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Abstract

Research into the links between infectious disease outbreaks and disasters has increased over

time, with continued discussion regarding the rate and mechanisms for these links. Yet,

significant discrepancies and research gaps remain globally in terms of the frequency,

geography and characteristics of post-disaster disease outbreaks. Here, the aim was to address

these gaps and discrepancies by exploring several disasters and their associated risk factors

and further quantifying their impact. By increasing this understanding, this improves the

extent to which disaster-related disease outbreaks can be prepared for, to prevent outbreaks

from exacerbating and prolonging disaster recovery.

To further understand these risk factors, disease outbreaks in drought and conflict settings

were analysed and an overview of the research area was gained through the first global

systematic review of the literature. Cholera was selected as a focus for the research here, due

to it being a disease of global public health importance and potentially linked to drought and

conflict. The area of study was predominately Africa (due to the relatively high cholera,

conflict and drought burden) and was studied at several spatial scales, from national to

administrative level 1. The research identified many important risk factors for cholera

outbreaks in a disaster context.

To help further identify areas for prioritisation both nationally and sub-nationally,

drought-related cholera outbreaks were investigated, as droughts are a relatively understudied

natural hazard. Generalised linear models were used to identify a potential relationship and

the flexibility of the modelling approach allowed for multiple covariates to be tested. The lack

of available water during a drought exacerbates risk factors relating to cholera transmission.

However, increasing freshwater availability, improving access to sanitation, poverty elimination

and emissions reductions could help to o↵set cholera risk in the future. Using random forest

models, specific targets for these risk factors were further quantified for Nigeria. States with

Multi Dimensional Poverty Index values over 0.38 and sanitation access below 54% were

particularly at risk for cholera transmission, which includes most northern states in Nigeria.

Conflict-related cholera outbreaks were analysed by applying the self-controlled case series in

a new application. The modelling approach uses conditional logistic regression to understand

the impact of an exposure (conflict) on an event (outbreak). Conflict had the most significant



impact on cholera in the first week after the conflict and increased the risk of cholera

outbreaks by as much as 3.6 times. The recently developed percentage attributable fraction

equations were applied to these results and identified <20% of cholera outbreaks being

attributable to conflict in Nigeria and the Democratic Republic of Congo (DRC). The

research helped quantify a specific health e↵ect of both the Boko Haram conflict in Nigeria

and the civil unrest in eastern DRC.

Disease, disasters and global change were brought together here beyond what has previously

been done and the knowledge gained was applied to policy throughout. Furthermore, a

variety of projections and scenarios were used to identify how potential future conditions

could alter cholera transmission. The Global Task for Cholera Control have ambitious 2030

targets, that will be essential for global cholera eradication and are important to make sure

governments are committed to overcoming challenges. Both disasters and cholera outbreaks

are not new phenomenon and societies have always had to respond and adapt but marked

di↵erences in global inequity can prevent this. Giving people agency and empowerment to

react to sudden changes and make informed decisions to protect their health will require

long-term investment in sustainable development. Enhancing development has far-reaching

impacts and is essential for controlling disease, both regionally and globally.
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Chapter 1

Introduction

Global health has made steady improvements through recent decades, especially in terms of

communicable diseases due to improvements in sanitation and hygiene, along with vaccine

discovery and mass immunisation schedules. As standard of living increases, increasing life

expectancy, non-communicable diseases have replaced the communicable disease burden in

many countries. A decrease in infectious diseases has meant less premature deaths and with an

ageing population the incidence of ischemic heart disease, stroke and cancer has increased [1].

However, after accounting for population growth and ageing, the absolute number of Disability-

Adjusted Life Years (DALYs) has remained stable [2]. Four communicable diseases remain

in the top six causes of global DALYs (2010), lower respiratory tract infection, diarrhoea,

HIV/AIDS and malaria [3]. One of the main reasons for this continued burden is the high

levels of inequity that remains worldwide, with marked regional and national divergences from

the global trend (of decreasing infectious disease mortality). This is especially concerning as

children under 5 years old represent 57% of the global communicable disease burden (2019) [3,

4], particularly in sub-Saharan Africa (Figure 1.1), where the growing population will put more

people at risk in the future [2].

Several diseases have epidemic and pandemic potential to cause public health emergencies,

incurring large economic and social costs such as HIV/AIDS, cholera and Zika virus [5, 6].

For example, extreme poverty has increased for the first time in 20 years, with the COVID-19

pandemic considered the cause [7]. The global impact of infectious disease outbreaks remains

an ever-present threat, with globalisation meaning no country is immune to these risks. The

far-reaching repercussions of outbreaks make understanding the complexities of outbreak risk

fundamental.
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Figure 1.1: Global burden of communicable, neonatal, maternal and nutritional diseases in
a, national DALY rates per 100,000 individuals for 2019 and b, total global DALYs per year
for 1990 to 2019. . STIs - Sexually Transmitted Infections. NTDs - Neglected Tropical
Diseases. TB - Tuberculosis. License: CC-BY [4, 8].

31



1.1 Mechanisms for Disaster-related Disease Outbreaks

1.1.1 Disease and Disaster Terminology

Across diseases, outbreaks can be initiated or exacerbated by a variety of influences, e.g., food,

water, sanitation and health systems [9]. Other than the failure of governments to provide and

protect such services, specific events can exacerbate several of these influences. An example of

such event is a disaster, with their consequences resulting in a regression of many of the disease

burden gains mentioned [10, 11].

The exacerbation of disease outbreaks is caused by a change in population vulnerability.

The term vulnerability will be used throughout the thesis and both pre-existing vulnerabil-

ity (present before the disaster) and vulnerability changes during or after the disaster, will be

discussed. Vulnerabilities are conditions and long-term processes that increase the suscepti-

bility to harm caused by the adverse event and include a wide range of factors e.g., poverty,

education and housing [12].

Here, in accordance with disaster research terminology, the term disaster is a threatening

event within a given time period and encompasses a natural hazard (e.g., earthquakes, floods,

droughts) or an armed conflict (e.g., terrorism, civil war) [13, 14, 15]. The terms disaster, hazard

and extremes will be used when discussing these events and locations which are experiencing

them will be termed fragile settings or complex emergencies.

Hazards in relation to climate change will be discussed throughout the thesis. Climate is long-

term patterns and trends in the weather, the classical period for averaging these trends is 30

years. Extreme weather or climate (natural hazards) are changes in the weather above or below

the upper or lower ranges of observed climate values. Additionally, climate change is changes

in the mean and/or the variability of the climate’s properties, that persists for an extended

period of time [16].

According to the World Health Organization (WHO), an infectious disease outbreak is an

occurrence of a disease above normal expectancy [5]. The number of cases may vary according
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to the aetiological agent as well as the size and type of previous and existing exposure, while

the geographic occurrence of some outbreaks may be further shaped by whether a pathogen is

endemic or epidemic.

Risk factors are specific vulnerabilities that interact with the hazard, whether that a natural

hazard, conflict or an infectious disease outbreak, and increase the probability of the population

being exposed to harm. The term risk factor cascade, also used in a disaster-disease context

by Hammer et al. [17], will be used here and relates to risk factors which are linked or lead to

other risk factors.

Disaster research terminology is contentious, with much disagreement over the correct terms to

accurately describe complex hazard parameters. It is acknowledged that at the current time,

no term may be correct or fully encompass all aspects of the hazard or vulnerability. However,

for the purpose of this work, and inline with the discussion above, brief descriptions of all the

terms used in this thesis are below:

• Vulnerability/Pre-existing vulnerability - Any condition or long-term process which in-

creases susceptibility to the hazard

• Disaster/Hazard/Extreme - A threatening event within a given time period

• Climate/Climate Change - Long-term weather patterns/long-term changes in the climate

• Fragile settings/Complex emergencies - Locations experiencing a hazard

• Outbreak - An infectious disease occurrence above normal expectancy

• Risk factor - Specific vulnerabilities that increase the susceptibility to harm/exposure

• Risk factor cascade - Risk factors which are thought to be linked to or leads to other risk

factors
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1.1.2 Natural Hazard-related Disease Outbreaks

Natural hazards can be hydrological, meteorological, climatological and geophysical and include

floods, droughts, earthquakes and storms (cyclones, hurricanes and typhoons). These events

can cause widespread disruption to the a↵ected population, especially without e↵ective disaster

mitigation and adaptation. The disruption caused by these events largely focuses on their direct

e↵ects such as destruction of infrastructure [18, 19] and fatalities [20, 21] but long-term and

indirect impacts of the disaster are also important and often more impactful.

An example of an indirect impact of a natural hazard is an infectious disease outbreak, as the

disruption caused by the hazard can act as a catalyst for outbreaks by initiating or worsening

risk factors within the population [17]. Natural hazard-related outbreaks are a global issue

with low- (post-earthquake rotavirus outbreak in India [22]), middle- (flood-related leptospirosis

outbreak in Brazil [23]) and high- (norovirus outbreak after Hurricane Katrina in the US [24])

income countries being a↵ected. Causative agents of these outbreaks tend to be endemic

(constant presence and/or usual prevalence of a disease in a location [25]), as the exacerbated

vulnerabilities increase exposure to the circulating pathogen reservoirs. Exceptions of where a

non-endemic disease has caused a post-disaster outbreak has mainly been due to introductions

by troops/peacekeepers and humanitarians, e.g., the 2010 Haitian cholera outbreak [26].

1.1.3 Conflict-related Disease Outbreaks

Similar to natural hazards, the impacts of conflicts often focus on direct infrastructure damage

and fatalities in both the media and research but there are also several examples of conflict-

related disease outbreaks, such as an outbreak of cutaneous leishmaniasis during the Syrian

conflict [27] and an ongoing cholera outbreak during the Yemani civil war [28]. The e↵ects

of conflicts in terms of disease risk are complex, with fear and a lack of trust playing a more

pivotal role. A lack of trust is especially problematic in conflicts where atrocities are committed

on multiple sides and causes di�culties when providing healthcare and support [29].

Conflict-a↵ected populations may not perceive accessing care as safe or people may not want to
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leave their homes in fear of violence and roadblocks. For example, willingness to access Ebola

treatment centres was low in the DRC due to healthcare attacks [30]. Furthermore, disease

control e↵orts such as vaccination, can have poor uptake due to a lack of trust between the

population and the government. Mistrust can then create an ideal environment for the spread

of misinformation and vaccine hesitancy [31, 32]. Disease outbreak control requires a commu-

nity e↵ort and cooperation from everyone to follow public health guidelines. Unfortunately,

disasters can sometimes result in an individualistic mentality, especially when satisfaction with

the government and health o�cials is low [33, 34].

1.1.4 Historically Identified Risk Factors

Several risk factors have been suggested for causing post-disaster disease outbreaks. Identi-

fying these risks and understanding their complexities is essential in preventing post-disaster

outbreaks. Commonly cited risk factors include:

• Poor access to water, sanitation and hygiene (WASH) [35]

• Changes in diet and available foodstu↵ [36]

• Alterations in vector behaviour and control [37]

• Issues with housing and shelter, especially overcrowding [38]

• Problems obtaining healthcare [39, 40]

• Breakdown in preventative disease programs e.g., vaccinations, bed nets [39, 40]

• Unmanaged population displacement [41, 10, 42]

Displacement has the potential to worsen many of the risk factors mentioned, especially when

people are displaced to overcrowded camps without proper facilities. The increased numbers

of displaced persons (and troops/soldiers or humanitarians) can increase the number of people

susceptible and naive to a disease, therefore propagating outbreaks [43]. These factors influence
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population risk, commonly expressed as hazard x vulnerability, with exposure sometimes added

(Crichton’s risk triangle) [44]. Understanding these factors are important as over-emphasis on

a single hazard (such as a natural hazard or armed conflict), reduces the insight into population

exposure and vulnerability [45].

To add further complexity, few risks act solely to cause an outbreak and can typically be

multi-faceted. Therefore, understanding how risk factors are potentially linked in risk factor

cascades and their impact on pre-existing population vulnerability is vitally important [17, 46].

Both natural hazards and conflicts relate to and exacerbate pre-existing vulnerability and can

increase the probability of post-disaster outbreaks. For example, following a disaster there can

be a loss of income generation and disruption to education, exacerbating poverty [47].

1.2 Implications for Climatic and Social Changes

1.2.1 Climate Change and Natural Hazards

Intersections between disasters and disease provides an opportunity to explore the mechanisms

through which global change (such as climate change and sustainable development) could yield

health impacts [48, 49]. Climate change has the potential to alter some hazard parameters

(e.g., intensity or frequency) [50, 51]. For example, sea level rise and warming temperatures

are projected to change hurricane and Asian monsoon frequency and intensity [50, 52]. Fur-

thermore, fewer cold and frost days and an average increase in global temperatures are very

likely to play a role in heatwaves and droughts [53].

As climate models improve and uncertainty decreases, certainty around how these hazard pa-

rameters may alter has increased [54]. This thesis aims to capitalise on this new understanding

to explore an aspect of future disease risk. These relationships should not be over-simplified

though and projected climatic changes are complex, with their e↵ects being spatially and tem-

porally heterogeneous. Exposure and vulnerability are dynamic and inequities are not expressed

in a uniform way, depending on economic, social, geographic, demographic, cultural, institu-
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tional, governmental, and environmental factors [55]. It is therefore important for disaster risk

reduction to analyse and estimate how communities may be impacted across di↵erent areas of

the world.

1.2.2 Climate Change and Conflict

Previous research has suggested several links between climate change and conflict, in terms

of frequency, intensity and duration. Examples of how climate change may lead to conflicts

include a loss of income generation and livelihoods [56], marginalisation of communities [57],

food and water insecurity [56, 58] and migration [59]. Many of these risk factors may increase

the risk of conflict over resources, as they become more scarce or unpredictable. For example,

altered drought frequency and intensity in the Fertile Crescent was suggested as a reason for

armed conflict escalation in Syria [60]. Additionally, during El Niño years (compared to La

Niña), new civil conflicts nearly double in the tropics from 1950 to 2004 [61].

People who live in conflict-a↵ected or post-conflict areas are particularly vulnerable to climate

change, due to a decreased ability to adapt [62]. Akin to the link between natural hazards and

climate change, these relationships are complex, and vary according to location and vulnerabil-

ity. Additionally, several studies contest the climate’s influence on conflicts and there appears

to be little consensus in the scientific community [63, 64, 65]. Some have even suggested that

the climate change/conflict narrative is dangerous, shifting attention away from government

action and conflict resolution [66]. Understanding how any potential changes in climate and

conflict will alter related disease outbreaks is important and relatively understudied. Exploring

this research gap is vital in protecting vulnerable populations and resource allocation.

1.2.3 Social Change and Sustainable Development

One way to mitigate the e↵ects of climate change on both natural hazards and conflicts is

through social changes in terms of sustainable development. Despite their ambiguous nature

and no clear pathway of how they will be achieved [67], the Sustainable Development Goals
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(SDG) are a relatively universally accepted measure of social development [68] (Figure 1.2).

Several of the risk factors stated above would be reduced through pursuit of the SDGs including

WASH (SDG6), education (SDG4), poverty (SDG1) and access to healthcare (SDG3). Allevi-

ating these risk factors would give communities a greater ability to adapt to changes and more

options to ensure their health and well-being.

Figure 1.2: The United Nations Sustainable Development Goals [68].

Societal changes and a reduction in vulnerability will play a significant role in how future

climate-related changes in health and disease will be experienced [69]. The most vulnerable

populations are often cited as those most at risk of climate change and this includes natural

hazards and conflicts, as vulnerable populations have less opportunities and available resources

[70]. For example, both low levels of education and higher poverty increased the risk to the

detrimental consequences of flooding in rural Bangladesh [71]. Furthermore, early warning sys-

tems are considered fundamental in mitigating the impacts of disasters on health, but inequities

in gender and wealth mean they disproportionately under-serve parts of the population [72].

The uncertainty in projected socio-economic conditions is greater than environmental ones, as

much of this will depend on human behaviour, which is challenging to predict. It is therefore

important to incorporate a wide range of potential changes to social parameters in future
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scenario projections. Statistical and mathematical modelling studies are pivotal in exploring

future disease changes, as the flexibility of several modelling techniques allow many of these

parameters to be considered at once, termed multi-parameter modelling. This type of modelling

is important for real-world application and for understanding interactions among social and

environmental factors. In the absence of these studies and regardless of their publication,

continued progression towards and beyond the SDGs will be essential to improving the health

and well-being of the global population.

1.3 Cholera

1.3.1 History and Global Burden of Cholera

Cholera is an ancient disease, beginning to cause outbreaks during the transition away from

nomadic lifestyles and into settlements. When humans were predominately hunter-gathers, the

constant movement meant ever changing water sources, making it unlikely that people would

contaminate their own water. As settlements became larger and more densely populated,

pollution became more likely. There is no definitive date for the first appearance of cholera but

the disease seems likely to have been endemic in certain areas from as early as the 5th century,

with several historical accounts of symptoms that could now be attributed to cholera [73].

As previously stated, diarrhoeal diseases are a major contributor to the global disease burden,

especially in children in low- and middle-income countries [6]. Cholera contributes significantly

to this burden and is a disease of global importance (Figure 1.3). Since the beginning of the

seventh and ongoing pandemic in 1961, the disease is now endemic in 51 countries [74]. In

2020, over 320,000 cholera cases and 857 deaths were reported to WHO [75], while in 2022, 20

countries reported cases, exclusively in Africa and Asia [76]. The true impact of cholera though

is di�cult to decipher due to reporting heterogeneity, such as the impact on trade and tourism

causing reporting hesitancy. Previous estimations have suggested annual cholera cases of 2.86

million and between 21,000-143,000 deaths [77, 74].
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The causative agent, Vibrio cholerae, is an extremely virulent gram-negative bacteria, having

two outbreak causing strains, O1 and O139. The water-borne bacterial pathogen causes profuse

watery diarrhoea outbreaks and in some cases vomiting [75, 78]. Persistence of the bacteria

in aquatic reservoirs, the formation of biofilms and asymptomatic cases, which help sustain

transmission by bacterial shedding, means those living in areas with poor access to water and

hygiene are highly likely to be exposed [79]. Explosive cholera outbreaks are common due to

the short incubation period (2 hours to 5 days) and the risk of rapid dehydration, especially

among young children, meaning deaths can occur quickly and case fatality can reach up to 40%

[80].

E↵ective symptom management is considered the cornerstone to cholera treatment including
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oral rehydration solution (ORS) and in some instances (particularly severe cases) antibiotic

use, which helps to keep outbreak mortality to the global goal of <1% [81, 36]. Cholera can

be vaccinated against with the oral cholera vaccine (OCV). There are currently three licensed

OCVs, all administered as two-doses taken orally 7 days to 6 weeks apart. The vaccine can

be given to children from 2 years of age and more than 20 million doses have been used in

mass vaccination campaigns [82]. However, vaccination is not considered the primary method

for cholera eradication, only providing around 2-3 years of protection with the current vaccines

available. Instead vaccination is mainly used to curb transmission in outbreak settings, along

with other interventions [83, 84].

1.3.2 Disaster-related Cholera Outbreaks

Cholera outbreak frequency is linked to environmental and climatic changes and has been

implicated in several post-disaster outbreaks, including floods, droughts and cyclones [85, 86,

87, 88]. Environmental mechanisms through which natural hazards cause cholera transmission

are related to temperature and precipitation. Temperature helps to drive epidemics, by creating

an ideal environment for the pathogen to grow in the environment and precipitation and storm

water can then act as a dispersal mechanism [89]. Cholera outbreaks often occur when the

disaster also results in the breakdown and damage of sanitation, hygiene and municipal waste

systems.

Some studies suggest that human-induced factors are more important for cholera dynamics than

climate or environmental ones [90], possibly due to the need for poor socio-economic conditions

for pathogen exposure. Cholera is considered a disease of inequity, predominantly a↵ecting

the poorest and most vulnerable [91, 92], making those in conflict-a↵ected cholera endemic

countries particularly vulnerable. Prominent examples of conflict-related cholera outbreaks

include those in Yemen [93] and the DRC [94].

Several of the socio-economic risk factors involved in cholera outbreaks also align with the

historically identified risk factors for post-disaster outbreaks delineated above. These include

poverty [95], sanitation and hygiene [96], drainage [97], water quality [98] and poor healthcare

41



[89]. The links between these risk factors have made cholera a common aetiological agent and

significant risk for post-disaster outbreaks.

1.3.3 Cholera Outbreak Policy

Actions have been taken to reduce the global burden of cholera, both indirectly through sani-

tation and hygiene programmes and more specifically through the development of the Global

Task Force on Cholera Control (GTFCC). The GTFCC is a global network coordinating the

fight against cholera. The aim of the organisation is to significantly reduce global cholera bur-

den and work towards eradication in many countries through the Global Roadmap. In 2018, at

the 71st World Health Assembly, WHO member states passed a resolution committing to the

Global Roadmap and 47 African countries adopted a regional framework in alignment with the

Roadmap at the WHO Regional Committee for Africa [99].

