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Abstract

Intracortical Brain-Machine Interfaces (iBMIs) have advanced significantly over the past

two decades, demonstrating their utility in various aspects, including neuroprosthetic control

and communication. To increase the information transfer rate and improve the devices’

robustness and longevity, iBMI technology aims to increase channel counts to access more

neural data while reducing invasiveness through miniaturisation and avoiding percutaneous

connectors (wired implants). However, as the number of channels increases, the raw data

bandwidth required for wireless transmission also increases becoming prohibitive, requiring

efficient on-implant processing to reduce the amount of data through data compression or

feature extraction.

The fundamental aim of this research is to develop methods for high-performance neu-

ral spike processing co-designed within low-power hardware that is scaleable for real-time

wireless BMI applications. The specific original contributions include the following:

Firstly, a new method has been developed for hardware-efficient spike detection, which

achieves state-of-the-art spike detection performance and significantly reduces the hardware

complexity. Secondly, a novel thresholding mechanism for spike detection has been intro-

duced. By incorporating firing rate information as a key determinant in establishing the spike

detection threshold, we have improved the adaptiveness of spike detection. This eventually

allows the spike detection to overcome the signal degradation that arises due to scar tissue

growth around the recording site, thereby ensuring enduringly stable spike detection results.

The long-term decoding performance, as a consequence, has also been improved notably.

Thirdly, the relationship between spike detection performance and neural decoding accu-

racy has been investigated to be nonlinear, offering new opportunities for further reducing

transmission bandwidth by at least 30% with minor decoding performance degradation.

In summary, this thesis presents a journey toward designing ultra-hardware-efficient spike

detection algorithms and applying them to reduce the data bandwidth and improve neural

decoding performance. The software-hardware co-design approach is essential for the next

generation of wireless brain-machine interfaces with increased channel counts and a highly

constrained hardware budget.
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Chapter 1

Introduction

1.1 Motivation

iBMIs have made significant progress in recent years, demonstrating the ability to allow hu-

mans to interact with their environment directly. These interfaces have been used to restore

lost abilities, enhance existing abilities, and even provide humans with new capabilities [1].

BMIs also offer a new tool for studying human neural systems and analysing neurological

disorders [2, 3].

Wired BMIs, such as the Blackrock Neuroport system [4], are the most well-developed

type of BMI. It was first developed in 2004 and is still in use for various challenging tasks,

such as decoding human handwriting [5] or speech [6,7]. However, their portability is limited

by the need for wired connections and on-workstation processing. Recent developments

in implantable BMIs, such as the one developed by Neuralink [8], have tried to improve

portability by using a wearable central processing node connected to flexible probes. The

Neuralink system still carries the risk of percutaneous connections leading to inflammation

and brain damage. Current research in iBMI technology focuses on increasing channel counts

to access more neural data, which could lead to a higher information transfer rate and

better robustness/longevity through redundancy. Efforts are also underway to reduce the

invasiveness of BMIs through miniaturisation and avoidance of percutaneous connectors,

such as by using wireless communication and distributed electrodes [1, 9, 10].

Algorithms should be designed with hardware efficiency in mind, so called a software-

hardware co-design. Both power and device size are hugely constrained on implants. Within

the circuits, the area utilisation is determined by the size of the analogue front-end, Analog-

to-Digital Converter (ADC), processing core, transmission modules and other peripherals,

while the total power consumption consists of static power, processing power and transmis-

sion power. A multidisciplinary effort is needed to fulfil the constraint. Advanced Integrated

Circuit (IC) design and Complementary Metal-Oxide-Semiconductor (CMOS) technology
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play crucial roles in reducing the size and power. Furthermore, the hardware-efficient al-

gorithms are also essential, particularly in mitigating the power limitations associated with

transmission – the primary system bottleneck. This is one key motivation for this project.

Specifically, transmission power is directly proportional to the data bandwidth. Consid-

ering a single-channel raw neural signal sampled at 24 kHz with a 16-bit ADC, the bandwidth

per channel amounts to 384 kbps; the wireless transmission power for each channel can reach

tens of micro-Watts, which is impractical for high channel count brain implants. Some form

of data reduction such as feature extraction and compression is necessary to reduce data

bandwidth and eliminate the transmission power bottleneck. Any additional power required

for on-implant processing must not exceed the power reduction resulting from transmission

optimisation. Furthermore, the utilisation of resources, particularly memory, for implement-

ing these algorithms must remain within reasonable limits to minimise area occupation.

Various methods have been developed to extract features from raw neural signals. How-

ever, there are limited options for on-implant use. Hardware-efficient feature extraction and

compression can effectively reduce the transmission power, processing power, and area occu-

pation while maintaining the brain activity decoding performance. Such a software-hardware

co-design is crucial for designing next-generation BMIs. The above challenges and benefits

motivate this project.

1.2 Research Objectives

Spike-based features are widely used in implantable BMIs. These systems face significant

challenges in adapting to dynamic brain environments and maintaining long-term decoding

performance. Implantable devices are amongst the most technically challenging electronic

systems, subject to constraints such as limited energy capacity, reliability, and intrinsic safety

requirements. The first step in a spike-based BMI system is spike detection, which extracts

the most informative features, namely spikes, from the raw signals. An efficient and effec-

tive spike detection algorithm has the potential to significantly reduce data bandwidth (2-3

orders of magnitude) while maintaining system performance. This research aims to develop

hardware-efficient spike detection suitable for real-time spike-based BMI with ultra-low power

consumption and minimal resource usage. Building upon the spike detection algorithm as

a foundation, this study explores opportunities to further reduce the wireless transmission

bandwidth and power through compression techniques, ultimately making wireless BMI fea-

sible. Novel machine learning models are expected to improve long-term decoding stability,

ensuring robust and reliable performance over extended periods. By addressing these chal-

lenges, this research tries to advance spike-based BMI systems, enabling their seamless inte-

gration into implantable devices with improved adaptiveness, power efficiency, and long-term

performance.
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To achieve all these, we have defined the following research objectives:

• Develop hardware-efficient real-time spike detection for safe and reliable

implantable use.

Spike detection has the potential to significantly reduce data bandwidth, but current

on-implant spike detection algorithms require excessive power and area exceeding the

implant resource budget. This study proposes new hardware-efficient spike detection

algorithms which to reduce complexity while maintaining performance compares to the

state-of-the-art.

• Enhance spike detection adaptiveness to varying brain environments.

Existing spike detection algorithms typically use fixed thresholds based on noise statis-

tics. This fails to adaptive to varying noise levels in different brain environments and

over time. The goal of this study is to overcome this limitation by comparing existing

thresholding techniques and proposing new algorithms to enhance the adaptiveness of

spike detection while maintaining low complexity.

• Investigate the relationship between spike detection and neural decoding

for improved system performance.

Spike detection plays a critical role in spike-based BMIs, as its output provides the in-

put for neural decoding. However, the understanding of the relationship between spike

detection and neural decoding remains unclear. This study aims to comprehensively

investigate such a relationship, providing valuable insights for system design in spike-

based BMIs. By investigating this relationship, new opportunities can potentially be

identified to enhance the overall performance of spike-based BMIs.

1.3 Thesis Outline

This thesis describes the journey of developing hardware-efficient adaptive spike detection

software-hardware co-design. It begins with simplifying the conventional path through

multiplication-free fixed-point spike detection. Then, the adaptiveness of statistical-based

spike detection algorithms is evaluated, leading to the development of an idealised model for

this type of spike detection algorithm. This model reveals the limitations of noise-statistical-

based thresholding and inspires the exploration of new thresholding mechanisms that can

better adapt to changing noise levels. The firing-rate-based spike detection algorithm is pro-

posed, which significantly outperforms statistical-based methods in terms of spike detection

accuracy, adaptiveness, and hardware complexity. Finally, the relationship between spike

detection and neural decoding is investigated, leading to the development of new algorithms
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for firing rate compression and decoding that reduce data bandwidth and improve long-term

decoding stability. The outline of this thesis is given as follows:

• Chapter 2 Brain-Machine Interfaces: Background and state of the art

This chapter provides an overview of the background information on BMIs, includ-

ing their development history, state-of-the-art, and future perspectives. It covers the

various types of recordings and datasets used in BMI systems and the signal process-

ing workflow, which includes techniques for enhancing the signal, extracting features,

decoding brain activities, and their associated challenges. Additionally, the chapter

explores the different hardware used in BMI systems, their advantages and disadvan-

tages.

• Chapter 3 Simplifying the conventional path: Multiplication-free fixed-

point spike detection

This chapter presents a new approach for spike detection that simplifies the conven-

tional path by using fixed-point representation and avoiding multiplications. The pro-

posed algorithm demonstrates similar spike detection performance as more complex

algorithms. Power consumption has also been measured on embedded targets, show-

ing promising results for potential implementation on implants. The use of fixed-point

representation and the elimination of multiplications in this spike detection algorithm

can lead to more hardware-efficient and low-power BMI systems.

• Chapter 4 The puzzle of adaptiveness: Statistical-based spike detection

deadend

In this chapter, the limitations of conventional statistical-based spike detection algo-

rithms in terms of adaptiveness are evaluated. An idealised spike detection model is

built using a synthetic dataset, and the results suggest that the widely used statistical-

based thresholding technique can suffer from parameter deviation at varying noise

levels. The findings highlight the need for a new thresholding technique that can

achieve fully automatic spike detection without requiring manual calibration.

• Chapter 5 New approach: Firing-rate-based neural spike detection

This chapter presents a novel approach to spike detection using a firing-rate-based algo-

rithm and its corresponding hardware implementation. Rather than setting thresholds

based on noise statistics, the algorithm relies on the hypothesis that neurons in a given

brain region fire at a normal rate. By leveraging neuroscientific findings to establish a

reasonable detection rate, the threshold can be automatically updated to provide ac-

curate detection. Results indicate that the proposed algorithm outperforms previous

approaches, achieving improved detection performance and adaptiveness. Furthermore,
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the FPGA and ASIC implementations demonstrate an order of magnitude reduction

in power consumption and area occupation compared to existing state-of-the-art im-

plementations.

• Chapter 6 Spike detection and beyond: The relationship between spike

detection and neural decoding performance

This chapter investigates the relationship between spike detection and neural decoding.

The result suggests that spike detection is no longer simply a matter of setting a

threshold to distinguish spikes from noise at an optimal level. Instead, it is a trade-off

between data bandwidth and neural decoding performance. In light of these findings,

new firing rate compression algorithms and decoding algorithms are proposed. These

techniques reduce the data bandwidth, keep it within wireless transmission budgets,

and improve long-term decoding stability.

• Chapter 7 Conclusion and future directions

This chapter concludes this thesis, summarises the original contribution and points out

the future potential building on this research.
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Chapter 2

Brain-Machine Interfaces:

Background and state of the art

This chapter provides an overview of the general background of iBMIs. It intro-

duces the historical development of BMIs, research techniques for recording elec-

trophysiology, neural signals, features, and datasets used in BMIs, as well as the

long-term degradation of implant electrodes and signal characteristics. Finally,

the commonly-used signal processing methods and decoding models for spike-based

BMI systems are introduced, as well as how algorithms are co-designed with the

hardware in these systems.

2.1 Brain Machine Interface: the past, now and future

BMIs, alternatively referred to as brain-computer interfaces or neural interfaces, are systems

that bridge the nervous systems with external devices for neural function restoration, neural

degeneration repair, communication recovery, or even human ability augmentation. The

development of these interfaces has reached significant milestones over the past decades, from

theoretical concepts and initial experiments to practical technology for clinical or customer

use.

Early research in the late 20th century studied the nature of neural signals and explores

how to use them to interact with computers. In a pioneering study by Fetz et al. in 1969

demonstrated that the firing rate from the single or multiple neurons of Non-Human Primates

(NHPs) could be modulated with visual stimulation and food reinforcement [12]. This study

A portion of the content in this chapter has been published in [11], with my full contribution to the

software/hardware algorithm design and result analysis
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was one of the earliest works proving the concept for BMI that neural activities could be

controlled voluntarily by the BMI. Georgopoulos et al. in 1986 found that each neuron in the

arm area of the primate motor cortex only controlled one single direction of movement [13].

This finding provided the foundation for movement decoding using motor cortex signals.

One of the first real-time systems controlled by neural activities was developed by Nicolelis

et al. in 1999, in which a robotic arm could be controlled by the neural activity of rats for

pressing the lever to obtain water [14]. This study demonstrated the possibility of using

BMI for movement restoration.

The BMI entered a rapid development stage in the early 21th century as the Utah array

and other microelectrode arrays became more refined for better signal quality, higher reso-

lution, more recording channels, and better biocompatibility, longevity, and safety. In 2004,

the Utah array was first implanted in humans with the launch of the BrainGate project [4].

The 4× 4mm array was placed in the arm area of the motor cortex of four paralysed patients.

The experiment showed the ability to control a computer cursor [4] or robotic arm [15] based

on spike signals extracted from the raw neural signal. Neuromodulation emerged as another

significant application of BMI technology. The electrical signals were delivered into a specific

area of the brain for patients with neurological disorders. It showed reduced symptoms such

as tremors or rigidity, providing an alternative treatment for the patients when the normal

medications are not effective [16]. Related studies showed new potential for BMI in clinical

use for the treatment of neurological disorders such as Parkinson’s disease or epilepsy.

In the current era, there has been a trend towards translating research outcomes into

commercial and more practical applications. This transition has been facilitated by advances

in neural recording technologies, the miniaturisation of hardware, and the integration of

Artificial Intelligence (AI) with BMIs. Neuralink is a representative company designing high-

bandwidth, implantable BMIs with the short-term goal of treating neurological disorders

and ultimately enhancing human cognition [8]. With the development of BMI technologies,

significant outcomes have been achieved in controlling paralysed [17] or prosthetic arms

control [18] for paralysed patients; controlling computer cursor [19, 20] for brain typing;

decoding handwriting [5] and speech intention [6, 7, 21] for communication recovery and

enhancement; controlling a “third thumb” for human ability augmentation [22], and more.

The current state-of-the-art BMIs for communication have hit 62 words per minute with an

error rate of 23.8% in a large vocabulary set [7] and the most advanced prototype for robotic

arm control has achieved ten degrees of freedom [23].

The development and commercial translation of current BMI systems faces several chal-

lenges. A key objective of the field is to develop recording systems with higher channel counts

to capture an increased amount of neural information [1]. However, the telemetry power for

transmitting the neural signal to the external processing node becomes an issue due to the

hardware constraints [24]. The stability of the electrodes is another challenge. Foreign body
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response in the brain, implantation trauma, and micromotion between the implants and

brain tissue can gradually or significantly affect the recording quality, making it difficult to

obtain high-quality long-term recordings, especially for wired implants [24, 25]. These chal-

lenges have motivated high-bandwidth BMIs with thousands of channels to be distributed

and wireless, while on-implant pre-processing is required for bandwidth reduction [1].

The development of BMIs requires multidisciplinary expertise including neuroscience,

computer science, microelectronics, materials, mechanical engineering, surgical and clinical

medicine, and more. The goal of BMI systems can vary widely, ranging from supporting

experimental neuroscience with a focus on signal integrity to conducting closed-loop ex-

periments that require near-real-time processing. Other efforts concentrate on developing

portable, power-constrained BMI devices with a strong emphasis on longevity and safety.

Additionally, studies explore the use of different hardware to accelerate neural signal pro-

cessing.

In this section, the different types of brain signals will be introduced, including the

dataset used in this thesis. Considering the broad aspects involved in the area of BMI,

we specifically focus on reviewing studies that concentrate on designing hardware-efficient

neural signal processing platforms for high channel count implantable BMIs. This area of

research is highly relevant to the objectives of this thesis and ensures alignment with the

core topic.

2.2 Recording technology

The advances in different recording technologies have increased the number of recorded neu-

rons and provided better signal quality and resolution. Microelectrode arrays (Utah array),

high-density probes (Neuropixels Probes), microwire probes, and flexible probes are four

types of widely used recording technologies.

2.2.1 Utah array

Utah arrays have long been pivotal in the neuronal recording. Developed in the late 20th

century by researchers at the University of Utah, Utah arrays comprise multiple microelec-

trodes arranged in a grid pattern, permitting simultaneous recording from a certain spot of

neural tissue on the cortical surface. It features 100 electrodes arranged in a 10×10 array

for 4×4mm(96 channels with 4 references). Blackrock Neurotech, a spin-off company from

the University of Utah, commercialises the Utah Array. Their Neuroport is currently the

only device approved by the United States Food and Drug Administration (FDA) for hu-

man brain implanting before 2023, and most of the BMI studies on humans use this type of

electrodes [5–7, 17, 21]. A standard experiment procedure is shown in Fig.2.1. This proce-
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Figure 2.1: A standard experiment procedure using Utah array. The non-human primate is operating a

ticker to control the cursor reaching target destination. The finger velocity is decoded from the neural signal

after applying signal processing and machine learning models.

dure is also followed by this thesis while datasets are from public available resources as in

Section.2.3.3 instead of being collected on our own.

2.2.2 Neuropixels probe

Neuropixels probes represent a significant leap in invasive recording technology. They are

high-density, silicon-based probes with up to 384 recording sites, enabling recordings with

high spatial resolution. The Neuropixels 1.0 comprises a single 10mm long shank of 70 ×

20µm cross-section, hosting 960 low-impedance, CMOS compatible, Titanium Nitride sites.

The integration of voltage signal filtering, amplification, multiplexing, and digitisation on the

6 × 9mm base of the probe eliminates noise and allows for the direct transmission of digital

data [26]. The miniaturised Neuropixels 2.0 is reported in [27] with 1/3 the size of the original

probe and the same capability. This design has resulted in an unprecedented capacity to

isolate and record spiking activity from hundreds of neurons per probe when implanted in

rats and mice. Neuropixels probes have been used in various neuroscience research areas in

studying the relationship between neural activities and spontaneous behaviours [28], decision-

making processes [29], and more [30–32].

2.2.3 Microwire electrodes

Microwire electrodes represent an alternative approach to invasive recording. Microwire

electrodes are thinner and more flexible than microelectrodes. The Paradormics company

introduces a novel system combining platinum-iridium microwire electrode arrays with a
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CMOS voltage amplifier array. This system is capable of simultaneous recording from 65,536

channels, sampled at a rate of 32 kHz with 12-bit resolution [33]. The system’s performance

has been demonstrated through bench testing and in-vivo experiments, achieving microwire-

based recordings with the highest channel count in sheep and rate [34], making it one of the

most powerful tools for cortical recording.

2.2.4 Flexible probe

The recent emergence of flexible probes, such as Neuralink’s technology, offers a promis-

ing alternative to traditional recording technologies. Founded in 2016, Neuralink is at the

forefront of developing flexible, thin-film electrodes that can be robotically inserted into the

brain, causing minimal tissue damage [8]. The Neuralink device features over 1000 chan-

nels for simultaneous recording and stimulation, providing a recording capacity that rivals

lead of the high-density Neuropixels probe. It also holds an edge due to the potentially re-

duced tissue damage courtesy of its flexible design. In real-time NHP experiments, subjects

were able to control cursor movement through the Neuralink devices, revealing the potential

this technology holds for future neuroscience research and neuroprosthetics. Neuralink was

recently approved by FDA for the first-in-human trial in May 2023.

2.3 Neural recordings and features

This section reviews different types of widely used recordings and neural signal features.

2.3.1 Intracellular recordings

Intracellular recordings are the signals recorded inside a neuron by inserting the measurement

electrode, typically a glass micropipette electrode, into the cell. Intracellular recordings pro-

vide high-resolution signals of individual neurons, which are considered to be a valuable tool

in neuroscience research, and the recordings enable studies to learn single neuron activities

and their response to external stimulation [35–37] .

2.3.2 Extracellular recordings

Extracellular recordings are measured outside the neurons. This type of recording records

the activities of multiple neurons, making the study of local neuronal networks viable. Extra-

cellular recordings are most preferred in BMI applications because they offer a less invasive

approach and are more feasible for in-vivo studies involving free-moving animals or humans.

However, the amplitude of the neuronal activities can be attenuated from 1,000 to 2,000
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times less [38], making it require additional processing to extract useful features. These fea-

tures for extracellular recordings include Local Field Potentials (LFPs) Extracellular Action

Potentials (EAPs), Single-Unit Activities (SUAs), Multi-Unit Activities (MUAs) and Entire

Spiking Activities (ESAs).

LFP reflects the joint activities of neuronal assemblies with a frequency typically below

300Hz. Its oscillatory activities, phase relationships, and spectral power are linked to differ-

ent states of consciousness, cognitive tasks, or neurological disorders [39]. LFP is particularly

preferred in Deep Brain Stimulation (DBS) to the clinical treatment like in Parkinson’s dis-

ease, guiding the stimulation to be delivered in a closed-loop manner [40].

EAP is one of the most important features in neural recordings. It is typical in 500Hz -

3 kHz frequency range, containing the electrical activities (spikes) fired by neurons. MUA is

obtained by thresholding the AP to detect these spikes, while SUA is obtained by clustering

the detected spikes and assigning the spikes to different neurons according to the waveform,

known as spike sorting. Both SUA and MUA are widely used in BMI systems for behaviour

or intention decoding [5–7, 17, 21]. ESA is a newly used feature in BMI applications. It is

obtained by rectifying and lowpass the EAP signal at around 50Hz. It represents the envelope

of the spike activities, which has the potential to provide high decoding performance with

low data bandwidth [41,42].

2.3.3 Publicly available datasets

There are a large number of datasets available in the community. The datasets used in

this thesis, including two real recordings obtained with Utah array [43] and Neuropixels

probes [44] and a synthetic dataset [45] synthesised with Utah array signal templates.

The Utah array recordings are publicly available in [43]. This dataset was collected on

the Motor Cortex of a non-human primate when the subject was operating a ticker to control

the ticker operating a cursor reaching task on a computer as shown in Fig.2.1. The finger

movement displacement and velocity were also recorded. It contains 5 hours of recordings

over 200 days, from June 27, 2016, to January 13, 2017. The recording is collected at

24,414Hz. Along with this dataset, threshold crossings are provided, which are obtained

using 3-5 times standard deviation values.

The Neuropixels dataset is publicly available at [44]. This dataset was obtained from

rodent visual cortex and collected by the Cortex Lab at University College London. Each

shank of the probes contained 384 channels, with each channel sampled at 30 kHz.

While in vivo recordings are valuable in providing a realistic representation of neural

activity, their usefulness is somewhat limited by the lack of ground truth. This makes

the quantitative evaluation and benchmarking of algorithms challenging. For this reason,

synthetic datasets have emerged as essential tools in these processes.
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Quiroga et al. presented an influential synthetic dataset [45]. It is widely used as a

benchmark for assessing spike detection and spike sorting algorithms [46–48]. This dataset

simulates the activity of three neurons using a Poisson process, with an average firing rate

of 20Hz per neuron. Notably, both the noise and spike templates in this dataset originate

from Utah array recordings. This feature enhances the verisimilitude of the synthetic data,

aligning it more closely with real neural recordings. It has 16 signals divided into four groups:

Easy1, Easy2, Difficult1, and Difficult2. Within each group, the noise standard deviation to

spike peak ratio is 0.05 to 0.2 with a step of 0.05. The sampling frequency of the original

recordings is 24 kHz.

Sample recordings with their amplitude and gradient distribution (after absolution) is

given in Fig.2.2. Though distributions are different across recordings, all distribution con-

tains a noise cluster near the origin and several spike clusters. Based on this observation,

various spike algorithms [42,49,50] have been design to estimate different statistics for setting

a threshold discriminating spikes from the noise.

2.4 Long-term electrode and signal degradation

Long-term operation of the BMI systems is challenging as the signal can degrade over time.

We attempt to improve long-term performance algorithmically. An overview of how the

electrode and signal degrade in the long term is provided in this section. The findings and

observations in this section are mainly from Barrese et al. in [51].

By examining the electrode conditions and recording quality from 27 NHPs, they evalu-

ated the, causes of electrode failures, recording qualities, and electrode impedance overtime.

The results suggests that Utah array is feasible to record spiking signals from Utah for 5.5

years, but the recording quality, both in terms of the number of channels and signal am-

plitude, consistently decreases over time. Most of failures (56%), happened within the first

year after implantation. Acute mechanical issues were the predominant class of failures,

making up 48% of the total, and within this class, connector problems were the main cause,

contributing to 83% of these failures. As for observable biological failures, which constituted

24% of the total failures, the most common issue was a progressive meningeal reaction that

caused the array to separate from the parenchyma, accounting for 14.5% of the total failures.

Among the total of 78 implants, 33% provided chronic recordings for over a year. Of the 26

arrays that managed to record for more than a year, a 61% continued to record for a second

full year. Additionally, 27% sustained recordings for a third year, 15% were functional for

four years, and 8% stayed functional for more than five years.

The short and long time scale analysis of the pattern from the electrical measurements

indicates changing patterns. Such patterns provide clues for the causes of failures and ap-

proaches that mitigate them. Impedance rises during the first two weeks after implantation
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and stays high for about 100 days.Then, they exhibit a continuous and steady impedance

decline with time. Initially high for the first few months, the number of channels with signals

(around 60) and signal amplitude also gradually decreased over the years. Similarly, noise

on the electrodes showed a decrease over time, leading to a flat Signal-to-Noise Ratio (SNR)

when all data is averaged. Meningeal encapsulation and the failure of insulating materials

are the primary contributors to the chronic decrease in impedance and deterioration of signal

quality.

2.5 Advances in neural signal processing

Fig.2.3 shows a standard procedures of BMI systems and summarises methods involved in

each step.

Various pre-processing and feature extraction algorithms have been proposed. In the

frequency domain, pre-processing involves frequency-band filtering to select different EEG,

ECoG and LFP bands of interest. Different frequency bands have been observed to have high

correlations with attention, sleep and neurological disorders [57]. Short-time Fourier trans-

form and Wavelet transforms [45, 58, 59] have both been used to analyse tempo-frequency

features of the signals and capture local patterns of neural spikes. Phase-lock value has been

found to be an efficient indicator for abnormal brain status detection [60]. Principal com-

ponent analysis (PCA) [61] is sometimes used to reduce the dimensionality of the extracted

tempo-frequency features.

Spike-based signals (MUA, SUA), which indicate local neuronal activities [62], can be pre-

processed in the time domain. Conventional spike pre-processing methods use the absolute

value, derivatives, power or standard deviation [45]. Some operators (e.g. Nonlinear Energy

Operator [53]) have been proposed to emphasise spikes and suppress noise. On top of the pre-

processed signal, many different spike detection [42,49,50,63] and sorting [64–67] algorithms

have been explored to resolve the spikes from the noise. There is also a low-power design to

extract the ESA signal demonstrating the power-saving opportunity from a reduced sampling

rate using ESA [42]. Pre-processing, feature extraction and dimensionality reduction distil

the valuable information (e.g. informative frequency bands or spikes) from the noisy signal

and reduce the bandwidth for further processing or transmission. Some studies [68] also

utilise lossless compression techniques like Huffman encoding to reduce the data rate further

to accommodate the low processing power and transmission power requirements.

Pre-processing signals are beneficial to downstream neural decoders, however a robust

and high-performing decoding algorithm is also key to the success of the whole system. Con-

ventional decoding approaches are adaptive filters like the Wiener filter [4], Wiener cascade

filter [69], Kalman filter [70] and Unscented Kalman filter [71]. Recently, with improve-

ments in artificial intelligence, machine learning and deep learning have been introduced
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for neural decoding. Various architectures have been explored and have achieved promis-

ing levels of decoding performance. These architectures include Support Vector Machine

(SVM) [72], Neural Network (NN) [73], Convolution Neural Network (CNN) [74], Recurrent

Neural Network (RNN) [5, 75], LSTM [76], Quasi-Recurrent Neural Network (QRNN) [41]

and attention-based models [77]. In terms of application to neurological disorders, there

are also various closed-loop control algorithms [56] that have been proposed for adaptive

neuromodulation to treat diseases such as epilepsy, Parkinson’s and essential tremor [78–80].

2.6 Software-hardware co-design considerations for BMI

systems

The concept of software-hardware co-design is important in facilitating the seamless inte-

gration of algorithms and hardware to leverage the inherent strengths of each component.

The algorithms implemented on the hardware must not only fulfill their intended functions

but also be tailored to harness the unique characteristics and capabilities of the hardware

platform, ultimately ensuring the algorithm to be hardware efficient.

