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A B S T R A C T

The exceedance probability of wave crest elevation is a critical environmental input for the design/re-
assessment of marine structures. With attention often focused on structural reliability, and in some cases
survivability, the largest wave crests arising at the smallest exceedance probabilities, said to be located in
the tail of a distribution, are of primary interest. This paper explains why present design practice may be
non-conservative in the most extreme seas and outlines a new method by which the tail of the distribution
can be defined using a relatively small number of deterministic wave events. This avoids the need to explore
the entire distribution using very long (and expensive) random wave simulations. The new approach allows
both an extension of the distribution to smaller exceedance probabilities and a concentration on the largest
most design relevant crest heights. Having demonstrated the success of the proposed method by comparisons
to laboratory data, the analysis is extended to include the effective prediction of the associated confidence
intervals (CIs). With the highest waves subject to the largest statistical uncertainty, the paper explores the
nonlinear changes in CI, demonstrates that these can also be accurately and efficiently defined, and explains
how CI may be reduced. The focus of the paper lies in improved design calculations, based upon the nonlinear
dynamics of extreme waves in realistic seas.
1. Introduction: crest heights, uncertainty and design require-
ments

The exceedance probability of wave crest elevation, commonly
referred to as a crest height distribution, defines the probability that a
wave crest (𝜂𝑐) exceeds a pre-determined value, 𝑄(𝜂𝑐 ) = Prob.(𝜂𝑐 ≥ 𝜂𝑐 ).

his is key to the design of all marine structures and is usually defined
t a single point (𝑥0, 𝑦0); the time–history of the water surface elevation
enoted by 𝜂(𝑥0, 𝑦0, 𝑡), the individual wave cycles identified using a
ero up-crossing analysis, and the wave crests corresponding to the
aximum surface elevation within each cycle. When the data relate to

he occurrence of crest heights in a given sea state (the latter defined
n terms of a significant wave height, 𝐻𝑠, spectral peak period, 𝑇𝑝,
nd underlying spectral shape, 𝑆𝜂𝜂(𝜔, 𝜃), where 𝜔 is the circular wave
requency and 𝜃 the direction of wave propagation) the short-term
rest height distribution is defined. If, in contrast, the data relate to
ll possible sea states at a given location (𝑥0, 𝑦0), the long-term crest
eight distribution arises.

When considering the design of a new offshore structure, or the
e-assessment of an existing structure, it is the long-term distribution
f the applied loading that determines the probability of failure and
ence the reliability of the structure. However, in many instances the
esign codes (ISO, 2013; API, 2014; NORSOK, 2017; DNV-GL, 2019)
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allow (in some instances encourage) the use of loading recipes based
upon highly simplified wave models. Although the appropriateness of
this is the subject of on-going debate (see, for example, Ma and Swan,
2023) it allows design criteria to be specified in terms of an n-year wave
rather than an n-year load. Whilst the convenience of this is beyond
doubt, caution must be exercised to ensure that non-conservatisms are
not inadvertently introduced.

In addition to these concerns, it is also important to acknowledge
that with design/re-assessment inevitably specified in terms of large
events (whether based upon crest heights, wave heights or applied
loads) corresponding to small exceedance probabilities, they lie in the
so-called tail of the distribution. As such, any predicted value will be
subject to significant statistical uncertainty. This must be assessed and
included if a reliability analysis is to be rigorous.

The present paper will address the short-term distribution of crest
heights, outlining a new method to quantify the tail of this distribution.
The goal is to generate data specific to this task, without the need to
generate data appropriate to all exceedance probabilities, but at the
same time retaining the ability to define the probabilities to which
specific events relate. In seeking to achieve this the purpose of the paper
is two-fold:
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(a) To better understand the nature of the events arising in the tail
of the distribution, particularly the occurrence of an effective
upper-bound to 𝜂𝑐 .

(b) To reduce the statistical uncertainty in what is the most uncer-
tain part of the statistical distribution.

Whilst the present paper will stay focused on the short-term crest
eight distribution, since this is easiest to explore/validate, the method
an also be adopted to describe the long-term crest height distribution,
rovided the distribution of sea states is known or can be inferred. More
enerally, the method could also be adapted to describe the tail of both
he short-term and the long-term distribution of loads. These extensions
f the present method are the subject of on-going studies and will be
eported in subsequent papers.

The paper continues in Section 2 with background information
escribing the physics that underpins the evolution of the largest crests
eights. This is key to the methodology outlined in Section 3; the
urpose being to identify the underlying linear wave events that will
row and evolve in a fully nonlinear sense, including the effects of
ave breaking, to produce the largest events located in the tail of

he crest height distribution. In Section 4, the transformation from a
inear to a fully nonlinear representation of the selected wave events is
ddressed. The present paper adopts a laboratory based approach. The
dvantages and disadvantages of alternative numerical procedures are
lso discussed. The practical implementation of the new methodology
s described in Section 5. This highlights the improved representation
hat can be achieved, alongside the substantial cost savings (in terms of
educed effort) when compared to traditional, very long, random wave
imulations. Section 6 concerns the confidence intervals (CIs), showing
he importance of nonlinearities and the success of the present method
n predicting the CIs appropriate to the tail of the distributions. Finally,
he practical implementation of the results, together with potential
uture developments, are summarised in the concluding remarks given
n Section 7.

. Background: the nonlinear evolution of the highest crests

The simplest model describing the short-term distribution of crest
eights is the Rayleigh distribution (Longuet-Higgins, 1952). This is a
inear model in which

(𝜂𝑐 ) = exp

[

−8
(

𝜂𝑐
𝐻𝑠

)2
]

, (1)

here the symbols are as defined previously and 𝐻𝑠 is calculated using
ts spectral definition: 𝐻𝑠 = 4

√

𝑚0 = 4𝜎𝜂 , where 𝜎𝜂 is the standard
deviation of 𝜂(𝑡) and 𝑚0 the zeroth (𝑛 = 0) spectral moment based upon

𝑚𝑛 = ∫

∞

0
𝑓 𝑛𝑆𝜂𝜂(𝑓 ) 𝑑𝑓 , (2)

here 𝑓 is the frequency or 𝜔∕2𝜋.
It is well understood that realistic design sea states are not lin-

ar, the nonlinear amplification of the largest crest heights ensuring
hat Eq. (1) is non-conservative for small 𝑄. To begin correcting for
his, Forristall (2000) undertook numerical calculations based upon the
econd-order random or irregular wave theory proposed by Sharma and
ean (1981) and fitted a two-parameter Weibull distribution such that:

(𝜂𝑐 ) = exp

[

−
(

𝜂𝑐
𝛼𝐻𝑠

)𝛽
]

, (3)

here the scale (𝛼) and shape (𝛽) parameters for directionally spread
eas are given by

= 0.3536 + 0.2568𝑆1 + 0.0800𝑈𝑟,

= 2 − 1.7912𝑆 − 0.5302𝑈 + 0.2824𝑈2. (4)
2

1 𝑟 𝑟
hese coefficients are both expressed in terms of the mean sea state
teepness, 𝑆1, and the Ursell number, 𝑈𝑟, defined as

1 =
2𝜋𝐻𝑠

𝑔𝑇 2
1

and 𝑈𝑟 =
𝐻𝑠

𝑘21𝑑
3
, (5)

where 𝑇1 is the mean period defined by 𝑚0∕𝑚1 (using Eq. (2)) and 𝑘1 the
wave number corresponding to 𝑇1 calculated using the linear dispersion
equation applied in the local water depth, 𝑑.