A serious barrier to reaching the GTFCC goals is the stark reminders of the gains needed in

terms of WASH development. In 2020, 2.2 billion people lacked access to safe drinking water,

3 billion people were without access to handwashing facilities and more than half of the pop-

ulation live without access to safe sanitation [100]. Much greater international and national

commitments towards sustainable development are required to prevent erosion of progress to-

wards the GTFCC goals and several other disease and health targets. Sustainable development

in terms of poverty alleviation and the provision of WASH services would undoubtedly be cost-

e↵ective [101, 102, 103], due to the far reaching implications this would have on health and

quality of life.
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1.4 Previous Methodological Approaches Used to Ex-

plore Disaster-related Outbreaks

1.4.1 Outbreak Investigation

There is an absence of quantitative research in terms of natural hazards/conflicts and disease

outbreaks, especially in terms of statistical and mathematical modelling. Alternatively, there

is abundance of quantitative outbreak investigations (retrospective case control and cohort

studies) [38, 104, 43] and serological surveys (cross-sectional and longitudinal) [105, 106, 107,

108], which are helpful in terms of deciphering immediate risk factors and disease burden.

These studies give an indication of cases, deaths, case fatality ratio and risk factors, all of

which are useful in understanding cholera outbreaks and provide crucial knowledge that is used

throughout this thesis. One limitation of outbreak investigations is that they only provide a

snapshot of a single outbreak and are less helpful in understanding outbreaks on larger temporal

and spatial scales.

1.4.2 Reviews and Qualitative Research

There are several published reviews which are particularly helpful in collating the vast num-

ber of serological surveys and outbreak investigations. In particular, there are a few broader

reviews evaluating natural hazards and conflicts on a global scale, which are helpful in trying

to understand the frequency of specific risk factors [41, 42, 109]. Other reviews tend to focus

more specifically on either a disaster type such as droughts [110] or tsunamis [111] or a spe-

cific timescale (2000-2011) [46]. These more focused reviews can be helpful in understanding a

specific research question but often fall short in providing more generalisable results. However,

there is a general consensus among the available reviews that infectious disease outbreak risk is

heightened following disasters and several risk factors are commonly cited, as discussed above

(1.1.4 Historically Identified Risk Factors).

Qualitative studies are often outbreak investigations, exploring a specific disaster and disease

43



outbreak, typically through a humanitarian lens [93, 112]. Previous examples of these include

investigations of a hepatitis E outbreak in Nepal following an earthquake [113] and cholera

outbreaks in Nigeria and Yemen during ongoing conflicts [93, 112]. These qualitative studies

have the same advantages as the quantitative outbreak investigations while also providing the

perspectives of those in the a↵ected area, both in terms of government and non-governmental

organisations (NGO) and the local population. A limitation of much of the qualitative research

and reviews are a lack of definitions [93, 111]. What constitutes to a specific disaster or

disease outbreak is key in understanding the study results and recommendations and for making

comparisons between studies. Clear definitions and terminology are particularly important in

disaster research, as there is much contention and disagreement within the research community

[114, 115].

1.4.3 Quantitative and Modelling Research

Despite the advantages identified above in the previously used methodological approaches,

research needs to move beyond this type of analysis to plan for disasters and outbreaks in the

future. Collating and making use of large datasets is essential in evaluating these outbreaks

on a greater temporal and spatial scale. Previous examples of quantitative modelling studies

investigating natural hazards, conflicts and cholera are limited and specific examples include:

• Spatio-Temporal Clustering:

• Flooding and cholera in Bangladesh [116]

• Conflict and cholera in the DRC [94]

• Machine Learning:

• Conflict and cholera in Yemen [117]

• General Additive Models:

• Drought, floods and heatwaves and cholera in Nigeria [118]

44



• Poisson Regression:

• Floods, droughts and cholera in sub-Saharan Africa [119]

Several of the previous modelling approaches either do not account for socio-economic conditions

[116, 94, 118, 117] or attempt to o↵set one factor (e.g., Human Development Index [119]). Few

try to account for the large number of potentially influential factors in post-disaster outbreaks

[109]. Issues also arise when using an index as a sole measure of socio-economic vulnerability,

as these metrics include several variables and determining which are the most important is not

possible from the single value they provide. Very few studies also try to project cholera risk

and outbreaks [117], instead taking a qualitative approach to discuss possible future changes

[11].

The limited quantitative modelling work on natural hazards/conflict and cholera completed

to date gives abundant opportunity to use a combination of novel methodological techniques

and previously established methodology in new applications. The work presented here will

consider social changes central to the research and a wide range of parameters and future

conditions will be evaluated. The modelling will further inform how disasters impact infectious

disease outbreaks historically, currently and projected into the future, encompassing as many

potentially influential factors in terms of disease and disasters as possible, to gain a greater

understanding of the full scope of potential risk factors (Figure 1.4).
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Figure 1.4: Schematic diagram of the current research landscape for post-disaster disease
outbreaks and how this thesis addresses the current limitations and research gaps. GAM -
General Additive Models, CFR - Case Fatality Ratio.

1.5 Motivation and Objectives

1.5.1 Primary Motivation

The primary motivation of this thesis is to understand why disaster-related outbreaks occur

despite longstanding experience of disaster mitigation and adaptation. Populations experience

significant mortality and morbidity in fragile settings, which society can reduce, but too often

does not. The devastating impacts of disasters are still repeatably witnessed, even though

natural hazards and conflicts have occurred throughout history. Post-disaster outbreaks are a

global issue, and no community, regardless of economic and political stability, appear una↵ected.

The aim is to use this enhanced knowledge of potential risk factors and thresholds for these

outbreaks, to understand where current disaster adaptation fails in preventing outbreaks and

what more can be done.
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1.5.2 Secondary Motivation

The secondary motivation is to use a disease of global public health importance, such as cholera,

as a case study in understanding these outbreaks. Cholera outbreaks, like disasters, are not a

new phenomenon, with documented outbreaks of the disease dating back to 1817. The pathogen

emerged out of the Ganges Delta and has since caused seven pandemics, with the current and

most persistent pandemic (7th) showing no signs of regressing. The disease causes serious

ethical issues, due to its large burden and mortality on young children in poor communities,

despite having simple preventative interventions e.g., sanitation and handwashing. The drivers

of cholera are complex and more research and focus is needed to understand them better, this

thesis will aim to address these drivers in the context of post-disaster outbreaks.

1.5.3 Tertiary Motivation

A tertiary motivation will be to evaluate how sustainable development can yield co-benefits for

disease control and prevention, particularly for cholera and disaster settings. It could be argued

that the answers to post-disaster disease outbreaks are already available, and the continuation

of outbreaks is instead a failure to act. Whether this is the case or not, the longevity of

the issues of post-disaster outbreaks and cholera may have resulted in action fatigue and it is

important that attention is not completely shifted away from these issues. Development will

empower communities and give people the control to adapt to disasters and climate change

and reduce the need for humanitarian aid. The more scientific evidence showing the need to

address specific inequities, the less justification there will be for inaction.

1.5.4 Objectives

The extensive and original research presented here will highlight the continued support and

attention needed for post-disaster disease outbreaks and cholera. As problems persist, attention

can be lost, but with such high levels of mortality and morbidity this cannot be the case. A
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goal of this research is to re-focus this attention by increasing awareness and understanding of

the risk factors through the following objectives:

1. Create a comprehensive review of post-disaster disease outbreaks, collating all previous

quantitative research to identify commonly reports geographic areas, disasters, aetiologi-

cal agents and risk factors (Chapter 2 and publications 1-3 & 7).

2. Use novel methodological approaches and datasets to gain a greater understanding of

cholera outbreak risk factors and thresholds in a disaster setting, focusing on conflicts

and droughts, to create more generalisable results than previous research (Chapter 3-5,

publications 4-6 & 8).

3. Evaluate a range of social and development indicators in the fitting of all models used, to

create a more comprehensive model of cholera outbreak risk in a disaster setting (Chapter

3 & 5, publications 4 & 8).

4. Apply the models to make quantitative predictions and projections of future cholera

outbreak risk in the context of natural hazards and conflicts and establish ideal future

scenarios to reduce this risk (Chapter 3, 5 & 6, publications 4 & 8).

5. Evaluate the results and conclusions from the modelling work completed here to evaluate

the achievability of global cholera targets (Chapter 6, publication 9).

1.6 Publications

Several publications have been produced through the research presented in this thesis and are

listed below and at the start of each chapter:

1. Charnley GEC, Kelman I, Gaythorpe KAM, Murray KA. Understanding the risks for

post-disaster infectious disease outbreaks: a systematic review protocol. BMJ Open

2020;10:e039608.
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2. Charnley GEC, Kelman I, Gaythorpe KAM, Murray KA. Traits and risk factors of post-

disaster infectious disease outbreaks: a systematic review. Scientific Reports 2021;11:5616.

3. Charnley GEC, Kelman I, Murray KA. Drought-related cholera outbreaks in Africa and

the implications for climate change: a narrative review. Pathogens and Global Health

2022;116(1):3-12.

4. Charnley GEC, Kelman I, Green N, Hinsley W, Gaythorpe KAM, Murray KAM. Explor-

ing relationships between drought and epidemic cholera in Africa using generalised linear

models. BMC Infectious Diseases 2021;21:1177.

5. Charnley GEC, Kelman I, Gaythorpe KAM, Murray KA. Accessing sub-national cholera

epidemiological data for Nigeria and the Democratic Republic of Congo during the seventh

pandemic. BMC Infectious Diseases 2022;22:288.

6. Charnley GEC, Jean K, Kelman I, Gaythorpe KAM, Murray KA. Using self-controlled

case series to understand the relationship between conflict and cholera in Nigeria and the

Democratic Republic of Congo. Emerging Infectious Diseases 2022;28:2472-2481.

7. Harris M, Charnley GEC. Disaster Risk Management: A Resilient Health System. In:

Eslamian, S., Eslamian, F. (eds) Disaster Risk Reduction for Resilience. Springer, Cham,

2022.

8. Charnley GEC, Yennan S, Ochu C, Kelman I, Gaythorpe KAM, Murray KA. Investigating

the impact of social and environmental extremes on cholera time varying reproduction

number in Nigeria. PLoS Global Public Health 2022;2(12):e0000869

9. Charnley GEC, Yennan S, Ochu C, Kelman I, Gaythorpe KAM, Murray KA. Cholera

past and future in Nigeria: are the Global Task Force on Cholera Control’s 2030 targets

achievable? medRxiv 2022;https://doi.org/10.1101/2022.12.06.22283154 [pre-print].
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1.7 Data & Code Availability

Information on both the public and private datasets used here are detailed throughout the

thesis, including how they were obtained, curated and how to access them (or request access if

not publicly available).

All code used here for the analyses and data visualisation are available in a Github repository:

https://github.com/GinaCharnley/Thesis. Details of the license are available in the repository

(MIT License). All figures were created in R package “ggplot” [120], unless stated otherwise in

the figure caption.

The shapefiles used to create any data visualisations involving maps were all taken from freely

available data sources and the sources and licensing agreements are detailed below. All licensing

was under Creative Commons, allowing them to be shared and adapted.
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épidémiologique hebdomadaire 75.27 (2000), pp. 217–223.

59



[109] T. Alcayna et al. “Climate-sensitive disease outbreaks in the aftermath of extreme cli-

matic events: A scoping review”. In: One Earth 5 (2022), pp. 336–350.

[110] T. Asmall et al. “The adverse health e↵ects associated with drought in Africa”. In: Sci.

Total Environ. 793 (2021), p. 148500.

[111] A. Wilder-Smith. “Tsunami in South Asia: what is the risk of post-disaster infectious

disease outbreaks?” en. In: Ann. Acad. Med. Singap. 34 (2005), p. 625.

[112] M.C. Ngwa. “The multi-sectorial emergency response to a cholera outbreak in internally

displaced persons camps in Borno state”. en. In: Health 5 (2020), p. 002000.

[113] B. Basnyat et al. “Nepali earthquakes and the risk of an epidemic of hepatitis E”. In:

Lancet 385.9987 (2015), pp. 2572–2573.

[114] R. Staupe-Delgado. “Analysing changes in disaster terminology over the last decade”.

In: Int. J. Disaster Risk Red. 40 (2019), p. 101161.

[115] L. Mayner and P. Arbon. “Defining disaster: The need for harmonisation of terminol-

ogy”. In: Australas. J. Disaster Trauma Stud. 19 (2015).

[116] M. Carrel et al. “Spatio-temporal clustering of cholera: The impact of flood control in

Matlab, Bangladesh, 1983–2003”. In: Health Place 15.3 (2009), pp. 771–782.

[117] R. Badkundri et al. “Forecasting the 2017-2018 Yemen cholera outbreak with machine

learning”. In: arXiv preprint: 1902.06739 (2019).

[118] A.F. Abdussalam. “Modelling the Climatic Drivers of Cholera Dynamics in Northern

Nigeria Using Generalised Additive Models”. en. In: Int. J. Geog. Environ. Manag. 2.1

(2016), pp. 84–97.

[119] A. Rieckmann et al. “Exploring droughts and floods and their association with cholera

outbreaks in sub-Saharan Africa: a register-based ecological study from 1990 to 2010”.

en. In: Am. J. Trop. Med. Hyg. 98.5 (2018), pp. 1269–1274.

[120] Hadley W. ggplot2: Elegant Graphics for Data Analysis. en. 2016. url: https://ggplot2.

tidyverse.org.

60



Chapter 2

A Systematic Review of Traits and

Risk Factors of Post-disaster Infectious

Disease Outbreaks

Dissemination

An extended version of the methods for this chapter is published at:

Charnley GEC, Kelman I, Gaythorpe KAM, Murray KA. Understanding the risks for post-

disaster infectious disease outbreaks: a systematic review protocol. BMJ Open 2020;10:e039608.

A modified version of the full chapter is published at:

Charnley GEC, Kelman I, Gaythorpe KAM, Murray KA. Traits and risk factors of post-disaster
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Abstract

Infectious disease outbreaks are increasingly recognised as events that exacerbate impacts or

prolong recovery following disasters. Yet, our understanding of the frequency, geography, char-

acteristics and risk factors of post-disaster disease outbreaks globally is lacking. This limits the

extent to which disease outbreak risks can be prepared for, monitored and responded to follow-

ing disasters. Here, a global systematic review of post-disaster outbreaks was conducted and

found that outbreaks linked to conflicts and hydrological events were most frequently reported,

and most often caused by bacterial and water-borne agents. Lack of adequate WASH facilities

and poor housing were commonly reported risk factors. Additionally, displacement through

infrastructure damage, can lead to risk cascades for disease outbreaks; however, displacement

can also be an opportunity to remove people from danger and ultimately protect health. The

results shed new light on post-disaster disease outbreaks and their risks. Understanding these

risk factors and cascades, could help improve future region-specific disaster risk reduction.

2.1 Introduction

Despite reports of disaster-related disease outbreaks, few studies have systematically reviewed

or quantified such events or their associated risk factors on a global scale. The knowledge these

reviews could provide would be helpful in resource allocation in disaster risk reduction activities

and to guide new areas of research. Previous research on post-disaster disease outbreaks has

for the most part resulted in the collation of individual examples over specific time scales [1],

geographic areas [2] or focused on a certain disaster [3], resulting in limited generalisable results.

In Chapter 2, this research gap is addressed by creating the first unified and comprehensive

review and the results used to identify potential hypotheses for future quantitative analysis.

Disaster-related outbreaks are a product of risk factors created or exacerbated by the disaster,

particularly if these risk factors are not prepared for or managed e↵ectively. Here, a risk factor is

defined as a clear mechanism that contributed to the disease outbreak and previously reported

risks were discussed in Chapter 1 (1.1.4 Historically Identified Risk Factors), e.g., WASH [4],
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disease vector changes [5], housing and shelter [6] and healthcare [7]. These risk factors are

often linked and made worse by population displacement, especially when adequate facilities

are not provided [8, 9]. Displacement can also increase the number of risk factors involved and

the likelihood of risk factor cascades, making the cause of the outbreak di�cult to ascertain

and therefore control [10].

The aim of Chapter 2 is to gain a global overview of post-disaster disease outbreaks and their

reported risk factors with no temporal or geographic limitations. The approach will enable

the identification of links, if any, between certain hazards, vulnerabilities, disasters, geographic

regions and aetiological agents. The specific objectives of the review are to:

1. Provide a global overview of infectious disease outbreaks that occurred in a post-disaster

(disasters involving either natural hazard or armed conflict) setting, to show disaster

types, geographic areas a↵ected and outbreak aetiologies.

2. Examine the risk factors that lead to these outbreaks and how they may link to form

cascades.

3. Use these links to identify areas of future research.

2.2 Methods

Systematic reviews sit at the top of the evidence hierarchy for medical research, considered

both highly filtered and having low levels of bias [11]. Systematic reviews must first formulate

questions, then appraise relevant studies on their quality and finally summarise the evidence

found [12]. The review here most closely aligns to an aetiology or risk systematic review, which

are used to determine to what degree a relationship exists between an exposure and a health

outcome. In order to achieve this, the review aimed to outline the exposure, disease and health

outcome of interest, the population and its location, and the study period where relevant [13].

The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis

(PRISMA) 2015 checklist [14] (Supplementary Table 2.1) and were guided by the methodolog-
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ical approach delineated by Khan et al. [15]. The framework was set out to follow five stages:

(1) framing the questions, (2) identifying relevant work, (3) assessing study quality, (4) sum-

marising the evidence and (5) interpreting the findings. The full methodological protocol used

in this review underwent peer review prior to commencement of this work [16], with the key

components summarised here.

2.2.1 Stage 1: Framing the Research Questions

After preliminary research on natural hazards and armed conflicts and their risk factors for

communicable disease outbreaks, it became apparent that quantification of these contextual

outbreaks and their risks was insu�cient to gain a clear global understanding of the issue. Due

to this deficiency, the review questions were defined as follows:

1. Which pathogens, disasters, global changes and geographic areas are commonly implicated

in outbreaks in a post-disaster setting?

2. Which risk factors are important in causing post-disaster disease outbreaks and how are

they potentially linked to form cascades?

2.2.2 Stage 2: Identifying Relevant Work

The following electronic databases were searched; MEDLINE, Embase and Global Health, but

grey literature was not included. Reference lists of selected papers and reviews were screened

for relevant research (snowballing) and subjected to the same screening process. Both key and

medical subject heading (MeSH) terms varied depending on the database and were related to;

(1) natural hazards, (2) armed conflict and (3) infectious disease outbreaks (Supplementary

Table 2.2). No standard definitions for natural hazards, armed conflicts and disease outbreaks

were set, as this may have excluded important studies, along with any specific risk factors. No

temporal or geographic limits were set and no specific risk factors searched to avoid bias in the

search results. Electronic database searching ceased in June 2020, so any relevant literature
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retrieved after this date were excluded. The results and references were imported and managed

in a Microsoft Excel spreadsheet [16].

Along with broad terms for outbreaks, specific diseases as identified by WHO [17] as common

infectious disease outbreaks following disasters were also searched (diarrhoeal disease, hepatitis

A & E, leptospirosis, measles, meningitis, acute respiratory infection, malaria, dengue, tetanus

and coccidiomycosis), along with commonly reported diseases identified from preliminary scop-

ing searches (e.g., viral heamorrhagic fevers, polio, leishmaniasis and causal agents of diarrhoeal

disease including cholera, typhoid and dysentery). Despite evidence for contextual increases

[18, 19], HIV, hepatitis B, hepatitis C and tuberculosis were not searched/included, as they

were considered as not capable of causing acute outbreaks but instead more chronic disease and

have a wide range of social implications beyond the scope of this review. Soft tissue injuries,

wound infections, inhaled fungal spores and aspiration pneumonia (tsunami lung) were also

not included. Such infections would only impact those that had open wounds and/or exposure

to the pathogen in the environment, and as such the patient could not transmit the pathogen

through environmental contamination or direct contact making it an unlikely pathway to a

widespread outbreak.

2.2.3 Stage 3: Assessing Study Quality

After the removal of duplicates, search results were screened to assess the study quality and

decide on selection against an eligibility criterion (Table 2.1), developed through the PICOS

method [20]. After consideration of published tools, the National Institute of Health (NIH)

quality assessment tool (Supplementary Table 2.3) was used for study appraisal and thresholds

set for exclusion [21]. The NIH tool was chosen as it best captures the types of studies reviewed

here, while accounting for bias and several methodological flaws. Studies score either ‘good’,

‘fair’ or ‘poor’, depending on the how many questions are answered ‘yes’. All studies rated

‘poor’ were removed and any study which rated ‘fair’ was assessed to decide if the questions

answered ‘no’ would lead to major biases in answering the research questions. The papers

were screened by one reviewer (G. Charnley) and ineligible papers eliminated. All titles and
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abstracts that met the criteria were subjected to full-text reading.

