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Abstract
Real-world computers have operational constraints that cause nonzero entropy production (EP).
In particular, almost all real-world computers are ‘periodic’, iteratively undergoing the same
physical process; and ‘local’, in that subsystems evolve whilst physically decoupled from the rest of
the computer. These constraints are so universal because decomposing a complex computation
into small, iterative calculations is what makes computers so powerful. We first derive the nonzero
EP caused by the locality and periodicity constraints for deterministic finite automata (DFA), a
foundational system of computer science theory. We then relate this minimal EP to the
computational characteristics of the DFA. We thus divide the languages recognised by DFA into
two classes: those that can be recognised with zero EP, and those that necessarily have non-zero EP.
We also demonstrate the thermodynamic advantages of implementing a DFA with a physical
process that is agnostic about the inputs that it processes.

1. Introduction

Szilard, Landauer and Bennett emphasized that computations have thermodynamic properties [1–3]. Lately,
this insight has been enriched by stochastic thermodynamics [4–6], allowing rigorous analysis of
computation far from equilibrium. Recent results include: a trade-off between the minimal amounts of
‘hidden’ memory and the minimum number of discrete time-steps required to implement a given
computation using a continuous-time Markov chain (CTMC) [7]; the excess thermodynamic costs when the
distribution of inputs to a computation does not match an optimal distribution [8–11] or involves statistical
coupling between physically unconnected computational variables [6, 8, 12, 13]; and results on the
thermodynamics of systems implementing loop-free circuits [8], Turing machines [14–16], and Mealy
machines [7, 17–19].

These analyses use minimal physical descriptions of the computations performed by the abstract
constructs of computer science theory [20, 21]. Some recent work has instead probed the thermodynamics of
certain types of hardware, such as CMOS-based electronic circuits [22, 23]. However, there exist practical
constraints on physical computation that are not specified by the overall computation performed, but which
are nonetheless relevant beyond a particular type of hardware. The thermodynamic costs of these constraints
are not resolved by either of the approaches above, although their consequences can be significant [24].

Accordingly, we ask: which kinds of thermodynamic costs necessarily arise when implementing a
computation using a physical system solely due to constraints that seem to be shared by all real-world physical
systems that implement digital computation? To begin to investigate this issue, here we consider the minimal
entropy production (EP) that arises due to two ubiquitous constraints on real-world digital computers. First,
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the vast majority of modern physical computers are periodic: they implement the same physical process at
each iteration (or clock cycle) of the computation. Second, all modern physical systems that perform digital
computation are ‘local’, i.e. not all physical variables that are statistically coupled are also physically coupled
when the system’s state updates. Ultimately, the reason that these constraints are imposed in both abstract
models of computation and real world computers is that they allow us to break down complex computations
into simple, iterative logical steps.

In this work we explore how and when operating under these constraints imposes lower bounds on the
EP of a computation modelled as a CTMC, regardless of any other details about how the computation is
performed (equivalent results apply even in a quantum setting [9]). Taken together, the constraints impose
necessary EP through mismatch costs [8–11] of two types: ‘modularity’ mismatch cost [6, 8, 12, 13], and
what we call ‘marginal’ mismatch cost. Both types of mismatch cost have previously been identified in the
literature as possibly causing EP in any given physical process; here we argue that they are in fact inescapable
in complex computations. In particular, we demonstrate their effects for one of the simplest nontrivial types
of computer, deterministic finite automata (DFA).

DFA have important applications in the design of modern compilers, as well as text searching and editing
tools [25]. They are also foundational in computer science theory, at the foot of the Chomsky hierarchy [26,
27], below push-down automata [21] and Turing machines [20, 28, 29]. These properties makes DFA
particularly well-suited for an initial study of the consequences of locality and periodicity in computational
systems. We thus take the first step towards investigating the thermodynamic consequences of locality and
periodicity in all the computational machines of computer science theory.

We next introduce our modelling approach and key definitions. We subsequently outline the general
consequences of locality and periodicity for arbitrary computations, in the form of a strengthened second
law. Having discussed this strengthened second law, we then derive specific expressions for constraint-driven
EP in DFA, and explore how DFA could be designed to minimize the expected and worst-case costs that
result. Next, we analyse how this EP relates to the underlying computation performed. Surprisingly, the most
compact DFA for a given language is generally neither especially thermodynamically efficient nor inefficient.
Finally, we consider regular languages, i.e. the sets of strings such that every string in the set can be
recognized by some DFA. We show that such languages can be divided into a class that is thermodynamically
costly for a DFA to recognise, and a class that is inherently low-cost.

2. Methods

2.1. DFA
A DFA [6, 26, 27] is a 5-tuple (R,Λ, r∅, rA,ρ) where: R is a finite set of (computational) states; Λ is a finite
alphabet of input symbols; ρ is a deterministic update function specifying how the current DFA state is
updated to a new one based on the next input symbol, i.e. ρ : R×Λ→ R; r∅ ∈ R is a unique initial state; and
rA ⊂ R is a set of accepting states. An example is shown in figure 1. The set of all finite input strings is
indicated as Λ∗.

The DFA starts in state r∅ and an input string λ ∈ Λ∗ is selected. The selected input string’s first symbol,
λ1, is then used to change the DFA’s state to ρ(λ1, r∅). The computation proceeds iteratively, with each
successive component of the vector λ used as input to ρ alongside the then-current DFA state to produce the
next state. We write λ−i for the entire vector λ except for the ith component.

We write the DFA’s computational state just before iteration i as ri−1, and we use ri for the state after the
update. The update in iteration i is then the map

(λi, ri−1)→ (λi, ri) = (λi,ρ(λi, ri−1)) . (1)

We refer to this map as the local dynamics, and define the set of local states as

Z := R×Λ, (2)

with elements z ∈ Z. z0i is the local state just before update i: z
0
i = (λi, ri−1), and z fi = (λi, ri) is the local state

after update i. Note that z fi ̸= z0i+1 in general, since z0i+1 involves λi+1, not λi. The local update function fixes
the full update function of the entire state space, since λ−i is unchanged during an update.

