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Ultra-high-resolution mapping of ambient fine
particulate matter to estimate human exposure in
Beijing
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Majid Ezzati 3, Jill Baumgartner4, Huan Liu 1✉ & Kebin He 1✉

With the decreasing regional-transported levels, the health risk assessment derived from fine

particulate matter (PM2.5) has become insufficient to reflect the contribution of local source

heterogeneity to the exposure differences. Here, we combined the both ultra-high-resolution

PM2.5 concentration with population distribution to provide the personal daily PM2.5 internal

dose considering the indoor/outdoor exposure difference. A 30-m PM2.5 assimilating method

was developed fusing multiple auxiliary predictors, achieving higher accuracy

(R2= 0.78–0.82) than the chemical transport model outputs without any post-simulation

data-oriented enhancement (R2= 0.31–0.64). Weekly difference was identified from hourly

mobile signaling data in 30-m resolution population distribution. The population-weighted

ambient PM2.5 concentrations range among districts but fail to reflect exposure differences.

Derived from the indoor/outdoor ratio, the average indoor PM2.5 concentration was 26.5 μg/
m3. The internal dose based on the assimilated indoor/outdoor PM2.5 concentration shows

high exposure diversity among sub-groups, and the attributed mortality increased by 24.0%

than the coarser unassimilated model.
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Anthropogenic air pollution stemming from rapid eco-
nomic development and industrialization is a significant
global public health issue1–3, causing approximately 7

million premature deaths worldwide each year4. Fine particulate
matter (particles that are 2.5 microns or less in aerodynamic
equivalent diameter, PM2.5), as a major air pollutant, has been
proved to be linked to many diseases5–7. Several exposure
assessment models were developed to estimate the premature
mortality attributed to PM2.5 exposure, linking the exposure
effects directly to the ambient pollution level8,9. The ambient
PM2.5 levels was once sufficed to assess the significant difference
in PM2.5 exposure between cities in the earlier years10–14, and the
contribution of spatial heterogeneity from local sources to the
exposure differences was negligible at such high ambient
levels15–18. However, with the ambient PM2.5 level declining
sharply19–22, the contribution of local PM2.5 sources has grown to
50–80%23–25. The contribution of spatial heterogeneity from local
sources to population exposure has become increasingly pro-
nounced. PM2.5 levels in some micro-environments can still be
high26–28, up to hundreds of micrograms per cubic meter29,30.
Solely adopting ambient PM2.5 levels is no longer enough to
evaluate the exposure differences caused by local sources.

A more accurate way to assess PM2.5 exposure is by measuring
the personal internal dose. It reflects the cumulative interaction
between human physiological activities and environmental
pollution31–33. Direct approaches involving portable monitoring
suits can effectively obtain the personal real-time exposure34,35,
but the cost highly limits its application in extensive sampling.
Indirect approaches, estimated from the observed or simulated
PM2.5 distribution, are more suitable for obtaining adequate
samples at the city level36–38. However, the monitoring value is
only representative in the adjacent area39, and the chemical
transport models (CTMs) can usually reach a resolution of at
most 1 km40–42, making it all challenging to identify exposure
differences among micro-environments. The development of
ultra-high-resolution concentration field can effectively improve
the population coverage and granularity together with the high-
resolution population activity data.

To derive an ultra-high-resolution PM2.5 distribution with
better accuracy, auxiliary data sets have been fused with the
observation data in recent studies, such as satellite measurements,
CTM outputs, and meteorological variables43,44. However, the
model resolution can sometimes still be limited, and some ultra-
high-resolution variables (30-m land use or elevation) had to be
resampled to a coarser level (i.e., 1 km) for match to avoid
additional uncertainties45,46. Until recently, the availability of a
vast amount of ultra-high-resolution data47 like aerosol optical
depth (AOD) data from Sentinel-2A satellite and top of atmo-
sphere (TOA) data from Landsat-8 satellite48,49 has made it no
longer an obstacle for air quality applications. The linear land use
regression (LUR) model has been used to fuse these auxiliary
variables50–53. However, as the relationship between PM2.5 and
auxiliary variables is usually nonlinear and complex54, the
machine learning methods were introduced, achieving better
performance and considerable extrapolation robustness55–57. The
incorporation of both multiple ultra-high resolution data and
machine learning algorithms is more likely to gain better per-
formance than taking only a single one of them.

Here, the overall research process of this study is briefly shown in
Fig. 1, including performing the CTM model, ultra-high resolution
assimilation, population exposure, personal indoor exposure, and
health risk assessment. By fusing ultra-high-resolution multi-
source auxiliary data, we simulated the street-level distribution of
PM2.5, and combine it with the ultra-high-resolution population
activity data to calculate the personal internal dose based on con-
sidering the indoor/outdoor (I/O) exposure differences. The

mortality burden assessment was performed to show the difference
between the city-level ambient PM2.5 distribution derived from 30-
m and 1-km resolution result without any further consideration of
the I/O exposure patterns, for the existing exposure-response
relationship was only based on the ambient PM2.5 level. The
potential of this method for exposure inequality identification and
health risk assessment was discussed.