Table 2.1: Eligibility criteria for the included literature in the systematic review. Developed
by the PICOS method: Population, Intervention, Comparison, Outcome and Study type

Inclusion Criteria

Population Any local population/community impacted by a post-disaster disease outbreak

Intervention
Any investigation carried out to quantify a disease outbreak and understand

the risk factors

Comparator
Members of the disaster-a↵ected population who did not acquire an

infection during the outbreak

Outcomes

The primary outcome is to understand post-disaster disease outbreaks on a global

scale. The secondary outcome consists of identifying the risk factors that

result in these outbreaks

Study type
Retrospective observational studies, namely, cross-sectional, case-control

and cohort studies. Full-text or abstracts in English

Exclusion Criteria

Papers without an explicit link between a disaster and an outbreak

Outbreaks in refugees/refugee camps, foreign armed forces, aid workers and international

travellers, as this review aimed to look at local outbreaks in regional populations

Non-English abstract and full-texts, due to linguistic constraints

Review papers, as only primary sources were desired for this review

Single case reports, as these were often not seen as representative of an outbreak in this context

Publications discussing general risk factors, public health, mental health and non-communicable

diseases, pathogen genetics or economic costs in a post-disaster setting were excluded, as they

are beyond the scope of this review and its objectives. Disease outbreaks in international

refugee camps were also removed, due to most refugees being housed in the camps from multiple

countries, involving multiple disasters. Therefore, linking these outbreaks to a specific disaster

was challenging and the only outbreaks in a camp setting included were national relief camps

[16].

66



2.2.4 Stage 4: Summarising the Evidence

A predetermined data charting form was used based on preliminary reading and the objectives

of the review. Extracted data included information on the publication (title, authors, date,

journal), disaster type, disease, case numbers, study area, study period, identified risk factors,

methodological details (study design, sample sizes, laboratory tests, statistical analysis) along

with any other relevant information/data. Risk factors were recorded regardless of whether

the author ran statistically analyses. To ensure all relevant data were collected, the form was

reviewed by other members of the research team before implementation and the data were

extracted independently by the sole reviewer (G. Charnley) [16].

To ensure that distinctions could be made between risk factors and there was no overlap in

grouping, risk factor recording was a dynamic process. The exact wording of the reported risk

factor was first entered into the data charting form and then reviewed and streamlined into

categories after all the studies had been read, re-evaluating studies as needed. As this process

is open for interpretation, Supplementary Table 2.4 shows all the individual risk factors and

how they were clustered to improve transparency.

2.2.5 Stage 5: Interpreting the Findings

Descriptive Analysis

Categorisation was used only for ease in interpreting and presenting the results and were altered

retrospectively as needed (e.g., categories removed if no outbreak was found). To improve trans-

parency, how each outbreak was categorised is presented in tables throughout Chapter 2 and the

Supplementary Material. Regions were categories based upon how the results were clustered

(Africa, South & South East Asia, East Asia, Europe, Latin America and the Caribbean (LAC),

North America, the Middle East, Oceania and Europe). It is acknowledged that the chosen

regions were somewhat non-comparable due to di↵erences in population sizes, environments

and proximity to causative factors for hazards (e.g., fault lines for geophysical hazards).
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Slow-onset and sudden-onset disasters were considered in this review and were categorised

into the five groups outlined below. The classification followed those provided by EM-DAT,

the Emergency events Database curated by the Centre for Research on the Epidemiology of

Disasters [22]. Any flooding caused by a tsunami or storm was listed under the hazard causing

the flooding, not hydrological, as this was considered the primary cause of the outbreak, while

being aware that the vulnerabilities are still the cause of the disaster:

• Conflict - any form of reported armed conflict or violence

• Hydrological - flooding caused by high precipitation (not by hurricanes, cyclones, ty-

phoons, tropical storms or tsunamis)

• Geophysical - earthquakes, volcanic eruption and tsunamis

• Meteorological - hurricanes, cyclones, typhoons and tropical storms

• Climatological - droughts

Diseases were also categorised into disease type (bacterial, viral, parasitic and mixed pathogen)

and transmission type (water-borne, vector-borne, air-borne, direct contact and rodent-borne).

Risk factors were identified by any study that specifically named them as risks or was suggested

to have been involved in facilitating the outbreak (either statistically or not). Risk factors were

divided manually into mutually exclusive clusters identified by similarities in how they resulted

in an outbreak and preliminary reading. This formed fourteen clusters, which are delineated

below, along with how they were defined:

• Displacement - A report of national population movement due to the disaster

• WASH - Any issues with access to or quality of water, sanitation and hygiene provisions,

separate from disruptions to specific municipal services

• Housing - Reports of inadequate living conditions or the location of either, habitual

residence or temporary housing provided after displacement
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• Vector/animal - Changes in animals and vectors that increased contact with the popula-

tion and subsequent disease spread

• Age - Reported age-related risk factors, either a demographic group e.g., children, or a

specific age category e.g., <5 years

• Healthcare - Any issue that prevented people seeking formal healthcare

• Gender - Males or females being more at risk

• Behaviour - Any report of human behaviour which heightened the risk of contact with

the pathogen, except human displacement

• Environment - Alterations in the natural environment that exacerbated the risk of con-

tracting the disease

• Municipal services - Disruption to municipal services e.g., street cleaning, removal of

waste

• Nutrition - Issues with insu�cient diet or eating specific foods

• Occupation - An occupation which was associated with increased pathogen exposure and

therefore disease

• Socio-economic - Further socio-economic conditions that increased cases but did not fit

into any other cluster. These mainly included education and poverty

• Co-morbidities - Significant numbers of infected individuals also presented with another

morbidity

Following the data extraction and to help illustrate how the information collected answered the

aims and objectives, the results were presented both; (1) numerically, with outbreaks broken

down and quantified by disaster, geographic region and pathogen, along with the importance

of risk factors and (2) narratively, by synthesising the methods used, the importance of global

change and the links between risk factors and possible cascades.
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Statistical Analysis

A range of statistical analyses were used including Pearson’s chi-squared (X2), at a significance

level of p <0.05 (equation below). The test identifies if the di↵erences in categories e.g., regions,

disasters, diseases and risk factors, were significant or due to chance. The X
2 value is the sum

of the square of the residuals, where Oi is the observed values and Ei is the expected, if there

was no significant di↵erence between groups:

X
2 =

X (Oi � Ei)2

Ei

.

The Pearson’s chi-squared residuals indicate how far the observed value was from the expected

value. The standardised residuals (to 3 decimal places) were plotted in a correlation matrix,

with a residual closer to zero indicating less of an association between the corresponding row

and column (and similar observed and expected values). A stronger positive association signifies

the observed was higher than expected and a negative association indicates it was lower than

expected (if there was no significant di↵erence between groups). To extract the standardised

residuals, the following equation is used:

Standardised residuals =
(Oi � Ei)p

Ei

.

Confidence intervals for multinomial proportions are a measure of uncertainty and work by

taking a proportion of the sample and adjusting for sampling error, in this instance at a 95%

level of confidence. Confidence intervals were used here to help illustrate the potential impact

and limitation of sample size in some categories. Sample size was likely to vary widely here

and a smaller sample size reduces the certainty that the sample reflects the population.

A hierarchical cluster analysis was utilised to show the similarity between risk factor cluster

reporting. The aim of this analysis was to lend evidence to the hypothesis that some risk

factors may be linked. A distance matrix was first computed using complete linkage clustering

algorithm. Next, hierarchical clustering was used to analyse the set of dissimilarities, at each
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stage joining the two most similar clusters by computing the maximum distance, continuing

until there was a single cluster and plotting the results on a dendrogram [16]. All statistical

analysis was completed in R using R version 3.6.273 (packages: “corrplot” [23], “DescTools”

[24], functions: “corr()”, “corrplot()”, “MultinomCI()”, “dist()” and “hclust()”).

2.3 Results

2.3.1 Search Results

After screening the search results, 132 studies were selected for inclusion in the analysis (Sup-

plementary Information 2.1) and a PRISMA flow diagram illustrates the selection process below

(Figure 2.1). Electronic database searching ceased in June 2020 but no studies after 2019 met

the inclusion criteria; the studies therefore spanned from 1940 to 2019 and included ten dif-

ferent types of disaster and 39 di↵erent diseases across six continents. The types of studies

included were retrospective and mainly involved observational studies, namely cross-sectional,

case-control, case-crossover, cohort studies and epidemiological and environmental field inves-

tigations.

Several studies were either multi-disaster or multi-disease events. These were split to allow full

quantification of diseases and disasters and resulted in 140 separate disease outbreaks and 137

separate disasters. Eight studies had only an abstract in English available, therefore the full

text was not reviewed. Given the caution that the searches were conducted in English only,

expansion to other languages at this stage would have yielded inconsistent results. A further 25

studies were excluded because they focused on internationally displaced populations in refugee

camps. Four studies with methods involving serological surveys for disease prevalence were

removed, as confirmed cases of a current infection/outbreak related to a disaster could not be

identified by serology. Relatively few studies were excluded due to being categorised as ‘poor’

by the NIH tool, and mainly included those published before 1950.
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Figure 2.1: PRISMA diagram for the selected 132 studies on post-disaster disease outbreaks.

2.3.2 Disaster, Region & Disease

Conflicts, hydrological and geophysical events were the most commonly reported disasters as-

sociated with disease outbreaks, with fewer outbreaks associated with climatological and mete-

orological events. A full list of reported disaster frequencies is shown below in Table 2.2. It is

worth noting that although conflicts appear frequent (n = 45), they were not sub-categorised

(mainly due to the large proportion of civil wars) and are less frequently reported than all

natural hazards grouped together (n = 92).
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Table 2.2: Full list of reported disasters included in the review and their frequencies.

Disaster Type Disaster Frequency
Hydrological Flood 43
Geophysical Tsunami 9

Earthquake 17
Volcanic eruption 2

Meteorological Cyclone 4
Typhoon 4
Tropical Storm 1
Hurricane 6

Climatological Drought 6
Conflict Armed conflict 45

Africa, S & SE Asia and the Middle East were strongly over-represented compared to Oceania,

the Americas and Europe in post-disaster disease outbreaks (Figure 2.2 and 2.3a). Within the

regions, India (n = 12), the USA (n = 10) and China (n = 9) were predominant. A full list of

reported region frequencies is shown in Supplementary Table 2.5.

The over-represented regions are mainly accounted for by the large number of conflict-related

disease outbreaks in Africa and the Middle East (Figure 2.3a & 4a), especially in Sudan and

South Sudan (9/45). In contrast, there were relatively few reports of African geophysical

events and S & SE Asian conflicts. Africa also experienced a high proportion of climatological-

related events, reporting 5 out of 6 drought-related outbreaks (Figure 2.4a). S & SE Asia

mainly reported hydrological and geophysical-related outbreaks (Figure 2.3a), commonly in

India (12/71), along with Bangladesh and Sri Lanka (7/71).

73



AFG

AGO
AUS

BDI

BGD

BIH

CAF

CHL

CHN

COD
COL

CRI

CZEDEU

ECU

ETH

FJI

GBR

GUY

HND

HRV

HTI

IDN

IND

IRNIRQ

ITA JPN

KEN

LBN

LBR

LBY

LKA

MEX

MLI

MOZ

MRT

MYS
NIC

NLD

NPL

NZL

OMN

PAK

PHL

PNG

PSE

SDN

SLB

SLE
SOM

SYR

THA

TUR

TWN

UGA

USA

YEM

0 3 6 9 12
Disaster Frequency

Figure 2.2: Frequency of reported post-disaster disease outbreaks by country for the 137
separate disaster events found in the literature search. Labels are ISO3 country code and only
countries which reported outbreaks are labelled.

With respect to causal agent and transmission mode of disaster-related disease outbreaks,

bacterial and water-borne diseases were predominant groups (Figure 2.3b and c), compared to

mixed pathogen, direct contact and rodent-borne pathogens. A full list of reported aetiologies

and transmission modes are shown in Supplementary Table 2.6.

Reported outbreaks were often disaster specific, and therefore diseases associated with hydro-

logical events and conflicts were frequently reported. There were strong positive correlations

between bacterial or water-borne diseases and hydrological events and viral or parasitic disease

and conflicts (Figure 2.4b and c). This was mainly due to the number of post-flood leptospirosis

(n = 18), cholera and dysentery outbreaks (n = 8). In addition, geophysical events and air-

borne pathogens showed positive associations, whereas strong negative correlations were seen

between conflicts and bacterial pathogens and vector-borne disease and hydrological events

(Figure 2.4b and c). Additional Pearson’s chi squared analysis for pair-wise comparisons is

shown in Supplementary Table 2.7.
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Figure 2.3: Proportion of reported post-disaster outbreaks by a, region against the 137
separate disasters, b, the 140 separate disease outbreaks by pathogen type against disaster
and c, the 140 separate disease outbreaks by transmission against disaster with multinomial
confidence intervals (95%). LAC – Latin America and the Caribbean.
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Figure 2.4: Correlation matrix for the Pearson’s standardised chi-squared residuals of the
categories in a, region against disaster (chi² = 101.81, p-value = <0.05), b, disease against
disaster (chi² = 31.49, p-value = <0.05) and c, disease transmission against disaster (chi² =
47.31, p-value = <0.05). Positive residuals are in blue and signify a positive association and
higher observed value than expected between the corresponding row and column. Negative
residuals are in red and signify a negative association and lower observed value than expected.
Created using R package “corrplot” [23].

2.3.3 Risk Factors

Across the 132 post-disaster disease outbreaks, 418 risk factors were reported in the studies

reviewed. Individual risk factors had varying frequencies within the fourteen main clusters

(Figure 2.5) and how they were grouped are shown in Supplementary Table 2.4. Pearson’s chi-

squared analysis found that risk factors were significantly di↵erent (at p <0.05) among post-

disaster disease outbreaks. Additional figures for the fourteen main risk factor clusters against
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disease are shown in Supplementary Figure 2.1 and additional statistics in Supplementary Table

2.7.
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Figure 2.5: Proportions of the fourteen main risk factor clusters out of the 418 risk factors
reported in the search results, against disaster, with multinomial confidence intervals (95%).
WASH - Water, sanitation & hygiene.

The most frequently reported risk factor was displacement, being reported 81 times, especially

in relation to conflict (chi² = 4.29, p <0.05) and geophysical events (chi² = 1.51, p = 0.22). It

was most frequently reported as a general risk factor, with no details given or to national relief

camps and temporary housing. In two studies, displacement was expanded upon with details

77



on the initial and final destination e.g., rural to urban.

WASH was the second most commonly reported cluster (n = 59), due to poor sanitation, access

to clean drinking water and poor hygiene (Figure 2.6a). WASH risk factors were high in all

disaster types, other than climatological, potentially due to its small sample size (n = 6). The

highest frequencies of WASH risk factors were seen in hydrological events (chi² = 0.3, p =

0.58) and conflicts (chi² = 2.16, p = 0.14), although chi-squared analysis showed they were

not significant. Instead, WASH risk factors were particularly prominent among water-borne

disease outbreaks (chi² = 13.64, p <0.05), such as leptospirosis, cholera and dysentery, and

mainly attributed to the increase in standing floodwater and damage/overflow of sanitation

systems.

Poor housing was the third most commonly reported cluster (n = 48), often associated with

geophysical events (chi² = 10.66, p <0.05), such as earthquakes and tsunamis. The resultant

extensive infrastructure damage following these events lead to displacement in conjunction with

housing risk factors, presenting through the high incidence of overcrowding (19/48), poor or

temporary shelter and camp settings (13/48) (Figure 2.6b).

Changes in vector (mosquito) or animal (domestic, livestock, wildlife) exposure were frequently

linked with hydrological (chi² = 5.17, p <0.05) and conflict (chi² = 2.34, p 0.13) events, through

alterations in vector breeding ground (14/39) and vector control (4/39) (Figure 2.6c), leading

to parasitic diseases (chi² = 8.46, p <0.05), such as malaria.

Of the 40 reported age-related risk factors, a quarter were in children under five years, with

people under 20 years increasing that proportion to 75% (Figure 2.6d). This was region and

disease-specific, with several water-borne (chi² = 2.13, p = 0.14) diarrhoea outbreaks in conflict

events (chi² = 0.16, p = 0.68) reporting children under 5 years as a risk factor.

Poor healthcare services resulting in disease outbreaks (n = 35) were particularly common in

conflicts (chi² = 30.6, p <0.05) compared to natural hazards. Poor access and vaccination

coverage were the most common risk factors in this cluster (Figure 2.6e), therefore high levels

of vaccine-preventable viral diseases were reported (chi² = 14.4, p <0.05).
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Gender was reported 25 times, 20 of these stated that being male was a risk factor (vs 5 reports

of being female as a risk factor). A common narrative was that men assisted in post-hydrological

event clean-up activities (chi² = 8.5, p <0.05), increasing their exposure to floodwater, the most

common risk factor reported in the environment cluster (13/19). The exposure to floodwater

resulted in an enhanced likelihood of contracting water-borne diseases (chi² = 2.08, p = 0.15),

especially leptospirosis (7/18).
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Figure 2.6: The five most commonly reported risk factor clusters (Water, sanitation and
hygiene (WASH), Housing, Vectors/Animals, Age and Healthcare), split into the proportion
of individual reported risk factors, with multinomial confidence intervals (95%). Although
displacement was the most frequently reported risk factor, it was not included as it had few
elements within the cluster.
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2.3.4 Multi-Risk Factor Reporting and Clustering

Most of the reviewed disease outbreaks were associated with multiple risk factor clusters; almost

half of the included studies cited two (29/132) or three (32/132) risk factors (Figure 2.7a). This

is also underestimated, as multiple risk factors were often reported within each cluster, for each

outbreak (Supplementary Table 2.4). Of the comparatively few studies that reported zero (n =

8) or one (n = 22) risk factors, several (3/7 and 4/20, respectively) were in studies where only

an abstract was available and therefore risk factors may have been discussed in the full text. In

the studies that reported at least 1 risk factor cluster (n = 124), conflicts were most common

(n = 46) and India and China were the most common countries reporting multiple risk factors

with 8 and 7 multi-risk factor outbreaks, respectively. Unspecified or multi-pathogen diarrhoeal

disease and cholera were the most frequent multi-risk factor diseases, but the commonality of

these groups (conflicts and water-borne diseases) may represent the comparatively large number

of reported outbreaks.

The hierarchical clustering analysis (Figure 2.7b and Supplementary Figure 2.2) helps to il-

lustrate and understand the relationships between risk factors and how they were reported

together. It is clear that displacement, WASH and housing were the most related risk fac-

tors here. Thirteen studies reported WASH and housing risk factor clusters together, mainly

through overcrowding (n = 10), hygiene (n = 7) and sanitation (n = 6). WASH risk factors

were also commonly reported with displacement, being reported together 12/13 times. Health-

care and age were reported together eleven times, eight of which were in children <15 years

old (and commonly male) and mainly reported issues with vaccination coverage or poor access.

Of the twelve occurrences that age and gender were reported together, seven were in males

<20 years old. The similarity of gender, the environment and behaviour were predominantly

through male exposure to floodwater and assisting in post-disaster clean-up, as previously dis-

cussed, with gender and hydrological events also showing statistical significance, as shown on

the previous page.
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Figure 2.7: Multi-risk reporting and hierarchical clustering. a, Proportions of studies (n =
132) which reported either 0 to 7 di↵erent risk factors, within the fourteen main clusters. b,
cluster dendrogram from hierarchical cluster analysis for the fourteen main risk factor clusters.
Individual segments (leaves) on the lower part of the tree are more related to each other, as
indicated by distances between the branches. The scale bar showing the dissimilarity distance
between the proportions of each risk cluster. 8b was created using base R function “hclust()”.

2.4 Discussion

The results shed new light on post-disaster disease outbreaks globally, including their frequency,

geography and characteristics. The most striking results identified here include the large num-

bers of bacterial and water-borne disease due to hydrological events in South Asia and viral

diseases in African conflicts. Diseases and their associated risk factors were often disaster-

specific, as certain disasters created ideal conditions for specific pathogens. The hierarchical

clustering showed further evidence for the multifaceted nature of these outbreaks and the idea

of risk factor cascades contributing to these outbreaks.

Displacement was involved with many other risk factors, resulting in poor health outcomes

and also involved in spreading diseases to new areas, as seen with Lassa fever in Sierra Leone

[25]. Loss of infrastructure and the resultant displacement appears to be important in both
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armed conflicts and natural hazards, leading to damage to habitual residence, healthcare and

services. Examples include destruction of healthcare and housing after an earthquake in Japan,

leading to a pneumonia outbreak [26] and di�culties in accessing health care in Yemen during

the ongoing civil war and cholera outbreak [27]. Despite these conditions being potentially

important in both natural hazards and armed conflicts, how they yield negative health impacts

may be di↵erent and only conflict and displacement proved to be statistically significant from

the chi-squared analysis.