Although Eq. (3) provides a significant improvement over Eq. (1)
nd is commonly adopted in current design practice (ISO, 2013; API,
014; NORSOK, 2017; DNV-GL, 2019), this should not distract from
he fact that it is based upon a weakly nonlinear, second-order, wave
heory. As such, it provides an important but first approximation to the
ole of nonlinearity. Previous work has shown that when an individual
ave becomes increasingly nonlinear, the terms arising at progressively
igher orders of wave steepness become increasingly important. Put
imply, as an individual wave becomes steeper, more terms are required
n a classical (Stokes-type) series expansion to ensure a converged and
ccurate solution. Numerous researchers have provided evidence of
his. In regular waves the limits of validity of the various wave theories
following Dean, 1970, Le Méhauté, 1976 and Sobey et al., 1987)
onfirm this; whilst in irregular waves the deterministic observations
eported by Baldock et al. (1996), Johannessen and Swan (2001, 2003)
nd Adcock et al. (2015) are equally clear. However inconvenient
rom an engineering perspective, this behaviour is exactly as expected.
ndeed, it represents a fundamental characteristic of all surface water
aves; it arises because of the nonlinearity driven by the two free

urface boundary conditions. Together, these define both the shape
f the wave profile and, most importantly in the present context, the
eight of the wave crest for a given linear input.

At a fundamental level the nonlinearity of an evolving wave form
rises due to a combination of:

(a) The bound waves that arise at each successive order of wave
steepness, (𝑎𝑖𝑘𝑖)𝑛 where 𝑛 ≥ 2. At second-order (𝑛 = 2) these in-
clude both the frequency-sum and -difference terms, the relative
importance depending on the effective water depth, 𝑘𝑖𝑑.

(b) The near-resonant interactions involving the growth of new
freely propagating wave components leading to local changes
in the underlying wave spectrum. These first arise at third-order
(𝑛 = 3), which explain the slow (long-term) evolution of a wave
spectrum first noted by Hasselmann (1962), but can also develop
more rapidly in the presence of highly nonlinear deterministic
wave events (Gibson and Swan, 2007).

Direct evidence of the practical importance of these effects in re-
spect of the crest height distribution was first shown by Latheef and
Swan (2013) in deep water and, more recently, by Karmpadakis et al.
(2019) in intermediate water depths. In both cases long random wave
simulations were undertaken in a highly controlled laboratory envi-
ronment. Having ensured that the laboratory data was both spatially
homogeneous and ergodic, a minimum of twenty 3-hour1 simulations
(or seeds) were generated for a broad range of sea states involving
realistic frequency and directional spectra. In each case the concate-
nated data allowed the crest height distribution to be quantified over a
broad range of exceedance probabilities, 𝑄 ≥ 10−4, with the confidence
intervals (reflecting the statistical uncertainty) reduced to a realistic
minimum.

In comparing this data to both Eqs. (1) and (3), two competing
trends became immediately apparent. The first concerns the nonlinear

1 The ‘3-hour’ duration is the equivalent full-scale value commonly adopted
n metocean analysis. With a length-scale of 𝑙𝑠 = 1 ∶ 100, the corresponding

time-scale is 𝑡𝑠 = 1 ∶ 10 based on Froude number similarity. This requires
each laboratory simulation (or seed) to be of approximately 18 min duration.
Unless otherwise mentioned all data presented within this paper correspond

to the full-scale, with experiments performed in this laboratory scale.
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amplification of crest heights beyond second-order, as detailed above.
The second the dissipative effects of wave breaking. With many of the
largest waves sufficiently steep that they exhibit some form of wave
breaking, the tail of the crest height distribution is defined by the
balance between these competing effects.

The physical insights provided by this laboratory data, combined
with an extensive analysis of field data (Karmpadakis et al., 2019),
led to the development of a new crest height model (Karmpadakis and
Swan, 2022). This builds upon Eqs. (1) and (3), incorporating important
contributions from Tayfun (2006), Fedele and Tayfun (2009), Fedele
et al. (2016, 2019). Following a normalisation by 𝐻𝑠, the non-linear
crest height for a given exceedance probability, 𝜂NL, was defined by:

=
𝜂NL
𝐻𝑠

= (𝜒 + 2𝜇𝜒2 + 𝜅𝜇𝜒)(𝐴𝜒 + 𝐵). (6)

Considering the first bracket on the right, the terms define the lin-
ear, second-order and higher-order contributions respectively. Taking
each in turn: 𝜒 = 𝜂(1)∕𝐻𝑠, where 𝜂(1) is the Rayleigh-distributed crest
height from Eq. (1):

𝜂(1) = 1
√

8
𝐻𝑠(− ln𝑄)1∕2. (7)

The second term follows Tayfun (1994) and adopts the description
f 𝜇 given in Tayfun (2006). With (𝛼, 𝛽) introduced in Eq. (4) expressed
n terms of 𝑆1 and 𝑈𝑟 (Eq. (5)), this exactly reproduces the Forristall
2000) model. The third term represents the nonlinear contribution
eyond second-order; the functional form of this term being based
pon an extensive fitting of the predicted nonlinear crest heights to
combination of experimental and field data recorded in steep, but

on-breaking, sea states.
Finally, the second bracket on the right of Eq. (6) describes the

issipative effects of wave breaking: the coefficients 𝐴 and 𝐵, again
xpressed in terms of 𝑆1 and 𝑈𝑟, fitted to laboratory data describing
he crest heights recorded in sea states characterised by extensive wave
reaking. Full details of both the fitting process and the success of the
odel in respect of both independent laboratory data (not used in the
odel development) and field data are given in Karmpadakis and Swan

2022).
Although the model outlined in Eq. (6) represents an important step

orward,2 the difficulties associated with fitting a model to data involv-
ng two competing processes in the tail of a distribution, which will
nevitable be subject to significant statistical uncertainty, should not be
nder-estimated. The scarcity of data lies at the heart of this problem.
n respect of field data, little can be done except to continue expensive
ield monitoring programmes and hope that extreme events (both in
erms of sea states and individual waves) are successfully recorded.
n contrast, more laboratory data involving yet longer random wave
imulations can be recorded. However, a substantial reduction in the
onfidence intervals associated with the tail of the distribution requires
rders of magnitude more data. Unfortunately this becomes impractical
n cost grounds alone. These difficulties can be addressed by the new
ethod outlined in Sections 3 and 4.

Before turning our attention to the new method, it is instructive to
onsider the evidence supporting the role of wave breaking, to clarify
hether it provides an upper bound to 𝜂𝑐 in a given sea state and, if
ot, why not? Fig. 1 shows the non-dimensionalised crest height distri-
ution, 𝑄(𝜂𝑐∕𝐻𝑠), in two directionally spread (𝜎𝜃 = 15◦), relatively deep
ater (𝑘𝑝𝑑 = 2.03) sea states; where 𝜎𝜃 is the standard deviation of a
ormally-distributed directional spread and 𝑘𝑝 the wave number corre-
ponding to spectral peak. The difference between these cases lies in the
ea state steepness: Fig. 1(b) concerning a sea state that is steeper than

2 Evidence of this is provided by its application in state-of-the-art design
alculations and the recommendations arising from a recent UK HSE review
f the integrity of fixed structures subject to extreme environmental loading
n the UK continental shelf (Swan and Gibson, 2018).
3

Fig. 1(a). This data was first presented in Latheef and Swan (2013); the
difference being that simultaneous video records of the water surface
elevation has enabled the separation of the non-breaking and breaking
wave events; the latter including everything from incipient spilling to
full over-turning. In both cases the data are compared to the linear
Rayleigh distribution (Eq. (1)), Forristall’s second-order distribution
(Eq. (3)) and the fully nonlinear model (Eq. (6)) by Karmpadakis and
Swan (2022). In applying this latter model, the nonlinear amplification
has been applied both with and without the dissipative effects of wave
breaking. In making these comparisons, several points are immediately
apparent:

(a) The nonlinear amplification beyond second-order; much of the
data lying above the Forristall prediction.

(b) The dissipative effects of wave breaking in the tail of the distri-
bution. This is clearly defined in the steeper sea state (Fig. 1(b))
where the largest crest heights are reduced back towards the
second-order predictions. This suggests that in this case the two
nonlinear processes (amplification and breaking) almost cancel
out at the smallest exceedance probabilities.

