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Abstract
The main objective of this paper is to develop quantitative measures for describing 
the diversity, homogeneity, and similarity of archaeological data. It presents new 
approaches to characterize the relationship between archaeological assemblages 
by utilizing entropy and its related attributes, primarily diversity, and by drawing 
inspiration from ecology. Our starting premise is that diachronic changes in our data 
provide a distorted reflection of social processes and that spatial differences in data 
indicate cultural distancing. To investigate this premise, we adopt a parsimonious 
approach for comparing assemblage profiles employing and comparing a range 
of (Hill) diversities, which enable us to exploit different aspects of the data. The 
modelling is tested on two seemingly large datasets: a Late Bronze Age Cretan 
dataset with circa 13,700 entries (compiled by PG); and a  4th millennium Western 
Tripolye dataset with circa 25,000 entries (compiled by AD). The contrast between 
the strongly geographically and culturally heterogeneous Bronze Age Crete and the 
strongly homogeneous Western Tripolye culture in the Southern Bug and Dnieper 
interfluve show the successes and limitations of our approach. Despite the seemingly 
large size of our datasets, these data highlight limitations that confine their utility 
to non-semantic analysis. This requires us to consider different ways of treating 
and aggregating assemblages, either as censuses or samples, contingent upon the 
degree of representativeness of the data. While our premise, that changes in data 
reflect societal changes, is supported, it is not definitively confirmed. Consequently, 
this paper also exemplifies the limitations of large archaeological datasets for such 
analyses.
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Introduction

Computational advances over the last decade have led to new digital approaches 
for the collection, storage, and analysis of archaeological data. In noting this par-
adigm shift in archaeology through what he termed the Third Science Revolution, 
Kristiansen (2014, 2022) considered the possibility of accessing ‘big archaeo-
logical data’, with the potential of revealing macro-archaeological patterns (e.g. 
Mesoudi 2011; Perreault 2019). What ‘big data’ means and how we should quan-
tify and conceptualize it remains up for debate (Huggett, 2020; VanValkenburgh 
& Dufton, 2020). Certainly, the ‘big data’ collected by large media corporations 
dwarfs anything currently present in archaeology. The Southwest Social Net-
works (SWSN) Project represents one exception, with a collected ceramic data-
base of over 4.3 million artifacts (Mills et  al., 2015). In the present paper, we 
rely on two, much smaller ceramic datasets. The first, with circa 13,700 entries 
incorporates ceramics from Late Bronze Age Crete (LBA), while the second with 
circa 25,000 entries represents ceramics from the Western Tripolye Culture dated 
to the  4th millennium. Neither dataset can be considered ‘big data’, but their size 
is quite typical of quantified ceramic datasets in archaeology. Consequently, it 
might be more accurate to refer to such collections as ‘lots of data’. The differ-
ence between the two lies in the statistical representativeness of the latter, whose 
data management is subject to systemic, human errors that can be highly corre-
lated with excavation efforts, and whose publication processes often favour easily 
identifiable examples.

Although the digitisation of archaeological material has made cross-site com-
parison of ceramic data easier, its collection remains fraught with difficulties. 
Many early twentieth century excavations, for example, favoured the collection 
and recording of complete, fine-ware vessels at the expense of more fragmen-
tary, coarse, or semi-coarse examples (e.g. Gheorghiade, 2020). Consequently, 
their publication is presented as illustrative of uncovered artifacts associated with 
specific spaces or strata, not amenable for quantification. More recent publica-
tions curate their selection into catalogues that include representative examples 
of recovered ceramic types, rather than statistically representative samples of the 
available or excavated material.

We forefront the variability of assemblages in our analysis as we believe that 
patterns represented by the rise and fall in variability (e.g. unification – diver-
sity – unification) can be found in a range of datasets from varying periods and 
regions. Such repetitive patterns may reflect social change (Gronenborn et  al., 
2017; Diachenko & Sobkowiak-Tabaka, 2022). In this paper, we explore the 
extent to which our ceramic datasets open themselves to a similar analysis, con-
sidering that, historically, this is something we might have anticipated. We also 
consider the extent to which spatial variations may reflect cultural separation.

So, how can variability be studied in incomplete archaeological assemblages? 
We explore this question by proposing new quantitative tactics for characterizing 
archaeological data. Specifically, our focus is on developing quantitative meas-
ures for describing the diversity, homogeneity, and similarity of archaeological 
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data, calling upon information-theoretic ideas to identify patterns in cultural 
change. We intentionally take an approach that, a priori, prioritizes non-narra-
tive perspectives through inductive data-modelling. Throughout this paper our 
modelling strategy remains one of parsimony. We work with the most limited 
categorisation of the data and the most limited analysis that can still permit use-
ful outcomes. This broad-brush approach means that, when the modelling fails, 
as it will, our outcomes can still tell us something useful about the data that we 
may not have noticed, or help support suppositions that we may hold for other 
reasons.

Although our title refers to ‘information’ its colloquial use is here reflected 
only partially. Our more specific use of ‘information’, encoded through entropy, 
begins with the work of Shannon (1948) and is now part of mainstream data 
analysis. There is significant information-inspired archaeological literature effec-
tively invoking entropy that is a precursor to our approach (e.g. Bevan et al., 2013; 
Barjamovic et al., 2019; Crema, 2015; Diachenko et al., 2020, 2022; Dickens and 
Fraser, 1984; Drost & Vander Linden, 2018; Furholt, 2012; Gjesfjeld et al., 2020a, 
2020b; Gronenborn et al., 2014, 2017, 2018, 2020; Kandler & Crema, 2019; Nei-
man, 1995; Paige & Perreault, 2022; Premo & Kuhn, 2010; Shott, 2010; Hegmon 
et  al., 2016; Wiśniewski et  al., 2022), but in some cases, internal consistency is 
not clear.

Issues regarding consistency in defining assemblages were largely resolved ear-
lier this century by ecologists (see Jost, 2006, 2007; Chao et al., 2012, 2014), who 
converted ‘information’ into the much more pragmatic diversity. Our approach is 
akin to that of Colwell and Chao (2022) and in line with the most recent compila-
tions on diversity in archaeology that call upon ecological methodology (see Eren 
et  al., 2022). We examine the diversity of a LBA dataset by applying a range of 
measures, including Shannon diversity, and generalized (q-number) Hill diversities, 
with tactics for exploring aggregation. We also consider spatial variation, measured 
by homogeneity, through β-Diversity, which reduces to several familiar similarity 
indices, e.g. Jaccard and Morisita-Horn.

Measuring change in assemblage composition is difficult, especially with 
imperfect data containing gaps and inaccuracies in labelling. The application of 
different Hill diversities allows us to emphasise various common and uncommon 
aspects in the data, while aggregation methods assist in overcoming poor statistics 
with larger data sets. Overall, measuring change requires a combination of 
theoretical and practical error analyses from which, nonetheless, we can draw some 
useful conclusions.

With entropy as the core ingredient of diversity, it is the source of our use 
of the term ‘entropology’. Our use here differs from its earlier, more colloquial 
application by Lévi-Strauss (1955, 1961: 397) as a conflation of entropy and 
anthropology, with the familiar trope of increasing entropy as disorder. Entropy, 
as disorder, is only valid for closed systems and our systems of migration and 
exchange are very open. We are primarily interested in an end of cycle reduction, 
rather than an increase in entropy, making these usages of ‘entropology’ wholly 
complementary.
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Curation as Translation

We take ‘translation’ as a useful metaphor when relating artefacts to the population 
that produced them. Like social media data, archaeological data are dynamic 
products of material culture of the society that created them, changing in time and 
varying with place in response to human actions (Schiffer, 1987). From a historic 
understanding of information (Shannon, 1948), a viewpoint commensurate with the 
algorithmic approach of big data companies, we consider our archaeological datasets 
as output messages from cultural inputs delivered via a noisy communication 
channel whose code we do not understand (Justeson, 1973; see also see Nolan, 
2020). Our work here is one step removed, but to keep the metaphor in part, our data 
are not messages equated with telephone conversations, but more like the roar of a 
crowd at a football match. Does the roar of the crowd change as the season develops 
(e.g. due to a change in management)? Does it differ for home and away matches? 
How would we know? We were inspired by the earlier work of Gronenborn et al., 
(2014, 2017, 2018, 2020) and Diachenko et  al. (2020) and their success in using 
memoryless changes in ceramic assemblages as a proxy for patterns in cultural 
change in early European farming societies. These earlier papers used Shannon 
entropy, as a diversity index and a touchstone, which here we generalise to Hill 
diversity in a way that is familiar to ecologists (Colwell & Chao, 2022; Jost, 2006, 
2007) and mathematicians.

We adopt a weaker premise within this metaphor of ‘telephony’ that, irrespective 
of our inability to understand the ‘code’, diachronic change in our dataset outputs 
arise because of diachronic change in cultural inputs. Since ‘culture’ is a slippery 
concept, here we are only using it in the very limited sense of attaining a certain 
level of similarity, which is all we need for categorising artefacts (see Furholt, 2012).

We suggest that changes in data permit a ‘translation’ of these patterns of cultural 
change, albeit partial and distorted due to data limitations. Changes in data patterns 
may reflect social transformations (reflective cycles) (e.g. Gronenborn, et al., 2017) 
or may not (self-organized cycles) (Diachenko & Sobkowiak-Tabaka, 2022). For 
the latter, we consider cycles akin to changes in fashion rather than a revolution, 
although it is quite possible that both tendencies are present. To discriminate 
between the two, one requires contextual information beyond the data itself (e.g. 
the importance of climate change in Gronenborn, et  al., 2017). Therefore, in 
addition to diachronic differences in our data, we shall also consider synchronous 
spatial heterogeneity (Courmier et al., 2018). Two modern examples highlight our 
point: changes in skirt length in western Europe and North America in the 1960’s 
and the wearing of blue jeans. For some women, particularly in major cities where 
short skirts were part of a much wider cultural ‘revolution’, they were a marker of 
social transformation. For others, particularly in small towns away from the heat 
of political argument, they were just a welcome change of fashion (see Hillman, 
2013, 163). Its European counterpart is the role of blue jeans as both a fashion and a 
political statement (see Levi Strauss &  Co© in Panek, 2019).

What is very clear is that the diversity of the assemblage depends, in detail, on 
the categorization scheme. We have assumed a common ‘core’ of morphological 
categories, including the most frequently populated; however, we are not 
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interested in absolute values of diversity but rather the direction of its change. 
Our assumption is that all ‘reasonable’ categorizations could identify a rise or fall 
in diversity with greater or less efficiency if it were present. This is, in the first 
instance, the level of our quantitative analysis.

The lack of standardization in nomenclature (Hallager &  Hallager,  1997), 
especially for excavated artifacts from the same cultural horizon, presents a 
challenge for data standardization needed for database integration, analysis, and 
cross-geographical comparisons (Gheorghiade, 2020). Although taxonomical 
construction in archaeology is period and site specific, we assume a common 
‘core’ lexicon of morphological categories (Lyman & O’Brien, 2003; O’Brien & 
Lyman, 2000). Essentially, the idea is to replace our myriad artefact attributes by 
the low-dimensional labels that they would possess if, for example, they were on 
display in a museum. These label-entries are chosen to convey their fundamental 
attributes, taken from a limited vocabulary. Every artefact assemblage is now 
represented by a ‘label-heap’ which we can ‘read’, with the problem reducing 
to how we read and compare such label-heaps. We know how reductionist this 
approach is when we find our favourite artefacts on loan with nothing but the 
labels to remind us, but we argue that for the purpose of identifying changes 
and differences, such limited labelling is sufficient. The taxonomic categories 
assigned to artefacts provide us with the first relatively high taxonomic level 
entry, e.g. jug, cup. This entry, the most important in our analysis, provides the 
‘words’ used for word-frequency analysis that will be initially used as a cultural 
proxy. In this paper, we take a coarse-grained approach and ignore the presence 
or absence of decorative elements (Diachenko et al., 2020).

With the goal of comparing assemblages, we need to identify quantitative 
changes in the data. We can consider assemblages in two ways depending on 
whether we think of them as censuses or as samples (Orton, 2000). An assemblage 
thought of as a census (the observed assemblage), e.g. vessels on a table, can be 
thought as ‘what you see is what you get’. On the other hand, an assemblage thought 
of as a sample (the effective assemblage) is deemed statistically representative of 
a virtual assemblage of arbitrarily large size, i.e. the assemblage that we might 
have constructed had we more time and money to do so. It will carry statistical 
uncertainty (e.g. see Turing as discussed by Good (1953).