2.4.1 Risk Factor Cascades

Natural Hazards

Natural hazards may result in risk factor cascades driven by displacement (Figure 2.8a), due

to infrastructure damage. Damage can occur through flooding involving meteorological or hy-

drological events. Alternatively, it occurs through direct damage in geophysical events, with

geophysical events and displacement showing a statistically significant relationship. Infras-

tructure damage and floodwater generally led to an increase in poor living conditions and an

inability to maintain hygiene standards and access clean water, explained through the clus-

tering of displacement, WASH and housing in the hierarchical clustering. Evidence for this

is presented in over half of the reported WASH risk factors, occurring in post-hydrological or

post-meteorological events and the statistically significant relationship between poor WASH

conditions and water-borne diseases.

Flooding leads to increased exposure to groundwater and overflowing sewage systems. These

conditions can expand vector breeding grounds, increasing the contact between populations

and vectors and the resultant increase in disease cases [28, 29]. In contrast to this, Figure 2.4c

showed a strong negative association between hydrological events and vector-borne disease.

Vector breeding can be more complex than space to breed (e.g., standing water), and other

factors (e.g., temperature, salinity) may prevent vectors breeding in floodwater. Floodwater

has also been known to destroy breeding grounds, instead of creating new ones [30].

82



Conflicts

In armed conflict events, cascades may result from loss of healthcare infrastructure, limiting

access to and the quality of health services (Figure 2.8b), especially for children. Statisti-

cal analysis adds further evidence to this statement, finding a significant relationship between

healthcare risk factors and conflict and similarity between healthcare and age in the cluster

analysis. Vaccination coverage was a commonly reported risk factor in these events, potentially

accounting for the significant relationship between healthcare risk factors and viral disease.

Fourteen out of twenty conflict-related viral outbreaks were vaccine-preventable diseases, in-

cluding hepatitis A, polio and measles. Mass vaccination campaigns are commonly run through

humanitarian aid organisations and as conflicts escalate, these services are often suspended due

to safety concerns [7]. Another study suggested that despite high measles vaccination coverage

in the Central African Republic, an outbreak still occurred due to reporting issues and poor

cold-chain maintenance [31].

An additional factor seen in conflicts includes healthcare forming the political fabric of the

violence, resulting in attacks on health centres and workers. This further reduces uptake of

services as people do not perceive seeking care as safe [32] and mistrust can escalate towards

both the government and healthcare providers [33]. For example, conflict in the Democratic

Republic of Congo has reportedly hampered Ebola response teams in the outbreak with begun

in 2018, causing delays in vaccination and reducing vaccine e↵ectiveness by as much as 37.7%

(based on the ratio of administered doses to the number of primary and secondary contacts of

each case) [34].
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Figure 2.8: Examples of cascading risk factors for a, natural hazards and b, armed conflicts.
The dashed line between displacement and disease outbreaks in 8b represents the
acknowledgement that displacement does not directly lead to disease outbreaks, but instead
the conditions it creates when poorly managed.
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2.4.2 Displacement

Despite a common negative narrative used for displacement, one study discussed displacement

as a protective factor. Reporting on West Nile virus after Hurricane Katrina, the study states

that displacement allowed people to move away from floodwater and therefore vector breeding

grounds [28]. A lack of displacement may be a sign of inequity and poor socio-economic

conditions, as people do not have the financial means to move and therefore become trapped

within the a↵ected area [35]. Displacement can be an opportunity to move people out of

immediate danger caused by the disaster and provide services quickly and easily to large groups.

Unfortunately, the opportunity to remove this danger is often not capitalised on. For example,

of the 25 times being male was reported as a risk factor, 17 of these were during outbreaks

where displacement was not reported to have occurred. This is not simply a representation

of the commonality of non-displacement, as displacement was reported on more occasions (n

= 73) than not (n = 54). Interestingly, exposure to floodwater was also reported 16 times

in outbreaks without displacement, compared to just once in studies where displacement did

occur. This suggests that without displacement (especially after flooding), risk factor cascades

resulted from men being more likely to assist in post-natural hazard clean up (potentially due

to gender norms, expectations and stereotypes [36]), exposing them to disease.

2.4.3 Water, Sanitation & Hygiene

These results and clustering help highlight the importance of basic sanitation and hygiene, re-

gardless of disasters, as poor WASH is linked to several infectious diseases and often associated

with poverty [37, 38]. For example, in Kenya, only 24.3% of the population have access to

adequate sanitation, a figure which is much worse for rural communities [39]. Unfortunately,

studies rarely mention these non-disaster-related conditions which impact population vulner-

ability. Instead, risk factors are solely reported in causing the outbreak but not why they

occurred or previous conditions, providing a current state and not a comprehensive view of

vulnerability. This is a potentially important area of future research, especially for e↵ective
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disaster planning.

Poor WASH conditions may explain why children were often implicated in these results. In

India, where 28% of the reported outbreaks occurred, around 1.7 million children died before

the age of 5 in 2010 alone, with diarrhoea causing 13% of this mortality [40]. Similar statistics

are present throughout South Asia and Africa [41]. Another possible reason is that commonly

reported diseases, including polio, measles and cholera, heavily impact young children, due

to physiological (rapid onset dehydration and wasting) and social di↵erences (poor hygiene

standards) [42, 43]. The gendered and age-specific risk factors found in this review, stress the

need for sex and age-disaggregated post-disaster data in order to try and fully understand the

impacts on disease outbreaks.

2.4.4 Implications of Global Change

The risks of climate change for health are far-reaching [44, 45] and natural hazards provide

an opportunity to attribute a climate-related event to a health outcome. The review findings

have several implications for region-specific global change. For example, under climate change

scenario RCP4.5 (an intermediate scenario representing moderate emissions reductions), projec-

tions are geographically heterogenous suggesting a drier Africa and the Middle East and wetter

southern Asia [46]. These changes may therefore alter the frequency/intensity of droughts

and floods in the future and therefore, more related disease outbreaks in areas already heavily

impacted by post-disaster disease outbreaks.

Two studies [47, 48] also reported that contact with floodwater in conjunction with higher than

normal temperatures was a risk factor for developing a water-borne disease. Alterations in

temperatures can impact the ways pathogens and vectors behave in the environment, yielding

implications from rising global temperatures [30, 49, 50].

Alterations in temperature and precipitation may also occur in conjunction with population

growth and urban expansion, with East and South East Asia seeing the highest rates of urban-

isation [51]. Many of these areas are low-lying coastal cities, and liable to flooding, sea level
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rise [52] and potential post-disaster disease outbreaks. This combination of both climate and

population changes may therefore put more people (at higher densities) at risk for post-disaster

disease outbreaks.

However, urbanisation provides opportunities to meet the needs of concentrated groups of peo-

ple and can be an e↵ective low-carbon way of managing and providing services and employment.

Successful urban planning through building design, education and provision of healthcare, con-

tributes to e↵ective disaster mitigation strategies and possibly reduces the risk of post-disaster

disease outbreaks [53, 54]. While urban residents often have lower emissions per capita, com-

pared to their rural counterparts, reducing their impacts on climate change [55].

2.4.5 Limitations

Di�culties arise when comparing one disaster to another, as disaster severity, population risks

and socio-economic conditions of a↵ected populations are substantially di↵erent. Thus, this is

not a complete list of global post-disaster disease outbreaks and outbreaks are likely to have

been missed through excluding grey literature and internationally displaced populations. If

populations were displaced internationally by a disaster and an outbreak occurred, it could be

argued that this was caused by the disaster. Despite this, several of the reported camps housed

refugees from multiple countries, linking them to multiple disasters; therefore, this would have

created issues linking the outbreak to a specific disaster.

There is a temporal bias in reporting here, as disaster and disease outbreak reports and the

curation of public datasets have increased exponentially in recent years, due to a greater global

e↵ort [56, 57]. The increase in reporting has also coincided with an increase in published

literature. It is therefore di�cult to understand whether disease outbreaks or disasters are

increasing or if this is a product of reporting. Additionally, studies which were published before

1950 often did not meet the inclusion criteria here, scoring ‘poor’ on the NIH tool, mainly

due to a lack of methodological detail. This removed a number of conflict-related outbreaks

reported during World War II.
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Reporting bias may be a cause of the gender-related risks found here. The high number of males

reporting disease may not be due to more men contributing to disease cases but because they

were more likely to seek formal medical assistance and therefore be reported. More research

is needed to understand gender biases and barriers for women accessing care in post-disaster

settings. For example, women may have less access to health insurance and financing or may

not be allowed to attend hospitals alone due to cultural values or fears around safety [58, 59].

Outbreaks were particularly common in disasters that were highly publicised, contributing

to another potential reporting bias. For example, of the 26 earthquake and tsunami-related

outbreaks, ten were due to just two natural hazards; the 2011 Japan Earthquake and Tsunami

and the 2004 Indian Ocean Tsunami. This may have introduced an over-reporting bias for

certain disaster types and regions, raising questions about whether these disasters saw more

disease outbreaks, or whether they were more often reported. However, they may have been

highly publicised because they were particularly severe in terms of damage and mortality and

therefore resultant disease outbreaks. Comparing the results against a ”baseline” may be a

method to address reporting biases, however disaster databases also su↵er from similar reporting

issues, resulting in no ideal data or figures for comparison [56].

The over-represented regions found in this review are generally stated as having high numbers

of disaster, compared to other regions. Additionally, certain regions may be over-represented

due to the removal of non-English studies, e.g., few outbreaks were found in South America,

potentially because the search strategy excluded studies written in Spanish and Portuguese.

Therefore, the large number of outbreaks may have been a product of the overall higher disaster

frequencies in certain areas. For example, in a 2020 review Africa and the Middle East were

reported as being the most conflict-prone regions [60], while in a 2018 review of natural hazards,

141/315 hazards were reported in Asia [61]. However, the results still increase the understanding

of the risk factors caused by certain disasters. It could be argued that the higher number of

disasters in these regions should lead to less outbreaks, as the region is more aware of the

risks and how to prevent them. Additionally, figures for the number of disasters have several

limitations and are dependent on what was included in the data.
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Defining a disaster and attributing an infectious disease outbreak to the event has its di�cul-

ties, as there is no consensus on when a disaster ends and recovery begins [62]. This creates

limitations in assigning and comparing risk factors and a major limitation of risk factor analysis

is its subjectivity. If the authors of the reviewed studies did not clearly state their risk factors

and mechanisms, this resulted in an element of subjectivity in trying to interpret the results.

Reported risk factors also depend on the data collecting process used during the outbreak and

what was asked of participants. Several of the less frequently reported risk factors may link

to more common factors but were just listed di↵erently by the authors and resulted in high

uncertainty.

The magnitude of a risk factor in one event may di↵er from others, particularly in terms of how

it was perceived by the population and researchers. Confirmed and probable cases ranged from

two to 379,000 across the 132 studies; therefore, how risk factors were measured and analysed

in such a wide range of case numbers is likely to di↵er, especially statistically. Despite the

studies’ limitations, with 132 separate outbreaks and 418 reported risk factors, this review is

significantly larger and broader in scope than other studies exploring similar subjects [1, 2, 3].

2.4.6 Conclusion

Our understanding of how global change will alter risks to populations is still relatively incom-

plete and has become a growing area of study, including population vulnerability to disasters.

Chapter 2 is the first comprehensive global overview of disaster-related disease outbreaks and

highlights commonly reported risk factors related to both conflicts and natural hazards. De-

spite displacement being suggested as an important risk factor, displacement may help mitigate

several other risks and remove people from hazardous situations, ultimately protecting their

health relative to those not displaced. This is an important finding for disaster and public health

literature, as this challenges the narrative of many previous studies. It supports the theory and

practice of disaster risk reduction and response in terms of recognising that displacement is

not inherently detrimental, but the impacts depend somewhat on how the displaced people are

supported.
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India and several African countries had particularly high outbreak reporting rates compared

to other countries. Further evidence is needed to understand why this is the case, or if it is

simply a by-product of their very large geographic areas and population sizes. Certain disease

aetiologies were common in specific disasters, which were often reported in specific regions. This

specificity is essential for international disaster risk reduction, as humanitarian and government

sector can e↵ectively prepare for and help communities withstand the impacts of post-disaster

disease outbreaks through e↵ective region-specific mitigation. By further understanding the

risk factors involved, outbreaks can be reduced, and this chapter identifies better sanitation

and housing as areas for prioritisation.

The results of the review highlight several links between certain disasters, regions and diseases

and the work presented in subsequent chapters aim to investigate some of these links. As

previously discussed the number of reports for certain disasters and diseases may be due to

reporting bias, therefore areas of future research were based around identifying possible links

but where a research gap still remained. One example of a link identified here, in the absence of

high numbers of papers was drought-related outbreaks in which five out of six occurred in Africa.

Droughts are a complex disaster, often being slow-onset and issues arise in assigning a drought

start and end point. The conditions which create a drought are also not consistent and vary

significantly among geographic locations [63, 64, 65]. These complexities may have prevented

previous drought-related work, instead focusing on hazards considered less contentious such as

floods.

Water-borne disease outbreaks were common in a drought setting (3/6), of which cholera was

reported several times. Cholera was also the second most commonly reported disaster-related

disease outbreak (third was diarrhoeal outbreaks with no specific pathogen identified) and was

the most common multi-risk factor reporting disease. Africa is both a drought and cholera

prone region, while being chronically understudied in terms cholera [66]. Limited research has

investigated the links between cholera and drought and many outbreaks may have been missed

or not attributed to dry conditions. The next chapter aims to investigate these links in more

details, being the first quantitative study to evaluate drought and cholera in isolation and the

potential risk factors for these outbreaks.
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Supplementary Figure 2.1: Proportions of reported risk factor clusters against disease
type and transmission.
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Supplementary Figure 2.2: Hierarchical cluster analysis of the top five risk factor clusters,
broken down into individual risks reported within the cluster.
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Supplementary Tables

Supplementary Table 2.1: The Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) 2015 checklist [14].

Section and topic Item No Checklist item

ADMINISTRATIVE INFORMATION

Title:

Identification 1a
Identify the report as a protocol

of a systematic review

Update 1b

If the protocol is for an update

of a previous systematic review,

identify as such

Registration 2

If registered, provide the name

of the registry (such as PROSPERO)

and registration number

Authors:

Contact 3a

Provide name, institutional a�liation,

email address of all protocol authors;

provide physical mailing address

of corresponding author

Contributions 3b

Describe contributions of protocol

authors and identify the guarantor

of the review

Amendments 4

If the protocol represents an

amendment of a previously

completed or published protocol,

identify as such and list changes;

otherwise, state plan for

documenting important protocol

amendments
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Support:

Sources 5a
Indicate sources of financial or

other support for the review

Sponser 5b
Provide name for the review

funder and/or sponsor

Role of sponsor or funder 5c

Describe roles of funder(s),

sponsor(s), and/or institution(s),

if any, in developing the protocol

INTRODUCTION

Rationale 6

Describe the rationale for the

review in the context of what is

already known

Objectives 7

Provide an explicit statement

of the question(s) the review

will address with reference

to participants, interventions,

comparators and outcomes (PICO)

METHODS

Eligibility criteria 8

Specify the study characteristics

(such as PICO, study design,

setting, time frame) and report

characteristics (such as years

considered, language, publication

status) to be used as criteria

for eligibility for the review
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Information sources 9

Describe all intended information

sources (such as electronic databases,

contact with study author, trial

registers or other grey literature sources)

with planned dates of coverage

Search strategy 10

Present draft of search strategy

to be used for at least one electronic

database, including planned limits,

such that it could be repeated

Study records:

Data management 11a

Describe the mechanism(s) that

will be used to mange records

and data throughout the review

Selection process 11b

State the process that will be

used for selecting studies

(such as two independent reviews)

through each phase of the

review (that is, screening, eligibility

and inclusion in meta-analysis)

Data collection process 11c

Describe planned method of

extracting data from reports

(such as piloting forms, done

independently, in duplicate),

any processes for obtaining and

confirming data from investigators
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Data items 12

List and define all variables for

which data will be sought (such

as PICO items, funding sources),

any pre-planned data assumptions

and simplifications

Outcomes and prioritisation 13

List and define all outcomes for

which data will be sought, including

prioritisation of main and additional

outcomes, with rationale

Risk of bias in

individual studies
14

Describe anticipated methods for

assessing risk of bias of individual studies,

including whether this will be done

at the outcome or study level, or both;

state how this information will be

used in data synthesis

Data synthesis

15a
Describe criteria under which study

data will be quantitatively synthesised

15b

If data are appropriate for quantitative

synthesis, describe planned summary

measures, methods of handling

data and methods of combining

data from studies, including any

planned exploration of consistency

15c

Describe any proposed additional

analyses (such as sensitivity

or subgroup analyses, meta-regression)

15d

If quantitative synthesis is not

appropriate, despite the type of

summary planned
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Meta-bias(es) 16

Specify any planned assessment

of meta-bias(es) (such as publication

bias across studies, selective

reporting within studies)

Confidence in

cumulative evidence
17

Describe how the strength of

the body of evidence will be

assessed (such as GRADE)
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Supplementary Table 2.2: Search strategies for MEDLINE, Embase and GlobalHealth.

Category Keywords MeSH MEDLINE MeSH Embase MeSH GlobalHealth

Natural Hazards

natural hazard* OR
natural disaster*
OR extreme
adj2 event*

climatic process exp,
cyclonic storms exp,
droughts exp, floods exp,
tidal waves exp,
geological phenomena exp,
avalanches exp,
earthquakes exp,
landslides exp,
tsunamis exp,
volcanic eruptions exp,
wildfires exp,
natural disasters exp

natural disaster exp,
disaster victim exp,
earthquake exp,
drought exp,
flooding exp,
hurricane exp,
tsunami exp,
landslide exp,
avalanche exp,
wildfire exp,
volcano exp

natural disaster exp,
hurricanes exp,
tornados exp,
typhoons exp,
droughts exp, floods exp,
earthquakes exp,
landslides exp,
avalanches exp,
tsunami exp,
volcanos exp,
wildfire exp

Conflicts
armed conflict* or
civil war*

ethnic violence exp,
exposure to violence exp,
armed conflicts exp,
war exposure exp

war exposure exp, ethnic conflict exp

conflict exp,
war exp,
aggression exp,
fighting exp

Disease

infectious disease
outbreak*
OR communicable
disease outbreak*

disease outbreaks exp,
epidemics exp,
communicable diseases exp,
diarrhoea,
vibrio infections exp,
cholera exp,
salmonella infections exp,
typhoid fever exp,
paratyphoid fever exp,
leptospirosis exp,
Weil disease, measles exp,
measles virus exp,
meningitis, bacterial exp,
meningitis,
escherichia coli exp,
meaningococcal exp,
pneumococcal exp,
respiratory tract infections exp,
malaria exp,
dengue exp, tetanus exp,
clostridium infections exp,
haemorrhagic fevers, viral exp,
poliomyelitis exp,
poliovirus exp,
coccidioidomycosis exp,
dysentery exp,
leishmaniasis, cutaneous exp,
leishmaniasis, visceral exp,
hepatitis exp,
hepatitis a exp,
hepatitis e exp

typhoid fever exp, salmonellosis exp,
acute hepatitis exp, hepatitis a virus exp,
hepatitis e virus exp, hepatitis a exp,
hepatitis e exp, leptospirosis exp,
measles exp, respiratory tract
infection exp, malaria exp,
dengue exp, tetanus exp,
coccidioidomycosis exp, haemorrhagic
fever exp, poliomyelitis exp,
dysentery exp, acute diarrhoea exp,
meningitis exp, skin leishmaniasis exp,
visceral leishmaniasis exp

outbreaks exp, epidemics exp,
infectious diseases exp,
diarrhoea exp,
cholera exp,
vibrio cholerae exp,
salmonella typhi exp,
typhoid exp,
salmonella paratyphi exp,
paratyphoid exp,
hepatitis a exp,
hepatovirus a exp,
hepatitis e exp,
hepatovirus e exp,
leptospirosis exp,
measles exp,
meningitis exp,
bacterial meningitis exp,
viral meningitis exp,
respiratory diseases exp,
malaria exp,
dengue exp, tetanus exp,
coccidioidomycosis exp,
leishmaniasis exp,
cutaneous leishmaniasis exp,
visceral leishmaniasis exp,
haemorrhagic fever exp,
poliomyelitis exp,
dysentery exp
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Supplementary Table 2.3: The National Institute of Health’s Quality Assessment Tool for
the three main study types reviewed in Chapter 2. Studies are rated either ‘good’, ‘fair’ or
‘poor’ depending on how many questions are answered ‘yes’ vs ‘no’.

Observational Cohort and Cross-Sectional Studies

Criteria Yes No

Other

(CD,

NR, NA)*

1. Was the research question or objective in this

paper clearly stated?

2. Was the study population clearly specified and defined?

3. Was the participation rate of eligible persons at least 50%?

4. Were all the subjects selected or recruited from the same

or similar populations (including the same time period)?

Were inclusion and exclusion criteria for being in the

study prespecified and applied uniformly to all participants?

