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SUMMARY

Score-driven models have been recently introduced as a general framework to specify time- 15

varying parameters of conditional densities. The score enjoys stochastic properties that make
these models easy to implement and convenient to apply in several contexts, ranging from bio-
statistics to finance. Score-driven parameter updates have been shown to be optimal in terms of
locally reducing a local version of the Kullback–Leibler divergence between the true conditional
density and the postulated density of the model. A key limitation of such an optimality property 20

is that it holds only locally both in the parameter space and sample space, yielding to a definition
of local Kullback–Leibler divergence that is in fact not a divergence measure. The current paper
shows that score-driven updates satisfy stronger optimality properties that are based on a global
definition of Kullback–Leibler divergence. In particular, it is shown that score-driven updates
reduce the distance between the expected updated parameter and the pseudo-true parameter. Fur- 25

thermore, depending on the conditional density and the scaling of the score, the optimality result
can hold globally over the parameter space, which can be viewed as a generalisation of the mono-
tonicity property of the stochastic gradient descent scheme. Several examples illustrate how the
results derived in the paper apply to specific models under different easy-to-check assumptions,
and provide a formal method to select the link-function and the scaling of the score. 30

Some key words: Kullback–Leibler divergence; pseudo-true parameters; score-driven models.

1. INTRODUCTION

A simple way to introduce dynamics in a statistical model is by allowing time variation in
some features of the probability distribution. One way to do so is by letting some of the parame-
ters that characterise the distribution itself to vary through time. Models that utilise this idea are 35

called time-varying parameter models. Cox (1981) gives a categorisation of time-varying param-
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2 P. GORGI ET AL.

eter models by dividing them into two classes: observation-driven models and parameter-driven
models. The former are models where the updating equation is specified as a function of the ob-
servations, instead, the latter are models where the dynamic equation is governed by idiosyncratic
innovations. In some cases, the same model can be specified both as a parameter-driven model40

and as an observation-driven model, see for example a linear Gaussian signal plus noise model
and its corresponding filtering recursions (Durbin & Koopman, 2012; Harvey, 1989). The cate-
gorisation turns out to be useful when non linear observation-driven models are considered, such
as the celebrated generalised autoregressive conditional heteroscedasticity (GARCH) model by
Bollerslev (1986) and Engle (1982). We refer the reader to Koopman et al. (2016) for a discussion45

on strengths and weaknesses of these two classes of models.
Creal et al. (2013) and Harvey (2013) introduce a general class of observation-driven models

that provide a unified framework to specify observation-driven time-varying parameters. This
class of models is commonly referred to as the class of score-driven models, and it is also known
as the Generalized Autoregressive Score or Dynamic Conditional Score class. The key feature50

of score-driven models is that the dynamic of the time-varying parameter is driven by a process
that is proportional to the score of the conditional likelihood taken with respect to the parame-
ter of interest. Score-driven models enjoy statistical properties that make these models easy to
implement as well as convenient to apply in several diverse contexts, such as, for instance, ro-
bust filtering (Harvey & Luati, 2014; Gorgi, 2020), spatio-temporal modelling with applications55

to neuroscience (Gasperoni et al., 2023) and finance (Blasques et al., 2016; Catania & Billé,
2017), quantile estimation (Patton et al., 2019; Catania & Luati, 2022), mixture models (Catania,
2021), and survival probability models (Gorgi, 2018). An up-to-date repository on articles that
use score-driven models is available at the following link, http://www.gasmodel.com/.

The use of the score to specify the updating equation of time-varying parameters has been60

motivated in the literature from a theoretical standpoint by showing that it locally reduces a local
version of the Kullback–Leibler (KL) divergence between the true conditional density and the
postulated density of the model. More specifically, Blasques et al. (2015) show that the sign of
the score is in the direction of reducing a local KL divergence. The key limitations of this result
is that it is local both in terms of the parameter space and the sample space on which the KL65

divergence is defined. In particular, the local KL divergence that is defined in Blasques et al.
(2015) is in fact not a divergence measure as it can also take negative values. Furthermore, the
result is also local in the parameter space as only the sign of the score matters and not the size
of the update, leading to the fact that any parameter update with the same sign is equivalent in
terms of the optimality definition in Blasques et al. (2015). Therefore, the result does not provide70

any theoretical insights on the optimality of the scaling of the score and on the choice of the link
function as any re-scaling of the score and any monotone link function are equivalent in terms of
the resulting sign of the score.