A DFA accepts λ if its state is contained in rA after processing the final symbol. The language accepted by a
DFA is the set of all input strings it accepts. Many DFA accept the same language L; theminimal DFA for L
has the smallest set of computational states R for all DFA that accept L [26, 27].

Figure 1(a) shows a DFA with four computational states that processes words built from a two-symbol
alphabet {a,b}. This DFA accepts all strings without three or more consecutive bs. Three iterations of this
DFA when fed with an input (a,b,b) are shown in figure 1(b).

2



New J. Phys. 25 (2023) 123013 T E Ouldridge and D HWolpert

Figure 1. Example DFA with states R= {0,1,2,3}, alphabet Λ = {a,b}, initial state r∅ = 0 and accepting set rA = {0,1,2}. The
update function ρ is illustrated in (a); the current computational state and the current input symbol specify the next
computational state. This DFA accepts input strings that do not contain three or more consecutive bs. (b) shows the evolution of
the local state through three iterations; the input string is read from left to right.

DFA can be divided into those with an invertible local map ρ, and those with a non-invertible ρ. The map
ρ defines islands in the local state space: an island of ρ is a set of all inputs to ρ that map to the same output
(i.e. it the pre-image of an output of ρ). If the local dynamics defined by ρ is invertible, all local states are
islands of size 1; otherwise Z is partitioned by ρ−1 into non-intersecting islands, some of which contain
multiple elements. We write ci for the island that contains z0i . The DFA in figure 1 is non-invertible, since

z fi = (a,0) could have arisen from either z0i = (a,0), (a,1) or (a,2), which comprise an island.

2.2. Relevant stochastic thermodynamics
2.2.1. Mismatch cost
Consider an arbitrary system X with a finite set of states X = {x1,x2 . . .}. There is a distribution p(x) over X
at some initial time, and that distribution evolves according to a (potentially time-dependent) Markov
process µ(t). We assume that the system is attached to a single heat bath during this process, choosing units
so that the bath’s temperature equals 1/kB. We also assume that µ(t) obeys local detailed balance with respect
to that bath and the system’s (potentially time-evolving) Hamiltonian [4]. Although we will not need to
specify whether the Markov process is discrete-time or continuous-time, to fix the reader’s intuition (and
accord with real-world digital computers) we can assume that it is continuous-time.

Suppose that the process runs for some pre-fixed time. The distribution over X at the end of that time is
a linear function of the initial distribution, which we write as p ′(x ′) =

∑
xP(x

′|x)p(x), or just p ′ = Pp for
short, where P is implicitly fixed by the stochastic process µ(t). A given P will partition X into islands. Two
states x and x′ are within the same island if and only if P(x ′ ′|x) ̸= 0 and P(x ′ ′|x ′) ̸= 0 for any state x′ ′.

Let qcµ(x) be the initial probability distribution that minimizes the EP under µ(t) for distributions with
support restricted to the island c. This optimal distribution will be unique within each island. No matter
what the actual initial distribution p is, and regardless of the specific details of the process µ(t) that
implements P, so long as each qcµ has full support within island c, the EP when the process is run with the
initial distribution p will be [8, 9, 11]

σµ (p) = D(p ||qµ)−D(Pp ||Pqµ)+
∑
c

p(c)σµ

(
qcµ

)
. (3)

Here, the index c runs over the islands of the process, p(c) =
∑

x∈c p(x) and qµ(x) =
∑

c q(c)q
c
µ(x) is called

the prior distribution [6, 15], and is specific to the applied protocol µ(t). D(p ||qµ) is the Kullback–Leibler
(KL) divergence between p and qµ.

The first two terms in equation (3) are themismatch cost [6, 8, 9] of the process. The mismatch cost is the
drop in KL divergence between p and qµ due to the matrix P. The mismatch cost is zero if p= qµ, and
non-negative by the data processing inequality. Intuitively, the mismatch cost is the contribution to the EP of
the misalignment between the actual input distribution p(x) and an optimal distribution qµ(x) specified by
the physical process µ(t). If the input distribution is well-matched to the protocol applied, p(x) = qµ(x), EP
is minimised.

The final term in equation (3) is the residual entropy production. Unlike the statistical mismatch cost, the
residual EP depends on the physical details of the process implementing µ(t). Each term in the sum is
non-negative, but can be reduced to zero using a quasi-static process [6, 8, 9].

Note that the distribution over islands, qµ(c), is arbitrary. Any distribution qµ(x) that is a sum over the
set of optimal distributions {qcµ(x)} could be used with the same results. In practice, the existence of many
possible qµ does not affect our analysis; we shall simply use a convenient qµ with qµ(c) ̸= 0 for all c.
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2.2.2. Marginal and modularity mismatch costs
Let Xa and Xb be two co-evolving systems that are physically separated from one another during a time
period [0,1], though they may have been coupled in the past. Due to this separation, we may consider
separate protocols µa(t) and µb(t). Moreover, the prior for the overall process must be a product
distribution, qµ(x) = qµa(xa)qµb(xb) Taking p(xa) and p(xb) as the marginal distributions of the initial joint
distribution p(xa,xb), the drop in KL divergence during [0,1] is

D(p(xa,xb) ||qµa (xa)qµb (xb))−D(Pp(xa,xb) ||Paqµa (xa)Pbqµb (xb)) , (4)

where Pa,Pb are the two matrices specifying the overall evolution of the a and b subsystems during [0,1]. This
drop equals

