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Non‑myopic multipoint 
multifidelity Bayesian framework 
for multidisciplinary design
Francesco Di Fiore 1* & Laura Mainini 1,2

The adoption of high-fidelity models in multidisciplinary design optimization (MDO) permits to 
enhance the identification of superior design configurations, but would prohibitively rise the demand 
for computational resources and time. Multifidelity Bayesian Optimization (MFBO) efficiently 
combines information from multiple models at different levels of fidelity to accelerate the MDO 
procedure. State-of-the-art MFBO methods currently meet two major limitations: (i) the sequential 
adaptive sampling precludes parallel computations of high-fidelity models, and (ii) the search 
scheme measures the utility of new design evaluations only at the immediate next iteration. This 
paper proposes a Non-Myopic Multipoint Multifidelity Bayesian Optimization (NM3-BO) algorithm to 
sensitively accelerate MDO overcoming the limitations of standard methods. NM3-BO selects a batch 
of promising design configurations to be evaluated in parallel, and quantifies the expected long-term 
improvement of these designs at future steps of the optimization. Our learning scheme leverages 
an original acquisition function based on the combination of a two-step lookahead policy and a local 
penalization strategy to measure the future utility achieved evaluating multiple design configurations 
simultaneously. We observe that the proposed framework permits to sensitively accelerate the MDO 
of a space vehicle and outperforms popular algorithms.

Optimization is becoming essential in science and engineering to empower the performance and sustainability 
of complex systems toward global challenges, such as green development and climate change. In many real-world 
applications, the optimization of advanced technologies involves multiple scientific disciplines characterized 
by complex relationships and couplings difficult to be tackled. Multidisciplinary design optimization (MDO) 
relates to the development of computational methodologies for the design and optimization of complex systems 
taking into account the interactions of multiple disciplines1,2. Those interactions can span different strength 
and width of the cross disciplinary couplings3,4. MDO approaches have been applied to the design and opti-
mization of a broad range of engineering systems including aircraft5, spacecrafts6, launch vehicles7, buildings8, 
electric automobiles9, ships10, energy systems11 and robots12. One of the major challenges addressed by MDO 
is represented by the possibility to use expensive high-fidelity disciplinary models, such as the ones that are 
given by large scale systems of equations for the numerical solutions of partially differential equations, directly 
in the simulation-based optimization process13,14. Indeed, the search of optimal design solutions would benefit 
from accurate representations of the system behaviour and physics including the couplings across the multiple 
disciplines. However, considering all those interactions and complex couplings would typically demand for 
large amount of evaluations of the high-fidelity disciplinary representations which would result in prohibitive 
computational costs for the overall MDO procedure.

To address these challenges, MDO literature proposed a variety of solutions that rely on the use of low-fidelity 
models to reduce the computational burden and complexity associated with disciplinary analysis and save com-
puting resources. As discussed by Peherstorfer et al.15, low-fidelity disciplinary solvers range from simplified 
models directly derived from the high-fidelity counterpart using expert knowledge16, to projection-based models 
that identify a low-fidelity subspace retaining the essential features of the system17, and to surrogate-based models 
where the input-output relationships of disciplines are derived from observations of the high-fidelity model18. 
Even if the evaluation of these low-fidelity representations could be sensitively reduced in computational cost, 
the former simplified models might not be adequate to depict complex non-linear phenomena that frequently 
characterize the disciplinary domain, while the latter projection-based and surrogate-based models might require 
a large amount of costly high-fidelity data for their construction.
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Multifidelity methods acknowledge the opportunity offered by low-fidelity representations and offer 
approaches to address the research gap of including expensive high-fidelity disciplinary analysis into the MDO 
process19. Multifidelity methods combines data extracted from a library of disciplinary models that can be hier-
archically ordered according to accuracy and computational cost15,20. The availability of multiple levels of fidelity 
can be exploited to support the search procedure through a principled elicitation of information: fast low-fidelity 
models are used to massively explore different design configurations, and expensive high-fidelity models spar-
ingly refine the solution of the MDO problem. Multifidelity methods have been successfully applied to a variety 
of MDO applications ranging from aircraft21,22 and space vehicles23,24 to ships25 and unmanned underwater 
vehicles26, from electric27 and hybrid28 vehicles to green energy technologies29,30. In most cases, the complexity 
of the disciplinary analysis and couplings discourages the use of gradient-based optimization strategies: the 
computation of the derivatives might demand for massive high-fidelity data and increase the overall computa-
tional burden. Therefore, the MDO procedure commonly relies on a black-box approach where the disciplinary 
analyses are regarded as a pure input/output relationship, whose information about the mathematical properties 
and derivatives are not available.

Multifidelity Bayesian optimization (MFBO) provides a computational framework for black-box optimization 
and leverages disciplinary solvers at different levels of fidelity to accelerate the identification of promising design 
solutions31–33. MFBO realizes an adaptive sampling scheme based on a multifidelity acquisition function that tar-
gets the design improvement with a continuous trade-off between optimization performance and computational 
cost. Several MFBO approaches have been proposed to address a variety of design problems. Charayron et al.34 
applied an original multifidelity Bayesian framework for the MDO of a full electric drone accounting for a long-
range surveillance mission. Serani et al.35 proposed a MFBO based on stochastic radial-basis functions surrogate 
applied to the design optimization of a destroyer-type vessel. Reisenthel et al.36 adopted an MFBO framework 
for the aeroelastic design optimization of a UAV wing. Tran et al.37 implemented MFBO for the chemical design 
optimization of atomistic materials to identify the optimal bulk modulus.