(c) To quantify the effects of wave breaking, comparisons should
be made between the breaking events (red dots) and the largest
model predictions; the latter including nonlinear amplification
but not breaking (𝐴 = 0 and 𝐵 = 1.0 in Eq. (6)).

(d) The agreement between the laboratory data and the full form
of Eq. (6) is supportive of the model proposed by Karmpadakis
and Swan (2022). Importantly, these data were not used as part
of the initial model calibration.

Given the data presented on Fig. 1(b), it is important to ascertain
hether the occurrence of wave breaking imposes an upper-bound

o 𝜂𝑐∕𝐻𝑠. If this is the case, the tail of the crest height distribution
simply becomes asymptotic to this limit; the latter defining the ap-
propriate design input. In very shallow (coastal) waters wave breaking
is critically dependent upon the local water depth; the relevant limits
given by 𝐻max∕𝑑 < 0.78 and 𝜂𝑐∕𝐻max < 1.0. However, as 𝑑 increases
wave breaking becomes increasingly dependent upon steepness, either
𝜂𝑐𝑘𝑝 or 1

2𝐻𝑘𝑝, and the occurrence of an effective limit becomes more
uncertain. To explore this Fig. 2 presents data (Ma, 2017) relating
to a steep (design relevant) sea state in an intermediate water depth
(𝑘𝑝𝑑 = 1.04). This case was chosen because wave breaking was known
to be important (Tychsen et al., 2016), but with 𝑑 = 45 m the individual
waves are unlikely to be depth-limited. In considering successive sub-
plots, progressively more random seeds are incorporated, the total data
base extending to more than 200 × 3-hour simulations of a single sea
state. As far as the authors are aware, this is the largest data base
relating to a single sea state ever recorded. As such, it is ideally placed
to explore the occurrence of an effective upper-bound. In comparing the
sub-plots, the inclusion of more data ensures the tail of the distribution
extends to smaller exceedance probabilities, with reduced confidence
intervals; the latter reflecting the sample variability or statistical un-
certainty. Most importantly, there are markedly different comparisons
to the established solutions. Two trends merit particular attention:

(a) The down-shifting of the data to smaller 𝑄 reduces the apparent
departures from the second-order model, Eq. (3). This is closely
linked to a reduction in the confidence intervals (indicated by
the dashed lines) as discussed below.

(b) When all the data is included (Fig. 2(d)) the dissipative effects of
wave breaking again appear to counteract the nonlinear amplifi-
cations beyond second-order. However, despite the exceptionally
long data record and the substantially reduced confidence inter-
vals there is no evidence of an upper-bound, or hard cut-off, in
terms of 𝜂𝑐∕𝐻𝑠.

At first sight the absence of an upper-bound appears to be at odds
with expectations. However, with wave breaking in deeper waters de-
pendent on the steepness of individual waves and therefore intrinsically
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Fig. 1. Normalised crest height distributions 𝑄(𝜂𝑐∕𝐻𝑠), for directionally spread (𝜎𝜃 = 15◦) seas with 𝑇𝑝 = 16s and (a) 𝐻𝑠 = 15 m and (b) 𝐻𝑠 = 17.5 m. Note that the two solutions
based upon Karmpadakis and Swan (2022) overlie in (a).
Fig. 2. The effect of sample duration on 𝑄(𝜂𝑐∕𝐻𝑠). (a) 20 × 3-hour sea states, (b) 80 × 3-hour, (c) 160 × 3-hour, (d) 320 × 3-hour. The data (Long-sim.) are shown alongside
their 95% confidence intervals (95% CI).
linked to the local wave period, the random variation in the latter
(Fig. 3) provides a possible explanation. Within Fig. 3 the individual
wave periods are normalised by the trough-to-trough period, 𝑇𝑡𝑡, of the
quasi-deterministic (QD) focused wave. This defines the most probable
shape of a large linear wave, given the underlying wave spectrum,
4

𝑆𝜂𝜂(𝜔, 𝜃), and is based upon the theory of Lindgren (1970), Boccotti
(1983) and Phillips et al. (1993a and 1993b). However, the variability
in the period of the largest waves (±10%), ensures that no upper-bound
applies: a large wave with an increased period being less steep and
therefore less susceptible to the dissipative effects of wave breaking.
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Fig. 3. Scatter plot of normalised crest heights, 𝜂𝑐∕𝐻𝑠, and their associated trough-to-
trough wave periods, 𝑇𝑡𝑡, normalised by the corresponding period of a QD (focused)
wave, 𝑇 (1)

𝑡𝑡,𝑄𝐷 .

Fig. 4. Reduction in 95% confidence intervals at 𝑄 = 10−3 with increasing sample
duration (𝑇 in hours). All data relates to the sea state considered in Figs. 2 and 3 with
𝑠 = 16.7 m, 𝑇𝑝 = 17.7 s and 𝑘𝑝𝑑 = 1.04. The inset provides a zoomed-in view of the

nitial 0-to −100-hour interval.

Fig. 4 concerns the reduced statistical variability, indicated by the
5% confidence intervals, that arise with increasing data. These esti-
ates are based upon an exceedance probability of 𝑄 = 10−3, calculated
sing established bootstrap techniques (Efron, 1979) applied to the
ong random simulations outlined in Fig. 2. The key point is that the
nclusion of more data inevitably leads to a narrowing of the confidence
ntervals, but the ‘law of diminishing returns’ clearly applies; a pro-
ibitively large amount of data being required to realise any subsequent
eduction. To put this figure into perspective, most commercial model
esting is typically undertaken using 5 (or less) 3-hour random seeds.
ndeed, outside research studies or joint industry projects, the largest
umber of seeds investigated would be of order 20. Clearly, even with
his number, the confidence limits remain substantial, and tail of the
istribution poorly defined.

. Methodology

In seeking an efficient and accurate description of the tail of a crest
eight distribution, we must first consider the origins of the largest
aves arising in realistic seas that are broad-banded in both frequency
nd direction. The challenge is to pre-determine those wave events that
ould, potentially, become very large and to transform these waves
nto the tail of the distribution without the burden of generating or
alculating all possible wave events. Whilst much has been written
bout the importance of modulational instabilities, such as Benjamin-
5

eir type instabilities (Benjamin and Feir, 1967), in the development
f so-called rogue waves (for example, Janssen, 2003, Kharif and Peli-
ovsky, 2003 and Chabchoub et al., 2011), these only tend to dominate
n sea states that are narrow-banded in frequency and uni-directional.
ince realistic sea states, particularly severe sea states, are broad-
anded in both frequency and direction, the constructive interference
f freely propagating (mostly linear) wave components due to both
requency and directional dispersion will dominate in deep water. That
s not to underestimate the importance of the bound and near-resonant
onlinearities, nor the dissipative effects of wave breaking (Section 2).
s such, if a wave is to potentially contribute to the low probability
ail of the crest height distribution at a given point, it must first begin
o evolve as a large linear wave, with the superposition of energy in
oth space and time. Whilst these arguments are, in-part, consistent
ith the quasi-deterministic (QD) focused waves studied by Lindgren

1970), Boccotti (1983) and Phillips et al. (1993a and 1993b), we
re not suggesting that the underlying linear wave components will
e perfectly focused, rather that there must be a degree of focusing,
articularly around the spectral peak. Moreover, we are certainly not
ssuming that the most probable shape of a large linear wave provides
he basis for all large nonlinear waves that populate the tail of 𝑄(𝜂𝑐 ).
ndeed, the notion of a most probable wave shape associated with the
aximum (or extreme) 𝜂𝑐 is to neglect the inherent variability that is

undamental to the description of the tail. That said, the physics that
nderpins QD focused waves allows important insights into the nature
f the largest waves (see, for example, Karmpadakis and Swan, 2020)
nd is key to the methodology described below.