−∆H(p(xa,xb))+∆H(pa (xa) ||qµa (xa))+∆H(pb (xb) ||qµb (xb)) , (5)

whereH is the entropy,H(. || .) is cross-entropy, and∆means change from beginning to end of the evolution
under P. Adding and subtracting marginal entropies, this form can be re-expressed as

−∆H(p(xa,xb))+∆H(pa (xa))+∆H(pb (xb))+∆D(pa||qµa)+∆D(pb||qµb) . (6)

By the definition of the change of mutual information between Xa and Xb,∆I, we obtain

D(p(xa,xb) ||qµa (xa)qµb (xb)) = ∆D(pa||qµa)+∆D(pb||qµb)−∆I. (7)

We may thus write

σµ (p) = σµa (pa)+σµb (pb)−∆I, (8)

for the EP during [0,1], which simplifies to

σ = σµa (pa)−∆I. (9)

if Xb = X−a and X−a is static; we say that Xa evolves under a solitary process in this case. Here, pa(xa) is the
initial marginal distribution for subsystem a, and∆I is the change in the mutual information between Xa

and X−a over the period in question.
The first term in equation (9) is the non-negative mismatch cost generated by Xa running in isolation,

having marginalised over the other degrees of freedom. We call this themarginalmismatch cost, σmar. Like
any other mismatch cost, it is non-negative. The second term is the reduction in mutual information
between Xa and X−a [7, 13], which we call themodularity mismatch cost, σmod, after [12]. By the data
processing inequality [30], σmod ⩾ 0. Intuitively, this term reflects the fact that information about the
statistical coupling between Xa and X−a is a store of non-equilibrium free energy, and that information is
reduced in a solitary process.

Equation (9) implies that the mismatch cost can be exactly decoupled into modular and marginal
components when evolution is solitary. This result may, at first glance, seem inconsistent with the general
discussion in [8], which used a more general Bayes net formalism. In fact there is no inconsistency. In the
language of [8], the variables in zi0 are the ‘parents’ of ri, resulting in the same marginal and modularity
mismatch costs as derived here.

2.3. Physical model of DFA
2.3.1. State space
In order to apply stochastic thermodynamics of section 2.2 to the computational model of DFA in
section 2.1, it is necessary to make assumptions about how the logic is instantiated in a physical system. We
assume that all the possible logical states of the system, defined by the set R×Λ∗ ×Z+ (combining the
possible computational states, input words and iteration steps) correspond to well-defined discrete physical
states [4, 31]. For example, the DFA could be a molecular assembly processing a copolymer tape [14].
Metastable configurations of the assembly would represent the computational state, the sequence of the
copolymer the state of the input word, and the position of the polymer the iteration. We also assume that if it
is necessary to implement ρ, the DFA has access to ancillary hidden states—which with probability 1 are
unoccupied at the start and end of any update [32].

Computation will, in general, involve an externally applied control protocol that varies the physical
conditions of the system over time; in the case of the molecular computer, we would use time-varying
concentrations of molecular fuel [14]. This protocol defines the dynamics µ(t). Although the dynamics will
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be stochastic, strictly speaking, we assume that µ(t) biases trajectories sufficiently to obtain effectively
deterministic computation by the end of each update More formally, we are interested in the limits of
stochastic protocols under which they approximate deterministic dynamics to arbitrary accuracy [33]. We
abuse notation, using µ(t) to refer to both the external protocol and the dynamics it induces over the system’s
states.

We take the input word λ to be a random variable sampled from a distribution p(λ). As a result the
computational state of the DFA will also be a random variable, despite its deterministic operation on a given

word. We use ri, z0i , z
f
i and ci to represent the random variables corresponding to the computational state of

the DFA after update i, local state before and after update i; and the island occupied during iteration i,
respectively.

We will consider a distribution p(λ) in which all words are the same finite length N. Within this setup, a
distribution of input words with lengths less than or equal to N could be simulated by adding an extra null
symbol that induces no computational transitions to the alphabet. Processing these null input symbols
would have no thermodynamic cost under the assumptions considered here. For simplicity, we do not
include these null symbols in our examples.

2.3.2. Thermodynamic costs of DFA
In this paper we focus on EP as the fundamental thermodynamic cost of running DFA. EP represents the lost
ability to extract work from a system, and is a metric for the thermodynamic irreversibility. In certain
contexts, the work required to perform a process, or the heat transferred to the environment therein, are also
used to quantify the thermodynamic cost of a process.

The operation of a DFA does not increase the entropy of the computational degrees of freedom of the
system, since the map from (r0 = r∅,λ) to (rN,λ) is one-to-one if the full input word is taken into account. If
the computational states all have the same energy and intrinsic entropy [4, 31] as is typically assumed, the
energy and entropy change of the system will thus be zero. Any EP is equal to the heat transferred to the
environment, which must be exactly compensated by the work done on the system. All three measures of
thermodynamic cost are therefore identical.

We do not consider further the residual EP at each iteration, nor the costs of incrementing i (both can, in
principle, be made arbitrarily small). We also neglect costs associated with actually generating µ(t) itself, as
discussed in [14]. Given these assumptions, whenever we use the term ‘(minimal) EP’, we refer to the
(minimal) EP due to the mismatch cost (and its decomposition into marginal and modularity mismatch
cost).

2.3.3. Decomposition of EP generated at each iteration
In general, when applying the mismatch cost formula to a computation there are multiple choices for the
times of the beginning and end of the underlying process. This choice matters, because the mismatch cost
contribution to EP is not additive over time. for example, the drop in KL divergence for a two-timestep
computation will generally differ from the sum of the drops in KL divergence for each of those timesteps.