The most powerful BMI systems take advantage of the high computing power provided by

high-performance Central Processing Units (CPUs) and Graphic Processing Units (GPUs)

in workstation computers. Some applications involve offline spike sorting acceleration [81] or

computationally intensive online decoding, such as in handwriting or speech decoding [5,7].

However, the high power consumption and lack of portability of these approaches reduce

their potential for commercial use. They also require specialised training to operate and

calibrate. As such, these technologies are mostly only used in laboratory settings.

Various real-time applications have also appeared. Some applications stream the recorded

brain data to wearable Microcontrollers (MCUs) for real-time signal processing, neural signal

decoding and closed-loop control. The Neuralink company has successfully decoded a pig’s

gait pattern and enabled a monkey to play games with such implantable devices [8]. There

are also various healthcare applications for closed-loop neuromodulation. Based on the

Medtronic Activa PC neuromodulator, the Activa PC+S was designed in 2012 [82]. Such

designs have been widely used for closed-loop DBS treating different kinds of neurological

disorders [83–85]. In 2018, an upgraded version, Summit RC+S [86], was introduced with

an enhanced data rate and real-time streaming capability. Neuropace Responsive Neural

System is another closed-loop neuromodulation system, which was approved by the FDA for

neurological therapy in Nov. 2013 [87].

There is a trend in the design of the next generation of implantable neural interfaces

towards increased channel count, reduced invasiveness, and increased longevity and scalabil-

ity [24]. Increased channel count increases the data bandwidth and makes it impossible to
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stream the raw data wirelessly to the MCUs. On-implant signal processing becomes essen-

tial to reduce the bandwidth to make it possible for wireless transmission. To minimise the

invasiveness and to increase the longevity of the implants, one should optimise both the size

and power consumption. The electronic systems must also be programmable to guarantee

their scalability. There is added complexity given that performance should not be compro-

mised while fulfilling all these requirements. Neuroscientists and engineers have made joint

efforts to overcome these difficulties. To create programmable, high-performance, low-cost,

tiny size and low-power systems, researchers use MCUs, FPGAs and ASICs to fully utilise

their features in different functional units within neural interface systems. Schaffer et al.

has used FPGAs for accelerating the real-time spike sorting [88, 89]. In 2018, a standalone

online spike sorting system was designed combining FPGA and ASIC circuits [67]. A fully

implantable neurostimulator was proposed in [90,91], which used an FPGA for front-end on-

implant neural signal pre-processing and an MCU for the event classification and stimulation

policy control.

Power consumption is clearly a significant concern in designing next generation neural

interfaces, and the distribution of power consumption in a neural interface system can vary.

The static power consumption is from the hardware itself. It includes, for example, the

recording electrodes, amplifiers, ADCs and FPGA/MCU/computer static running power.

The data transmission power is a significant concern, especially when wireless transmission

is used, as wireless link often is to reduce infection risks from percutaneous connections.

Processing power is another primary source of power consumption that has been investigated.

A diagram of three types of BMI systems and their pros and cons is given in Fig. 2.4 along

with typical power consumption distributions.

ASIC designs are the optimal solution for minimising power consumption and chip area.

However, due to the ease of the design process compared to ASICs, researchers tend to use

FPGAs to validate the ASICs’ performance before developing ASICs. FPGAs also have the

advantage of flexibility which suits programmable applications well. MCUs have significantly

higher power consumption. However they are easier to integrate with front-end analogue and

digital components, are more accessible for development, and are low cost. The selection of

platform architecture and implementation methodology, and associated trade-offs is critical

for implantable and/or on-node processing.
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have the same average peak spike amplitude, so they are all in random units.
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Figure 2.3: A standard workflow for BMI systems. Modules shown: different recording microelectronics,

pre-processing, feature extraction, dimensional reduction/compression and classification/prediction tech-

niques, and two use cases for intention/movement decoding and neuromodulation control. Plots at the

top and bottom illustrate examples for each step. Terms: MUA: Multi-Unit Activity. SUA: Single-Unit

Activity. ECoG: Electrocorticography. EEG: Electroencephalography. ESA: Entire-Spike Activity; this is

extracted from action potentials but is processed with field potential techniques [52]. NEO: Nonlinear En-

ergy Operator [53]. PSD: Power Spectrum Density. CCA: Canonical Correlations Analysis, an algorithm

commonly used for analysing EEG Steady-state visual evoked potentials [54]. PCA: Principal Component

Analysis, a technique to reduce the data dimensionality and is widely used in spike sorting [55]. PID: Propor-

tional–Integral–Derivative control, a useful approach to closed-loop neuromodulation control [56]. ML/DL:

Machine Learning/Deep Learning.
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Chapter 3

Simplifying the conventional feature

extraction: Multiplication-free

fixed-point spike detection

In this chapter, we delve into the early stages of designing a hardware-efficient

and adaptive spike detection algorithm. Our approach simplifies the conventional

statistical-based spike detection algorithm by leveraging a fully fixed-point repre-

sentation and eliminating the need for multiplications. The design philosophy

presented in this chapter has been inherited in our later designs, showcasing its

potential impact on future implantable BMI systems.

3.1 Introduction

There are several challenges to detecting the spike. The Local Field Potentials (LFP) can

leak to the Multi-unit Activities (MUA) band even though a filter is implemented at the

analogue front end. After digitisation, the first step to spike detection is to remove the

LFPs. The LFP-removed signal can be noisy. Pre-processing for removing the noise and

emphasising the spikes can be useful for enhancing the signal quality and improving the

detection performance. A threshold is then applied to the pre-processed signals, and the

intervals exceeding the threshold are detected as spikes. A robust threshold that can adapt

to different noise levels is essential for the success of the spike detection algorithm. Besides

A portion of the content in this chapter has been published in [92] with my full contribution to the

software/hardware algorithm design and result analysis.
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detection performance, the algorithm complexity is another concern. Algorithms for im-

plantable neural interfaces have a strict area and power budget constraints. Therefore, spike

detection should be designed with the minimum number of operations and the least amount

of memory.

This chapter presents a highly hardware-efficient (low complexity, low computation)

adaptive spike detection algorithm for implantable BMI applications. This includes a mean

subtraction filter to first eliminate any lower frequency components (e.g. LFP) from the

signal without introducing additional phase distortion. We also propose a novel operator,

Amplitude Slope Operator (ASO) as a hardware-efficient alternative to NEO for enhancing

the SNR of the EAP signals. The adaptive threshold is calculated periodically by taking

a running mean that excludes any detected spikes that have been detected but also runs a

concurrent subthreshold detection to exclude a portion of the undetected spikes within the

background activity. The algorithm was originally developed in MATLAB using floating-

point arithmetic and has been ported to a C implementation using fixed-point arithmetic.

This has been implemented on two embedded targets (ARM Cortex M0+ and ARM Cortex

M4 microcontrollers) to demonstrate the real-time capability, spike detection performance,

and low power/low complexity implementation.

3.2 Proposed spike detection algorithm

The algorithm for adaptive spike detection has been developed in three phases: (1) initial

methods conceived, tested, and optimised using MATLAB with floating point arithmetic; (2)

then translated to a fixed point representation; and (3) migrated to embedded targets using

the C programming language. Quiroga’s synthetic dataset [45] as introduced in Section.2.3

has been used for evaluating the proposed algorithm.

The workflow of the proposed spike detection system is illustrated in Fig. 3.1.

3.2.1 Mean subtraction filter

The aim of the mean subtraction is to remove the LFP – the low-frequency ‘background

noise’ in signals observed due to the aggregated network activity across the tissue. The

LFP mainly lies at frequencies below 300Hz. To remove this, we propose using a 16-point

moving average filter to find the local mean and subtract this mean from the current value

to align the signal. The buffer size 16 is selected by trading-off between the spike detection

performance and hardware cost, where increasing the buffer size further only brings less than

3% accuracy improvement with significantly increasing memory usage.

Instead of calculating the mean by summing a series of successive samples, we achieve

this by incrementally updating a weighted average as described in Eq. 3.1. This approach
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Figure 3.1: Overview of the proposed adaptive spike detection algorithm.

both simplifies the required computation and reduces memory requirements. The result of

the LFP removed signal is obtained by Eq. 3.2.

µn = µn−1 −
xn−16 − xn

16
(3.1)

yn = xn − µn−1 (3.2)

where µn is the nth mean of the signal, xn is the nth read value and yn is the mean-removed

xn. With this design, the summing operation in a filtering operation can then be replaced

with 2 additions (or subtractions). The number of required operations is therefore reduced

by a factor of 8. The complexity is reduced from O(N) to O(1) and the computation is

distributed across one duty cycle.

3.2.2 Amplitude slope operator

Inspired by the Multi-resolution Nonlinear Energy Operator [93], described by Eq. 3.3, we

propose a new operator, the ASO as shown below. By assuming the signals to be slow

varying, we are able to approximate yn+k as yn obtaining Eq. 3.4. After extracting the yn

from both terms, ASO in Eq. 3.5 is obtained. It uses one less multiplication and k fewer

sample buffers, which makes it suitable for real-time applications.

zn = yn
2 − yn+kyn−k (3.3)

≈ yn
2 − ynyn−k (3.4)

= yn (yn − yn−k) (3.5)
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able amplitudes and slopes.

where zn is the emphasised data and yn is the LFP-removed input data. In this equation,

yn stands for the amplitude and yn − yn−k stands for the slope at this point.

The NEO is proportional to the signal energy and frequency square according to [53], so is

able to emphasis the spikes. Referring to Fig. 3.2, a spike is different from noise because it has

a higher amplitude and a more significant slope or gradient, i.e. abrupt changes. Therefore,

intuitively the ASO amplifies the signal intervals that satisfy both these conditions whilst

suppressing signal intervals where only one or neither of these conditions are satisfied. Such

a design is also supported by the signal amplitude-gradient distribution in Fig.2.2, where the

spike is statistically discernible from the noise in both amplitude and gradient.

3.2.3 Adaptive thresholding

The spike detection step itself is performed by comparing the emphasised signal to a threshold

value. This threshold should be determined by the local statistics, providing a measure of

the local noise level. A spike is detected when the input signal crosses this threshold value.

There are several challenges in computing the threshold value, particularly in real-time

hardware applications. Firstly, the inherent need for statistics in computing the threshold

demands a lot of memory in a low-power/low-complexity setting. Secondly, the fact that each

recording electrode observes its own unique SNR means each channel needs to be individually

trained or calibrated. Thirdly, the signal observed at any given electrode itself changes over

time requiring repeated re-calibration. These challenges motivate the development of an

adaptive threshold method that uses an algorithmic approach to improve adaptiveness.

Developing an iterative function that estimates the noise level without requiring prior

history poses its own challenges. Samples where contain spikes for example can contribute

to erroneously raising the threshold value. It is thus essential to provide blanking to capture

a robust noise level. The overall threshold comparison process is described in Fig. 3.3. The

block labelled ‘Spike Detected’ reports the detected spike locations, and details of the block
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labelled ‘Update with Sub-threshold’ are shown in Fig. 3.4.
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Figure 3.4: Block diagram of the update algorithm

The algorithm operates as follows: an initial threshold value is set by calculating the

median value across the first 64 samples. Using the median is essential here because the

buffered values are likely to contain spikes, and this provides some robustness to outliers.

We compute the initial threshold by adapting the method reported in [45], with the threshold

described by Eq. 3.6. This has been modified (multiplier increased to ×22) to operate on

the enhanced/emphasized signal (after ASO pre-processor) instead of raw data.

Thr = 22σ, σ = median[
y (n)

0.6745
] (3.6)

Although the median is essential for initially setting the threshold, the trade-off between
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accuracy and complexity needs to be considered for the operation thereafter (i.e. regular

threshold update). The median, mean and standard deviation measures are widely used

in set a spike detection threshold. The mean is selected for the regular threshold update

after trading-off between the spike detection performance and computational costs. This is

performed by taking an average across a 64-sample window, as described in Eqs. 3.7 and 3.8.

µthr =
1

64

n−1
∑

i=n−64

zi (3.7)

Thr = 40 ∗ µthr (3.8)

The 40× multiplier has been determined through empirical tests (i.e. an exhaustive

search) also considering hardware implementability. Interestingly, the factor 40/64 = 0.625

is a close approximation of e−1/2, which related to the probability of the Gaussian distribution

at one standard deviation point. More explanation is given in Appendix.D The threshold

update is duty cycled to occur every 0.6 s, striking a trade-off between the adaptiveness

and average power requirements. This duty cycle frequency can potentially be tuned to be

significantly lower (as signals do not generally drift over seconds, but more on the scale of

hours or days).

Since using the signal mean to determine the threshold value is sensitive to outliers, e.g.

the presence of spikes would add error to the noise estimation, we implement two techniques

to eliminate the effect of spikes on the threshold computation:

1. Spike Exclusion (SE): This effectively blanks the samples associated with any detected

spikes when calculating the local mean. More specifically, this is implemented by

invoking a 1ms ‘refractory period’ whenever a spike is detected (it is observed that the

vast majority of spikes have a positive phase of approximately 0.7ms). This disables

any updates to the threshold computation during this period and as such excludes

the spike samples from the mean computation. Implementing this feature additionally

avoids multiple detections of a single spike.

2. Sub-threshold Exclusion (STE): For spikes that are not detected but clearly above the

‘noise’ level, the previous spike exclusion step does not exclude this from the mean com-

putation. Therefore, a separate spike detection is performed using half the threshold

value to further exclude any distinct spike signals. This has been adopted in prefer-

ence to reducing the spike detection threshold level to maintain a good balance between

overall sensitivity and false detection rate. It worth note that these small spikes are

actually informative for neural decoding. The benefits and drawbacks of detecting or

excluding these spikes will be shown in Section.6.2.
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3.2.4 Fixed-point migration

To improve the efficiency of hardware implementation (i.e. reducing complexity and power

consumption), a fixed-point representation is highly desirable.

To convert the previously described algorithm that is originally developed in MATLAB,

all 64-bit floating point variables are replaced with 16-bit short variables. This furthermore

provides the opportunity to replace multiplication (and division) operations with logical

bit shifts wherever scaling ratios are appropriate. The reduced precision in the arithmetic

however poses some issues that need to be addressed as below:

Mean subtraction Filter: The fixed point conversion first impacts the mean subtraction

operation (to filter out LFP signal), where the reduction in precision leads to the mean value

fading to a relatively small value that can lead to a significant error. This can be resolved

by regularly recalculating the mean such that its precision is restored before it is allowed to

‘fade’. Given the 8-bit precision, the recalculation interval is found to be 40ms (determined

empirically).

However, as the moving average filter is based on a 16-sample sliding window, its im-

plementation can be simplified by replacing the division operation with a 4-bit logical right

shift operation.

Amplitude Slope Operator: The ASO function can also be simplified in a similar manner

using a logical shift. The ASO operator is thus modified to:

zn = (yn − yn−1) << φ(yn ) (3.9)

where φ refers to the operator that finds the last power of 2 and << x stands for x-bit

left-shifting. Therefore, the need for multiplication can be altogether eliminated.

Adaptive threshold: The computation of the initial threshold is modified to account for

the fixed point representation, described in Eq. 3.10.

thrinit = median[y(n)] << 5 (3.10)

The threshold value here is rounded down to 32 times of the local median value (22/0.6745 ≈

32, according to Eq.3.6), implemented using a 5-bit left-shift of the median.

The updated threshold value (during the detection process) is then calculated according

to Eq. 3.11.

thr = µthr << 5 + µthr << 3 (3.11)

For the mean computation required for the sub-threshold elimination, we reverse the order

of operation (i.e. first right shift by 6 bits and then accumulate) to avoid the possibility of

an overflow given the 16-bit width.
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Table 3.1: A summary of the embedded target

CPU RAM/KB Flash/MB CLK/MHz ADC/bits DAC/bits Current µA/MHz

K64F ARM Cortex M4 256 4 128 16 12 250

K05Z ARM Cortex M0+ 32 1 48 12 12 45

3.2.5 Embedded implementation

To assess the hardware efficiency of the proposed algorithm we implement the algorithm on

a commercially-available embedded platform. Here, the power consumption can provide a

relative measure of computational complexity, whereas the memory requirements can provide

a measure of hardware complexity (i.e. silicon area).

We have implemented the proposed algorithm on two different microcontroller fami-

lies (ARM Cortex M0+ and ARM Cortex M4), using appropriate development platforms

(Freescale FRDM-KL05Z [94] and FRDM-K64F [95] respectively), for the power consump-

tion, memory requirement, and run times measurement of the proposed algorithm. The

FRDM-KL05Z platform is designed with efficiency in mind, which is ideal as an ultra-low

power demonstrator, while The FRDM-K64F board is a powerful MCU with low power con-

sumption. The board details are given in Table.3.1. The firmware has been programmed in

C using the MBED OS online compiler development environment. All variables are defined

using either unsigned short or short data types (16-bit integers). Since the typical frequency

range of observed spikes (measured extracellular action potentials) is 300Hz to 3 kHz, the

sampling frequency is set to be 7 kHz to avoid spike aliasing and keep the power consumption

as low as possible [96]. For spike sorting applications however a higher sampling frequency

would be desirable.

The algorithm itself has been developed with computational complexity and hardware

efficiency in mind. The previous section focused on translating this to fixed point arithmetic

to further reduce complexity. One additional consideration however is to achieve an approx-

imately constant computational load (operations per sample) to ensure efficient hardware

utilisation (e.g. clock optimisation).

Although the threshold update itself happens once each 0.6 s, it is essential to spread the

processing operations required throughout this 0.6 s period. The threshold update process

achieves this by interleaving operations during each sample period. This is implemented

by executing one of 3 different branches (shown previously in Fig. 3.4): ‘Wait for update’,

‘Accumulate mean’ and ‘Update threshold’. This approach both alleviates the need for loops

and additionally reduces memory requirements.

The subroutine for detection (mean subtraction, spike enhancement and threshold com-

parison) is invoked at the sampling rate (i.e. 7 kHz), controlled by a timer (low power timer
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in K64F). The MCU is set to a low-power sleep mode between samples and woken up on each

new sample. The timing for the threshold comparison duty cycle and spike elimination is

achieved by polling. This is to avoid using additional timers. The threshold is then updated

every 4,200 samples, and 5 samples will be skipped after a spike is detected for applying

spike elimination.

The ASO implementation is different in each of the MCUs. This is because the K64F

has a dedicated assembly instruction (Count Leading Zeros, CLZ) that can be leveraged to

determine the last power of 2. This reduces the multiplication and division operations to bit

shifting. The KL05Z however, does not support CLZ so needs to be implemented in software,

therefore requiring even more instructions than one single multiplication. The multiplication

therefore remains in the KL05Z implementation with ASO calculated according to Eq. 4.2.

The threshold comparison is implemented identically to the MATLAB implementation.

3.3 Results

This section presents results demonstrating the operation of the algorithm, spike detection

performance (e.g. sensitivity, accuracy, false detection rate), and hardware efficiency. The

power consumption, run time, and memory requirement for the hardware is then measured

to demonstrate the suitability for implantable BMI applications.

3.3.1 Evaluation metrics

Accuracy (Acc), Sensitivity (Sens) and False Detection Rate (FDR) are three metrics com-

monly used for spike detection performance evaluation, which are formulated as:

Sens =
TP

TP + FN
(3.12)

FDR =
FP

TP + FP
(3.13)

Acc =
TP

TP + FP + FN
(3.14)

where TP, true positive, is the number of spikes that have been correctly detected; FP, false

positive, is the number of moments that have been incorrectly detected as spikes; FN, false

negative, is the number of true spikes that the algorithm has not detected.

Acc is an overall metric that balances Sens and FDR. However, in spike detection, we

generally prefer high-sensitivity algorithms because a higher sensitivity means less informa-

tion loss. The wrongly detected spikes can be filtered out after detection, but missed spikes

cannot be restored.
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Table 3.2: Performance of spike detection on synthetic dataset

Dataset Easy1 Difficult1 Average

Noise Level 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 -

Fixed-point

Implementation

Acc 0.87 0.86 0.82 0.87 0.81 0.86 0.92 0.92 0.87

Sens 0.93 0.94 0.89 0.91 0.93 0.92 0.93 0.95 0.92

FDR 0.07 0.09 0.09 0.05 0.14 0.08 0.02 0.03 0.06

Float-point

Implementation

Acc 0.90 0.93 0.89 0.87 0.92 0.91 0.93 0.94 0.92

Sens 0.93 0.93 0.89 0.86 0.93 0.93 0.93 0.95 0.93

FDR 0.03 0.00 0.00 0.01 0.01 0.03 0.00 0.01 0.01

Offline spike detection

(reported in [45]

for comparison)

Acc 0.94 0.95 0.95 0.90 0.82 0.92 0.91 0.77 0.91

Sens 0.95 0.96 0.95 0.90 0.95 0.93 0.92 0.77 0.93

FDR 0.02 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.01

3.3.2 Detection performance on synthetic dataset

The results of the floating and fixed-point implementation are given in Table. 3.2 (Only Easy1

and Difficult1 are included for conciseness). We have also compared our results with [45,97–

99]. Spike detection performances are similar (Acc ranging from 90% to 99%). We provide

results for one of these datasets in Table. 3.2 (other datasets excluded for conciseness). We

however calculate the average scores for each of the different SNR levels across all four

dataset, with results shown in Fig.3.5. This clearly shows how the proposed algorithm is

robust to different noise levels. In [45], the scores could overfit to some noise levels and behave

worse in other cases (especially in 0.2 noise level). The performance variance is much smaller

in our implementation. From the table, one can notice that the average performance is similar

between the float-point implementation and the detection method in [45]. Migrating to the

fixed-point implementation, the sensitivity only degrades for 1% and the FDR is increased

for 5%. Such scarification gives us a power reduction of 2/3 as will be demonstrated in the

later section.

3.3.3 Mean subtraction v.s. High-Pass IIR Filter

It has been shown that in [96,100,101], causal IIR filters will cause phase distortion, i.e., the

phase response of the IIR filter is nonlinear in frequency, which can change the shape of the

spikes and reduce the detection accuracy.

However, with the mean subtraction, the phase response of the corresponding filter is

approximately linear. A comparison between the phase response of the proposed mean

subtraction filter (MS) and a 2-pole causal Butterworth filter (IIR) used in [96] is shown in
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Figure 3.5: A comparison of different algorithms on four noise levels

Table 3.3: Performance of spike detection on different settings. MS - Mean Subtraction, IIR

- second order Butterworth filter, ASO - Amplitude Slope Filter, NEO - Nonlinear Energy

operator, SE - Spike Elimination, STE - Subthreshold Exclusion.

Acc Sens FDR

MS - ASO - SE&STE 0.92 0.93 0.01

IIR - ASO - SE&STE 0.86 0.92 0.07

MS - NEO - SE&STE 0.90 0.90 <0.01

MS - ASO - SE 0.88 0.89 0.03

Fig. 3.6a. From the filtered results in Fig. 3.6b, it can be observed that by using the proposed

filter, the spike shape is preserved, which is beneficial to spike detection. A comparison of

the detection performance is shown in Table 3.3.

Here it can be observed that the proposed LFP removal technique can outperform an

IIR filter implementation, in particular the FDR, which is improved by some 6%.

3.3.4 ASO v.s. NEO

The proposed SNR enhancement function (ASO) is compared to a commonly used energy

operator (NEO) to assess its suitability as a pre-processing step for spike detection. A sample

spike recording is shown in Fig. 3.7 including both the ASO and NEO processed signals. It

can be observed that the ASO function produces higher peak values in comparison to the
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Figure 3.6: a) Phase response of the proposed mean subtraction filter (MS) and a second order Butterworth

filter (IIR), where the phase response of the proposed filter has significantly better linearity than that of the

Butterworth filter. b) Effect of two different filter types on a spike waveform. This illustrates that the

proposed filter does not attenuate the spike peak or distort the spike shape
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Figure 3.7: Comparison between the ASO and NEO pre-processor functions for SNR enhancement.

NEO.

According to Table. 3.3, a higher sensitivity can be achieved using ASO, however this

is at the cost of also a higher FDR. Overall, the detection accuracy is improved for 3% by

using ASO.

3.3.5 Spike elimination and subthresholding exclusion

As described previously the noise estimation is used to define the adaptive threshold level.

This is based on a running average, excluding any samples referring to detecting spikes and

background activity. This is achieved by applying Spike Elimination (SE) and Subthreshold-

ing Exclusion (STE).

This process is illustrated in Fig. 3.8 demonstrating the impact of applying these estima-

tion enhancement techniques. The upper plot here shows the SNR-enhanced signal (after
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ASO pre-processing) and samples that are used for the noise estimation after SE and STE. It

can be observed that by using SE and STE, most of the spikes are removed from the samples

used for calculating the threshold. The lower plot shows the threshold based alone on ASO

pre-processed signal, and with SE and both SE/STE techniques. The detected spike trains

are shown below the plot alongside the ground truth data. This qualitatively demonstrates

the effectiveness of the noise estimation algorithm as implemented. It is clearly observed

that with the use of the exclusion techniques (SE/STE), the threshold is much more stable

and spike detection performance is improved.
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Figure 3.8: Noise estimation process using the SNR enhanced signal. Shown are: (a) SNR enhanced signal

(using ASO function) with excluded samples annotated (i.e. for noise estimation); (b) noise level estimation

based on averaging samples corresponding to noise (using different techniques); (c) spike train of detected

spikes (using different techniques) including ground truth.

The overall performance evaluation is provided in Table 3.3. It can be observed that all

the performance metrics are improved by applying both SE and STE techniques: 4% for

Acc, 2% for FDR, and 4% for Sens on average.
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3.3.6 Hardware evaluation

To demonstrate the suitability of the proposed algorithm for hardware implementation, we

have used embedded targets to measure the resource utilisation (memory), power consump-

tion and run time. The test data has been transferred from MATLAB to an arbitrary

waveform generator, with output observed using an oscilloscope. A snapshot of the oscillo-

scope is given in Fig. 3.9. The system here is tested with a broadband input signal (including

both LFP and extracellular action potential recording) with an increasing noise level (added

Gaussian noise with SNR decreasing from 5dB to -5 dB), then with a step change (to no

added noise). This demonstrates the effectiveness and ability of the algorithm to adapt to

signals with changing SNR.

Original Signal

ASO

Threshold

Figure 3.9: Real-time implementation of the adaptive spike detection algorithm on the Freescale FRDM-

KL05Z microcontroller platform. Shown are: the original input signal (green trace), SNR enhanced signal

(i.e. pre-processed using ASO function) (blue trace) and adaptive threshold (red trace).

Memory utilisation: In total there are 27 variables declared that include the 16-sample

buffer (for mean subtraction). The zero initialised data is therefore 27× 2 bytes= 54 bytes for

the fixed-point implementation and 27× 4 bytes= 108 bytes for the floating-point implemen-

tation for both KL05Z and K64F target, with the program memory requiring approximately

3 kb flash. It is worth to be mentioned that in the implementation the threshold calculation

does not require a buffer, saving the need for a further 63 variables.

Power consumption and runtime: To improve precision in both energy and timing mea-

surements (taken using an oscilloscope), we repeat each function 500 times, such that an

average value for a single operation can be determined. All tests are initially done on the

K64F platform (ARM Cortex M4 microcontroller) with the ‘final’ optimised algorithm and

then compared to an equivalent implementation on the KL05Z platform (ARM Cortex M0+).

• NEO vs. ASO: This is first tested for a floating point implementation - the average

power consumption for these functions are 0.87mW and 0.14mW respectively. The
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Table 3.4: Average power, energy per operation and run-time of each function for floating

and fixed point implementations

Operation Floating point, K64F Fixed point, K64F Fixed point, KL05Z

Power Energy Time Power Energy Time Power Energy Time

(mW) (pJ) (ns) (mW) (pJ) (ns) (mW) (pJ) (ns)

Subtract mean 3.20 509 160 1.17 187 160 0.15 87 578

ASO 0.14 8 60 0.14 14 100 0.15 9 60

Threshold

Wait for update 0 0 54 0 0 43 0 0 124

Accumulate mean 0.94 134 143 0.14 19 133 0.04 12 343

Update 1.62 281 174 0.94 147 157 0.21 113 546

Recalculate mean - - - 1.20 759 612 0.08 85 1000

Average/total amount per sample 1.90 519 275 0.75 204 306 0.13 97 769

run-time for each operation is 60 ns. This corresponds to an energy per SNR enhance-

ment operation of 52.2 pJ and 8.4 pJ. As expected the ASO implementation consumes

significantly less power.