When a large nonlinear wave evolves, the near-resonant interac-
ions ensure that it shifts in both space and time. This occurs in
oth nonlinear random seas, relative to the equivalent (phase-related)
inear prediction, and QD focused waves. An example of the latter is
iven in Fig. 5. This concerns four wave events with increasing linear
mplitude sum 𝐴 =

∑

𝑎𝑛, where 𝑎𝑛 is the amplitude of the n𝑡ℎ frequency
omponent. The larger 𝐴, the more nonlinear the wave event and the
reater the downstream shifting in space and time. In the left column
omparisons are provided between the linear predictions and fully
onlinear laboratory observations at the linear focus position (𝑥 = 0).
n the right column similar comparisons are made at the position of
he largest nonlinear crest, the latter denoted by 𝑥NL

max. Another way
o demonstrate this shift is to consider the spatial envelope of 𝜂𝑐 for
ncreasing 𝐴 (Fig. 6). In this example, the linear focus position is again
et to 𝑥 = 0 and all of the data relate to non-breaking waves observed
n the laboratory. With increasing 𝐴, the downstream shifting of 𝜂max

𝑐 is
learly defined. In addition, the envelopes become increasingly asym-
etric; the wave events focusing more rapidly and de-focusing more

lowly. This defines a nonlinear phase-locking in which large waves
aintain their amplified crest heights longer than linear calculations
redict. This will inevitably alter the tail of the crest height distribution.

In seeking to pre-determine the linear wave events that will go on
o populate the tail of 𝑄(𝜂𝑐 ), the two effects noted above (downstream
hifting and phase locking) must be included. This is achieved by
dopting the following steps:

(i) If (𝑥, 𝑦, 𝑧) define the usual cartesian coordinates in which (𝑥, 𝑦)
describe a horizontal plane with 𝑧 measured vertically upwards
from the mean water level (MWL) and 𝑥 is aligned with the
main wave direction, then 𝑄(𝜂𝑐 ) is to be defined at a single
point, arbitrarily chosen at (𝑥, 𝑦) = (𝑥0, 𝑦0). As a first step, linear
calculations of the desired sea state are made in space and time,
𝜂(𝑥, 𝑦, 𝑡). The spatial domain covering an area (𝛥𝑥×𝛥𝑦) such that:

𝑥 ∈ [𝑥0 − 𝛥𝑥, 𝑥0] and

𝑦 ∈ [𝑦0 − 𝛥𝑦∕2, 𝑦0 + 𝛥𝑦∕2] (8)

and 𝑡 covering the full duration of the random sample. At this
stage no attempt is made to specify 𝛥𝑥 and 𝛥𝑦 other than to
note that they must be sufficiently large to accommodate any
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Fig. 5. Downstream shifting of a QD focused wave event with increasing nonlinearity, or input amplitude sum, 𝐴. From top to bottom 𝐴 =
∑

𝑎𝑛 = 0.03, 0.08, 0.12 and 0.18 m
with the left column at the linearly predicted focus (𝑥 = 0) and the right column at the position of the largest nonlinear crest height 𝑥𝑓 = 0.2, 0.4 and 0.7 m respectively. The
inear focus time 𝑡(1)𝑓 = 32 s is common for all sub-figures. Note: all of the data is given at laboratory scale.
l
c
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nonlinear shift in the location of the largest wave events (the
appropriate choices of these parameters will be discussed in
Section 5). Importantly, the linear calculations outlined above
must be based upon the amplitudes (𝑎𝑛) and phases (𝜓𝑛) of
the underlying linear components, both defined randomly in
accordance with accepted practice (Tucker and Pitt, 2001).

(ii) Based upon these calculations, all large linear wave events oc-
curring within the pre-determined spatial domain (Eq. (8)) were
identified. These are best represented by spatial plots, 𝜂(𝑥, 𝑦), at
all relevant times; the four sub-plots given on Fig. 7 showing
𝜂(𝑥, 𝑦) at four times during the evolution of a large wave.

(iii) To rank these events spatial profiles, 𝜂(𝑥) were extracted for
closely-spaced and constant 𝑦. An example of this data, at one
instant in time, is presented on Fig. 8(a); the maximum surface
elevation on each profile noted by a asterisk. By repeating this
process for closely-spaced intervals in time, the envelope of
6

a

the maximum surface elevation describing the evolution of an
individual wave event over the entire spatial domain can be
defined (Fig. 8(b)). The maximum of this envelope, defining the
maximum water surface elevation associated with each individ-
ual wave event anywhere over the spatial domain, 𝜂𝐴max, is then
used to rank the events; the top ranked event having the highest
linearly predicted crest elevation irrespective of where it occurs
across the pre-determined spatial domain (Eq. (8)).

The calculations outlined in (i), (ii) and (iii) above are entirely
inear. As such, they can be undertaken very rapidly. Indeed, the only
hallenge lies in ensuring that each envelope defines the evolution of a
ingle (individual) wave event. If this is not the case, easily identifiable
iscontinuities will appear in the location of the maxima (Fig. 8(a)) as
second (larger) wave crest enters the domain.
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Fig. 6. Envelope of experimentally measured 𝜂𝑐 for QD focused wave events with
ncreasing nonlinearity or input amplitude sum, 𝐴. Ten cases with 𝐴 lying in the range
0.03 m ≤ 𝐴 ≤ 0.18 m; all relating to non-breaking waves with 𝑇𝑝 = 1.6 s and 𝑘𝑝𝑑 = 2.03.

ote: all of the data is given at laboratory scale.

To validate the above noted approach, direct comparisons can be
ade to existing laboratory data involving 40 × 3-hour random simula-

ions (or seeds) of a single sea state. All of the data employed herein was
enerated in a directional wave basin located in the Hydrodynamics
aboratory in the Civil Engineering Department at Imperial College
ondon. Full details of this facility, the methods of wave generation and
he instrumentation employed are given in Latheef and Swan (2013),

Latheef et al. (2017) and Karmpadakis et al. (2019). Before presenting
these data it is important to note that previous laboratory wave studies
undertaken at Imperial College are particularly suited to this task. This
will not be the case for all laboratory generated wave data. The reason
for this lies in our rigorous application of a theoretical wave paddle
calibration (Spinneken and Swan, 2009a,b). The purpose of this is to
be confident that we have correctly generated the desired underlying
linear wave components. This includes their frequency (𝜔𝑛), amplitude
(𝑎𝑛), phase (𝜓𝑛), and direction of propagation (𝜃𝑛). The background to
this lies in the early generation of QD focused waves: Baldock et al.
(1996), Johannessen and Swan (2001, 2003), with the same methods
being subsequently applied to long random simulations (Latheef and
Swan, 2013, Karmpadakis et al., 2019 and Karmpadakis and Swan,
2020). Moreover, in respect of directionally spread seas a random di-
rectional method (RDM) has been applied such that any one frequency
component is only generated in one direction to maintain the ergodicity
of the target sea state. Once again, this method relies heavily on the
accurate generation of the underlying linear components; the benefits
are highlighted in Latheef et al. (2017). In adopting these approaches
no attempt is made to calibrate or re-scale the measured spectrum to
optimise the fit to the target; this simply becomes unnecessary. Unfor-
tunately, these approaches are not always applied; a greater emphasis
being placed on the agreement between the measured and target spec-
trum, even if there are sound physical reasons (nonlinearity, breaking
and unwanted wave reflections) why they might differ. In such cases,
commonly referred to as a wave basin calibration, the accuracy of the
underlying linear components is unclear.