Most state-of-the-art MFBO algorithms are greedy and sequential in nature since the multifidelity acquisition 
function (i) quantifies only how the design and level of fidelity selected at the current iteration affect the immedi-
ate next step, and (ii) selects only a single combination of design variables and level of fidelity to be evaluated at 
the next iteration. In particular, (i) the popular greedy approach precludes greater informative gains that can be 
acquired through the measure of the long-term reward obtained at future steps of the optimization, and might 
preclude superior accelerations of the MDO procedure; (ii) the sequential search might not be computationally 
efficient for MDO problems where the simulation of complex interdisciplinary relationships demands for a huge 
amount of high-fidelity data and associated computational expense.

To address these gaps, we propose a non-myopic multipoint multifidelity Bayesian optimization (NM3-BO) 
framework that aims to overcome both greedy and sequential limitations of standard MFBO methodologies. Our 
original multifidelity search defines an optimal sequence of decisions to (i) maximize the long-term reward as the 
improvement of the optimal design solution achieved at future steps of the optimization, and (ii) select a batch 
of design configurations and levels of fidelity to be evaluated simultaneously. To overcome the shortcomings of 
standard MFBO, our non-myopic multipoint and multifidelity learning scheme (i) is derived formalizing MFBO 
as a dynamic system under uncertainty addressed through a dynamic programming technique, (ii) defines an 
optimal policy as a sequence of decisions to maximize the two steps ahead utility obtained evaluating a design 
with a specific disciplinary model, and (iii) uses a local penalization strategy to enable multiple decisions as a 
batch of paired designs and levels of fidelity to query in parallel.

The performance of the proposed NM3-BO are illustrated and discussed in comparison with standard MFBO 
frameworks for the multidisciplinary design optimization of a re-entry vehicle. We adopt the Multidisciplinary 
Feasible (MDF) formulation to formalize the space-vehicle MDO problem, and capture the multidisciplinary 
nature of the system considering the contributions of the propulsion system, re-entry descend trajectory, aero-
thermodynamic effects, and thermo-structural interactions. In particular, the specific MDF architecture con-
siders the coupling between the trajectory and the aerothermodynamic disciplines through the aerodynamic 
coefficients, and the coupling between the thermo-structural and aerothermodynamic disciplines through the 
thermal protection system wall temperature. This design problem is specifically selected to exemplify the marked 
cross-disciplinary scenario and strong couplings between disciplines that can be traced in the vast majority of 
MDO problems in science and engineering.

Methodology
The non-myopic multipoint multifidelity Bayesian optimization (NM3-BO) framework formalizes an adaptive 
sampling scheme that measures the long-term utility of a batch of design configurations evaluated simultaneously. 
Our formulation regards MFBO as a decision making problem affected by uncertainty: the decision task relates 
to the selection of promising design configurations – combination of design parameters – and the associated 
levels of fidelity to query; the uncertainty elements relate to the black-box nature of the objective function and 
the probabilistic prediction of the surrogate model.

In the following, the MDO problem setup and the BO single-fidelity and multifidelity frameworks are firstly 
introduced to provide an overview of the core background of our work. Then, we formalize the optimal policy for 
MFBO and illustrate how to robustly approximate it through a Monte Carlo technique. In addition, we propose 
a multiple decision making strategy to enable parallel computations of a batch of designs and associated levels 
of fidelity. Finally, the NM3-BO algorithmic framework is presented and discussed.

MDO problem setup
This work considers the general formulation of the MDO problem as follows4:
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where the goal is to identify a set of design variables x that minimizes an objective function f  subject to design 
constraints c , and the solution of governing equations in residual form Ri(x) for each i-th discipline.

The disciplinary analyses are usually performed through black-box simulations: computer codes operate 
independently and define relationships between inputs and outputs, and hide the procedure associated with 
their computation. High-fidelity disciplinary analyses involve the numerical solution of governing PDEs through 
expensive computational procedures, such as Computational Fluid Dynamics (CFD) techniques for the numeri-
cal solution of Navier-Stokes equations.

BO from single‑fidelity to multifidelity
Bayesian optimization (BO) is an efficient computational strategy to address the MDO of expensive black-box 
objective functions38,39. To solve Eq. (1), BO uses two key components: a surrogate model of the objective function 
f (x) and an acquisition function computed on the surrogate of f  . The maximization of the acquisition function 
permits to select the most promising design configuration x′ to query. BO uses the observed value f (x′) to update 
the surrogate model and the process iterates until a certain termination criteria is reached. Popular formula-
tions of Bayesian optimization and acquisition functions are overviewed by Frazier et al.39 and Shahriari et al.38.