Results and discussions
Ultra-high resolution PM2.5 mapping in Beijing. Assimilated by
other auxiliary variables, the ultra-high resolution PM2.5 con-
centration distribution was mapped throughout Beijing based on
the WRF-CMAQ simulation output (annual average in Fig. 2 and
seasonal result in Supplementary Fig. 3). With the increase of the
resolution and the monitoring-data-based assimilation, the 30-m
mapping achieved higher accuracy (R2= 0.78–0.82) to the
national monitoring data, compared with the WRF-CMAQ out-
put (R2= 0.31–0.64), resulting in the annual average increased
from 30.9 μg/m3 to 34.3 μg/m3. In the PM2.5 concentration
probability density distribution curve, the peaks at 10–30 μg/m3

and 55–70 μg/m3 intervals moved to the 20–40 μg/m3 and
55–70 μg/m3, respectively. It indicated that the overestimation in
the southeastern and underestimation in the northwestern were
both greatly amended. Area (i) showed a 30.84% increase, and
area (iv) showed a 16.92% decrease. The areas (ii) and (iii) with
moderate concentration variations but with local hotspots effec-
tively identified could not be achieved by the WRF-CMAQ model
on its own. Furthermore, the original concentration probability
density distribution curve from WRF-CMAQ was quite zigzag,
while became smoother after improving the spatial resolution, for
the changes between the adjacent coarse grids are more finely
transited by the smaller grids. It also showed that while main-
taining the overall spatial distribution trend, the description of far
more detailed information on a finer scale was effectively
achieved after conducting the comparison result of two-
dimensional discrete Fourier transform and high pass filtering
on the PM2.5 concentration distribution picture (Supplementary
Method; Supplementary Discussion 2; Supplementary Fig. 4).

As the output of the traditional method and one of the
auxiliary variables of the new method, the WRF-CMAQ model
owns deemed acceptable performance (detailed in Supplementary
Table 1) judged by the simulation performance criteria58.
Compared with the LUR model, the RF model had better
performance with higher R2 and lower RMSE (Supplementary
Fig. 5) and was thus selected for further downscaling and
assimilation. The feature importance of the auxiliary variables in
the RF model is shown in Supplementary Fig. 6. The PM2.5 from
WRF-CMAQ and planetary boundary layer height (PBLH)
always played vital roles, followed by the meteorological variables
like surface temperature (SFCTMP), wind speed at the altitude of
10 m (WSPD10), and relative humidity (RH). The high ranking
of PBLH shows that the concentration of PM2.5 in Beijing had not
fallen low enough to decouple the influence of unfavorable
meteorological factors, thus owning a high possibility of vertical
aggregation to cause heavy pollution. Apart from that, the high
contribution of RH and low contribution of WSPD10 in winter
indicated that low diffusivity in the horizontal direction and high
RH always triggered the secondary formation of PM2.5, which is
consistent with previous studies59,60. The SFCTMP contributed
the highest for spring and summer, mainly caused by the high
radiant fluxes, possibly leading to the intensified formation of
secondary pollution61. Contributions of other auxiliary variables
such as TOA, land use type, population, and road emission varied
in different seasons. The feature importance of TOA is relatively
lower since it only has a monthly resolution compared to the
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Fig. 1 The overall research process of this study. The red part refers to the output dataset from this study, and the gray part refers to the input variables or
the processing progress.

Fig. 2 Comparison of simulated PM2.5 concentration before and after assimilation. a, bModel performance and mapping comparison among Beijing from
WRF-CMAQ model, our method, and monitoring data, with 4 extracted local areas (i) – (iv) for detailed difference. c Probability distribution comparison of
PM2.5 concentration intervals.
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hourly-resolution 1 km-PM2.5 concentration and meteorological
variables. The original raw TOA data has a higher temporal
resolution of 10–15 days. The feature importance of TOA is
relatively low due to its lower temporal resolution compared to
the hourly-resolution 1 km-PM2.5 concentration and meteorolo-
gical variables. Although the original raw TOA data should be
able to support higher temporal resolution (10–15 days), it is
prone to abnormal values caused by cloud cover or high
reflectance underlying surfaces. Therefore, to balance between
temporal resolution and data accuracy, we use the median of valid
data in each grid within a month as the representative TOA value.
However, as the study period extends, the feature importance of
TOA is expected to increase due to its close relationship with
PM2.5 concentration62–67.