• Floating point vs. fixed point: The algorithm is then tested using both a floating and

fixed-point implementation. The average power, energy per operation and run-times

for each implementation are given in Table 3.4. One key observation is that the power

requirements for ASO operation does not reduce for the fixed point implementation,

in fact the run-time increases. This is possibly due to the availability of hardware

multiplication in the ARM Cortex-M4 or the pipeline hazard of multiple MAC in-

stitutions. The average power consumption of the floating-point implementation is

1.9mW (519pJ per sample), compared to the fixed-point implementation consuming

only 0.75mW (204pJ per sample). The run-time is slightly increased in going from

floating point to fixed point implementation from 275 ns to 304 ns (per sample). This

would allow for over 450 channels to be implementable using a single microcontroller

with 7 kHz sampling rate.

• K64F (ARM Cortex M4) vs. KL05Z (ARM Cortex M0+): The same algorithm is then

implemented in KL05Z. The average power, energy per operation and run-times for

each operation are also given in Table 3.4. The power is highly reduced with KL05Z

since the clock frequency is decreased from 120MHz to 48MHz. The average power is

measured to be 0.13mW, which is 17% that of the K64F fixed point implementation

and 7% of the floating point implementation on K64F. The run-time however increases

to 768 ns. This however still can support nearly 200 channels sampled at 7 kHz.
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Table 3.5: Comparison with computational methods for spike detection

Algorithm Sens Low

complexity

Our work ASO 92% ✓

[108] NEO >90% ✓

[114] SNEO >90% ✓

[113] SNEO 90% ✓

[115] Sigma&Delta 99% ✓

[105] PCA 99% ✗

3.3.7 Comparison to state-of-the-art

Although there exists a significant amount of previous work on spike detection [102–104],

the vast majority focuses on computational methods for offline analysis. Although there

are several examples in the literature of hardware implementations [49, 105–111], it is not

possible to assemble a fair and comprehensive comparison. This is in part due to the diverse

hardware methods available (e.g. ASIC implementation, embedded processor, reconfigurable

logic, computational emulation). In this section, we therefore select a narrow representative

sample to include some qualitative comparison.

Computational methods: Five specific algorithms from the literature have been selected

for comparison with the presented algorithm, provided in Table 3.5. These methods achieve a

slightly higher sensitivity to the method described herein (compared to fixed point implemen-

tation) but with significantly higher computational complexity. For example, not to mention

the complexity of PCA decomposition in [105], which required offline training and real-time

projection, the complexity of template matching [112] is at least O(MN), where M stands

for the template length, and N is the signal length. For NEO [108] and SNEO [113, 114],

this is reported to have a complexity of O(N), which is comparable to the proposed method,

however, the LFP removal are not considered.

Hardware methods: The hardware implementation is compared with four different works

that target embedded processors [109, 116] and an integrated circuit implementation [106,

117], shown in Table 3.6. Orders of magnitude of power are reduced compared to the studies

using MSP430 but this is also due to the different CPU architecture. Compared to the work

in [116] which uses KL25Z MCU featuring the same ARM Cortex M0+ core, the proposed

implementation has achieved even lower power consumption given that that work does not

support pre-processing and employed static threshold.
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Table 3.6: Comparison with hardware methods for spike detection

Power Hardware Pre- Adaptive

/mW peocessing Thr

Our work 0.12 KL05Z ✓ ✓

[116] 0.255 KL25Z ✗ ✗

[109] >41.9 MSP430 ✓ ✗

[118] 16.5 MSP430 ✓ ✓

[106] 0.11 0.6µm CMOS ✓ ✓

[117] 5e−5 0.13µmCMOS ✓ ✓

3.4 Discussion

The results above demonstrate the good performance of the proposed spike detection algo-

rithm and the hardware cost reduced from hardware-efficient design. However, there is still

improvement potential.

3.4.1 Multiplication-free fixed-point spike detection

By using a fully fixed-point representation and replacing the multiplication with a logical

shift, a substantial reduction of over 50% in power and memory usage has been achieved in

on-implant spike detection. This represents a big step forward for on-implant spike detec-

tion. However, reduced precision is detrimental to noise estimation and bit-shift-estimated

multiplication further reduces the spike detection performance. Though the sensitivity is

less affected, 5% more false detection reduces the fixed-point algorithm detection accuracy

to below 90%. While the hardware cost is significantly reduced, there is still a need to en-

hance spike detection performance to ensure the extraction of high-quality features from the

raw neural signal.

3.4.2 Statistical-based thresholding

In this study, a two-step approach is employed for setting the threshold in spike detection.

Initially, the median threshold is utilised to establish the initial threshold, eliminating the

impact of the spike outliers. Subsequently, the mean threshold is employed to reduce power

and resource usage. Additionally, Spike Elimination (SE) and Subthreshold Exclusion (STE)

are incorporated with the mean threshold to mitigate interference from spikes. However, the

practical implementation on FPGA or ASIC raises concerns. There are some concerns in

practice when translating the implementation into FPGA or ASIC. The need for a dedicated
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circuit solely for median calculation results in wasteful resource utilization since it is used only

once. Furthermore, during parameter selection, it is observed that the optimal parameter

setting for spike detection varies with different noise levels. The multiplier to the mean value

tends to be smaller in lower SNR scenarios. The adaptiveness is limited and calibration is

still required. These challenges motivate the subsequent chapter to investigate the optimal

setting of spike detection parameters, aiming to go beyond trial and error methods and

improve adaptiveness.

3.5 Conclusion

This chapter has presented a efficient spike detection algorithm and hardware realisation

intended for autonomous, calibration-free high channel count systems. Key features of the

algorithm include:

• It includes a mean subtraction filter that can minimise the phase distortion whilst

removing the LFP.

• A novel pre-processor to enhance SNR with a lower computational complexity com-

pared to the gold standard NEO operator.

• A novel and robust thresholding schema which can reduce the effect of the spikes and

multiunit activities on the stability of the threshold.

The hardware implementation of the algorithm achieved the following:

• Power consumption is amongst the lowest reported (130µW average) for a microcon-

troller implementation including pre-filtering, SNR enhancement, adaptive threshold,

and spike detection.

• From a hardware portability view, to prolong the battery life, the power consumption

is expected to be scaled down by 1-3 orders of magnitude (depending on technology)

if translating to FPGA or ASIC implementation.

• Can be implemented using only fixed point arithmetic with no need for multiplications.

• Requires a program memory of 3 kB and under 0.1 kB RAM.

• Low computational complexity allows over 100 channels to be implemented on a single

ARM Cortex-M0+ device.
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While significant achievements have been made, it is important to acknowledge that the

multiplication-free fixed-point implementation exhibits performance degradation in spike de-

tection compared to other state-of-the-art algorithms. Furthermore, the challenge of adap-

tiveness remains unresolved, as calibration is still necessary when the brain environment

undergoes substantial changes. However, the multiplication-free fixed-point implementation

has already demonstrated remarkable reductions in both power consumption and area utili-

sation. This design philosophy will be carried forward and utilised in subsequent designs.
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Chapter 4

The puzzle of adaptiveness:

Statistical-based thresholding deadend

In the journey to develop hardware-efficient adaptive spike detection algorithms,

this chapter represents a pivotal turning point. By evaluating conventional statistical-

based spike detection algorithms and constructing an idealised model using syn-

thetic data, it becomes evident that noise-statistical-based thresholding is unable

to adapt to varying levels of noise within a reasonable power/area budget. This

observation serves as a critical inspiration for the subsequent work in this thesis

aimed at discovering new low-complexity thresholding mechanisms that can better

adapt to changing noise levels.

4.1 Introduction

In the previous chapter, we introduced a statistical-based spike detection algorithm which

achieves significantly reduced hardware costs. This algorithm follows the conventional ap-

proach of setting the threshold as T = αN , where N represents the noise statistics and α is

a user-defined parameter. This approach is favoured in on-implant implementations due to

its simplicity [96]. However, the adaptiveness of this approach raises concerns. Some studies

have attempted to find the optimal threshold for spike detection. In [122], it was found

that the noise mean value is the best threshold driving factor among other noise statistics.

However, defining a single optimal multiplier suitable for varying SNR levels is challenging.

A portion of the content in this chapter has been published in [119–121], with my contribution to the

software/hardware algorithm design and result analysis. Section 4.2 was accomplished in collaboration with

Mr Alexandrue Oprea, who conducted the algorithm accuracy comparison under my supervision.
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In [123], it is assumed that the neural recording distribution consists of an exponent compo-

nent (noise) and a power component (spikes). The threshold is set at the intersection point

of two estimated distributions. However, distribution estimation can be resource-intensive

and power-consuming in hardware implementations.

Numerous spike detection algorithms are reported in the literature, including various

spike emphasis techniques and threshold mechanisms. However, not all of these algorithms

are suitable for on-implant use due to their computational complexity and hardware con-

straints, such as silicon area and power limitations. Before translating the algorithms into

hardware instances for the design of wireless implantable BMIs, a comprehensive evalu-

ation of the trade-offs between hardware and algorithmic considerations is necessary. In

this chapter, we begin by investigating the performance of the thresholding method using

different statistics. Through practical simulations, we demonstrate their adaptiveness and

compare their hardware costs to evaluate their suitability for on-implant use. Subsequently,

we construct idealised spike detection models to assess the theoretical performance of em-

ploying various statistics. Our objective is to identify an optimal threshold setting capable

of adapting to different noise levels without the need for parameter training or calibration.

By conducting these investigations, we aim to advance our understanding of spike detection

algorithms and their potential for achieving robust performance in diverse neural recording

environments.
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4.2 Statistical-based spike detection performance prac-

tical simulation

We have selected some of the most widely used methods that can be implemented in fixed-

point representation, with minimal multiplication requirements. Therefore, they could po-

tentially be implemented on implants. This section will introduce the selected methods with

the gate-level design diagram shown in Fig.4.1. Their spike detection performance and adap-

tiveness with different noise levels will be evaluated and the FPGA implementation resource

occupation and power consumption will be reported. A sample rate of 7 kHz per channel

with a 10-bit resolution in fixed-point representation is used following [96].

4.2.1 LFP filters

This chapter does not focus primarily on the LFP filter, as there are existing studies [46,96]

that extensively investigate the most efficient filter topologies for rejecting LFPs. A linear

phase filter is ideal, as this does not introduce any phase distortion and therefore the spike

shape is preserved. Phase distortion is especially critical for applications requiring single

unit activity, as spike sorting relies on differences in spike shape dynamics. However, as

neural decoding for iBMIs can be achieved effectively using only threshold crossings (i.e.

MUA data), a linear phase response is not critical, whereas filter complexity is important.

Therefore, a simple two-pole Butterworth filter is used in this chapter as [96] recommends.

4.2.2 Emphasisers

Using an emphasiser to enhance the SNR of the LFP-removed signal is critical for improving

detection performance, in particular for low SNR recordings.

The implementation of the selected emphasisers are shown in Fig. 4.1(a) - (c). Nonelinear

Energy Operator (NEO) in Eq.4.1 and its variations are the most widely used emphasisers.

Amplitude Slope Operator (ASO) proposed in the previous chapter and Energy of Deriva-

tive (ED) [124] both used one less multiplication to emphasise the spikes and were reported

to outperform NEO, so they were chosen for this work given in Eq.4.2 and Eq.4.3.

Y NEO
n = X2

n −Xn−1Xn+1 (4.1)

Y ASO
n = Xn(Xn −Xn−1) (4.2)

Y ED
n = (Xn −Xn−1)

2 (4.3)

Absolute values are taken after the operation allowing the algorithm to detect double

sides peaks with a single threshold.
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Other variations may require smoothing filters, buffering more samples, or switching

between different emphasisers based on noise levels. The detection performance can be

improved, but the additional hardware cost is expensive for implant use and thus not chosen.

In order to design a multiplication-free system, the multiplication results are estimated

using bit shift according to Eq.4.4 the same as the previous chapter as shown in Fig.4.1.(d).

C = B ∗ A

= Σi{B << [(i− 1) ∗ bi(A)]}

≈ B << (MSB(A)− 1) (4.4)

where A>B, bi stands for the binary value of number at i-th digit and MSB finds the index

of the most significant bit.

Instead of multiplying two values, the larger value is left-shifted by N bits, where N is

the index of the most significant bit of the smaller value. A binary search is adopted to find

the most significant bit of one number. The circuit is shown in Fig.4.1.(d)

In order to test whether such estimation is more efficient than using LUT to imple-

ment a multiplier, we have implemented three different multipliers: 1) Digital Signal Pro-

cessor (DSP) Multiplier 2) Look-Up-Table (LUT) Multiplier 3) Bit shift multiplier. These

different implementations are compared from algorithmic and hardware perspectives.

4.2.3 Thresholding

Thresholding is the most important step in spike detection. A threshold is typically set by

levelling up the signal statistics. These statistics include the mean, RMS/STD, and median

values.

The mean value is preferred due to its simplicity. Instead of sum all values in the threshold

buffer, the mean is calculated in an accumulated manner as shown in Fig.4.1.(g). The sum of

the buffer is stored, the oldest value is subtracted from the mean, and the new value is added

to the result. Such an operation can be down in one clock cycle with only two additions

which reduces the hardware cost to a minimum. The threshold is then calculated through

bit shift. Unlike storing the mean as done in the previous chapter, storing the sum requires

a larger buffer. However, by storing the sum, the mean value does not fade and there is no

need to recalculate it.

The median is used because it is less affected by outliers (spikes), but it is inefficient

on hardware due to its O(n2) computational complexity. To address this shortcoming, A

median recursion is proposed to estimate global median values from subset medians, reducing

the complexity to O(nlog(n)). In more detail, as shown in Fig.4.1.(e)/(f), to calculate the

median of 25 numbers, we divide all the numbers into five subsets and take the median value

of each subset. Finally, we use the median of these medians as the output. This method
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Figure 4.2: The performance of different combinations of the baseline methods ED - Energy of Derivative,

NEO - Nonlinear Energy Operator, ASO - Amplitude Slope Operator, M - Mean, MD - Median, Acc -

Accuracy. MD typically archives higher accuracy and flatter curves, especially when combined with ED.

Four subfigures are the accuracy at different noise levels. (a) 0.05 (b) 0.1 (c) 0.15 (d) 0.2

does not guarantee finding the real median value, but it is close enough to provide a reliable

threshold.

Three different median implementations are adopted. 1) Normal median 2) Rolled median

recursion: The subset median search logic is shared across the subset. 3) Unrolled median

recursion: Each subset has its own median search logic.

It requires either massive computation to obtain RMS values or multiple cycles for RMS

estimation to saturate [47], neither of which is preferable for on-implant use and, therefore

not considered here.

4.2.4 Spike detection performance

Fig.4.2 is the average detection accuracy of different combinations of ED, NEO or ASO, and

16-point mean or 25-point median at different levels, obtained from tests on the synthetic

data [45] the same as previous chapter. The 16/25 buffer thresholds buffer size is considered

to use acceptable resources for on-implant use. A detailed analysis of the emphasisers and

thresholding mechanisms is given below.

Emphasisers: In Fig.4.2, ED (solid lines) is the most accurate emphasisers among the

three baseline methods at all noise levels for both thresholding mechanisms. ED is also

the most adaptive emphasiser in terms of multiplier choice robustness (flatter curves).
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ASO (dotted lines) has comparable peak Acc, but its performance decreases faster with in-

creasing noise levels, while the performance of NEO (Dash lines) degrades the most rapidly.

The observation above implies that the gradient is more discriminative than amplitude in

spike emphasising, particularly as noise levels rise and ED becomes more effective than NEO

or ASO.

Thresholding: The performance of the estimated median (MD, Red lines) and the Mean (M,

Blue lines) is comparable in terms of the highest detection Acc they can achieve. However,

a typical shortcoming of statistically-based thresholding is that multiplier selection might

impact detection performance, requiring manual threshold calibration in practice. As seen

in Fig.4.2, the median is more robust to the choice of multiplier since it produces a flatter

curve nearer to its peak. This characteristic is particularly apparent around 0.05 noise level

when the method can nearly always achieve high Acc. In contrast, when utilising the mean,

the Acc degrades rapidly as the multiplier moves away from the maximum values. The me-

dian outperforms the mean according to the above results because of its robustness to the

outliers. Spikes can affect local statistics estimation, especially when the buffer size is lim-

ited. Though several samples are skipped after one detection to reduce such an impact, some

residual energy of spikes and undetected spikes can still be contaminated, thus disturbing

the threshold calculation. The outlier robustness of the median then plays a critical role in

relaxing the impact of the spikes.

4.2.5 Spike detection adaptiveness

To further investigate the adaptiveness of the mean and median thresholding in practice,

we simulated the scenario that recordings for parameter selection are statistically different

from the recordings tested onward. The recordings of noise levels 0.05 - 0.15 are used to

find the best parameter settings, and the recordings of noise level 0.2 are then tested on

these settings. These test results for different buffer size is then plotted as the solid lines in

Fig.4.3.(a). The dashed lines are the best detection accuracy algorithms can achieve if the

settings are appropriate.

For median-based spike detection, the detection accuracy can be improved effectively

with the increased buffer size, while it becomes less effective for the mean for a buffer size

larger than 30. This is also because of the outlier robustness of the median operation. A

large mean buffer can help estimate more accurate mean values but also increases the chance

of including undetected small spikes.

If the parameters are appropriately set, median-based spike detection can achieve the

highest spike detection accuracy when the buffer size is large enough, as the red dashed

line shows. However, as the solid red line shows, when the noise level is different between

calibration and experimental recordings, median-based threshold detection performance can
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The performance of the ED+MD algorithm deteriorates significantly without calibration. (b) The spike

detection accuracy is analyzed at the green stars in (a) where it achieves above 90% detection accuracy.

Results indicate that the Mean thresholding displays better adaptiveness to varying noise levels, whereas

the Median is the weaker.

be degraded for at least 5% according to our simulation. Mean-based thresholding is less

affected from the training-testing deviation, but the overall performance is lower compared

to the median-based one, especially when the buffer size is limited.

Fig.4.3.(b) shows how their detection accuracy varies with the multipliers or the target

detection rate at different noise levels. It explains why mean-based thresholding can achieve

better adaptiveness. The response of the accuracy to the multiplier is similar across different

noise levels at the peak region. However, the median varies significantly. Therefore, even

though the median can achieve higher detection performance when threshold buffers are

enough, it is not suitable in practice due to low adaptiveness.

In the meantime, from Fig.4.3.(b), we can observe one drawback of the mean thresholding

that it is sensitive to the inaccurate threshold settings (similar to what is observed in the

thresholding subsection in Section. 4.2.4). As the responses of the mean are sharper around

the peak, if the multiplier is inaccurately set, the impact on spike detection accuracy is more

significant than that of the median.

4.2.6 Estimation error

In order to reduce hardware complexity, we used recursive median and shift-based multipliers

as approximations for the actual median values and multiplications. Noting that the spike

detection accuracy reported in the sections above is tested without using these estimations,

we will now quantify the impact on spike detection performance.

The results, shown in Fig.4.4.(a), indicate that the approximation of the median intro-

duces about 5% degradation, and the trends are similar across all three emphasisers. When

using estimated multiplication, as the Fig.4.4.(b) shows, the degradation is more severe for

the NEO, as two successive multiplications amplify the estimation error. The ED and ASO
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Figure 4.4: (a) Performance degradation when using median recursion to estimate median values. (b)

Performance degradation when using shift-based multipliers to approximate the product.

methods only involve a single multiplication and show only minor degradation.

4.2.7 Hardware cost comparison

The FPGA implementation provides us with a rapid workflow to compare hardware complex-

ity, identify bottlenecks, and optimise hardware implementation. The algorithms are imple-

mented on a Digilent Artix-7 FPGA development board featuring the XC7A35TICSG324-1L

FPGA core built on 28 nm technology using Vivado 2022.2. Resource utilisation provides a

relative measure of the area and power consumption of the ultimate ASIC design. We synthe-

sised the algorithms into different modules. The resource utilisation is shown in Table. 4.2.

Detailed analysis is given below:

Emphasisers: Out of the three emphasisers, NEO requires almost twice the number of

LUTs and RAM compared to the other two, due to an additional multiplication and sample

buffer requirement. On the other hand, ED occupies slightly fewer LUTs compared to ASO.

We also investigated how three different implementations of the multipliers can affect the

resource utilisation. The LUT-based multiplier provides a fair reference for the corresponding

ASIC design.Compared to the LUT-based multipliers, half of the LUT can be saved. When

DSPs are used, most of the LUT resources can be saved, but NEO requires two DSPs.

The dynamic power breakdown is shown in Fig. 4.5 according to the power estimator with

the implementation simulated at 100 kHz. Similar to the resource occupation, it provides

a similar insight. ASO and ED can save nearly half of the power, but interestingly, ASO

consumes slightly less power than ED, even though ED requires fewer LUTs. Such difference

is mainly from that ASO consumes less signalling power than that of ED. It is potentially

due to their placing and routing design.

Another notable observation is that using shift in ASO and ED does not significantly

reduce the total dynamic power consumption. The logic power is the main bottleneck in

the LUT implementation, and a simpler processing logic can have the greatest impact on

power reduction. When shifts are used to replace multiplications, though it uses less logic,
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Table 4.1: FPGA implementation resource utilisation

LUT Registers RAM Width (Bits) DSPs

LFP filter Butterworth filter 196 0 20 0

NEO LUT Mul 272 0 20 0

NEO shift 147 0 20 0

NEO DSP 50 0 20 2

ASO LUT Mul 140 0 10 0

ASO shift 75 0 10 0

ASO DSP 29 0 10 1

ED LUT Mul 121 0 10 0

ED shift 48 0 10 0

Emphasisers

ED DSP 10 0 10 1

Mean (16/64) 95 0 380/1300 0

Median unroll (25/50) 1495/2579 0 500/1000 0

median roll (25/50) 468 184 500/1000 0
Thresholding

median real 25 >7500 - - -

Full system ED+Mean 140 24 390 0

the signalling becomes more complex. As a result, dynamic power is reduced by only 20%.

In such cases, optimal placing and routing become crucial factors to consider.

Overall, ASO and ED can have similar hardware costs, while the gold standard NEO

operator can occupy and consume twice as many resources and dynamic power. By using

shift to replace multiplication, the area occupation can be significantly reduced with only

about a 1% performance degradation

Thresholding: The 16-sample mean and 25-sample median are two compact algorithm

settings, while the 64-sample mean and 50-sample median are two settings that can achieve

around 90% detection accuracy at the low noise level as shown in Fig. 4.3.(a).

The RAM bandwidth always increases linearly with the buffer size increase. The median

consumes much more LUTs compared to others. However, while the conventional median

operation for 25 numbers can consume over 7500 LUTs, more than 5 times reduction can be

made through the median recursion. Such recursion implementation of median estimation

makes the median operation achievable in hardware, especially in the rolled version, where

it can be implemented using less than 1000 logic cells, but it still requires significantly more

LUTs compared to using mean.

The power of the thresholding algorithm is highly data-dependent and therefore is not
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Figure 4.5: Power breakdown for different implementations of NEO, ASO, ED and ADF emphasisers

simulating at 100 kHz.

estimated.

Overall, ED is the best emphasiser as it achieves the highest decoding accuracy and adap-

tiveness while requiring the least amount of resources. However, a trade-off must be made

when choosing between mean and median. Mean achieves better adaptiveness with signifi-

cantly fewer resources but only marginally acceptable spike detection accuracy. In contrast,

median has higher spike detection accuracy, but it comes with significantly increased hard-

ware complexity and reduced adaptiveness in different noise levels. Considering the highly

constrained resource and power budget, mean should be preferred for on-implant use. In the

meantime, replacing multiplication with shift should be adopted, as it can nearly half the

resource occupation and reduce the power consumption by about 20% while only degrading

the accuracy for 1% at maximum.

4.3 Spike detection idealised modeling

In the previous section, mean thresholding was chosen as the optimal trade-off among spike

detection performance, adaptiveness, and hardware cost based on recordings at four different

noise levels. However, the issue of relatively lower spike detection accuracy still remains,

and the optimal selection of the multipliers is unknown. It is also unclear whether using

standard deviation can improve spike detection performance and adaptiveness. To address

these questions, we generated our own synthetic dataset with more noise levels and employed

four different thresholding models based on noise mean, standard deviation, and peak mean

values, assuming perfect knowledge of the signal. We then swept the threshold multipliers

to identify the theoretically optimal settings for achieving the best spike detection accuracy
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and adaptiveness. This approach allows us to provide guidance for threshold setting with

less reliance on trial and error.

4.3.1 Synthetic dataset

In order to have more comprehensive control of the signal characteristics, we have gener-

ated a synthetic dataset in different noise levels for assessing the detection performance.

The synthesising procedure is based on [45]. We use real recordings [125] from the motor

cortex of NHPs sampled at 24,414Hz to generate a synthetic dataset with ground truth.

Synthetic recordings are formed by adding the noise templates with spikes templates. The

noise templates are truncated from the LFP-removed real neural recordings in which periods

spikes do not appear. The noise standard deviation (STD) is normalised to 1 and modified

according to the desired SNR. The spike templates are extracted from the real recordings

using WaveClus [55] and there are 1,000 different templates with varying amplitudes for se-

lection. The arrival of spikes can be simulated as a Poisson distribution with λ equal to the

firing rate. By simulating multiple Poisson distributions of spike arrivals, multi-unit activi-

ties can be generated. One spike is randomly selected from the template spikes and chained

with former spikes at desired arrival time. The gaps is filled with zeros. After chaining all

spikes from different cells, the spike amplitude will be normalised according to the spike peak

mean values resulting in the unit average peak amplitude. Adding the spikes with the noise

according to the desired SNR and firing rate forms one synthetic recording.

One synthetic recording is defined with three parameters: firing rate, number of cells

and SNR. The firing rate is the single-cell spike rate which determines the λ of each Poisson

distribution, and the cell number determines the number of Poisson distributions to be

simulated. SNR is defined as the ratio of the mean value of spike peak amplitude and the

STD of the noise.

4.3.2 Spike detection models

In order to find the optimal threshold derived from the signal statistics, we have assumed to

have the perfect estimation of the noise and spike statistics. Three indicators: µnoise, σnoise,

µpeak, which are (absolute) noise mean, noise STD and spike peak mean, are used to set the

threshold:

T = αµnoise (4.5)

T = αµnoise + βσnoise (4.6)

T = αµpeak (4.7)

T = αµpeak + βµnoise (4.8)
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Figure 4.6: A) Span ratio of two different methods at the same SNR levels. In the case of multiple SNR

levels, the sum of the spans at different noise level is taken. Larger span always relates to flatter curve and

consequently better robustness. B) Deviation to span ratio of two different methods at two different SNR

levels. At the same span, smaller deviation always relates to closer peak performance points and consequently

better adaptiveness.

where α and β are user-defined parameters.

The detection occurs when the signal amplitude exceeds the threshold. As the spikes typ-

ically last for 24 timestamps (1ms), detection will be inactivated for 15 timestamps to avoid

re-detection. Detections falling within 10 samples around the ground truth are True Posi-

tives (TPs), others will are Flse Positives (FPs), and undetected spikes are False Negatives

(FNs).

4.3.3 Evaluation metrics

To evaluate the performance of different threshold settings, we assess the detection accu-

racy (Acc), Span Ratio (SR) and Deviation-to-Span Ratio (DSR). Acc is formulated as:

Acc =
TP

TP + FP + FN
(4.9)

which describes the detection performance jointly considering sensitive and false detection

rates.

Based on the observation in Section.4.2, we found the algorithm adaptiveness can be

evaluated in two aspects. One is how the algorithm performance is affected when the thresh-

old parameter is inaccurately set. It will be referred to as “robustness”. The other one is

how the algorithm performance is affected when the parameter is set in one noise level and

applied to the other levels. This will be referred to as “adaptiveness”. Two metrics, SR and

DSR, are established to quantitatively evaluate these two aspects and they have been shown

visually in Fig.4.6.
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SR describes the robustness as in Eq.4.10. The Span is defined as the average multiplier

difference in different noise levels that achieves the accepted accuracy. We prefer settings

leading to large Spans, which means the multipliers values vs. Acc curve is flat, and it is less

sensitive to the inaccurate setting of the threshold multipliers. However, the range of the

multipliers in different settings can be different. To ensure a fair comparison among different

settings, we take the ratio of Span at 0.8Acc to the Span at 0.7Acc as the metric SR to

evaluate the robustness of non-optimal setting of the threshold within the same SNR level.