One could consider a single mismatch cost evaluated over the entire computation. Under this choice,
none of the details of how the conditional distribution P of the overall computation arises by iterating the
conditional distributions of each step are resolved by the mismatch cost. All that matters is the drop in KL
divergence between the initial distribution, when the computer is initialized, and the ending distribution,
when the output of the computation is determined. This approach has been used to analyse Turing Machines
[7, 15] as well as DFA [34].

An alternative choice is to focus on the EP generated at each iteration of the DFA, with the total EP of the
entire computation being a sum of those iteration-specific EPs. Doing so allows us to manifest restrictions on
the applied protocol inherent to the iterative process in the mismatch cost, rather than burying them in the
residual EP of the computation as a whole. Given that we focus on costs arising from the iterative nature of
the computation, it is natural to focus on the EP at each iteration of the DFA.

2.4. Implementation of physical constraints
2.4.1. Locality
In principle, one could build a DFA that physically couples the entire input word, λ, to the local subsystem zi
during update i. However, this coupling is not required by the computational logic, which is local to zi.
Moreover, it would be extremely challenging to implement in practice; modern computers do not physically
couple bits that do not need to be coupled by the logical operation in question. Accordingly, we assume that
the evolution of the local state zi is solitary. As a result, the global mismatch cost splits into two non-negative
components, as outlined in section 2.2: a marginal mismatch cost associated with the evolution of the local
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state in isolation; and a modularity mismatch cost associated with non-conserved information between the
local state and the rest of the system.

2.4.2. Periodicity
The marginal mismatch cost for iteration i will depend on the similarity of p(z0i ), the initial distribution over
local states, and qµi(z

i
0), the prior distribution for the protocol µi(t) implemented at iteration i. Typically,

p(z0i ) will vary with i. In theory, one could design µi(t) to match these variations, ensuring qµi(z
i
0) = p(z0i ) at

each update, eliminating σmar. However, designing such a protocol would require knowledge of p(z0i )—
which in turn would require running a computation emulating the DFA before running the DFA, gaining
nothing. Moreover, one of the major strengths of computing paradigms such as DFA, Turing machines and
real world digital computers is that their logical updates are not iteration-dependent. It is therefore natural to
impose a second constraint: that the protocol µi(t), like the logical update ρ, is identical at each update i
(µi(t) = µ(t)).

The applied protocol is thus periodic, because it repeats at each iteration, and we use the term periodic to
describe a DFA operated in this way. We note that a periodic protocol does not necessarily imply periodic
dynamics, which also depends on the input word. Formally, we define a local, periodic DFA (LPDFA) as any
process that implements a DFA via a repetitive, solitary process on the local state zi.

2.5. Calculation of numerical results
The numerical results reported in this manuscript were obtained via an explicit summation over all possible
input words and the states that result at each iteration. Code for calculating the data can be found at [35].

3. Results and discussion

3.1. General consequences of local and periodic constraints
We briefly consider the consequences of locality and periodicity in general, before re-focussing on DFA
specifically. The mismatch and modularity costs previously introduced are well established. However,
systems that perform non-trivial computations by iterating logical steps on subsystems are exposed to these
costs in a way that simpler operations, like erasing a bit, are not. The need to operate iteratively on an input
that is evolving from iteration to iteration makes the mismatch cost unavoidable. Additionally,
modularity-cost-inducing statistical correlations result from the need to carry information between
iterations, which will not be required in simpler systems, such as erasing a series of bits.

Consider a physical realisation of an arbitrary computation that is local and periodic in a way that reflects
the locality and periodicity of the computational logic. Then the marginal and modularity mismatch costs set
a lower bound on EP, regardless of any further details about how the computation is implemented.
Specifically, let X be the computational system and Xi the local subsystem that is updated at iteration i. Then
over the course of N iterations, the system will experience a total marginal mismatch cost

σmar =
N∑

i=1

D(p(xi) ||qµ (xi))−D(Pp(xi) ||Pqµ (xi)) , (10)

where P is the update matrix, p(xi) is the initial distribution of the local state and qµ(xi) is the prior built in
to the actual protocol µ(t).

Equation (10) depends on the details of µ(t) beyond the locality and periodicity constraints. However,
some choice of qµ (and hence µ(t)) will minimize σmar, setting a lower bound on EP that is independent of
these details

σmar ⩾min
qµ

N∑
i=1

D(p(xi) ||qµ (xi))−D(Pp(xi) ||Pqµ (xi))⩾ 0. (11)

Unless p(xi) is identical for all i, or P is a simple permutation, it is not generally possible to choose a single qµ
that will eliminate σmar at every iteration i. In this case, equation (11) provides a strictly positive
periodicity-induced lower bound on the EP that depends purely on the logic of local update.

Similarly, the accumulated modularity cost follows directly as

σmod =−
N∑

i=1

∆I(Xi ;X−i)⩾ 0, (12)

where∆I(Xi ;X−i) is the change in mutual information between Xi and X−i due to update i. As with
equation (11), this contribution to EP is entirely determined by the computational paradigm used and the
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distribution of inputs; it is independent of the details of the implementation given the assumption of locality
and periodicity. Taken together, the sum of σmar and σmod from equations (11) and (12) constitute a
strengthened second law for periodic, local computations that depends only on the logic of the computation,
not the details of its implementation.

These implementation-independent lower bounds, alongside the qualitative observation that computing
systems are particularly vulnerable to modularity and mismatch costs, is the first main result of this work.
These results apply to any computational system implemented using a periodic, local process. For the rest of
the paper, we will focus on DFA. Doing so allows us to illustrate the consequences of local and periodic
restrictions in a concrete computational model.