Likewise, there are two corresponding approaches to aggregation. The first, 
census aggregation, also known as landscape aggregation from its use in ecology 
(Jost, 2006), corresponds to physically putting assemblages together as censuses, 
e.g. combining two small tables of ceramics (or photographs) into a larger table 
(see Fig.  2). Relative assemblage size matters and adding a smaller assemblage 
to a larger one will not significantly alter the statistics. The second, effective 
aggregation, treats each sub-assemblage as a sample from a larger ‘undiscovered’ 
assemblage. Therefore, by aggregating a small assemblage with a large assemblage 
it is possible to extrapolate the smaller assemblage until it is the same size as its 
larger counterpart, albeit with inevitable uncertainty. Equivalently, as rarefaction the 
number of individuals in the larger sample is reduced, the proportions are preserved 
(Sanders, 1968). Statistically, the effect is that all assemblages are given equal 
weight and/or status.
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Prehistoric Ceramics as Datasets

There is a tension between the universality of the conceptual and technical toolkits 
that we bring to bear on the data and the specificity of the data and the cultures from 
which it arises. Our paper uses two very different datasets from very different geo-
graphical environments to illuminate this tension (Fig. 1). Different landscapes and 
environments impact the distance between sites, often used as a proxy for consider-
ing interaction in archaeology (e.g. Lipo et al., 2015). The Western Tripolye sites in 
the Southern Bug and Dnieper interfluve lie in a homogeneous plain, whereas the 
Cretan sites are heterogeneous coastal sites surrounded by a mountainous interior. 

Fig. 1  a Western Tripolye (WTC) sites in the Southern Bug and Dnieper interfluve. The black dots 
denote sites for which we have data. For further details, see Diachenko et al., (2020). b The five Cre-
tan sites from which our LBA data derives (Gheorghiade, 2020). Maps by Paula Gheorghiade  © 2023 
Google Satellite [basemap]
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This helps account for some of the homogeneity of the data in the former and the 
heterogeneity of the data in the latter.

Western Tripolye Culture (WTC) Ceramics

This dataset, discussed in more detail elsewhere by Diachenko et al. (2020), consists 
of Western Tripolye Culture (WTC) ceramics from the Southern Bug and Dnieper 
interfluve dated to 4100–3600 BCE. It includes c. 25,000 ceramic fragments—
where each fragment, restored or complete vessel is counted as one artefact—as well 
as restored or complete vessels analysed by Sergej Ryzhov. The WTC population 
arrived in the region circa 4100 BCE. This area is widely known in this period for 
its mega-sites, hosting the largest population agglomeration in Neolithic Europe. 
Around 3600 BCE, settlements began to decrease in size, and this decrease was 
accompanied by a significant change in the ceramic complex (see Ryzhov, 2021 
& earlier papers). The evidence suggests that the Cucuteni-Tripolye populations 
burnt their dwellings. House-burning, often understood as a ‘dwelling’s burial’, was 
preceded by various ritual actions, including the destruction of ovens and, what is 
important for us here, specific placement of previously used vessels inside houses 
(Kruts, 2003). Thus, ceramic assemblages of WTC houses simultaneously represent 
settlement and ‘funerary’ contexts which compress the gradual changes in pottery 
styles over a settlement’s duration.

The 500-year period spanning 4100–3600 BCE can be subdivided into 10 
‘analytical periods’ of approximately equal duration. This chronology is based 
on the frequency seriation and occurrence seriation of vessel ornamentation 
styles (Ryzhov, 2012), later delineated with the application of spatial statistics 
(Diachenko & Menotti, 2012). This chronological scheme finds its confirmation 
in recently obtained AMS radiocarbon dates (Harper, 2021; Harper et  al., 2021). 
Therefore, taken as ‘single events’, our ten ‘analytical periods’ capture relocation 
of people in the analysed region. Aided by the relatively homogeneous physical 
environment, the ceramic assemblages from different synchronous sites across the 
region are remarkably similar in composition. They highlight differences in pottery 
shapes and ornamentation at high taxonomic levels of only a few percent (Ryzhov, 
2021). Although they account for only circa 5% of the excavated data, the sample 
of 25,000 ceramic fragments and complete vessels is representative of the circa 
500,000 entities from this region as analysed by Sergej Ryzhov. The following 
core categorisation of artefacts shows that a lexicon of 13 categories (wordlist) is 
sufficient (see Ryzhov, 2012):

‘Goblet’, ‘Goblet-shaped’, ‘Sphere-conical’ and ‘biconical’, ‘Amphora’, ‘Pear-
shaped’, ‘Lid’, ‘Krater’ and ‘Krater-shaped’, ‘Pot’, ‘Binocular-shaped’, ‘Ladle’ 
and ‘vessels on trays’

Even with these categories, some care is necessary. Bowls were deliberately 
excluded from the WTC analysis since the WTC ceramics are fragmentary. Small 
fragments of bowls are more easily distinguished typologically than ceramic 
fragments of other types. Therefore, if bowls are included in the estimations, the 
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overall distribution may be biased. Nonetheless, the structured data deposition 
from house ‘burials’ together with the homogeneity of mega-sites makes the WTC 
ceramics an idealised dataset (for a more detailed analysis see Diachenko et  al., 
2020).

Late Bronze Age Cretan Ceramics

Our second dataset comprises a collection of more than 13,700 ceramics compiled 
from published excavation catalogues (Gheorghiade, 2020). These ceramics date to 
the Late Bronze Age (LBA) and were recovered and recorded as part of excavations 
carried out across Crete at the sites of Chania, Kommos, Knossos, Mochlos, and 
Palaikastro (Fig.  1b). Over the last century, the recovery of such large quantities 
of complete and restorable ceramics from across the island has resulted in the 
development of typologies based on their functional criteria (Knappett, 2022: 
118). These capture both the shape and potential function of the vessel, providing a 
classificatory system that supports cross-temporal, cross-spatial, and cross-cultural 
comparisons.

The ceramics in this dataset span a 250-year period (roughly 1450–1200 BCE) 
during which Crete became increasingly more connected in the eastern and western 
Mediterranean. Archaeologically, we may associate the spread of mainland Greek 
material culture on Crete, more generally labelled by ‘Mycenaeanization’, as a single 
‘event’; however, this transformation was more gradual, and the result of a complex 
set of processes that led to the adoption, incorporation, and transformation of new 
traditions and ceramics into Cretan assemblages.

Material from this highly connected period is difficult to separate, identify, 
and characterize. What are often thought of as ‘Minoan’ or ‘Mycenaean’ cultural 
characteristics based on the surviving archaeological evidence must also be 
acknowledged as largely modern constructs (D’Agata et  al., 2005: 14). The social 
and cultural influence exerted by mainland Greek states (i.e. Mycenae) under the 
umbrella of ‘Mycenaeanization’ poses difficulties when applied to Crete (Preston, 
2004). Changes in funerary, ceramic, and administrative practices appear in the 
LM II period at Knossos, although the presence of new mainland Greek ceramic 
elements in the archaeological record does not necessarily reflect a sudden shift in 
beliefs, political organization, or ethnic identity (Driessen & Langohr, 2007).

The collected data include ceramic vessels from both ritual and daily settlement 
contexts and incorporate both locally made and imported examples from pan-Cretan 
and off-island production centres. All non-ceramic examples, i.e. stone or metal 
artefacts, are excluded from this dataset. Since the rationale for the selection and 
publication of the data varies from one publication to another, in most instances, 
the published ceramics added to the database make up less than 1% of all excavated 
sherds. The quality, organization, and selection of the published material are also 
dependent on the excavation date and the priorities of the excavators. For example, 
although fragments of coarse cooking-ware are recovered in large quantities during 
excavation, they are variably included in publications as itemized catalogue entries. 
Consequently, there is an imbalance in the quantity of ceramics recorded in the 
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database, ranging from 1 to 100% of the total excavated material. Therefore, aside 
from its significant homogeneity, WTC data also differs from the Cretan dataset 
through its analysis by a single ceramic expert. In cleaning this data, we first 
dropped artefacts of ‘Unknown’ category, even if originally their original shape 
type, i.e. open or closed, was known. Each ceramic entry was assigned a relative 
date as noted in the publication (see Table 1).

For our analysis, we further clustered relative ceramic dates into five larger 
temporal groups: LM II, LM IIIA1 (Final Palatial); LM IIIA2, LM IIIB1, and LM 
IIIB2 (Post Palatial). This was necessary as the variable study of ceramics across 
Crete over the last century has resulted in the identification of sub-sequences that 
are inconsistently identified across the island. Secondly, we excluded artefacts that 
did not have a confirmed single date, that is entries dated within a range, giving us 
a final reduced dataset of approximately 7000 entries. All the figures in this paper 
represent this unambiguous set. To test the robustness of our temporal classification 
we also considered the effect of including 400 + artefacts which ‘almost’ certainly 
belong to one period, e.g. LM IIIA, though with uncertainty regarding whether they 
belong to the first or second half of the period. What we are left with, therefore, is a 
highly sorted collection of ceramics produced and used during LBA Crete.

The recorded ceramics reflect a range of excavated vessels but, unlike the WTC 
data, are less of a representative sample of what was excavated or possibly used in 
antiquity. The spatial heterogeneity of the data (e.g. Chania has a disproportionate 
number of cups) is in total contrast to the homogeneity of the WTC ceramic 
distribution. Finally, although each of the five periods is represented well in the 
dataset with roughly 1200, 2500, 1400, 2200, and 700 artefacts respectively, there is 
wide disparity in individual site assemblage size. This is particularly so for the LM 
IIIA through LM IIIB periods for which Chania and Kommos, due to continuous 
occupation, provide almost all the data. These two sites benefit from having 
been excavated in the last 30–40  years, resulting in some of the best published 
archaeological sites on the island. With these discrepancies in mind, we consider 
that the situation is best ameliorated by spatially averaging across Crete for each 
temporal group, and avoiding direct site analysis when and where it is misleading.

The resulting 49 ceramic types provide us with our initial vocabulary of Cretan 
value-free words. We stress that a classification based on morphology alone may 
not be the most efficient way of projecting the artefacts from their high-dimensional 

Table 1  Approximate absolute and relative dates for Late Bronze Age Crete (after Gheorghiade, 2020; 
see also Tartaron, 2008). All dates are BCE (Before Common Era)

Approximate absolute dates Relative ceramic dates

High (Manning, 1995) Low (Warren & Hankey, 1989)

1490/1470 – 1435/1405 1425 – 1390 LM II
1435/1405 – 1390/1370 1390 – 1370/1360 LM IIIA1
1390/1370 – 1360/1325 1370/1360 – 1340/1330 LM IIIA2
1360/1325 – 1200/1190 1340/1330 – 1190 LM IIIB1 and LM IIIB2
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space onto a manageable set of classifiers. For example, Gronenborn et al. (2017) 
also use decorative motifs in identifying change in Central European LBK ceramics. 
The present data was not collected with the goal of supporting this type of analy-
sis, making it difficult to establish correlations. This is something that we can only 
determine post-hoc.

With our WTC and Cretan datasets in mind, we can now ask the following 
questions: within the chosen ceramic categories, how do we compare data from 
different archaeological assemblages and different spatio-temporal scales?

Quantifying Assemblage Change

We begin with the fundamental question: How do the WTC and LBA Cretan data 
vary in time? For a given period, we consider the entirety of the WTC and Cre-
tan data obtained by aggregating the spatially separated assemblages. A key feature 
of the WTC data is its spatial homogeneity, which makes synchronous aggregation 
a simple exercise, regardless of how we do it. The Cretan dataset is more varied, 
consisting of several assemblages which can be aggregated and subdivided in many 
ways with strong spatial heterogeneity. We begin simply, by employing census 
aggregation to combine and count Cretan data from a given time period, across all 
sites. The resulting 49 ceramic categories are presented in Fig. 2.