Spatial-temporal PM2.5 exposure level for the population.
Population distribution and PM2.5 exposure pattern of 16 Beijing
districts during weekdays and weekends are shown in Fig. 3. The
population density was higher in urban area during weekdays
than in weekends, as indicated in sub-figure (a, b) in Fig. 3. The
population-weighted ambient PM2.5 concentration of the whole
Beijing area was 34.6 μg/m3 during weekdays and 34.5 μg/m3

during weekends, which increased by about 15% compared with
the unweighted averaged ambient PM2.5 level. Adopting the ultra-
high resolution PM2.5 concentration field produced a significant
difference in the average concentration of population exposure

than the WRF-CMAQ model. The main difference of population-
weighted ambient PM2.5 concentration between the WRF-CMAQ
and assimilation result is attributed to the amendment of esti-
mation bias of the WRF-CMAQ result. For the northwestern
district with low PM2.5 levels, like Shijingshan and Haidian in the
urban area and Mentougou, Yanqing, Miyun, Huairou,
Changping and Fangshan in sub-urban area, the assimilation
lifted the estimated results. In contrast for Tongzhou and Pinggu,
the estimated level was lowered. For the other districts in central
and southern Beijing, the estimated PM2.5 level was moderate and
changed little from the WRF-CMAQ to the assimilated result.

The population-weighted PM2.5 concentration shows almost
no significant difference between weekdays and weekends,
indicating a relatively similar overall population distribution
pattern. Nonetheless, the exposure surroundings of the popula-
tion still exist significant difference during weekdays and
weekends. Figure 4 shows an example of the 30-m resolution
Population distribution difference between weekdays and week-
ends. Taking the Beijing China World Trade Centre adjacent as
an example, the population were gathered more in office
buildings, streets and subway stations during weekdays, while
more in parks, residence areas and railway stations during
weekends. Such a difference in exposure pattern could not be
reflected using merely the population-weighted ambient PM2.5

concentration, and the consideration of exposure micro-
environment should be further taken into account.

Fig. 3 Population distribution and PM2.5 exposure pattern in Beijing. a, b population distribution heat map during weekdays and weekends. c Population-
weighted ambient PM2.5 concentration of 16 Beijing districts during weekdays and weekends.
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Personal PM2.5 internal dose assessment. The average indoor
PM2.5 concentration in Beijing was 26.5 μg/m3, ranging from
10.5 μg/m3 to 39.5 μg/m3. The PM2.5 exposure level considering
the I/O difference within the Fifth Ring Road is shown in sub-
figure (a) in Fig. 5, 26.9 μg/m3 indoor and 41.6 μg/m3 outdoor on
average. As the indoor PM2.5 level was estimated by applying the
I/O ratio to the ambient level, its trend stayed consistent with the
ambient PM2.5 map, high in the southeast and low in the
northwest. The indoor PM2.5 level within the Third Ring Road
was moderate and showed no significant difference, but outside
the Third Ring Road, the indoor PM2.5 level showed an increase
in the southeast while a decrease in the north and west. Com-
pared with the result of 57.6 μg/m3 from Yang et al.’s study68 in
2013–2014 and 38.6 μg/m3 from Zuo et al.’s study69 in 2017, the
indoor PM2.5 concentration in this study had dropped a lot as a
consequent of air quality improvement. However, it was still
over-high compared to indoor PM2.5 in other developed coun-
tries. For instance, the indoor PM2.5 level was mostly lower than
10 μg/m3 in England70. The indoor environment is one of the
main exposure surroundings for most Chinese people, so there is
still a great urgency to ease the indoor health burden in our
country.

The difference between population distribution and indoor
concentration distribution indicated the existence of exposure
inequality in the population. On weekdays, people were populated
in buildings within the Fourth Ring Road, much higher than the
population density in areas outside the Fourth Ring Road. On
weekends, the population density in the urban area decreased,
and the population spread wider in the sub-urban area. High
indoor exposure concentration means that there might be a high
exposure risk to the individual health. However, thanks to the low
population density in such areas, they would not have a sufficient
impact on the population. Conversely, areas with moderate
pollution levels owned lower individual exposure risk, but
because of the high population density, its impact on the health
of the population is more significant. In order to control and
reduce exposure risk, the priority of individual and population
exposure risk should be further considered during the decision

progress. Generally, individual exposure risk evidence was used to
formulate the exposure-response relationship and further for
formulating the environmental criteria, while the exposure risk
for the whole population was taken to formulate the environ-
mental standard. In our study, the exposure risk of the whole
population depends mainly on the population distribution. The
mobility of the people means that the exposure risk of the whole
population was also spatially and temporally dynamic, suggesting
the theoretical possibility of dynamic environmental standards
can be formulated.

The spatial distribution of age-standardized personal PM2.5

internal dose is shown in sub-figure (b) in Fig. 5, developed by the
I/O PM2.5 exposure level in sub-figure (a). People within the Fifth
Ring Road suffered 24.6 μg/h PM2.5 from ambient exposure,
22.6 μg/h from residential indoor exposure, and 16.0 μg/h from
public indoor exposure on average. The distinguishing of indoor
and outdoor exposure allowed us to calculate possibly more
accurate personal daily PM2.5 internal dose combined with the
30-m population distribution data. The age- and gender-
standardized daily PM2.5 internal dose was 568.2 μg/d for a
single person based on the ambient WRF-CMAQ result, while
594.5 μg/d based on the ambient assimilation result, which
increased by about 5%. However, after considering the I/O
difference in the exposure level and population distribution, the
age-standardized daily PM2.5 internal dose was 512.9 μg/d, which
decreased significantly by 14%. More specifically, people of
different age or gender groups were exposed to different PM2.5

doses, as shown in sub-figure (c) in Fig. 5. Males inhaled more
PM2.5 dose than females because of larger inhalation volume71,
about 120–150 μg/d above 10-year-old people, while 20 μg/d
among children. Estimated with the assimilation result consider-
ing the I/O exposure difference, the internal dose of children
under 10 was about 250 μg/d. The internal dose of 10 to 64-year-
old people was highly similar and the highest during the lifetime,
up to 450–600 μg/d, and then began to drop significantly after 65
years old, to about 350–450 μg/d.