Although this distinction is subtle, it is fundamental to the success
of the present procedure; the linear calculations outlined in (i), (ii)
and (iii) above being directly related to the linear wave components
underpinning the fully nonlinear random simulations undertaken in the
laboratory. Indeed, the inputs appropriate for the linear calculations
(𝜔𝑛, 𝑎𝑛, 𝜓𝑛, 𝜃𝑛) are exactly those sent to the wave paddles. Fig. 9 exam-
ines the success of the proposed methodology. In this example the sea
state is defined by 𝐻𝑠 = 15 m, 𝑇𝑝 = 16 s, 𝑆𝜂𝜂(𝜔) is a jonswap spectrum
with a peak-enhancement factor of 𝛾 = 2.5 and directionality defined
by the standard deviation of a frequency-independent wrapped normal
7

distribution, 𝜎𝜃 = 20◦. In the linear simulations 𝛥𝑥 = 0.25𝜆𝑝 and 𝛥𝑦 =
0.10𝜆𝑝, where 𝜆𝑝 is the wave length of the spectral peak frequency, and
the highest 300 wave events were identified from the linear simulation
(part (iii)). Given that the inputs defining the laboratory simulations
and the linear calculations were identical, the nonlinear crest elevations
corresponding to each of these 300 pre-selected linear wave events can
be identified from the more than 10,000 wave events generated in the
long random records covering 40×3-hour of experimental data. Plotting
the nonlinear crest heights at (𝑥0, 𝑦0) of the 300 largest linear events
assuming that they do indeed represent the 300 largest nonlinear events
and maintaining the ranking based upon the linearly predicted crest
heights give the results presented on Fig. 9(a). All that can be concluded
from this figure is that whilst many of the large linear events do,
indeed, produce large nonlinear events, the linearly predicted ranking
bears no relationship to the actual nonlinear ranking. This is exactly as
expected since both the extent of any nonlinear amplification and the
dissipative effects of wave breaking are dependent upon the individual
wave steepness and this has been completely neglected. However, if
the nonlinear crests associated with the 300 large linear events are re-
ranked based upon their nonlinear crest heights, Fig. 9(b) shows that
the tail of the crest height distribution can be accurately defined based
upon a limited number (300) of deterministic wave events, the latter
selected based upon linear criteria.

In considering this result, two important points should be noted:

(a) Not all the large linear events correspond to large nonlinear
events. However, provided both the domain size (𝛥𝑥, 𝛥𝑦) and the
number of linear events considered (𝑁) are sufficiently large, all
the large nonlinear events will be captured. As such, the tail of
the crest height distribution can be defined.

(b) The methodology outlined above only becomes useful (predic-
tive) if individual linear events can be transformed to their
nonlinear equivalent. This must include both nonlinear amplifi-
cation and the dissipative effects of wave breaking. In Fig. 9(b)
this transformation was known in advance because the indi-
vidual events could be identified within the equivalent fully
nonlinear long random simulations that had already been under-
taken. Clearly the results presented in Fig. 9(b) are important,
but not yet predictive.

4. Linear to nonlinear transformation: a laboratory approach

The task that now remains is to define how the pre-determined
linear events evolve nonlinearly; specifically the maximum crest eleva-
tion that arises at (𝑥0, 𝑦0). There are two possible approaches to this
problem: deterministic laboratory observations and direct numerical
calculations. If the problem only involves the nonlinear amplification
of a potential flow problem, the latter approach would be preferable.
However, with a focus on the tail of 𝑄(𝜂𝑐 ) and having demonstrated the
importance of wave breaking, doubt remains whether exact numerical
calculations are either possible or practical. Indeed, whilst significant
steps have been made in the modelling of individual breaking waves
(for example, Jacobsen et al., 2012), the present analysis would require
calculations to be extended through the breaking process and to assess
the extent to which an earlier breaking wave influences the evolution of
a subsequent higher wave; this particularly relates to the downshifting
of energy in the frequency domain. Given these difficulties, the present
paper will adopt a laboratory approach in which the pre-determined
linear events are rapidly generated as a sequence of deterministic waves
and the required non-linear crest heights (at (𝑥0, 𝑦0)) directly recorded.
Key to the success of this approach is the ability to consistently repro-
duce short segments of a measured long random wave record. This is
addressed in Fig. 10, within which sub-plot 10(a) considers a large non-
breaking wave and 10(b) a very large breaking wave. In both cases
comparisons are provided between the wave event recorded as part
of the long random wave simulation and two repeated generations of
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Fig. 7. Spatial profile of the linearly predicted surface elevation, 𝜂(𝑥, 𝑦), at four times: (a) 𝑡 = 0 s, (b) 𝑡 = 2.3 s, (c) 𝑡 = 4.7 s, (d) 𝑡 = 7.0 s This shows the evolution of a large wave
vent over the domain of interest. Data relates to a sea state with 𝑇𝑝 = 16 s and 𝑘𝑝𝑑 = 2.03. In (c), 𝜂𝐴max denotes the maximum elevation of this wave event.
Fig. 8. The generation of a spatial wave envelope. (a) 𝜂(𝑥) on lines of constant 𝑦 for one 𝑡, with the highest crest elevation marked by [∗]. (b) After repeating (a) for all times
relevant to an individual wave event, the envelope of the crest defines 𝜂max(𝑥, 𝑦) irrespective of the time at which it occurs. The maximum of the envelope, 𝜂𝐴max, irrespective of

here it occurs within the pre-determined domain is then used to rank the event, allowing the 𝑁 largest events to be identified. All calculations are based on linear simulations.
short segment of the wave record centred about the required wave
vent. Details of how this is achieved are given below; at this point the
urpose of Fig. 10 is to establish that any individual wave event within
long random record can be isolated and reproduced as a deterministic
vent within a short segment of the original; the segment based upon
dentical linear inputs to the wave paddles. To generate a sequence
f large deterministic wave events, whilst maintaining the accuracy
oted in Fig. 10, the experimental parameters noted in Table 1 must

be optimally defined. If any of these individual times is too small,
the accuracy may be reduced. Likewise, if the times are too long the
efficiency of their generation will decline.

Given the importance of these parameters to the success of the
proposed method, an initial investigation considered the generation of
the 20 largest waves recorded in 40 × 3-hour simulations of a sea

◦

8

state defined by 𝐻𝑠 = 10 m, 𝑇𝑝 = 16 s, 𝛾 = 2.5 and 𝜎𝜃 = 20 . In
this case, the wave events corresponding to the 20 largest were known
in advance (from long random simulations) so it was simply a matter
of reproducing the same 20 events, within short segments, calculating
the average error in the recorded crest heights and assessing how this
varied with the chosen parameters (Table 1). This allowed a rapid
investigation over a broad range of parameters. Having completed this,
a second assessment was undertaken in which all of the wave events
with exceedance probabilities lying in the range 10−3 ≥ 𝑄 ≥ 10−4 were
generated as deterministic events and the root-mean-square percentage
error (RMSPE) between the crest heights recorded in the random and
deterministic simulations calculated. This assessment, again undertaken
for the sea state noted above, was more onerous in terms of the wave
events generated and hence applied to a reduced range of parameters (
Table 1). However, it has the benefit of directly quantifying the errors

describing the tail of 𝑄(𝜂𝑐 ). Data arising from this second approach is
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Fig. 9. Analysis of the 𝑁 = 300 wave events selected from a linear simulation (Fig. 8); (a) with the ranking based upon the linearly predicted envelope maximum 𝜂𝐴max and (b)
ith the data re-ranked. Note that in both sub-figures the nonlinear crest elevation for the event in question is extracted from the relevant section of the long random laboratory

imulation.
Fig. 10. Reproducing individual events from a long random laboratory simulation of a given sea state (𝐻𝑠 = 15 m, 𝑇𝑝 = 16 s, 𝛾 = 2.5, 𝜎𝜃 = 20◦ and 𝑘𝑝𝑑 = 2.03); comparison between
𝜂(𝑡) recorded in the full random simulation and the isolated events generated from short segments for (a) a non-breaking wave and (b) a breaking wave.
Table 1
Key parameters when seeking to reproduce large highly nonlinear wave events within short segments of
wave records.
Parameter Definition/Purpose

𝑡pre-run The duration of paddle operation before the desired wave event occurs at (𝑥0 , 𝑦0).
This must be sufficiently long to ensure that all the contributing wave
frequencies can propagate from the paddles to (𝑥0 , 𝑦0)

𝑡after The duration of paddle operation after the desired wave event occurs at (𝑥0 , 𝑦0).
Seemingly unimportant but acts in conjunction with the ramp-down (see below)
to avoid spurious waves generated by rapid shutdown of the paddles.