With a way of categorising our artefacts, we can now describe an assemblage. 
Each artefact in our assemblage is affixed with a category label (‘word’), e.g. kylix, 
drawn from a list of 49 words for our Cretan ceramics, and 13 words for the WTC 
ceramics. We stress that the non-semantic nature of our analysis makes this a list 
and not a dictionary. These categories partition the assemblage so that no artefact 
belongs to two categories. We do not ask that each category is represented by at 
least one artefact in all assemblages, although the totality of the data for either the 
Cretan LBA or WTC will have all categories populated. Each assemblage is now 

Fig. 2  Artifact distribution in the Cretan dataset ranked by frequency for each of the n = 49 categories 
(census aggregation). The inset shows the total number of entries for each site. For each artifact type, the 
bar is split into different colours according to a deposition site
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no more than a word-heap of labels. The simplest way to organise the assemblage 
from category entries alone is to rank each word according to its frequency, ranging 
from the most to the least frequent. To demonstrate typical assemblage behaviour, 
in Fig. 2 we rank Cretan LBA ceramics for the totality of the data, i.e. the sum of 
all the spatial Cretan data over all periods, partitioned over our 49 word-categories. 
It should be noted that here we take each category as originally published, although 
some categories could be combined, i.e. thymatirion and burner (for changes to site 
specific naming conventions and their standardization in the utilized dataset, see 
Gheorghiade, 2020).

The Fig. 2 logarithmic plot is dominated by a relatively few categories (twelve 
with over 100 artefacts). This dominance of assemblages by a few artefact types or 
labels with an elastic tail is generic behaviour. It occurs equally for WTC assem-
blages, and for the Cretan LBA sub-assemblages of interest to us in which we aggre-
gate over space for sequential time slices. To be even more parsimonious, we take a 
non-semantic view in which we can drop the word-labels and simply keep the pro-
file (ranked histogram) of the assemblages with the relevant frequencies.

A hypothetical case might consider the comparison of assemblages from a 
given site (or aggregate of sites). Over time, a change with the adoption and 
integration of new ceramic traditions might be represented in the histogram 
profile of the assemblage by its broadening and then re-narrowing, moving from a 
relatively ‘pure’ state to a different ‘pure’ state via a mixed state. This replacement, 
known from frequency seriation diagrams, is represented as a ‘cycle’ moving 
an assemblage from a unified to a more diverse state, and finally a more unified 
state (see Diachenko & Sobkowiak-Tabaka, 2022). This does not require the words 
to be attached to the labels as this broadening and narrowing of the profile can be 
understood as an increase and subsequent decrease in the diversity of an assemblage. 
This is the observation that we employ here when considering diversity change as a 
proxy for cultural change.

Shannon Entropy and Diversity

Our starting point is Shannon information or, equivalently, Shannon entropy 
(Shannon, 1948) in the sense of syntactic, or rather, non-semantic information 
(for detailed discussion, see Sloman, 2013). In his original paper, Shannon was 
concerned with the ‘information’ contained in collections of symbols (‘messages’). 
Even as symbols (labels) Shannon’s use of information as a measure of the 
‘surprisal’ induced by a set of symbols is equally valid for the present assemblage 
labels. In the same way that Shannon gives no meaning to the symbols, we give 
no meaning to the words on the labels. With these caveats, assemblages are 
space–time word-heaps permitting information-led word-frequency analysis. To 
analyse these word-heaps we repurpose tools from ecology to characterise them 
by their diversity (Jost, 2006). The advantage is that diversity, although related to 
Shannon information, has a concrete meaning when used correctly and it avoids the 
problems of colloquial misuse associated with ‘information’.
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As anticipated, diversity is related to entropy, a measure of the unexpectedness 
of the assemblage. Entropy is maximized when all artefact types are equally 
populated in the assemblage histogram and minimised as the histogram peaks 
leftwards until only one final type occurs. To quantify this analysis, we attach a 
number i (i = 1,2,…,n), where n = 49 for each Cretan category entry. This replaces 
the word pile with a number pile. We can suppose that, in the histogram of Fig. 2, 
the number of artefacts of category i in an assemblage of N artefacts is xi . The 
frequency of artefacts of category i in the assemblage will be pi = xi∕N , resulting in 
the likelihood that a lucky dip for an artefact in the assemblage would produce one 
from this category.

The Shannon entropy H1 is the average ‘surprisal’ ln1∕pi associated with finding 
an artefact of type i (Tribus, 1961). Although Shannon entropy does not quite have 
the properties of diversity, it is a diversity index in that it rises and falls as diversity 
rises and falls. It was the behaviour of the Shannon diversity index observed in 
WTC pottery (Diachenko et al., 2020) with its similar emphasis on morphology that 
prompted the present analysis of Cretan data. Entropy itself does not satisfy the basic 
intuitive doubling property of diversity (Hill, 1973), namely that aggregating equally 
sized disjoint assemblages with identical diversities gives an assemblage with the 
sum of the diversities. Many purported definitions for diversity in the archaeological 
literature fail this simple test, which here we insist upon it for consistency.

The function of Shannon entropy which provides a diversity satisfying this 
additivity is its exponential (Jost, 2006). The meaning of the suffix 1 on D1 will 
become clear later.

This numbers diversity D1 lies between 1 and n and it is the effective number 
of artefact types in the assemblage, an attribute of an assemblage that is easily 
understood. However, since D1 rises or falls with H we can use either measure to 
describe relative change. With the above in mind, we define numbers diversity as 
‘Diversity’.

The diversity of the assemblage will depend on the categorization scheme. Here, 
we have assumed a common ‘core’ of morphological categories (including the 
most frequently populated). Our interest lies not in the absolute values of Diversity, 
but rather the direction of its change. Our assumption is that all ‘reasonable’ 
categorizations could identify a rise or fall in Diversity with greater or less efficiency 
if it were present.

Assemblage Aggregation

The assemblages of greatest interest to us are aggregations of data from all five 
Cretan sites, for the five selected periods. As mentioned earlier, there are two 
corresponding approaches to assemblages, depending on whether we think of them 
as censuses or as samples. For example, suppose we aggregate assemblages from 
two sites comprised of M and N artefacts respectively. Consider a particular artefact 

(1)D1 = exp(H1) =
1

p
p1
1
p
p2
2
… .p

pn
n
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type (e.g. a jug, label i) and suppose that there are m jugs in the former assemblage 
and n jugs in the latter.

For census aggregation (C) we simply combine the assemblages. This results in 
(m + n) jugs in a total of (M + N) artefacts. The frequency of jugs, for the purpose of 
(Eq. (1)), is:

On the other hand, effective aggregation (E) treats each sub-assemblage as a 
sample from a larger ‘undiscovered’ assemblage. Statistically, this requires that all 
assemblages are given equal weight or status. Here, we are averaging the individual 
frequencies p = m∕M and q = n∕N for finding a jug in the two sets. The effective 
‘jug’ frequency to be inserted in (Eq. 1) is now:

This generalises directly to more assemblages. The frequencies pi for the 
observed (census) assemblages are termed as naive or plug-in estimators in the 
literature (e.g. Ricci et al., 2021).

There is a potential problem here in that our deposition site assemblages are 
aggregates of smaller assemblages and which, due to lack of knowledge, we must 
interpret as census aggregates. In this we trust to practicality as to when to take 
an assemblage as effective, bundled together from sub-assemblages treated as 
censuses. For the Cretan data, we do not look at levels below the five deposition 
site assemblages for each period, although for the granularity of the WTC data see 
Diachenko et al. (2020). Since this dataset represents only a small percentage of all 
excavated material, these assemblages can also be regarded as effective (E). This 
poses problems for smaller assemblages, that are not the result of excavation bias, 
but rather historical reality. For example, the absence of all but small quantities of 
data resulting from the abandonment of a site, which is indeed the case for some 
Cretan sites during the LBA.

Provisional Results

Figure 3 displays the Shannon Diversity for the WTC Tripolye ceramics and Cretan 
ceramics aggregated across all sites as a function of time over their relative time 
periods for the plug-in estimators. The Diversity that follows from the spatial aggre-
gation over all sites at a given time is identified as γ- Diversity. In each case, we take 
both census (C) and effective (E) aggregation of the five deposition site assemblages 
for each period.

Census and effective aggregation coincide for the WTC data because of the 
extreme homogeneity of the synchronous sub-assemblages, and because all 
aggregated assemblages are large. The resulting single graph (Fig. 3a) highlights the 
halving of diversity from its peak. We note that the act of consistently removing 
bowls from our listed categories will reduce the absolute Diversity but have no effect 
on whether it rises and falls (for reproducibility, see Gheorghiade & Vasiliauskaite, 
2023).

pi = (m + n)∕(M + N)

pi = (p + q)∕2 = (m∕2M + n∕2N)
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The Cretan data shown in Fig. 3b takes site assemblages aggregated period by 
period. Ignoring statistical fluctuations, we can identify a drop in diversity from the 
peak for effective aggregation, but less reliably for census aggregation. According 
to the aggregation method, the somewhat different outcomes for later time periods 
reflect the dominance of Chania and Kommos for LM IIIB data. Large or small, they 
are skewed by the accidents of excavation and selection to have low Diversity. For 
example, some sites excavated in the early twentieth century will not have the same 
robust datasets. Most artefacts from this period would not have been aggregated 
and published quantitatively using the same amount of detail used today. Giving the 
small sites equal weight in effective aggregation lowers the overall diversity.

When Is an Assemblage Large Enough?

Figures 3a and 3b did not take statistical fluctuations into account, leading to the ques-
tion how large does an assemblage need to be for the effects of a small size to be ren-
dered unimportant? (e.g. see Wolda, 1981). One of the most obvious sources of uncer-
tainty in the Diversity of sample data is bias. For example, extending the assemblage 
data via future excavation can only increase Diversity, therefore systematically underes-
timating Diversity. For cases where the different categories are randomly and indepen-
dently accessed (multinomial) the underestimate is, proportionately, the Miller-Madow 
(Miller & Madow, 1954) correction factor (n − 1)∕2N for an assemblage of size N with 
n categories (Ricci et al., 2021). For the WTC data, with a limited number of categories 
and a large dataset, the correction is small. The Cretan data have a much larger cat-
egory count n and smaller assemblages which are not multinomial. Nonetheless, if we 
take this correction factor as a plausible rough estimate of bias, then with Cretan-wide 
aggregates of roughly 1200, 2500, 1400, 2200, 700 artifacts for each of the five peri-
ods, then we estimate that bias changes the results of Fig. 3 by only a few percent. The 
skewed nature of the data suggests larger errors that are potentially still manageable, 
but a focus on smaller, individual sites and time periods returns poorer results. The five 

Fig. 3  a The change in Shannon γ-Diversity (not Shannon entropy) of WTC pottery morphology from 
4100 to 3600 BCE (where data permits). a lacks reliable data for time units 2 and 3. The dotted line is 
used purely as a guide. b The change in Shannon γ-Diversity for Cretan ceramic morphology spanning 
LM II to LM IIIB2. The two Cretan graphs correspond to different aggregation protocols
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Cretan sites and five temporal-periods result in 22 assemblages, and their Diversities 
are shown in Fig. 4.

Figure 4 suggests that we can only really ignore small size effects when assemblage 
size exceeds 100 artefacts (commensurate with the Miller-Madow correction factor). 
With 49 categories, it seems plausible that there will be size effects until the set is 
large enough for most categories to have the opportunity to be sampled. Individual 
sites (excepting Kommos) show a logarithmic increase in Diversity with size. The 
conclusion is that although we are relatively comfortable with Cretan-wide aggregation, 
local assemblages must be treated with care.

Generalised Diversities and q‑Number

With all these caveats, the changes for census diversity signalled in Fig. 3b are not very 
strong. One possible way forward is to generalise Diversity to preferentially weigh 
either the head or the tail in the Fig. 2 distribution. For example, the tail highlights 
several categories with only one artefact. With further discovery and excavation, 
this might very well be extended through the creation of additional categories. It is 
possible that the recombination of listed categories, i.e. scoop with ladle or bucket with 
basin, would remove some of the outliers in this figure. On the other hand, the most 
dominant categories in Fig. 2, primarily cups, are inclined to swamp the picture. With 
Shannon Diversity each artefact is weighted equally, making only a small contribution. 
This front-loaded domination and ambiguous tail in the data can be circumvented by 
generalising the mathematical definition of Diversity with the guiding rule that the 
diversities of disjoint assemblages (of equal diversity and equal size) add up when the 
sets are joined. This leads to a unique family of diversities derived from generalised 
entropy, labelled by q > 0 (Jost, 2006):

(2)Dq(X) =
(

∑n

i=1

(

pi
)q
)1∕(1−q)

Fig. 4  The observed Shannon Diversity ( q = 1 ) against assemblage size for 22 Cretan sub-assemblages 
with data
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In ecology q is the Hill index (Hill, 1973), while in mathematics the order. Still 
defined as the effective number of categories present in the assemblage, Dq(X) takes 
values between 1 and n, where n is the total number of categories (49 for Crete). By 
taking the limit of q to 1 we return to Shannon Diversity (hence the suffix on D in 
Eq. (1)). Other familiar diversities are Richness ( q = 0 ) and Gini-Simpson I Diver-
sity ( q = 2 ). By definition (and intuitively) Dq(X) increases with decreasing q, as 
the less frequently populated artefact types are given more status. In supporting the 
singling out of categories of artefacts that occur rarely or frequently, they showcase 
change differently.