In this paper, we show that score-driven parameter updates satisfy stronger optimality proper-
ties that rely on a global definition of KL divergence. It is shown that the expected score-driven75

parameter update reduces the distance with respect to a pseudo-true time-varying parameter,
which is defined as the time-varying parameter that minimises the global KL divergence between
the true conditional density of the data generating process and the, possibly misspecified, con-
ditional density postulated by the model. Hence, we refer to optimality in conditional expected
variation. We provide different sets of conditions under which optimality can hold either globally80

over the parameter space or locally, requiring the size of the score update to become arbitrarily
small. We also show that, locally, optimality in conditional expected variation implies a reduction
in the mean squared error with respect to the pseudo-true parameter. We discuss through several
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On the optimality of score-driven models 3

examples how these conditions provide practical insights on how to select the scaling factor that
multiplies the score in the updating equation and the link function of the time-varying parameter. 85

The results in the paper are related to the stochastic gradient descent literature and they for-
malise the practical intuition given by Creal et al. (2013) to justify score-driven models, i.e.“The
use of the score for updating the parameter is intuitive. It defines a steepest ascent direction for
improving the model’s local fit in terms of the likelihood or density at time t given the current
position of the parameter. This provides the natural direction for updating the parameter”. More 90

precisely, the score-driven update can be seen as a time-varying optimisation problem, where the
sequence of objective functions is given by the conditional log-density postulated by the model.
The resulting optimality properties can be viewed as a natural generalisation of the monotonicity
property of the updates of a gradient descent scheme.

2. FILTERING WITH SCORE-DRIVEN MODELS 95

Let {yt}t∈Z be a time series process with elements taking values in Y ⊆ R. Assume that the
probability density function of yt conditional on Ft−1 = σ(yt−1, yt−2, . . . ) is given by p̃t(y),
i.e. yt|Ft−1 ∼ p̃t(y). We shall refer to p̃t(y) as the true conditional density function, which is
assumed to be unknown. We specify a conditional density function to model the time series
process 100

yt|Ft−1 ∼ p(y|λt), (1)

where the p(y|λt) is a probability density function and λt is a time-varying parameter that takes
values in the set Λ ⊆ R. In practice, p(y|λt) may be a parametric density function that also de-
pends on a static parameter vector to be estimated, however, this is not relevant for the optimality
results discussed below. We also note that the conditional density p(y|λt) may be misspecified
with respect to the true conditional density, namely, there may not be a value of λt such that 105

p(y|λt) = p̃t(y). Depending on the variables of interest and on the time points at which they
are evaluated, the model density in equation (1) will be equivalently denoted also as p(yt|λ),
p(yt|λt) or p(y|λ).

The score-driven framework of Creal et al. (2013) and Harvey (2013) provides a general ap-
proach to specify observation-driven time-varying parameters. A first order score-driven model 110

for the time-varying parameter λt is described by the following equation

λt+1 = ω + βλt + αS(λt)s(yt, λt), (2)

where S(λt) is a positive scaling factor and s(yt, λt) is the score of the predictive log-density

s(yt, λt) =
∂ log p(yt|λt)

∂λt
.

In the literature, the scaling factor S(λt) is typically selected to be a transformation of the con-
ditional Fisher information (Creal et al., 2013) and different scaling factors give rise to different
model specifications, see also Ayala et al. (2023) for an empirical comparison of scaling factors
in score driven models. 115

Blasques et al. (2015) show that score-driven parameter updates are locally optimal in reducing
a local version of the KL divergence between the true conditional density and the conditional
density of the model. The KL divergence between the true conditional density function p̃t(y)
and the conditional density function of the model p(y|λ) is

KLDt(λ) =

∫
R
p̃t(y) log

p̃t(y)

p(y|λ)
dy.
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4 P. GORGI ET AL.

The local KL divergence defined in Blasques et al. (2015) replaces the integration set R with a
small interval Yε ⊆ R around the observed value yt.

The optimality results in this paper extend the work of Blasques et al. (2015) in several re-
spects. In particular, the results in this paper are based on the global KL divergenceKLDt(λ) and
not a local version. This is a major feature since the local KL divergence in Blasques et al. (2015)120

is, in fact, not a divergence measure as it can be negative. As noted in Blasques et al. (2018b),
the local KL divergence in Blasques et al. (2015) is positive only if p̃t(yt) > p(yt|λt). However,
yt is a continuous random variable and therefore, in general, we have that p̃t(yt) < p(yt|λt) with
positive probability. This affects the interpretation of the results, as they do not actually entail
that there is a divergence measure such that the assumed density p(y|λt+1) is closer to the true125

one p̃t(y) compared to p(y|λt).
Blasques et al. (2015) consider the Newton-score parameter update, which is a special case of

the score-driven update in (2) with β = 1 and ω = 0,

λt+1 = λt + αS(λt)s(yt, λt), (3)

and show that the local KL divergence between p̃t(y) and p(y|λt+1) is smaller than the local
KL divergence between p̃t(y) and p(y|λt) for an arbitrarily small value of the score innovation130

S(λt)s(yt, λt).
In the following section, we derive optimality results for score-driven parameter updates with

respect to the pseudo-true time-varying parameter that minimises the conditional KL divergence
KLDt(λ). In particular, we show that the score-driven parameter update from λt to λt+1 gets
closer in expected value to the pseudo-true time-varying parameter. This provides a clear in-135

terpretation of score-driven filters as optimal approximations of a pseudo-true time-varying pa-
rameter in a misspecified framework. The criterion function used to characterise the otherwise
non-unique concept of optimality is formalised in the next section.