The most widely used acquisition functions determine a greedy and sequential adaptive sampling scheme 
that considers only the immediate effect of evaluating the objective function for a single design, and do not 
consider the potential gains introduced in future evaluations. To address this type of greedy limitation, BO has 
been formalized as a partially observable Markov decision process40, and several works41–44 provide solutions 
to this process and formalize non-myopic multifidelity acquisition functions. In addition, multipoint formula-
tions of the BO framework have been proposed to evaluate in parallel multiple designs with a single level of 
fidelity of the disciplinary model45–47. However, the combination of non-myopic and multipoint formulations 
in literature are conceived exclusively for a single-fidelity framework only: the optimization process relies on 
the responses of disciplinary models at one single fixed level of fidelity. In the MDO context, this single fidelity 
approach could hinder the expensive high-fidelity disciplinary models to be interrogated directly during the 
search, which otherwise would result in prohibitive computational costs. In addition, the computational cost 
becomes unmanageable as it scales exponentially when the disciplinary couplings are also considered during 
the process: the identification of an optimal design that satisfies all the interactions and couplings across the 
disciplines would require massive evaluations of high-fidelity disciplinary models with the associated growth 
of the computational demand.

In many applications, scientists and engineers might rely on different disciplinary models of the objective 
function and constraints with different degrees of accuracy and associated demand for computational resources. 
Multifidelity Bayesian Optimization (MFBO) combines disciplinary responses from this library of models 
{f (1), f (2), ..., f (L)} hierarchically ordered according to the level of fidelity l = 1, ..., L to accelerate the solution of 
the MDO problem (Eq. 1). In this setting, the surrogate model synthesizes the outcomes computed with multiple 
models into a unique surrogate, and the acquisition function defines an adaptive sampling scheme that identifies 
the design configuration and the associated level of fidelity to query at each iteration.

Multifidelity Gaussian process
We adopt the Multifidelity Gaussian process (MFGP) as the surrogate model of the objective function given 
the successful application over a variety of methodologies and applications47–49. MFGP is formalized extending 
the Gaussian process50 (GP) formulation to multiple levels of fidelity, and provides a prediction of the objective 
function over the design space X through the mean function µ(l)(x) = E[f (l)(x)] , and the associated uncertainty 
of the prediction σ 2(l)(x) = E[(f (l)(x)− µ(x))(f (l)(x′)− µ(x′))] through a covariance function.

MFGP relies on an autoregressive scheme to synthesize responses from models at different levels of fidelity51:

where ρl−1 is a regression parameter that scales successive representations f (l) and f (l−1) , and δ(l) models the 
discrepancy between f (l) and the scaled model ρl−1f

(l−1) . This discrepancy term δ(l) is assumed to be a Gaussian 
process characterized by mean function υ(x)Tβ(l) and covariance κ(l)

(
x, x′

)
 , where υ is the vector of regression 

functions and β(l) are the associated weighting coefficients. We use the Gaussian correlation model as the covari-
ance function of the MFGP surrogate:

where ̟ = (̟ 1
l ,̟

2
l , ...,̟

M
l ) is the roughness parameter, and ς2

l  is the process variance of the l-th level of 
fidelity.

Thus, the posterior mean µ(l)(x) and variance σ 2(l)(x) of the objective are formalized through the covariance 
matrix K(i, j) =

[
κ
(
(xi , li),

(
xj , lj

))
+ γijσǫ(xi)

]
 and κ(l)N (x) = [κ((xi , li), (x, l))]:
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where γij is the Kronecker delta function. The hyperparameters (ρ,β ,̟ , ς) of the multifidelity Gaussian process 
surrogate model are estimated through maximum likelihood estimation methodology52.

Multifidelity expected improvement
The multifidelity acquisition function U  quantifies the utility of new design configurations with a trade-off 
between cost ad accuracy of the associated model to query. In this work, we will build our method onto the 
Multifidelity Expected Improvement (MFEI) acquisition function31, given the popularity of this formulation 
across different science and engineering communities and the variety of adoptions documented in literature36,53. 
The MFEI is formulated as follows:

where UEI is the expected improvement acquisition function computed with the highest level of fidelity. The 
utility functions α1,α2 and α3 are defined as follows:

α1(x, l) reflects the decrease of accuracy associated with lower-fidelities quantified as the correlation between the 
l-th fidelity outcome f (l)(x) and the high-fidelity f (L)(x) disciplinary analysis. α2(x, l) brings awareness about 
the stochastic nature of the objective function through the measurement noise σǫ , and considers the reduction 
of the uncertainty associated with the evaluation of design solutions with the l-th model. α3(l) includes the 
computational cost �(l) of the l-th disciplinary analysis in the sampling procedure, and balances the accuracy 
with the resources entailed for the objective evaluation.

Alternative formulations of the multifidelity acquisition function have been proposed in literature, such as the 
Multifidelity Max-Value Entropy Search (MFMES)32 and the Multifidelity Probability of Improvement33 (MFPI). 
Both these acquisition functions define a sampling scheme sequential and greedy, where the design improvement 
is measured as the probability of lower the objective function according to the surrogate prediction (MFPI) or 
as the maximum decrease of differential entropy (MFMES). In this work, the proposed NM3-BO framework is 
compared against all those formulations of the acquisition functions for the MDO problem of a re-entry vehicle.