There are different routes to achieving (Eq. (2)), according to how entropy is gen-
eralised. For example, the family of entropies Rq , after Renyi (1970), labelled by the 
order q ≥ 0 , uniquely generalises Shannon’s entropy. Entropy has its own additiv-
ity rule, that the total number of questions required to determine truly independent 
attributes is the sum of the questions needed for each attribute individually. Only 
Renyi entropies permit this, although there are many entropy-like entities that have 
been proposed which fail in this regard. The most familiar of these is the Tsallis-
Havrda-Charvat entropy Tq , known as Tsallis entropy (Havrda & Charvat, 1967; 
Tsallis, 2009), again labelled by an index q ≥ 0 . Tsallis entropy ( q = 2 ) is known 
as the Gini-Simpson ‘impurity’, which we cannot simply interpret as ‘information’ 
(e.g. see Pressé et al., 2013). However, both the Renyi and Tsallis entropies lead to 
the identical generalised Diversity Dq of (Eq. (2)) (Jost, 2006).

Considering Variance and Bias

In addition to bias, there is a question of variance in the fluctuations around the 
mean. It could be argued that there are no statistical errors for censuses, since a 
census is based on observable data, and we can persist with plugin estimators. In 
practice, this is not quite the case. As mentioned, census assemblages result from 
the combination of assemblages into a single table. For effective assemblages, an 
appropriate extrapolation of the assemblage (maintaining frequencies) is conducted 
before combination. Either way, both result in a joint assemblage which, in each 
case, can be considered as having some associated statistical uncertainty, allowing 
for comparisons.

An estimate of this for Shannon Diversity gives an upper bound (fractionally) 
of ln(n)∕2

√

N  for an assemblage of size N with n categories (Ricci et al., 2021). 
For a Cretan aggregation of 1000 artefacts this would correspond to a maximum, 
but manageable, variance of less than one unit for a typical Diversity of 15. 
Again, this assumes a multinomial distribution, which is unrealistic, but we can 
use this to give rough estimates of uncertainty. We expect smaller fluctuations 
for q = 2 and larger for q = 1∕2 . As a simple guess for our data, for each case 
we have attempted a simple exercise in robustness by replacing approximately 
10% of the artefacts in the assemblages. That is, we replaced (the smallest integer 
greater than) 10% of the artefacts randomly. For q = 1 fluctuations are typically 
a unit or less. There is a delicate balance to be drawn, in that the tail is the 
least statistically robust part of the data. For that reason, we give less credence 
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to q = 0 richness, where D0 is the number of non-empty categories. There are 
more sophisticated ways for estimating missing categories (e.g. Chao et al., 2014; 
Colwell & Chao, 2022; Willis, 2019; Seweryn et al., 2020) but our dataset is too 
irregular for such estimates to be useful here (e.g. no doublets in Fig. 2). We have 
kept the q = 0 graph because of the intuitive nature of richness. For the WTC data 
of Fig. 3a, there was no need to look at lower q values since the rise and fall of the 
diversity is strong. For individual site assemblages in given time periods (Fig. 4), 
an assemblage of 100 would give a threefold increase in fractional variance but, 
since variances are halved, the overall effect is still of the order of one unit.

Henceforth, all calculations are based on Eq. (1) and Eq. (2) (see Gheorghiade 
& Vasiliauskaite, 2023). For census aggregation, we restrict ourselves to 
0 ≤ q ≤ 2 . This restriction is due to constraints on the convexity of entropy (Jost, 
2007), with the Diversity Dq for q = 2 now equalling the inverse of Simpson’s 
C-Measure. This incorporates a subtlety (see Jost, 2006), where sites are weighted 
according to the qth power of their size.

Applications and Results

With these caveats the standard error bars of Fig. 5 show  that the variability in 
the observed  results for γ-Diversity is small, in contrast to absolute values of 
diversity. Figure  5 shows the γ-Diversity, with Fig.  5a highlighting census (C) 
aggregation and 5b effective (E) aggregation for q = 0, ½, 1 and 2.

Fig. 5  The γ-Diversity for Crete for LM II–LM IIIB2 for different q-values with census (a) and effective 
(b) aggregation shown with open symbols and solid lines. To illustrate the possible uncertainty for each 
data point, the figure also shows the results for randomised data sets using closed symbols and dashed 
lines. These artificial datasets are obtained by sampling with replacements from the data used for each set 
of parameters and repeating the procedure 100 times (known as bootstrapping). The mean and standard 
deviation obtained from the artificial data are linked by dashed lines. Note that the scale is compressed in 
comparison to Fig. 3b. For q = 0 census and effective aggregation are identical
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The noise added to the data points in Fig. 5 represents, in part, the uncertainty in the 
data due to ambiguous classification. Our assumption—that ambiguous data might be 
randomly distributed in category—is not quite the case for the Cretan data. There is a 
small dataset (400 +) of artefacts of slightly indeterminate date (e.g. generally dated 
to LM IIIA) not included in Fig. 3b, and we have examined the effects of distributing 
them between permissible periods. Since adding artefacts to assemblages increases 
their diversity, the effect in this case with fixed endpoints is always to make any rise and 
fall of the effective assemblages more pronounced. To achieve the maximum effect, we 
allocated the ambiguous LM IIIA data just to LM IIIA1 and the ambiguous LM IIIB 
data just to LM IIIB1 (an approximate 10% increase in assemblage size). For q = 1 the 
effect at LM IIIA1 and LM IIIB1 is to increase diversity at LM IIIA1 and LM IIIB1 by 
about two units for both types of aggregation. These are somewhat larger effects than 
those seen in Fig. 5 and reflect the non-random nature of the omitted data. Achieving 
a more equitable distribution of ambiguous data, beyond trial and error, would likely 
have a smaller effect. Graphs showing the effect of incorporating these ambiguously 
dated artefacts are given in Gheorghiade & Vasiliauskaite, 2023.

Our results in Fig. 5 show there is a trade-off between Diversity and aggregation 
method. For example, for q = 0 both aggregation methods coincide, but the statistical 
errors are greater. Since our interest here lies in change in Diversity the intentional 
exclusion of certain data types (e.g. coarse kitchenware) makes no reference to the 
amount of such data. As there always is such data, changes in the Richness ( q = 0 
Diversity) of the data will largely be unaffected. At the other extreme, for q = 2

(Gini-Simpson or Simpson-C) the situation is different. With emphasis on heavily 
populated datatypes, data on extremely common types needs to be uniformly 
accurate as it will be important. Nonetheless, considering the lack of change in 
Diversity for q = 2 in Fig. 5 empirically this is not a problem.

Given these qualifications, all of which enhance the central region, it can be 
argued that, for effective aggregation, Cretan γ-Diversity shows a moderate rise and 
fall across the entire period for Shannon’s q = 1 (see Fig. 3b for the expanded graph) 
but is essentially unchanged for Gini-Simpson’s ( q = 2 ) diversity. Finally, at q = 0 , 
with more emphasis on the longer part of the tail, we do see a genuine rise and 
fall in diversity over the period driven by some of the less dominant categories. A 
similar but less strong effect is also seen for q = 1∕2 with its emphasis on the tail. 
For the error-prone q = 0 the two methods coincide, highlighting an even stronger 
effect. Census aggregation exhibits a weaker pattern, only beginning to show a rise 
and fall in diversity of the type associated with a cultural shift for q = 1∕2 and less. 
For the much larger Southwest Social Networks (SWSN) Project dataset, Simpson’s 
C-measure of q = 2 was sufficient (Hegmon et al., 2016). As we have seen above, 
this is too blunt of a tool for the present data.

Assessing Heterogeneity

In interpreting Fig. 5 further, we see that synchronous WTC data across the plain 
is spatially very homogeneous whereas LBA Cretan data around the island is not. 
In fact, information on the heterogeneity of the sites is built into the diversity 
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formalism. Aggregating assemblages implies information loss since one must ask 
questions before the individual assemblages can be reconstituted.

This ‘lost’ information reappears as information about the heterogeneity of sites 
(their β-Diversity).

β and ̨  Diversities

For Shannon entropy, for which information has a clear meaning, the loss of 
information on aggregation (Jost, 2006) can be understood as:

where the α-entropy H1
α is the average of all assemblage entropies from all five sites 

weighted (C) or not (E). This is guaranteed to be smaller than the entropy of the 
aggregated assemblages (less questions needed). However, we have argued that it is 
better to work with diversity where the equivalent decomposition of the γ-Diversity 
relation is:

The β-Diversity of the assemblage, its heterogeneity, is understood as the effective 
number of sites that constitute the aggregated assemblage. It takes values between 
1 (in the case of maximal homogeneity when assemblages are indistinguishable) 
and the number of deposition sites (when their assemblages are maximally 
heterogeneous and bear no statistical similarity). As before, our assemblages consist 
of sets of samples from sites in each period. For Crete, we calculated β-Diversity 
across the sites in each period, for which 1 ≤ D

�

1
≤ 5 for the first three periods (LM 

II, LM IIIA1 and LM IIIA2). For LM IIIB1 we have 1 ≤ D
�

1
≤ 4 and 1 ≤ D

�

1
≤ 3 

for LM IIIB2, as we do not have any data from Palaikastro for the former, and from 
Mochlos for the latter period.

For the first three time periods, we find that with the β-Diversity around 1.5 
( D�

1
≈ 1.5 ), by either aggregation method, indicates a surprising homogeneity. 

This measure suggests that a lack of diversity in the five sites meaning that they 
behave as we might expect if only one or two sites had distinctive assemblages. For 
the LM IIIB1 and LM IIIB2 periods, we find that D�

1
≈ 1 (C) and 2 (E). These are 

at the bounds of our expectations since only Kommos and Chania contribute any 
significant LM IIIB1 and LM IIIB2 material.

For generalised diversity (Jost, 2006) the γ-Diversity for the aggregated Cretan 
assemblage factorises in a similar manner:

Note that �-diversity represents a modified geometric mean of the individual 
diversities. Jost (2006) further elaborates on the technical details which are omitted 
here but included in our GitHub repository (see Gheorghiade & Vasiliauskaite, 
2023).
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Extending the analysis from Shannon q = 1 to q = 1∕2 and 2 the outcome is that, 
at later time periods, we continue to have a bifurcation according to the aggregation, 
with D�

q
≈ 2 (E) and D�

q
≈ 1 (C) for all q values. At earlier times, for q = 1∕2 the �

-Diversity of the five Cretan sites increases to a value closer to D�

1∕2
≈ 2 ; for q = 2 it 

lowers to D�

2
≈ 1 for both census and effective aggregation.

This almost total homogeneity for census aggregation looks puzzling, since 
assemblages from different sites are often very different in their composition. 
Although not a complete explanation, this can be attributed to the nature of diversity 
as non-semantic, not acknowledging or reading category labels. Interestingly, such 
behaviour is a familiar outcome in several other contexts (e.g. see Zaneveld et al., 
2017) where it is known as the ‘Anna Karenina Principle’ (AKP), from the opening 
line of Tolstoy’s Anna Karenina: ‘Happy families are all alike; every unhappy family 
is unhappy in its own way’. In this case, diverse site-periods are alike, but as they 
become less diverse, each one of them does it in their own way.