3. OPTIMALITY OF SCORE-DRIVEN UPDATES

3.1. Optimality results in conditional expected variation140

Let us define the pseudo-true time-varying parameter λ∗t as the value that minimises the KL
divergence

λ∗t = arg min
λ∈Λ

KLDt(λ).

We refer to Akaike (1998) and White (1982) for interpretation of KL divergence and its use in
statistics and econometrics. Throughout the paper, we use the shorthand notation Et(·) to denote
the expectation conditional on Ft, i.e. Et(·) = Et(·|Ft). We also define the function ft(λ) as
follows

ft(λ) = Et−1[log p(yt|λ)].

We note that the conditional expectation Et−1[log p(yt|λ)] is with respect to the true conditional
distribution of yt, i.e. p̃t(y). Hence, minimising KLDt(λ) is the equivalent of maximising ft(λ)
and therefore λ∗t maximises ft(λ).

We classify a parameter update from λt to λt+1 as optimal in conditional expected variation
(CEV), if the distance between the expected updated parameter Et−1(λt+1) and the pseudo-true145

λ∗t is smaller than the distance between λt and λ∗t . The interpretation is that the parameter update
from λt to λt+1 is based on the observable yt, which is generated under the true conditional
probability measure p̃t(y). A CEV optimal update is expected to process the information in yt to
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On the optimality of score-driven models 5

update λt in the correct direction in such a way that on average λt+1 gets closer to λ∗t . Namely,
the conditional expected variation from λt to λt+1 is in the direction of the pseudo-true parameter 150

λ∗t . Note that the expectation Et−1(λt+1) averages out only the impact of yt, which is the most
recent observation in the filter λt+1. A formal definition of CEV optimality is given below.

DEFINITION 1 (CONDITIONAL EXPECTED VARIATION OPTIMALITY). A parameter update
from λt to λt+1 is optimal in conditional expected variation if{

|λ∗t − Et−1(λt+1)| < |λ∗t − λt|, if λt 6= λ∗t ,

Et−1(λt+1) = λ∗t , if λt = λ∗t .

We start by introducing some regularity conditions on the model conditional density.

Assumption 1. The function ft(λ) is twice continuously differentiable in Λ with probability
one. Furthermore, the derivative and the conditional expectation of the conditional log-density
p can be interchanged, i.e.

f ′t(λ) = Et−1s(yt, λ),

for any λ ∈ Λ. 155

Assumption 1 is a standard regularity condition that enables us to interchange integration and
differentiation of the conditional log-density.

Assumption 2. The set Λ ⊆ R is open and convex. The pseudo-true time-varying parameter
λ∗t is the unique global maximum of ft(λ) in Λ with probability 1.

Assumption 2 ensures the existence and uniqueness of λ∗t and imposes some smoothness condi- 160

tions on ft(λ).

Assumption 3. The function S(λ) is continuously differentiable. There is a constant c > 0 such
that

0 < −∂S(λ)f ′t(λ)

∂λ
≤ c a.s. (4)

for any λ ∈ Λ.

Assumption 3 requires the expected score innovation to be a decreasing Lipschitz continuous 165

function with respect to λ. Under these assumptions, we obtain optimality in conditional ex-
pected variation of the Newton-score parameter update.

THEOREM 1. Let Assumptions 1-3 hold. Then, the Newton-score parameter update defined in
(3) with 0 < α < 2/c is CEV optimal.

The proof, in Appendix, follows similar arguments as the ones that are typically used to prove 170

the convergence of the gradient descent algorithm. Note that Assumptions 1-3 involve only the
conditional expectation, with respect to the true density, of the model log-density. In practice,
this expectation often reduces to some moment conditions on yt. As we shall see in Section 4, in
practice, the most restrictive assumption is the Lipschitz continuity of the expected score inno-
vation in Assumption 3. We consider a weaker Lipschitz condition that provides an alternative 175

to Assumption 3. This assumption can be used to deliver a local version of the optimality result
in Theorem 1.
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6 P. GORGI ET AL.

Assumption 4. For any compact subset Λc ⊂ Λ, there is a positive Ft−1-measurable random
variable ct such that the condition in (4) with c replaced by ct holds for any λ ∈ Λc.

Assumption 4 is weaker than Assumption 3 as it only requires the expected score function to be180

Lipschitz on compact subsets of Λ instead of the whole set Λ.

THEOREM 2. Let Assumptions 1, 2 and 4 hold. Then, there exists αt = at(λt, λ
∗
t ) > 0, where

at is a Ft−1-measurable random function, such that the Newton-score parameter update defined
in (3) with α replaced by αt is CEV optimal.