More significant SR means better robustness. It can also be regarded as a measurement of

the detection performance when the threshold is sub-optimal.

SpanA =

∑

SNR
(max(Mul

Acc>A
)−min(Mul

Acc>A
))

∑

SNR
(max(Acc) > A)

SR =
Span0.8

Span0.7

(4.10)

where Mul is multipliers, max (·) and min(·) are operators for max and min values, and A is

the accepted accuracy level.

The DSR describes the deviation of the parameters across different SNRs for obtaining

the best detection accuracy, reflecting the adaptiveness. Dev is the maximum difference for

the multipliers that achieve the best detection accuracy higher than the accepted accuracy

in different SNR levels. A small Dev means the best multiplier is less deviating from one

SNR level to another. The adaptiveness of such a setting is therefore better at different SNR

levels. Taking the ratio between the Dev and Span makes it possible to compare the settings

with different parameter spaces. The DSR is defined as in Eq. 4.11 and we here assess the

deviation at the accepted accuracy level of 0.8, which gets involved in enough noise levels

and fits the intuition of the minimum acceptable detection accuracy.

DevA = Mul[maxL(AccA)]−Mul[minL(AccA)]

DSR =
Dev0.8
Span0.8

(4.11)

where maxL(·) and minL(·) are operations to find the lag of max and min values, and AccA

is the max detection accuracy in different SNR levels that are larger than A.

4.3.4 Results

We have simulated 18 sets of recordings in which 2 cells each fires at 20Hz. Their SNRs

vary from 5 to 40 with a step of 2. Each set contains ten 4 s recordings. The threshold in

each run is set with varying α and β. Detection accuracy is averaged among 10 runs.

T = αµnoise

We have swept α from 1 to 50, detection accuracy for different α and SNR is given in
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Figure 4.7: A) The detection accuracy using T = αµnoise for threshold with changing α and SNR. The

curves from the bottom blue to the top purple are the SNR from 5 to 40 with a step of 2, and the stars

indicate the top settings that achieve the highest accuracy in different SNR. (the same for C). B) The

combination of α and β that achieves the best detection accuracy using T = αµnoise + βσnoise for threshold

in different SNR. The curves from bottom blue to top yellow are the SNR from 5 to 37 with a step of 4

(the same for D). C) The detection accuracy using T = αµpeak for threshold with changing α and SNR.

D) The combination of α and β that achieves the best detection accuracy using T = αµpeak + βµnoise for

threshold in different SNR. The overlapped region denotes the region of SNR levels and α− β combinations

that suffers less from the parameter deviation for setting the optimal threshold.

Fig. 4.7.A. Curves from top to bottom are cases SNR from high to low. The stars indicate

the top settings that achieve the highest accuracy in different SNR. One can notice that

there is a significant deviation for the optimal α from 15 to around 30 as the SNR increases.

This indicates that the optimal threshold for spike detection does not increase linearly with

the noise levels, i.e. we cannot use a constant multiplier for different noise levels expecting

it always achieve the best detection accuracy.

T = αµnoise + βσnoise

As the optimal threshold increases non-linearly with the noise mean, we tried to introduce

the STD for thresholding. Both α and β are swept from 1 to 20. Results are shown in

Fig. 4.7(B). The curves shown are the best combinations of the settings that achieve the

highest accuracy in different SNR levels. The parameter deviation still exists in both the

mean and STD sides as there is no overlapping among the settings in different SNRs. We

therefore question if the noise statistic is a good or only indicator for setting the threshold.

T = αµspike

Intuitively, one can set a suitable threshold in the med-way of spike peaks and noise ground,

which means the spike peak level can be an indicator for setting the threshold. The α

is set to vary from 0.1 to 2 with a step of 0.05. Results are shown in Fig. 4.7.C. DSR,
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which describes the parameter deviation, is reduced dramatically compared to Fig. 4.7.A,

indicating that the spike-based threshold suffers much less than the noise-based threshold

in different SNR levels, which has better adaptiveness. However, the SR is reduced, which

means the threshold is less robust to the inaccurate set of the threshold. One reason is that

the spike peak mean is high, and minor changes in the multiplier can significantly change

the threshold level; another reason is that this threshold is noise-invariant. When the noise

is high, some large noises can exceed the threshold to increase the false detection.

Figure 4.8: The detection accuracy using T = αµpeak + βµnoise for threshold with changing fix α, and

varying β and SNR. The curves from the bottom blue to the top purple are different trials when SNR is

increased from 5 to 40 with a step of 2. A) α = 0.25. B) α = 0.5,C) α = 0.6.

T = αµspike + βµnoise
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We can introduce noise awareness to the threshold by combining spike and noise statistics.

With α varying between 0.1 to 2 and β varying between 0.5 to 10, the top combination

achieving the highest accuracy is shown in Fig.4.7.D. The deviation is much less than using

Eq.4.6 compared to Fig. 4.7.B. The accepted parameters are overlapped at the shaded blue

region, which means the SNR in this region shares close optimal threshold settings. We

selected three α values 0.25, 0.5, 0.6 and swept the β. The results are shown in Fig. 4.8. It

can be observed that when α is 0.5, the DSR is minimal, and SR is also increased compared

to it in Fig. 4.7.C. The parameter deviation can be increased when α deviates to 0.5 as

DSR increases. However, the SR will still be maintained, which means the performance of

different settings is consistent when the threshold is sub-optimal.

Such a joint spike-noise-based threshold utilises the peak values to set the coarse-grained

baseline level of the threshold and uses the noise value to fine-tune the threshold. The

coarse-grained baseline reduces the parameter deviation, and the fine-tuning provides noise

awareness and increases the low SNR performance. Such a finding reveals the essence of

optimal thresholding and tells us we have forgotten an important factor - the spike peak in

the past. Moreover, this also fits our intuition as the threshold should be SNR-driven.

4.3.5 Application of the spike-noise based threshold to an inde-

pendent dataset

According to Fig. 4.8.B, the suitable settings for α and β can be 0.5 and 1.5, respectively.

In order to evaluate the generalisation of such a finding, we have applied these settings to a

different dataset generated in [45], which is the dataset we used previously. The results are

shown in Table 4.2. Compared to nearby settings, the maximum threshold still peaks at the

selected settings, which means there is no deviation between this dataset and the dataset we

generated. Compared to other works, such a method achieves the highest detection accuracy

and better robustness to different noise levels, referring to the mean and STD values of the

Acc in different noise levels.

Table 4.2: A comparison of different spike detection methods in varying SNR

Noise level 0.05 0.1 0.15 0.2 Mean STD

β = 1 0.98 0.99 0.96 0.88 0.953 0.05

β = 1.5 0.99 0.99 0.97 0.92 0.968 0.031

β = 2 0.99 0.99 0.96 0.92 0.967 0.031

Previous work 0.89 0.97 0.92 0.89 0.918 0.037

[45] 0.92 0.95 0.95 0.85 0.918 0.047
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4.4 Discussion

4.4.1 Noise-driven threshold

The optimal threshold set only with noise statistics suffers severely from the changing noise

levels. The parameter deviation lowers the model’s adaptiveness. The reason is that noise

statistics is not the only determining factor on the optimal threshold. The best setting for

one SNR can overfit such noise level and no longer works with the noise level changes. No

matter whether the higher order statistics are used or not.

4.4.2 Spike-driven threshold

Using spike peak in guidance of setting the threshold can overcome parameter deviation and

improve the adaptiveness. A suitable parameter that generalises well in different noise levels

can be found. However, as the spike values are more significant than the noise, the threshold

becomes more sensitive to the change of multiplier values and less robust.

4.4.3 Spike-noise-driven threshold

Jointly using the spike and noise statistics can trade-off between parameter deviation (adaptiveness)

and sub-optimal threshold degradation (robustness). Using spike values can effectively re-

duce parameter deviation, and using noise values reduces the effect of sub-optimal thresholds

on degrading detection performance.

4.4.4 The concern on spike peak estimation

Such an approach requires robust estimation of both noise and spikes. There are plenty

of researches focusing on noise estimation but few studies are working on the spike peak

estimation. Estimating the spike peak can be challenging as we have no prior knowledge

of the peak amplitudes before detection. The threshold will be updated according to the

local environment in real-time adaptive spike detection. Without a robust estimation of

the spike peak amplitude, the false detection of the spikes could lower the estimated spikes

peak amplitude and even lower the threshold leading to more false detections. Such positive

feedback could eventually crush the spike detection algorithm. In addition, extra algorithm

complexity will be added for spike estimation.
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4.5 Conclusion

This chapter provides a comparison of a number of empirical spike detection emphasisers

and statistical thresholding techniques in terms of algorithm performance and hardware cost.

The findings in this chapter include:

• Noise-mean-based thresholding has the lowest hardware complexity, but lacks adaptive-

ness to different noise levels, is sensitive to inaccurate threshold settings, and achieves

relatively lower spike detection accuracy in practice.

• Noise-median thresholding can achieve good spike detection accuracy in practice, but

it is sensitive to parameter setting and requires too many resources for an implanted

application.

• A spike-noise-driven threshold can theoretically achieve good spike detection accuracy

and high adaptiveness. Accurately estimating the spike peak within an on-implant

budget could be challenging.

Our results suggest that none of the tested spike detection algorithms can achieve good

spike detection performance, noise adaptiveness, robustness and lower hardware complexity

simultaneously. These concerns highlight the need for a new spike detection thresholding

mechanism other than using statistics.
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Chapter 5

New approach:

Firing-rate-based spike detection

As the journey towards hardware-efficient adaptive spike detection algorithms

continues, this chapter represents a significant milestone. The introduction of

the firing-rate-based spike detection algorithm marks a departure from conven-

tional statistical-based approaches and leads to significant improvements in terms

of spike detection accuracy, adaptiveness, and the reduction of hardware com-

plexity. The proposed algorithm is thoroughly evaluated and compared through

MATLAB simulations, FPGA and ASIC designs, demonstrating its advantages

for on-implant use.

5.1 Introduction

Although the statistical-based algorithms previously described in Section.4.2 are widely used,

there do exist several drawbacks. Firstly, there is no heuristic way to find optimised param-

eters to local statistics such that to set the reliable threshold. The standard approach is

searching through synthetic data by trial and error . It is however not guaranteed that cho-

sen parameters will be applicable to real recordings, in particular with different noise levels.

As shown in Section.4.3, it is impossible to establish a reliable threshold that can adapt to

different noise levels using statistics-based thresholding methods. Another problem is that

calculating local statistics can require significant memory to maintain sufficient history –

A portion of the content in this chapter has been published in [120,121,126] with my contribution to the

software/hardware algorithm design and result analysis. Dr Peilong Feng conducted the hardware migration

from the FPGA implementation to the 180 µm and 65 nm ASIC design.
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memory requirements increase linearly with the number of channels and sampling frequency.

Finally, [42] suggests that the neural decoding performance is quite robust to the spike detec-

tion algorithm missing small spikes (i.e. there is only a small reduction in accuracy). Fewer

spikes detected mean less data to be communicated. Statistics-based spike detection is also

sensitive to the scaling factor that is used to map local statistics to the threshold level – it is

not clear how to balance the scaling factor to deliberately detect fewer spikes and trade-off

accuracy with data bandwidth.

To address these challenges in conventional methods, we propose a firing-rate-based spike

detection algorithm. Instead of needing an arbitrary scaling factor to define the threshold

from local statistics, the proposed algorithm requires a detection rate interval. We hypothe-

sise that the threshold is reliable if it detects spikes at a rate close to the actual local firing

rate. The target detection rate can therefore be set according to neuroscience observations

heuristically. For example, it has been reported in [127] that the firing rate of human motor

neurons varies from a nominal rate of about 10Hz when the subject is performing minimum

effort tasks, to over 20Hz for maximum effort tasks. Additionally, it has been reported that

on average 3 to 4 neurons can be observed per Utah array electrode in motor cortex [43] (i.e.

through spike sorting efforts). Thus, the average firing rate of the ticker reaching task (low

effort) is expected to be around 40Hz. A target detection rate interval can then be set and

the threshold is dynamically updated to maintain the detection rate within this interval.

In the meantime, the firing-rate-based algorithm can deliberately neglect spikes (i.e. set a

slightly lower detection rate) for better power efficiency. The firing rate in formation is

used in [112]. This algorithm uses the minimum and maximum expected firing rate to set a

threshold boundary and search the best separation of the spikes and noise according to the

peak distribution. This algorithm is only applicable offline as the threshold is setup from

the distribution of massive recording samples.

Two versions of the proposed online firing-rate-based spike detection algorithm will be

introduced in this chapter. The simple version is more hardware-efficient while the complex

version reduces the impact of the inaccurate initial settings of the target detection rate but

requires more computation.

5.2 Firing-rate based spike detection (Basic version)

This algorithm is designed to have extremely low computation and resource requirements,

and we aim to use only fixed-point operations, no multiplications/divisions, and minimal

memory. Such requirements prevent us from using complex mathematical models and statis-

tics to derive the optimal threshold but to see the essence of spike detection with the most

simple operations. The proposed algorithm includes an Absolute Difference Filter (ADF), re-

moving the LFP while enhancing the spikes and a firing-rate-based thresholding mechanism

72



updating the threshold automatically.

5.2.1 Absolute difference filter

The broadband neural recordings consist of LFPs, EAPs, and noise. Different broadband

components can be separated using highpass or bandpass filters. However, it is challenging

to design a reliable fixed-point filter with limited orders.

Filtering the LFP, enhancing spikes and suppressing the noise are especially critical for

statistical-based thresholding as the threshold is typically derived from the noise statistics.

The mean subtraction filter, Butterworth filters and different operators including NEO, ASO

and ED has been used previously. However, the pre-processing becomes less critical when

the firing rate information is introduced as the threshold is independent of the noise. That

potentially allows us to use an even simpler operator than those introduced in the previous

chapters.

According to the result in Section.4.2.4, where ED outperforms other operators revealing

the gradient to be a more discriminated feature than the amplitude. We decided to only use

the double-side gradient (without squaring), which is described in Eq. 5.1. It is possible to

remove the LFP and enhance the spikes simultaneously, providing good-enough signal SNR

for firing-rate-based spike detection.

Yn = abs{Xn −Xn−k} (5.1)

where Xn stands for nth input to the pre-processing and Yn stands for nth output, and k is

the interleaving of two samples. This value is sample-frequency dependent and k = 2 was

found empirically to be the best choice at 7 kHz.

Such an operation has been explored by many studies, but can fail when the gradient of

the LFP overwhelms that of the spikes. However, in practice, the front-end recording system

will highpass filter the signal with analogue filters. Only limited LFP power can leak to the

passband, which prevents the given filter from failing.

Using the absolute difference filter, the signal is LFP-removed and SNR-enhanced in one

single step with only one subtraction and one absolute operation (reverse-and-plus-one for

negative values). Compared to the operators such as NEO, ASO and ED, no multiplication

is required. It is expected to achieve significantly reduced resource usage.

5.2.2 Firing-rate-based thresholding

The proposed adaptive threshold is set based on the fact that the firing rate of a certain

brain region is on average stable as mentioned in the introduction of this chapter.
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Though the firing rate can fluctuate during the active or silent period, it is relatively

stable in the long term. By setting a reasonable target detection rate and threshold update

strategy, we can control the threshold to saturate at the level, automatically detecting spikes

at the desired rate.

The threshold update strategy is described in Eq.5.2.

Thri+1 =















Thri R2 < DR < R1

Thri ∗ (1 + p) DR > R1

Thri ∗ (1− p) DR < R2

(5.2)

Where Thr is the threshold, [R2, R1] is the target detection rate interval and DR is the

current detection rate.

In more detail, the target detection rate [R2, R1], initial threshold T0, and updating

period P are set at the start. In one updating period, if Yn > Tn, a spike is detected, and

5 samples (in the 7kHz sample frequency case) are skipped to avoid multiple detections of

one spike. The detection counts DR are increased by one. If DR > R1, the threshold will

increase by p, and a new updating period is started. At the end of one update period, if

DR < R2, the threshold will decrease by p. Otherwise, the threshold will be unchanged. In

short, we set an acceptable detection number range in one update period, and the threshold

will be decreased or increased if the detection rate is too low or high. Even though the initial

threshold can be non-ideal, the threshold will eventually saturate at a level that fulfils the

target detection rate.

p determines the saturated speed and threshold resolution. A larger p means faster satu-

ration but a less accurate threshold. Adaptively changing p can be implemented to mitigate

such a trade-off but not used considering the computation overhead. In both datasets, p is

set to 6.25%, i.e. 1/16, which can be easily calculated with 4-bit right shifting as all numbers

are in fixed-point representation.

P determines the adaptiveness of the system to the varying signal condition. The thresh-

old can be less sensitive to signal varying if P is large, while it can be disturbed by the burst

firing if P are too short. The frequent threshold updating also leads to more computation

and higher power consumption. P is empirically set to 1 s.

The target detection rate interval [R2, R1] is the most important parameter determining

the acceptable detection rate range and eventually determines the saturated threshold level.

There are several benefits to setting the target detection rate rather than conventionally

deriving from multiple times to noise mean/median/root-mean-square/standard deviation

values.

1) Compared to finding a multiplier, selecting one detection count interval can be more

heuristic, building on previous neuroscience observations like [127] other than trial and er-

ror (exhaustive search).
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2) It guarantees the detection of useful information while the detection result of the sta-

tistical approach is not predictable. It could happen using multiple times of signal statistics

that the threshold can grow too high or low in some channels. That can lead to continuous

detection or zero detection resulting in system failure.

3) It improves the detection in long-term implantation. The scar tissue around the probe

can push neurons further away and weaken neural activity. The conventional approaches

based on statistics can miss these spikes while the proposed algorithm can lower the threshold

adaptively to detect these spikes and fulfil the target detection rate.

4) The target detection rate range can potentially be used to improve the decoding

performance. In more detail, if the resultant detection rate of a certain period approaches or

even exceeds R1, such period is more likely to be active, while if the resultant detection rate

of another period is under R2, such period is more likely to be silent (the subject is inactive).

The traditional method cannot provide such extra information (at least not in real-time),

and we have proposed a Rate-Modulated LSTM based on such information, introduced in

the next chapter. Notice that the target detection rate mentioned later will be the interval

upper limit R1 unless specified and R2 = R1/2.

In most experiments below unless specified, R1 is set to 60, assuming to detect 3 neurons’

activities firing at 20Hz each and the effect of varying R1 is also evaluated.

5.3 Firing-rate-based spike detection with target de-

tection rate auto updating (Complex version)

The previous algorithm requires a manually selected target detection rate. In this section, we

introduce a mechanism that can automatically update the target detection count when the

initial setting is inaccurate. Inspired by the noise-spike-based threshold in the last chapter,

we tried to track the spike peaks. The estimated peak level allows the algorithm to perceive

whether the threshold level and target detection rate are appropriate. For example, if the

threshold is updated to approach or even exceed the peak level to fulfil the target detection

rate, the target detection rate must be too small compared to the real spike firing rate.

5.3.1 New firing-rate-based thresholding

The threshold needs time to saturate at an appropriate level. The previous algorithm set

a small p for a finer threshold level which requires several seconds for the threshold to be

saturated. However, a slow saturation speed can be problematic here. As the spike peak

mean is tracked, false detection before saturation can lead to an inaccurate estimation of

the spike peak mean. Therefore, a new thresholding strategy is designed to allow faster

saturation speed by using a larger p. However, the spike detection outcomes from the
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saturated threshold level then become not as accurate as using small p. This firing-rate-

based thresholding begins with setting the initial threshold (Thr0) and target detection rate

interval [R2, R1]. These parameters’ initial values can be set automatically based on several

seconds of spike detection using traditional methods. They can also be set manually or even

randomly. It was tested that the algorithm is largely insensitive to the initial settings, which

is detailed later.

The new threshold updating strategy is more complex than the previous design as (5.3).

Thri+1 =



























Thri A1 :R2 < DR < R1

Thri ∗ 1.5 A2 :DR > R1

Thri ∗ 0.5 A3 :DR < R2 & C2

Thri ∗ 0.75 A4 :DR < R2 & C1

(5.3)

where C1 means the threshold was increased in the last update, C2 stands for the comple-

mentary set of C1. We also add an A4 brunch to help the threshold to saturate as shown in

Fig. 5.1.
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Figure 5.1: A demo of the threshold update process. This is a segment of one recording between 11 s and

14 s, and was chosen as it serves well to demonstrate the updating procedure. At L1, the current detection

rate is below the desired range. As such, the threshold should follow the A3 branch (where it is reduced

by half) to L2. However, the detection rate is larger than the max spike rate, and the threshold is then

increased by ×1.5 according to A2 to L3 (note that the A2 increment is only 1.5 times and not 2 times.

This prevents the threshold from just oscillating between L1 and L2). The detection rate is still too high

at L3, and so the threshold is increased again to L4, but then the detection rate is too low. The threshold

should then be decreased. However, if it follows A3 (a half), the new threshold will be lower than L3. As

such the reasonable level should be between L3 and L4, and so we designed the A4 path to let the threshold

level off at L5. During these updates, we have seen two saturation trends: L1-L2-L3 and L3-L4-L5. With

this branching system, the threshold can level off at a suitable place that is within the acceptable range of

detection rates.

Spike peak mean tracking and target spike count auto-updating are used to address

the following three issues: (1) Because the threshold update gradient is quite large, under
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certain conditions the threshold may move down to a level close to or below the noise floor

and this results in a high false detection rate; (2) if the target detection rate is too high,

the threshold could move down to a level around the noise floor, therefore resulting in a

high false detection rate – similarly to (1); and (3) if the target detection is set too low, the

threshold could move upwards to a level near the actual spike peak and therefore result in

low sensitivity. These three conditions are illustrated in Fig. 5.2. The black dashed lines

show the thresholds derived without resolving these three issues.

5.3.2 Spike peak mean tracking

In the last chapter, we investigated the optimal threshold level where it should be around

0.5× Spike Peak Mean + 0.25×Noise Mean. Once we know the spike peak mean, a rea-

sonable threshold level is known. To ensure that the algorithm can detect whether the

threshold/target spike count is appropriately set, we track the spike peak mean. The spike

peak estimation is based on a weighted average filter, where 75% is weighted by the mean

amplitude of past spikes and 25% by that of the current spike.

The spike peak mean value is updated whenever the threshold is updated. Once the spike

peak level is known, a minimum accepted peak amplitude can be set (in this case 0.5× Spike

Peak Mean). This turns out to be very useful: if the peak of a detected spike is significantly

lower than the current estimated spike peak level, the detected spike is most likely to be noise

and is therefore ignored. As a result, the false detection rate can be reduced significantly.

It is clearly observable that there are large amounts of falsely detected spikes with the old

setting in Fig. 5.2 (A & B) Con. 1. However, as the spike peak mean value is tracked, we

can ignore spikes with amplitudes below half the spike peak mean value. As such, a spike

needs to exceed both the set threshold and half the amplitude of the spike peak mean to be

considered a spike, reducing the false detection rate as shown in Fig. 5.2 (A & B) Con. 1.

5.3.3 Target spike count auto-updating

Conditions (2) and (3) result from an incorrectly set initial target detection rate. To avoid

the algorithm being negatively impacted by these conditions, the threshold is not updated

when it tends to exceed the spike peak or drop under half spike peak (refer to conditions (2) &

(3) in Algorithm 1). Instead, the target detection rate is decreased/increased to compensate

for the incorrectly set initial R1. The resulting red thresholds (new THR) in Fig. 5.2 (B)

and (C) during Con. 2 and Con. 3 are better than the black thresholds (old THR), as the

spike peaks and noise floor are more accurately separated. Pseudocode of the new threshold

updating mechanism is provided in Algorithm 1, illustrating how the threshold and target

detection rate are updated. With this spike peak tracking and target spike count auto-

updating technique, we have integrated the target detection rate and threshold update into
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Figure 5.2: The three conditions under which the performance of the algorithm can degrade, showing

the detection results with and without the addition of rules that mitigate the degradation. A) Before the

threshold settles to a desirable level, the threshold can go too low and detect many false spikes. Solution:

with spike mean tracking, we ignore spikes that are smaller than half of the measured spike mean, reducing

the false detection rate. B) If the MSR is set too high, the threshold can go too low, thus incorrectly

classifying noise as spikes so as to satisfy the max spike rate. Solution: the threshold is kept as it is even

though the detection rate is below the expected range, while the MSR is decreased. C) If the MSR is too

high, the threshold can go too high, and so some spikes can be missed. Solution: the threshold is left

unchanged even though the detection rate is higher than the MSR, and the MSR is increased instead.

a closed loop. This eventually converges to a reasonable rate and threshold regardless of the

initial setting.
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Algorithm 1 Automatic Threshold Updating

Input: Spike Count, Max Spike Count and Spike Mean

Output: Thr

1: if Spike Count > Max Spike Count then

2: if Thr + Thr/2 < Spike Mean then

3: Max Spike Count + + ▷ (3)

4: else

5: Thr ← Thr + Thr/2 ▷ A2

6: end if

7: else if Spike Count < Max Spike Count/2 then

8: if Thr < Spike Mean/2 then

9: Max Spike Count - - ▷ (2)

10: else

11: if Thr is just increased then ▷ C1

12: Thr ← Thr - Thr/4 ▷ A4

13: else ▷ C2

14: Thr ← Thr/2 ▷ A3

15: end if

16: end if

17: else

18: Thr ← Thr ▷ A1

19: end if
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Figure 5.3: A diagram for the proposed spike detector. (a) The system overview. The system comprises

an input buffer that temporarily stores the input samples, a RAM that maintains the status of various

channels, a channel counter that rotates among channels, a filter that improves the signal-to-noise ratio

(SNR), a control unit that updates the RAM status, and a control unit that generates the control signals

for threshold updating. The filter output, threshold, and detection binary stream are the final outputs from

the system (b) Detailed digital logic for different modules.

5.4 Hardware implementation

Both firing-rate-based spike detection algorithm has been implemented on FPGA. However,

only the simple firing-rate-based spike detection algorithm is given below in the main content

because it is preferred for on-implant use (simpler and effective), while the complex version

of firing-rate-based spike detection hardware implementation is given in the Appendix.B

for consciousness. The diagram of the implementation is given in Fig.5.3. It consists of a

RAM, storing the temporal values of all channels; a channel counter, scheduling the read

and write of the RAM for different channels to share; filters, the combinational circuit for

absolute difference filter; control logic, the combinational circuit issuing the control signal;

and update logic, the combinational circuit for duty cycling, updating the threshold and

counting the number of detections.

5.4.1 RAM

The system status random access memory stores the current status of each channel, and

the channel counter schedules channels sharing the same combinational logic. The proposed

algorithm only needs one clock cycle to process each sample, so there is no need for any

register except the memory output buffer.

80



Table 5.1: Bit width and descriptions for the values stored in RAM

Register Name Width Description

D1 10 ADF buffer for the first previous sample

D2 10 ADF buffer for the second previous sample

Thr 10 Current threshold

S 7 Number of detections within the current duty cycle

U 13 Count for the update duty cycle

H 3 Count to hold after detection avoiding redetection

The RAM is a single-clock, dual-port block RAM. On each rising clock edge, the memory

stores the updated status of the current channel read from the combinational logic and

outputs the current status of the next channel into the output buffer. The channel counter

updates the current and next channel addresses for the memory cyclically. Table. 5.1 lists

the various statuses stored in memory. This requires a total of 53 bits per channel.

5.4.2 Absolute difference filter

Both the LFP signal removal and spike signal emphasizing are achieved using the ADF as

Eq.5.1 and no additional digital filters are used to remove the LFP.

The ADF operates by reading the new input sample from a rolling buffer together with

previous samples from the RAM. The filter output is obtained by subtracting a previous

sample (two samples back) from the new sample. If the difference is negative, the absolute

value is calculated according to a two’s complement representation.