Similarity Indices

To unpick this failure of seeming homogeneity, we can identify similarities between 
synchronous sites on a local (pairwise) basis from the �-Diversity. For example, 
consider two assemblages A and B, which can be used to construct the �-Diversity 
D�

q
(A,B) in the usual way. It is more intuitive to rewrite D�

q
(A,B) in terms of the 

pairwise similarity (Jost, 2006) Sq(A,B) as:

We have Sq(A,B) = 1 when the assemblages from both sites are identical and 
D

q

�
(A,B) is 1. On the other hand, when we have no similarity between these 

assemblages Dq

�
(A,B) = 2 (i.e. the maximal �-Diversity value in cases where the 

assemblage consists of two ceramic sets—sites) then Sq(A,B) = 0. For Sq(A,B) = 0.5 
we find the effective number of “sites” is between one and two, Dq

�
(A,B) = 4∕3 . 

With all its caveats, effective aggregation (E) seems to be the more familiar way to 
proceed.

We note that when q = 0, Sq(A,B) is the familiar Jaccard similarity index, which 
emphasizes the infrequent artefact types at the tail end of Fig. 2. For q = 2 , S2(A,B) , 
the Morisita-Horn index shows indifference to infrequent artefact types (Courmier 
et al., 2018; Habiba et al., 2018). Other values of q do not give familiar indices. Indi-
vidual site-on-site similarity between synchronous assemblages (for each period) is 
varied due to the limited heterogeneous data, resulting in unhelpful results. Instead, 
we opt to take the average similarity of each site, and each period, with its four 
neighbours. Figure 6 visualizes the results for two extremes: q = 2 Morisita-Horn 
and q = 0 Jaccard indices. These figures exclude error bars (smaller for Morisita-
Horn), as the goal is to seek out general trends.

As with Gronenborn et al. (2017) and Diachenko and Sobkowiak-Tabaka (2022), 
ancillary contextual data are required to make sense of these results. We consider 

(4)Sq(A,B) =
2

D
�
q(A,B)

− 1
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a similarity of 0.5 as signalling the average independence/indifference of a site 
with or to its neighbours. For q = 2 (Fig.  6a), we see a strong similarity between 
each site and its neighbours for the LM II, LM IIIA periods, and a dissimilarity 
between sites by LM IIIB1. This of course makes sense since we only have two 
sites with substantial LM IIIB material—Chania and Kommos—with the overall 
quantity of data decreasing for these periods at all other sites. Moreover, within 
these sites, the distinction between LM IIIB1 and LM IIIB2 ceramics is not always 
clear, with the highest resolution in this regard visible only at Chania. Nonetheless, 
the emphasis here is on common artefacts. For Jaccard similarity of Fig.  6b with 
its emphasis on artefact types, the result is a common mild dissimilarity between 
sites and their neighbours (except for Mochlos where the dissimilarity is stronger) 
for the LM III, LM IIIA periods and almost total dissimilarity thereafter. This 
makes sense, of course, since we have less data from Mochlos dated to LM II and 
LM IIIB. The results for q = 1 (Shannon) with its equal weightings are essentially 
intermediate between these, giving support to the often-unreliable Jaccard results 
since we can make no realistic missing-data analysis. One way to understand the 
drop in similarities is by assuming that individual sites are adopting or bringing over 
new styles in the less common categories (thereby increasing Cretan Diversity), but 
in different ways on a site-by-site basis and therefore decreasing similarity. Caution 
is needed in that averaging can hide useful information. For example, if we look 
at Knossos in Figs.  6a and 6b, we see no sign of the decay in diversity that was 
present in Fig. 4. Graphs incorporating the ambiguously dated artefacts can be found 
in Gheorghiade & Vasiliauskaite, 2023, although they do not change the overall 
picture.

For the WTC data of Fig.  3a, it was suggested (Diachenko et  al., 2020) that 
the details in Fig. 3a encode smaller diversity cycles that can be associated with 
immigration of other WTC groups from the west. To see if, despite Cretan-
wide relative temporal homogeneity, there is any internal temporal structure 
to the Cretan data of Fig.  5 we have also looked at the similarity Sq between 

Fig. 6  The averaged similarity for any given site with its four neighbours for each period for a q = 2 
Morisita-Horn and b q = 0 Jaccard similarity indices. Zero similarity denotes no data
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time-site data at consecutive time periods as derived from pairwise �-Diversity. 
Specifically, for Table  1, we computed a pairwise similarity between each pair 
of sites where one site comes from one period and the other from a consecutive 
period, averaging over all possible pairs to obtain a global estimate of the 
similarity of two periods (thereby helping to keep errors down). We assume that 
a site which is empty at a particular period is maximally dissimilar ( Sq = 0 ) to 
other sites and this is accounted for in the average. For that reason, LM IIIB2 will 
differ from LM IIIB1 because of its limited data.

As Fig. 7 shows, with effective aggregation there is a common picture across 
all q values; namely that LM II, LM IIIA1, and LM IIIA2 are equally similar but, 
as with synchronous similarities, LM IIIA2 differs significantly from LM IIIB1. 
The larger the q value, the greater the similarity between the first three periods; 
the smaller the q, the less similarity can be observed. Further, as we anticipated, 
LM IIIB2 differs greatly from LM IIIB1, which is less reliable due to the limited 
data from this period. For example, only two sites—Chania and Kommos—pro-
vide substantial data from LM IIIB1 and LM IIIB2, with material from Chania 
dominating the assemblage. We now understand the peaks in the diversity profiles 
in Fig. 5b as characterising the transition between LM IIIA1 and LM IIIB1 rep-
resented by assemblages with different compositions before and after for which, 
more types are present.

Numbers are important. Again, taking a similarity of 0.5 as signalling the 
independence/indifference of the two assemblages to each other, for q = 2 we see 
a strong similarity between the LM II, LM IIIA periods and indifference by LM 
IIIB1. The q = 2 Morosita-Horn ignores less-populated categories. As we move 
towards q = 0 (Jaccard) which just counts the categories present, LM II, and LM 
IIIA become mutually independent, but all strongly dissimilar to LM IIIB1. This 
is a consequence of the strong heterogeneity of the LBA Cretan sites, in stark 
contrast to WTC ceramics, whose spatial homogeneity is so striking.

Fig. 7  Pairwise (effective) aver-
aged similarity of all possible 
pairs of sites in two consecutive 
periods for four values of q 
where q = 0 is averaged Jaccard 
similarity and q = 2 averaged 
Morisita-Horn similarity
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Summary and Discussion

We suggested earlier that patterns represented by the rise and fall in diversity 
should trigger an examination of the data to see if social transformations are 
reflected (reflective cycles) (Gronenborn et  al., 2017) or not (self-organized 
cycles). In the case of cultural cycles, the rise-and-fall diversity patterns 
represent the replacement of one cultural trait by another. For example, the 
presence of a new trait which occurs in relatively low proportions which grows 
as the dominating trait declines proportionally. From a diversity viewpoint, this 
replacement (known from its frequency seriation diagrams) is represented by a 
cycle moving an assemblage from a more unified state to more diverse state, and 
back again (Diachenko & Sobkowiak-Tabaka, 2022).

This is exemplified by the WTC ceramics from the Southern Bug and Dnieper 
interfluve. The rise and fall in their diversity (Fig. 3a) are shown by an increasing 
number of vessel types (from 8 in time unit 1, to 9–11 in time units 4–9) and 
their subsequent decrease (to 6 in time unit 10). Unpacking the data, this, in large 
part, reflects the replacement of sphero-conical vessels and craters by biconical 
and crater-shaped vessels. Upon this overall nearly sigmoid-shaped profile, local 
deviations in diversity in time units 4, 6, and 9 correspond to the immigration 
of population groups from the west to the Southern Bug and Dnieper interfluve 
(Diachenko & Sobkowiak-Tabaka, 2022; Diachenko et al., 2020).

The homogeneity of the WTC assemblages suggests the intensive interaction 
between populations at different sites. This is supported by the relatively 
synchronous (span of c. 50-years) change in pottery shapes across different 
settlements and the roughly similar (with a few percent deviation) quantitative 
distribution of these shapes in different houses. These changes can be treated akin 
to modern day fashion cycles. The latter statement finds its conformation in the 
distribution of WTC vessel shapes beyond the analysed region (e.g. Markevich, 
1981; Ryzhov, 2021).

The LBA Cretan data has some similarities with WTC data when only ceramics 
are taken as a proxy, with an island-wide rise and fall in diversity of greater or 
lesser extent (Fig. 5) according to our emphasis on less frequent ceramic types. 
We keep in mind that any patterns we observe are likely to reflect our collected 
dataset as much as true cultural change (Murray, 2021). There is a major 
difference in that the heterogeneity of Cretan coastal sites is reflected in part in 
the heterogeneity of the assemblages which impedes statistical robustness and 
complicates our understanding of aggregation and its realisation. Nonetheless, 
by whatever means we aggregate, we do see a change over this 250-year period. 
Despite the introduction of new shapes and vessels in LM II at Knossos, it seems 
that this change across the rest of the island was slow and spanned multiple 
periods. This suggests that the adoption of new vessel shapes and styles, such as 
the kylix, did not occur suddenly, even though archaeologically it appears as such 
in the record.

In more detail, the dispersal of the data points in Fig.  4 reflects the 
heterogeneity of the sites within the general envelope of individual sites largely 
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showing a moderate rise and fall (or maintenance) of diversity over time. Take 
Kommos, for example. It shows consistently high diversity over all time periods 
until LM IIIB2 when it almost disappears from our records (the final low-lying 
isolated star). We attribute this in large part to it being the important port site in 
southern Crete with the diversity of the imports being reflected in the recorded 
vessels. Knossos, however, considered at the end of LM II to have a key role, 
looks to provide a counterexample, showing a continual fall in diversity across 
the studied period from the unexpectedly low level of D1 = 10 to effectively zero. 
This, in part, is a limitation of our dataset providing less quantifiable ceramic 
material from one of the most important sites on Crete, the palace of Knossos, 
which was excavated in the early 1900’s (Popham, 1970, 1984; with relevant 
data from Evans, 1906; Hatzaki, 2005; Mountjoy et  al., 2003; for the complete 
bibliography, see Gheorghiade & Vasiliauskaite, 2023). Here the focus was less 
on quantification and more on providing an overview of the building and ceramic 
typology of the period. Gold, silver, and exotic material objects were also not 
part of this ceramic dataset, although they occur at Knossos and at other sites 
across the island especially in funerary contexts. We would expect a much higher 
diversity in the overall material culture at each of these sites both during the 
period under analysis and earlier. Presently, this is obscured by the exclusion of 
these materials from the dataset.

Oddly, in early periods, this dissimilarity is not present in our data (Fig. 6). We 
can read this in several ways. It is possible that the similarities observed in the LM 
II–LM IIIA2 data (Figs. 6 and Table 1) reflect the slow adoption of a new, mainland 
inspired ceramic repertoire on a site-by-site basis. We might argue that these 
similarities are the result of cultural transmission. For well-populated typologies, 
their common trajectories were presumably grounded in intensive interaction, with 
vessel shapes and styles incorporated by settlements to various degrees based on 
specific wants and needs. Imports could have been transported either through trade 
or the movement of people across the island. The incorporation of these new shapes 
and categories over time leads to the similarity which we see in our data. Whether 
this was spurred by Knossos as the sole palatial centre extending its influence across 
the island is not something we can address by simply comparing the diversity and 
similarity in our dataset; however, we start off in LM II with slight variations in 
both, suggesting that the similarity we see culminating in LM IIIA2 (Fig.  6) was 
the result of a long process for all sites involved, with some resisting the complete 
assimilation of a new ceramic repertoire. For example, the most common drinking 
vessel across the island, the kylix, does not appear at Palaikastro at all, suggesting 
that cultural change is not sudden and uniform across space and time (Porčić, 2023). 
As both a geographical and cultural outlier, Palaikastro keeps its somewhat lower 
diversity by not connecting to other sites and not adopting their styles, preferring 
instead to maintain its local individuality.