Optimal decision making process over the next two‑step ahead
The multifidelity Bayesian optimization is regarded as a decision making problem and formulated as a Markov 
Decision Process (MDP). MDPs are discrete-time stochastic control processes that allow to model the sequential 
decision making process of a dynamic system under uncertainty54,55. The main methodological elements of MDPs 
are: (i) the Markov chains model the transitions of the dynamic system from the initial state to future states, (ii) 
a decision-making model makes a decision at each state transition of the system, and (iii) an utility function 
quantifies the reward achieved by a certain decision with reference to the given goal. The objective of MDPs is 
to identify the optimal set of decision to efficiently reach the given goal over time. Following the perspective of 
MFBO as a dynamic system under uncertainty, (i) the multifidelity Gaussian process predicts the transitions of 
the MFBO system to future states given the initial conditions, (ii) the MFBO system evolves making a decision at 
each transition on the next design and level of fidelity to be evaluated, (iii) the reward of each decision is meas-
ured through the multifidelity acquisition function that evaluates the benefits of each decision through a trade-off 
between obtaining utility from the current state and altering the opportunities to obtain utility in the future.

The solution of the MFBO Markov Decision Process requires a procedure to perform statistical inference on 
the system behaviour, and depict the transitions of the system from one state to the other after exploring every 
possible decision. We employ the dynamic programming56,57 approach to solve this specific MDP. Dynamic 
programming (DP) partitions the optimization procedure in simpler sub-problems defined in a recursive way 
across several transitions. This permits to define the optimal policy as a sequence of rules that maximizes the 
cumulative reward achieved making decisions at future iterations. In the following, we formulate the optimiza-
tion policy based on an original multifidelity acquisition function to measure the utility of decisions expected 
over future steps of the optimization procedure.

Let us consider the MFBO dynamic system fully characterized at each time step t  by a state st ∈ St , where 
St denotes a set of states that represent all the possible configurations of the system at each time step. Follow-
ing the dynamic programming approach, we consider any future iteration of the optimization process as time 
steps {t, ...,T} of the MFBO dynamics. For a generic time step t  , the multifidelity Gaussian process conditioned 
on Dt = {xn, y(ln), ln}Nn=1 determines the posterior distribution of the objective function, where x is the design 
point and y(l) is the noisy observation of the objective function at the l-th level of fidelity. Thus, MFBO is fully 

(4)µ(l)(x) = κ
(l)
N (x)TK−1y

(5)σ 2(l)(x) = κ((x, l), (x, l))− κ
(l)
N (x)TK−1κ

(l)
N (x)

(6)UMFEI (x, l) = UEI (x)α1(x, l)α2(x, l)α3(l)

(7)α1(x, l) = corr[f (l)(x), f (L)(x)]

(8)α2(x, l) = 1− σǫ√
σ 2(l)(x)− σ 2

ǫ

(9)α3(l) =
�
(L)

�(l)
.
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characterized by a state st defined through the dataset Dt ∈ St . Based on the simulated scenario defined by the 
surrogate model, MFBO makes an action at = {xt+1, lt+1} that activates the dynamic of the system, and defines 
the next design xt+1 ∈ X and associated level of fidelity lt+1 to evaluate. This action is taken under an optimiza-
tion policy πt : St → X that maximizes the utility achieved in the future steps by mapping the state st to the 
action at = πt(st).

At the new time step t + 1 , the value of f (lt+1)(xt+1) is unknown and requires the evaluation of the objective 
function at the lt+1-th level of fidelity. We can model this value as an uncertain quantity through the posterior 
distribution of the surrogate model conditioned on Dt at xt+1 and level of fidelity lt+1 . This simulated outcome 
is defined as a random disturbance normally distributed w(l)

t+1 ∼ N(µ
(l)
t (xt+1), σ

2(l)
t (xt+1)) specified by the 

mean µ(l)
t  and variance σ 2(l)

t  of the multifidelity Gaussian process. Once the outcome is simulated, the sys-
tem transitions to the new state st+1 following its dynamics F , which corresponds to the augmented dataset 
Dt+1 = Dt ∪ {xt+1, y

(lt+1), lt+1}:

At this point, we need to define a specific reward function for MFBO that measures the utility obtained from a 
simulated outcome w(l)

t+1 when the action at is applied to the state st . This reward function can be formulated as 
the reduction of the objective function achieved at the time step t + 1 with respect to t :

where f (L)t+1 = w
(L)
t+1 , and f ∗(L)t  is the minimum value of the objective function at the highest level of fidelity 

observed up to t  . Thus, we follow the DP recursive strategy and define the expected reward at the generic time 
step t :

where E[rt(·)] = UMFEI (xt+1, lt+1) is the multifidelity expected improvement (Eq. 6), and Jt+1(F (·)) is the 
long-term expected reward. We formulate the two-step lookahead multifidelity acquisition function through 
an optimal policy π∗ that maximizes the cumulative expected reward over two-step ahead of a pair of design 
configurations xt+2 and level of fidelity lt+2:

where we define the long term reward Jt+1 = max(UMFEI (xt+2, lt+2)) as the maximum of the multifidelity 
expected improvement conditioned on the dataset Dt+1.

Robust approximation of the optimal decision making process
The evaluation of Uπ

∗
t  (Eq. 13) requires the solution of nested expectations and maximizations computationally 

intractable. We adopt the Monte Carlo approach to avoid nested computations, and provide a robust estimate of 
the two-step lookahead multifidelity utility function. Let us formulate the observation of the objective function 
at the new design configuration xt+1 and level of fidelity lt+1 using the reparameterization strategy proposed by 
Wilson et al.58:

where C(l)
t  is the Cholesky decomposition of the covariance matrix Kt , and Z is an independent standard normal 

random variable. We use Eq. (14) to compute the mean and variance of the multifidelity Gaussian process at 
t + 1 for the generic design configuration x:

where H(l)
t (x) = κ

(l)
t (x)C

(l)−1
t (x).