𝑡ramp-up,
𝑡ramp-down

The intervals over which specified paddle motions are linearly increased (or
reduced) at the beginning (or end) of each generating segment. Necessary to
avoid abrupt motions of the paddles.

𝑡wait The period of rest (no wave generation) between adjacent wave generations; after
ramp-down and before the next ramp-up. Necessary to avoid build-up of
disturbances in the wave basin.
i
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presented on Fig. 11. Based upon these results the chosen parameters
ere defined as 𝑡pre-run = 45 s, 𝑡after = 5 s, 𝑡ramp-up = 𝑡ramp-down = 4 s

and 𝑡wait = 5 s. Adopting these values each deterministic segment takes
just under a minute to complete, with the next segment commencing
5s after the completion of the last. Most importantly, the data indicates
that the RMSPE in the deterministic simulation of the tail of 𝑄(𝜂𝑐 ) is
consistently less than 1%.

At this point it is important to discuss the earlier work of Schubert
et al. (2020). Whilst there are clearly some similarities between what
is presently proposed and what they did, there are also fundamental
differences. First, Schubert et al. sought to define the distribution of
9

oth the hourly maximum crest heights and wave heights. This was d
nitially achieved using long random laboratory testing. To ensure the
ost extreme events are included and to reduce the uncertainties as-

ociated with the estimated distributions they also used what they call
umerical pre-selection based upon second-order random wave theory.
his model is only weakly nonlinear and, as such, does not incorpo-
ate the near-resonant wave interactions defining both the downstream
hifting and the phase-locking discussed earlier, nor does it incorpo-
ate the dissipative effects of wave breaking. This is not a problem
rovided a large number of potential wave events are explored (in
ur case 𝑁) arising over a substantial area upstream of the point of
nterest (in our case (𝛥𝑥, 𝛥𝑦)). Unfortunately, Schubert et al. did not

o this; their numerical pre-selection involved looking at a single point
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Fig. 11. Defining the optimal choice of running parameters when seeking to reproduce large highly nonlinear wave events within short segments of wave records. Data based
pon 𝑁 = 300 wave events recorded in a sea state with 𝐻𝑠 = 10 m, 𝑇𝑝 = 16 s, 𝛾 = 2.5, 𝜎𝜃 = 20◦ and 𝑘𝑝𝑑 = 2.03. The error is defined as a Root-Mean-Square percentage (RMSPE)

for events lying in the range 10−3 ≥ 𝑄 ≥ 10−4 and used to quantify (a) 𝑡pre-run, (b) 𝑡after, (c) 𝑡ramp-up and 𝑡ramp-down.
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(their so-called reference gauge) and they only considered the hourly
maximum events arising from long numerical simulations. When taken
together, these omissions will produce a non-conservative bias in the
estimated parameters. This bias is acknowledged in their paper, the
return periods re-estimated using a correction or calibration factor
based upon a stochastic analysis of the data arising from their (inappro-
priate) numerical pre-selection. However, they provide no discussion
of the physical cause of this bias and its statistical treatment adds
unnecessary uncertainty in the estimated parameters. In contrast, the
present approach avoids these shortcomings by explicitly incorporating
the physical processes arising from both nonlinear wave evolution and
wave breaking in a consistent and robust methodology.

5. Comparisons to available data

Before combining and applying the methods outlined in Sections
Section 3 and 4, two additional issues need to be addressed. The first
relates to the method explained in Section 3: the identification of the
linear events that may, after their nonlinear evolution, populate the
tail of 𝑄(𝜂𝑐 ). Specifically, the most appropriate choice of 𝛥𝑥, 𝛥𝑦 and
𝑁 . In Section 3 it was simply assumed that adopting 𝛥𝑥 = 0.25𝜆𝑝 and
𝑦 = 0.10𝜆𝑝 with 𝑁 = 300 was adequate. Having explained how best
o quantify the errors in respect to the laboratory parameters (Table 1
nd Fig. 11), a similar approach is adopted in terms of 𝛥𝑥, 𝛥𝑦 and 𝑁
n Fig. 12(a), 12(b) and 12(c) respectively. In Figs. 12(a) and 12(b),
he data all arise from 40 × 3-hour random wave simulations: 𝑁 is
eld constant, the interrogation area is increased (first 𝛥𝑥 and then
𝑦, independently) and the linear wave events identified as described
n Section 3. For each linear event the corresponding nonlinear crest
levation arising at (𝑥0, 𝑦0) was identified from the long random ex-
erimental records and the data re-ranked to approximate the tail of
he distribution. The RMSPEs (relative to the full distribution solely
ased upon the random experimental data) were then calculated for
0−3 ≥ 𝑄 ≥ 10−4. The variation in the RMSPEs can be explained as
ollows. The minimum errors occur for 𝛥𝑥 = 0.25𝜆𝑝 and 𝛥𝑦 = 0.10𝜆𝑝,
ence the chosen values. With reductions in 𝛥𝑥 or 𝛥𝑦 the RMSPEs
ncrease (particularly with 𝛥𝑥) because not all the relevant large linear
vents are identified. Likewise, with an increase in 𝛥𝑥 or 𝛥𝑦 the RMSPEs
gain increase (particularly with 𝛥𝑦). In this case more linear maxima
ill potentially occur and 𝑁 would need to be increased to ensure
ll the relevant nonlinear maxima at (𝑥0, 𝑦0) are included. Fig. 12(c)
pecifically addresses the convergence with 𝑁 , assuming 𝛥𝑥 and 𝛥𝑦
re set to the above noted values. Within this figure, the solid line
s based upon the identification of specific linearly predicted wave
vents within the long random data, exactly as described above and
n Section 3. Based upon these results there appears little benefit of
etting 𝑁 > 200; the RMSPE for 10−3 ≥ 𝑄 ≥ 10−4 having reduced to
very small value (< 1%). In contrast, the dashed line on Fig. 12(c)

ombines the methods outlined in Sections 3 and 4. Having identified
10

he appropriate linear events, these were re-generated as deterministic t
egments using the parameters outlined in Section 4 (Table 1). The fact
hat this almost exactly reproduces the earlier result confirms success
f laboratory transformations outlined in Section 4; convergence again
eing achieved for 𝑁 = 200.

The final point that needs to be addressed concerns the exceedance
robabilities that are attributed to individual events. In the preceding
lots these were defined by the number of waves arising in the long ran-
om wave simulations. If the method is to be truly predictive, it must be
pplied without prior knowledge arising from long random simulations.
n such cases the total number of waves within a simulation must be
ased upon linear calculations. Whilst this is not expected to change
ue to nonlinear amplification, the role of wave breaking is less clear.
ig. 13 addresses exactly this point; it considers a broad range of sea
tate steepnesses and contrasts the total number of waves (Fig. 13(a))
nd the corresponding smallest 𝑄 (Fig. 13(b)) observed in long random
imulations and linear calculations for varying number of seeds, each 3-
our in duration. To be consistent with the usual presentation of 𝑄(𝜂𝑐 ),
he vertical axis of Fig. 13(b) is logarithmic. Whilst the actual 𝑄 values
re not identical, the difference is very small (< 1.4%); for all practical
urposes insignificant when considered on Fig. 13(b). This remains true
ven when considering the smallest probabilities in the steepest sea
tates.