The filter output is compared with the threshold value stored in RAM. When the filter

output exceeds the threshold and no spike is detected in five samples before, a valid spike

detection signal is generated.

5.4.3 Control logic

The control unit reads three values (S, U, and H) and generates five control signals. C0

- C4, according to the logic circuits plotted in the control logic block. C0 and C1 control

two conditions in Eq.5.2 for the threshold to update. C0 is set when the current number of

detections exceeds R1, and C1 is set when the current number of detections is below R2. C2

is set at the end of one update duty cycle. C3 and C4 control the signal entering and exiting

the period when a spike is detected. C3 is set when it reaches the preset length of a spike

after a spike is detected, and C4 is set when H is zero, i.e. not in a period of the presence of

the spike.
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5.4.4 Update logic (‘updaters’)

Four updaters update the values of Thr, S, U and H. When the number of detections S

within the current duty cycle exceeds the detection rate upper limit R1 (C0 is high), the

threshold is increased by 2−q ∗ Thr (q is four). When S is below the lower limit of R2 (C1

is high) at the end of each duty cycle (C1 is high), the threshold is reduced by 2−q ∗ Thr.

Otherwise, the threshold stays unchanged for the next duty cycle.

When a validation spike is detected (D is high), the S is increased by one as long as it

does not reach R1 (C0 is high), while it does reach the R1 or one duty cycle is over (C2 is

high), S is reset. There is a special case when a valid spike is detected at the end of one duty

cycle. In this case, S is set to 1. In all other cases, S stays unchanged.

U is increased by one every clock cycle and reset when the threshold needs to be updated,

i.e. C0 is high, or C2 is high. H is increased by one when a D is high or when C3 is low,

and C4 is high. Otherwise, it stays at zero.

The new values are concatenated as follows: [Input, D1, new Thr, new S, new U, new

H] replacing the old values [D1, D2, S, U, H] of the current channel stored in RAM. The

values for R1 and R2 have been set to 30/60 according to the expected firing rate of the

recordings as stated in the introduction in the chapter. As a spike typically lasts for 7

samples (1ms), skipping 5 samples after detection can effectively avoid re-detection while

maintaining sensitivity. P is thus set to 5. The threshold updating duty cycle is empirically

set to 1 s. T is thus 7000.

5.4.5 Timing

The hardware implementation is designed such that a single spike detection system can

serve multiple channels through multiplexing input and maintaining channel-specific mem-

ory. Therefore, a 128-channel spike detection system operating at a 7 kHz sampling rate

would require a system clock speed of 896 kHz (i.e. 1 clock cycle is needed for each indepen-

dent sample). As an example, Fig.5.4 shows a timing diagram illustrating how the threshold

value in RAM can be updated for channels 0 and 1. D1, D2, S, U, and H are updated

following a similar procedure.

At the CLK posedge, the threshold value 50 is read from RAM location R (CH0) as

RAMout.Thr. Here, we suppose the threshold is to be decreased by 1/16. The threshold

updater updates RAMout.Thr as 47 into RAMin.Thr. At the next CLK negedge, the new

R/W channel addresses will be updated. At the coming CLK posedge, the RAMin.Thr

is written into the W(CH0) position of RAM as RAM.CH0.Thr. In the meantime, the

threshold value of CH1 is read into the RAM output buffer and the threshold value will be

updated accordingly.
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Figure 5.4: A timing diagram is presented to depict the procedure of threshold updating. The memory

read/write addresses are updated at the negative edge of the clock. At the positive edge of the clock, the

previous threshold value (50) is retrieved from the RAM based on the read address. The new threshold

(47) is calculated through a combination logic. At the next clock positive edge, the updated threshold is

saved back to the RAM based on the write address, the same as the previous read address. As a result, the

previous threshold value is overwritten by the new value.

5.4.6 System scalability

As the proposed spike detection system is efficient both in terms of hardware complexity

(number of logic gates, memory) and computation (only 1 clock cycle is needed per input

sample), this implementation is easily scalable to higher channel counts. The number of

channels supported can be increased by linearly increasing the RAM and clock frequency.

The Look-Up Table (LUT) usage is less affected because all channels share the same filter,

control logic, and updaters in a time-sharing manner. Without considering the on-implant

area and power constraints, the system can be scaled up to N channel as long as (5.4) is

satisfied.

Tdelay(RAMout,RAMin) + TRAM <
1

7000 ∗N
(5.4)

where Tdelay(RAMout,RAMin) is the propagation delay from RAMout to RAMin and TRAM

is the delay of RAM read and write. The system can be easily scaled up to more than 1000

channels (7MHz), without violating timing constraints.

5.5 Results

The results suggest that the firing-rate-based spike detection with spike peak mean tracking

and target detection rate auto-updating (Noted as FR-C) can provide good robustness to
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Figure 5.5: a) Average Spike detection accuracy, sensitivity, and false detection rate across synthetic

datasets of the proposed algorithm compared to our previous work [11], and exemplar methods including a

high complexity algorithm [128], an offline algorithm [45], a low complexity float-point algorithm [48] and

the low complexity fixed-point algorithm in 3 at different noise levels. b) The spike detection performance

at the different sampling rates. There is nearly no degradation when the sampling frequency is above 8kHz

and only minor degradation at 6kHz.

inaccurately defined initial values. However, the simpler version (Noted as FR-B) achieves 1%

higher spike detection accuracy when the target detection rate is correctly set, significantly

improves long-term detection stability, and reduced hardware resources by 67%, which is

preferred for on-implant use. Therefore, this section only includes a comprehensive evaluation

of the FR-B, while the most of evaluation of the FR-C is included in Appendix.B.

We compare the FR-C with the baseline statistical-based spike detection algorithms

and other state-of-the-art algorithms w.r.t spike detection accuracy and adaptiveness on

the synthetic dataset. We also compare the neural decoding performance, and long-term

detection stability on the Utah array recording. In addition, the algorithm is also validated

on Neuropixels recordings.

All algorithms are validated using MATLAB R2020a (v9.8) for detection performance

evaluation. To ensure the MATLAB algorithm is equivalent to a hardware implementation

(referring to both FPGA and ASIC), we defined all parameters to use 10-bit integers and

ensured all arithmetic functions use fixed point operations leading to identical performance

across different platforms.

5.5.1 Spike detection accuracy on synthetic dataset

We first tested the FR-B on the synthetic dataset to quantitatively evaluate the algorithm

compared to other state-of-the-art spike detection algorithms.

The performance of FR-C and FR-B at different noise levels are plotted in Fig.5.5a

along with other algorithms. The FR-B show higher detection accuracy compared to FR-B

because the smaller p value allows the threshold to adapt into a finer level detecting spike
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more accurately. From that figure, we can also observe that it achieves better detection

accuracy compared to the offline spike detection [45], real-time float point algorithm [48]

and fixed point algorithm in Chapter.3.

The FR-B performs better than the high complexity algorithm [128] in 0.05 to 0.15

noise levels. It is only less notable at 0.2 noise level compared to the high complexity

algorithm. The performance is mainly degraded by the increased false detection rate. FDR

can be improved by introducing more complexity spike enhancing operations, but it is shown

in [129] and will be demonstrated in the next chapter that sometimes a higher FDR setting

can be beneficial for neural decoding.

FR-B is operated at a relatively low sampling frequency. Low sampling frequency can

significantly reduce the power of the hardware implementation while compromising detection

performance. To evaluate how the spike detection performance can be degraded with the

reduced sampling frequency, we have downsampled the raw signal at 24kHz to 2-4 times.

The results are shown in Fig.5.5b). We can observe that there is nearly no degradation

when the sampling frequency is above 8 kHz and start to degrade at 6 kHz (but still above

0.9 detection accuracy). As the energy of the spikes is mostly concentrated below 3kHz,

7kHz is the lowest sampling frequency for accurate spike detection according to the Nyquist

theorem with 1kHz oversampling. Similar findings are also drawn from [47] and [96].

We also compare the FR-B with the shift-based ED emphasiser combined with mean or

median with different threshold buffer sizes, which are the ‘baseline algorithms’ introduced

in Section.4.2. The results are shown in Table.5.2

Compared to the 16-sample Mean (M16) or 25-sample Median (MD25). The FR-B achieves

much higher detection accuracy across four noise levels. The detection performance of FR-B

is minorly degraded (1.3%) if the noise level increases from 0.05 to 0.15. It is 5.3% for both

M16 and MD25. At 0.2 noise level, the proposed algorithm can still maintain over 90%

detection accuracy while it becomes 85% and even lower for the other two. It only becomes

comparable to FR-B when using 50-point median to set the threshold, and using more buffers

for mean-thresholding cannot improve its accuracy even further.

5.5.2 Spike detection adaptiveness

An interesting observation in Fig.5.5 is that the FR-B performs even better than the FR-

C. The reason is that its updating scale is smaller leading to a more accurate threshold.

However, with the spike peak mean tracking and max spike count auto-updating, it gains

the advantage of better adaptiveness. Fig.5.6 shows the detection accuracy of two algorithms

with different initial R1 and the mean-based threshold with different multipliers. Compared

to the mean-based thresholding the simple version of the firing-rate-based spike detection

algorithm already has improved adaptiveness as the peak accuracy is aligned at around 56Hz.
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Table 5.2: The spike detection accuracy of the proposed and baseline algorithms at different

noise levels

Noise levels M16 M90 MD25 MD50 ADF+FR

0.05 0.966 0.95 0.983 0.987 0.98

0.1 0.957 0.94 0.968 0.983 0.974

0.15 0.913 0.90 0.93 0.976 0.967

0.2 0.851 0.90 0.835 0.907 0.919

Avg 0.922 0.923 0.929 0.963 0.96
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Figure 5.6: The spike detection accuracy varying with target detection rate or multiplier values for firing-

rate-based algorithm basic version (FR-B), firing-rate-based spike detection with spike peak mean tracking

and max spike rate auto-updating (FR-C) and mean-based spike detection (Mean) at different noise level on

the synthetic dataset.

By using spike peak mean tracking and max spike rate auto-updating, the FR-C becomes

robust to the initial setting. Because the spike peak levels are known, we can guarantee that

the threshold is updated within a reasonable range.

Taken together, the FR-C can be regarded as having two modes. Mode I: when the MSR

is inappropriate and the threshold tends to be unreliable, the threshold can still stay within

the reliable region, and the MSR will update until it is also appropriate. Mode II: when the

MSR is appropriate, the threshold will converge to a level so as to detect the spikes at the

desired rate. These two modes operate in tandem and guarantee high performance.
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Figure 5.7: Spike rates of the Utah array recording detected from this work detected at 20Hz (Red),

previous (Grey), STD thresholding (Blue), and the average spike peak amplitude (Yellow) over 200 days of

recording started from 27 July 2016. The grey curve quickly disappears, indicating that the FR-C method

is not long-term stable.

5.5.3 Long-term detection stability on Utah array recordings

Long-term stability is another important aspect of implantable BMI applications. Fig.5.7

shows the real detection rate of three different spike detection outcomes on the Utah array

recordings [43] using FR-B, FR-C and adaptive STD threshold (Provided with this dataset).

It can be clearly observed from Fig.5.7 that the detection rate of the STD threshold (Blue)

is reduced from 18 kHz to 10 kHz, However, the detection rate of FR-B (Red, the target

detection rate is set at 20Hz) is relatively stable over 200 days of recordings.

The growth of scar tissue can push the neurons further away from the implants. The neu-

ral activities are thus weakened over time, leading to less significant spikes [51]. Statistical-

based spike detection can therefore detect fewer spikes over time.

We observed inadequate performance in long-term detection stability of FR-C (Gery)

because the threshold of FR-C can reduce to an unreasonable low level detecting too many

spikes if not reset frequently. To be robust to the inaccurate initial settings, FR-C sets the

threshold according to both the spike peak mean values and target detection rate. However,

due to the sub-optimal spike peak mean value estimation method, false detection of noise

peaks can reduce the estimated peak mean value below the real spike peak level. After a

long time of detection, the spike peak means can become too low. This even lowers the

threshold, creating more false detections. Such positive feedback can eventually cause the

algorithm to fail unless the system is reset. This impact is especially prominent when the

signal-to-noise ratio is low.

The FR-B however eliminates the dependence on spikes. Although the target detection

rate should be properly set to achieve optimal spike detection performance, the algorithm
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Table 5.3: Decoding performance when using the result from STD-based spike detection and

the proposed spike detection algorithm

STD w calibration FR w/o calibration FR w/ calibration

WCF 0.636 0.663 0.668

LSTM 0.738 0.753 0.759

can now provide long-term stable detection outcomes as shown in Fig.6.4. The threshold can

be automatically adjusted to a lower level to detect the activities from neurons that have

been pushed further away by the scar tissue maintaining the preset target detection rate.

It is reasonable to assume that such stable detection results are expected to provide better

long-term decoding performance compared to conventional statistical-based spike detection.

5.5.4 Decoding performance on Utah array recordings

The vast majority of spike detection algorithms are validated using synthetic data - as the

ground truth is known a priori. Rarely are they validated using real recordings, as manual

labelling can be time-consuming. Some studies use the recording of paired electrodes to

obtain the neural firing ground truth of one signal neuron. However, this only allows us to

evaluate the algorithms’ sensitivity, not the false detection rate or accuracy. Other studies

have attempted to use new metrics to evaluate spike detection performance in practice [130]

or design algorithms to automatically label the spikes [131], but these methods have not

been widely accepted.

The Utah array dataset mentioned in Section.2.3.3 recorded from the motor cortex of an

non-human primate when controlling a ticker to operate cursor reaching tasks. Two standard

neural decoders: Long-Short-Time Memory (LSTM) and Wiener Cascade Filter (WCF) are

trained following [41] to decode the subject hand velocity from the spike detection outcome of

the neural signals. We used Cross-Correlation (CC) between the actual and predicted hand

velocity to evaluate the corresponding neural decoding performance and implicitly evaluate

the spike detection performance, formulated as Eq.5.5.

CC =

∑N
t=1

(Yt − Ȳ )(Ŷt −
¯̂
Yt)

√

∑N
t=1

(Yt − Ȳ )2
√

∑N
i=1

(Ŷt −
¯̂
Yt)2

(5.5)

where Yt and Ȳ are the true target velocities at timesteps t and the average, Ŷt and
¯̂
Y are

the predicted velocities and the average. N is the total number of samples in this trial. CC

is measured on both the x and y-axis and averaged. The models are evaluated using 10-fold
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Figure 5.8: The Neuropixels recordings and adaptive threshold of four different channels with the corre-

sponding instant detection rate. For better visualization, the recording is plotted at a lower sampling rate of

800 samples/s without taking absolute values, but the algorithm still operates at 7 kHz with absolute values

being taken. Some spike peaks may appear missing in the plot due to the lower sampling rate, but they are

accurately detected by the algorithm.

validation, and the final CC is obtained by taking the average of the CCs from all ten folds.

The results are given in Table.5.3.

We can observe that for both conventional filter-based decoding and machine-learning-

based decoding, with a fixed parameter setting across all channels (w/o calibration), the

proposed spike detection algorithm achieves 1% to 3% higher decoding accuracy compared to

the decoding results from calibrated STD-based spike detection. The corresponding mean or

median-based result is expected to be even lower as their detection performance is supposed

to be worse than the STD-based one. We also notice that channel-wised and day-to-day

calibration only increased decoding accuracy by less than 1%, which means that after we

find suitable parameters at the start, there is no need for further parameter calibration for

the proposed algorithm in practice.

5.5.5 Validation on Neuropixel recordings

We have shown the effectiveness of the firing-rate-based spike detection algorithm on Utah

array recordings. The synthetic dataset is also created from Utah array templates. To

investigate the adaptability of our algorithm to other types of recordings, we also tested it on
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Neuropixels recordings, which use a high-density electrode array, and were provided in [44].

Moreover, this high-density recording can provide a diverse collection of the different signal

SNRs, allowing us to evaluate the algorithm’s robustness in varying brain environments.

However, since there is no ground truth available to evaluate the spike detection performance

quantitatively, we visually inspected the spike detection results.

The detection outcomes are shown in Fig.5.8, where four different channels with varying

SNRs are plotted at the same scale. The original recording is down-sampled to 800Hz before

plotting for better visualization, but the detection algorithm still operates at 7 kHz with the

same target detection rate interval of [30Hz,60Hz].

Even though the neural activities are significantly attenuated across channel 99, channel

35, and channel 169, similar neural activities are detected from these channels according to

the detection rate plot on the right. It is especially notable for CH169 that the spikes are

nearly invisible from the noise. It has been shown in [129, 132] that detecting noise-level

spikes is beneficial for neural decoding. Such an observation provides strong support for the

robustness of the proposed algorithm to be used without calibration.

We can also observe that in CH374, the detection rate is relatively stable at the start.

We assume the reason is that the neural activity could be attenuated to be invisible from

the noise making this channel to be ‘silence’ for a while. Once the activities happen in a

closer region, this channel is activated.

Another observation is that even though a target detection interval is set, the instant

detection rate can exceed or fall below this range, rather than being confined within it. This

is because the threshold is updated only gradually after the target interval is not met. Burst

activities or inactive states can still be detected, even if the actual firing rate is outside that

interval.

Although we cannot provide a quantitative analysis of the spike detection accuracy in

Neuropixels recording, the visualisation and qualitative analysis above can demonstrate the

potential of the proposed algorithm to be applied to new recordings at varying noise levels

without calibration.

5.5.6 FPGA resource utilisation and power consumption

The downsampled input signal is created on MATLAB and generated from Tektronix AFG3102

Arbitrary Function Generator. A Digilent PMOD DA2 dual channel 12-bit DAC and Dig-

ilent PMOD AD1 dual channel 12-bit ADC are used for I/O conversion. The Tektronix

DPO4034 Oscilloscope is used to monitoring the processed signal, threshold and the detec-

tion outcomes. The experiment setup is shown in Fig. 5.9.

The resource utilisation of different components of two firing-rate-based algorithms is

given in Table.5.4. The utilisation of the ED+Mean spike detection is also reported, which is
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Figure 5.9: The experimental setup used to validate the spike detector FPGA implementation, showing

the respective instruments that were used.

the most hardware-efficient spike detection implementation using statistical-based approach

as it is shown in Section.4.2. ADF only occupies one-forth of the LUTs compared to the

ED because no multiplication is used in ADF. Compared to the shift-based ED, ADF can

still reduce LUT usage by 2/5. However, the RAM width is doubled because ADF uses

two samples ahead. The mean-based thresholding requires nearly 100 LUT, while the FR-B

thresholding only needs half and FR requires a similar amount of LUTs as the mean-based

thresholding. Besides the LUT usage, the FR thresholding has a significant advantage in

reducing RAM usage. RAM bandwidth can be reduced by an order of magnitude compared

to the 16-point mean. This difference can be even larger when more samples are buffered

for calculating the mean values. Given that the ED-Mean-based spike detection performs

no better than the firing-rate-based spike detection, the resource usage report can illustrate

the effectiveness of using the firing rate to set the threshold in reducing the hardware cost

while maintaining and even improving the spike detection performance.

Finally, the FR-B consumes 0.21µW power per channel in Lattice ice40lp1k platform,

which features a low-power FPGA with 40 nm technology. In comparison, the power con-

sumption was 0.28µW per channel for FR-B. We should note that the Digilent Artix-7 FPGA

platform can consume a considerable static power, which can lead to inaccurate power mea-

surements. For that reason, we report the power consumption of a low-end FPGA platform

to provide more representative values for power.
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Table 5.4: FPGA implementation resource utilisation

LUT Registers RAM Width (Bits) DSPs

ED LUT Mul 121 0 10 0

ED shift 48 0 10 0emphasizers

ADF 30 0 20 0

Mean (16/64) 95 0 380/1300 0

FR-B 53 0 33 0Thresholding

FR-C 115 0 70 0

ADF+FR-B 78 16 53 0

ADF+FR-C 193 106 90 0Full system

ED+Mean16 140 24 390 0

5.5.7 ASIC area occupation and power consumption

The register transfer level (RTL) implementation of the FR-B spike detection is mapped to

two ASIC designs using TSMC 0.18µm BCD Gen II and 65 nm LP technology. The synthesis

and place & route were performed by Cadence Genus and Innovus by using standard digital

cells. The implementation includes sequential and combinational logic cells. Based on the

synthesized reports, sequential logic instances (mainly the memory) occupy four times the

silicon area than combinational logic.

At 0.18µm technology, the 128-channel FR-B spike detection occupies 0.93×0.93mm2

and consumes 35.7µW at 1.8V supply voltage. When it is upgraded to 65 nm technology,

it only occupies 0.31×0.31mm2 and consumes 4.86µW at 1.2V supply voltage, resulting in

a 7-fold reduction in power consumption and a 9-fold reduction in area. These two designs

provide a good reference to study how the technology node impacts the power and area.

and allow us to compare our work with state-of-the-art implementations using different

technology.

As shown in Table. 5.5, our design has achieved the lowest power consumption and area

occupation while still maintaining spike detection accuracy similar to the highest-performing

design that has been included in the table. Compared the 65 nm implementation with the

work in [47], the power consumption is nearly halved and the area occupied is reduced by

about 1/4.

The power of our 0.18µm design only consumes 1/20 of the power reported in [46] and

occupies 2/3 less area. Although analogue designs are expected to have better hardware

efficiency than digital designs, our digital design reduced the area occupation by nearly two

orders of magnitude compared to the analogue design in [133], and more than one order of
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Figure 5.10: The layouts of 128 channel FR-B spike detector and ED-Mean-based spike detector in 0.18µm

and 65 nm technology. The ratio of the area occupation is annotated.

magnitude of the power compared to [111]. Even the 0.13µm design in [117] requires twice

as much power and area as our 0.18µm design.

Another interesting observation in Table.B.2 can be found by comparing the work in

[133] and [111]. They both use 0.18µm analogue design, while the former one uses mean

thresholding and the latter one uses RMS thresholding. The mean thresholding leads to

significantly reduced power consumption but requires more area, as sample buffers are needed

to calculate the mean values, increasing the area requirement. However, the latter one

estimate RMS values without using data buffers, but it typically requires multiple clock

cycles (e.g. 200 [47]) and complex logic, leading to less area occupation but significantly

increased power consumption. However, firing-rate-based spike detection requires no buffer

and can be calculated with only one clock cycle, making it the best choice for spike detection

when jointly considering the power, area, and accuracy.

While we implemented our design in two different technology sizes, it is important to

note that the hardware specifications, experimental setups, and power estimation strategies

can vary, making it challenging to compare designs directly. Comparing our design to the

ED+Mean16 algorithm allows us to control for these variables and compare the hardware

efficiency difference resulting solely from the algorithm. We can use them as two generic

models for comparing statistical and firing rate approaches for thresholding. Furthermore,
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Table 5.5: Comparison to state-of-the-art ASIC adaptive spike detectors

This work

(0.18µm)

This work

(65 nm)

BioCAS2022

[47]

JNE2022

[46]

TBCAS2020

[133]

AEU2018

[111]

TBCAS2017

[117]

Technology (nm) 180 65 65 180 180 180 130

Implementation Digital Digital Digital Digital Analog Analog Digital

Supply voltage 1.8 1.2 1.1 1.8 0.5 0.8 1.2

Clock frequency (MHz) 0.896 0.896 4 0.8 0.54 - 0.16

Preprocessing ADF ADF Dual NEO NEO MAE ED NEO

Thresholding FR FR STD RMS Mean RMS RMS

Channel 128 128 256 128 - - 32

Resolution (Bits) 10 10 7 - - - 10

Sample frequency (kHz) 7 7 16 24 30 16 20

Power per channel (µW/Ch) 0.28 0.038b 0.07 4.9 0.116 5.1 0.52d

Area per channel (mm2/Ch) 6.76×10−3 7.51×10−4 9.69×10−4 c 0.02 0.27 0.018 3.82×10−3 c

Accuracy 0.96a 0.96a 0.97 0.92 <0.97e 0.95 <0.95e

a The accuracy is 0.97 @ 12 kHz sampling rate.
b At best FoM (32 channels), this design only takes 0.01µW/ch and 1.01×10−3mm2/ch.
c The area is obtained from multiplexing eight 32-channel modules.
d Only NEO processor and threshold estimator modules in the spike sorting design are included.
e Maximum accuracy on a different dataset.

we can investigate how these two approaches scale with increased channel counts. As a result,

we implemented both designs in 0.18µm technology with channel counts ranging from 8 to

512 channels. The layouts of 128 channel designs of both algorithms in two technology sizes

are given in Fig.5.10 with the relative area ratios among them.

The 128-channel ED+Mean16 requires 2×2mm2 and consume 35.7µW, which is 0.03mm2

and 1.77µWper channel. It already achieves a similar area occupation and much lower power

consumption compared to the work in [46] with the same spike detection accuracy (0.92).

Compared to the firing-rate-based spike detection in this work, it requires 4.6 times more

area and 6.3 times more power while the detection accuracy becomes 4% lower.

Fig.5.11 shows the scalability of these two implementations with an increased channel

count. The area occupation per channel decreased slowly for both spike detectors because

combinational circuits are shared across channels. The power consumption of ED+Mean16

scales much faster than ADF+FR, ED+Mean consumes 0.64µWmore power than ADF+FR

per channel when the channel number is 8 and it becomes 6.7µW per channel when the chan-

nel count increased to 512. The reason is that ED+Mean16 requires much more memory than

ADF+FR and the memory is supposed to be the most power-consuming module [47]. The

observation above demonstrates that the firing-rate-based thresholding has better scalability

with increased channel count compared to the mean-based thresholding. As the RMS-based

spike detection can consume even more power compared to the mean-based one, our design

potentially also outperforms the RMS-based spike detection as well.

In this section, we have demonstrated improved hardware efficiency over other works.
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Figure 5.11: The area occupation and power consumption scaling with channel count for two different

spike detector implementations in 0.18µm technology.

Such an advantage comes from various aspects. On the one hand, since ADF requires no

multiplication, it requires fewer logic cells, and the data bandwidth is maintained at 10 bits.

In contrast, emphasisers using multiplications are more complex and require 20-bit output

bandwidth. Reduced logic complexity and data width lead to less resource usage and more

efficient placing and routing. On the other hand, the firing-rate-based thresholding of our

algorithm does not require buffering of samples, reducing RAM usage. Additionally, it only

requires one clock cycle for each sample. As a result, power and area can be significantly

reduced.

5.6 Conclusion

In this chapter, firing rate information, for the first time, is used to set the threshold for

on-implant real-time spike detection. Incorporating the ADF, the proposed firing-rate-based

spike detection has achieved state-of-the-art spike detection performance, notable adaptive-

ness and significantly reduced hardware complexity. The main contribution of this chapter

is summary below:

• The adaptive algorithm achieves 96% spike detection accuracy on a commonly used

synthetic dataset, without the need for any prior training.

• The firing-rate-based spike detection is also capable of adapting in the long term,

providing stable detection outcomes over 200 days, and can be used on different types of

recordings collected by Utah arrays and Neuropixels probes without further calibration.

• The 128-channel ASIC design implemented in a 65 nm CMOS technology occupies

0.096mm2 silicon area and consumes 4.86µW from a 1.2V power supply.
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The work in this chapter focuses on optimising the balance between spike detection per-

formance and hardware complexity. With the firing-rate-based spike detection, we ultimately

achieve notable performance on both sides. However, it is still worth noting that the goal of

spike detection in a BMI system is to reduce the data bandwidth and provide informative

features for neural decoding. Most spike detection algorithms are designed without consider-

ing such an ultimate goal. In the next chapter, we will show how the firing rate information

can play a part in improving spike detection accuracy and reducing the data bandwidth.
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Chapter 6

Spike detection and beyond:

The relationship between spike

detection and neural decoding

Continuing the journey of designing hardware-efficient adaptive spike detection

algorithms, this chapter explores the broader implications beyond just spike de-

tection. By investigating the relationship between spike detection and neural de-

coding, it becomes clear that setting spike detection parameters is not just about

finding the optimal threshold to distinguish spikes from noise but rather a trade-

off between data bandwidth and decoding performance. Based on this insight, new

algorithms for firing rate compression and decoding are proposed with the aim of

reducing data bandwidth while maintaining long-term decoding stability.