3.2. EP for LPDFA
Under our assumptions, the EP when applying a solitary dynamics µ(t) to an initial distribution p(z0i ,λ−i) at
the update stage of iteration i of a DFA is

σi
µ

(
p
(
z0i ,λ−i

))
= σi

mar +σi
mod, (13)

where

σi
mar := D

(
p
(
z0i
)
||qµ

(
z0i
))

−D
(
p
(
z fi

)
||qµ

(
z fi

))
(14)

is the marginal mismatch cost of update i, and

σi
mod := I

(
z0i ;λ−i

)
− I

(
z fi ;λ−i

)
(15)

is the modularity mismatch cost of update i. A variant of the modularity cost in equation (15) was
considered in isolation in [36], for the special case of DFA operating in steady state.

Henceforth, for simplicity, we suppress the dependence of σi on µ since µ is constant over all iterations.
The KL divergences in equation (14), giving σmar, can be simplified for LPDFA. Since each update in an

LPDFA deterministically collapses all probability within an island to one state, p(z fi |ci) = q(z fi |ci). As shown
in section 1 of the supplementary information, this simplification implies that

σi
mar =

∑
ci

p(ci)D
(
p
(
z0i |ci

)
||qµ

(
z0i |ci

))
, (16)

which is the second main result of this work. σi
mar is therefore the divergence between initial and prior

distributions, conditioned on the island of the initial state.
In figure 2, we explore the properties of σi

mar for the DFA shown in figure 1. The four sub-figures show
σi
mar for four distinct distributions p(λ), and a fixed (uniform) prior qµ. We immediately see that σi

mar is
strongly dependent on both the distribution of input words and the iteration, with σi

mar non-monotonic in i
in all four cases.

σi
mar is determined by a combination of how well tuned the prior is to the input distribution within a

given island, and the probability of that island at each iteration. At the start of iteration 1, particularly for
subfigure (b), there is a high probability of the system being in the island {(a,0); (a,1); (a,2)} and the
uniform prior is poorly aligned with the actual initial condition within this island (all in (a,0)). At larger i,
this cost drops both because the probability of being in that island drops, and the conditional distribution
within the island gets more uniform.

For iterations i ⩾ 3, the system has a non-zero probability of being in the other non-trivial island
{(b,2); (b,3)}. The uniform prior is initially poorly matched to the conditional distribution within this
island (at the start of iteration i= 3, the system cannot be in (b,3)). Additionally, the probability of the
system being in this island is quite low for subfigure (a) and (b), but much higher for (c) and (d) – explaining
the jumps in those traces.

The third main result of this work is a simple expression for the modularity mismatch cost for DFA. As
we show in section 2 of the supplementary information,

σi
mod =H

(
z0i |ci

)
. (17)

Surprisingly, σi
mod, a global quantity, is given by the entropy of the local state at the beginning of the update,

conditioned on the island occupied at the start of iteration i. This result holds regardless of the distribution
of input strings or the DFA’s complexity.

To understand equation (17) intuitively, we note that z0i in general contains information about λ−i. After
the update, any information provided by λi alone is retained, since the input symbol is not updated by
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Figure 2. EP in a simple system shows non-trivial dependence on iteration and input word distribution. We plot total EP σi, and
its decomposition into σi

mar and σi
mod, for the DFA in figure 1(a), which accepts all words that do not contain three or more

consecutive bs. In all cases we use a uniform prior qµ(z0i |ci) within each island, and consider a distribution of input words with
fixed length N= 15, but vary the distribution of input words p(λ). (a) Input words have independent and identically distributed
(IID) symbols with p(a) = p(b) = 0.5. (b) Input words have IID symbols with p(a) = 0.8 and p(b) = 0.2. (c) Input words have
IID symbols with p(a) = 0.2 and p(b) = 0.8. (d) Input words are Markov chains. The first symbol is a or b with equal probability,
and subsequently P(λi+1 = λi) = 0.8.

the DFA. Moreover, for islands of size 1, the combined values of λi and ri are just as informative about λ−i as
λi and ri−1 were. However, for non-trivial islands, the extra information provided by ri−1 on top of λi is lost,
yielding equation (17).

We see from our example system in figure 2 that modularity costs behave very differently from marginal
mismatch costs. In general, σi

mod tends to zero as the probability of being absorbed into state 3 increases: in
this case, there is no entropy of z0i . Modularity costs stay high for system (b), in which bbb substrings are
infrequent.

Modularity costs are relatively low in figure 2(d), in which symbols of the input word are correlated.
Naïvely, one might have assumed that a larger I(z0i ,λ−i) generated by a correlated input word would be more
susceptible to large modularity costs. We explore this question in more detail in figure 3 for both the DFA
illustrated in figure 1(a) and a second DFA that accepts words that are concatenations of bb and baa
substrings (figure 3(a)).

In figure 3(b) we plot the total modularity cost,
∑N

i=1σ
i
mod, for both DFA processing a Markovian input,

as a function of the degree of correlation, P(λi+1 = λi). We see that in both cases, the uncorrelated input
words with P(λi+1 = λi) = 0.5 have relatively high (though not maximal) modularity cost, and fully
correlated strings have σmod = 0.

To understand why, consider figure 3(c), in which we plot the information between the local state and the

rest of the input word before (I0 = I(z0i ;λ−i)) and after (If = I(z fi ;λ−i)) the update of iteration i, for the
original DFA in figure 1(a). We consider uncorrelated input words (P(λi+1 = λi) = 0.5) and moderately
correlated input words (P(λi+1 = λi) = 0.8). At early iterations, I0 is larger for the correlated input, as would
be expected (at later times, the DFA with correlated input is more likely to be absorbed into state 3, reducing
I0). More importantly, the system with correlated inputs retains more of its information in the final state.
Because λ−i is correlated with the current symbol λi, it is a better predictor of the final state of the update. In

the limit of P(λi+1 = λi) = 1 or 0, there is no modularity cost as zfi is perfectly predictable from λ−i.