5. Was a sample size justification, power description,

or variance and e↵ect estimates provided?

6. For the analyses in this paper, were the exposure(s)

of interest measured prior to the outcome(s) being measured?

7. Was the timeframe su�cient so that one could

reasonably expect to see an association between

exposure and outcome if it existed?

8. For exposures that can vary in amount or level,

did the study examine di↵erent levels of the exposure

as related to the outcome (e.g., categories of exposure, or

exposure measured as continuous variable)?

9. Were the exposure measures (independent variables)

clearly defined, valid, reliable,

and implemented consistently across all study participants?

10. Was the exposure(s) assessed more than once over time?
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11. Were the outcome measures (dependent variables)

clearly defined, valid, reliable, and implemented consistently

across all study participants?

12. Were the outcome assessors blinded to the exposure

status of participants?

13. Was loss to follow-up after baseline 20% or less?

14. Were key potential confounding variables measured

and adjusted statistically for their impact on the relationship

between exposure(s) and outcome(s)?

Case-Control Studies

1. Was the research question or objective in this paper

clearly stated and appropriate?

2. Was the study population clearly specified and defined?

3. Did the authors include a sample size justification?

4. Were controls selected or recruited from the same or

similar population that gave rise to the cases

(including the same timeframe)?

5. Were the definitions, inclusion and exclusion criteria,

algorithms or processes used to identify or select cases and

controls valid, reliable, and implemented

consistently across all study participants?

6. Were the cases clearly defined and di↵erentiated from controls?

7. If less than 100 percent of eligible cases and/or

controls were selected for the study, were the cases and/or

controls randomly selected from those eligible?

8. Was there use of concurrent controls?

9. Were the investigators able to confirm that the exposure/risk

occurred prior to the development of the condition or event that

defined a participant as a case?
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10. Were the measures of exposure/risk clearly defined, valid,

reliable, and implemented consistently

(including the same time period) across all study participants?

11. Were the assessors of exposure/risk blinded to the case

or control status of participants?

12. Were key potential confounding variables measured

and adjusted statistically in the analyses? If matching was used,

did the investigators account for matching during study analysis?

*CD, cannot determine; NA, not applicable; NR, not reported
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Supplementary Table 2.4: Full list of reported risk factors, their cluster and how the
cluster was defined (in italics).

Risk Cluster Risk Factor No. of outbreaks

Displacement 81

A report of national population

movement due to the disaster
General 79

Rural to urban 1

Coastal to jungle 1

Age 40

Reported age-related risk factors, either

a demographic group e.g., children, or a

specific age category e.g., <5 years.

<2 2

<4 1

<5 10

>5 2

>5 2

3-8 1

<7 1

<10 1

Child 2

<14 1

15-20 1

15-19 1

<15 2

15-34 1

<18 2

<20 2

40-49 1

Adults 3
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>50 2

>65 1

Older 1

Elderly 2

Gender 25

Males or females being more at risk Male 20

Female 5

WASH 59

Any issues with access or quality of water,

sanitation and hygiene provisions,

separate from disruptions to specific

municipal services.

Drainage 1

Sanitation 25

Hygiene 13

Drinking water 17

Toilet/latrine

access
3

Housing 48

Reports of inadequate living conditions

or the location of either habitual

residence or temporary housing

provided after displacement.

Overcrowding 19

Urban 1

Rural 1

Mountainous 1

Flooded household 3

Living a heavily

impacted area
6

Camp-setting 5

109



Poor shelter 6

Sleeping outdoors 2

Collapsed infrastructure 1

No bed net 1

Temporary shelter 2

Ventilation 1

Healthcare 35

Any issue that prevented people

seeking formal health care
Poor access 12

Vaccination coverage 11

Poor facilities 9

Willingness/trust

to seek care
3

Municipal services 14

Disruption to municipal services Garbage 4

Waste 6

Water 4

Environment 19

Alterations in the natural environment

that exacerbated risk of contracting

the disease.

Contact with

floodwater
13

Higher temperatures 2

Alterations in

land moisture
1

Water salinity 1

Geological changes 1

Lower temperatures 1

Vector/Animal 38
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Changes in animals and vectors that

accelerated contact with the population

and subsequent disease spread.

Livestock (cattle,

pigs, camels)
6

Rodents 7

Domestic animals (dogs) 3

Wildlife (monkeys,

bandicoots, beavers)
3

Alterations in vector

breeding ground
14

Vector control 4

Vector biting habits 1

Vector presence 1

Exposure to animals 1

Behaviour 19

Any report of human behaviour which

heightened the risk of contact with the

pathogen, except human displacement.

Recreation 1

Swimming 1

Hiking 1

Camping 1

Assisting in clean up 1

Method of acquiring

water and storing
3

Mixing with people

of di↵erent immunities
2

Sexual contact 1

Not being covered 1

Sharing combs 1

Burial practices 2
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Public distrust 1

Nomadic 1

Occupation 13

An occupation which was associated

with increased pathogen exposure

and therefore disease.

Rice paddy farmer 2

Street vendor 1

Unemployed 1

Homemaker 1

Farmer 3

Military 2

Working outdoors 1

Hunting 1

International workers 1

Nutrition 12

Issues with insu�cient diet or

eating specific foods.

No fruits and

vegetables
1

Eating rodents 1

Eating monkeys 1

Malnourishment 7

Drinking sugar cane juice 1

Eating millet gruel 1

Co-morbidity 6

Significant numbers of infected

individuals also presented with

another morbidity.

Pregnancy 2

Co-morbidities 2

Respiratory tract

infections
1
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Psychological conditions 1

Socio-economic 11

Further socioeconomic conditions

that increased cases but did not fit

into any other cluster. These mainly

included education and inequities.

Poverty 4

Literacy rate 1

Poor socio-economics 2

Education level 2

Attending church school 1

Fathers education 1
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Supplementary Table 2.5: Full list of reported countries.

Region Country Frequency

South & South East Asia India 12

Nepal 1

Bangladesh 4

Pakistan 1

Sri Lanka 3

Sumatra 2

Philippines 3

Malaysia 1

Thailand 2

Indonesia 2

Middle East Syria 3

Iraq 2

Iran 2

West Bank 1

Afghanistan 3

Yemen 4

Oman 1

Lebanon 1

Oceania Australia 1

New Zealand 1

Fiji 1

Papua New Guinea 2

Solomon Islands 1

Africa Libya 1

Kenya 3

Ethiopia 2

Somalia 2
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Sierra Leone 2

Uganda 2

Liberia 1

Mauritania 1

Mali 1

Sudan 5

South Sudan 4

Central African Republic 3

Democratic Republic of Congo 2

Angola 1

Mozambique 2

Burundi 1

East Asia China 9

Japan 4

Taiwan 2

Europe Bosnia & Herzegovina 2

Yugoslavia 2

Czechoslovakia 1

Croatia 1

Turkey 2

Italy 2

Netherlands 1

UK 1

Germany 1

North America USA 10

Latin America Chile 1

Ecuador 1

Columbia 1

Guyana 1
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Mexico 1

Nicaragua 2

Costa Rica 1

Honduras 1

Haiti 2
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Supplementary Table 2.6: Full list of reported disease outbreaks.

Disease Type Transmission Disease No. of outbreaks
Bacterial Water borne Leptospirosis 21

Water borne Cholera 15
Water borne Diarrhoeal disease 7
Water borne Dysentery 6
Water borne Typhoid 3
Vector borne Typhus 2
Air borne Pneumonia 2
Water borne Bacteremia 1
Air borne Diphtheria 1
Air borne Meningitis 1
Air borne Respiratory disease 1
Rodent borne Tularemia 1

Viral Air borne Measles 5
Water borne Hepatitis E 5
Water borne Polio 4
Vector borne Dengue 3
Water borne Diarrhoeal disease 3
Direct contact Ebola 2
Vector borne Rift Valley fever 2
Water borne Hepatitis A 2
Air borne Influenza 2
Vector borne West Nile 2
Water borne Norovirus 2
Vector borne Chikungunya 1
Rodent borne Hantavirus 1
Direct contact Lassa fever 1
Air borne Monkeypox 1
Air borne Respiratory disease 1
Air borne Rubella 1
Vector borne Yellow Fever 1
Vector borne Zika 1

Parasitic Vector borne Malaria 10
Vector borne Cutaneous leishmaniasis 5
Water borne Giardiasis 3
Vector borne Visceral leishmaniasis 3
Water borne Diarrhoeal disease 2
Vector borne Sleeping Sickness 2
Water borne Cryptosporidium 1
Water borne Fascioliasis 1
Direct contact Scabies 1
Water borne Schistosomiasis 1

Mixed pathogen Water borne Diarrhoeal disease 6
Direct contact Dermatological disease 3
Air borne Respiratory disease 1

Total 140
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Supplementary Table 2.7: List of full p values from pair-wise comparisons. * shows
significance at <0.05. Blank cells in the table indicate no outbreaks that fit into both the
categories.

p value
Risk Factor Cluster 7.2x10�36

Conflict/Displacement 0.04
Geophysical/Displacement 0.22
Hydrological/WASH 0.58
Conflict/WASH 0.14
Water-borne/WASH 0.0022
Geophysical/Housing 0.001
Hydrological/Vector 0.023
Conflict/Vector 0.126
Parasitic/Vector 0.004
Water-borne/Age 0.14
Conflict/Age 0.68
Conflict/Healthcare 0.0000003
Viral/Healthcare 0.0014
Hydrological/Gender 0.004
Water-borne/Gender 0.15

Actual p value Africa E Asia Europe LAC Middle East N America Oceania S & SE Asia
Conflict 0.0000197* 0.79565613 0.04237575* 0.00000001* 0.38814874 0.00055075*
Hydrological 0.03742919* 0.08779559 0.71072159 0.49736414 0.00819448* 0.29446618 0.31503477 0.04128529*
Climatological 0.00027878* 0.42591199
Geophysical 0.2537846 0.55776124 0.01565516* 0.07715278 0.33047572 0.42309951 0.04748551*
Meteorological 0.11744737 0.2876211 0.14102256 0.00488033* 0.63602109

Water-borne Vector-borne Air-borne Rodent-borne Direct contact
Conflict 0.00002757* 0.01827592* 0.32309873 0.04164768* 0.16000299
Hydrological 0.00000015* 0.00217725* 0.0211398* 0.31688118
Climatological 0.16244772 0.11471884 0.18858594
Geophysical 0.00972217* 0.21803643 0.01387154* 0.67859545
Meteorological 0.00595018* 0.10543734 0.52184744

Bacterial Viral Parasitic Mixed pathogen
Conflict 0.00029837* 0.00604762* 0.0463105* 0.11010373
Hydrological 0.00362129* 0.00795126* 0.16208116 0.04285716*
Climatological 0.5726781 0.81973714 0.45566813
Geophysical 0.53167598 0.70071662 0.57786094 0.39523447
Meteorological 0.01736218* 0.40642793 0.3410774
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39. Caillouët K.A. et al. Increase in West Nile neuroinvasive disease after hurricane Katrina. Emerg

Infect Dis 2008;14(5):804.

40. Schousboe M. et al. Increased incidence of Escherichia coli bacteremia post-Christchurch earth-

quake 2011: possible associations. Prehosp Disaster Med 2013;28(3):202-209.

41. Jones F.K. et al. Increased rotavirus prevalence in diarrheal outbreak precipitated by localized

flooding, Solomon Islands, 2014. Emerg Infect Dis 2016;22(5):875.

42. Chen W. et al. Influence of flood in 1998 on schistosomiasis epidemic. Chin. J. Schistosomiasis

Control 2000;12(4):202-205. [Abstract only]

43. Kalthan E. et al. Investigation of an outbreak of monkeypox in an area occupied by armed

groups, Central African Republic. Med Mal Infect 2018;48(4):263-268.

44. Enbiale W. and Ayalew A. Investigation of a scabies outbreak in drought-a↵ected areas in

Ethiopia. Trop Med Infect Dis 2018;3(4):114.

45. Sha↵er J.G. et al. Lassa fever in post-conflict Sierra Leone. PLoS Negl Trop Dis 2014;8(3):e2748.
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Abstract

Temperature and precipitation are known to a↵ect Vibrio cholerae outbreaks, but the impact of

drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and

more research is needed in Africa to understand cholera dynamics. Chapter 3 analysed a range of

environmental and socio-economic publicly available national data and fit generalised linear models to

test for associations with drought. Using the best fit model, cholera outbreak projections for Africa

were calculated to 2070 under three scenarios of varying trajectories of CO2 emissions and socio-

economic development. The best fit model found that drought is a significant risk factor for African

cholera outbreaks, alongside positive e↵ects of population, temperature and poverty and a negative

e↵ect of freshwater withdrawal. Despite an e↵ect of drought in explaining recent cholera outbreaks,

future projections highlighted the potential for sustainable development and emissions reductions to

o↵set drought-related impacts on cholera risk in the future.

3.1 Introduction

Cholera was reintroduced into Africa in the 1970s during the seventh and continuing cholera pan-

demic, with many countries showing signs of endemicity. It has since caused significant mortality and

morbidity, especially amongst the most vulnerable [1]. Despite over 94% of WHO reported cholera

cases occurring in Africa and some of the highest mortality rates [2], previous research has heavily fo-

cused on South America, the Indian subcontinent and more recently Haiti. Additionally, other disease

outbreaks have drawn attention away from cholera in recent years, including COVID-19 and Ebola [3,

4].

The relationships between temperature, precipitation and water-borne disease outbreaks, including

cholera, have implications for outbreaks following natural hazards, especially droughts. Several links

between drought and cholera outbreaks have been described [5, 6, 7], particularly those relating to

food (e.g., di�culties accessing certain foodstu↵ and less reheating due to limited cooking fuel) and

water behaviours (e.g., limited water sources leading to multi-use water), which are important for

cholera transmission [5, 8]. Despite this, research has heavily focused on the link between flooding

and cholera, despite droughts potentially posing a considerably greater risk than floods [7].
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The socio-economic links (e.g., poverty, WASH, healthcare) associated with cholera supports the no-

tion that outbreaks result from the breakdown of societal systems responses to a hazard, leading to a

human-environment link and subsequent pathogen shedding [9]. WASH factors are considered partic-

ularly significant, as the importance of cholera environmental reservoirs (e.g., waterbodies) depends

on the sanitary conditions of the community [10]. In Africa, 418 million people lack basic drinking

water, 779 million are without basic sanitation services (including 208 million who still practice open

defecation) and 839 million don’t have basic hygiene services. [11]. This puts millions of people on

the continent at risk of water-borne disease outbreaks including cholera and more vulnerable to the

e↵ects of drought.

Understanding the implications of drought on cholera is especially important considering the suggested

changes in drought frequency and intensity which climate change may cause [12], while considering

how socio-economic factors may play a role in these changes and the populations ability to adapt.

Few studies have investigated the link between drought and cholera outbreaks in isolation in Africa

[5, 7], or projected outbreak changes into the future.

Chapter 3 aims to address the research gap of drought-related health outcomes by investigating the

implications of drought on cholera outbreak occurrence at a continental scale across Africa, after

accounting for important socio-economic factors. These results will provide further understanding of

the hypothesis that droughts lead to cholera outbreaks through increased concentrations of infectious

bacteria, shed by symptomatic and asymptomatic cholera cases into more limited drinking water

sources. Elevated pathogen concentrations (due to less water diluting the bacteria) and risky drinking

water behaviours, leads to higher pathogen exposure and an increased probability of ingesting an

infective dose. Figure 3.1 shows a schematic to help visualise the hypothesised pathway.
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Figure 3.1: Pathways from water shortages to cholera outbreaks: Suggested mechanism
through which drought can lead to cholera outbreaks in Africa [5, 8].

In addition, the work aims to evaluate how future changes in drought area and risk due to climate

change [13, 14], alongside other development factors, may impact future cholera outbreak occurrence.

Several projection scenarios incorporating di↵erent greenhouse gas emissions and socio-economic de-

velopment trajectories will be developed here. Research in this area is particularly important due to

a significant number of people at risk of both cholera and drought and the negative implications that

climate change may have for these communities. The objectives of Chapter 3 are as follows:

1. Identify a potential relationship between cholera and drought at a national level in Africa using

statistical modelling.

2. Consider risk factors and variables which may contribute to this relationship.

3. Using the best fit model, project drought into the future with several degrees of global change.

133



3.2 Methods

3.2.1 Datasets and Study Period

Data were compiled on cholera outbreaks and a range of social and environmental covariates over the

period 1970 to 2019. Annual cholera cases were retrieved from the WHO’s Global Health Observatory

[15], which provides reported annual cholera case for each country, which were confirmed either clini-

cally, epidemiologically, or by laboratory investigation. Cholera case numbers were transformed into

a binary outcome to reflect outbreak occurrence for a specific country and year (i.e., set at 0 for no

outbreak and 1 for an outbreak in the country and year (>=1 case/death, based on the WHO outbreak

definition [16])), which was then used as the outcome variable in the models. Raw case data were not

analysed to minimise the e↵ect of unmeasured observations and reporting biases among countries. A

sensitivity analysis was used to test alternative methods of dealing with missing values. For years with

no outbreak data, either the complete row of data for the year was removed (to avoid the following

assumptions), the outcome was set to 0, assuming if cholera cases/deaths occurred within a country

then they would have been identified and reported, or 1, to account for known cholera under-reporting:

• Alternative 1 - Removing all the rows with missing cholera data and only assigning 1 or 0 when

it was reported

• Alternative 2 - Setting all missing data points to 0

• Alternative 3 - Setting all missing data points to 1

In total, 19 environmental and socio-economic covariates were selected for investigation based on prior

hypotheses and previous results linking cholera outbreaks to risk factors (summarised in Supplemen-

tary Table 3.1). Environmental data were extracted from a variety of sources and included climate

(temperature and precipitation) [17], meteorological drought (Palmer Drought Severity Index, PDSI)

[18], agricultural drought (soil moisture and potential evapotranspiration (PET) [19, 20] and hydro-

logical drought (runo↵ and freshwater withdrawal annually and per capita) [21, 22]. The definitions

of the types of drought evaluated here are below and are based on those provided by the National

Oceanic and Atmospheric Administration’s National Weather Service [23]:

• Meteorological drought - the degree of dryness or rainfall deficit and the length of the dry period
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• Hydrological drought - the impact of rainfall deficits on the water supply such as stream flow,

reservoir and lake levels, and ground water table decline

• Agricultural drought - the impacts on agriculture by factors such as rainfall deficits, soil water

deficits, reduced ground water, or reservoir levels needed for irrigation

• Socio-economic drought - considers the impact of drought on socio-economics conditions, which

should be captured through the other covariates included in the analysis

Climate data were from the European Centre for Medium-Range Weather Forecast’s ERA5 which

combines historical observations into global estimates using advanced modelling and data assimilation

systems. This provides hourly data for a single grid at a 0.1x0.1 resolution, which is averaged to three

grids per month. Shapefiles are then used to lookup what administrative level the grid represents,

transforming the data to monthly administrative level 1 data [17, 24].

PDSI was chosen over other metrics of meteorological drought, due to its superior ability to capture

long-term change and global warming. PDSI was calculated from gridded (2.5x2.5) monthly surface air

temperature, precipitation and meteorological forcing data using the Penman-Monteith PET equation

[18]. The equation is below where Rn is the net radiation, G is the soil heat flux, (es � ea) represents

the vapour pressure deficit of the air, ra is the mean air density at constant pressure, cp is the specific

heat of the air, D represents the slope of the saturation vapour pressure temperature relationship, g

is the psychrometric constant and rs and ra are the surface and aerodynamic resistances.

PETpenman =
�(Rn �G) + pacp

(es�ea)
ra

�+ �(1 + rs
ra
)

.

Where monthly or sub-national data were available, a national yearly mean was calculated. A yearly

mean was taken for the monthly climate data to lessen the impact of seasonality and provided a better

metric of an environmental extreme, if one occurred. Additionally, using the mean of the raw data,

rather than assigning a threshold extreme value, reduced the assumptions needed to do so, which

would be di↵erent for each country. Climate data were missing for Côte d’Ivoire and drought data

were missing for Rwanda, The Gambia, Guinea-Bissau, Djibouti, Burundi, Benin, Cabo Verde, São

Tomé and Principe, The Comoros, Mauritius and Seychelles. Environmental data for these countries

were derived by taking the mean of their neighbouring countries (assuming their climate would be
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similar), whereas islands were excluded.

Socio-economic data including annual indicators of poverty and development, WASH, malnourishment,

and population (on a logarithmic scale), were taken from the WorldBank [25] and the United Nations

Development Programme [26] datasets. Where a country’s socio-economic data were missing for some

years, a national average was taken from the available data points and used for all years. If national

data were missing for the full instrumental period, these countries were removed from the analysis.