Having defined all the necessary parameters, Figs. 14 and 15 com-
ine the methods outlined in Sections 3 and 4 to provide predictions
f 𝑄(𝜂𝑐∕𝐻𝑠) for exceedance probabilities lying in the range 10−3 ≥
≥ 10−4. All of the cases relate to steep sea states defined by 𝐻𝑠 =

5.0m, 𝑇𝑝 = 16 s and 𝑘𝑝𝑑 = 2.03. This is close to commonly applied
0−4 design conditions in the northern North Sea; the steepness of
he sea states being such that the tail of 𝑄(𝜂𝑐 ) is substantially affected
y wave breaking. Fig. 14 considers three sea states with varying
pectral bandwidths; the peak enhancement factor (𝛾) of the jonswap
pectrum varying from 𝛾 = 1.0, 2.5 and 5.0 in sub-plots (a), (b) and (c)
espectively. Likewise, Fig. 15 considers three sea states with varying
irectional spreads: 𝜎𝜃 = 0◦, 10◦ and 20◦. The first of these examples
s uni-directional and therefore physically unrealistic, but the range of
irectional spreads, 0◦ < 𝜎𝜃 ≤ 20◦, is consistent with field observations
nd recommended design guidance for temperate latitudes.3 In making
hese comparisons the 40 × 3-hour of random wave data recorded in
ach case were not in any way used in the predictive approach; it
imply provided a means of checking the final result.

Based upon these six cases, it is clear that the tail of the crest height
istribution can be accurately and very efficiently defined using the
ethod described. To complete 40 × 3-hour random simulations at a

cale of 𝑙𝑠 = 1 ∶ 100 (the corresponding time scale being 𝑡𝑠 = 1 ∶
0) takes approximately 20 h of continuous wave basin usage. Full
etails of how this is achieved is given in Latheef and Swan (2013) and

3 Although larger directional spreads are observed in hurricanes and
ropical cyclones, the present approach remains equally valid.
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Fig. 12. Optimising the choice of (a) 𝛥𝑥, (b) 𝛥𝑦 and (c) 𝑁 ; data again based upon wave events recorded in a sea state with 𝐻𝑠 = 15 m, 𝑇𝑝 = 16 s and 𝑘𝑝𝑑 = 2.03, and the RMSPEs
are defined for events lying in the range 10−3 ≥ 𝑄 ≥ 10−4. In part (c) additional comparisons are made between the corresponding wave records identified in the long random
simulation [solid line] and results of the short deterministic segments [dash line].

Fig. 13. Comparisons between the number of waves (𝑁) and the smallest corresponding exceedance probability, depending on the number of seeds and the sea state steepness,
𝑆𝑝.

Fig. 14. Measured and predicted 𝑄(𝜂𝑐 ) in sea states with 𝐻𝑠 = 15 m, 𝑇𝑝 = 16 s, 𝜎𝜃 = 20◦ and (a) 𝛾 = 1.0, (b) 𝛾 = 2.5 and (c) 𝛾 = 5.0. In part (d) the RMSPEs appropriate to these
cases are quantified as described previously for 10−3 ≥ 𝑄 ≥ 10−4. Note: new refers to data collected following the new method.
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Fig. 15. Measured and predicted 𝑄(𝜂𝑐 ) in sea states with 𝐻𝑠 = 15 m, 𝑇𝑝 = 16 s, 𝛾 = 2.5 and (a) 𝜎𝜃 = 0◦, (b) 𝜎𝜃 = 10◦ and (c) 𝜎𝜃 = 20◦. In part (d) the RMSPEs appropriate to these
cases are quantified as described previously, for 10−3 ≥ 𝑄 ≥ 10−4.
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Karmpadakis et al. (2019). In the present context it is important to note
that this involves a highly optimised procedure in which the use of the
wave basin is completely automated and therefore used continuously,
except during the essential settling periods. In contrast, the generation
of 𝑁 = 200 isolated wave events takes just over 3 h, so a full order
of magnitude quicker. Importantly, for exceedance probabilities lying
in the range 10−3 ≥ 𝑄 ≥ 10−4, Figs. 14(d) and 15(d) confirm that
he tail of 𝑄(𝜂𝑐 ) can be defined with no loss of accuracy; the RMSPE
ithin this range being approximately 1%. The only exception to this
ccurs in the uni-directional sea state (𝜎𝜃 = 0 on Fig. 15(a)). In this case
oth the extent of the downstream shifting and the intensity of wave
reaking will be much enhanced, due to increased wave front steepness.
evertheless, even in this case, the tail of the distribution continues to
e well described.

. Predicting confidence intervals

Having established that the tail of 𝑄(𝜂𝑐 ) can be accurately defined
sing the proposed method, attention must now turn to the definition of
he associated confidence intervals, CI. The importance of this interval,
articularly when seeking to define the effective reliability of a struc-
ure, was addressed in Section 2 and should not be under-estimated.
ig. 16(a) presents data arising from 40 × 3-hour linear simulations of
sea state defined by 𝐻𝑠 = 15 m, 𝑇𝑝 = 16 s, 𝛾 = 2.5 and 𝜎𝜃 = 15◦.
ather than concatenating the data to explore very small exceedance
robabilities, 𝑄 < 10−4, each of the 40 seeds is used to define a separate
istribution, 𝑄(𝜂𝑐∕𝐻𝑠), where 𝑄 now lies within the range: 100 > 𝑄 >
0−3. The fan of data that results is immediately apparent and allows
direct calculation of the CI; the 95% CI being commonly adopted

n engineering practice. Although Fig. 16(a) presents data based on
inear simulations, related plots could be based on second-order random
ave theory (Sharma and Dean, 1981) or fully nonlinear laboratory
bservations. Figs. 16(b), 16(c) and 16(d) contrast the results arising
rom these alternative data sets; each of these sub-plots concerning a
ifferent sea state steepness. In each case the spread of the data for a
iven 𝑄 is indicative of the CI and quantified by a standard deviation,
(𝜂𝑐∕𝐻𝑠). Fig. 16(b) concerns a near-linear sea state, with steepness
𝑝 = 0.008. In this example 𝜎 arising from the laboratory data and the
econd-order calculations are closely aligned and only marginally larger
12

han the linear solution; the difference becoming larger for reducing 𝑄. p
n contrast, Fig. 16(c) concerns a steeper sea state (𝑆𝑝 = 0.023). In this
ase 𝜎 from the second-order calculations is consistently larger than
he linear predictions for all 𝑄 ≤ 10−2. Moreover, the laboratory data
xhibits a further increase. The explanation for this trend lies in the
onlinear amplification of 𝜂𝑐 , first at 2nd-order and then, in respect
f the laboratory data, at 3rd-order and beyond. With the nonlinear
mplifications depending on wave steepness, but the data ranked in
erms of 𝜂𝑐 , the wave events corresponding to a given 𝑄 will exhibit
arying steepness (confirmed in Fig. 3) and hence varying nonlinear
mplifications leading to an increase in 𝜎. This pattern is repeated in
ig. 16(d) corresponding to an even steeper sea state (𝑆𝑝 = 0.038);
he only difference occurring in the very largest events (𝑄 ≈ 10−3) for
hich 𝜎 from the laboratory data exhibits a marked reduction. This is
riven by the dissipative effects of wave breaking, limiting the height of
ome of the steepest waves and hence reducing 𝜎. Interestingly, for the
mallest probability of exceedance (𝑄min), 𝜎 based upon the laboratory
ata lies below the linear predictions, emphasising the importance of
ave breaking.

Figs. 16(e) and (f) provide an alternative view of the same effects. In
hese cases the 𝜎 values are plotted as a function of the sea state steep-
ess, 𝑆𝑝, for 𝑄 = 10−2 and 10−3 respectively. Comparisons between
hese sub-plots confirm the dissipative effects of wave breaking and the
onsequent reduction in CI. As expected, the effect is most pronounced
n the steepest sea states.