8
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Figure 3. Correlated input words do not generate high modularity costs. (a) A 4-state DFA that processes words formed from a
two-symbol alphabet, accepting those formed by concatenating bb and baa substrings. (b) Total modularity cost

∑N
i=1σ

i
mod for

the DFA in (a) and the DFA in figure 1(a), when processing words of length N= 15 that are generated using a Markov chain.
Modularity cost is plotted as a function of the probability that subsequent symbols in the word have the same value. (c) Mutual
information between the local state and the rest of the input word before (I0) and after (If) the update of iteration i, for the DFA
in figure 1(a). Data is plotted for P(λi+1 = λi) = 0.8 (correlated) and P(λi+1 = λi) = 0.5 (independent).

Combining equations (16) and (17) gives

σi
(
p
(
z0i ,λ−i

))
=
∑
ci

p(ci)H
(
p
(
z0i |ci

)
||qµ

(
z0i |ci

))
, (18)

where

H
(
p
(
z0i |ci

)
||qµ

(
z0i |ci

))
:=−

∑
z0i ∈ci

p
(
z0i |ci

)
lnqµ

(
z0i |ci

)
(19)

is the cross entropy between qµ(z0i |ci) and p(z0i |ci). This total EP is also shown for the example DFA of
figure 1(a) in figure 2.
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It is interesting to note that, in figure 2, changes in σi
mod and σi

mar from iteration to iteration appear to be
anticorrelated, with the total σi showing only relatively small changes. For the specific case of the simple
uniform prior used here, the marginal mismatch cost in equation (16) reduces to σi

mar = ⟨lnLci⟩−
H(z0i |ci) = ⟨lnLci⟩−σi

mod, with Lc being the size of island c. With a uniform prior, changes in σi
mar resulting

from changes to p(z0i |ci) are exactly compensated by changes in σi
mar, and the change in overall EP is only due

to changes in p(ci).

3.3. Reducing the marginal mismatch cost through choice of priors
3.3.1. Applying a bias to the prior
Although changes in σi

mar and σi
mod cancel each other when p(z

0
i |ci) is varied at fixed p(ci) and uniform

qµ(z0i |ci), it is still natural to ask how qµ(z0i |ci)might be chosen to minimize EP for a given p(λ) and a given
DFA. We note that σi

mod is determined exclusively by the computational map performed by the DFA and the
distribution of input words (equation (17)); it is independent of qµ(z0i |ci). Optimizing the prior therefore
corresponds to minimising σi

mar for a fixed design of DFA and distribution of input words.
One might hope that qµ(z0i |ci) could be tuned to p(λ) alone, without any reference to the operation of

the DFA. Unfortunately, however, such an approach will fail. The states within each island all have the same
value of λ, because the update map ρ does not update the input symbol. Applying a prior that is a function of
λ alone results in a uniform qµ(z0i |ci).

Reducing the mismatch cost through choice of prior thus requires some understanding of the
computational state, not just the inputs. For example, for the DFA in figure 1(a), the computation starts in
the state r∅ = 0. Biasing qµ(z0i |ci) towards states with r= 0, as we show in figure 4(a), can reduce the
marginal mismatch cost of the first step. If the bias is too strong, then increased costs at later iterations
overwhelm the initial reduction. It is possible, however, to reduce the total EP with a moderate bias of
qµ(z0i |ci) towards states with r= 0.

Alternatively, one could bias qµ(z0i |ci) towards states with r= 3, since most trajectories will eventually be
absorbed. As shown in figure 4(b), doing so incurs an extra cost at short times, particularly at iteration i= 3.
At the start of the third iteration, the DFA is moderately likely to be in computational state r= 2, but cannot
be in computational state r= 3, so the biased prior is a poor match for p(z0i |ci). At later iterations, however,
the biased prior performs better. Again, a moderate bias performs best overall.

3.3.2. Advantages of a uniform prior
We have seen that it is, in principle, possible to reduce EP by applying biased priors. However, we also saw
that very biased priors could lead to very high EP. As noted in [33], in which a similar result to equation (16)
was derived in the absence of distinct islands, σi

mar penalizes an over-confident prior qµ(z0i |ci). If
qµ(z0i |ci) = 0 for a given state but p(z0i |ci) ̸= 0, equation (18) implies σi

mar →∞. The authors of [33]
hypothesised, therefore, that a uniform qµ(z0i |ci)may be optimal.

As a fourth main result of this work, we present three important properties of a qµ(z0i |ci) that is uniform
for each ci, i.e. a prior qµ(z0i |ci) = 1/Lci . First, for such a prior, equation (18) becomes

σi
(
p
(
z0i ,λ−i

))
= ⟨lnLci⟩⩽ lnLcmax . (20)

Here, Lcmax is the size of the largest island of ρ. Equation (20) gives a finite upper bound to EP for LPDFA
employing a uniform prior distribution qµ(z0i |ci) = 1/Lci , constrained by the size of the largest island.

Second, for any protocol, the worst case EP is at least lnLcmax . A uniform prior distribution
qµ(z0i |ci) = 1/Lci therefore minimizes the worst case EP. To verify this claim, consider the input distribution
p(zi0) = δzi0,zmin

, where zmin is a state that minimizes qµ(z0i |ci) within the largest island. For such a distribution,
equation (20) reduces to