Further sensitivity analysis was performed in Supplementary
Table 4. As internal doses are divided into indoor and outdoor

Fig. 4 Population distribution difference between weekdays and weekends using 30-m population heat map and building map. Taking the Beijing China
World Trade Centre adjacent as an example.
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parts, the sensitivity of total internal dose to the I/O ratio
variation demonstrates a sublinear relationship. Within the
normal long-term fluctuations, the I/O ratio of residential
and public building area changes by 0.2 independently, or
fluctuate by ±0.1 simultaneously, the variation in internal dose
both does not exceed ±10%. Fluctuations in the population
distribution ratio between residential and public buildings do not
have a significant impact on the internal dose (within ±2% under
±0.1 ratio changes). All these sensitivity analyses indicated the
adoption of the PM2.5 I/O ratio was reasonable with low
estimating bias.

Potentials for mortality burden assessment. The substantial
improvement of ambient PM2.5 resolution will also largely impact
the attributed mortality assessment results. By applying the same
GEMM model to the annual WRF-CMAQ result and the ambient
high-resolution assimilation result, the estimated annual mortal-
ity of IHD, stroke, COPD, and LC disease attributed to PM2.5 is
shown in Fig. 6. The total mortality (with 95% CI) of the 4 spe-
cific health endpoints estimated by WRF-CMAQ result was
20540 (16908-24086) people, while for high-resolution assimila-
tion result was 25462 (20901-29881) people. Stroke was the health
endpoint with the highest risk of PM2.5 exposure, contributing to
almost half of the total attributed mortality, while the lowest was
for LC. Overall, the method improved the level of PM2.5 by 25.9%,
causing the mortality estimation to increase by 24.0%, indicating
that the accuracy and resolution improvement of developing
ambient PM2.5 level may also lead to slightly higher mortality

results. It was worth noticing that there is currently no epide-
miological evidence to evaluate the pros and cons of using a
coarser or higher resolution PM2.5 distribution in the mortality
burden assessment, not to mention the trade-off between envir-
onmental concentration and internal dose. However, in this
study, we calculated a series of indicators, including the averaged
value, population-weighted averaged concentration, personal
internal dose, and mortality estimation within the same frame-
work. The evaluation results showed significant differences
between the coarser- and higher-resolution result. This shows
that the choice of the modelling resolution might have potential
impact on health assessment72.

In the previous cohort studies, many methods were adopted to
derive the PM2.5 field because the pollution data were usually not
recorded together with the occurrence of health endpoints. The
simplest method was directly using the one-hand data, such as the
monitoring data from the nearest in-situ stations73 or the spatial
interpolation method74. Some studies also use remote satellite
data to derive PM2.5 field75. However, the spatial resolution of
the above method was too coarse, usually 10 km level. Many
studies used the CTMs to derive PM2.5 field at the 1 km
resolution76,77, while still too coarse for human activities. To date,
some street-level models have been adopted to derive finer PM2.5

distribution in order to match with the scale of the activity
pattern. For example, the LUR model to derive PM2.5 at low
concentration levels (<30 μg/m3)78 might face limitations in high-
level regions like Beijing. Moreover, some multi-scale integrated
model systems were also adopted79, integrating the large and

Fig. 5 PM2.5 exposure pattern of the population within the Fifth Ring Road area in Beijing. a PM2.5 exposure concentration distribution considering land
use type and PM2.5 I/O ratio; (b) age- and gender-standardized personal hourly PM2.5 internal dose distribution; (c) comparison of age- and gender-
specific average personal daily PM2.5 internal dose basing on merely ambient WRF-CMAQ result, ambient assimilation result, and assimilation result
considering the I/O exposure difference.
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medium-scale CTMs with small scale simulation model under the
AirGIS framework. Though with good performance and accuracy,
the such kind integrated model relies highly on complex city-level
databases and costing enormous computation resources, limiting
its application in other cities. Our study provides a 30-m
resolution model with good performance (R2= 0.78–0.82) while
moderate complexity. It is likely to bring new understanding to
the exposure characteristics, making it potential to be adopted in
more accurate exposure assessments in the future.