6.1 Introduction

In the previous chapters, we have shown the need of using spike detection to distil the features

from the raw neural signals. Efficient on-implant feature extraction and compression can

effectively reduce the data bandwidth and eventually allow brain activities to be transmitted

wirelessly. We have introduced novel spike detection algorithms that not only enhance

spike detection performance and ensure long-term detection stability but also demonstrate

compatibility across various types of recordings. Importantly, these new algorithms have

also been designed with an emphasis on reducing hardware complexity, a crucial step that

A portion of the content in this chapter has been published in [126], in which I contributed to the

software/hardware algorithm design, result analysis, and draft manuscript preparation and revision.
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further improves the efficiency and adaptiveness of the BMI systems.

Accurate detection of all spikes is required by studies of neural dynamics or brain ac-

tivities. This criterion is not equally critical within the context of BMI applications. Our

understanding of spike detection in wireless BMI systems has evolved to dispel a prevalent

myth: The ultimate objective of a spike detection algorithm should extend beyond simply

detecting all neural spikes accurately. Rather, its primary purpose is to enable effective

neural decoding and ensure efficient bandwidth reduction for wireless transmission.

The reasons for this divergence are twofold. Firstly, the hardware used for accurate de-

tection might surpass what is viable for wireless iBMI systems. Secondly, even if optimal

parameters are established in spike detection to maximally differentiate spikes from noise,

such parameters do not inherently guarantee the highest accuracy in neural decoding. No-

tably, what might initially be perceived as ’noise’ could indeed be informative. Additionally,

a frequent detection rate could inadvertently lead to a reduced compression ratio. Thus, it

is crucial to maintain a balanced approach towards spike detection in BMI systems, taking

into account the broader objectives of neural decoding and bandwidth efficiency.

Moving forward, we used the same dataset to decoding the subject hand movement using

neural activities as in Section.5.5.4 and studied the relationship between spike detection and

neural decoding, specifically through the use of a firing-rate-based spike detection algorithm,

yielding the following insights:

1) Detecting only significant peaks causes less than 1% performance degradation. As

fewer spikes are detected, less information needs to be transmitted. This can be the best

trade-off between the data bandwidth and decoding performance, which is often preferable

in the context of wireless brain machine interfaces.

2) Detecting small spike peaks around the noise floor can enhance the decoding perfor-

mance. It reveals that there are neural activities far away that are informative relatively.

Utilising this extra activity in decoding can improve decoding performance other than being

detrimental despite detecting additional noise that is often considered to be detrimental to

spike detection performance. Therefore, applications involves designing BMIs to maximise

decoding performance or studying underlying science require undistorted neural information

should follow this approach where the threshold should be set only a little above the noise

floor, i.e. sensitivity is more important than specificity. A similar finding is also observed

in [129,132], we re-proofed such a finding in a practical setting.

In addition, we have designed a novel neural decoder that leverages the silence/active

information provided by the firing-rate-based spike detection algorithm, resulting in a signif-

icant improvement in long-term decoding stability. Fig.6.1 illustrates the tasks and methods

involved in this chapter.

Lastly, we have explored the opportunity for further reducing the data bandwidth through

entropy encoding and demonstrated the benefits of using the firing-rate-based algorithm over
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Figure 6.1: a) Spike detection - neural decoding system co-design. After digitising the intracortical signal,

spikes are detected at the pre-set target detection rate. Detected spike counts are binned at a fixed period.

Binned spike counts are then modulated using the target detection rate to align the feature representation

over time. Finally, the decoding model predicts the target velocity, and its correlation coefficient to the

real velocity is used to evaluate the system performance. b) Logic circuit of spike detection. The Absolute

Difference Filter takes the input signal’s derivative and absolute value to remove the LFPs. The spikes are

detected if the filtered signal outnumbers the threshold. The threshold is updated duty-cycled according to

the relationship between the target detection rate and the number of detections counted by Spike Counter.

Repeated detections are counted only once. c) Flowcharts of the neural decoding modules. All modules

use the LSTM decoder but have different input layers. The proposed Rate-Modulated LSTM(RM-LSTM)

subtracts the target detection rate from the binned spike counts followed by a dense layer. Compared to

the proposed architecture, the conventional LSTM subtracts the mean values calculated from the training

dataset to perform a standard normalisation of the input feature. Input Dense LSTM(ID-LSTM) consists

of a dense layer with the standard normalisation. Rate Subtracted LSTM(RS-LSTM) only modulates the

input feature using the target rate without the dense layer.
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conventional algorithms.

This chapter will introduce these three aspects, showing the advantages of employing the

firing-rate-based spike detection algorithm in wireless iBMIs.

6.2 The relationship between spike detection and neu-

ral decoding

In order to find the relationship between the spike detection performance and neural decoding

performance, we need a measure of the spike detection performance on the realistic dataset.

It is challenging as there is no ground truth. However, with the FR-B, we can perceive the

spike detection performance using the target detection rate. More specifically, if we set the

target spike detection rate close to the local firing rate, the algorithm should provide the

highest spike detection performance. To prove that, we used the Quiroga dataset (with an

average spike rate of 60Hz), and tested different target detection rates R1 by sweeping from

40 to 100Hz. The highest detection accuracy is expected to be achieved at around 60Hz.

The detection accuracy, false detection rate, and sensitivity are shown in Figure.6.2b.

The spike detection performance peaks at R1 = 56Hz, close to the 60Hz real spike firing

rate. It demonstrates that the proposed spike detection algorithm can provide the highest

detection performance when the target detection rate is close to the actual firing rate. It

can also be observed that when the target detection rate is above the actual firing rate, both

sensitivity and false detection rate increase, which means more spikes are detected while

more noise peaks are recognised as spikes and vice versa.

Moving on to the real dataset, we tried the Utah array dataset. Data collected from the

Utah array, which has been spike sorted [43], shows 3 to 5 clusters per channel. Meanwhile,

[132] suggests that, on average, there are 3.8 to 4 clusters per channel when no spikes are

discarded. Therefore, a reasonable assumption of the target detection rate should be 30-40Hz

for a ticker control task (as motor neurons can fire at below 10Hz when operating little-effort

tasks). The actual interval can be even lower as the number of neurons can be fewer than

the observed clusters and the subject did not operate the ticker continuously. With this

assumption, we are able to set a target detection rate interval to get the most accurate spike

detection results on a realistic dataset for the motor tasks. Varying the target detection rate

allows us to change the spike detection performance and builds the relationship between

detection and decoding.

Figure.6.2b is obtained after decoding the binned spike detection results with WCF and

LSTM. 30-40Hz should be the desired detection rate achieving the highest detection perfor-

mance and is supposed to provide the best spike detection performance as well. However,

the decoding performance of both methods peakss at 46Hz. Such unmatching suggests the
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Figure 6.2: a) The detection accuracy (Acc) of the proposed algorithm at different target detection upper

bounds for a simulated recording of spikes firing at 60Hz. The accuracy peaks at 58Hz. b) Decoding

correlation coefficients (CC) using conventional LSTM and WCF v.s. target detection rate. CC peaks at

46Hz. However, if double the detection rate to 100Hz, 1.4% performance can happen while only less than

1% degradation can happen if the detection rate is halved 23Hz. c) Preprocessed signal with three different

thresholds: 23Hz, under-detected, only significant spikes are detected; 35Hz, properly detection; 46Hz,

over-detected, many noise-level peaks are detected. Note that in practice, the absolute value is used instead

of dual thresholds, but we kept the sign here for better visualisation. d) The spikes and noise overlapped

plot with the thresholds. The thresholds are the average threshold after the 7s at different detection rates.

e) A zoomed-in plot of spike detection outcome.

nonlinear relationship between detection and decoding.

This desired detection rate interval might be inaccurate. To be more rigorous, we also

visually observed the spike detection result in Figure.6.2c-e. They show a recording snapshot

with the spike detection threshold generated with R1 = 23Hz, 35Hz and 46Hz in red, yellow,

and green separately. The threshold at 46Hz is obviously adapted to the level only a little

above the noise floor. Compared to the threshold at 35Hz, which is the best threshold to
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discriminate spikes from the noise by visual inspection, this lower threshold detected more

noise-level peaks. Both theoretically speaking and by inspection, detection at 46Hz is not

an ideal spike detection setting but achieves the highest decoding performance.

This finding does not match what is expected intuitively - better spike detection per-

formance and better decoding performance. It is also unmatched with the spike detection

algorithm design objective that aims at increasing the sensitivity while reducing the false

detection rate because the detection of these noise-level spikes can increase the false detec-

tion rate significantly. It suggests that some around-noise peaks are results in spikes actually

firing far away. Detecting these spikes improves decoding performance despite also detecting

more noise. This finding is also supported by the result in [129, 132, 134], suggesting that

discarding the noise cluster is detrimental to the decoding performance in decoding neural

signals using single-unit activities.

Another finding is that if the detection rate is doubled, to e.g. 100Hz, which means

about half of the spikes detected could be noise peaks, the performance is only degraded by

about 1.4%. In addition to detecting noise, the low detection threshold borders the spatial

detection region around the electrodes, and as a result, activities from regions further away

with different functional tuning are more likely to be detected. This can also lead to degraded

decoding performance [129]. However, this degradation is minor. This suggests that the

decoding models, even the simple filter-based model (WCF), are robust to noise. We only

investigated a simple Long-Short-Term Memory neural network. It would be expected that if

more advanced deep learning models are used, even better noise resistance can be achieved.

Finally, if the detection rate is halved to 23Hz, many of the spikes with lower peak

amplitudes can be missed. However, the decoding performance is only degraded by less than

1%. This finding is significant for on-implant spike detection, allowing us to send fewer data

without sacrificing much performance. The threshold crossing can be represented using a

binary stream at 1 kbps. A lower detection rate means a more sparse signal, and the more

sparse the signal is, the easier it is to be compressed, leading to less wireless transmission

power.

Spike detection previously is an unsupervised problem in practice and highly depends on

the results from synthetic data. The findings in this section are significant in providing a

guide on setting the threshold. Especially for the brain machine interfaces with a limited

power budget, the goal of spike detection would no longer be to find the best threshold

level for the highest detection accuracy but the trade-off between the data bandwidth and

decoding performance. With the firing-rate-based spike detection, the threshold level can be

selected so it fulfils the system requirement on bandwidth and decoding accuracy without

needing to consider the performance of the spike detection algorithm itself.
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6.3 Firing-rate-modulated neural decoding

An effective spike detection algorithm can efficiently maintain the majority of the informative

features inherent in raw neural signals while minimising data bandwidth. Upon evaluating

the Neuropixels recording as discussed in the previous chapter, it became evident that the

relative scale between the detection rate and target detection rate of the FR-B algorithm

offers robust discrimination between silent and active behaviours.

Based on that assumption, we decided to integrate the target detection rate into neural

decoding. This innovative approach resulted in a surprising improvement in long-term de-

coding accuracy by 10% after 80 days of model implementation. The specifics of the model

implementation and its subsequent evaluation are detailed in the following sections.

6.3.1 Spike count binning

The output of the spike detection is a binary stream. It has been found in [41, 135] that

binning the binary threshold crossings into MUA counts at a certain period can improve the

decoding accuracy. However, a trade-off between decoding accuracy and temporal resolution

has to be made. In this work, a 50ms bin period is used as in [41, 135].

6.3.2 Neural decoding

The binned MUA counts from different days are split into ten sets for decoding model cross-

validation. For each validation cycle, one set is used for testing; one set is used for validating

the best model and the rest sets are used for training. The average score across 10-fold

validation is used as the final score of this day.

As mentioned before, the proposed spike detection algorithm can provide extraction

information of the potential silent and active periods. We have designed a special input

layer for the LSTM to utilise such extra information to modulate the binned spike count. A

Rate-modulated LSTM (RM-LSTM) is proposed to have the capability to keep the consistent

feature representation even though the input feature statistics are changed over time as shown

on top of Figure.6.1c. The input layer consists of a firing rate modulation step and a dense

neural network layer which is formulated as Eq.6.1

Yin = ϕ(Win(Xin −R2 ∗BP )/STDT ) (6.1)

where Xin ∈ N
N is the binned MUA signal, and N is the channel number. STDT is the

standard deviation of the training set, R2 is the target detection count lower limit, and BP

is the bin period in seconds used for firing rate alignment. Win ∈ R
N×N , ϕ(·) and Yin ∈ R

N

are the weights, Sigmoid nonlinear activation and the output of the dense layer,
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Consistent feature representation means the input of the LSTM can be at a similar scale

statistically regardless of the varying of the binned MUA count statistics. This is achieved

using the firing rate modulation. Input feature consistency is critical to maintaining the

long-term stability of the decoding model, as the SNR can degrade with implant ageing.

Xin − R2 ∗ BP keeps the potential activate periods (large firing rate feature) positive while

it shifts the less active periods (small firing rate feature) to be negative. This input-output

relationship of the model is correctly mapped after shifting, as shown in Figure.6.1a firing

rate modulation. This correctly mapped relationship is expected to be easier to learn by

the decoding model compared to normalisation feature. At the same time, such mapping is

input-feature-scale invariant. Even though the recording quality is degraded, the mapped

feature statistic can stay unchanged. Moreover, such mapping is consistent for different

target detection rates, and there is no need to retrain the decoding model after changing the

target detection rate of the spike detection algorithms.

The nonlinear response adds the capability of the models to simulate the nonlinear rela-

tionship between the input firing rate and the output that estimates behaviour. We assume

the effect of the input firing rate on the behaviour (finger movement velocity) should show

a saturation trend when the input firing rate is very high or small. Such a relationship can

be well simulated using the Sigmoid function, a widely used activation function in neural

networks.

Compared to the conventional LSTM, RM-LSTM used different input (Xin − R2 ∗ BP )

and more parameters (Win). We built another two models: Rate-Subtracted LSTM(RS-

LSTM), which only subtracts the rate from the input and Input-Dense LSTM(ID-LSTM),

which only has the input dense layer and nonlinear activation. RS-LSTM controls the number

of parameters to identify the improvement made from firing rate modulation over standard

normalsation, and ID-LSTM controls the input feature statistics to identify the contribution

of the increased model size. The architectures of these models are shown in Figure.6.1c.

6.3.3 Decoding performance

We used the target detection rate to bridge the neural decoding with spike detection. The

improvement is shown in Figure.6.3a. Compared to the Conventional LSTM(Blue), over 1%

improvement has been achieved using RM-LSTM(Red) at all different detection rates.

When the detection rate is above 40Hz, more noise is likely to be detected. The detected

noise will be added in MUA counts to the decoding model (Activity from further cells irrel-

evant to the targeted activity can also be regarded as noise). Because of such noise, we can

observe a decaying trend to the tail of the conventional LSTM. RM-LSTM however contains

the decay suggesting the firing rate modulation (keeping consistent feature representation)

not only helps to improve the model capability but also improves the model’s robustness to
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Figure 6.3: a) Decoding performance of different decoding models. RM-LSTM achieves the highest de-

coding performance among all models at all detection rates. b) The decoding performance when the model

is trained with detections at 50Hz and tested with detections at varying rates. The decoding performance

is distinguishably improved when two rates are different by using the firing rate modulation.

the noise.

To further understand such improvement in decoding performance, we designed the ID-

LSTM model, which has the same number of parameters as RM-LSTM but without the firing

rate modulation as Figure.6.1c shows. The yellow curve in Figure.6.3a shows its performance.

ID-LSTM provides better decoding performance than conventional LSTM but is not as good

as RM-LSTM. Such observation suggests that the improvement of RM-LSTM is not solely

from the increased number of neural network parameters, but the firing rate information

also matters.

We mentioned that firing rate modulation could improve the decoding performance be-

cause such an operation can keep a consistent feature representation and zero-centre the

mapping, which is easier to learn. However, data normalisation can have a similar effect. In

order to show that using the rate information of the proposed spike detection is better than

the normalisation, we designed the RS-LSTM shown in Figure.6.1c. It subtracts the target

rate instead of the mean calculated from the training set. It can be observed in Figure.6.3a

that with such a simple subtraction, RS-LSTM achieves (purple) better performance than the

ID-LSTM model, which has 48190 more parameters. We can also observe that the decaying

trend with increased detection rate is also contained, similar to RM-LSTM. Such observation

suggests that using the firing rate modulation can more accurately map the high firing rates

to the active behaviour while mapping the low firing rates to the inactive behaviour than

using standard normalsation enhancing the learning procedure of the deep learning models.

We also tested how the performance of RM-LSTM can be affected when fewer or more

spikes are detected (Changed target detection rate). We tried to train the model with the

detection results in one target detection rate (50Hz) and tested at a different detection rate

simulating more or fewer spikes being detected when the environment changes. We can

observe the significant improvement in Figure.6.3b, especially when fewer spikes are detected
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when the rate information is used, demonstrating the robustness of the system co-design.

Our results above not only demonstrates the improved performance of the proposed spike

detection and neural decoding system co-design compared to the baseline models but also

provide explanations as to where the improvement comes from, addressing the importance of

consistent feature representation. It is essential that AI is not blindingly applied but rather

its application is informed by some knowledge of the “system”. We believe such a co-design

system can thus provide better intuition in designing and optimising decodes performance

than by simply applying complex deep learning architectures.

6.3.4 Long-term decoding stability

Maintaining long-term neural decoding performance is a challenging task in brain machine

interfaces, because of the recording quality degrading with implant ageing. The growth of the

scar tissue can push neurons further away from the electrodes weakening neural activities.

As it has been shown in the previous chapter, the average threshold crossing rate of STD

thresholding detection outcome can drop from 18Hz to below 10Hz due to the weakened

signals as the yellow and grey curves show in Figure.6.4a. such decaying results in two

factors which are detrimental the long-term neural decoding: information loss and feature

statistical variation.

The proposed co-design methodology can address this issue. The firing-rate-based spike

detection can update the threshold to lower levels over time, allowing for the detection of

neural activity further from the electrodes and stabilizing the detection rate. Meanwhile,

firing-rate-modulated decoding maintains zero-centered binned spike rate features, providing

statistically consistent features in the long term, regardless of the noise levels and spike

amplitude. A statistical-based approach cannot provide such a feature because the optimal

threshold level is nonlinear to the noise statistics. While setting a new multiplier to the noise

statistics can resolve this issue to some extent, manually tuning all channels to maintain a

stable output stream is impractical.

Three different models have been implemented to evaluate the improved performance

of the proposed co-design. In addition to the RM-LSTM and conventional LSTM, we im-

plemented another model, Mean-Tracked LSTM (MT-LSTM). Its only difference from the

conventional LSTM is that test data is normalised by the test data statistics rather than

the values from the training set. This model simulates tracking of the input mean values,

so-called mean-tracked.

The conventional LSTM and MT-LSTM use the threshold crossing of the adaptive STD

threshold (It has been tested that decoding the adaptive STD threshold results performs

better than using the static STD threshold), while RM-LSTM uses the results of the proposed

algorithm detecting at 20Hz and 50Hz. The 20Hz model keeps the threshold crossing
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Figure 6.4: Firing-rate-modulated co-design long-term decoding performance and visitation illustration.

a)The spike amplitude and threshold crossing rate (STD threshold detected) over time, the long-time decod-

ing performance over 200 days. RM-LSTM and MT-LSTM are trained on the data recorded on 27/Jun/2016

and 15/Sep/2016, simulating severe and mild SNR degradation with electrode ageing after implementation.

RM-LSTM is trained at a target detection rate of 20Hz and 50Hz, representing a compact setting with a

threshold crossing rate close to MT-LSTM and a high-performance setting. Decoding performance curves

are smoothed for better visualisation. The date of the experiments is indicated by the time axis on the bot-

tom. b) Feature distribution before and after normalisation/firing-rate modulation when using STD or firing

rate (FR) thresholding. Distributions are sampled on the date 27/Jun/2016, 15/Sep/2016 and 13/Jan/2017.

rate close to the STD-detected ones, while the 50Hz model allows further cell activities

to be detected to improve decoding performance. Comparing the decoding performance of

conventional LSTM and MT-LSTM to RM-LSTM can demonstrate the need of using firing

rate information in both spike detection and decoding to stabilise the features and improve

the long-term decoding performance.
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The decoding performance of different models is shown at the bottom of Figure.6.4a.

We can clearly observe their decaying trends following the signal degrading. The conven-

tional LSTM cannot provide any long-term decoding ability because of the inconsistent

threshold crossing rate over time. CC is consistently below 0.1 and therefore not plotted.

RM-LSTM-50Hz (Red), RM-LSTM-20Hz (Blue) and MT-LSTM(Green) are trained with the

data from two different dates. The model trained on recordings collected on 15/Sep/2016

simulates the scenario when the electrode ageing is mild (dash curves), while the one trained

on 27/Jun/2016 simulates the scenario of severe electrode ageing (solid curves). We also

provide the results of the models trained and tested on the same day data as a reference

observing how much the performance is degraded (dotted curves).

When the electrode ageing is mild, the nearly overlapped red and blue dash curves in-

dicate that there is no significant difference using activities further away. Two RM-LSTMs

outperform the MT-LSTM by about 2%. Such improvement is mainly contributed by the

model capability instead of firing-rate modulation’s contribution to long-term stability be-

cause the RM-LSTM reference already outperforms MT-LSTM reference for about 2% seen

from the dotted reference curves. However, the improved performance of RM-LSTM is ob-

served when the ageing is severe. After 80 to 100 days of implementation, compared to

the reference model, 12% performance degradation can happen on MT-LSTM and 10% for

RM-LSTM-20Hz. However, it is only 8% for RM-LSTM-50Hz.

Moreover, comparing the severe electrode ageing case to the mild ageing one, there is

about a 5% difference for MT-LSTM. However, it is only a 2% difference for RM-LSTM-

20Hz and even better performance using RM-LSTM-50Hz (Because the data quality of

27/Jun/2016 is better than that of 15/Sep/2016). Compared to the performance of the

first day of implementation, after 100 days of implementation, MT-LSTM degrades for more

than 20% while both RM-LSTMs degrade for only around 10%. The co-design improves the

long-term decoding performance by nearly 10%.

To better understand the reason for improved long-term stability, we plotted the in-

put feature distribution before and after normalization/firing rate modulation for different

models in Figure 6.4b. The distribution of the firing rate feature obtained using STD thresh-

olding changes significantly (becomes more left-tiled). After 200 days of implantation, the

relationship between behaviour and firing rate feature was completely different using STD

thresholding. Applying standard normalization (the grey row) to the testing data shifted the

testing feature distribution mostly to the negative side. That is the reason for making the

conventional LSTM fail over time. Although tracking the mean value of the features (the

green row) can address this issue to some extent, the decoding model can still potentially

suffer from the large difference between the training and testing feature distribution (com-

paring the two * distributions). However, when using firing-rate-based spike detection with

firing-rate modulation, there is no significant difference in the distribution (comparing the
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Table 6.1: The average decoding performance of the models tested on the date onward

after being trained with the recording on 27/Jun/2016(Served ageing) or 15/Sep/2016 (Mild

ageing).

Served ageing Mild ageing

20Hz 50Hz 20Hz 50Hz

RM-LSTM 0.632 0.669 0.653 0.662

MT-LSTM 0.497 0.633 0.663 0.668

two # distributions). Shifting the distribution with the target detection rate can effectively

map high/low firing rates to active/inactive behaviour, which is always valid in these 200

days, unlike that using STD thresholding.

It is worth noting that using normalization for the firing-rate-based spike detection fea-

ture can lead to a similar mapping as firing-rate modulation does. In order to show how

introducing the target detection rate information into decoding can improve the long-term

decoding performance, getting rid of the contribution to FR-B spike detection. We tried to

train MT-LSTMs on 27/Jun/2016(Served ageing) and 15/Sep/2016 (Mild ageing) detecting

using FR-B at 20Hz and 50Hz. The average testing CC over the days onward is given in

Table.6.1 (The trends are similar to what have been shown in Figure.6.4). It can be observed

that RM-LSTM and MT-LSTM can achieve similar long-term decoding performance when

the ageing is mild, while MT-LSTM is slightly better. However, over 3% improvement can

be made when ageing is served, demonstrating the usefulness of such extra information in

long-term stable neural decoding.

Based on the observations above, it appears that consistent features and activities from

the further regions are both beneficial to improve long-term stability, especially when the

signal ageing is severe. The proposed FR-B with RM-LSTM can take advantage of both,

delivering improved long-term stability compared to other LSTM implementations with stan-

dard statistical-based spike detection.

6.4 Discussion

Our results suggest that the relationship between spike detection and neural decoding per-

formance is non-linear. The spike peaks of high amplitude contain substantial information

helping decoding while detection of spike peaks of amplitude comparable to the noise can

improve the decoding performance despite more noise being detected. Such a finding brings

opportunities for both brain machine interface engineering and neuroscience. Considering

the proposed spike detection and neural decoding system co-design, we identify that main-
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taining the input data consistency is one key to improving the decoding performance and

robustness, especially in the long term, when recording quality is degraded gradually with

electrode ageing.

6.4.1 Feature consistency

Inconsistent features can degrade the performance of the learning models. This inconsistency

can come in three different forms. The first form is invalid features. For example, the model

is fed with Motor Cortex recordings for behaviour decoding but tested with Visual Cortex

recordings, which is technically incorrect. The second form is the incomplete feature set. For

example, the model is trained on neural recordings for reaching tasks but tested to decode

placing tasks. Such inconsistency can be overcome by designing more generalised models.

More importantly, the third form is the statistical difference, which we can meet in long-

term neural decoding. The recorded amplitude of action potentials can gradually decrease

over 37% within two months after implantation [136]. Some studies [41, 132, 136] suggest

that threshold crossing can achieve better long-term stability than using spike waveforms or

spike sorting results.

We need to know how machine learning or deep learning models are trained to understand

such a reason. There is a normalisation step before feeding input features into models and

guaranteeing the input is not statistically changed. However, tested datasets can only be

normalised using training dataset statistics as the tested dataset should be unknown to the

model. Normalising the test data using training statistics can be a problem in long-term

decoding. The realistic mean of the input models can be lower than the features used in

training. Normalisation can shift the testing features’ centre to negative while it is expected

to be at zero. That is why long-term degradation can happen (in addition to more noise

being potentially contaminated).

Using spike waveform as the feature can be affected the most as it is most sensitive to

such a normalisation error. Using SUA from spike sorting has worse long-term stability than

using MUA. Besides fewer spikes appearing in each cluster, the inconsistent spike waveform

can negatively impact the clustering algorithm. Such artefacts will propagate to the decoding

model and even lower the decoding accuracy. Spike detection is only affected by the reduced

number of detections.

Knowing the reason for long-term stability degradation, one key to resolving this issue is

maintaining the consistent input feature of the decoding model. The proposed spike detection

and neural decoding co-design system addresses that. This idea can potentially be explored

in other domains, such as spike waveforms, single-unit activity, or local field potentials.
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6.4.2 The opportunity for firing rate compression

In [42], It is suggested that relaxing some of the hardware requirements, for example, sam-

pling frequency, amplifier performance, and ADC precision, can reduce the system power

consumption by an order of magnitude without much degrading the decoding performance.

It also shows that randomly missed spikes can only degrade decoding performance by a small

amount. Until this work, there has not been reported any spike detection algorithm that

can “miss” spikes heuristically.

Based on the finding of the relationship between the spike detection and neural decoding

performance, we suggest relaxing the amount of data transmitted. Only transmitting the

high-level peaks can reduce half of the data to be transmitted with less than 1% decoding

performance degradation for behaviour decoding task.

The threshold crossings can be encoded into a binary stream or the number of spikes

detected in a certain period. The reduced detected spikes rate can either create a more

sparse binary stream or reduce the dynamic range of the possible spike count range.

In both cases, the bandwidth can be reduced. Taking the latter case as an example, we

assume the detection stream is binned at τ sec, and the detection rate is λ Hz following

Poisson distribution. The number of arrivals N of one bin is a Poisson process as Equ.6.2

shows.

Pτ (k) = P [N(t+ τ)−N(t) = k] =
e−λτ (λτ)k

k!
(6.2)

In practice, the spike count is saturated at a value S to limit the spike count data width.

The probability of the spike count exceeding S (inclusive) is given in Equ.6.4 and it needs

LS bits for representing S values

P S
τ = Pτ [N(t+ τ)−N(t) ≥ S] = 1−

S−1
∑

k=0

Pτ (k) (6.3)

LS = ⌈log2(S)⌉ (6.4)

If we saturate the spike count at Pτ (S) < 1‰, when a 50Hz detection stream is binned

at 0.01s, S is 6 with P 6
0.01 ≈ 0.12‰. When the detection rate is reduced to 25Hz, S becomes

4 with P 4
0.01 ≈ 0.13‰. Therefore 3 bits are required for 50Hz spike detection counts, while

it is 2 bits when detection at 25Hz.