After examining data completeness across the full dataset, the designated instrumental period for

analysis was 2000 to 2016, to limit omitting missing data and interpolation. If rows with missing

values remained, they were removed from the data before model fitting, as missing values created

issues with covariate selection. The data fit to the model were to an annual and national granularity,

as this best captured the scale of the various data sources (national/annual socioeconomic data),

removed seasonality from the environmental data and matched the outcome variable data (cholera

outbreak occurrence for a specific country and year). Summary figures of the climate and cholera data

over the instrumental period are shown in Supplementary Figure 3.1. Further information about the

drought indices (PDSI, soil moisture, PET, runo↵ and freshwater withdrawal) are in Supplementary

Information 3.1.

3.2.2 Model Fitting and Covariate Selection

Generalised linear models (GLM), using maximum likelihood estimation (MLE), were fitted to the

dataset describing cholera outbreak occurrence (set to 1 if >= 1 case of cholera was reported for the

country and year) for the instrumental period (2000-2016), for all countries in mainland Africa and

Madagascar. GLMs are a flexible generalisation of ordinary linear regression, by allowing the linear

model component to be related to the response variable via a link function, based on an assumed

probability distribution. The linear component (⌘) is expressed as linear combinations of unknown

parameters �. The coe�cients of the linear combination are represented as a matrix of indepen-

dent covariates X, where water represents perCapita freshwater withdrawal and poverty in poverty

headcount at <$1.90/day. ISO3, refers to the national ISO3 country code.

⌘ = X�.
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⌘(cholera outbreak occurrenceyear,ISO3) = �
1
PDSIyear,ISO3 + �

2
Populationyear,ISO3+

�
3
Temperatureyear,ISO3 + �

4
Povertyyear,ISO3 + �

5
Wateryear,ISO3.

The link function provides the relationship between the linear predictor and the mean of the distri-

bution function. The binary outcome variable used for cholera outbreak occurrence, meant that a

binomial likelihood with a complementary log-log link function was chosen for all models. Y is the

outcome of the dependent variables based on the assumed binomial probability distribution. The

probability that Y = 1 is the mean of the Y values, expressed as µ and the probability that Y = 0 is

1 - µ. Therefore, the link function (g) is expressed in terms of the means.

g(µ) = log(�log(1� µ)).

Parameter estimation allows an approximation of the unknown parameters (�) of the distribution

without seeing all the data. Here, MLE was used and works by finding parameters that yield the

maximum of the likelihood function shown above and was chosen as a means of statistical inference

due to the assumed probability distribution (binomial), the availability of a relatively complete dataset

and prior knowledge of the relationship between drought and cholera being unclear.

From this initial dataset, a reduced pool of potential covariates was selected for model fitting using

a covariate selection process developed by Garske et al. [27] and Gaythorpe et al. [28]. In summary,

univariate linear regression models for each potential variable were fitted to the binary outcome variable

and any variables not significantly associated with the outcome at a 10% confidence limit (p <0.1)

were excluded. As this was a relatively crude method of excluding covariates, a slightly higher p-value

threshold was chosen here, compared to other chapters (p <0.05).

Of the remaining covariates, absolute pairwise correlations were calculated, and highly correlated

variables (r >= 0.75) were then clustered into groups, to prevent multicolinearity. Co-linearity is

where several independant variables in the model are correlated, resulting in the model not fitting

independant relationships, causing overfitting. A correlation matrix of the Pearson correlations used

in the covariate selection is shown in Supplementary Figure 3.2.
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The covariates from each cluster most strongly correlated with the outcome variable was then selected

for inclusion in the multivariate generalised linear models. Model fit was evaluated using Bayesian

Information Criterion (BIC) and a single best fit model was found using stepAIC. BIC and Akaike

Information Criterion (AIC) were used for model selection as they introduce a penalty term for the

addition of more parameters from the covariate selection, which can increases the likelihood due to

overfitting, not independant relationships. In addition, area under the receiver operator characteristic

curve (AUC) was used to quantify model performance. All statistical analyses were carried out in R

version 3.6.2 (packages: tidyr, MASS, ggplot2, dplyr, magrittr, corrplot, caret, nlme, MuMIn, car,

boot [29, 30, 31, 32, 33]).

3.2.3 Testing for Temporal and Spatial E↵ects

The inclusion of multiple years of data across multiple countries raises the possibility of spatial and

temporal confounding (e.g., autocorrelation, the degree of similarity between a time series and a lagged

version of itself). To investigate the potential influence on the covariate selection and the subsequent

best fit model, separate analyses were run including year and ISO3 country code as predictor variables

to the outcome variable of cholera outbreak occurrence (set to 1 if >= 1 case of cholera was reported

for the country and year). The additional analysis followed the same step-wise covariate selection

process and multivariate model fitting approach as described above.

Autocorrelation diagnostics were run on selected spatial and temporal covariates by testing the signif-

icance of the linear relationship and the model fit according to AIC, with and without consideration

of AR1 (autoregressive model of order 1) autocorrelation. Evidence of autocorrelation in the residuals

was also assessed, using autocorrelation function (ACF). ACF measures the correlation coe�cient of

the residuals, between the time series and it lagged values. The lag is set to 10log10(N/m), where N is

the number of observations and m the number of series. Additionally, out-of-sample testing was used

including leave-one-out (LOO) cross-validation, to assess model performance in terms of predictive

accuracy, of both the original (without year/ISO3) and the updated (with year/ISO3) multivariate

model. K-fold cross-validation prediction error, in terms of Mean Squared Error (MSE) was used to

compare model accuracy.
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3.2.4 Projection Scenarios

Three scenarios (S1, S2 and S3) were developed for 2020-2070 (at decadal increments). Each sce-

nario represents an alternative possible future trajectory of the variables retained in the best fit

model, parameterised to varying degrees of climate mitigation and socio-economic development. Here,

S1 represents a “best-case” scenario, loosely aligning to highly ambitious climate change mitigation

(RCP4.5) and strong progress towards the SDGs (meeting the 2030 targets), S2 represents an inter-

mediate scenario with median values between S1 and S3, and S3 a “worst-case” scenario with slower

progress towards emissions reductions (RCP8.5) and the SDGs (targets not achieved until much later

in the century).

Detailed descriptions and justifications of the projected changes for each variable are provided in full in

Supplementary Information 3.2. Briefly, projected temperature data were taken from WorldClim [34]

which are Coupled Model Intercomparison Project 6 (CMIP6) downscaled future climate projections,

processed for nine global climate models using three Representative Concentration Pathways (RCP).

RCP4.5, 6.0 and 8.5 were used for scenarios S1, S2 and S3, respectively. The numbers in the RCPs

(4.5, 6.0 and 8.5), refers to the radiative forcing (change of energy flux in the atmosphere) that would

occur in the scenario. RCP4.5 requires emissions to peak in 2040, RCP6.0 peaks around 2080 and

RCP8.5 assumes emission will continue to rise throughout the century. These three scenarios resulted

in mean global warming by 2081-2100 of 1.8°C, 2.2°C and 3.7°C, respectively [35]. The projections

provided values for 2050 and 2070 and the instrumental period average (2000-2016) was used for the

2020-2040 values, to account for interannual climate variability. Supplementary Figure 3.3 summaries

the projected climate data for each pathway and year.

Projecting PDSI at a continental or national scale is contentious showing a range of projection out-

comes, due to high spatial heterogeneity and between model uncertainty and disagreement [13, 18],

as well as computational discrepancies depending on the PET algorithm used [36]. Several PDSI

modelling studies [36, 37] and paleoclimatic studies [38, 39] found that drought severity and duration

remained constant despite periods of extreme dryness, over a range of time scales. The PDSI dataset

used here for both the full data range (1850-2016) and the instrumental period (2000-2016) also re-

mained fairly constant and the data accurately captured past drought as its changes tracked with soil

moisture, a good index of drought (see Supplementary Figure 3.4 and 3.5) [40].
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Given these disagreements and the likelihood that calculating drought at this scale (national) would

result in loss of important spatial heterogeneity. Future drought conditions were estimated for each

scenario at the assumption that drought would remain at a similar level (in the “best-case” scenario)

or continue in the direction of its historical trend (as a “worst-case” scenario). Therefore for S1, no

change relative to a current “baseline” was used by fixing drought values to the instrumental period

average (2000-2016), the average was used to account for interannual climate variability. For S3

(representing “business-as-usual”), univariate linear regression models (drought ⇠ year) were fit to

the full historical data for each country (1850-2016). The models were then used to extrapolated the

trend, by using the coe�cients as a yearly multiplier (up until the extreme values of +4 for extreme

wetness and -4 for extreme dryness). S2 was an intermediate value between S1 and S3. The method

used here followed other drought projection studies [41], and the results of the univariate drought

models are available in Supplementary Table 3.2.

To account for uncertainty in the drought projections and to further examine how drought in isolation

may alter future cholera outbreaks, a second sensitivity analysis was run. The selected covariates in

the best fit model were maintained at the 2016 levels and only drought was altered. The selected six

alternative drought scenarios were created to account for a wide range of drought changes that could

occur in the future. Changes were only made up to the PDSI limits (+4 to -4) and if the scale limit

was reached then this was taken as the value. The six alternative drought scenarios for the sensitivity

analysis are shown below:

1. Drought-average – Average national drought for 2000-2016

2. Drought-S1 – 2016 value + 0.5

3. Drought-S2 – 2016 value - 0.5

4. Drought-S3 – 2016 value + 1

5. Drought-S4 – 2016 value - 1

6. Drought-S5 – 2016 value + 2

7. Drought-S6 – 2016 value - 2

Poverty changes were based on SDG1.1 and 1.2 [42], despite the limitations of the SDGs (e.g., am-

biguous terms), they are a globally recognised standard for sustainable development and also feature

140



heavily within the GTFCC cholera targets. As such, S1 meets the goal of a 50% reduction in extreme

(<$1.25/day) poverty by 2030 and poverty eliminated by 2070. In S2, the 50% reduction goal is met

by 2050 and by 2070 for S3. The poverty threshold used in the SDGs is slightly lower (<$1.25) than

the WorldBank data used in this analysis ($1.90), and it is di�cult to distinguish the level of poverty

within the data; therefore, the projected scenarios mainly aligned with the second part of the goal, to

halve the population in poverty by 2030.

Projected changes in freshwater withdrawal are largely dependent on future human behaviour and

adaptation to changing water security, which are highly uncertain. Therefore, freshwater withdrawal

projections were based on SDG6.4 (substantially increase water-use e�ciency across all sectors and

ensure sustainable withdrawals) and either increased or decreased based on each country’s historical

freshwater withdrawal relative to available water resources, taken from the same data source used in

the model [21]. The data visualisation of freshwater security for each country is plotted in Figure

3.2 and countries categorised as high freshwater withdraw countries (HWC) were those who withdraw

>357m³/year, which were countries in the top 10% of freshwater withdrawal in Africa (water with-

drawal includes all domestic, industrial and agricultural uses). The threshold was set on withdrawal

only (Figure 3.2 x-axis), as resource is di�cult to alter beyond the geography of the country, whereas

withdrawal is the more changeable component of water security. Expanded freshwater withdrawal

would likely increase peoples’ access but this must be done sustainably and in line with resources. In-

creased withdrawal may also be a sign of development as more people have access to wells, boreholes

and piped water. As such, for S1 sustainable freshwater availability was increased by 20% (10% for S2

and 5% for S3) by the middle of the projection period (2050), for countries with su�cient resources.
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Figure 3.2: Historical water security in Africa as freshwater withdrawal against freshwater
resource. Both are taken as national per capita averages for the full dataset (1985-2014) in
m³. The dashed line represents the cuto↵ for countries to be categorised as high withdraw
(375m³), and countries are represented by their ISO3 code [21].

For population projections, the United Nation’s World Population Prospectus [43] median variant

was used for all three scenarios. Although population growth is expected to be more restricted under

high attainment of the SDGs, a single medium population size was used to isolate the e↵ects of the

other environmental and socio-economic covariates. Additionally, the larger population size would

likely result in greater cholera transmission (and higher projected outbreak occurrence here) due to

the larger number of susceptible people, not necessarily because of changes in important risk factors.

The three scenarios are summarised in Table 3.1.
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Table 3.1: Cholera projection scenarios for 2020-2070 at decadal intervals for Scenario 1
(S1), Scenario 2 (S2) and Scenario 3 (S3). HWC = high water withdraw countries including
Madagascar (MDG), Libya (LBY), Sudan (SDN), Mauritania (MRT) and Morocco (MAR).
RCP = Representative Concentration Pathway.

Scenario Year Drought Temperature Poverty Water withdrawal
S1 2020 2000-2016 average 2000-2016 average 2016 2016
S1 2030 2000-2016 average 2000-2016 average Reduce 2016 by 50% 2016
S1 2040 2000-2016 average 2000-2016 average Reduce 2016 by 50% 2016
S1 2050 2000-2016 average RCP4.5 2050 Medium value between 2030 & 2070 20% increase and 20% decrease for HWC
S1 2060 2000-2016 average RCP4.5 2050 Medium value between 2030 and 2070 20% increase and 20% decrease for HWC
S1 2070 2000-2016 average RCP4.5 2070 Poverty elimination (0%) 20% increase and 20% decrease for HWC
S2 2020 Median value between S1 and S2 2000-2016 average 2016 2016
S2 2030 Median value between S1 and S2 2000-2016 average 2016 2016
S2 2040 Median value between S1 and S2 2000-2016 average 2016 2016
S2 2050 Median value between S1 and S2 RCP6.0 2050 Reduce 2016 by 50% 10% increase and 10% decrease for HWC
S2 2060 Median value between S1 and S2 RCP6.0 2050 Medium value between 2050 and 2070 10% increase and 10% decrease for HWC
S2 2070 Median value between S1 and S2 RCP6.0 2070 Poverty elimination (0%) 10% increase and 10% decrease for HWC
S3 2020 ((Coe�cient*4) + 2016 value) 2000-2016 average 2016 2016
S3 2030 ((Coe�cient*10) + 2020 value) 2000-2016 average 2016 2016
S3 2040 ((Coe�cient*10) + 2030 value) 2000-2016 average 2016 2016
S3 2050 ((Coe�cient*10) + 2040 value) RCP8.5 2050 2016 5% increase and 5% decrease for HWC
S3 2060 ((Coe�cient*10) + 2050 value) RCP8.5 2050 Medium value between 2050 and 2070 5% increase and 5% decrease for HWC
S3 2070 ((Coe�cient*10) + 2060 value) RCP8.5 2070 Reduce 2016 value by 50% 5% increase and 5% decrease for HWC

3.3 Results

3.3.1 Model Fitting and Covariate Selection

The univariate model results (p-values, coe�cients, BIC and AUC of the 19 tested covariates against

cholera outbreak occurrence) are shown in Table 3.2. Six of these were not significantly associated

with the data at the threshold of p <0.1. Of the remaining 13, one cluster was formed containing

two highly correlated variables (soil moisture and drought), while all other covariates were considered

uncorrelated at the given threshold and therefore could be included in the full model.
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Table 3.2: Univariate model outputs and goodness-of-fit measures for the tested covariates
against cholera outbreak occurrence, including p-values, coe�cients, BIC and AUC. *
represents p <0.1.

Covariate p-value Coe�cient BIC AUC
Potential evapotranspiration (mm/day) 0.961 0.011 785.323 0.5979
Annual freshwater withdrawal (billion m³) 0.649 -0.029 784.57 0.5279
Runo↵ (mm/year) 0.373 -0.064 785.395 0.6068
Health expenditure (% GDP) 0.371 0.126 783.253 0.5389
Prevalence of malnourishment (% population) 0.139 -0.169 784.014 0.5892
Gross domestic output (current $) 0.126 -0.091 783.079 0.5148
Population density (people/km²) 0.051* -0.145 781.802 0.5773
Water withdrawal per capita (m³/person/year) 0.032* 0.151 762.801 0.6184
Average precipitation (mm) 0.021* -0.263 780.742 0.6345
People with basic hand washing facilities (% population) 0.018* 0.189 766.43 0.5882
Percentage living in informal settlement (% urban population) 0.013* -0.467 778.73 0.4903
Mean drought 0.003* -0.199 768.863 0.5827
Human Development Index 0.0002* 1.014 767.927 0.6562
People using at least basic sanitation (% population) 0.0001* 0.384 757.283 0.6347
Poverty headcount (% population at <$1.90/day) 0.0001* -0.583 768.649 0.7018
Average temperature (°C) 0.00005* -1.715 765.124 0.5349
Soil moisture (%) 0.00003* -0.706 768.044 0.6871
People with basic drinking water (% population) 0.00002* 0.906 762.312 0.6521
Population (log. population in thousands) 0.0000000004* -3.064 741.192 0.6521

For the sensitivity analysis investigating the e↵ects of assigning the outcome variable to 0 if cholera

was not reported, the original assumption was taken as the best option here. The results found that

the alternative assumptions removed too much data for the covariate selection, which resulted in large

numbers of variables being removed in the univariate analysis as they did not meet the threshold of p

<0.1.

3.3.2 Output from the Best Fit Model

After covariate selection, five covariates were retained in the best fit model. These include total pop-

ulation on a logarithmic scale, mean meteorological drought (in PDSI), average temperature (in °C),

poverty headcount at <$1.90/day and per capita freshwater withdrawal (in m³/person/year). Good-

ness of fit measures and outputs for the best fit model are shown below in Table 3.3. Higher population

numbers and more people living in poverty were associated with increased cholera outbreaks. For the

environmental covariates, per capita freshwater withdrawal was negatively associated with cholera,

while higher temperatures and drier conditions (more negative PDSI) were both associated with in-

creases in cholera outbreaks. These relationships are shown in the marginal e↵ect plots in Figure

3.3. Marginal e↵ects indicate how a dependent variable changes when a specific independent variable
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changes, if other covariates are held constant (at the mean).

Table 3.3: Output and goodness of fit measures for the best fit model.

Coe�cient Exp(Coe�cient) p-value
Mean national drought (PDSI) -0.0927813 0.911392813 0.051172
Population, total (log) 1.3125412 3.71560365 2.85x10�13

Average temperature (°C) 0.0927423 1.097178975 0.000113
Poverty headcount (at <$1.90/day) 0.0327487 1.03329089 4.23x10�16

Per capita freshwater withdrawal (m³/person/year) -0.0024225 0.997580455 5.43x10�7

Residuals Min 1Q Median 3Q Max
-2.0286 -0.7974 0.4069 0.8601 2.2564

R²: 0.276254
AUC: 0.7784
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Figure 3.3: Marginal e↵ect plots for the five selected covariates for the best fit model,
showing cholera outbreak occurrence. The other covariates are held at the mean, with a 95%
prediction confidence interval.

3.3.3 Temporal and Spatial E↵ects

Re-running the covariate selection process with year, ISO3 country code and the 19 original predictor

variables, selected year but not ISO3 at the significance threshold (p <0.1). It also selected the same

covariates as the original model and additionally the percentage of the population with basic hand
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washing facilities and Human Development Index (HDI). The linear relationship between year and

cholera was visualised using loess curves for each country and are shown in Supplementary Figure 3.6.

The diagnostic results for the out-of-sample validation using AIC are as follows. The time series

for lm(Outbreak ⇠ Year) showed year to be significant at p <0.05 and the model performance for

lm(Outbreak ⇠ Year) showed some temporal autocorrelation (Figure 3.4). The re-estimated linear

trend and model performance to account for autocorrelation gls(Outbreak ⇠ Year, correlation =

corAR1(form = ⇠Year)) showed Year to no longer be significant (p <0.05), but the intercept remained

the same. When the two linear models were compared, with or without correction for autocorrelation,

there was no appreciable di↵erence (di↵erence of 1 in the AIC values) (Figure 3.5).

In a model which shows no signs of autocorrelation, the points in a Turkey-Anscombe plot and Scale

location plot are not correlated and equally spread around a mean of 0. The Normal Q-Q plot has

a linear trend line with no outliers and the points are normally distributed. A Leverage plot shows

any points that are particularly influential (leverage) and therefore may be biasing the results, ideally

points fall inside the Cook’s line and confidence interval, showing they all have low leverage. ACF

is measured as the correlation coe�cient of the residuals between the observed and lagged values,

stationary time series (not temporally influenced) have an exponential decrease in ACF and all points

are within the confidence interval.

Figure 3.4: Autocorrelation diagnostic results for the model without autocorrelation
accounted for. a, model performance diagnostics including a Turkey-Anscombe plot (top left),
Normal Q-Q plot (top right), Scale location (bottom left) and a Leverage plot (bottom right),
b, time series of the residuals and c evidence of autocorrelation in the residuals using ACF
(autocorrelation function) with 95% confidence intervals (blue-dashed line).
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Figure 3.5: Autocorrelation diagnostic results for the model with autocorrelation accounted
for. a, time series of the residuals, b evidence of autocorrelation in the residuals using ACF
(autocorrelation function) with 95% confidence intervals (blue-dashed line) and c, a Normal
Q-Q plot.

The two multivariate GLM models (Outbreak ⇠ drought + temperature + poverty + population +

water withdrawal and the original model + year + HDI + hand washing), selected by the covariate

selection process were then run through LOO cross-validation to assess for an appreciable model

performance di↵erence. Model cross-validation prediction error, in terms of MSE, di↵ered by 0.02.