σi
(
p
(
z0i ,λ−i

))
=− lnqµ (zmin|cmax)⩾ lnLcmax , (21)

where the final inequality follows from qµ(zmin|cmax)⩽ 1/Lcmax .
Finally, the uniform prior distribution qµ(z0i |ci) = 1/Lci minimizes predicted average EP if a designer is

maximally uncertain about p(z0i ,λi). A designer may not know that pi(z0i |ci) is the input distribution at
iteration i—either because p(λ), or the DFA’s dynamics on p(λ), are unknown. Thus the choice of protocol
µ(t), and hence qµ(z0i |ci), is performed under uncertainty over not just the input state, but also the
distribution from which that state is drawn.
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Figure 4. Applying a biased prior qµ(z0i |ci) can reduce the local mismatch cost. (a) σi
mar for the DFA in figure 1(a), given input

words of length N= 15 with IID symbols (p(a) = p(b) = 0.5). Results are plotted for different values of qµ((a,0)|c⋆), where
c⋆ = {(a,0),(a,1),(a,2)} is the island containing (a,0). qµ(z0i |ci) is otherwise unbiased, and qµ((a,0)|c⋆) = 1/3 corresponds
to a totally unbiased prior. (c) Equivalent to (a), but for input p(a) = 0.2, p(b) = 0.8, and applying a bias to qµ((b,3)|c⋆⋆),
where c⋆⋆ = {(b,2),(b,3)} is the other non-trivial island for this DFA. qµ(z0i |ci) is otherwise unbiased, and
qµ((b,3)|c⋆⋆) = 1/2 corresponds to a totally unbiased prior.

Let the designer’s belief about the distributions p(ci) and p(z0i |ci) be represented by a distribution π(v,w)
over an (arbitrary) discrete set of possible distributions indexed by v,w: pv(ci), pw(z0i |ci). The designer’s best
estimate of the expected EP at iteration i is then (see section 3 of the supplementary information)

σ̂i =H
(
z0i |ci,v,w

)
+ I

(
z0i ;w|ci,v

)
+
∑
v

π (v)
∑
ci

pv (ci)D
(
p̂
(
z0i |ci,v

)
||qµ

(
z0i |ci

))
. (22)

Here, H(z0i |ci,v,w) and I(z0i ;w|ci,v) are defined with respect to the estimated joint distribution,
p̂(v,w,z0i , ci) = π(v)π(w|v)pv(ci)pw(z0i |ci), and p̂(z0i |ci,v) =

∑
wπ(w|v)pw(z0i |ci) is the designer’s estimate for

the probability distribution within an island, having averaged over the uncertainty quantified by π(w|v).
All three terms in equation (22) are non-negative. The first is σi

mod averaged over v and w. The third is
the marginal mismatch cost between p̂(z0i |ci,v) and qµ(z0i |ci). However, even if qµ(z0i |ci)matches the average
estimated distribution within an island, p̂(z0i |ci,v) = qµ(z0i |ci), the best estimate of σ̂i

mar is non-zero. The
second term, I(z0i ;w|ci,v), quantifies how much uncertainty in w is actually manifest in an uncertainty in the
input distribution; variability about p̂(z0i |ci,v) gives positive expected EP. An equivalent term was previously
identified in [37, 38] for arbitrary processes with a single island.

H(z0i |ci,v,w) and I(z0i ;w|ci,v) are protocol-independent and cannot be changed for a given
computation. D(p̂(z0i |ci,v) ||qµ(z0i |ci)), however, can be minimized by choosing qµ(z0i |ci) = p̂(z0i |ci,v). Given
maximal uncertainty, the designer’s best estimate will be uniform: p̂(z0i |ci,v) = 1/Lci . In this case, a uniform
qµ(z0i |ci) = 1/Lci minimizes estimated average EP.

The results hitherto apply to LPDFA, but do not reflect the actual computation performed. The results
for σi

mar—including the optimality of a uniform protocol—apply to any deterministic process; the LPDFA’s
restrictions simply justify why qµi(z

0
i |ci) cannot be tuned to p(z0i |ci) at each i. The results for σi

mod are more
specific, relying on a solitary process using a single symbol λi from an unchanging ‘input string’, and a device
whose state after the update is unambiguously specified by λi⩽j. Nonetheless, σi

mod in equation (17) is not
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directly related to the computational task. We now explore how EP is related to ρ, and the language accepted
by the DFA.

3.4. Relating EP to computational tasks
3.4.1. Nonzero EP is common in non-invertible LPDFA
The EP in equation (18) is positive if qµ(z0i |ci) ̸= 1 for any z0i , ci for which p(z0i |ci) ̸= 0 and p(ci) ̸= 0. This
condition is met whenever an island ci with p(ci)> 0 has at least two elements z0 with p(z0i |ci)> 0. There are
two ways to avoid this EP. One is if all islands have a single element, i.e. the local update function ρ is
invertible (this observation was made for σmod alone in [36]). The second is if the distribution of input
strings p(λ) is such that for every island ci with at least two elements, all but one of those elements always
have p(z0i |ci) = 0. However, in that case, qµ(z0i |ci)must be finely-tuned to match this condition when the
physical system implementing the computation is constructed. As discussed in the context of applying
non-uniform priors, this strategy risks high costs for overconfidence.

We now focus on the former way of achieving zero EP, asking what determines whether ρ is invertible.
Since ρ preserves the input symbol λi, it can only be non-invertible if it maps two distinct computational
states to the same output for the same symbol λi. If we illustrate ρ by a series of directed graphs, one for each
value of λi, then a non-invertible DFA will have at least one state with at least two incoming transitions for at
least one value of λi. We label states with more than one incoming transition for a given λi as conflict states;
conflict states for the DFA in figure 1(a) are shown in figure 5. We note that conflict states cause both
σi
mar > 0 and σi

mod > 0; we see no obvious trade-off in DFA structure between the two sources of EP.

3.4.2. The minimal DFA for a given language does not generally minimize or maximize EP
The minimal DFA for a language L has the smallest set of computational states R for all DFA that accept L.
This minimal DFA has just enough memory to sort parsed substrings into classes of equivalent strings, so that
information can be passed forward to complete the computation [26, 27, 39]. More formally, define input
strings λ and µ to be equivalent with respect to language L if λν ∈ L ⇐⇒ µν ∈ L for any string of input
symbols ν, where λν is a concatenation of ν after λ. The Myhill–Nerode theorem states that the number of
states of the minimal DFA for L is the number of equivalence classes of this equivalence relation [26, 27, 39].