Uncertainties and perspectives. Still, there are several uncer-
tainties and limitations in this study. The primary source of
uncertainty comes from the WRF-CMAQ air quality modeling
and RF regression, both of which introduced uncertainties to a
different degree, though with acceptable intervals. Furthermore,
assumptions were made that the available heat maps accurately
represented actual activity patterns of the Beijing population,
leading to the underestimation of non-permanent residents in
this study. Since various age groups (e.g., elderly individuals)
exhibit significantly different activity patterns, they spend varying
amounts of time in different areas of buildings. Given that our
population activity data cannot be stratified by age, there exists an
additional level of uncertainty regarding the exposure of specific
population sub-groups. During the estimation of indoor con-
centration based on the outdoor PM2.5, only the I/O ratio without
air cleaner was adopted, given the potential complexity of real-life
situations and data limitation. Our framework may still under-
estimate indoor PM2.5 concentrations in buildings with complex
indoor sources. Studies conducted in environments such as sports
arenas and large shopping malls have revealed significant varia-
tions in PM2.5 I/O ratios, sometimes exceeding 180. Indoor air
cleaner plays an essential part in human indoor exposure, there
are also available PM2.5 I/O ratio with air cleaner working80, but
currently, there remains no datasets capable for further con-
sideration. Another limitation of the I/O ratio approach is its
inability to account for the impact of meteorological factors on
I/O PM2.5 transport. Researches on office buildings has indicated
that factors such as humidity and wind speed can influence the
I/O ratio of PM2.5. For example, an increase in humidity from less
than 40% to 90% can lead to a decrease in the I/O ratio by up
to 0.2, and changing of wind speed from less than 1 m/s to over
6 m/s can result in an increase in the I/O ratio of approximately
0.1581. Researches also suggested that wind direction can also be a
significant influencing factor. However, quantifying the influence
of meteorological factors on the I/O ratio is challenging,

particularly in densely populated urban areas like Beijing. Street
canyon effects, where meteorological conditions within street
canyons can significantly differ from those in the urban canopy
layer, further complicate the description of short-term I/O ratio
variations82. Some studies have constructed complex simulation
models based on the ventilation characteristics of buildings
together with consideration of indoor sources83. However, due to
data availability constraints, applying these models within the
scope of our research remains considerably challenging. Also, this
study only provided daily personal indoor PM2.5 internal doses in
downtown area, for the I/O activity pattern may exist high
uncertainty in the sub-urban area with sparse building density.

With further improvements in future air quality, the regional
transmission of PM2.5 will weaken, while the contribution of local
emission sources to PM2.5 will increase, leading to an intensifica-
tion of the spatiotemporal heterogeneity of PM2.5 distribution and
population exposure. Therefore, it will be necessary to integrate
population exposure assessment methods more closely with the
effects of local sources. Currently, researches in this area are still
limited by technical methods and data availability. Therefore,
some prospects have been put forward: (1) The 30-m resolution
PM2.5 concentration distribution will provide basic data for
environmental health assessments; (2) Such method can be
applied to multi-year assessment to explore the changing trends
in the spatial distribution heterogeneity of PM2.5 at the urban
scale; (3) This study has proposed a technical framework based
on exposure-dose relationship, and future research can further
refine in all aspects of this assessment method, e.g. population
activity, exposure patterns and I/O PM2.5 exposure differences;
(4) China has begun to formulate environmental air quality
baselines, and understanding the exposure-response relationship
based on PM2.5 internal dose will provide the most reasonable
scientific basis for the baseline formulation.

Methods
Study domain and CTM model configuration. The CTMs used
in this study were: The Weather Research and Forecasting (WRF)
model (version 3.8.1), and the Community Multi-Scale Air
Quality (CMAQ) model (version 5.2), which were developed by
U.S. National Centre for Atmospheric Research (NCAR) and the
U.S. Environmental Protection Agency (EPA), respectively. To
simulate PM2.5, the WRF–CMAQ system was applied during
January, April, July, and October in 2019, with three days of spin-
up time for each run, representing corresponding seasons,
respectively84. To further evaluate the representativeness of the

Fig. 6 Annual mortality of four certain health endpoints attributed to PM2.5 in Beijing, 2019. Annual mortality estimation (with 95% confidential
intervals) of ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lung cancer disease attributable to PM2.5 in Beijing based on
WRF-CMAQ and high-resolution assimilation results.
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specific months for the corresponding seasons, the similarity of
the average value for specific months and corresponding seasons
of PM2.5 and meteorology conditions in Beijing, 2019 is shown in
Supplementary Fig. 1. It exhibits good consistency for the vast
majority of the time and monitoring locations, indicating that it is
reasonable to use the pollution level of a specific month to
represent the whole corresponding season. Beijing, one of the
megacities in China, has been taken as the study area. As shown
in Fig. 7, the largest modeling domain (d01) covered the area of
East Asia and West Pacific, with a temporal resolution of
36 × 36 km2. The land-based anthropogenic emissions inventory
for mainland China was from the Multi-resolution Emission
Inventory for China (MEIC) data at a resolution of 0.25° × 0.25°
for the base year of 2015 (MEIC, http://www.meicmodel.org/, last
access: 25 October 2018). Base emission of Beijing was gridded as
the local emission sources input of the CMAQ model. Here, the
local sources refer to the outdoor emission sources within the
corresponding modeling domain, with no consideration given to
indoor emission sources.