Theorem 2 provides a local result in the sense that it only guarantees that there is a small enough185

αt such that the Newton-score update is optimal. The size of αt depends on λt and λ∗t and
therefore αt may become arbitrarily small depending on the current state of λt and λ∗t . Several
examples are presented in Section 4 that illustrate how the choice of the scaling function S(λ),
as well as the link function for the time-varying parameter λt, can affect whether the global
optimality result or the local optimality result holds. It is important to remark that the concepts190

of local and global apply here to the parameter space Λ, not to the range of yt. As the updating
scheme in score-driven models is based on a derivative with respect to λ, it is expected that, in
absence of high level assumptions on the data generating process, optimality holds when small
variations of time-varying parameters are considered, see also the discussion in Van Os et al.
(2022).195

The results in Theorems 1 and 2 rely on the assumption that the function S(λ)f ′t(λ) is strictly
decreasing. This ensures that ft(λ) does not have stationary points other than the global maxi-
mum λ∗t , ruling out for instance the possibility of local maxima. As we shall see in Section 4,
for some models, this assumption may not be satisfied or, in general, it may be difficult to check
that it holds because f ′t(λ) may not be available in closed form. In the following, we consider200

a weaker version of the results derived so far, which only requires the function S(λ)f ′t(λ) to be
strictly decreasing in a neighborhood of the global maximum of ft(λ).

Assumption 5. Condition in (4) holds for any λ in an open neighborhood of the global maxi-
mum of ft(λ) for some value c > 0 that may depend on λ∗t .

Assumption 5 is a milder version of Assumption 3 that is required to hold only on a neighborhood205

of the global maximum of ft(λ).

THEOREM 3. Let Assumptions 1, 2 and 5 hold. Then, there is an ε > 0 such that the Newton-
score parameter update defined in (3) is CEV optimal for λt ∈ {λ ∈ Λ : |λ− λ∗t | < ε}.

Theorem 3 delivers the CEV optimality of the Newton-score update under the constraint that
the parameter value λt is close enough to the pseudo-true λ∗t . This condition is needed as the210

function ft(λ) is not required to be strictly concave in Λ and otherwise the parameter update
may go in the direction of a local maximum.

Theorem 3 applies to a very large class of models under standard regularity conditions, pro-
vided that the conditional density function is correctly specified, i.e. p̃t(y) = p(y|λ∗t ). If the
conditional density is correctly specified, then λ∗t is the time-varying parameter of the true con-215

ditional density. Therefore, in this case, f ′′t (λ∗t ) = −I(λ∗t ), where I(λ) is the Fisher information
associated with the conditional density function p(y|λ). Under standard regularity conditions on
the density function p(y|λ), the Fisher information I(λ) is a continuous function and I(λ) > 0
for any λ ∈ Λ. Note that the equality f ′′t (λt) = −I(λt) does not hold for λt 6= λ∗t as the con-
ditional expectation in f ′′t (λt) is taken with respect to the true parameter λ∗t . However, under220

continuity of the function f ′′t (λ), we have that f ′′t (λt)→ −I(λ∗t ) as |λt − λ∗t | → 0. Theorem 3
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On the optimality of score-driven models 7

imposes that λt is arbitrarily close to λ∗t and thus since I(λ∗t ) > 0 we obtain that f ′′t (λt) < 0 and
is bounded from below by a function of λ∗t . This entails that Assumption 5 holds.

Finally, we note that the CEV optimality results presented in this section also entail that the pa-
rameter update reduces the mean squared error (MSE) with respect to the pseudo-true parameter 225

λ∗t for a small enough α.

COROLLARY 1. Let the assumptions of either Theorem 1, Theorem 2 or Theorem 3 hold.
Furthermore, assume that Et−1s(yt, λ)2 <∞ a.s. for any λ ∈ Λ. Then, for any (λt, λ

∗
t ), λt 6=

λ∗t , there exists a small enough α > 0 such that the Newton-score update reduces the MSE with
respect to the pseudo-true λ∗t , i.e.

Et−1{(λ∗t − λt+1)2} < (λ∗t − λt)2.

The result in Corollary 1 can only hold for a small enough α that depends on λt and λ∗t . This is
intuitive as we have that α must be zero in the limit case where λ∗t = λt to achieve λt+1 = λt,
which entails Et−1{(λ∗t − λt+1)2} = (λ∗t − λt)2.

In summary, Theorems 1, 2 and 3 establish CEV optimality results under the easy-to-verify 230

conditions given in Assumptions 3, 4 and 5, respectively. The result of Theorem 1 is global as it
holds for any λt over the parameter space Λ and uniformly for a fixed value of α. On the other
hand, the result of Theorem 2 is local in the sense that it holds for any λt over the parameter
space Λ but not uniformly as α depends on λt and λ∗t . Finally, the result of Theorem 3 is fully
local at it holds for λt in a neighborhood of the pseudo-true parameter λ∗t . We note that the 235

KL divergence is in all cases the global one, defined over the whole sample space. It is easy
to see that Assumption 3 implies Assumption 4, which itself implies Assumption 5. As noted
above, Assumption 5 holds for a very wide class of models under high level conditions on the
true density. Assumptions 3 and 4 can be easily checked for any given density specification,
including different choices of the scaling factor and of the link function. Section 4 illustrates 240

through several examples how Theorems 1, 2 and 3 apply in practice and also their implications
on the range of optimality of the score coefficient α. Finally, Corollary 1 shows that, under the
same assumptions of Theorems 1, 2 and 3, CEV optimality implies a reduction of the MSE with
respect to the pseudo-true parameter.