The expectation term of our acquisition function in Eq. (13) is approximated through the prediction µ(l)
t+1 

and associated uncertainty σ (l)
t+1 of the multifidelity Gaussian process. This permits to estimate the multifidelity 

expected improvement at t + 2 as follows:

At this point, the two-step lookahead multifidelity acquisition function is evaluated sampling the random vari-
able Z and averaging many realizations of Ûπ

∗
t  through Eq. (17):

This Monte Carlo approach demands for a significant number of realizations of Ûπ
∗

t  – in the order of thousands 
– to provide a robust approximation of Uπ

∗
t  . However, we emphasize that the evaluation of Eqs. (15) and (16) is 

inexpensive and requires contained resources. This results in a total computational cost required by the Monte 

(10)Dt+1 = F (xt+1, y
(lt+1), lt+1,Dt)

(11)rt(xt+1, y
(lt+1), lt+1,Dt) = (f

∗(L)
t − f

(L)
t+1)

+

(12)Jπt (xt+1, lt+1,Dt) = E[rt(xt+1, y
(lt+1), lt+1,Dt)+ Jt+1(F (xt+1, y

(lt+1), lt+1,Dt))]

(13)Uπ
∗

t (xt+2, lt+2,Dt+1) = UMFEI (xt+1, lt+1)+ E[max(UMFEI (xt+2, lt+2))]

(14)f (l)(xt+1) = µ
(l)
t + C

(l)
t (xt+1)Z

(15)µ
(l)
t+1(x) = µ

(l)
t (x)+H

(l)
t (x)Z

(16)σ
(l)
t+1(x) = σ

(l)
t (x)−H

(l)
t (x)H

(l)
t (x)T

(17)UMFEI (xt+2, lt+2) ∼ ÛMFEI (xt+2, lt+2,Z)

(18)Uπ
∗

t (xt+2, lt+2,Dt+1) ∼ E[Ûπ
∗

t (xt+2, lt+2,Z)]
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Carlo procedure that is negligible if compared to the cost associated with the evaluation of the objective function 
through high-fidelity disciplinary analyses in complex MDO problems.

Enabling multiple decisions
Equation (13) provides a non-myopic multifidelity sampling scheme that sequentially selects the design configu-
ration and the respective model to maximize the cumulative reward over two steps ahead. Di Fiore and Mainini59 
provided evidence that this strategy permits to achieve remarkable results over a variety of benchmark analytical 
problems with a reduction of the number of high fidelity interrogations. However, complex multidisciplinary 
design optimization problems in the form of Eq. (1) open major challenges for the intrinsic demand to scale: the 
required accurate evaluations of the objective function can dramatically upscale during the search for improved 
design solutions.

To address this complex multiphysics optimization scenario, we extend the optimal policy π∗ to enable 
multiple decisions. This permits to define a decision making procedure that iteratively selects a batch of promis-
ing design points and associated levels of fidelity B nb

i = [(xi,1, li,1), ..., (xi,nb , li,nb )] while improving the design 
solutions over future iterations. The potential of multipoint formulations has been illustrated by60 for a greedy 
single-fidelity Bayesian framework, and motivates our proposal of a multipoint sampling strategy for the non-
myopic MFBO in multidisciplinary settings. Accordingly, the formulation of our acquisition function Uπ

∗
t  is 

modified through a local penalization maximization as follows:

where (xi,k , li,k) ∈ B
nb
i  , and ψ is the local penalty function which quantifies the probability that a design point x 

is a potential minimum not belonging to the hypersphere {x ∈ X : ||xj − x|| ≤ (f̂ ∗ − f L(xj))/L}:

where erfc is the complementary error function, f̂ ∗ = minx∈X µ(L)(x) is the minimum predicted by the sur-
rogate model, and L = maxx∈X ||µ(L)

∇ (x)|| is the Gaussian process Lipschitz constant60 defined as the maximum 
of the surrogate gradient. The rationale behind the formulation of ψ is to locally penalize the acquisition function 
and create exclusion zones whose amplitude is determined by the Lipschitz constant L . This results in small sized 
exclusion zones when the values of the mean function µ(L) are closer to the predicted minimum f̂ ∗ . In contrast, 
regions of the design space where the mean function µ(L) is far from the predicted minimum f̂ ∗ produce larger 
exclusion zones. This penalization strategy emulates a sampling procedure over multiple iterations that would 
have been achieved by a sequential scheme if the previous evaluations of the designs in the batch were at disposal 
of the learner.

In addition, we provide an adaptive batch size formulation that determines the number of designs in a batch 
nb(i) = 1+ β/(

√
2i) as a function of the optimization iterations i and the initial batch size β . This strategy targets 

the efficient use of computational resources: the number of design evaluations increases at the beginning of the 
optimization to improve the knowledge of the objective function distribution over the domain, and is progres-
sively reduced to catalyze the resources toward the analyses of optimal design solutions.