The first guess field and boundary conditions for WRF were
generated from the 6 h NCEP FNL Operational Model Global
Tropospheric Analyses dataset. The four-dimensional data
assimilation (FDDA) was enabled using the NCEP ADP global
surface and upper air observational weather data (http://rda.ucar.
edu, last access: 25 October 2018). These datasets include all the
necessary meteorological parameters required by the WRF model.
CMAQ was initialized using the profile file output by the ICON
module as the first guess field and boundary conditions, and was
pre-run for a period of three days prior to the start date to
develop a sufficiently precise monitoring filed. WRF and CMAQ
used 32 vertical layers up to 100 hPa, and the lowest layer had a
thickness of approximately 37 m. The modeling field and the

boundary condition were transferred into a smaller modeling
domain with finer resolution (d02, 12 × 12 km2) and started
another repeated calculation, same as the 3rd (d03, 4 × 4 km2)
and 4th domain (d04, 1.3 × 1.3 km2). Domain 1 covers a larger
region in East Asia than the entire country of China. Therefore,
the boundary conditions for China were directly derived from the
initial meteorological fields provided by WRF. The boundary
conditions of CMAQ and the emission inventory follows the
same logic as that of WRF in Domain 1. As for the nested grids
within the inner layers, the boundary conditions of WRF, the
emission and CMAQ for Domain 2 were all derived from the
corresponding grid in its parent domain. The same procedure was
applied for Domain 3 and 4. In the 4th domain, the Single-Layer
Urban Canopy Model (SLUCM)85 was coupled with the Noah
land-surface model to improve meteorological predictions in the
urban area82. It assumes the geometric structure of the city is an
infinitely long street canyon, and considers the shadowing effect,
radiation capture effect and surface reflection effect of the
buildings in the street canyon, and specifies the wind profile
index, which includes more than 20 parameters such as building
height, road width, anthropogenic heat, urban area ratio, and
surface albedo.

Ultra-high-resolution assimilation approach. Since a large
proportion of PM2.5 in Beijing comes from regional transporta-
tion and secondary generation, the level of PM2.5 at the county
scale is relatively similar86–88. The difference of PM2.5 in the
ultra-fine scale is mainly caused by the spatial-temporal dis-
tribution of local emission sources. This difference can be
reflected through land use information when there is no high-
precision data on sources and sinks. Thus, for assimilation, the

Fig. 7 Study domains of 4-level CMAQ modeling and distribution of Beijing districts and the Ring Roads.
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auxiliary data set combined 9 major type variables as listed in
Supplementary Table 2, containing monitoring data from the
national monitoring network, 30-m land use type and satellite
data, 1 km-PM2.5 level and meteorology derived from CTM
results, as well as point of interests (POI), building location,
population distribution, traffic emission, and other variables.
Ambient air pollution measurements have been conducted rou-
tinely by the China Environmental Monitoring Centre (CEME)
and Beijing Environmental Monitoring Centre (BJMEMC) since
2013. Hourly PM2.5 concentrations were available from 34 of the
35 sites in Beijing (http://113.108.142.147:20035/emcpublish/ and
http://zx.bjmemc.com.cn/) from 1 November 2018 to 1 Novem-
ber 2019. The satellite data taken in this study is the top of
atmosphere reflectance (TOA) of band 2 of Landsat 8 with 30-m
spatial and 16 day-temporal resolution. In order to obtain the
complete TOA image covering the whole Beijing area and avoid
the influence of extreme values produced by measurement
anomalies, the median of the validate TOA value within each
30 × 30 m2 grid was chosen and stitched as a whole map, pro-
viding a relative spatial trend of monthly concentration dis-
tribution at the ultra-high resolution. We realized that the
temporal resolution of the satellite TOA data might be low for
PM2.5 representativeness, but the inclusion of the hourly WRF/
CMAQ simulation result, to some extent, had solved the problem,
as suggested earlier in the literature89–91. The satellite data pro-
vide ultra-high-resolution distribution trend of PM2.5, and the
WRF/CMAQ simulation result provide its temporal changing
characteristics. Further information supporting the adoption of
satellite data for PM2.5 simulation can be found in Supplementary
Discussion 1. POI numbers, road line length, and emission
intensity were generated from a 1000 m-buffering area around the
central 30-m grid to make it more effective in models. All data
with a resolution coarser than 30m were further divided into
finer meshes with the same properties.

The LUR and RF models were trained and tested to compare
the regression performance of the multi-variable dataset. A
supervised forward stepwise linear regression was used to develop
the LUR model to maximize the adjusted R2 value. Due to the
total iteration steps were limited by the number of variables, the
model was considered to have approximately converged when
increasing gradient of R2 is not greater than 1%. The RF model
was performed using an optimized integrated-tree model, which
could be approximately adopted as an RF model. The 10-fold
cross-validation and the leave-one-out cross-validation (LOOCV)
were taken to evaluate model performance. For 10-fold validation,
the training set was divided into 10 random subgroups. One of
the subgroups was excluded as a validation set, and the model was
recalculated on the remaining nine subgroups. The R2, root mean
squared error (RMSE) values, and the standard deviation of
predicted values from the monitoring data in both the LOOCV
and the 10-fold cross-validations were compared to show the
validation results. The trained model was applied to a monthly
auxiliary dataset, which includes meteorological variables and
PM2.5 distribution output from WRF-CMAQ averaged at hourly
resolution, and other variables with monthly or annual temporal
resolution.