3.2. Discussion on mean reversion 245

The conditional expected variation optimality discussed in Section 3.1 concerns the pseudo-
true time-varying parameter at time t, i.e. λ∗t . In practice, the updated time-varying parameter
λt+1 is useful to approximate λ∗t+1 and not λ∗t . However, the parameter update from λt to λt+1

relies on the observable variable yt at time t. Therefore, assumptions on how yt+1 relates to
yt, or, equivalently, on how λ∗t+1 relates to λ∗t , are required in order to make any claim on the 250

optimality of the score-driven parameter update with respect to λ∗t+1. In the rest of the section,
we discuss how CEV optimality is retained with respect to λ∗t+1 under some conditions. The
discussion below also motivates the use of the mean reverting score-driven specification in (2),
which is often considered in the empirical applications instead of the Newton-score specification.

First, we note that a form of CEV optimality also holds with respect to λ∗t+1 when the pseudo- 255

true parameter is a martingale process such that Et−1(λ∗t+1) = λ∗t . Under this condition, and
together with Assumptions 2-3, we obtain that if λt 6= λ∗t , then |Et−1(λ∗t+1 − λt+1)| < |λ∗t −
λt|. This result implies that the distance between the expected λ∗t+1 and λt+1 is smaller than the
distance between λ∗t and λt. We note that the result follows immediately from Theorem 1 as we
are assuming here that Et−1(λ∗t+1) = λ∗t . 260
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8 P. GORGI ET AL.

Second, if we assume that λ∗t is a mean reverting process with conditional expectation given by
Et−1(λ∗t+1) = ω + βλ∗t , and β ∈ (0, 1], we obtain an optimality property for the general case of
a score-driven parameter update in (2). In particular, following the same arguments as in the proof
of Theorem 1, it is straightforward to prove that for 0 < α < 2β/c the score-driven update in
(2) satisfies |Et−1(λ∗t+1 − λt+1)| < β|λ∗t − λt|, if λ∗t 6= λt. The implication is that the distance265

between the expected λ∗t+1 and λt+1 is smaller than the distance between λ∗t and λt multiplied
by the autoregressive coefficient β. The interpretation is that, due to its mean reverting behavior,
λ∗t+1 can be predicted to revert towards its unconditional mean and the score-driven parameter
update reduces the expected deviation between λ∗t+1 and λt+1 more than the reduction due to
the predictability implied by mean reversion. We also note that the intercept and autoregressive270

parameters ω and β are assumed to be the same for λt and λ∗t . In practice, ω and β in (2) are
not known and they have to be estimated. Due to the parametric nature of score-driven models,
the static parameters are usually estimated by the method of maximum likelihood, see Blasques
et al. (2022), under conditions of filter invertibility, see Blasques et al. (2018a).

4. EXAMPLES275

4.1. Beta-t-EGARCH model
Consider the Student-t scale model with exponential link function

yt = exp(λt/2)εt,

where εt has a Student-t distribution with zero mean, unit variance, and degrees of freedom
parameter 2 < ν <∞. For this model, the conditional Fisher information of the parameter of
interest, λt, is a constant. Using a unit scaling, i.e. S(λt) = 1, leads to the following score inno-
vation

S(λt)s(yt, λt) =
(ν + 1)y2

t

(ν − 2) exp(λt) + y2
t

− 1.

The corresponding model is the Beta-t-EGARCH originally proposed by Harvey & Chakravarthy
(2008), see also Harvey (2013), as a model for the scale parameter of a Student-t distribution with280

ν > 0.
In this example, the conditions of Theorem 1 are satisfied. The conditional log-density of the

model, up to additive constants, is

log p(yt|λt) = −λt
2
− ν + 1

2
log

{
1 +

y2
t

(ν − 2) exp(λt)

}
.

Assumption 1 can be shown to hold by the dominated convergence theorem, provided that
Et−1(y2

t ) <∞with probability 1. Furthermore,Et−1(y2
t ) <∞ entails that Assumption 2 holds,

as the Student-t log-likelihood has a unique maximum with respect to the variance parameter, see
Fan et al. (2014). As concerns Assumption 3, we have that

∂S(λ)f ′t(λ)

∂λ
= −Et−1

(ν − 2)(ν + 1)y2
t exp(λ)

{(ν − 2) exp(λ) + y2
t }2

,

which is strictly negative and uniformly bounded from below by a constant that depends on the
degrees of freedom parameter ν ∈ [2,∞).
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On the optimality of score-driven models 9

4.2. Beta-t-GARCH model
Consider the following scale model with Student-t innovations

yt =
√
λtεt,

where εt has a standardised Student-t distribution with ν > 2 degrees of freedom. Selecting
the inverse of the conditional Fisher information as scaling function, S(λt) = 2λ2

t , yields the
following score innovation for the time-varying parameter

S(λt)s(yt, λt) =
(ν + 1)y2

t

(ν − 2) + y2
t /λt

− λt.