NM3‑BO algorithm
Algorithm 1 illustrates the numerical implementation of our non-myopic multipoint multifidelity Bayesian 
optimization (NM3-BO) scheme. The initialization of the computations requires the definition of the design 
space X ∈ R

d according to the number of variables d that characterize the design configuration x , together with 
the library of models of the objective function {f (1), f (2), ..., f (L)} . In addition, the multifidelity Gaussian process 
prior GP(0, κ(l)(x, x′)) is defined for each level of fidelity, and represents the prior belief about the distribution 
of the objective function over the design space. Before the start of the iterative process, an initial subset of N0 
design configurations {xn}N0

n=1 and corresponding levels of fidelity {ln}N0
n=1 are sampled through any design of 

experiments technique, and are used to compute the first observations of the objective function {y(ln)}N0
n=1 . These 

data are collected into the dataset D0 = {xn, y(ln), ln}N0
n=1 which defines the initial state of the MFBO system, and 

induces the posterior distribution under the prior specified by the mean µ(l) and variance σ 2(l).
For a generic iteration i of the NM3-BO algorithmic flow, the surrogate model is updated through the obser-

vations of the objective function f (li,k)(xi,k) at each nb(i) pair of design configurations xi,k and levels of fidelity li,k 
that constitutes the batch B nb(i)

i  selected at the previous iteration i − 1 . This represents the new state of the MFBO 
system Di = Di−1 ∪ {xi,k , f (li,k)(xi,k), li,k}nb(i)k=1  . At this stage, the algorithm selects the next design configurations 
and levels of fidelity B nb(i+1)

i+1  to evaluate through the computation and maximization of our acquisition func-
tion Uπ

∗
t  . Let now indicate with t = i the current step of the optimization and with t + 1 and t + 2 the first and 

(19)xi,k , li,k = argmax



Uπ
∗

t (xt+2, lt+2,Dt+1)

k−1�

j=1

ψ(x, xj)





(20)ψ(x, xj) =
1

2
erfc



 1�
2σ 2(L)(xj)

�
L||xj − x|| − f̂ ∗ + µ(L)(xj)

�



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the second step ahead, respectively. The first element of Uπ
∗

t  is determined using the information extracted from 
the surrogate model updated at the current state of the system Dt = Di . The second element requires our Monte 
Carlo technique to compute the nested expectation and maximization, and quantify the informative gains at 
future iterations. Accordingly, the algorithm samples independently a random variable Zj normally distributed 
for the j-th Monte Carlo realization, and simulates the future optimization scenario through the estimate of the 
mean µ(l)

t+1 and variance σ 2(l)
t+1 of the surrogate model by the computation of Eqs. (15) and (16). This provides an 

estimate of the multifidelity acquisition function Ûπ
∗

tj
 as the expectation taken over the realizations {Ûπ

∗
tj

}NMC
j=1  

(Eq. 18). Then, the penalized maximization of the acquisition function determines the next batch B nb(i+1)
i+1  of 

design configurations and the levels of fidelity to be evaluated in parallel at the next iteration. This optimization 
procedure iterates until a maximum computational budget Bi = Bmax is reached, where Bi is the cumulative 
computational cost adopted until iteration i.

Space vehicle multidisciplinary design optimization
MDO problem setup
The design of a space re-entry vehicle is a multidisciplinary optimization problem that well carries the computa-
tional challenges associated with the design of complex engineering systems61,62. This paper uses this demanding 
MDO applications to demonstrate our NM3-BO scheme and discuss it in comparison with popular standard 
MFBO algorithms. The space vehicle MDO problem captures the multi-physics nature of the atmospheric re-
entry and involves several disciplinary analyses, namely the contributions of the propulsion system, the re-
entry descend trajectory, the aerothermodynamic effects that occurs during the descend path, and the thermo-
structural interaction between the re-entry flow-field and the thermal protection system. Figure 1 illustrates 
the concept of operations of the re-entry mission. This involves several phases, namely a maneuver sequence to 
introduce a thrust component that shapes the re-entry trajectory, the heat peak along the descent caused by the 
hypersonic aerothermodynamic phenomena, and the deployment of the parachutes during the landing phase.

Figure 2 illustrates the design structure matrix63 of the re-entry vehicle optimization problem. We adopt the 
multidisciplinary feasible architecture4 to address the MDO problem through a single optimization procedure 
where the design variables and constraints are under the direct control of the optimizer. The disciplinary analyses 
flow follows the diagonal of the DSM, while the feed forward flows are represented on the upper triangle and 
the couplings between disciplines are reported on the lower side. The propulsion system is modeled according 
to the chemical rocket theory, and comprises primary and secondary chemical thrusters fueled by an hypergolic 
propellant. The trajectory solver models the descend trajectory as a bi-dimensional orbit propagated through the 
numerical integration of the non-linear re-entry planetary ordinary differential equations. The aerothermody-
namic analysis consists of two disciplinary solvers at different levels of fidelity. The high-fidelity model simulates 

Algorithm 1.   NM3-BO: non-myopic multipoint multifidelity Bayesian optimization.
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the full order aerothermodynamic physics through the numerical solution of the Reynolds-Averaged Navier-
Stokes equations. The low-fidelity model uses the Oswatitsch Mach number independence principle jointly with 
the Tauber-Sutton and Sutton-Grave formulations to provide an approximated representation of the aerother-
modynamic domain. The high-fidelity model requires hours of computation on an high performance computing 
cluster, while the low-fidelity analysis is three orders of magnitude faster on a standard computing platform. 
The thermo-structural analysis models the interaction between the flow-field and the structure of the Thermal 
Protection System (TPS) through the thermo-elastic equations. Further details about the disciplinary models 
are provided in the Supplementary Material of this manuscript consistent with what proposed in literature64.