Statistical analyses were performed in MATLAB R2021a. ESRI
ArcGIS 10.3 was used for geospatial extraction of the auxiliary
predictors, and final visualizations of the assimilated PM2.5

concentrations by mapping.

Activity-adjusted population spatial distribution. The popula-
tion is exposed to different pollution levels according to their
activity patterns in various micro-environment during the day-
time. In order to capture the location changes of the population

more precisely, hourly mobile signaling data from Baidu Smart
Eye was adopted. Baidu Smart Eye is a commercial geographic
intelligence data platform launched by Baidu Maps with the
advancement of technology of cell-phone signal system,
describing the population density in real-time. The relative
crowdedness in each grid was derived by calculating the popu-
lation proportion of the grid to the whole Beijing area. An
assumption was made that the relative crowdedness of the
weekdays and weekends remain similar in other periods of the
year, which means, the distribution of the population was
assumed unchanged for weekdays and weekends respectively. The
population distribution was calculated by the relative crowded-
ness multiplied by the total population from Worldpop (available
from https://www.worldpop.org/geodata/). To date, the resolu-
tion of the raw mobile signal data reaches only hundreds of
meters92, which is even larger than most building scales and is not
sufficient to distinguish the I/O exposure differences. Thus, we
have to incorporate an inverse distance weighting (IDW) method
to interpolate the population distribution to a 30-m resolution in
the sparse data area, so that the grid size can be comparable to the
building scale. Similarly, due to the lack of supportive data, this
study did not further investigate the spatial heterogeneity char-
acteristics of population structure, although there should be dif-
ferences in gender and age structure among different social
places.

Indoor PM2.5 concentration and I/O ratio. The rough resolu-
tion of the CMAQ model averages the environmental attributes
within 1.33 km. Thus, it is unable to further reflect the
differences in indoor and outdoor PM2.5 concentration and
population distribution at finer scales. Nevertheless, with the
newly-derived 30-m resolution PM2.5 concentration map, we
are able to derive the estimated indoor PM2.5 concentration
together with the land use type. In the literature, it has been
suggested that the indoor PM2.5 transported from ambient
surroundings can be described by the I/O ratio, infiltration
factor, and penetration factor, etc. However, obtaining the
infiltration and penetration factors requires a relatively complex
model framework, which is difficult to achieve with a com-
prehensive input dataset covering the entire Beijing area.
Additionally, while the I/O ratio is simplified compared to the
other mentioned two factors, only a few studies provide
representative I/O ratios of the certain kind of buildings93

rather than the comprehensive geographic distributions. Thus,
limited by data availability, only a unified I/O ratio representing
a certain type of buildings was selected from the literature after
a review, accounting for the study period and purpose, ambient
sampling size, PM2.5 level, and comparability with this study,
shown in Supplementary Table 3. Typically, the I/O ratio of 0.7
in public building area and 0.9 in residential building area were
taken in this study80. It is worth noticing that the I/O ratio of
PM2.5 was influenced by many factors, thus there may exists
fluctuations, for example, complexity of indoor sources, air
cleaner, etc. Several sensitivity analyses were carried out under
different scenarios. The sensitivity of changing in the applied
PM2.5 I/O ratio to the personal daily PM2.5 internal dose was
listed in Supplementary Table 4, including sensitivity analysis
of: (a) distinguishing PM2.5 I/O ratios in residential and public
buildings, and (b) population distribution ratio between resi-
dential and public buildings, to personal daily PM2.5

internal dose.

Population-weighted ambient PM2.5 concentration.
Population-weighted PM2.5 concentration is widely used to
characterize the collective exposure concentration of a population
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for long-term assessment94,95. Based on the 30-m PM2.5 con-
centration and the ultra-high spatial-temporal resolution popu-
lation distribution, the population-weighted ambient PM2.5

concentration of each Beijing district was calculated, shown as the
following equation:

Cpop ¼
∑i Ci ´ Pi

∑i Pi
ð1Þ

where:
i is a single grid in this district;
Cpop is the annual population-weighted ambient PM2.5

concentration in a certain district (μg/m3);
Ci is the annual-averaged ambient PM2.5 concentration in grid i

(μg/m3);
Pi is the daily averaged population in grid i.