The resulting score-driven model is the Beta-t-GARCH model discussed in Creal et al. (2013) 285

and Harvey (2013).
For this model, the assumptions of Theorems 1 and 2 are not satisfied, but the assumptions of

Theorem 3 hold. The conditional log-density of the model, up to additive constants, is

log p(yt|λt) = −1

2
log λt −

ν + 1

2
log

{
1 +

y2
t

(ν − 2)λt

}
.

Assumptions 1 and 2 hold as discussed in the previous paragraph for the Beta-t-EGARCH model,
while neither Assumption 3 nor Assumption 4 can be directly verified, as

∂S(λ)f ′t(λ)

∂λ
= Et−1

(ν + 1)y4
t

{(ν − 2)λ+ y2
t }2
− 1.

On the other hand, Assumption 5 can hold depending on the shape of the true conditional den-
sity. For instance, Assumption 5 is immediately satisfied if the conditional density is correctly
specified. We also note that in the limit case ν →∞, the Student-t distribution converges to the
normal and the score innovation becomes

S(λt)s(yt, λt) = y2
t − λt.

As discussed in Creal et al. (2013), the resulting score-driven model corresponds to the integrated
GARCH(1,1) model by Bollerslev (1986). Theorem 1 holds for this example as Assumption 3 is
satisfied, given that

∂S(λ)f ′t(λ)

∂λ
= −1.

By Theorem 1, as c = 1, the global optimality condition holds for 0 < α < 2.
Finally, we note that choosing different scaling functions in the score innovation, such as the

identity or the square root of the inverse of the conditional Fisher information, leads to different
results. For instance, using the latter up to a proportionality constant, i.e. using S(λt) = 2λt, the
score innovation is

S(λt)s(yt, λt) =
(ν + 1)y2

t

(ν − 2)λt + y2
t

− 1

and, consequently,

∂S(λ)f ′t(λ)

∂λ
= −Et−1

(ν + 1)(ν − 2)y2
t

{(ν − 2)λ+ y2
t }2

.
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10 P. GORGI ET AL.

By taking the limit λ→ 0, we can see that ∂S(λ)f ′t(λ)/∂λ is not bounded from below by a
constant, and therefore Assumption 3 does not hold. On the other hand, Assumption 4 is satisfied
and the local optimality result of Theorem 2 applies.290

4.3. Exponential Poisson autoregression
Consider the following Poisson time series model with exponential link function

yt|λt ∼ Po{exp(λt)},

where Po(µ) denotes a Poisson distribution with mean µ. Selecting the inverse of the condi-
tional Fisher information as scaling function, S(λt) = exp(−λt), leads to the following score
innovation for the time-varying parameter λt,

S(λt)s(yt, λt) =
yt

exp(λt)
− 1.

The resulting score-driven model is equivalent to the Po-EINGARCH model in Gorgi (2018) and
it is a special case of the class of Poisson observation-driven models of Davis et al. (2003). See
also Blazsek & Escribano (2016) for a generalization of this model to panel data.

For this model, the assumptions of Theorem 1 are not satisfied but, instead, the assumptions
of Theorem 2 hold. In particular, the conditional log-density of the model is

log p(yt|λt) = ytλt − exp(λt)− log(yt!).

Assumption 1 holds provided that Et−1(yt) <∞ with probability 1. Furthermore, Et−1(yt) <
∞ ensures that the pseudo-true parameter λ∗t = log{Et−1(yt)} is the unique maximiser of
ft(λ) = Et−1{log p(yt|λ)} with probability 1 and therefore Assumption 2 is satisfied. Finally,
we notice that

∂S(λ)f ′t(λ)

∂λ
= −Et−1(yt)

exp(λ)
.

Therefore, given the open set Λ = R, Assumption 3 does not hold as 1/ exp(λ)→∞ as λ→295

−∞ and, furthermore, Et−1(yt) may not be necessarily bounded by a constant, depending on
the true conditional density. Instead, Assumption 4 holds as, for any compact subset Λc ⊂ R, we
can define the Ft−1 measurable random variable ct = Et−1(yt)/ infλ∈Λc exp(λ) that satisfies
−∂S(λ)f ′t(λ)/∂λ ≤ ct for any λ ∈ Λc.

4.4. Poisson autoregression300

Consider the Poisson time series model with identity link function

yt|λt ∼ Po(λt).

Choosing the inverse of the conditional Fisher information as scaling function, S(λt) = λt, leads
to the following score innovation

S(λt)s(yt, λt) = yt − λt.

The resulting model is the Poisson autoregression by Fokianos et al. (2009). For this model, the
assumptions of Theorem 1 are satisfied. The conditional log-density of the model is

log p(yt|λt) = yt log(λt)− λt − log(yt!).