Perhaps surprisingly, minimal LPDFA do not in general either maximise or minimise EP. This claim is
our fifth main result; to illustrate it, first consider the two DFA in figure 6, which both have Λ = {a,b} and
accept input strings with an even number of bs. Figure 6(a) is the minimal DFA for this language. It is
invertible, and so has zero EP. The larger DFA in figure 6(b) is non-invertible, and so σi(p(z0i ,λ−i))> 0 in
general. For example, EP is positive if the sequences (Λi−2,Λi−1,Λi) = (aorb,b,a) and (Λi−2,Λi−1,Λi)
= (b,a,a) both have non-zero probability. The minimal LPDFA never has higher EP than larger DFA, and
often has lower EP.

Now consider the two DFA in figure 7. Both accept any input string constructed from Λ = {a,b} with no
b symbols, and figure 7(a) is the minimal DFA for this language. Neither DFA is invertible, so EP is generally
non-zero for both. However, the non-minimal LPDFA in figure 7(b) delays EP by a single iteration relative to
figure 7(a). As outlined in section 4 of the supplementary information, this delay ensures that the overall EP
for the larger LPDFA is always less than or equal to the EP for the minimal LPDFA.

3.5. Languages are divided into costly and low-cost classes by the structure of their minimal DFA
The DFA in figure 7(b) can be extended, delaying non-zero EP. However, a finite number of additional states
cannot prevent EP for arbitrary length inputs, and DFA are necessarily finite. Indeed, the sixth main result of
our work, proven in detail in section 5 of the supplementary information, is that if a minimal DFA is
non-invertible, any DFA that accepts the same language must also be non-invertible. One cannot eliminate
conflict states without disrupting the sorting of strings into equivalence classes. Thus if the minimal DFA for
a regular language L is non-invertible, recognising that language is inherently costly. Conversely, if the
minimal DFA that accepts L is invertible, recognising that language is low-cost.

As an example, consider a DFA that takes inputs of integers in base n, and accepts the integer y if y is
divisible bym. As we show in section 6 of the supplementary information, the minimal DFA for such a
computation is invertible if n andm have no common factors. Therefore, it is inherently costly to decide
whether a number is divisible by 9 if the number is expressed in base 3, but not if the number is expressed in
base 2, showing that even conceptually similar computations can have very different thermodynamic
consequences.
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Figure 5. Decomposition of the DFA in figure 1(a) into networks of transitions for each input symbol, ρλ. (a) Network for
λi = a, where the state r= 0 is a conflict state. (b) Network for λi = b, where the state r= 3 is a conflict state.

Figure 6. Two DFA that accept input strings with an even number of bs built from Λ = {a,b}. (a) The minimal DFA for this
language; it is invertible. (b) A larger DFA that accepts the same language but is non-invertible; state 0 is a conflict state for ρb and
state 2 is a conflict state for ρa.

Figure 7. Two DFA that accept input strings built from an alphabet Λ = {a,b} that contain no bs. (a) The minimal DFA that
accepts this language. (b) An alternative, larger DFA.

4. Conclusion

Breaking down complex computations into simple periodic updates, involving small parts of the
computational system, is at the heart of both theoretical computer science and real-world computing devices.
It is natural that physical systems designed to implement computations involve physical processes that are
also local and periodic; indeed, that is how synchronous, clocked digital computers are designed.

However, physical systems that implement periodic, local computations are particularly vulnerable to
stronger lower bounds on EP than the zero bound of the second law. Any physical operation—including
computations—can, in principle, be performed in a thermodynamically reversible way, with a sufficiently
well-designed protocol [32]. The nature of non-trivial computations, however, means that such a protocol
would need to reflect not just the distribution of possible inputs to the computer, but also how those inputs
are processed, and the subtle statistical coupling that is generated as the computation proceeds.

We have illustrated how these challenges manifest as marginal and modularity mismatch costs in DFA
with non-invertible local update maps. Interestingly, the overall computation performed by a
DFA—mapping the input word and starting computational state to the same input word and a final
computational state—is always invertible. The logical properties of the overall computation are therefore not
helpful in understanding the necessary EP of a local, periodic device.

We have an incomplete understanding of why the curves in figures (2)–(4) have the forms they do.
Additionally, although similar results will hold for quantum mechanical or finite heat-bath treatments of
DFA’s thermodynamics, additional subtleties will arise. More generally, DFA are just the simplest machine in
the Chomsky hierarchy and it is unknown how marginal and modularity mismatch costs behave for other
paradigms. The constraints of locality and periodicity will also apply to (physical systems implementing)
other machines in the hierarchy, such as push-down automata, RAMmachines, or Turing Machines. We
would expect that variants of the results concerning σmod and σmar presented here also apply to those
systems. However, there will also be important differences. For example, the overwriting of input and/or
memory that occurs in machines more powerful than DFA will affect σmod in ways not considered in this
paper. Moreover, Turing machines and push-down automata have access to an infinite memory. DFA, by
definition, do not—indeed, it is this restriction that divides regular languages into low- and high-cost.
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Finally, it is interesting to consider how the consequences of locality and periodicity relate to other
resource costs. Recent work on transducers—a computational machine that generates an output
corresponding to a hidden Markov model—has shown that a quantum advantage exists over a classical
implementation if and only if the machine is not locally invertible [40]; it is unclear whether a similar result
holds for DFA. The role of the input distribution in determining the thermodynamic costs in our work is also
reminiscent of the way computational complexity depends on the distribution over inputs.
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