task of recognising the pattern with seven
well-defined network states (Figure 4a). When the network receives the first correct input signal A around 180 ms (Figure
4c), the network goes into the hA (had A) state represented by four active neurones, N6, N5, N4, and N3. The input A is
connected directly to N6 through a strong excitatory connection, which causes N6 to spike on arrival of A (Figure 4b). The
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self-excitatory loop on N6 makes it spike continuously. This spiking activity, in turn, activates N5 and prevents N2 (the Switch
neurone) from spiking. The spiking activity of N5 persists (due to the self-excitatory loop on N5), and N5 passes the activity
to N4, which in turn activates N3 (the Lock neurone) in a similar way (Figure 4b-c). Meanwhile, when an input signal B is
received, the inhibitory connection from the input B to N6 shuts down N6, transforming the network into the state hAB, which
is characterised by continuous spiking of N5, N4 and N3. The input B also excites the Switch neurone with a precise connection
weight such that only a second B signal can activate the Switch neurone and transform the network back to the Start state.
Similarly, suppose that AB is followed by the third input signal C in the correct order. In that case, the inhibitory connection
from the input C to N5 shuts down N5, transforming the network into the state hABC, represented by the continuous spiking
of neurones N4 and N3. Next, if the network receives an input signal D in the correct order, it switches off N4 through an
inhibitory connection from D to N4, transforming the network into the state hABCD, maintained by continuous spiking of N3
(the Lock neurone) only (Figure 4b-c). These four states from hA to hABCD are actively maintained by persistent spiking of
four, three, two, and one neurone(s), respectively. It is important to note that N3 (the Lock neurone) is always active, except
when the network receives the second to last input signal E in the correct order, allowing the Out put neurone to spike for the
correct last input signal F. The strong inhibitory connection from N3 to the Out put neurone prevents Out put from spiking for
incorrect patterns. If the network is in the state hABCD (represented by continuous spiking of the Lock neurone) and it receives
the second to the last input signal E in the correct order, it switches to a quiescent state by releasing the lock from Out put
through an inhibitory connection from E to the Lock neurone (N3), which enables the Out put neurone to spike in response to
the last correct input signal F (Figure 4b-c). The input F activates N1 through a positive connection, which in turn passes the
activity to both the Out put and the Switch neurones. The Out put spikes in response to receiving the correct pattern ABCDEF,
and the Switch neurone activates the Lock neurone. This transforms the network back into the Start state where the Switch
(N2) and the Lock neurone (N3) spike continuously.

The performance of the handcrafted networks is evaluated in terms of precision and sensitivity. Precision is defined as the

Figure 4. (a) The network states with corresponding active neurones. (b) The handcrafted network for recognising a pattern of
length six. (c) The behaviour of each neurone in the network.
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Figure 5. Performance degradation of handcrafted networks with increasing pattern length. The precision (left) and sensitivity
(right) of the top 10 networks for each pattern size (3 to 6) are evaluated for a random sequence of length 1 million and all
possible patterns of length n, n+1, and n+2.

fraction of Out put spikes that are correct, that is, the number of true positives divided by the total number of times the Out put
spiked, while sensitivity is the fraction of correctly classified target patterns, that is, the number of true positives divided by the
actual number of correct patterns in the sequence. The top 10 networks for recognising patterns of lengths three, four, five, and
six are re-evaluated for a random sequence of one million signals (Figure 5). The performance of the networks degrades with
increasing length of the pattern. Our results show that the precision of the top 10 networks obtained for recognising ABCDEF
is between 0.73 and 0.96, while for length five (ABCDE) and below the precision is always above 0.94. The networks are then
tested with all possible permutations of six signals in six positions with replacement 6P6 (from AAAAAA to FFFFFF), 6P7
(from AAAAAAA to FFFFFFF), and 6P8 (from AAAAAAAA to FFFFFFFF). The testing of the networks with all possible
patterns of lengths seven and eight ensures that the performance of the networks is not affected by the proceeding signals, that
is, by history. Similarly, all possible permutations of input patterns of lengths three, four, and five are evaluated for up to two
preceding signals (Figure 5).

To demonstrate that all false positives were caused by history or noise, each pattern was presented to the network 10 times.
All perfect networks responded to the correct pattern XXABCDEF at least eight out of 10 times, while responding at most four
out of 10 times sporadically for a very small number of false positives. This clear margin indicated that handcrafted networks
could perfectly recognise correct patterns with up to six signals.

Discussion
In the present study, we have explored how spiking neural networks can perform temporal pattern recognition tasks without
updating or selecting conduction delays. Understanding how the brain processes temporal information is not only an important
research topic in computational neuroscience, but also crucial for reproducing artificial networks with brain-like computational
capabilities. The neural circuitry of the brain performs a large number of computational tasks, including signal processing,
memory, classification, decision-making, etc. It is important to link functional behaviours to the corresponding neural
connectivity of the brain. However, the diverse set of computational capabilities, the enormous number of neurones, and the
complexity of the brain make a principled mapping of neural connectivity to computational function difficult. In order to make
inroads towards a basic understanding of information processing in neural systems, we evolved minimal artificial spiking neural
networks for the computational task of temporal pattern recognition.

We found a clear association between structural connectivity and the functional properties of neural networks. We observed
that the complexity of the networks increased with the length of the temporal patterns that could be recognised. The number
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of possible temporal patterns increased exponentially with the length of the patterns, making network training more difficult.
Intuitively, the recognition of longer patterns required a larger number of neurones in the network, exponentially increasing the
number of connections in the network. Larger and more interconnected networks were harder to train due to the computational
cost and larger search space. Consequently, the artificial evolution could not produce an optimal minimal network for
recognising a pattern of length four and above, and we resorted to handcrafting the topology of networks for longer patterns
(and using artificial evolution only to optimise the weights in these networks).