Assumption 1 trivially holds provided that Et−1(yt) <∞ with probability 1. Further-
more, Et−1(yt) <∞ implies that λ∗t = Et−1(yt) is the unique maximiser of ft(λ) =
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On the optimality of score-driven models 11

Et−1{log p(yt|λ)} with probability 1 and therefore Assumption 2 also holds. Finally, Assump-
tion 3 holds immediately as

∂S(λ)f ′t(λ)

∂λ
= −1.

Therefore, Theorem 1 applies with 0 < α < 2 as c = 1.
Contrary to the Beta-t-(E)GARCH examples, where the exponential link function leads to

global optimality, in (exponential) Poisson autoregressions, choosing the identity link function
leads to global optimality, while the exponential link function leads to local optimality.

4.5. Student-t location model 305

Consider the location model with Student-t innovations

yt = λt + εt,

where εt has a Student-t distribution with zero mean, ν degrees of freedom and scale σ. Selecting
the constant S(λt) = ν/(ν + 1) as a scaling function yields the following score innovation for
the time-varying location λt,

S(λt)s(yt, λt) =
(yt − λt)/σ

1 + (yt − λt)2/σ2ν
.

The resulting model is the score-driven location model given by Harvey & Luati (2014). The
conditional log-density of the model, up to additive constants, is

log p(yt|λt) = −ν + 1

2
log

{
1 +

(
yt − λt√

νσ

)2
}
.

Similarly to the case of the Beta-t-GARCH model, Assumptions 1 and 2 hold as long as
Et−1|yt| <∞ with probability 1. In addition, we have that

∂S(λ)f ′t(λ)

∂λ
= Et−1

(yt − λ)2/σ3ν − 1/σ

{1 + (yt − λ)2/σ2ν}2
, (5)

from which we note that Assumptions 3 and 4 do not hold and therefore Theorems 1 and 2 do not
apply. Instead, Assumption 5 holds under some conditions on the true conditional distribution.
For instance, if p̃t(y) is symmetric, the pseudo-true parameter λ∗t is the conditional expectation 310

of the true conditional distribution. Then, if the parameter σ2 is close to the variance of yt and
ν is relatively large, Assumption 5 holds and Theorem 3 applies. Another case where Theorem
3 immediately applies is when the Student-t density is correctly specified, as for λt close to λ∗t ,
f ′′t (λt) in equation (5) is negative and bounded from below by the negative Fisher information
evaluated at λ∗t , i.e. c = I(λ∗t ) = (ν + 1)(ν + 3)/ν2, see Harvey & Luati (2014, equation 11). 315

Therefore, the correctly specified Student-t score-driven location model is locally CEV optimal
as stated by Theorem 3 for 0 < α < 2ν2/{(ν + 1)(ν + 3)}. This result is novel in the score-
driven literature as no arguments on the range of α are available.

The examples considered in this section show how the specification of a different link func-
tion for the time-varying parameter and the selection of the scaling factor give rise to different 320

models and affect the optimality properties of the score-driven parameter update. The examples
also illustrate that Assumptions 3-5 form a practical framework to determine if global or local
optimality results hold for a specific model. We also note that the results immediately extend
to the stationary case as discussed in Section 3.2. For example, the correctly specified station-
ary Student-t score-driven model for the location parameter is locally CEV optimal as stated by 325
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12 P. GORGI ET AL.

Theorem 3 for 0 < α < 2βν2/{(ν + 1)(ν + 3)}, where β is the autoregressive parameter of the
stationary score-driven filter.

5. CONCLUDING REMARKS

Time-varying parameters of observation-driven models are often interpreted as misspeci-
fied filtering recursions. Theoretical analyses of these models are mainly concerned with their330

stochastic properties, such as stationarity, ergodicity and invertibility; see Blasques et al. (2018a)
for a discussion on the latter. In contrast, for linear models, filtering recursions are often studied
according to optimality properties that they possess with respect to criteria such as minimum
mean square distance or mean absolute deviation, with the literature that dates back to Kalman
(1960). This paper contributes to the literature that aims to investigate optimality properties of335

non-linear models, according to specific criteria that characterise the non-unique concept of opti-
mality, with focus on the class of score-driven models. The paper provides optimality properties
for score-driven filters in the direction of the pseudo-true parameter. The parallel drawn with the
stochastic gradient descent method constitutes the basis for possible extensions to the case of
multivariate score-driven filters, where the choice of the scaling matrix of the score is an open340

topic of debate.

APPENDIX

Proof of Theorem 1. First, we show that Assumption 3 implies the so-called co-coercivity of
the function S(λ)f ′t(λ), namely,

{S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)}(λ1 − λ2) ≤ −1

c
{S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)}2, ∀λ1, λ2 ∈ Λ.

In particular, by the mean value theorem we obtain that

dt(λ̄)(λ1 − λ2) = {S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)},

where dt(λ) = ∂S(λ)f ′t(λ)/∂λ and λ̄ is a point between λ1 and λ2. Assumption 3 imposes that
−c < dt(λ) < 0 a.s. for any λ ∈ Λ. Therefore, we immediately obtain the desired result

{S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)}(λ1 − λ2) =
1

dt(λ̄)
{S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)}2345

≤ sup
λ∈Λ

1

dt(λ)
{S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)}2

≤ −1

c
{S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)}2.