From an entropy perspective, the theoretical minimum entropy coding length Lτ that

losslessly compresses such a stream can be calculated as Equ.6.5.

Lτ = −
∞
∑

k=0

Pτ (k)log2(Pτ (k)) (6.5)
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Figure 6.5: The number of bits and entropy encoding length for representing the spike counts

Figure.6.5 shows how the number of bits and minimum code length for representing

the spike counts. The minimum coding length is 1.34 at 50Hz, while it becomes only 0.89

at 25Hz. 33% bandwidth can be reduced while it only introduces less than 1% decoding

degradation.

Huffman encoding is a form of entropy encoding. To achieve optimal encoding perfor-

mance with Huffman encoding, the distribution of the signal being encoded should match

that of the signal used for training the encoders. In essence, the arrival frequency as out-

lined in Eq.6.2 should remain constant over time for optimal compression performance.

Conventional statistical-based methods are unable to guarantee this; however, employing

the firing-rate-based spike detection algorithm ensures stable, long-term spike detection out-

comes. Furthermore, the firing-rate-based algorithm allows control of the output bit rate

during the spike detection algorithm design phase, simplifying the estimation of transmission

power, a critical factor in the wireless implant power budget.

In collaboration with Dr. Oscar W Savolainen, we have designed an event-driven data

compression system using customized Huffman encoders. The idea is to transmit only the

channel numbers of the active channels along with their spike detection count within a

predefined bin period. This compression algorithm has proven particularly effective for

compressing spike counts with bin periods under 10ms. Using this compression method, we

are able to compress a 1 kbps binary spike detection stream into a 50 bps stream with almost

no loss of information. It is estimated that the number of channels one implant can host will

increase by factors ranging from 4.6 to 15, depending on the chip size. Dr. Savolainen and I

jointly designed the algorithm, with my primary contribution being hardware optimization.

Detailed information about the algorithm design and its evaluation can be found in the

Appendix.C.
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6.5 Conclusion

This chapter brings the current phase of the research in this thesis to a close. We have moved

beyond just spike detection to show the nonlinear relationship between spike detection and

neural decoding. Furthermore, we have demonstrated how the neural decoding accuracy can

be improved and how the data bandwidth can be further reduced after spike detection. The

key findings in this chapter are summarised below:

• The standard deep learning procedure on normalisation is not suitable for long-term

decoding due to varying features over time. The firing-rate-modulated neural decoding

is in part proposed to address this problem and it improves the long-term decoding

performance by 10% after 80 days of implantation.

• Detecting small spike peaks near the noise floor can enhance decoding performance by

capturing distant, informative neural activities, despite additional noise being detected.

This approach benefits BMI design and scientific exploration requiring undistorted

neural information.

• Detecting only significant peaks causes less than 1% performance degradation. As

fewer spikes are detected, 30% less information needs to be transmitted. This really

strikes an ideal balance between bandwidth usage and decoding accuracy.

This is the first study to establish a firm link between spike detection and decoding. We

believe the significant improvement presented in this chapter can motivate hypothesis-led

data science strategies to further develop brain machine interfaces.
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Chapter 7

Conclusion and future directions

Brain Machine interfaces have provided new approaches for neurological disorder treatment,

motor function impairment restoration and communication capability recovery. Transla-

tional efforts have intensified to develop products that cater to clinical or consumer needs,

emphasising the need for safety and portability for life-long use. Designing wireless im-

plantable brain machine interfaces is a trend aiming to fulfil these requirements, while the

wireless transmission bandwidth and power consumption remain to be the bottleneck.

Facing these challenges, this thesis has developed novel neural signal processing and low-

power hardware co-design, specifically focusing on bandwidth reduction of spike-based BMI

system using spike detection techniques. Furthermore, the new opportunities for feature

compression and enhancing long-term system performance, thereby paving the way for the

next generation of high-channel-count brain machine interfaces

7.1 Original contributions

The main contributions of this thesis have been summarised below:

7.1.1 High performance, ultra-hardware-efficient spike detection

co-design

Starting with the simplification of existing spike detection algorithms, several iterations have

been collaboratively designed with hardware considerations in mind. The most refined ver-

sion of this spike detection algorithm relies solely on a fixed-point representation, completely

bypassing the need for any multiplication. Incorporating a time-sharing architecture, the sys-

tem is capable of sharing most of its resources among channels, which significantly reduces

resource usage and power consumption. In addition, this configuration promotes scalability,

accommodating upwards of a thousand channels with ease.
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The developed algorithm has been effectively implemented across various platforms in-

cluding MATLAB, FPGA, and ASIC, and has undergone rigorous testing using both real and

synthetic datasets. Remarkably, it achieved over 96% detection accuracy on the synthetic,

positioning it among the most accurate and hardware-efficient spike detection algorithms

currently available.

Our 65 nm ASIC 128-channel design demonstrates the algorithm’s efficiency, consuming

38 nW per channel and occupying 7.51 × 10−4mm2 per channel, which is the most power

and area efficient spike detection design amongst the literature that we have examined.

7.1.2 Adaptive spike detection and decoding using firing rate in-

formation

Adaptive spike detection poses significant challenges in the realm of real-time spike detec-

tion. This thesis begins by examining the adaptiveness of the traditional spike detection

algorithm through practical testing and theoretical modelling. It has been observed that

the conventional statistical-based spike detection approaches tend to be less adaptive in the

noisy environment of the brain, and they require frequency calibration to deliver optimal

performance, particularly over the long term.

In response to the limitations of these traditional methods, we introduced firing rate

information as a determining factor for setting the spike detection threshold. This innovative

approach allows the algorithm to adaptively update the threshold, accounting for signal

strength drift over time as scar tissue forms around the electrodes. Consequently, this

algorithm delivers stable detection results over an extended period. It has led to a noteworthy

10% improvement in long-term neural decoding on the motor cortex following 80 days of

implantation.

7.1.3 The relationship between spike detection and decoding

The design of most spike detection algorithms is primarily driven by the aim of enhancing

spike detection performance. Yet, the relationship between spike detection and neural de-

coding remains largely unexplored. While a few studies have begun to delve into this area,

there is still no clear understanding of how to set a threshold to achieve optimal system

performance.

In this thesis, using the firing-rate-based spike detection algorithm, we have found this

relationship to be non-linear. Interestingly, the optimal spike detection threshold does not

correspond to the highest decoding accuracy. Instead, a threshold set at around the noise

level does.

However, detecting only significant spikes seems to strike the best balance between neural

115



decoding and data bandwidth. By setting a higher detection rate to detect half as many

spikes, it is possible to reduce the data bandwidth by at least 30%, while the decoding

accuracy is marginally impacted, reducing by less than 1%. This finding illuminates a new

direction for further optimising spike detection algorithms for BMI systems with limited

transmission bandwidth.

7.2 Future directions

To further develop the BMI system building on this thesis, the future directions could be:

1. Further rigorous testing is necessary across a broader spectrum of recording types,

tasks, brain areas, and subjects. In this thesis, a comprehensive evaluation of the

co-design has been carried out exclusively on 200-day Utah array recordings from an

NHP motor cortex during the execution of a ticker control task. To demonstrate the

robustness and adaptiveness of the co-design and confirm our findings on setting the

optimal threshold to be consistent, it is essential to extend performance testing to other

recordings. Such a diversified testing strategy will contribute to a more universally

applicable and reliable understanding of the system’s efficiency and adaptability.

2. Extending the firing-rate-based spike detection and decoding into real-time BMI appli-

cations presents a promising direction for exploration. At present, many BMI systems

utilise relatively basic spike detection algorithms coupled with standalone decoding

models. However, the implementation of firing-rate-based spike detection and decod-

ing offers potential benefits. The methods in this thesis could significantly enhance

the long-term stability of system performance, a vital attribute for the practical util-

ity of BMIs. Furthermore, this approach might also reveal new scientific findings,

contributing to the advancement of the field.

3. Designing algorithm with hardware efficiency in mind. Applying this co-design philos-

ophy more broadly to other types of signals or features, such as SUA or LFP, could

lead to significant improvements. In this thesis, we have reduced power and area usage

substantially, achieving orders-of-magnitude reduction. Techniques such as fixed-point

representation, multiplication-free operation, and resource-sharing have proven valu-

able for minimizing hardware complexity. By applying these techniques in a customised

manner to the targeted signals or features, we anticipate achieving a similar level of

complexity reduction. This would greatly benefit applications extending beyond MUA-

based BMIs.
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7.3 Concluding remarks

During my PhD, I have had the opportunity to witness BMI progress to a translational stage

as seen by the rise of numerous recent commercial efforts globally. Despite visible progress

towards the translation of BMIs, the field still exists neuroscience unknowns and technical

challenges, which need to be addressed before BMIs can truly become practical tools in the

clinic or replace our phones as the next user interface.

Power and area constraints have always been challenges preventing new technologies

from being real-world applications. This thesis aims to address these challenges specifi-

cally for future hardware design of wireless BMIs. The software-hardware co-design herein

illustrates opportunities for reducing both power consumption and area occupation of the

devices. Such advancements could provide feasible on-implant signal processing within hard-

ware constraints, a critical step towards the development of wireless BMIs.

The technical advancements may reciprocally benefit neuroscience research by enabling

previously unattainable experiments, such as all-day monitoring of free-moving subjects.

With the multidisciplinary effort, we can push the boundaries of our current understanding

and application of BMIs even further. The fusion of neuroscience, electrical engineering,

computer science, and even psychology can expedite the translation of BMIs from research

laboratories to clinical settings, and eventually, to everyday life. The impact of such work

could be transformative, revolutionising not only how we treat neurological conditions, but

also how we understand and interface with our own minds.

Embarking on an almost five-year journey to develop hardware-efficient spike detection

algorithms has been both demanding and fulfilling. This journey began in November 2018,

during my Master’s degree, and involved a rigorous process of refining the algorithm again

and again to achieve its optimal performance. As I sought to improve the accuracy, adaptive-

ness, and complexity of the algorithm, each new iteration presented its own set of challenges,

leaving me to grapple with a fresh puzzle. Yet ultimately, I managed to strike a harmonious

balance among these factors. I recall reaching a point after finalising the latest version of

the algorithm where I was feeling no longer faced with a new puzzle. It was at this point

that I decided to venture beyond spike detection. Although further improvements can still

be made, I am confident that I am on the right path now.

This journey, while challenging, has been immensely rewarding and has significantly

honed my critical thinking and problem-solving skills. As a student of electrical and elec-

tronic engineering, I delved into the realm of neuroscience to better interpret my data. And

as an information engineer, I extended my skill base from MATLAB to embedded program-

ming, Verilog, FPGA design, and eventually ASIC design. This multidisciplinary journey,

spanning electronics to neuroscience and signal processing to chip design, will undoubtedly

yield lifelong benefits.
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Therefore, I present this thesis not only to demonstrate the contributions made during

my doctoral studies but also to mark the learning curve I have experienced as a significant

milestone reflecting my personal and academic growth.
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Appendix B

Firing-rate-based spike

detection (Complex version)

hardware implementation and

evaluation

B.1 Hardware implementation

B.1.1 FPGA implementation

Lattice ice40LP1K is an ultra-low-power FPGA board with 1280 logic cells (look-up-tables

LUT + flip-flops FF) and sixteen 4kbit memory blocks (bRAMs). The program was devel-

oped with Mentor Modelsim Lattice Edition and iceCube2 2020.12. In order to minimise

resource usage, we have designed a channel time-sharing architecture for the FPGA imple-

mentation, in which each channel shares the same processing circuits interchangeably. The

block diagram in Fig. B.1. A shows the architecture. It has been divided into four main

parts. 1) The clock Generator (CG) that generates the clock signal for different blocks. 2)

The processing unit (PU) that is shared across channels for spike detection processing. 3)

The memory unit (MU) that stores the temporary processing status of each channel and

schedules the time-sharing across channels. 4) The control unit (CU) that controls and

schedules the signal processing data flow. More details are given below.

The contents in this appendix has been published in [11], with my full contribution to the soft-

ware/hardware algorithm design and result analysis
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Figure B.1: A. Diagram of the FPGA implementation. Input is the current sample after ADC and output

is a binary signal indicating detected or not. B. The clock signals from the clock unit. CLK: System clock.

MCLK: Memory clock. PCLK: Processing clock for PU and CU. R: registers read from RAM. W: registers

write to RAM. P: registers process the data that read from RAM. C. Multichannel absolute difference filter

architecture. RAM1 and RAM2 are the value read from the RAM, which is the last input and the previous

input before the last. Out1 and out2 are new values to be stored in RAM. D. A generic architecture of

different updaters, including a threshold updater, a spike peak mean value updater and a max spike rate

update. They share a similar architecture which stores the updated value according to the update signal

from the control unit. E. The state transition diagram for the finite state machine.
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B.1.1.1 Clock generator

When input arrives, the registers first read the data from RAM, then processing logic analyses

the input with the status data from RAM to obtain the current status. These new values

are, in the end, stored back to RAM. There are three operations involved: Read, Process,

Write.

Instead of implementing a finite state machine to schedule the three operations, we have

introduced two different clock signals to tick the Memory unit and the rest of the system,

as shown in Fig. B.1.B. The processing clock was delayed for a quarter of the clock period.

Using this dual clock system, we can maximise the data throughput and reduce the clock

speed of registers and the RAM to save power.

B.1.1.2 Processing unit

This consists of three components: an absolute difference transformer, an updater and a

compactor.

The absolute difference transformer is implemented as shown in Fig. B.1. C. RAM pre-

pares the previous inputs of the current channel at the MCLK positive edge and two 10 bits

registers are needed for storing current and last input. The adder calculates the outputs

after the registers load the values from RAM at the positive edge of PCLK. RAM stores the

outputs at the negative edge of MCLK.

The updater consists of a threshold updater, spike peak updater and max spike rate

updater. They follow a similar structure as shown in Fig. B.1. D. Three 10 bits registers are

required to store the values to be updated. The multiplexer can select the update values for

these registers according to the control signal from CU. The updated values are calculated

using multiplications/divisions operations and to avoid using such operations in hardware,

we have replaced all multiplications/divisions with bit shifts.

B.1.1.3 Control Unit

A state transition diagram of this unit is shown in Fig. B.1. E. The program starts at the

Normal state; when a spike is detected (when CMP in Fig. B.1. A issues a detect signal),

the state transfers to the Detection state, in which the spike detection rate is updated. At

the same time, a command will be issued to the spike peak updater to update the mean

value of the spike peak. If the current spike rate fulfils the desired firing rate, the state will

transit back to the Normal state. However, if the detection rate is outside of the acceptable

range of the expected firing rate, the state will transit to the Update state for threshold and

max spike rate updating according to the policies described in the main contain. When the

update time is reached, the board will also go into the Update state and go back to Normal

124



Table B.1: Register bandwidth and descriptions

Register name Width Description

filter 1 10 Filter: The last input

filter 2 10 Filter: The input before last input

max spike rate 10 Updater: Max acceptable spike rate

spike peak mean 10 Updater: Current spike peak mean value

thr 10 Updater: Current threshold

spike number 10 CU: Number of spikes has been detected in this duty cycle

detection 1 CU: Detection signal

spike time count 2 CU: Count during a spike time

update status 1 CU: Update enable

update command 3 CU: Update command to issue

update count 13 CU: Count for updating

max 10 CU: Current maxima for spike peak

after finishing the update. The status control unit requires seven registers (40 bits in total)

to record the current status to achieve the time-sharing architecture.

B.1.1.4 Memory unit

This consists of a RAM and an address counter.

The RAM unit is used to store the register values (90 bits in total) in PU and CU for

different channels in order to resume in next duty cycle. These values are merged and split

before writing into and reading from the RAM. The details of all registers are summarised in

Table B.1. As the maximum data bandwidth of the bRAM is 16 bits, it requires six bRAM

to ensure enough bandwidth. Therefore, six dual-port synchronous 256*16bit RAMs with

positive read negative write clocks are used.

The address counter generates the address for RAM to read and write. It schedules the

data I/O of the RAM to control the time-sharing task among different channels.

By storing the channel status into the RAM instead of preparing the registers for each

channel separately, the logic cell usage can be highly reduced. This enables the implemen-

tation to be up-scaled to more channels in resource constrained targets.

B.1.2 Embedded implementation

The embedded implementation uses Freescale FRDM-KL05Z, a 32-bit ARM-cortex M0+

based MCU operating at 48MHz. It has 32KB flash and 4KB RAM. One 12-bit ADC
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Figure B.2: A flowchart of the MCU implementation

and one 12-bit DAC are integrated onboard. The embedded implementation also uses a

time-sharing architecture. A flowchart that describes the workflow of the embedded imple-

mentation is given in Fig. B.2.

The input sample is first processed by the absolute difference filter. The filtered value

will be marked as a detected spike if it exceeds the current threshold and is above half the

measured spike peak mean value. If a spike has already been detected, detection of this

channel will be disabled for M samples to avoid re-detection, while the maximum amplitude

within these samples will be used to update the spike peak mean value. M is sample rate

dependent, and 5 @ 7 kHz were empirically found to be good values. The number of detec-

tions between the last update and the current time step will be recorded. If it is larger than

the MSR, the threshold and MSR will be updated immediately. Otherwise, the processor

will count steps until it reaches the time to update (1 s). The threshold and MSR will be

updated according to the policies in the main contain. Multiplications/division of these up-

dates are also achieved using bit shift. This process is duty-cycled and invoked at 896 kHz

(128 channels, 7000Hz each) by a ticker to process each channel interchangeably.

B.2 Results evaluation

In this section, we present the tested results demonstrating the operation of the algorithm

and spike detection performance. We also report the measured hardware power consumption

and resource occupation. These results show the intensive optimisation towards hardware ef-

ficiency we have made and the suitability of the proposed algorithm to be used in implantable

BMI applications for real-time signal processing.
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B.2.1 Spike detection performance

In order to test the proposed algorithm and compare it across different settings and algo-

rithms, we implemented the single-channel version of it in MATLAB and tested it with a

widely used synthetic dataset. We also evaluated its adaptiveness to different noise levels

and its robustness to the setting of inaccurate initial parameters, showing that the proposed

algorithm is able to practically adapt to different in-body environments.

B.2.1.1 Test dataset

The test dataset is from Quian Quiroga et al.. They have produced a synthetic dataset [45]

that has been widely used in the literature [92, 97–99]. The dataset consists of 4 groups

of signals (easy 1, 2; difficult 1, 2). The noise levels (the ratio between the noise standard

deviation and the average amplitude) vary between 0.05 and 0.2 with an increment of 0.05.

We selected 16 signal segments, all of 60 s duration and sampled at 24000Hz, which we

down-sampled to 7 kHz in our experiment as [96] showed is sufficient for spike detection.

Each signal was assigned three different spike shapes with a mean firing rate of 20Hz, where

the inter-spike interval followed a Poisson distribution.

B.2.1.2 Detection performance and comparison

Sixteen pieces of the test signals were used for performance testing. A snapshot of the

detection results is given in Fig. B.3. The initial spike peak mean was set as the maximum

value in first one second, and initial threshold is set to be half of the initial spike peak mean

and the initial max spike rate is set to be 50. One can notice that the threshold converges

to a reasonable region within 1 or 2 updates, and that the tracked spike peak mean values

also approach correct local spike levels despite initial offset.

This dataset has been used in various studies, and the algorithms in other studies tested

all have sensitivities over 90%. We have chosen two of them as baseline methods for com-

parison for conciseness. The average performance is given in Table B.2. As shown in that

table, we have achieved a sensitivity of 5% higher than the global thresholding in [45], even

though the proposed algorithm is of limited precision and sampling frequency (Ours: fixed-

point, ranging between ±300 @ 7 kHz; [45]: 32-bit float-point @ 24000Hz). Compared to

our previous fixed-point implementation @ 7KHz in [92], its accuracy has been improved by

nearly 10%.

The spike detection performance for different noise levels is given in Fig. B.4. One can

notice that the proposed algorithm achieved the highest detection accuracy and sensitivity

across all different noise levels. It is also capable of achieving nearly 95% sensitivity when

the noise level is high, while keeping the FDR to around 5%.
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Figure B.3: A 4-second snapshot of the detection results with sixteen different signals. The threshold

reaches a reasonable level within 1 or 2 updates. The estimated spike peak mean also gradually approaches

the real spike peak mean. S: sensitivity, F: false detection rate, A: accuracy.

Our algorithm is unaffected by the fixed-point representation (with a less than 1% degra-

dation in sensitivity). Conventional approaches derive the threshold from noise. They am-

plify the noise mean or standard deviation to a proper level for setting the threshold. One

downside of this approach is that the limited precision of small numbers (noise) significantly

affects the derived threshold value. A second is that the optimal threshold does not increase

linearly with increases in noise levels. As a result, the conventional threshold can be subop-

timal when the noise increases even though the same setting is optimal for a low noise level

and vice versa. These two factors reduce the performance of the conventional approaches.

However, the threshold in our approach is guided by the spike peak values, which is

less affected by the limited precision. Additionally, the threshold is not based on the noise

level but aimed at detecting the spikes at a fixed rate. It is therefore not affected by the

nonlinearity between the noise level and optimal threshold and is only affected by immense

noise peaks that contaminate detected spike levels. In other words, the degradation in the

low SNR condition of our algorithm is not from the inaccurate setting of the threshold but

from the noisy signal itself, which is unavoidable.
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Table B.2: The detection performance comparison among different algorithms. The results

of our work show better sensitivity and accuracy.

Acc FDR Sens

[45] 0.92 0.01 0.93

[92] Float-point 0.92 0.01 0.93

[92] Fixed-point 0.87 0.06 0.92

Our work Float-point 0.95 0.03 0.98

Our work Fixed-point 0.95 0.03 0.97
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Figure B.4: The detection accuracy, sensitivity and false detection rate in the different noise levels of the

proposed algorithm in comparison with the other two baseline algorithms. The plot of [92] is its fixed-point

implementation
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Table B.3: The algorithm detection performance for different settings. The first three rows

are the results tested on the dataset described in Section B.2.1.1 and the last three rows are

the results testing on the dataset with an extra LFP signal added.

Acc FDR Sens

Improved algorithm 0.95 0.03 0.97

No absolute difference filter 0.85 0.08 0.91

No spike peak tracking 0.71 0.27 0.98

Absolute difference filter 0.94 0.03 0.97

Mean subtraction filter 0.91 0.03 0.93

2-order butterworth filter 0.81 0.13 0.91

B.2.1.3 Effectiveness of different operations in the proposed algorithm

A summary of how different operations influence the proposed algorithm detection perfor-

mance is given in Table B.3. Clearly, the algorithm has been improved from a low complexity

algorithm with only acceptable detection performance to an algorithm that achieves both

high performance and low complexity. Analysis of different operations is given below:

a) The absolute difference filter can remove the LFP and enhance the spikes with only one

subtraction operation. Though this operation highly distorts the spike shapes, it improves

the detection accuracy by nearly 10%, which shows its capability of emphasising spikes. Since

the test dataset does not include LFPs, we extracted a piece of LFP from a real recording

and added it into our test dataset in order to demonstrate the algorithm’s ability to remove

large LFPs. Relative to the conventional float-point second-order IIR filter in [96] or mean

subtraction filter in Section.3, the absolute difference filter improves the detection accuracy

by 13% and 3% respectively. Such improvement is significant when considering that it only

uses one subtraction in fixed-point representation. Based on the results discussed above,

this LFP removal method can be regarded as one of the most efficient action potential signal

pre-processors for the spike detection algorithm.

b) Spike peak mean tracking has been used to overcome the three conditions mentioned

in Section 5.3.1. As seen from Table B.3, the FDR has been improved significantly (24%),

while the sensitivity has only been marginally negatively affected (1% less). Fig. 5.2 (a) and

(b) Con. 1 show that the number of falsely detected spikes has been reduced after comparison

with the estimated noise floor, i.e. half the spike peak mean. Fig. 5.2 (b) Con. 2 also shows

that when the real spike rate is lower than the pre-set max spike rate, our algorithm prevents

the threshold from decreasing to the noise floor, which would lead to massive falsely detected

spikes. Fig. 5.2 (c) Con. 3 shows that when the real spike rate is higher than the pre-set max

spike rate, the algorithm prevents the threshold from increasing to close to the spike peak
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Figure B.5: The detection performance of the basic and improved algorithm for different initial max spike

rate settings. The basic version is the detection algorithm without spike mean tracking and adaptive max

spike rate

level, which avoids a decrease in missed true spikes. It should be noted that the recordings

used in these figures are real recordings [44] and the labels are from [131]. This dataset is

different from the data used elsewhere in this thesis. The usefulness of the spike peak mean

tracking is easier to observe in these recordings, and we therefore posted these results to

make it easier for readers to understand the algorithm.

Furthermore, the algorithm is also robust to inaccurate settings of the initial max spike

rate. We tested the initial max spike rate from 40 to 200Hz for the implementations with and

without spike mean tracking, and the results are shown in Fig. B.5. The basic version can

only get satisfying detection accuracy when the initial MSR is accurately set. The improved

version is however more robust to the initial MSR. Because the spike peak levels are known,

we can guarantee that the threshold is set to within a reasonable range. Taken together,

the proposed algorithm can be regarded as having two modes. Mode I: when the MSR is

inappropriate and the threshold tends to be unreliable, the threshold can still stay within

the reliable region, and the MSR will update until it is also appropriate. Mode II: when the

MSR is appropriate, the threshold will converge to a level so as to detect the spikes at the

desired rate. These two modes operate in tandem and guarantee high performance.

c) There are however three weaknesses.

The first is that the difference filter can only remove LFPs that have a scale similar to

the EAP signals. If the LFPs can vary as dramatically as the spikes, the resultant signal

can be too noisy to be processed. However, this is generally not the case in practice, as LFP
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Figure B.6: The raster plot of the multichannel detection results in hardware. This is plotted after

streaming the detection results from the hardware to the computer.

leakage past the front-end filters would not be sufficient to make this filter ineffective.

The second is that, as the spike mean value is updated according to the detected spikes,

positive feedback can be introduced as successful detection is not always guaranteed. Specif-

ically, false detection could lower the tracked spike mean value, leading to an even lower

threshold. This fault could then even increase the false detection rate. However, this special

case can only happen when the target signal is noisy, where many of the noise peaks are

distributed around, or above half the value of, the true spike peaks. Based on our experience,

the algorithm performance recovers suddenly when the noise reduces, and it never occurred

in the test dataset we used here.

The third is that we have not introduced an optimal mechanism for updating the max

spike rate when it is inaccurate. It may take some time to re-calibrate itself if the actual spike

rate changes dramatically or the pre-set value deviates too much. However, the threshold is

limited within a reasonable threshold region, and the detection accuracy can be guaranteed

even if the MSR is inaccurate.

B.2.2 Real-time testing and hardware efficiency evaluation

To test the real-time suitableness and multichannel capability of the proposed algorithm, we

have partitioned and distributed the test signal into 128 channels. This test signal is identical

to the one used for detection performance evaluation and the distribution is random. We

then stored it in a data RAM for the FPGA or gave it as input to the MCU using a waveform

generator and the onboard ADC. A detected spike raster plot is given in Fig. B.6, and the

detection performance was validated and found to be consistent with the results from the

MATLAB tests.
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Table B.4: The voltage across the resistor, core current supply, power consumption and

average power consumption per channel of the FPGA implementation. Total is the normal

algorithm running status, Static + input read is only when operating input memory read

and write and spike detection is the difference between the former two, which is the extra

dynamic power consumption from the spike detection algorithm circuits.

Total Static + input read Spike detection

Voltage (µV) 312 268 44

Current (µA) 31.2 26.8 4.4

Power (µW) 37.4 32.2 5.2

power/ch (µW) 0.29 0.25 0.04

Conventional neural signal processing schemes can be computationally expensive and

memory intensive. It is crucial to partition the processing flow among on-implant, on-node

and off-node locations. A well-ordered workload distribution can balance the resource pres-

sure and eliminate the power bottleneck, leading to maximised lifetime. The power consump-

tion and resource occupation can therefore be an essential factor for deciding the process

flow distribution. The power consumption and resource/memory occupation of the two tar-

gets (Lattice ice40LP1K FPGA and FRDM-KL05Z MCU) were measured, demonstrating

the hardware-friendly nature of the proposed algorithm.