Therefore, the model selected without the inclusion of year and country code in the selection process

was used as the best fit model.

Using the model without the inclusion of year was selected as cholera outbreak occurrence appears

conditionally independent of year given the other covariates in the model. Time does not cause cholera

but instead the changes in covariates over time, making them good predictors of cholera outbreak

occurrence. It is also thought that some temporal increases in cholera are due to global improvements

in detection of all-pathogen outbreaks from the mid 1990s onwards, especially in low- and middle-

income countries, improving countries’ capacity for detection, response and therefore reporting [44,

45].

3.3.4 Cholera Projections to 2070

Cholera projections from the best fit model according to the parameter values for each of the three

scenarios are shown in Figure 3.6. The cholera outbreak projections show several changes through to
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2070 and spatial heterogeneity among countries over the continent. Most countries show a general

decrease in cholera outbreaks in S1 and S2, with few exceptions e.g., Tunisia. Although countries with

the highest cholera levels saw little change, remaining at a high outbreak occurrence level throughout,

including the Democratic Republic of Congo (DRC) and Nigeria.

Figure 3.6: Projected cholera outbreak occurrence (0-1) for the three scenarios (S1 - green,
S2 - orange and S3 - blue) in 2030, 2050 and 2070. Grey represents countries where covariate
data were missing (Botswana, Zimbabwe, Somalia, Egypt, Eswatini, Western Sahara, Algeria,
Libya and Eritrea) and therefore could not be included in the model.

Figure 3.7 shows the decadal continental average for the projected cholera outbreak occurrence, to

help understand the general trend across the continent. Overall, S3 shows a slight increase throughout

the projected period, whereas S1 and S2 exhibit declines. However, overlapping confidence intervals
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between S1 and S2 mean it is di�cult to distinguish meaningful di↵erences, although by 2070, S3

projects significantly more outbreaks than S1 and S2.
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Figure 3.7: Mean continental cholera outbreak occurrence for the projected period
(2020-2070) using the three scenario datasets.

The drought sensitivity analysis showed modest changes through the six alternative drought scenarios

(Table 3.4), with more negative values of PDSI seeing higher cholera outbreak occurrence (Supple-

mentary Figure 3.7). Despite this, these changes were not excessive with a 0.06 average increase in

continental cholera outbreak occurrence from the 2000-2016 average to sensitivity analysis 6 (2016

value – 2). This suggests that while future drought is likely to continue to a↵ect cholera in Africa,

improved socio-economic conditions may counteract this e↵ect, by reducing pathogen exposure.
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Table 3.4: Predicted continental cholera outbreak occurrence using the best fit model and
di↵erent drought sensitivity scenarios. National averages are shown in Supplementary Figure
3.7.

Sensitivity analysis Continental averages
Drought-average 0.540106952
Drought-S1 0.561436986
Drought-S2 0.576812737
Drought-S3 0.553412242
Drought-S4 0.584072274
Drought-S5 0.53701047
Drought-S6 0.597395878

3.4 Discussion

Cholera has well established environmental [46, 47, 48] and socio-economic links [49, 50, 51], such as

poverty, poor WASH conditions and changes in temperature and precipitation (and therefore links

to climatic patterns e.g., Intertropical Convergence Zone and El Niño Southern Oscillation). Here,

multiple environmental variables were important covariates in the model. Meteorological drought

(measured in PDSI) was found to be a significant predictor of cholera outbreaks, with drier conditions

seeing higher cholera outbreak occurrence. While previous studies have implicated drought in cholera

outbreaks, it is largely understudied [5, 6, 7]. Chapter 3 modelled drought in isolation allowing a more

in-depth investigation of its impacts, and tested whether drought is likely to influence cholera out-

breaks under scenarios of climate change and socio-economic development (attainment of the SDGs).

According to these results, drought will continue to be an important hazard for cholera outbreaks in

the future, but gains in sustainable development (reduction of poverty, increased water security) may

o↵set cholera risk.

3.4.1 Cholera-Environment Links

Temperature was identified as a significant predictor, providing another link between changing drought

risk and increased cholera outbreak occurrence, as an increased temperature is important in both

drought onset and duration. The positive relationship between temperature and cholera is expected,

as cholera is considered a temperature-sensitive pathogen, with optimum growth and biofilm formation

at elevated temperatures (20-45°C, depending on salinity [52, 53]) [54]. This may also represent an

independent e↵ect of temperature from drought and why both variables were selected in the model. For
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example, a 1°C rise in temperature was associated with a 2-fold increase in cholera cases in Zanzibar

[48]. Moreover, when run in the univariate models, precipitation had a slightly negative coe�cient,

again providing a potential link between drought, decreased water availability and cholera outbreaks.

Precipitation, however, was not selected in the final model, potentially suggesting that precipitation

e↵ects for cholera in Africa, may be less important than temperature.

The inclusion of more than one type of drought index in the best fit model (meteorological drought

in PDSI and hydrological drought in water withdrawal) shows the importance of considering several

drought definitions and measures when investigating its implications. Drought is a complex phe-

nomenon involving climate, agriculture, water stress and societal response and therefore including

additional drought variables can help capture the varying elements of the hazard, exposure and vul-

nerability. Furthermore, there are multiple drought metrics, which all have di↵erent limitations and

will be assessed in a later chapter (Chapter 5).

Water withdrawal per capita was a highly significant environmental variable in the model, linking to

the original hypothesis that a reduction in water availability leads to dangerous water practices, in

terms of health. More water withdrawal suggests higher water availability for drinking and washing

and a reduction in risky behaviour such as with multi-use water. Better water management may help

mitigate negative drought-related health outcomes, and when water is available, this should not be

exploited to avoid times of scarcity. For example, water should be stored and not overused for industry

and agriculture such as irrigation, dam building should be avoided and surface water run o↵ reduced

as much as possible [55].

3.4.2 Cholera-Socio-economic Links

Cholera is a disease of inequity and poverty and is often seen in combination with poor WASH facilities

[50, 56]. Here, poverty was the most significant variable (according to the p-values) included in the

model and may suggest that environmental determinants of cholera are only key drivers up to certain

thresholds and then socio-economic covariates are more appropriate predictors [57]. For example,

droughts have been known to impact the United States and Europe [58, 59], but large-scale cholera

outbreaks do not occur due to generally high levels of sanitation and hygiene.

Several socio-economic covariates were expected to be important here but only poverty was selected
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in the final model and all socio-economic covariates were independently selected for model inclusion.

A possible explanation is that other socio-economic covariates such as, sanitation, hygiene, drinking

water and people living in informal settlements are captured within the e↵ects of poverty and possibly

enhancing its impact. Even with the ideal environment for cholera to proliferate, social conditions

allow the link to be made for pathogen exposure and spread. Poor access to WASH facilities means

that large groups of people are at risk, not just for cholera, but for several other diseases. For

example, nearly 90% of diarrhoeal disease has been attributed to sub-optimal WASH [60]. These

findings highlight the need to meet or exceed the SDGs, lifting people out of poverty and providing

basic sanitation and hygiene as a public health priority.

3.4.3 Cholera Projections to 2070

The scenario dataset and projections provide some insight into the future importance of climate

and socio-economic development on cholera outbreak occurrence in Africa. Historical and projected

changes are spatially heterogeneous but projected continental trends under S3 slightly increased cholera

outbreak occurrence to 2070. Whereas, under S2 and S1 cholera occurrence decreased to 2070, with

S1 showing the lowest levels. The projected changes over the next 50 years show that reducing

poverty, expanding sustainable freshwater availability and striving for greater emissions reductions

will be important for achieving positive health outcomes. How societies will continue to respond and

adapt to climate change and drought is di�cult to determine in the future. Despite the challenges,

understanding future risks is vitally important for climate change mitigation and adaptation.

3.4.4 Limitations

Environmental and socio-economic data were missing for several countries and years, meaning that

data had to be averaged or omitted for model fitting. Assumptions had to be made both spatially

and temporally about conditions in certain countries, potentially introducing error. Using annual

national data also meant that changes on a finer spatial and temporal scale cannot be determined

from Chapter 3, such as seasonal changes in cholera and the presence of waterbodies within countries

facilitating transmission [2]. Cholera is largely underreported, and many people never seek formal

medical assistance. The WHO’s most optimistic estimate suggests only 5-10% of cases are reported
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[61], possibly due to a spectrum of transmission dynamics, lulls in cases causing decreased awareness

[62] and disincentives to report outbreaks due to implications for tourism and trade [63].

Considering the problems in cholera under-reporting, issues may have arisen from assigning the out-

come variable to zero for missing years, as this could have led to the under-representation of cholera

outbreaks. However, given the results of the sensitivity analysis for this assumption, this is the best

interpretation of missing values, as removing values created issues when trying to select covariates

from small numbers of data points.

GLMs assume a monotonic relationship and therefore non-linear e↵ects of several covariates might not

be captured and these non-linear e↵ects are evaluated in later chapters (Chapter 4 and 5). An example

of these non-linearities are seen in Supplementary Figure 3.4 and 3.5 and Supplementary Table 3.2,

as some countries fit the linear trend better than others. Additionally, the covariate selection process

used here may have resulted in important covariates (in terms of their relationship with cholera) being

lost. Removing covariates at a p threshold of 0.1 (in a univariate linear regression) is a relatively crude

method of reducing a pool of potential variables and in future analysis (Chapter 5), the performance

of the covariates will be first be assessed, before all of them will be considered for model selection

using the correlations and clustering.

As with any projections and the creation of scenarios, uncertainty can be high, as assumption must

often be made e.g., increasing freshwater availability would result in greater access. Therefore, the-

oretical, methodological and computational challenges in projecting future climate change and its

consequences can occur. There are also the realities of meeting or exceeding the SDGs, which were

used to guide the scenarios here, when no clear pathway to success has been defined. Additionally,

a “worst-case” scenario where poverty and water withdrawal regresses was not considered and will

therefore be revisited in a later chapter (Chapter 6). Finally, the possibility of new V. cholerae strains

being introduced and changing both natural- and vaccine-derived immunity could also complicate

cholera eradication e↵orts. Nevertheless, with decreasing poverty and the expansion of freshwater

availability, even the e↵ect of new cholera cases and strain introductions could be reduced.
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3.4.5 Conclusion

In conclusion, the relationships between temperature, drought and water withdrawal add further ev-

idence to the original hypothesis that hotter and drier conditions and a lack of available freshwater,

increases cholera outbreak occurrence, potentially through risky water behaviours. Future qualitative

work on drought and cholera would be needed to understand the complexities of these potentially

risky behaviours. Although elevated pathogen concentrations are di�cult to distinguish from these

results, the importance of elevated temperatures and its e↵ect on cholera may be related to increases

in pathogen concentrations and future groundwater studies would be needed to confirm this hypoth-

esis. Socio-economic variables were highly significant in the best fit model, showing the impact of

vulnerability in times of water shortage and the need to lift people out of poverty to improve health

and reduce mortality.

Chapter 3 o↵ers additional insight into how climate change may yield health impacts in the future and

the importance of socio-economic development and emissions reductions to o↵set this risk. Chapters 4-

6 aim to build on these findings, to understand some of these relationships on a finer spatial scale. High

burden countries such as the DRC and Nigeria saw only marginal changes in the cholera projections,

even with high levels of sustainable development and stringent emissions reductions. Both Nigeria

and the DRC have similar climates and socio-economic vulnerabilities [64, 65] and therefore it would

be expected that the more optimistic scenarios would reduce cholera risk. A potential explanation

for why cholera risk was not reduced in these countries, may be other drivers of cholera that were

not accounted for in the model (residual confounding), such as conflicts. Both Nigeria and the DRC

have active conflicts, ranking 12th and 5th, respectively, on the Fragile States Index [66] and many

conflict-related outbreaks were found in the review. Chapter 4 aims to understand the impact of

conflict on cholera in Nigeria and the DRC and to use a novel modelling approach to understand how

cholera risk could be reduced.
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Supplementary Material

Supplementary Figures

Supplementary Figure 3.1: National average for the instrumental period (2000-2016) for
a, cholera outbreak occurrence, b, temperature (CO2), c, precipitation (mm), d, Palmers
Drought Severity Index (PDSI), e, potential evapotranspiration (PET), f, soil moisuture (%),
g, water runo↵ (mm/year), h, annual freshwater withdrawal (FW, billion m³) and i, Per
capita freshwater withdrawal (FW, billion m³/person/year).
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Supplementary Figure 3.2: Correlation plot for the Pearson correlation coe�cients of the
nineteen covariates included in the covariate selection process in Chapter 3. Positive residuals
are blue suggesting a strong positive association between the corresponding row and column
and negative residuals are in red, suggesting a negative association.
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Supplementary Figure 3.3: Summary boxplots with jitters of the projected temperature
data from WorldClim for a, 2016, b, RCP2.6 2050, c, RCP2.6 2070, d, RCP8.5 2050 and e,
RCP8.5 2070. The colours represent the di↵erent regions and are explained below:
C & W Africa: Central and West Africa (Angola, Congo, Democratic Republic of Congo).
C GoG: Central Gulf of Guinea (Benin, Côte d’Ivoire, Ghana, Togo, Tanzania).
E & W GoG: East and West Gulf of Guinea (Cameroon, Central African Republic,
Equatorial Guinea, Gabon. Guinea, Liberia, Nigeria, Sierra Leone, South Sudan).
Great Lakes (Burundi, Rwanda, Uganda).
Horn of Africa (Djibouti, Eritrea, Ethiopia, Kenya, Somalia).
N Africa: Northern Africa (Algeria, Libya, Morocco, Tunisia).
S & C Africa: South and Central Africa (Madagascar, Malawi, Mozambique, Namibia,
Zambia, Zimbabwe).
S Africa: Southern Africa (Botswana, Lesotho, South Africa).
Sahel (Burkina Faso, Chad, Gambia, Guinea-Bissau, Mali, Mauritania, Niger, Senegal,
Sudan)
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Supplementary Figure 3.4: Historical trends in PDSI on a, averaged over a continental
scale and b, averaged over a national scale for the full dataset (1879-2016). Only 8 (BWA,
COD, COG, NAM, NER, TZA, ZMB, ZWE) of the 47 countries showed an insignificant
cholera trend at p <0.05.
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Supplementary Figure 3.5: A comparison of historical trends in a, national PDSI, b,
national soil moisture and c, continental averages of PDSI and soil moisture, over the
instrumental period.
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Supplementary Figure 3.6: Loess curves showing year and outbreak for each country
(2000-2016) with a smoothed trend line and standard error.
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Supplementary Figure 3.7: Projected cholera outbreak occurrence using the best fit model
fitted to the 2016 data and drought data altered in isolation from the 2000-2016 national
averages as a baseline and the six di↵erent drought sensitivity analysis.
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Supplementary Tables

Supplementary Table 3.1: Studies linking cholera outbreaks to specific risk factors used to
establish the prior hypothesis and nineteen tested covariates in Chapter 3. This is in addition
to those referenced in the main text.

Source Covariate
Nsagha DS, et al.
Assessing the risk factors of cholera epidemic in the Buea Health District of Cameroon.
BMC Pub Health. 2015;15:1-7.

Hygiene and water

Labite H, et al.
Quantitative Microbial Risk Analysis to evaluate health e↵ects of interventions in the urban water system of Accra, Ghana.
Journal Water Health. 2010;8:417-430.

Sanitation and water

Alsan MM, et al.
Poverty, global health, and infectious disease: lessons from Haiti and Rwanda.
Infect Dis Clin. 2011;25:611-22.

Poverty, health expenditure and development

Talavera A, Perez EM.
Is cholera disease associated with poverty?.
Journal Infect Dev Countr. 2009;3:408-11.

Poverty

Gidado S, et al.
Cholera outbreak in a näıve rural community in Northern Nigeria: the importance of hand washing with soap, September 2010.
Pan Afr Med J. 2018;30.

Hand washing

Aggrey-Korsah E, Oppong J.
Researching urban slum health in Nima, a slum in Accra.
Spatial Inequalities 2013 (pp. 109-124). Springer, Dordrecht.

Informal settlement

Penrose K, et al.
Informal urban settlements and cholera risk in Dar es Salaam, Tanzania.
PLoS Negl Trop Dis. 2010;4:e631.

Informal setttlement, population density

Ververs M, Narra R.
Treating cholera in severely malnourished children in the Horn of Africa and Yemen.
Lancet. 2017;390:1945-6.

Malnourishment

Osei FB, Duker AA.
Spatial and demographic patterns of cholera in Ashanti region-Ghana.
Inter J Health Geogr. 2008;7:1-0.

Population, total and density
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Supplementary Table 3.2: Linear model results for the S3 drought extrapolation
projections in Chapter 3, Res = Residual.

Code Coe↵ P value SE R² Res. Min Res. 1Q Res. Median Res. 3Q Res. Max
AGO 0.007584 1.38E-02 0.003 0.0405 -3.4003 -0.9893 -0.1943 1.0217 3.6879
BFA -0.016124 4.80E-04 0.004 0.1018 -4.3346 -0.7317 0.0433 1.0693 3.4803
BWA -0.001625 6.84E-01 0.004 0.001437 -2.7141 -1.1711 -0.2378 0.9759 4.3036
CAF -0.012484 2.20E-03 0.004 0.08274 -2.7737 -0.9622 -0.1477 0.9576 2.8916
CIV -0.033197 6.41E-15 0.004 0.4091 -4.3856 -0.8907 0.1215 0.7528 4.2415
CMR -0.02412 1.21E-08 0.004 0.2526 -3.6014 -0.8186 -0.1533 0.992 3.515
COD -0.002054 4.30E-01 0.003 0.005524 -2.0415 -0.6651 0.01018 0.6305 2.6456
COG 0.001273 7.72E-01 0.004 0.0007691 -5.0383 -0.806 0.1266 0.9635 3.6098
DZA -0.011053 1.71E-08 0.002 0.1777 -2.7972 -0.82673 0.07252 0.70509 2.95153
ERI -0.009764 1.18E-03 0.082 0.08161 -2.64799 -0.90982 -0.04446 0.79464 3.08663
ETH -0.01341 2.14E-07 0.002 0.185 -3.11721 -0.63626 -0.04943 0.64698 2.80778
GAB -0.019066 3.92E-04 0.005 0.1297 -4.6503 -0.7585 0.0266 1.0521 2.9602
GHA -0.22088 8.64E-07 0.004 0.1891 -4.6036 -0.7854 0.0653 0.9259 4.4206
GIN -0.040172 2.00E-16 0.003 0.5475 -3.4633 -0.7489 0.0282 0.8407 3.4562
GNQ -0.024931 2.12E-09 0.004 0.2669 -4.8 -0.9298 0.0909 1.0086 3.8341
KEN -0.014909 7.84E-06 0.003 0.1505 -2.5614 -0.9082 -0.0979 0.9024 4.3328
LBR -0.050961 3.19E-12 0.006 0.3861 -5.8082 -1.2037 0.0361 1.3154 4.8078
LBY -0.011042 5.01E-04 0.003 0.08674 -3.4071 -0.9486 -0.0678 0.9751 5.5876
LSO -0.001181 1.18E-03 0.004 0.0006166 -4.1272 -1.4807 -0.0993 1.5032 4.2181
MAR -0.01744 3.44E-09 0.003 0.1934 -4.4451 -1.2923 0.0284 1.2875 3.8972
MDG -0.008485 3.89E-02 0.004 0.03191 -4.6279 -0.8901 -0.1081 1.0532 4.5956
MLI -0.014778 1.21E-05 0.003 0.1515 -3.3191 -0.6955 -0.0572 0.8934 2.9524
MOZ -0.009139 2.35E-02 0.004 0.04134 -4.0799 -1.0939 -0.0518 1.0867 4.6014
MRT -0.020671 2.17E-08 0.003 0.245 -2.9844 -0.9335 0.0472 0.7782 2.7171
MWI -0.018477 1.81E-03 0.006 0.08019 -5.6662 -1.2043 0.1717 1.2017 7.0808
NAM -0.0006466 8.77E-01 0.004 0.0001893 -4.2969 -1.1374 -0.1989 0.6849 6.7976
NER -0.007139 6.45E-02 0.004 0.0313 -3.4058 -0.7212 0.0868 0.7722 4.3451
NGA -0.014961 5.12E-04 0.004 0.09844 -7.9324 -0.5473 0.1837 0.8922 3.6286
SDN -0.032495 2.00E-16 0.003 0.4256 -2.7332 -0.9581 0.1599 0.9727 3.9191
SEN -0.02812 2.00E-16 0.002 0.4758 -2.8209 -0.987 0.0366 0.6876 3.6725
SLE -0.057589 2.00E-16 0.004 0.6542 -3.1287 -1.0012 -0.171 0.9413 3.7745
SOM 0.01051 7.76E-04 0.003 0.1053 -2.33652 -0.61295 0.08567 0.58038 2.50439
SSD -0.022848 5.11E-07 0.004 0.2057 -3.8764 -0.9331 0.1218 1.0791 2.9932
TCD -0.014613 5.53E-04 0.004 0.1141 -2.9722 -0.9354 0.0408 0.8491 3.682
TGO -0.017806 1.62E-05 0.004 0.1429 -4.9207 -0.9181 0.26437 1.0905 4.2196
TUN 0.008081 3.95E-02 0.004 0.03347 -3.6059 -1.0549 0.0231 0.9955 6.0856
TZA 0.005739 9.72E-02 0.003 0.02221 -4.6694 -1.0467 -0.0035 1.072 3.4672
UGA -0.008039 4.09E-02 0.004 0.03648 -3.0538 -0.9776 -0.0226 0.8873 4.1223
ZAF -0.007972 4.19E-04 0.002 0.07372 -2.6528 -1.0104 -0.2118 0.9701 3.9207
ZMB -0.001333 7.63E-01 0.004 0.001035 -5.654 -0.9028 0.0596 0.8424 4.1035
ZWE -0.007225 8.62E-02 0.004 0.02394 -4.0278 -1.1522 -0.2328 1.0939 4.3964
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Supplementary Information

Supplementary Information 3.1: Additional information about the drought indices data

used in Chapter 3.