By contrast, in LM IIIB, we have a sharp increase in dissimilarity. This can be 
attributed to stark changes across the island, one of which is the discontinuation 
of occupation at Mochlos, Palaikastro, and Knossos. Some sites are abandoned, 
downsized, or relocated. Consequently, it is the ceramic evidence that becomes 
sparser, not so much a complete abandonment of occupation in the area. Chania in 
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this period sees an increase in Italian shaped vessels made locally—such as the olla 
and scodella—and integrated into the local assemblage. Unsurprisingly, these appear 
as stark outliers in Fig. 2, located at the end tail of the logarithmic plot since these 
are unique at Chania in this late period. At Kommos, we continue to see Sardinian 
imports but also the production of a new, local shape, the short-neck amphora (SNA) 
(Rutter, 2000). We might be tempted to attribute this rise in dissimilarity to the final 
destruction at Knossos in LM IIIA2, resulting in a decentralization that we can see 
reflected in the archaeological record. While we can observe changes in the ceramic 
data of the period, our conclusions ought to include data from more than two sites. 
Presently, the data from these two very well excavated and recently published sites, 
while excellent for the cursory exploration presented in this paper, are themselves 
limiting and not sufficient for drawing broad sweeping conclusions on changes in 
the socio-political organization of LBA Crete. It is possible that with the addition 
of data from other sites, and the integration of non-ceramic evidence, our picture of 
similarity and diversity might change.

We cannot escape the poorly representative nature of the data with its wide 
variety of time-site assemblages. We saw this problem in the way that ambiguous 
temporal dating can lead to spurious enhancement of Diversity. This weakens the 
strength of our conclusions, issues to which we return in the concluding section.

Conclusions

To be is to be the value of a bound variable – Quine (1980)
This methods-oriented paper focused on applying and exploring the diversity 

and similarity of assemblages from two, relatively large and distinct prehistoric 
ceramic datasets. Despite their size, ranging from 13,700 (LBA Cretan data) to 
25,000 (WTC data) entries, these datasets are best conceptualized as ‘large datasets’, 
rather than the ‘big data’ produced by social media conglomerates. Our goal was to 
apply a range of diversity measures and similarity indices to our LBA data, aimed 
at exploring and examining their fit and robustness. We aimed to develop a toolkit 
for quantifying similar archaeological data and explore the premise that diachronic 
change and spatial difference in assemblage composition can reflect changes and 
differences in cultural processes. Whenever possible, we employed a concise, and 
non-narrative approach guided by the principle of parsimony.

This study was motivated by earlier work on WTC Tripolye ceramics by 
Diachenko et  al. (2020), which demonstrated the power of morphological 
analysis for assemblages using entropy change. This complemented earlier work 
by Gronenborn et  al. (2017), whose analysis of the decorative entropy of LBK 
pottery reinforced the idea of adaptive cycles. Most of the data analysed here, 
however, concerned LBA Cretan data (Gheorghiade, 2020). The specific nature of 
WTC culture, with its house-burning, mega-sites and agglomerating populations 
minimizing distance of contact, led to a dataset homogeneous in space for a spatially 
homogeneous geography that we could not parallel for quality. By contrast, the 
Cretan data shows strong spatial heterogeneity, both in the geography of the coastal 
sites (see Fig. 1) and in their archaeological deposits. Further, the variation in size 



1134 P. Gheorghiade et al.

1 3

of the local assemblages and the irregular curation of the Cretan data make it less 
representative than the WTC data. As a result, we wrestled to obtain robust results 
from which to draw robust conclusions, necessitating a greater variety of tactics than 
was needed for the WTC data.

We accept that our act of reducing artefacts to their labels, the starting point of 
our analysis, is an extreme Quinean reductionism to which the familiar criticisms 
can be made. We are not so dismissive, depending on the questions that we ask. 
For example, if in a hospital we look at change in the composition of illness in 
hospitalised patients, we need very little from patients’ (anonymised) records to see 
the spread of an epidemic. We are not exactly looking for cultural epidemics here, 
but we can find parallels. However, to make progress, supplementary contextual 
data must be considered and included.

What we can say with confidence is that based on the current archaeological 
dataset, the applied diversity and similarity measures highlight temporal changes 
in the makeup of our assemblage. These changes do seem to correspond with 
important socio-cultural shifts during the LBA, but we caution against drawing 
general conclusions from our analysis in support of these hypotheses. Rather, we 
would argue that our analysis was successful in highlighting patterns in the collected 
dataset, demonstrating the use of such measures for large archaeological data. We 
might consider our results important for correlating diversity to change since this 
can signal the end of sites (by displacement). This might fit well with the observation 
that towards the end of the LBA on Crete, we seem to have a movement of people 
away from the coast and towards inland settlements. This shows the limitation of 
our modelling and the need, as expected, to bring in additional detailed information 
from other sites in the region.

The literature provides a plethora of ways in which we can attach numerical 
values to artefacts and their assemblages as a precursor for identifying change, 
both more and less sensible. As with the WTC and LBA data, we have chosen 
‘information’ as the guide to enable us to remain consistent and a natural 
way to describe the contents of the ‘label-heaps’ that we chose to replace our 
archaeological assemblages. Within this framework entropy becomes the natural 
source of information although, colloquially, it is not ‘Jane Austen’s conception of 
information’ (Sloman, 2013). To avoid ambiguity in even this restricted definition 
of information, we have argued that we should look for changes in diversity, the 
effective number of artefact types in an assemblage, rather than entropy, as a better 
signifier of social activity. The resulting diversity from the aggregation of two 
disjoint sets of the same size and identical diversities, results in a diversity that is the 
sum of the two (Jost, 2006, 2007) This leads to a unique family of diversities derived 
from generalised entropy, labelled by q, the Hill number in ecology. The most 
familiar are Shannon Diversity ( q = 1 ), Richness ( q = 0 ) and ( q = 2 ) Gini-Simpson 
Diversity or, its inverse, Simpson’s C-measure. These various diversities support the 
singling out of categories of artefacts that occur rarely or frequently, showcasing 
change differently. Consequently, in this paper, we borrowed heavily from ecological 
literature, where such quantitative comparisons of assemblages (e.g. plant, wildlife, 
insect assemblages) are routine. Non-semantic non-stories have the power to unearth 
endogenous and exogenous habitat change.
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In a similar framework, we have looked for changes in data patterns represented 
by the rise and fall in Cretan diversity (unification – diversity – unification) to 
reflect the increasing significance of mainland Greek style artefacts. There is an 
issue in that, whereas ecologists have their standard classification schemes, we 
do not. Our hope that any reasonable classification scheme would give the same 
qualitative behaviour may well be true, but it is possible that different schemes 
amplify or suppress the effects. Labelling is an ambiguous exercise, condensing 
the most ‘significant’ traits an artefact possesses from a high-dimensional artefact 
‘trait space’ into a lower one, in our case one essentially of display-case labels. It 
is important to consider the level of our ‘labels’ in archaeological taxonomies, due 
to the loss of information occurring with increasing levels of taxonomic hierarchy. 
Inevitably, we lose information on highly variable (and diverse) vessel attributes 
reflected at the taxonomic levels of sub-types, sub-sub-types, variants etc. We 
can try to minimize this loss by identifying the most informative traits to create 
a (decision) ‘tree’ of optimal level, behaving a little like German Komposita. We 
anticipate that they would be significantly smaller than the archaeological categories 
utilized in cataloguing artefacts. This and related approaches are currently underway. 
Until they have been solved, we retain the 49 archaeologically assigned labels from 
Fig. 1, although this number is inconveniently large for the poor statistics of smaller 
assemblages. Relying on changes in Diversity, rather than absolute values, provides 
a better handle for missing and excluded data.

A secondary concern was that of assemblage aggregation. For the Cretan 
assemblage, we were particularly interested in how the material changed during the 
LBA (LM II through LM IIIB2). This required the aggregation of data from each site, 
and each period. Data aggregation could proceed in two ways, according to whether 
we interpreted an assemblage as a census (the observed assemblage) or as a sample 
from a larger assemblage (the effective assemblage). Each of these approaches gave 
different outcomes, and we tried both, looking for a certain robustness. For Cretan-
wide data (its γ- Diversity), we found the same rise and fall in Diversity shown in 
the WTC data (see Fig. 5), with some caveats. For heterogeneous Crete, this is only 
part of the story. Aggregation leads to information loss, including considerations of 
assemblage heterogeneity. These can be re-captured through �-Diversity measures, 
converted into more familiar similarities, e.g. Jaccard for q = 0 ; Morisita-Horn for 
q = 2 . This reinforces the transitional behaviour from LM IIIA to LM IIIB that seen 
in Cretan γ-Diversity. These outcomes are reassuring, rather than convincing.

For all the issues with data, our broad-brush approach has not failed in an obvious 
way, but rather, despite data ambiguities, it has not done enough. Reflective vs. self-
organized cycles cannot be distinguished by simply examining the rise-and-fall in 
diversity measures represented in graphs. Entropy alone falls short of ‘translation’, 
which has a semantic component. For example, Gronenborn et  al., (2020; see 
also 2014, 2017, 2018) also consider secondary decoration motifs as additional 
components, important for the self-manifestation of social groups. Other label 
entries such as provenance and fabrication can also be construed as semantic insofar 
as they impart some sense of ‘agency’ to the assemblage composition, but given 
the poverty of the present Cretan data, the question about the nature of the cycle 
remains open.



1136 P. Gheorghiade et al.

1 3

Acknowledgements The authors would like to thank Carl Knappett, Metin I. Eren, and three anonymous 
reviewers for reading our earlier drafts and providing valuable feedback. This feedback allowed us to 
greatly improve its final publication.

Author Contributions All authors contributed to writing the manuscript. PG, VV, and HP prepared the 
maps, figures, and tables. All authors reviewed and edited the manuscript.

Funding Open Access funding provided by University of Helsinki (including Helsinki University Cen-
tral Hospital). Vaiva Vasiliauskaite acknowledges the support of the European  Union—Horizon 2020 
Program under the scheme “INFRAIA-01–2018-2019—Integrating Activities for Advanced Communi-
ties,” Grant Agreement no. 871042, “SoBigData +  + : European Integrated Infrastructure for Social Min-
ing and Big Data Analytics” (http://www.sobigdata.eu).

Data Availability Data are from primary sources as cited in text and, where possible, copies are provided 
as Gheorghiade and Vasiliauskaite (2023).

Code Availability Available as Gheorghiade and Vasiliauskaite (2023).

Declarations 

Competing Interests The authors declare no competing interests.

Ethics Approval The authors are responsible for correctness of the statements provided in the manuscript.

Consent to Participate Not applicable.

Consent for Publication Both authors gave explicit consent to submit an article.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Barjamovic, G., Chaney, T., Coşar, K., & Hortaçsu, A. (2019). Trade, merchants and lost cities of the 
Bronze Age. The Quarterly Journal of Economics, 134(3), 1455–1503. https:// doi. org/ 10. 1093/ qje/ 
qjz009

Bevan, A., Crema, E., Li, X., & Palmisano, A. (2013). Intensities, interactions and uncertainties: Some 
new approaches to archaeological distributions. In A. Bevan & M. Lake (Eds.), Computational 
approaches to archaeological space (pp. 27–52). Left Coast Press.

Chao, A., Chiu, C. H., & Hsieh, T. C. (2012). Proposing a resolution to debates on diversity partitioning. 
Ecology, 93, 2037–2051.

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). 
Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in spe-
cies diversity studies. Ecological Monographs, 84, 45–67. https:// doi. org/ 10. 1890/ 13- 0133.1

http://www.sobigdata.eu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/qje/qjz009
https://doi.org/10.1093/qje/qjz009
https://doi.org/10.1890/13-0133.1


1137

1 3

Entropology: an Information‑Theoretic Approach to…

Chao, A., & Chiu, C. H. (2016). Species richness: Estimation and comparison. Wiley StatsRef: Statistics 
Reference Online, 1–26. https:// doi. org/ 10. 1002/ 97811 18445 112. stat0 3432. pub2

Colwell, R. K., & Chao, A. (2022). Measuring and comparing class diversity in archaeological assem-
blages: A brief guide to the history and state-of-the-art in diversity statistics. In M. I. Eren & B. 
Buchanan (Eds.), Defining and Measuring Diversity in Archaeology: Another Step Toward an Evo-
lutionary Synthesis of Culture (pp. 263–294). Berghahn Books.