B.2.2.1 Power consumption and resource occupation of the FPGA implemen-

tation

The FPGA core voltage is 1.2V and the sample frequency is designed to be at 7 kHz for

each channel. The memory and processing clocks are therefore 0.896MHz for a 128 channel

system and the system clock is 1.792MHz. Its power consumption is given in Table B.4. The

spike detection dynamic power is obtained by subtracting the FPGA running power with

the FPGA running power when only implementing the data RAM (which stores the input

data). Only 5.2µW power is consumed for a 128-channel spike detection algorithm, while

the static power is 30µW. The dynamic power is therefore an order of magnitude lower than

the static power. This means that the dynamic power of our algorithm will only dominate

when the channel count is in the thousands or more.

Spike detection starts at the posedge of the memory clock for loading current channel

status from RAM to registers and ends at the next negedge of the memory clock for saving

the current channel status. At 0.896MHz this procedure takes about 0.56 us, and therefore

only 2.9 pJ is consumed for one sample. The resource utilisation is given in Table B.5. Only

299 logic cells (2.33 per channel) are used because of the resource sharing schema. In the

133



Table B.5: FPGA resource utilisation of the proposed spike detection algorithm. Total is

the total utilisation of the implementation, input read is the resources used by the data read

RAM and the spike detection is the actual resource occupation of the algorithm.

Total Input Read spike detection Available Utilisation rate

Logic cells 406 107 299 1280 23.3%

PLBs 66 20 46 160 28.8%

BRAMs 6 0 6 16 37.5%

I/Os 8 5 3 10 30.0%

Table B.6: The voltage across the resistor, core current supply, power consumption and

average power consumption per channel of the MCU implementation. Running is the normal

running status, Idle is executing empty operation, idle+ADC is when ADC samples at

0.896MHz while running empty operation and spike detection is the difference between

running and idle+ADC, which is the extra power consumption from the spike detection

algorithm.

Running Idle Idle+ADC Spike detection

Voltage(mV) 72.2 57 60 12.2

Current(mA) 7.22 5.7 6 1.22

Power(mW) 23.83 18.81 19.8 4.03

power/ch(mW) 0.18 0.15 0.15 0.03

meantime, the RAM bandwidth is 90 bits, which only occupies six 16-bit block RAM.

B.2.2.2 Power consumption and resources occupation of MCU implementation

The MCU core voltage is 3.3V, working at a 48MHz clock frequency. When implemented

with the fully functional 128 channel spike detection algorithm, the core supply current is

7.22mA leading to 23.83mW total power. As the ADC is used during the signal processing,

to extract solely the spike detection power we ran a test where the ADC sampled at 0.896MHz

with the empty operation resulting in a current supply of 6mA, which consumes 19.8mW

of power. The power consumed by the spike detection algorithm can therefore be as low

as 4.03mW and 31.5µW per channel. The idle power can be regarded as the static power

of the MCU. A summary of the power consumption is given in Table B.6. We have also

implemented the basic implementation without spike peak mean tracking; the change in

power consumption is invisible to the oscilloscope. Because of the fixed-point representation

and the use of the simple absolute difference filter, we are able to run spike detection with
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only 3KB RAM (4KB available onboard). On average, each channel only needs 24 Bytes.

B.2.2.3 Comparison to state-of-the-art

A comparison of our FPGA design and some other FPGA or ASIC designs is given in

Table B.8 and B.7. We have reduced the power consumption by 10 or even 100 times. The

dramatic power reduction is due to the simplicity of the hardware implementation. In [137],

they used 16030 LUTs and FF for a 1024 channel spike detection system, while we only used

299 logic cells for a 128 channel system. On average, the implementation in [137] consumes

15.6 logic cells for each channel. By sharing the processing logic among channels, we required

only 2.3 logic cells for each channel on average. In addition, they used an additional 17 DSP

units that we do not have, and these units are power-hungry.

Table B.7: The FPGA resource utilisation comparison across three different algorithms

[89] [138] Our work

FPGA Platform Xilinx ZCU106 ZenyQ-700 Lattice ice40LP1K

Channels 128 1024 128

Logic cells 53607 16030 299

Logic cells/ch 419 16 2.9

BRAMs 7 3 6

DSPs 6 17 0

Table B.8: Comparison with other FPGA and ASIC hardware implementations.

[106] [139] [140] [141] [137] Our work

Detector Absolute Biphasic EC-PC MNEO CA ADT

Technology (µm) 0.6 0.5 0.13 0.065 FPGA FPGA(0.04)

Sampling rate (kHz) 22 7.8 40 20 9.375 7

Bit/Sample 5 8 16 10 16 10

Channels 32 64 16 64 1024 128

Power (µW) 110 14400 1360 80 48000 37.4/5.2†

Power/Ch (µW) 3.44 225 85 1.25 46.8 0.29/0.04†

† Dynamic Power

Our MCU implementation is one of the most power-saving implementations among the

literature we have seen. At the same time, the memory consumption has also been minimised

to nearly as low a level as we can expect. A 16-point mean subtraction filter in [92] required
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Table B.9: Comparison with other MCU implementations.

[118] [109] [116] [92] Our work

Method Absolute Absolute Static ASO* ADF†

Hardware MSP430F MSP430F KL25Z KL05Z KL05Z

Sampling rate (kHz) - 20 - 7 7

Channels 2 4 32 1 128

power (mW) 4.2 1.67 7.2 0.13 4.03

power/ch (mW) 2.1 0.4175 0.255 0.13 0.03

* Amplitude slope operator

† Absolute difference filter

38 Bytes, but we have used no more than 24 Byte/Ch for the whole spike detection algorithm

while improving the performance by 4%.

The comparisons demonstrate the intensive optimisation we have made toward power

efficiency and resource utilisation. More importantly, a 10-100 times reduction in power is

significant because the power consumption bottleneck of other algorithms is their processing

power, while the bottleneck in our system is the hardware itself.
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Appendix C

Event-driven firing rate compression

C.1 Methods

All compression algorithm work was done in MATLAB R2021A. All hardware design and

optimisation work was done using ModelSim Lattic Edition and IceCube2020.12.

C.1.1 Dataset and data formatting

Brain signal conditions can vary across subjects and tasks. In order to reduced the bias, we

have used three different publicly available datasets [43,142,143], summarised in Table. C.1.

For each dataset, the SUA data was intra-channel collated to MUA, then binned to the

desired BP, where BP ∈ [1, 5, 10, 20, 50, 100]ms. Based on the results in [135], we limited

S to [2, 2, 2, 2, 3, 5] for BPs of [1, 5, 10, 20, 50, 100]ms respectively. The Supplemental

Material includes results from S values ∈ [Z+, 2, 3, ..., 14, 15].

The length of the recordings was largely irrelevant for the sake of this work, as all encoding

was done without using a time derivative and the bandwidth was measured in [bps/channel],

normalising for time. As such, a standard length of 100 s was set for each recording, long

enough to gather a stable distribution for each channel for any of the tested BPs. To

maximize the use of the data in observing the effect of channel count, recordings were split

into consecutive 100 s segments and collated together. For example, a 400 s recording was

represented as 4 parallel channels of 100 s long recordings, where xo,...,xN/4−1 became one

channel, xN/4,...,xN/2−1 became the next, etc., where xk is a single-channel MUA recording

and N = 400 s/BP is the length of the recording in samples. A total of 79200 channels were

available after splitting and collation.

The contents in this appendix has been submitted to Scientific Report, with my full contribution to the

hardware design and joint effort on algorithm design and result analysis with Dr. Oscar Savolainen.
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Table C.1: Dataset summaries.

Dataset
Neural

data type

Species, electrode

type and brain region
Details Behaviour

Flint [142] SUA

Rhesus macaque monkey

Utah array

M1

One subject

12 recordings across 5 days

96 channels

Recording lengths

(quartiles, s):

597, 604, 630

Free-reaching hand task

Continuous data stored

Sabes [43] SUA

Rhesus macaque monkeys

Utah array

M1 and S1

Subjects Indy and Loco

37 recordings for Indy

across 10 months

10 recordings for Loco

across a month

96-192 channels

Recording lengths

(quartiles, s):

Indy: 472, 524, 816

Loco: 1771, 1928, 2384

Free-reaching hand task

Continuous data stored

Brochier [143] SUA

Rhesus macaque monkeys

Utah array

M1 and PMv/PMd

Subjects N and L

Single session recordings

96 channels

Recording lengths (s):

N: 1003

L: 709

Hand reaching task

Target stored

The data was then split into training and testing sets. This is because the encodings

have parameters that need to be optimised, which was done on the training set. The testing

of parameter-optimised encoding on the testing set can then provide an objective estimation

of the encoding performance on the unseen data. The training-testing split was done by

randomly selecting 30000 channels and placing them into the training set. The remaining

49200 were put into the testing set. For each encoding, BP, S and n combination, the

training and testing results were each averaged across 5 training and testing runs. For each

run, n ∈ [10, 100, 1000, 10000, 30000] channels were selected randomly without replacement

from amongst all training or testing channels.

C.1.2 Windowed encoding

The windowed encoding [135] was the first scheme to be implemented. It is called “win-

dowed” because it sends out the number of MUA events in a non-overlapping window of

length BP for each channel, regardless of whether an event occurs on a channel or not. It

consists of representing the multi-channel MUA data as multiplexed data. Without lossless

compression, the length of the data block is n×m, where n is the number of channels and m
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is the number of bits used to represent the MUA FR per BP on each channel. An example

using a standard binary representation with m and n = 3:

001 111 000

would indicate that 1 neuron fired (001) on channel 1, 7 neuron firings occurred (111) on

channel 2, and 0 (000) on channel 3. An advantage is that the channel ID is implicitly

encoded in bit position, and so does not need to be explicitly encoded. E.g.,

c = ceil(t/m) (C.1)

where c ∈ [Z, 1 ≤ c ≤ n] is the channel ID, t ∈ [Z, 1 ≤ t ≤ n×m] is the bit position and

ceil is the ceiling function. m is the number of bits required to represent all possible MUA

FRs losslessly, and is generally set as ceil(log2(max(X)+ 1)), where X is the multi-channel

MUA data. However, one can lossily compress the data by limiting the dynamic range at

an S value, setting X[X > (S − 1)]← (S − 1). It requires

m′ = ceil(log2(S)) (C.2)

bits to represent a range of 0 to S − 1 MUA FRs. If m′ < m = ceil(log2(max(X) + 1)), this

lossily reduces the required bandwidth. As such, the windowed encoding typically has a BR

of:

BR =
m′

BP
[bps/channel] (C.3)

However, as in [135] we integrated the windowed encoding with a SH encoder that com-

pressed the FRs. The SH encoder was pre-trained on a decaying exponential which mimics

the distribution of MUA FRs at BPs ≤ 100ms [135], where smaller codewords are given to

smaller FRs.

C.1.3 Explicit event-driven encoding

In the windowed architecture, the FR of each channel is encoded. The channel ID is implic-

itly encoded in bit position. To the best of the authors’ knowledge, the following event-driven

architectures are proposed for the first time in MUA compression. In these event-driven ar-

chitectures, the channel ID is explicitly encoded and only active channels will be transmitted,

i.e. the channel ID is only sent out if a non-zero FR occurs on that channel, followed by a bi-

nary codeword representing the rate. If a channel has a FR of 0, nothing gets communicated

for that channel, and the offline decoder assumes the missing channels had FRs of 0. For

sparse signals, i.e. where FRs not equal to 0 are rare, this can offer reduced bandwidth over

the windowed paradigm, where even FRs of 0 need to be communicated for each channel.
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As the channel IDs need to be explicitly encoded, the simplest method is to give the

channels a standard binary codeword of length k1, where:

k1 = ceil(log2(n)) [bits] (C.4)

Similarly, the MUA FR for each channel is encoded as a binary codeword of length m2:

m2 = ceil(log2(S − 1)) [bits] (C.5)

An exception occurs if S = 2, i.e. m2 = 1 and i is limited to 0 and 1. In that case the

firing rate codeword is unnecessary as the decoder can assume all received channel has the

firing rate of 1. An example of the encoding without lossless compression, with n = 4, k1 = 2

and m2 = 2, is given by:

0001 0100 1011

This shows that channel 1 (00) had a FR of 2 events (01) in the bin, channel 2 (01) had FR

= 1 (00), channel 3 (10) had FR = 4 (11), and channel 4 had a FR = 0 (absent). In this

work, this encoding was named the Explicit Event-Driven (EED) encoding because the FR

per channel is explicitly encoded in the m2-length codeword that follows the channel ID.

To include the SH encoder, there was no good way to compress the channel IDs, since

they are a priori equally likely to be active. Therefore, the EED encoding uses the same k1

length codeword for the channel IDs, but uses varying length SH codewords for the FRs. As

in the SH windowed implementation, the FR encoder was trained on a decaying exponential.

C.1.4 Delta event-driven encoding

The previous encoding suffers since the probability of each channel being active is a pri-

ori equal. As such, the channel IDs cannot be compressed as they are with SH encoders.

However, the channel difference between two successive active channels has varying prob-

ability, and therefore Huffman encoding can be used. In other words, we can encode the

delta-sampled channel IDs of active channels. Therefore, in this Delta Event-Driven (DED)

encoding, if a channel has a FR above 0, it is given a ∆ value by subtracting its ID, jcurrent,

from the ID of the previous channel to have a FR above 0, jprevious. I.e., ∆ = jcurrent−jprevious.

Therefore, the FRs were compressed with the same SH encoder as in the EED encod-

ing. However, the ∆-sampled channel IDs were compressed using a SH encoder trained on

a decaying exponential. Significant memory optimisation was also done by setting a max-

imum ∆-sampled SH encoder size, using a form of run-length encoding. This reduced BR

slightly but significantly reduced memory requirements. The details of this optimisation are

extensively detailed in Sections 3 and 4 in the Supplemental Material.
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C.1.5 Group event-driven encoding

In the Group Event-Driven (GED) encoding, one uses position and stop symbols to encode

the FRs. As in the EED encoding, one explicitly encodes the channel ID, but here one

encodes the FR per channel implicitly in channel ID position. For example, in decimal,

2 4 stop2 1 6 stop3 stop4 3

signifies that channels 2 and 4 had a FR of i = 1 in the given bin, channels 1 and 6 had a

FR of i = 2, channel 3 had FR i = 4, and the rest of the channels had FR i = 0. For the

codeword lengths, the simplest implementation is to give the stop symbols and the channel

IDs a length of k2 bits, where:

k2 = ceil(log2(n+ S − 2)) [bits] (C.6)

E.g. n = 2, S = 4, means that there are 2 channels, FRs between 0 and 3 inclusive can be

encoded, and k2 = 2. Channel 1 gets a codeword of 00, channel 2 gets a codeword 01, and

the stop symbols for i = 2 and i = 3 get codewords of 10 and 11 respectively. It essentially

involves sorting the channels by FR, and using a form of run-length encoding.

There was no clear role for SH encoding, since the stop symbols and FR codewords need

to come from the same encoder. Estimating these probabilities a priori is difficult. As such,

no SH encoding for the group encoding was used.

C.2 Hardware implementation

The AH implementations require us to generate the Huffman codebook on implants, and

assume perfect knowledge of the data to be compressed, which is not achievable in practice.

Therefore, no hardware implementation was done for the AH encodings.

The windowed, explicit event-driven and delta-event-driven implementations share a sim-

ilar hardware architecture. The SH delta-event-driven encoding is considered as the ‘full

version’ architecture, while the explicit event-driven and windowed architectures are pruned

versions. As such, for conciseness, we introduce the implementation of the delta-event-driven

encoding and describe how the other architectures can be derived from these.

C.2.1 Delta-event-driven encoding

This compression architecture consists of 7 components. Four of them have been described

in detail in previous work [135]. These four are the binner, histogram, mapper and encoder.

As such, we only give a brief description of them.
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• The binner is a counter that counts the number of detected spikes (FR) at the given

BP.

• The histogram accumulates the frequency of different FRs to identify the most common

FR for each channel. This is required for sorting and mapping.

• The mapper is the module responsible for assigning each FR to its codeword. The

mapper maps the most frequent FR, as determined in the histogram, to the shortest

codeword and maps the other FRs accordingly with a pre-defined combinatorial logic

that defined the sorting. As detailed in Section 2.6 of the main manuscript, this

mapping aligns the real-time FR distribution with the distribution that the Huffman

encoder is trained on, which helps maximise the on-implant compression performance.

• The encoder is a LUT that encodes the mapped FR into a Huffman codeword.

In order to achieve the event-driven encoding and delta-event-driven encoding, two more

components have been designed. The first component is the comparator. This compares

the FR to be compressed with the most frequent FR as measured by the histogram. If no

histogram/sorter/mapper is used, then the most common FR is taken to be 0. The com-

parator ensures that only the not-most-common FRs are sent out. The second component is

responsible for the channel delta-sampling. It calculates the difference of the current channel

to-be-transmitted to the last transmitted channel. ROM is used to store the original channel

ID codeword instead of using a LUT implementation. This saves on logic cell resources.

For implementing multi-channel compression with minimum resource usage, we follow the

time-sharing architecture as in [11,135]. All channels share the same processing components,

and the signals of each channel are processed interchangeably. RAM is used to store the

variables for each channel while the processing circuits are busy with another channel.

C.2.2 Windowed encoding

The basic implementation of windowed encoding transmits the binned raw FR of all channels

with no further operation. Its SH implementation compresses the binned FR with a pre-

trained Huffman encoder. It also has the option to use a histogram and mapper to enhance

the compression performance.

C.2.3 Explicit event-driven encoding

The basic implementation of the explicit event-driven encoding uses the binner and compara-

tor for obtaining non-zero FR and channel number for transmission. The SH implementation,

similar to the windowed one, makes use of Huffman encoder to compress the FR. As with
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the windowed encoding, a histogram and mapper can be used to better than chances that

the most common FRs are given the shortest codewords.

C.2.4 Group event-driven encoding

The group event-driven encoding is different from the other three. The high-level summary

is that the FR from each channel is read. The channel IDs with the same FR are then

grouped. Once every channel has been read, the groupings/concatenations of channel IDs

are sorted in order of FR with interleaved stop symbols to create the final bit stream.

In hardware, this consists of a sorter and a package generator. The sorter counts the FR

in each channel continuously. Meanwhile, the multi-channel FRs are sorted in descending

order. The package generator generates the bit stream based on the sorted FRs according

to the policy described as section 1.4.

Sorting can be resource and time consuming, especially in hardware. Here it is imple-

mented using a Finite State Machine (FSM). We sort the bin counts (FRs) in real time as

they accumulate. Each time a spike is detected, only one channel’s FR changes and it only

increases by one. Swapping this FR with the furthest value in front which is smaller than it

keeps the sorted FRs in order. To ensure that the FR and channel number are trackable after

swapping, two arrays of registers are needed. The first stores the channel numbers of the

sorted entry. The second stores the index number of each channel after swapping. Therefore,

the temporal and spatial cost increases linearly with the channel number, i.e. O(n), where

n is the number of channels. This low complexity sorting is achieved by taking advantage of

the nature of the binning where only one entry is increased by one at each spike detection.

An example is give in fig.C.1, illustrating the sorting algorithm.

The package generator then scans the sorted FR while neglecting any zeros in the tails.

The channel numbers are packaged/concatenated and the stop symbols are inserted whenever

a new FR is scanned in the sorted FR sequence.

The group event-driven encoding however has more hardware complexity than the other

three encodings. This is because the channel IDs must be placed in their correct location

in the bit stream. This is the case even for the basic implementation. This is a signifi-

cant hardware cost. Additionally, this sorted collation occurs at every BP and so adds a

processing power burden, especially at larger channel counts as the channel ID codewords

are longer. As such, although the group event-driven encoding generally outperformed the

explicit event-driven encoding in terms of compression, its added processing power and hard-

ware complexity may make it less practical as an encoding. It is however interesting that

the entropic and basic implementations gave similar BRs, suggesting that the basic imple-

mentation gives almost ideal compression for the group event-driven encoding.
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Figure C.1: An example of the sorting algorithm. Fequency of each channel: sorted spike rate of each

channel. Corresponding channel number: the channel number corresponding to frequency above. Channel

position: the index of the channel corresponding to spike rate of each channel array. The workflow goes as

below: A spike is first detected in channel 3, Channel 3 spike rate then increases by one. The number to be

swapped for sorting is the furthest smaller rate left to the rate just increased (the green 1 in B), which is the

0 in blue. Swapping then happens in all three arrays. Another spike is detection in Channel 0. According to

array A, the spike rate of channel 0 is stored in index 3 of array B. The number to be swapped is the most

left 0 in B and all corresponding values in A, B and C are swapped then.

C.3 Results

In Fig. C.2, we plotted the BRs of each encoding at different BPs and n. We can observe

that the windowed and DED encodings perform best, with the best one depending on BP

and n. From the hardware perspective, the windowed encoding is far more hardware efficient

than the DED encoding. Whilst the amount of logic cells is similar for the two encodings,

the DED encoding uses significantly more memory, and therefore the processing power is

higher. Additionally, the windowed scheme performs the same independent of channel count.

However, the DED scheme is affected by channel count. When n increases, the delta-sampled

channel IDs can be larger, meaning longer codewords and higher BRs. As such, increasing n

slightly increase the DED BR, but significantly less than for the EED and GED encodings.

As such, the optimal selection generally varies as a function of channel count and BP.

Ultimately, we want the total power on-implant to be reduced. As such, Fig. C.3 shows

the total dynamic power for the FPGA implementation, made up of the processing power

for each encoding and the communication power, estimated as the BR multiplied by an

estimated 20 nJ/bit communication energy.

C.3.1 Optimal encoding delection

From Fig. C.3 and our analysis of the hardware costs in the Supplemental Material, for each

BP and n we selected the optimal compression system. These are given in Table C.2 (a).

We then determined each selected system’s performance on the test data, i.e. data that had

hereto been untouched, and the BRs are given in (b). The associated required number of

144



1 2 3 4 4.47
0

200

400

600

800

1000

1200
BP: 1

1 2 3 4 4.47
0

50

100

150

200

250

BP: 5

1 2 3 4 4.47
0

50

100

150

200

250
BP: 10

1 2 3 4 4.47
0

50

100

150

200

BP: 20

1 2 3 4 4.47
0

50

100

150

BP: 50

1 2 3 4 4.47
0

20

40

60

80

100

BP: 100

Number of channels (log
10

)

B
R

 (
b

p
s
/c

h
a

n
n

e
l)

W

EED

DED

GED

Figure C.2: Bit Rates for communication schemes at a BP ∈ [1, 5, 10, 20, 50, 100]ms. For each BP, S

was respectively fixed as [2, 2, 2, 2, 3, 5]. At S = 2, the explicit and GED encodings are mathematically

identical, and so their BRs overlap for BPs ≤ 20ms.

FPGA logic cells and memory are given respectively in Table C.2 (c) and (d). The total

dynamic power on the Lattice ice40LP FPGA target, determined on the testing data, is

given in (e). In summary, the DED encoding is suitable for short BPs (less than approx.

20ms) while the windowed encoding is preferred when the channel count or BP is increased.

C.3.2 Impact of compression on channel counts in FPGA target

From this, knowing our BRs per BP and channel count, we can derive how many channels

can be hosted on-implant, for different FPGA board dimensions and BPs. We assume:

• A 10mW/cm2 heat flux limit;

• An FPGA static power of 162µW;

• A separate power and hardware budget for the front-end amplifiers, filters and ADCs;

• A 20 nJ/bit communication energy;

• A binner processing power of 0.96µW, independent of BP [135].

Using the information from Table C.2 (e), we can derive how many channels can be hosted

on-implant while staying within implant power limits. This is compared to the number of
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Figure C.3: Total communication + processing power, i.e. dynamic power, for the windowed and DED

compression schemes at a BP ∈ [1, 5, 10, 20, 50, 100]ms. For each BP, S was respectively fixed as [2, 2, 2,

2, 3, 5]. For BPs of 50 and 100ms, the power is not given for 10000 and 30000 channels since the memory

requirements exceeded the FPGA target memory budget.

channels that can be hosted given the standard uncompressed MUA representation at 1ms

BP, S = 2, that has a 1000 bps/channel BR.

The results are shown graphically in Fig. C.4. It can be observed that between 4.6

and 26 times more MUA channels can be fit on-implant with data compression, depending

on BP ∈ {1, 5, 10, 20, 50, 100}ms and FPGA size ∈ {1, 2.5, 5, 7.5}mm. As such, one can

observe that data compression allows one to fit many more MUA channels onto the same

implant. Therefore, the compression schemes developed in this work are a useful addition

to MUA-based WI-BMIs.
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Table C.2: Suggested SH encodings and corresponding BRs and hardware resources for each

BP and channel count. BR results from test data. ‘W’ represents the windowed encoding.

‘x’ entries are where the memory requirements exceeded those of the FPGA platform we

selected. The FPGA Logic Cells and Memory are shared across all channels.

(a) Recommended Encoding (b) Bit Rates (bps / channel)

n n

BP S 10 102 103 104 3×104 BP S 10 102 103 104 3×104

1 2 DED DED DED DED DED 1 2 50 99 151 177 183

5 2 DED DED DED DED DED 5 2 45 75 78 79 79

10 2 DED DED DED DED DED 10 2 44 62 62 62 62

20 2 DED W W W W 20 2 31 50 50 50 50

50 3 DED W W W W 50 3 25 29 29 29 29

100 5 W W W W W 100 5 20 21 22 22 22

(c) FPGA Logic Cells (d) FPGA Memory (bits)

n n

BP S 10 102 103 104 3×104 BP S 10 102 103 104 3×104

1 2 114 144 164 207 242 1 2 60 648 2448 20448 60448

5 2 124 153 174 217 252 5 2 60 968 2768 20768 60768

10 2 130 159 180 223 258 10 2 60 968 2768 20768 60768

20 2 135 128 134 162 192 20 2 60 200 2000 20000 60000

50 3 183 171 176 207 x 50 3 140 400 4000 40000 x

100 5 232 246 251 286 x 100 5 60 600 6000 60000 x

(e) FPGA Dynamic Power (µW / channel)

n

BP S 10 102 103 104 3×104

1 2 2.03 3.05 4.1 4.74 5.39

5 2 1.93 2.58 2.66 2.76 3.34

10 2 1.95 2.32 2.35 2.42 2.97

20 2 1.7 1.96 1.98 2.03 2.55

50 3 1.59 1.54 1.58 2.07 x

100 5 1.4 1.43 1.46 2 x
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Figure C.4: Number of MUA channels we can host on a Lattice ice40LP FPGA of different dimensions for

the selected communication schemes at a BP ∈ [1, 5, 10, 20, 50, 100]ms while remaining within the power

budget. This is compared to the number of channels that can be hosted given the standard uncompressed

MUA representation at 1ms BP, S = 2, that has a 1000 bps/channel BR. The required power for any front-

end ADC and pre-amplifiers is ignored. The total dynamic power budget is given by the FPGA dimensions

multiplied by a heat flux limit of 10mW/cm2, assuming heat flux from both faces, minus the FPGA static

power. For each BP and FPGA dimension pair, the ratio of how many more channels can be fitted on-

implant with compression is also given.
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Appendix D

Statistic exploration

According to Eqs. 3.7 and 3.8, Threshold is can be written as Eq.D.1, which can be ap-

proximated as Eq.D.2. Assuming z follows half-normal distribution fZ(z) =
√
π

σ
√
2
e−

z
2

2σ2 , the

probability at z = σ, fZ(z = σ) =
√
π

σ
√
2
e−

1

2 . The expectation of half-normal distribution

E(Z) = µz = σ
√
2√
π
. Therefore, e−

1

2 = fZ (z = σ)µz and the threshold can be expressed

as in Eq.D.3. However, it is still unknown whether there is neuroscience or mathematical

explanation behind or this equation is just a coincidence.

Thr =
5

8
∗

n−1
∑

i=n−64

zi (D.1)

Thr = e−
1

2 ∗

n−1
∑

i=n−64

zi (D.2)

Thr = 64µ2
zfZ (z = σ) (D.3)
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