With Fig. 16 having explored potential changes in CI due to the
mproved physical understanding outlined in Section 2, the question
hat remains is whether these effects can be predicted based upon the
ethodology outlined in Sections 3 and 4. Fig. 17(a) defines 𝑄(𝜂𝑐 )

ased upon the concatenation of the 40 × 3-hour of linear simulations
f the same sea state as presented in Fig. 16(a). As expected, the
esulting data lies very close to the Rayleigh distribution (Eq. (1)),
he only departures occurring in the extreme tail where CI is largest.
pplying a bootstrap analysis (Efron, 1979) allows the data to be
e-sampled and the CI estimated. These are shown to be in close
greement with theoretical estimates based upon the assumed Rayleigh
istribution following the distribution of ordered statistics (this can
e found in standard statistical texts, for example, Casella and Berger,
002; see also, in the context of ocean waves, Tayfun and Fedele, 2007).
ig. 17(b) shows exactly the same results, but with the exceedance

−3
robabilities focused on the tail of the distribution (10 ≥ 𝑄 ≥
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Fig. 16. Nonlinear changes in CI, characterised using the standard deviation, 𝜎, of the crest height distributions arising from multiple seeds. (a) Example data arising from
40 × 3-hour linear simulations. Calculated 𝜎(𝜂𝑐∕𝐻𝑠) vs 𝑄 for (b) a linear sea state (𝑆𝑝 = 0.008), (c) a nonlinear sea state (𝑆𝑝 = 0.023) and (d) a highly nonlinear sea state
(𝑆𝑝 = 0.038) incorporating multiple breaking waves. Calculated 𝜎(𝜂𝑐∕𝐻𝑠) vs 𝑆𝑝 for (e) 𝑄 = 10−2 and (f) 𝑄 = 10−3.
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2 × 10−5). In this figure the only limitation of the bootstrap analysis
lies in its inability to predict the upper-bound of the largest values
arising at the smallest 𝑄. This is exactly as expected; the method limited
by the available data. The obvious remedy for this is to ensure that
the available data always extends well beyond the smallest required
exceedance probability. Fig. 17(c) again considers a linear simulation
of the same sea state, focusing on the range 10−3 ≥ 𝑄 ≥ 2 × 10−5.
In this case comparisons are made between the full 40 × 3-hour long
random simulations and the 𝑁 = 200 isolated events generated as
deterministic waves using the methodology outlined in Section 3. With
ll the calculations linear, the correct data points are identified (as
xplained in Fig. 9(b)) and exactly overlie. The next step involves
pplying a bootstrap analysis to the 𝑁 = 200 points. Rather than
rdering the re-sampled data from smallest to largest 𝜂𝑐 , it is reverse-
rdered from largest to smallest, assuming the largest 𝜂𝑐 in each sample
orresponds to the linearly predicted exceedance, 𝑄 . Provided the
13

min
Is are only sought over a limited range (10−3 ≥ 𝑄 ≥ 2 × 10−5), which
ies well within that covered by the𝑁 = 200 points, the re-sampling will
e relevant over the target range and the CIs appropriately defined. The
uccess of this approach is clearly demonstrated in Fig. 17(c); the CIs
ased upon the long random simulations being closely approximated
y the analysis of the 𝑁 = 200 deterministic points. Whilst this is not
formal proof of the appropriateness of the adopted method, it serves

s a first example that the CI appropriate to the tail of the distribution
an also be quantified.

Fig. 17(d) provides a similar plot to Fig. 17(c), addresses a steep
sea state, 𝑆𝑝 = 0.038, defined by 𝐻𝑠 = 15 m, 𝑇𝑝 = 16 s, 𝛾 = 2.5
and 𝜎𝜃 = 15◦; the 40 × 3-hour of data (indicated in black) based
upon laboratory observations. Superimposed upon this data, the red
data points correspond to the largest fully nonlinear crests in ranked
order from the 𝑁 = 200 events identified from an independent linear
analysis (following Section 3) and subsequently regenerated as isolated
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Fig. 17. Estimating CI in the tail of the distribution. (a) Example data based upon 40 × 3-hour linear simulations (same sea state as Fig. 16(a)) with comparison to the Rayleigh
istribution. (b) Close up of (a) for 10−3 ≥ 𝑄 ≥ 2 × 10−5. (c) Comparison between full linear simulation and 𝑁 = 200 linear deterministic events. (d) As (c) for a highly non-linear
ea state (𝑆𝑝 = 0.038) with the traditional long random simulations (denoted by long-sim.) compared with 𝑁 = 200 deterministic events following the new method; and (e), (f) 95%
I at 𝑄 = 10−3 and 𝑄 = 10−4, respectively, with comparisons between alternative data sets. Note: lin.-sim. stands for linear simulation, sec.-sim stands for second-order simulation.
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eterministic wave events using the parameters discussed in Section 4
Table 1). Given the success outlined on Figs. 14 and 15, it is not sur-
rising that 𝑄(𝜂𝑐 ) is well defined. Moreover, given the further success
f a bootstrap analysis applied to a truncated data set of 𝑁 = 200
oints that are known to populate 𝑄(𝜂𝑐 ) within the range 10−3 ≥ 𝑄 ≥
× 10−5 (shown on Fig. 17(c)), it is interesting to note that similar

uccess is achieved in modelling the CI arising in a very steep sea state
ubject to the combined effects of nonlinear amplification and wave
reaking.

The lowermost sub-plots on Fig. 17 contrast the measured and
predicted 95% CI based upon linear, second-order and fully nonlinear
simulations close to 𝑄 = 10−3 and 10−4 respectively. The first case,
Fig. 17(e) shows that the CI increases due to nonlinear amplifications
arising both at second-order and above. In contrast, with 𝑄 = 10−4

on Fig. 17(f) the CI appropriate to the fully nonlinear observations
reduce relative to second-order predictions due to the dissipative effects
of wave breaking. Importantly, both cases show that the CI can be
accurately and efficiently estimated based upon an analysis of 𝑁 = 200
deterministic events.
14
7. Conclusion

A new method of defining both the tail of the short-term crest
height distribution, 𝑄(𝜂𝑐 ), and the associated confidence intervals, CIs,
has been outlined. This is based upon a two-stage analysis. First, a
relatively small number of extreme wave events are pre-selected from a
linear simulation of the target sea state. These events correspond to the
largest linearly predicted crest heights arising anywhere over an area
positioned immediately upstream of the target location at which point
statistics are required. Provided both the area and the number of linear
events are sufficiently large (the full details given in Section 3), this
et of linearly predicted events will encompass all those events which,
fter their nonlinear amplification/evolution and the dissipative effects
f wave breaking, populate the tail of the crest height distribution. The
econd stage, outlined in Section 4, seeks to incorporate both the full
onlinearity and wave breaking, essentially providing a linear to fully
onlinear transformation of each wave. Within the present paper this is
chieved empirically with isolated random waves generated determin-
stically. The proposed method has been shown to be both accurate and
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highly efficient when compared to independent laboratory data arising
from very long random wave simulations; the latter covering a broad
range of sea states. Importantly, the method concentrates on the largest,
and hence the most design-relevant crest heights, avoiding the need to
generate the very large number of near-linear waves which form the
majority of 𝑄(𝜂𝑐 ). As such, it is at least an order of magnitude quicker
than traditional approaches with no loss of accuracy; the RMSPEs being
less than 1% for exceedance probabilities lying in the range 10−3 ≥

≥ 10−4. This allows the rapid investigation of smaller exceedance
robabilities with a consequent reduction in the confidence intervals;
he latter defined using standard bootstrap procedures applied to the
eterministically generated data. Thus far, the method has been applied
o describe the short-term distribution of crest heights, but could easily
e adapted to describe the long-term distribution of either crest heights
r applied loads. This work is presently on-going, but with long-term
istributions involving a summation over all possible sea states, the
otential efficiency gains will be further increased with no loss of
ccuracy. Finally, the transformation of each pre-selected wave event
rom linear to fully nonlinear is presently undertaken using laboratory
bservations. With continued improvement in the numerical modelling
f breaking waves, future calculations may be achieved without re-
ourse to laboratory observations, giving further substantial efficiency
ains; as well as enabling the wider applicability of the method.
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