One of the most salient observations is the emergence of autapses in our spiking neural networks. Although autapses
are widely observed in the brain, their functional role in neural information processing is not yet fully clear. Autapses have
previously been shown to play a significant role in memory maintenance55, oscillatory activity of a single neurone56, switching
between different network states57, synchronisation of network activity44, and signal detection58. Here, we show the importance
of excitatory autaptic connections for network state transitions and network state maintenance. In our work, all active network
states are maintained by excitatory autaptic connections, whereas state transitions occur when an excitatory autaptic connection
of an active neurone is silenced by a strong inhibitory connection. Furthermore, we examined the relationship between the
number of excitatory autapses in the network and the length of temporal patterns that can be recognised. The number of
autapses in a network constrains and is equal to the number of distinct actively maintained states in the network. We observed
that a minimal network recognising a pattern of length n requires at least n-1 autaptic connections. This is a necessary condition
for a network to be able to maintain network states. A sufficient condition is that the weights of the autaptic connections are
strong enough to keep the spiking activity from dying out in the presence of longer silent intervals.

Redundant connections in a network have a potential role in learning temporal sequences59–61. Although the aim of the
present work was to obtain minimal networks for recognising patterns, some redundancy is essential in the network. For
example, the extended network that recognises a pattern of length four requires two redundant connections (Figure 2c). If we
remove input A and neurone N4, the four-signal network is reduced to a three-signal network with two redundant connections;
an excitatory connection from input D to the Switch (N2) neurone and an inhibitory connection from the Lock (N3) to the
Accept (N1) neurone. The redundant connection from D to N2 is required in a four-signal network to activate the switch
neurone as soon as the network receives the last correct signal, while the redundant inhibitory connection from N3 to N1
prevents the Out put neurone from spiking when the last symbol D is received in a wrong order. Although the Out put neurone is
prevented from spiking directly by the Lock (N3) neurone, this connection reduces the activity that reaches the Out put neurone
when the lock is active.

Information processing in neural systems is affected by the presence of noise. Noise in the nervous system has previously
been documented to play a computational role62–67. We previously showed54 that networks evolved in the presence of noise are
robust to intrinsic (perturbation of parameters) and extrinsic (variation of silent intervals) disturbances. In fact, noise enables
networks to maintain network states (a form of memory) when the silent interval between signals is increased during evolution.
One of the key findings is that the introduction of noise during evolution simplifies the networks instead of further complicating
them. The resulting networks are robust to the removal of connections. Thus, we could prune excessive connections without
impairing the network’s performance. As a result, the simplified (evolved and pruned) networks are more efficient and easier
to understand. In contrast, the networks that evolved in the absence of noise were fragile and a slight variation of neuronal
parameters or network topology can completely alter the functionality of these networks54.

The approach of handcrafting the network topology provides insight into neural information processing and the interplay
between network connectivity and functional behaviour. However, this work has several limitations that could be addressed in
future studies. In particular, the maximum number of active neurones maintaining a network state increases with an increasing
length of the patterns that can be recognised. As the number of connections in the network grows, their weights become
more difficult to optimise. Due to this limitation, further scaling of the topology produces suboptimal networks. One possible
solution to this problem is to build a larger network by connecting two or more three-signal (perfect) networks to recognise
more extended patterns. However, the approach of hierarchically connecting smaller networks to build a larger network is not
straightforward. We have investigated several ways to interconnect smaller networks to recognise more extended patterns of
length 5 and 6, but none of them could outperform the sequential extension of the topologies presented in Figure 2. In future
studies, it would be interesting to explore other possible topologies where the maximum number of active neurones (autapses)
representing a network state is invariant to the pattern length.

An AdEx neurone can generate a wide range of spiking patterns in response to a step current, depending on the choice of
initial parameters49. In this study, we are using the parameters for the simplest type of spiking pattern, that is, tonic or regular
spiking49. A standard leaky integrate-and-fire model (LIF) can also generate this behaviour in response to a step current. In the
scope of this study, we do not take advantage of the rich spiking behaviours that an AdEx neurone can have. The neurones
in our networks are limited to three possible states: active (tonic spiking), intermittently active, and nonactive (quiet). We
observed that an activated neurone may speed up or slow down after receiving an input signal, but we did not take these firing
rate changes into account when analysing network behaviour. Identifying network states based on the spiking behaviour of a
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single neurone would require longer intervals between input signals to notice the difference between their responses. Studying
the state transition at the level of a single neurone in the network could result in more efficient solutions. For example, different
neuronal behaviours, such as bursting, tonic, and irregular spiking, may represent distinct network states. Moreover, different
spiking/bursting frequencies could also represent different network states.

Finally, in this study, we use a genetic algorithm to optimise connection weights in a handcrafted topology. Since all
connections in the handcrafted topology are defined according to the state transition table and both the topology and network
states are known, a more systematic approach like backpropagation could be employed instead of the genetic algorithm to
optimise the weights in the network. This could be done by (i) calculating the errors between the current and the desired
network states and (ii) adjusting the connection weights to reach the desired states.

Conclusions
The present study used a novel combination of evolving and handcrafting spiking neural networks to explore potential
mechanisms for temporal pattern recognition in neural systems. Our work demonstrates a link between structural network
connectivity and functional network behaviour. A systematic analysis of the resulting networks indicates that excitatory autaptic
connections can play a key role in memory maintenance and network state transitions. We predict that the presence of autapses
in a neural system implies that the system can perform temporal pattern recognition. A systematic investigation of links between
autaptic connections and temporal coding should be an exciting topic for future experimental work.
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