Courmier, L. T., Nakoinz, O., & Popa, C. N. (2018). Three methods for detecting past groupings: Cultural 
space and group identity. Journal of Archaeological Method Theory, 25, 643–661. https:// doi. org/ 
10. 1007/ s10816- 017- 9350-2

Crema, E. R., Kandler, A., & Shennan, S. (2016). Revealing patterns of cultural transmission from fre-
quency data: Equilibrium and non-equilibrium assumptions. Scientific Reports, 6, 39122. https:// doi. 
org/ 10. 1038/ srep3 9122

Crema, E. R. (2015). Time and probabilistic reasoning in settlement analysis. In J. A. Barcelo, & I. Bog-
danovic (Eds.), Mathematics in archaeology (pp. 314–334). CRC Press. https:// doi. org/ 10. 1201/ 
b18530- 20

D’Agata, A. L., & Moody, J. A. (Eds.). (2005). Ariadne’s threads: Connections between Crete and the 
Greek Mainland in Late Minoan III (LM IIIA2 to LM IIIC): Proceedings of the International Work-
shop Held at Athens, Scuola Archeologica Italiana, 5–6 April 2003. Vol. 3. Scuola archeologica 
italiana di Atene.

Diachenko, A., & Menotti, F. (2012). The gravity model: Monitoring the formation and development of 
the Tripolye culture giant-settlements in Ukraine. Journal of Archaeological Science, 39(8), 2810–
2817. https:// doi. org/ 10. 1016/j. jas. 2012. 04. 025

Diachenko, A., & Sobkowiak-Tabaka, I. (2022). Self-organized cultural cycles and the uncertainty of 
archaeological thought. Journal of Archaeological Method and Theory, 29, 1034–1057. https:// doi. 
org/ 10. 1007/ s10816- 022- 09548-8

Diachenko, A., Sobkowiak-Tabaka, I., & Ryzhov, S. (2020). Approaching unification and diversity of 
pottery assemblages: The case of Western Tripolye culture (WTC) ceramics in the Southern Bug 
and Dnieper interfluve, 4100–3600 BCE. Documenta Praehistorica, 47, 522–535. https:// doi. org/ 
10. 4312/ dp. 47. 30

Diachenko, A., Rivers, R., & Sobkowiak-Tabaka, I. (2023). Convergent evolution of prehistoric technolo-
gies: The entropy and diversity of limited solutions. Journal of Archaeological Method and Theory 
(this issue).

Dickens, R. S., Jr., & Fraser, M. D. (1984). An information-theoretic approach to the analysis of cultural 
interactions in the Middle Woodland period. Southeastern Archaeology, 3(2), 144–152.

Driessen, J., & Langohr, C. (2007). Rallying ‘round a “Minoan” past. The legitimation of power at Knos-
sos during the Late Bronze Age. In M. L. Galaty, & W. A. Parkinson (Eds.), Rethinking Mycenaean 
Palaces II, (pp. 178–189). Cotsen Institute of Archaeology Press.

Drost, C., & Vander Linden, M. (2018). Toy story: Homophily, transmission and the use of simple sim-
ulation models for assessing variability in the archaeological record. Journal of Archaeological 
Method and Theory, 25(4), 1087–1108. https:// doi. org/ 10. 1007/ s10816- 018- 9394-y

Eren, M. I., & Buchanan, B. (Eds.). (2022). Defining and measuring diversity in archaeology: Another 
step toward an evolutionary synthesis of culture. Berghahn Books.

Evans, A. J. (1906). The Prehistoric Tombs of Knossos. I. The Cemetery of Zafer Papoura. II. The Royal 
Tombs of Isopata. B. Quaritch.

Furholt, M. (2012). Kundruci: Development of social space in a Late Neolithic tell-settlement in Central 
Bosnia. In R. Hofmann, F.-K. Moetz, & J. Müller (Eds.), Tells: Social and environmental space (pp. 
203–220). Rudolf Habelt GmbH.

Gheorghiade, P. & Vasiliauskaite, V. (2023). Digital extras for Entropology Paper (v1.3). Zenodo. 
10.5281/zenodo.8243079

Gheorghiade, P. (2020). “A network approach to interaction and maritime connectivity on Crete during 
the Late Bronze Age – Late Minoan II–IIIB2.” Doctoral Thesis, University of Toronto.

Gjesfjeld, E., Silvestro, D., Chang, J., Koch, B., Foster, J. G., & Alfaro, M. E. (2020a). A quantitative 
workflow for modeling diversification in material culture. PLoS ONE, 15(2), e0227579. https:// doi. 
org/ 10. 1371/ journ al. pone. 02275 79

Gjesfjeld, E., Crema E. R., & Kandler, A. (2020b). Analysing the diversification of cultural variants using 
longitudinal richness data, OSF Preprints. https:// doi. org/ 10. 31219/ osf. io/ nkfet

Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. 
Biometrika, 40, 237–264. https:// doi. org/ 10. 2307/ 23333 44

https://doi.org/10.1002/9781118445112.stat03432.pub2
https://doi.org/10.1007/s10816-017-9350-2
https://doi.org/10.1007/s10816-017-9350-2
https://doi.org/10.1038/srep39122
https://doi.org/10.1038/srep39122
https://doi.org/10.1201/b18530-20
https://doi.org/10.1201/b18530-20
https://doi.org/10.1016/j.jas.2012.04.025
https://doi.org/10.1007/s10816-022-09548-8
https://doi.org/10.1007/s10816-022-09548-8
https://doi.org/10.4312/dp.47.30
https://doi.org/10.4312/dp.47.30
https://doi.org/10.1007/s10816-018-9394-y
https://doi.org/10.1371/journal.pone.0227579
https://doi.org/10.1371/journal.pone.0227579
https://doi.org/10.31219/osf.io/nkfet
https://doi.org/10.2307/2333344


1138 P. Gheorghiade et al.

1 3

Gronenborn, D., Strien, H.-C., Dietrich, S., & Sirocko, F. (2014). ‘Adaptive cycles’ and climate fluctua-
tions: A case study from Linear Pottery Culture in western Central Europe. Journal of Archaeologi-
cal Science, 51, 73–83. https:// doi. org/ 10. 1016/j. jas. 2013. 03. 015

Gronenborn, D., Strien, H. C., & Lemmen, C. (2017). Population dynamics, social resilience strategies, 
and adaptive cycles in early farming societies of SW Central Europe. Quaternary International, 
446, 54–65. https:// doi. org/ 10. 1016/j. quaint. 2017. 01. 018

Gronenborn, D., Strien, H.-C., Wirtz, K., Turchin, P., Zeilhofer, C., & van Dick, R. (2020). Inherent col-
lapse? Social dynamics and external forcing in Early Neolithic and modern Southwestern Germany. 
In F. Riede & P. Sheets (Eds.), Going forward by looking back: Archaeological perspectives on 
socio-ecological crisis, response, and collapse (pp. 333–366). Berghahn.

Gronenborn, D., Strien, H.-C., van Dick, R., & Turchin, P. (2018). Social diversity, social identity, and 
the emergence of surplus in western central European Neolithic. In H. Meller, D. Gronenborn, & R. 
Risch (Eds.), Surplus without the state – Political forms in prehistory. 10th Archaeological Confer-
ence of Central Germany, October 19 – 21, 2017 in Haale (Saale) (pp. 201–220). Grafissches Cen-
trum Cuno GmbH and Co.

Habiba, R., Athenstadt, J. C., Mills, B. J., & Brandes, U. (2018). Social networks and similarity of site 
assemblages. Journal of Archaeological Science, 92, 63–72. https:// doi. org/ 10. 1016/j. jas. 2017. 11. 
002

Hallager, E., & Hallager, B. P. (Eds.). (1997). Late Minoan III Pottery Chronology and Terminology. Acts 
of a Meeting held at the Danish Institute at Athens, August 12–14, 1994. Aarhus University Press.

Harper, T. K., Diachenko, A., Rassamakin, Y. Y., Chernovol, D. K., Shumova, V. A., Nechitailo, P., Cha-
baniuk, V. V., Tsvek, E. V., Bilas, N. M., Pohoralskyi, Y. V., Eccles, L. R., Kennett, D. J., & Ryzhov, 
S. N. (2021). Combining relative chronology and AMS 14C dating to contextualize ‘megasites’, 
serial migrations and diachronic expressions of material culture in the Western Tripolye culture, 
Ukraine. Documenta Praehistorica, 48, 276–296. https:// doi. org/ 10. 4312/ dp. 48. 11

Harper, T. K. (2021). The absolute chronology of Tripolye settlements in the Southern Bug-Dnieper and 
Middle Dnieper regions, ca. 4200–2950 Cal BC. In A. Diachenko, T. K. Harper, Y. Rassamakin, & 
I. Sobkowiak-Tabaka (Eds.), Data systematization in the Neo-Eneolithic of Southeastern and Cen-
tral Europe: Essays in honor of Sergej Ryzhov, (pp. 58–78). Institute of Archaeology of the NAS of 
Ukraine.

Hatzaki, E. (2005). Knossos. The Little Palace: British School at Athens.
Havrda, J., & Charvat, F. (1967). Quantification method of classification processes: Concept of structural 

entropy. Kybernetika, 3, 30–35.
Hegmon, M., Freeman, J., Kintigh, K. W., Nelson, M. C., Oas, S., Peeples, M. A., & Torvinen, A. (2016). 

Marking and making differences: Representational diversity in the U.S. Southwest. American Antiq-
uity, 81(2), 253–272. https:// doi. org/ 10. 7183/ 0002- 7316. 81.2. 253

Hill, M. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427–432.
Hillman, B. L. (2013). The clothes i wear help me to know my own power The Politics of Gender Presen-

tation in the Era of Women’s Liberation. Frontiers: A Journal of Women’s Studies, 54(2), 155–185. 
https:// doi. org/ 10. 5250/ fronj womes tud. 34.2. 0155

Huggett, J. (2020). Is big digital data different? Towards a new archaeological paradigm. Journal of Field 
Archaeology, 45(sup1), S8–S17. https:// doi. org/ 10. 1080/ 00934 690. 2020. 17132 81

Jost, L. (2006). Entropy and diversity. OIKOS. Advancing. Ecology, 113(2), 363–375. https:// doi. org/ 10. 
1111/j. 2006. 0030- 1299. 14714.x

Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 
2427–2439. https:// doi. org/ 10. 1890/ 06- 1736.1

Justeson, J. S. (1973). Limitations of archaeological inference: An information-theoretic approach with 
applications in methodology. American Antiquity, 38(2), 131–149. https:// doi. org/ 10. 2307/ 279360

Kandler, A. & Crema, E. R. (2019). Analysing cultural frequency data: Neutral theory and beyond. In A. 
Prentiss (Ed.), Handbook of evolutionary research in archaeology (pp. 83–108). Springer. https:// 
doi. org/ 10. 1007/ 978-3- 030- 11117-5_5

Knappett, C. (2022). Artefact typology as media ecology. Perspectives from Aegean Bronze Age art. In D. 
Wengrow (Ed.), Image, Thought, and the Making of Social Worlds, Freiburger Studien zur Archäolo-
gie & Visuellen Kultur, 3 (pp. 115–137). Heidelberg. https:// doi. org/ 10. 11588/ propy laeum. 842

Kristiansen, K. (2014). Towards a new paradigm The third science revolution and its possible conse-
quences in archaeology. Current Swedish Archaeology, 22, 11–34. https:// doi. org/ 10. 37718/ CSA. 
2014. 01

https://doi.org/10.1016/j.jas.2013.03.015
https://doi.org/10.1016/j.quaint.2017.01.018
https://doi.org/10.1016/j.jas.2017.11.002
https://doi.org/10.1016/j.jas.2017.11.002
https://doi.org/10.4312/dp.48.11
https://doi.org/10.7183/0002-7316.81.2.253
https://doi.org/10.5250/fronjwomestud.34.2.0155
https://doi.org/10.1080/00934690.2020.1713281
https://doi.org/10.1111/j.2006.0030-1299.14714.x
https://doi.org/10.1111/j.2006.0030-1299.14714.x
https://doi.org/10.1890/06-1736.1
https://doi.org/10.2307/279360
https://doi.org/10.1007/978-3-030-11117-5_5
https://doi.org/10.1007/978-3-030-11117-5_5
https://doi.org/10.11588/propylaeum.842
https://doi.org/10.37718/CSA.2014.01
https://doi.org/10.37718/CSA.2014.01


1139

1 3

Entropology: an Information‑Theoretic Approach to…

Kristiansen, K. (2022). Archaeology and the genetic revolution in European prehistory. Elements in the 
Archaeology of Europe. https:// doi. org/ 10. 1017/ 97810 09228 701

Kruts V. (2003). The Tripolye ‘ploschadki’ as a result of ritual house burning. In V. Kruts, A. Korvin-
Piotrovskiy, & S. Ryzhov (Eds.), Tripolian settlements-giants. The international-symposium materi-
als (pp. 74–76). Kiev: Institute of Archaeology of the NAS of Ukraine [English translation of the 
Russian title].