Personal indoor PM2.5 internal dose calculation. The quantity
of PM2.5 inhaled by a person into the lung within a specific time
(the internal dose) derived from the PM2.5 concentration among
the external exposure surroundings (the exposure level) can
reflect the PM2.5 exposure extent of a person. The higher the
personal PM2.5 internal dose, the greater the exposure risk a
person is likely to suffer. Previous studies have highlighted var-
ious factors that significantly impact exposure assessments, such
as commuting ways96 and age period97 that lead to exposure
differences. However, due to limited access to fundamental data,
we could only use I/O population distribution to characterize the
exposure differences, failed to conduct more precise evaluations
based on commuting patterns. The 30-m resolution was suffi-
ciently fine in the urban area to classify the I/O exposure dif-
ference with high building density. However, in the sub-urban
area, 30-m resolution would introduce high uncertainty of the I/O
classification due to the small building scale and low building
density. Thus, an inhalation model was adopted to develop the
personal PM2.5 internal dose within the Fifth Ring Road area in
Beijing. The age-standardized internal dose of PM2.5 was calcu-
lated as the following equation:

Di ¼ ∑
j;k
Pj;k ´ IRj;k ´Ci ´ t ð2Þ

where:
Di is the personal internal dose of indoor PM2.5 in grid i (μg/d);
i is a single 30-m grid;
j stands for psychological gender, male or female;
k stands for age groups divided into 21 groups (5 years as a

group, from 0-4, 5-9 to 95-99 and 100+ ) from the China
Statistical Yearbook98;

Pj;k is the average proportion of gender j and age group k,
adopted from the China Statistical Yearbook98;

IRj,k is the inhalation rate of gender j and age group k taken
from EPA’s Exposure Factors Handbook71 (m3/h);

Ci is the estimated PM2.5 exposure level in grid i (μg/m3). For
comparison, the ambient CMAQ result, ambient assimilation
result, and the assimilation result considering the I/O exposure
difference were all adopted individually.

t is the daily exposure time (a total 24 h). The I/O ratio of the
daily average population within the Fifth Ring Road area reflected
the possibility of a person being indoors or outdoors; thus was
suitable to be taken as the I/O exposure time ratio of the
population. The population within a single 30-m grid was
identified as indoor if the land use type was building, otherwise as
outdoor (as shown in Fig. 2).

For age- and gender-specific personal daily PM2.5 internal dose,
the proportion of age and gender was set as 100%, and the
inhalation rate was set as the typical value of the age and gender
group individually. Detailed information on the population

proportion of certain age and gender groups and its mean
inhalation rate is listed in Supplementary Table 5.

Mortality estimation of specific health endpoints. In order to
estimate long-term mortality attributable to PM2.5 exposure, the
epidemiological hazard index (HI) and hazard risk (HR) have been
widely used in epidemiological studies. The equation is as follows:

HI ¼ PAF´m ´EP ð3Þ
where:

HI the health impact of a specific disease during the assessment
period, here annual PM2.5-exposure-attributable mortality
specifically;

m is the age-and-gender standardized cross-sectional mortality
(or the so called baseline mortality in the literature) rate of the
25+ population from the GBD study 2019 (available from http://
www.healthdata.org/results/data-visualizations);

EP is the exposed population;
PAF (population attributable fraction), calculated by (HR-1)/

HR, refers to the potential reduction in morbidity or mortality
when the entire population is exposed to the baseline
concentration.

The Global Exposure Mortality Model (GEMM) function95

was widely taken to calculate HR value for estimating long-term
PM2.5 exposure-attributed disease burden for the 25+ population.
Ischaemic heart disease (IHD), cerebrovascular disease (Stroke),
chronic obstructive pulmonary disease (COPD), and lung cancer
(LC) are among the most important causes of death covered by
HR functions. The International Classification of Diseases 10th

Revision (ICD-10) codes of the 4 certain health end points stays
consistent with the GBD 2019 Cause-ICD Codes Map (https://
ghdx.health data.org/record/ihme-data/gbd-2019-cause-icd-code-
mappings). The GEMM developed the exposure-response curve
from ambient PM2.5 level as follows:

HRðzÞ ¼ exp
θ logðzα þ 1Þ

1þ expf� z�μ
ν
g

� �
ð4Þ

where:
z is the exceedance ambient PM2.5 exposure level over the

counterfactual concentration (C0, the threshold concentration
below which no additional health impacts are considered);

HR(z) is the hazard ratio of the 25+ population exposed under
the exceedance PM2.5 exposure level z of PM2.5, derived from
ambient PM2.5 level;

α, γ and δ are parameters used to describe the shape of hazard
risk curves of different health outcomes95.

Details of the parameterization of the GEMM model taken in
this study were summarized in Supplementary Table 6. The
resolution of the HR, baseline mortality rate and the exposure
population was all at the city level, and was all age-and-gender-
normalized, here with no specificity across the spatial-temporal
dimension. It should be noted that the gridded PM2.5 distribution
should not be applied to obtain the gridded health risk assessment
results. Following the basic developing process and assumptions
of the GEMM model, the exposure level scale should be
consistent with the baseline mortality rate, here at city-level.

Data availability
Datasets used for this study can be accessed at: https://zenodo.org/records/10129177.
Model outputs are available upon request from the corresponding author Huan Liu
(liu_env@tsinghua.edu.cn).

Code availability
Codes for assimilation are available at: https://zenodo.org/records/10129177.
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