The design optimization problem targets the best design configuration x = [FV , FN , sTPS] of the re-entry 
vehicle in terms of thrust capabilities F = [FV , FN ] and TPS structural thickness sTPS that jointly minimizes 
the temperature TTPS reached by the TPS frame, the overall structural mass mTPS of the TPS, and the mass of 
propellant mP burned during the re-entry maneuver. The multidisciplinary design optimization problem is 
formulated as follows:

Figure 1.   Re-entry mission concept of operations.

Figure 2.   Design structure matrix of the space vehicle MDO problem.
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where the objectives are evaluated with reference to the baseline values for the TPS mass mTPS0 = 700 kg and tem-
perature TTPS0 = 1000 K , and for the mass of propellant mP0 = 150 kg derived from similar re-entry capsules65. 
The search is bounded by the move limits of the design space X = XFV ×XFN ×XsTPS , where the thrust capa-
bilities tangential XFV = [29.2 kN , 146 kN] and normal XFN = [0.48 kN , 2.4 kN] to the trajectory are defined 
according to the propulsion system specifications, and the limits on the TPS thickness XsTPS = [0.03 m, 0.1 m] 
are imposed from expert knowledge. The MDO problem requires a specific range of altitudes h∗ for the re-entry 
maneuver to simulate a real-world mission. Additional constraints include the feasibility of the physics-based 
models at each iteration of the optimization procedure, namely the complete resolution of the propulsion system 
model RP(x) = 0 , the trajectory model RT = 0 , the low-fidelity aerothermodynamic model R (l=1)

A (x) = 0 , the 
high-fidelity aerothermodynamic model ensured reducing the computational residuals below R (l=2)

A (x) ≤ 10−6 , 
and the thermo-structural model RS(x) = 0.

Results and discussion
The capabilities of the proposed non-myopic multipoint multifidelity algorithm NM3-BO are compared with 
standard Multifidelity Bayesian Optimization frameworks. All those MFBO algorithms rely on the multifidelity 
Gaussian process surrogate model and implement different formulations of the acquisition function, includ-
ing the Multifidelity Expected Improvement31 (MFEI), Multifidelity Max-value Entropy Search32 (MFMES), 
and Multifidelity Probability of Improvement33 (MFPI). In addition, we report the outcomes achieved with the 
Efficient Global Optimization66 (EGO) algorithm using only high-fidelity queries to provide a comparison with 
a popular single fidelity Bayesian optimization methodology.

The performance of the competing algorithms are evaluated in terms of the minimum of the objective func-
tion f ∗(x∗) = minx∈X f (x) as a function of the computational budget B =

∑
�
(l)
i  at each iteration i of the opti-

mization procedure. The computational costs for the aerothermodynamic analyses are imposed at �(2) = 1 for 
the high-fidelity model and �(1) = 0.001 for the low-fidelity model; these specific values reflect the time required 
to complete the aerothermodynamic simulation adopting either the CFD solver or the low-fidelity formulations. 
We consider a statistics over 25 experiments for each algorithm, and initialize the searches with random initial 
samples collected through a Latin hypercube sampling scheme. This experimental methodology permits to 
quantify the influence of different initialization on the algorithms performance. In particular, the multifidelity 
algorithms are initialized with 1000 design configurations evaluated with the low-fidelity model, and 34 design 
points computed with the high-fidelity analysis. The single-fidelity algorithm starts the search with an initial set 
of 35 designs evaluated with the high-fidelity model.

Figure 3 illustrates the median values (solid line) of the minimum of the objective function f ∗ along with the 
observations falling between the 25-th and 75-th percentiles (shaded area). All the initial samples correspond 
to design configurations that score worse than the baseline solution ( f > 1 ), and all the competing algorithms 

(21)

minimize f (x) = 0.4
mTPS(x)

mTPS0
+ 0.4

TTPS(x)

TTPS0
+ 0.2

mP(x)

mP0

with respect to x = [FV , FN , sTPS]

subject to 100km ≤ h∗(x) ≤ 125km

RP(x) = 0

RT (x) = 0

R
(l=1)
A (x) = 0

R
(l=2)
A (x) ≤ 10−6

RS(x) = 0

Figure 3.   Statistics over 25 experiments of the minimum of the objective function f ∗ obtained with the 
competing algorithms.
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improve the baseline design solution within the maximum computational budget available B = 250 . A significant 
achievement is that the multifidelity frameworks outperform the single-fidelity EGO algorithm. This indicates 
that the combination of data from multiple information sources allows to efficiently explore the design space 
and contain the computational cost. However, our NM3-BO algorithm obtains superior design solutions – larger 
reductions of the objective function – with a fraction of the computational cost required by the competing algo-
rithms to identify suboptimal designs. This outcome suggests that the combination of the non-myopic scheme 
and the multiple decision making process capitalizes from the design evaluations adopting different sources of 
information, and effectively accelerates the search toward optimal design solutions.