Next, by Assumption 1, we have that

{Et−1(λt+1)− λ∗t }2 ={λt + αS(λt)f
′
t(λt)− λ∗t }2

=(λt − λ∗t )2 + 2αS(λt)f
′
t(λt)(λt − λ∗t ) + α2S(λt)

2f ′t(λt)
2.350

Therefore, from the co-coercivity of S(λ)f ′t(λ) and accounting that f ′t(λ
∗
t ) = 0 a.s. since by

Assumption 2 the function ft is continuously differentiable and λ∗t is its unique maximiser in the
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On the optimality of score-driven models 13

open set Λ, we obtain that

{Et−1(λt+1)− λ∗t }2 ≤(λt − λ∗t )2 − 2

c
αS(λt)

2f ′t(λt)
2 + α2S(λt)

2f ′t(λt)
2

≤(λt − λ∗t )2 − α
(

2

c
− α

)
S(λt)

2f ′t(λt)
2. (6) 355

Finally, we notice that 0 < α < 2/c by assumption. Hence, we have that |Et−1(λt+1)− λ∗t | <
|λt − λ∗t | if S(λt)f

′
t(λt) 6= 0. Assumption 3 entails that the function S(λ)f ′t(λ) is strictly

decreasing. This, together with f ′t(λ
∗
t ) = 0, implies that S(λt)f

′
t(λt) = 0 if and only if λt = λ∗t .

Therefore, we conclude that |Et−1(λt+1)− λ∗t | < |λt − λ∗t | if λt 6= λ∗t and |Et−1(λt+1)−
λ∗t | = 0 if λt = λ∗t . � 360

Proof of Theorem 2. The proof is equivalent to the proof of Theorem 1 with the difference
that the co-coercivity of S(λ)f ′t(λ) only holds on compact subsets of Λ and the Lipschitz con-
stant ct is a Ft−1-measurable random variable. For any λ1, λ2 ∈ Λ, we define the compact set
Λ(λ1, λ2) = [min(λ1, λ2),max(λ1, λ2)]. Note that Λ(λ1, λ2) ⊂ Λ since Λ is convex. Next, by 365

Assumption 4, we obtain that

{S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)}(λ1 − λ2) =
1

dt(λ̄)
{S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)}2

≤ − 1

c̃t(λ1, λ2)
{S(λ1)f ′t(λ1)− S(λ2)f ′t(λ2)}2,

where c̃t(λ1, λ2) = − supλ∈Λ(λ1,λ2) dt(λ). The proof then follows the same argument as in the
proof of Theorem 1 by replacing α in the updating equation in (3) with αt = δ/c̃t(λt, λ

∗
t ) for

some δ ∈ (0, 2), which together with

{Et−1(λt+1)− λ∗t }2 ≤ (λt − λ∗t )2 − αt
{

2

c̃t(λt, λ∗t )
− αt

}
S(λt)

2f ′t(λt)
2

entails the desired result. �
370

Proof of Theorem 3. The proof follows the same argument as the proof of Theorem 1 with the
only difference that the result holds in the subset Λ∗t = {λ ∈ Λ : |λ− λ∗t | < ε} instead of the
whole parameter set Λ. In particular, we have that λt ∈ Λ∗t by assumption and λ∗t ∈ Λ∗t by the
definition of the set Λ∗t . Assumption 5 implies that there is a small enough ε such that Assumption
3 holds for the set Λ∗t instead of Λ. Finally, Assumptions 1 and 2 hold also for the set Λ∗t as they 375

hold for the set Λ and Λ∗t is a subset of Λ. �

Proof of Corollary 1. First, we obtain that the conditional variance of λt+1 given Ft−1 is

V art−1(λt+1) = α2S(λt)
2gt(λt),
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14 P. GORGI ET AL.

where gt(λ) = V art−1{s(yt, λ)} and gt(λ) <∞ a.s. by assumption. Next, we show that the
result holds under the conditions of Theorem 1. From the inequality in equation (6), we obtain

Et−1{(λ∗t − λt+1)2} = V art−1(λt+1) + {Et−1(λt+1)− λ∗t }2380

≤ V art−1(λt+1) + (λt − λ∗t )2 − α
(

2

c
− α

)
S(λt)

2f ′t(λt)
2

≤ (λt − λ∗t )2 + αS(λt)
2

[
α{gt(λt) + f ′t(λt)

2} − 2

c

]
.

Therefore, it follows thatEt−1{(λ∗t − λt+1)2} < (λt − λ∗t )2 when α < 2/[c{gt(λt) + f ′t(λt)
2}]

and λt 6= λ∗t . Finally, we note that the result also holds under the conditions of either Theorem 2
or Theorem 3 instead of Theorem 1 based on an equivalent argument. �385
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