Lévi-Strauss, C. (1955). Triste tropiques. Plon.
Lévi-Strauss, C. (1961). A world on the wane. Criterion Books.
Lipo, C. P., Madsen, M. E., & Dunnell, R. C. (2015). A theoretically-sufficient and computationally-

practical technique for deterministic frequency seriation. PLoS ONE, 10(4), e0124942. https:// doi. 
org/ 10. 1371/ journ al. pone. 01249 42

Lyman, R. L., & O’Brien, M. J. (2003). W.C. McKern and the Midwestern taxonomic method. University 
of Alabama Press.

Manning, S. W. (1995). The absolute chronology of the Aegean Early Bronze Age: Archaeology, radio-
carbon and history. Sheffield Academic Press.

Markevich, V. I. (1981). Late Tripolye tribes of Northern Moldova. Shtiintsa [English translation of the 
Russian title].

Mesoudi, A. (2011). Cultural evolution: how Darwinian theory can explain human culture and synthe-
size the social sciences. University of Chicago Press.

Miller, G. A., & Madow, W. G. (1954). On the maximum likelihood estimate of the Shannon-Wiener 
measure of information (pp. 54–75). Air Force Cambridge Research Center: Technical Report.

Mills, B. J., Peeples, M. A., Haas, R. W., Jr., Borck, L., Clark, J. J., & Roberts, J. M., Jr. (2015). Multisca-
lar perspectives on social networks in the Late Prehispanic Southwest. American Antiquity, 80(1), 
3–24. https:// doi. org/ 10. 7183/ 0002- 7316. 79.4.3

Mountjoy, P. A., Burke, B., Christakis, K. S., Driessen, J., Evely, R. D. G., Knappett, C., & Krzysz-
kowska, O. H. (2003). Knossos: The South House. British School at Athens.

Murray, S. (2021). Big data and greek archaeology: Potential, hazards, and a case study from Early 
Greece. In C. Cooper, New Approaches to Ancient Material Culture in the Greek & Roman World. 
Monumenta Graeca et Romana, 27 (pp. 63–78). Brill.

Neiman, F. D. (1995). Stylistic variation in the evolutionary perspective: Inferences from decorative 
diversity and interassemblage distance in Illinois Woodland ceramic assemblage. American Antiq-
uity, 60(1), 7–36. https:// doi. org/ 10. 2307/ 282074

Nolan, K. C. (2020). Bringing archaeology into the information age: Entropy, noise, channel capacity, 
and information potential in archaeological significance assessments. Quality and Quantity, 54, 
1171–1196. https:// doi. org/ 10. 1007/ s11135- 020- 00980-0

O’Brien, M. J., & Lyman, R. L. (2000). Applying evolutionary archaeology. Plenum.
Orton, C. (2000). Sampling in Archaeology. Cambridge University Press.
Paige, J., & Perreault, C. (2022). How surprising are lithic reduction strategies? The information entropy 

of the modes A-I framework. Lithic Technology. https:// doi. org/ 10. 1080/ 01977 261. 2022. 21136 99.
Panek., T. (2019). https:// www. levis trauss. com/ 2019/ 11/ 07/ blue- jeans- and- the- fall- of- the- berlin- wall/
Perreault, C. (2019). The quality of the archaeological record. University of Chicago Press.
Popham, M. R., Betts, J., Cameron, M., Catling, H. W., Catling, E. A., Evely, D., Higgins, R. A., & 

Smyth, D. (1984). The Minoan Unexplored Mansion at Knossos. Thames and Hudson.
Popham, M. (1970). The destruction of the palace of Knossos: Pottery of the Late Minoan IIIA Period. 

Paul Åströms Förlag.
Porčić, M. (2023). Patterns in space and time: Simulating cultural transmission in archaeology. Faculty 

of Philosophy, University of Belgrade.
Premo, L. S., & Kuhn, S. L. (2010). Modelling effects of local extinctions on culture change and diversity 

in the Paleolithic. PLoS ONE, 5(12), e15582. https:// doi. org/ 10. 1371/ journ al. pone. 00155 82
Pressé, S., Ghosh, K., Lee, J., & Dill, K. A. (2013). Nonadditive entropies yield probability distribu-

tions with biases not warranted by the data. Physical Review Letters, 111, 180604. https:// doi. org/ 
10. 1103/ PhysR evLett. 111. 180604

Preston, L. (2004). A mortuary perspective on political changes in Late Minoan II–IIIB Crete. American 
Journal of Archaeology, 108(3), 321–348.

Quine, V. O. W. (1980). From a logical point of view: Nine logico-philosophical essays (2nd ed.). Har-
vard University Press.

Renyi, A. (1970). Probability theory. North Holland Publishing.

https://doi.org/10.1017/9781009228701
https://doi.org/10.1371/journal.pone.0124942
https://doi.org/10.1371/journal.pone.0124942
https://doi.org/10.7183/0002-7316.79.4.3
https://doi.org/10.2307/282074
https://doi.org/10.1007/s11135-020-00980-0
https://doi.org/10.1080/01977261.2022.2113699
https://www.levistrauss.com/2019/11/07/blue-jeans-and-the-fall-of-the-berlin-wall/
https://doi.org/10.1371/journal.pone.0015582
https://doi.org/10.1103/PhysRevLett.111.180604
https://doi.org/10.1103/PhysRevLett.111.180604


1140 P. Gheorghiade et al.

1 3

Ricci, L., Perinelli, A., & Castelluzzo, M. (2021). Estimating the variance of Shannon entropy. Physical 
Review E, 104, 024220. https:// doi. org/ 10. 1103/ PhysR evE. 104. 024220

Rutter, J. (2000). The short-necked Amphora of the post-palatial Mesara. In Ζ Σημανδηράκη (Ed.), 
Πεπραγμένα Η΄ Διεθνούς Κρητολογικού Συνεδρίου 3 (pp. 2–10). Εταιρεία Κρητικών Ιστορικών 
Μελετών.

Ryzhov, S. N. (2012). Tripolian pottery of the giant-settlements: Characteristics and typology. In F. 
Menotti, & A. G. Korvin-Piotrovskiy (Eds.), The Tripolye Culture Giant-settlements in Ukraine, 
(pp. 79–115). Oxbow Books. https:// doi. org/ 10. 2307/j. ctvh1 dvmn

Ryzhov, S. (2021). The evolution of Western Tripolye culture in the Southern Bug and Dnieper interfluve. 
In A. Diachenko, T. K. Harper, Y. Rassamakin, & I. Sobkowiak-Tabaka (Eds.), Data systematiza-
tion in the Neo-Eneolithic of Southeastern and Central Europe: Essays in honor of Sergej Ryzhov, 
(34–57). Institute of Archaeology of the NAS of Ukraine [English translation of the Ukrainian title].

Sanders, H. L. (1968). Marine benthic diversity: A comparative study. The American Naturalist, 
102(925), 243–282.

Schiffer, M. B. (1987). Formation processes of the archaeological record. University of New Mexico.
Seweryn, M. T., Pietrzak, M., & Ma, Q. (2020). Application of information theoretical approaches to 

assess diversity and similarity in single-cell transcriptomics. Computational and Structural Biotech-
nology Journal, 18, 1830–1837. https:// doi. org/ 10. 1016/j. csbj. 2020. 05. 005

Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–
423, 623–656. https:// archi ve. org/ downl oad/ pdfy- nl- WZBa8 gJFI8 QNh/ shann on1948. pdf

Shott, M. J. (2010). Size dependence in assemblage measures: Essentialism, materialism, and “SHE” 
analysis in archaeology. American Antiquity, 75(4), 886–906. https:// doi. org/ 10. 7183/ 0002- 7316. 
75.4. 886

Sloman, A. (2013). “Jane Austen’s concept of information (Not Claude Shannon’s)”. http:// www. cs. 
bham. ac. uk/ resea rch/ proje cts/ cogaff/ misc/ austen- info. pdf

Tartaron, T. (2008). Aegean prehistory as world archaeology: Recent trends in the archaeology of 
Bronze Age Greece. Journal of Archaeological Research, 16(2), 83–161. https:// doi. org/ 10. 1007/ 
s10814- 007- 9018-7

Tribus, M. (1961). Thermostatics and thermodynamics: An introduction to energy, information and states 
of matter, with engineering applications. Van Nostrand.

Tsallis, C. (2009). Introduction to non-extensive statistical mechanics. Springer. https:// doi. org/ 10. 1007/ 
978-0- 387- 85359-8

VanValkenburgh, P., & Dufton, J. A. (2020). Big archaeology: Horizons and blindspots. Journal of Field 
Archaeology, 45(51), 51–57.

Warren, P., & Hankey, V. (1989). Aegean Bronze Age chronology. Bristol Classical Press.
Willis, A. D. (2019). Rarefaction, alpha diversity and statistics. Frontiers in Microbiology, 10, 2407. 

https:// doi. org/ 10. 3389/ fmicb. 2019. 02407
Wiśniewski, A., Kozyra, C., & Chłoń, M. (2022). Reading the mobility of Late Palaeolithic hunter-gath-

erers. Case study from the Sowin site complex in relation to Late Palaeolithic sites north of the 
Sudetes and Carpathians. In I. Sobkowiak-Tabaka, A. Diachenko, & A. Wiśniewski (Eds.), Quan-
tifying Stone Age mobility: Scales and parameters (pp. 47–68). Springer. https:// doi. org/ 10. 1007/ 
978-3- 030- 94368-4_3

Wolda, W. (1981). Similarity indices, sample size and diversity. Oecologia, 50, 296–302. https:// doi. org/ 
10. 1007/ BF003 44966

Zaneveld, J. R., McMinds, R., & Thurber, R. V. (2017). Stress and stability: Applying the Anna Karenina 
principle to animal microbiomes. Nature Microbiology, 2, 17121. https:// doi. org/ 10. 1038/ nmicr 
obiol. 2017. 121

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations. 

https://doi.org/10.1103/PhysRevE.104.024220
https://doi.org/10.2307/j.ctvh1dvmn
https://doi.org/10.1016/j.csbj.2020.05.005
https://archive.org/download/pdfy-nl-WZBa8gJFI8QNh/shannon1948.pdf
https://doi.org/10.7183/0002-7316.75.4.886
https://doi.org/10.7183/0002-7316.75.4.886
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/austen-info.pdf
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/austen-info.pdf
https://doi.org/10.1007/s10814-007-9018-7
https://doi.org/10.1007/s10814-007-9018-7
https://doi.org/10.1007/978-0-387-85359-8
https://doi.org/10.1007/978-0-387-85359-8
https://doi.org/10.3389/fmicb.2019.02407
https://doi.org/10.1007/978-3-030-94368-4_3
https://doi.org/10.1007/978-3-030-94368-4_3
https://doi.org/10.1007/BF00344966
https://doi.org/10.1007/BF00344966
https://doi.org/10.1038/nmicrobiol.2017.121
https://doi.org/10.1038/nmicrobiol.2017.121


1141

1 3

Entropology: an Information‑Theoretic Approach to…

Authors and Affiliations

Paula Gheorghiade1 · Vaiva Vasiliauskaite2 · Aleksandr Diachenko3 · 
Henry Price4 · Tim Evans4 · Ray Rivers4

 1 Centre of Excellence in Ancient Near Eastern Empires (ANEE), University of Helsinki, 
Helsinki, Finland

2 Computational Social Science (COSS), ETH Zürich, Zurich, Switzerland
3 Inst. of Archaeology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
4 Physics Dept. and Centre for Complexity Science (CCS), Imperial College London, London, 

UK


	Entropology: an Information-Theoretic Approach to Understanding Archaeological Data
	Abstract
	Introduction
	Curation as Translation

	Prehistoric Ceramics as Datasets
	Western Tripolye Culture (WTC) Ceramics
	Late Bronze Age Cretan Ceramics

	Quantifying Assemblage Change
	Shannon Entropy and Diversity
	Assemblage Aggregation
	Provisional Results
	When Is an Assemblage Large Enough?

	Generalised Diversities and q-Number
	Considering Variance and Bias
	Applications and Results

	Assessing Heterogeneity
	β and  Diversities
	Similarity Indices

	Summary and Discussion
	Conclusions
	Acknowledgements 
	References