To clarify the results from the statistics, Table 1 summarizes the median values of f ∗ for discrete values of the 
computational budget B . We can observe that the NM3-BO achieves the higher design improvement ( 8.77% ) 
after the consumption of a budget B = 50 , whereas the other strategies score worst in terms of design upgrades. 
A remarkable outcome is the overall acceleration of the MDO procedure provided by NM3-BO: our framework 
converges for a computational budget below B = 75 and leads to a design upgrade of the 17.4% . This result is 
outstanding if compared with the design improvement of about the 10% obtained by the EGO, MFMES, and 
MFPI algorithms, and the design upgrade around the 12% achieved by the MFEI at convergence.

Table 2 compares the best design solutions obtained with the competing algorithms over the collected experi-
ments. NM3-BO identifies an optimal design configuration of the re-entry vehicle that delivers an upgrade of 
the 17.98% , and privileges lower thrust capabilities and contained thickness of the thermal protection system. 
This determines a lower storage of propellant m∗

P = 65.45 kg on-board and permits to navigate a safe re-entry 
trajectory that contains the heat loads affecting the frame. As a result, the temperature of the TPS structure is 
kept below T∗

TPS = 1310 K with a total TPS structural mass of m∗
TPS = 365.17 kg . Figure 4 provides details about 

the temperature distribution achieved adopting the best re-entry capsule computed with the NM3-BO at the 

Table 1.   Median values of the minimum of the objective function f ∗ and corresponding design improvement 
(·) obtained with the competing algorithms.

B f ∗EGO f ∗MFEI f ∗MFMES f ∗MFPI f ∗NM3−BO

50 1.1723 (– 17.2 %) 1.0910 (– 9.10 %) 0.9301 (6.99 %) 0.9616 (3.84 %) 0.9123 (8.77 %)

75 0.9670 (3.30 %) 0.8779 (12.21 %) 0.9301 (6.99 %) 0.9434 (5.66 %) 0.8260 (17.4 %)

100 0.9670 (3.30 %) 0.8779 (12.21 %) 0.9101 (8.99 %) 0.8984 (10.16 %) 0.8260 (17.4 %)

150 0.9101 (8.99 %) 0.8779 (12.21 %) 0.9027 (9.73 %) 0.8984 (10.16 %) 0.8260 (17.4 %)

200 0.9082 (9.18 %) 0.8779 (12.21 %) 0.9026 (9.73 %) 0.8984 (10.16 %) 0.8260 (17.4 %)

250 0.9062 (9.38 %) 0.8779 (12.21 %) 0.9026 (9.73 %) 0.8984 (10.16 %) 0.8260 (17.4 %)

Table 2.   Comparison between the best design solutions identified with the competing algorithms.

Method f ∗(x∗) x∗ = [F∗
V , F

∗
N , s

∗
TPS

] m∗
TPS

T∗
TPS

m∗
P

EGO 0.8999 (10.01 %) x∗ = [33.63 kN , 0.969 kN , 0.0396 m] 476.6 kg 1320 K 74.61 kg

MFEI 0.8717 (12.83 %) x∗ = [35.67 kN , 1.561 kN , 0.0341 m] 410.35 kg 1326 K 80.06 kg

MFMES 0.8963 (10.37 %) x∗ = [35.97 kN , 2.046 kN , 0.0373 m] 447.96 kg 1329 K 81.52 kg

MFPI 0.8921 (10.79 %) x∗ = [35.40 kN , 0.691 kN , 0.0377 m] 453.4 kg 1322 K 77.97 kg

NM3-BO 0.8202 (17.98 %) x∗ = [29.53 kN , 0.807 kN , 0.0304 m] 365.17 kg 1310 K 65.45 kg

Figure 4.   Temperature contours at the heat peak condition evaluated with the high-fidelity aerothermodynamic 
model considering the best design solution achieved with our NM3-BO algorithm.
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heat peak condition. It should be noticed that all the design solutions identified by the algorithms prioritize the 
reduction of both the TPS and propellant mass, and penalize the temperature reached by the heat shield. On one 
hand, this permits to contain the overall mass of the vehicle with consequent savings in terms of launch costs; on 
the other hand, the temperature peaks experienced by the structural frame are far below the thermal properties 
of the TPS material: this guarantees the survival of the vehicle during the atmospheric descent.

Conclusions
This paper proposes a Non-Myopic Multipoint Multifidelity Bayesian Optimization (NM3-BO) framework 
to significantly accelerate expensive multidisciplinary design optimization problems. NM3-BO combines two 
distinguishing features: i) a non-myopic decision making process maximizes the cumulative reward of design 
solutions over future iterations and ii) a penalization strategy enables multiple decisions as a batch of design 
configurations and associated level of fidelity to evaluate simultaneously. This search scheme identifies promis-
ing batches through the measure of their future utility, and leverages parallel computations to reduce the overall 
computational cost of the MDO procedure. The NM3-BO algorithm is demonstrated for the MDO problem of 
a space re-entry vehicle. The method permits substantial accelerations and identifies superior design solutions 
compared to state-of-the-art multifidelity and single-fidelity algorithms. In particular, NM3-BO delivers on aver-
age a space vehicle design improvement of the 17.4% with a fraction of the computational resources adopted by 
competing algorithms to identify suboptimal solutions. The results suggest that the non-myopic multiple decision 
making scheme can pave the way to major computational and energy efficiency gain for the multidisciplinary 
design of complex engineering systems.

Data availability
The datasets generated and analysed during the current study available from the corresponding author on rea-
sonable request.
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