Palmer Drought Severity Index - The calculation of PDSI relies on a water balance-based two-bucket

system, where there is a surface layer with a storage capacity of 1 in and an underlying layer with

a storage capacity of -1 (Jacobi et al., 2013). PDSI was first developed by Palmer (1965) and uses

temperature and PET data, capturing the basic e↵ects of climate change through PET changes (Dai

& NCAR, 2019). Here, PDSI was used to quantifying long-term drought and was taken as a national

average from the annual administrative level 1 data.

Sources: Jacobi J, Perrone D, Duncan LL, Hornberger G. A tool for calculating the Palmer drought

indices. Water Resources Research 2014;49(9):6086-6089. Palmer WC. Meteorological drought (Vol.

30). 1965.US Department of Commerce, Weather Bureau. Dai A. and National Centre for Atmo-

spheric Research. The Climate Data Guide: Palmer Drought Severity Index (PDSI). [On-line].

Soil moisture - The dataset provides estimates of soil moisture from satellite sensors over the globe.

It is based on the European Space Agency’s Climate Change Initiative soil moisture version 3.3. Data

were provided as a netCDF file for each month from 2000-2016 on a regular latitude/longitude grid

at 0.25x0.25 resolution on a monthly temporal resolution. The data were processed by transforming

the co-ordinates to each country (by creating a function using the R packages “sp” and “rworldmap”)

and creating a national annual mean. This provided surface soil moisture as a percentage content of

liquid water in a surface soil layer of 2-5cm depth, expressed as the percentage of total saturation.

Source: Copernicus, 2018. Soil moisture gridded data from 1978 to present. [On-line]. European

Centre for Medium-Range Weather Forecasts.

Potential Evapotranspiration - Data were taken from the National Centre for Atmospheric Research

(NCAR) climate data guide which comes from the Climate Research Unit Timeseries (CRU TS) series

of datasets, specifically CRU TS4.0. The data contains several climate fields including precipitation,

temperature and cloud cover, which are used to compute variables including evapotranspiration in

mm per day. The data covers all land surface and spans from 1901-2015, although data here were only

extracted for 2001-2015, as this best captures the instrumental period of this research. The data were

gridded at 0.5x0.5° resolution based on 4,000 individual weather station data sources; this requires

171



homogenisation which can introduce limitations as the data will not be strictly homogeneous. The

data were provided as two netCDF format cells (2001-2010 and 2011-2015), which were then extracted

into a .csv file as a national average for each year.

Source: NCAR, 2015. CRU TS GRIDDED PRECIPITATION AND OTHER METEOROLOGICAL

VARIABLES SINCE 1901. [On-line].

Runo↵ - Observed river discharge information and a climate driven water balance model were com-

bined in order to develop composite runo↵ fields which are consistent with observed discharges. The

aim of the methods used is to provide a best estimate of terrestrial runo↵ over large domains in mm

per year. The composite fields use data from a gridded river network at 30-minute spatial resolution

to represent the riverine flow pathways and to link the continental land mass to oceans through river

channels. This used selected gauging stations from the Global Runo↵ Data Centre (GRDC). Inter-

station discharge and runo↵ were calculated to compare observed runo↵ with outputs from water

balance model simulations. Correction coe�cients based on the ratio of observed and simulated runo↵

for inter-station areas were calculated and applied against simulated runo↵ to create composite runo↵

fields. The GRDC also provided data for each station as individual .txt files but once processed the

files were missing large amounts of data and therefore the composite fields were instead used, given

as .grd files for each month.

Source: UNH/GRDC, 2000. UNH/GRCD Composite Runo↵ Fields V1.0. [On-line].

Annual freshwater withdrawal - Is provided as a .csv file containing county, year and annual freshwater

withdrawals in billion m³ from 1962-2016. All data outside the instrumental period (2000-2016)

were removed and a national average taken. Annual freshwater withdrawals refer to total water

withdrawals, not counting evaporation losses from storage in basins. Withdrawals also include water

from desalination plants in countries where they are a significant source. Withdrawal for agriculture

and industry are total withdrawals for irrigation and livestock production and for direct industrial use.

Domestic uses include drinking water, municipal use or supply and public services. The source of this

data is the Food and Agriculture Organization’s AQUASTAT data. Data were collected intermittently

and subject to variations in collection and estimation methods, which may hide significant variations

in water availability within countries. Data for smaller countries or in arid and semi-arid areas are

less reliable than those for large countries and countries with greater rainfall.
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Per capita freshwater withdrawal - The source of the per capita data were also AQUASTAT and

presented in the same way. The length of the dataset was 1960-2015 and was calculated from the annual

quantity of water withdrawn for agricultural, industrial and municipal purposes. It can include water

from primary and secondary resources as well as from over-abstraction of renewable groundwater,

fossil groundwater, agricultural drainage water, treated wastewater and desalinated water. It does

not include in-stream use which typically has very low net consumption rates such as recreation,

navigation, hydropower and inland capture fisheries.

Source: Ritchie, H., 2017. Water Use and Stress. [On-line]. Our World In Data.
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Supplementary Information 3.2: Additional information about the projection data used in

Chapter 3.

Projected temperature data were available through WorldClim, which gives projections for 2050 and

2070, under the four Representative Concentration Pathways (RCP) emissions scenarios. RCP2.6

requires emissions to start declining by 2020 and reach net zero by 2100, RCP4.5 requires emissions

to peak in 2040, RCP6.0 peaks at around 2080 and RCP8.5 assumes emission will continue to rise

throughout the century. These four scenarios are projected to have mean global warming by 2081-2100

of 1°C, 1.8°C, 2.2°C and 3.7°C, respectively (IPCC, 2014). RCP2.6 was not used in the projections,

as this requires CO2 emissions to peak in 2020, a goal which has not been reached (See Figure below).

The data were presented as a monthly average at administrative level 1, which were then transformed

into a national yearly mean.

Monthly mean carbon dioxide measured at Mauna Loa Observatory, Hawaii. The left panel
shows the full record of combined Scripps data and NOAA data. Every monthly mean is the
average of daily means, which are in turn based on hourly averages. The right panel shows
the last five complete years, plus the current year. The red lines represent the monthly mean
values, centered on the middle of each month. The black lines represent the same, after
correction for the average seasonal cycle (NOAA, 2022).

Projected PDSI data were di�cult to obtain, and previous modelling studies have found spatial

heterogeneity, making projecting drought across the continent challenging. There is disagreement

over drought changes in Africa under climate change and how populations will adapt to alterations in

water security (Ahmadalipour et al., 2019; Calow et al., 2010; Haile et al., 2020; Shanahan et al., 2009;

Touchan et al., 2008; Verschuren et al., 2000). One of the main di�culties in calculating projected

PDSI and the discrepancies in the results are the algorithms used to calculate PET (Tian-Jun and Tao,

174



2013). PET algorithms do not account for changes in vegetation cover expected due to elevated CO2,

making the “warming leads to drying” narrative flawed and over-simplistic, causing over-estimations

(Yang et al., 2020). Several studies which have taken a more critical approach to the methodology

found that drought did not significantly change over long time periods and changes are likely to be

seen on finer spatial scales (She�eld et al., 2012; Yang et al., 2020). These findings are consistent

with tree-ring data (Touchan et al., 2008), lake sediment records (Verschuren et al., 2000) and the

PDSI dataset used here. This suggests that droughts are neither more severe nor longer now than

historically.

Despite the large number of projected drought studies, extracting these results and using them here

is challenging, as they are on di↵erent spatial scales, using di↵erent methodology and data. There are

also issues with the projected indices used, as these often vary and are potentially not comparable.

To account for this, three scenarios were created from historical PDSI data using univariate linear

regression models for drought and year. This method used the coe�cients for each country to project

the future drought data, with Scenario 3 continually plotting the coe�cient values until 2070 (or it

reached -4 or 4, the extremes of the PDSI scale), Scenario 1 accepted the above hypotheses that PDSI

is an overestimation and drought will not change over the projected period and Scenario 2 was a

median value.

Projected population data were based on the United Nation’s World Population Prospectus (2019).

The projections are based on available data on population size, levels of fertility, mortality and inter-

national migration. Data are from censuses, registration of births and deaths, demographic and health

surveys, o�cial statistics and population registers. More recently, the data have taken into account

refugee statistics, prevalence of HIV and anti-retroviral coverage, infant and under five morality and

migration flows. The projections use the cohort component method using a variety of demographic as-

sumptions concerning fertility, mortality and migration. This takes into account the past experiences

of the country and reflects uncertainty and other countries in similar conditions. The medium variant

projection corresponds to the median of several trajectories of each demographic component derived

using a probabilistic model of the historical variability over time. Prediction intervals represent the

spread in the distribution of outcomes across the projected trajectories and thus provide an assessment

of the uncertainty inherent in the medium variant projection. Therefore, only the medium variant

projection was included in the model and not as an o↵set.
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Projected poverty headcount at <$1.90 a day was based on SDG1.1 (UN, 2015), which states that

by 2030, extreme poverty (<$1.25/day) will be eliminated and SDG1.2, that the population living in

poverty will be reduced by >50%. The goals are very ambitious and will require significant human

and economic resources. Several of the terms within the SDGs are also ambiguous, meaning the aims

and roadmap to achieving them are not clear. With regards to poverty, the setting used in the SDGs

is slightly lower ($1.25 compared to $1.90) and it is di�cult to distinguish the level of poverty within

the data; therefore, the projected scenario will mainly align with SDG1.2, to halve the population

in poverty by 2030. Despite their limitations, the SDGs provide a globally recognised pathway to a

sustainable future and what institutions and governments should be aiming to achieve, making their

use important in scientific research.

Creating projected freshwater withdrawal per capita data for the scenarios also presented challenges,

as this is largely down to human behaviour and therefore hard to predict. While SDG6.4 states that

by 2030, water use e�ciency will be sustainably increased across all sectors. Projected data are not

freely available and may not take into account climate change and alterations in societal behaviour,

all of which will alter water stress in the future. To maintain sustainable levels of water resources,

rates of withdrawal need to be lower than replenishment. Renewable resources come from internal

river flows and groundwater from rainfall. To understand the national historical water security, data

were plotted for both freshwater withdrawal and freshwater resources (Ritchie, 2017). Most countries

in Africa have both low water use and resources (Figure 3.2), exceptions to this include Gabon,

Republic of Congo and Liberia which have comparatively high resources and low withdrawal as well

as Madagascar, Libya, Sudan, Mauritania and Morocco which have comparatively low resources and

high use. Given the relationship between cholera outbreaks and water withdrawal, most countries in

Africa could increase their freshwater withdrawal, except for Madagascar, Libya, Sudan, Mauritania

and Morocco which should reduce their use, to improve sustainability.

Sources:

Intergovernmental Panel on Climate Change, 2014. Climate Change 2014 Synthesis Report Fifth

Assessment Report Future Climate Changes, Risks and Impacts. [On-line].

NOAA, 2022. Trends in Atmospheric Carbon Dioxide. [On-line].

Ahmadalipour, A., Moradkhani, H., Castelletti, A. and Magliocca, N., 2019. Future drought risk
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Chapter 4

Using Self-Controlled Case Series to

Understand the Relationship between

Conflict and Cholera in Nigeria and

the Democratic Republic of Congo

Dissemination

An extended version of the methods regarding data for this chapter is published at:

Charnley GEC, Kelman I, Gaythorpe KAM, Murray KA. Accessing sub-national cholera epidemio-

logical data for Nigeria and the Democratic Republic of Congo during the seventh pandemic. BMC

Infectious Diseases 2022;22:288.

A modified version of the full chapter is published at:

Charnley GEC, Jean K, Kelman I, Gaythorpe KAM, Murray KA. Using self-controlled case series to

understand the relationship between conflict and cholera in Nigeria and the Democratic Republic of

Congo. Emerging Infectious Diseases 2022;28:2472-2481.2021;21:1177.
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Abstract

Cholera outbreaks significantly contribute to disease mortality and morbidity in low-income countries.

Cholera outbreaks have several social and environmental risk factors and extreme conditions can act

as catalysts. A social extreme with known links to infectious disease outbreaks is conflict, causing

disruption to services, loss of income and displacement. Here, the self-controlled case series method

was used in a novel application and found that conflict increased the risk of cholera in Nigeria by 3.6

times and 19.7% of cholera outbreaks were attributable to conflict. In the DRC, conflict increased

the risk of cholera by 2.6 times and 12.3% of cholera outbreaks were attributable to conflict. Several

states/provinces with the strongest relationship were also areas of high reported conflict. Our results

help highlight the importance of rapid and su�cient assistance during social extremes and the need for

conflict resolution and addressing pre-existing vulnerabilities such as poverty and access to healthcare.

4.1 Introduction

Chapter 3 investigated the implications of environmental extremes on cholera outbreaks but social

extremes (e.g., conflict) are also known to cause disease outbreaks, including cholera. Here, the aim

is to investigate the impact of conflict on cholera outbreaks, as a potential explanation for why some

high burden countries did not project decreased cholera outbreak risk in Chapter 3. The high cholera

occurrence, even in the most optimistic future scenarios may be due to additional variables, not

considered in the previous chapter (residual confounding). Few studies have investigated the impacts

of conflict on cholera outbreaks, especially quantitatively. Studies have commonly focused on cholera

and conflict in Yemen [1, 2, 3], its e↵ect on vaccination e↵orts [4] or the impact of conflict on other

diseases such as Ebola [5] and COVID-19 [6].

The impacts of conflict on cholera outbreaks will be compared across two countries in Africa, Nigeria

and the DRC in the past 23 years. Nigeria and the DRC share several social and environmental

similarities, as well as experiencing cholera outbreaks, making them comparative countries in this

analysis. Both have active conflicts including the Boko Haram insurgency in northeastern Nigeria [7]

and political unrest in the eastern DRC [8]. In terms of cholera burden, Nigeria and the DRC have the

second and third highest numbers of estimated cases per year in Africa, respectively [9], with the Kivu
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provinces being the most active cholera foci in the world [10]. In addition, Nigeria and the DRC have

a tropical climate, poor access to WASH and a large proportion of the population living in poverty

(<$1.25/day) at 87.7% for the DRC and 62% for Nigeria [11], which are all known cholera risk factors.

A novel methodological approach will be used to bridge the research gaps between conflict and cholera.

The Self-Controlled Case Series (SCCS) has previously been used as a method to quantify the e↵ec-

tiveness of drug and vaccine intervention on an individual level [12, 13, 14] and more recently, at a

population level [15]. Chapter 4 aims to enhance the understanding of the method and promote its

use in other contexts. The method will be applied both nationally and sub-nationally and sensitivity

analyses used to provide insight into the duration and lag of the e↵ect, along with the implications

of di↵erent cholera definitions. Furthermore, the recently developed percentage attributable fraction

(PAF) equations will be adapted to the work presented here [15], to understand the proportion of

cholera outbreaks attributable to conflict.

Based on the results from the analysis, mechanisms through which conflict is driving cholera and

potential risk factors will be suggested, building on previous research in this area. The conclusions

of Chapter 4 can be used to strengthen disease prevention in conflict settings and reduce additional

mortality and morbidity in conflicts. The objectives for Chapter 4 include:

1. Understand the relationship between conflict and cholera in Nigeria and the DRC on a national

and a sub-national level.

2. Investigate the duration of this e↵ect and any potential lag e↵ects, while accounting for temporal

and spatial autocorrelation.

3. Suggest potential risk factors that may be driving conflict-related cholera outbreaks.

4.2 Methods

4.2.1 Datasets

Cholera data were compiled from a range of publicly available sources and all data on cases and deaths

available were included, which spanned from 1971-2021 for Nigeria and 1978-2021 for the DRC on a
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daily temporal scale and was provided at the finest spatial scale possible. The sources included WHO

disease outbreak news [16], ProMED (including ReliefWeb) [17], WHO regional o�ce for Africa weekly

outbreak and emergencies [18], UNICEF cholera platform [19], EM-DAT [20] and the Nigerian Centre

for Disease Control [21]. A literature search of MEDLINE, Embase, Global Health and Google Scholar

(with snowballing of reference lists) in both English and French was also used to identify additional

sources. The eligibility criteria for the literature are shown below in Table 4.1 (the included literature

is in Supplementary Information 4.1).

Table 4.1: Eligibility criteria for the literature included in the data fitted to the SCCS
models.

Inclusion Criteria

Population
Any local population/community impacted by a cholera outbreak in Nigeria

or the DRC

Intervention
Any investigation carried out to quantify and understand cholera cases/deaths

and risk factors

Comparator Anyone in the a↵ected community which did not become infected with cholera

Outcomes
The outcome is to understand epidemiological features of cholera outbreaks

in Nigeria and the DRC

Study type
Retrospective observational reports/studies including cross-sectional,

case-control and cohort studies

Exclusion Criteria

Studies which investigate a diarrhoeal disease outbreak with no specific mention of cholera

Serological surveys evaluating antibody levels in the population and not a specific

outbreak with active cases

Review papers, as only primary sources were used

Publications looking at public health and cholera prevention more generally

and not in relation to a specific outbreak response

Non-English and non-French abstracts and full-texts, due to linguistical constraints

Multiple sources where the information reported was the same

A data charting form was used to compile and update the data and the full compiled datasets are

available in a GitHub repository (https://github.com/GinaCharnley/cholera data drc nga). The
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data were at a daily temporal scale and to the finest spatial scale the source allowed, which in some

instances was to local government area in Nigeria and health zone in the DRC. Additionally, data on

cases, deaths, confirmed cases, age, sex, case fatality ratio and any reported risk factors were noted if

available and ordered by the date of the new reported cases or deaths for the outbreak. To investigate

di↵erences in cholera reporting in each country, the cholera outbreak definition was consulted and

shown below:

• Nigeria Centre for Disease Control - Suspected case: Severe dehydration or death from acute

watery diarrhoea in a patient aged 5 years or more. In an epidemic situation: A suspected

case in any person aged 5 years or more with acute watery diarrhoea with or without vomiting.

Confirmed case: A suspected case in which Vibrio cholerae O1 or O139 has been isolated in the

stool [22].

• Ministère de la Santé Publique de la République démocratique du Congo - Suspected case:

Severe dehydration or death following acute watery diarrhoea in a patient aged 5 years or more.

In an epidemic situation: Acute watery diarrhoea with or without vomiting in a patient aged 1

year or more [23].

Both definitions are very similar and are relatively standard case definitions for cholera, therefore it is

unlikely that this would alter cholera reporting in Nigeria and the DRC. Although the slightly younger

age threshold in the DRC may have resulted in more reported cases. As a method of validating the

reports used, multiple reports of the same outbreak were recorded and an average of several sources

used. Additionally, the data collected was significantly correlated (p <0.05) to the WHO Global Health

Observatory Data and two private data sources provided by the Nigeria Centre for Disease Control

and Johns Hopkins Bloomberg School of Public Health. The private data sources were not later used

for model fitting, as this was a retrospective analysis for data validation, due to the timing of data

availability. The data collation and validation has undergone peer review and additional information

is available in a complementary data paper [24].

Conflict data were provided by the United Nations O�ce for the Coordination of Humanitarian A↵airs

Humanitarian Data Exchange, which provides data from the Armed Conflict Location & Event Data

Project (ACLED) [25]. The data included sub-national conflict events for both countries given to the

exact location in longitude/latitude. The data were reported on a daily temporal scale and spanned
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from 1997 to 2020 and categorised by event type. The categories included battles, explosions, protests,

riots, strategic developments and violence against civilians. This was further sub-categorised within

these groups and reported number of fatalities.

The spatial granularity of the analysis was to administrative level 1 (states for Nigeria and provinces

for the DRC) and all data points that were reported on a finer spatial scale were aggregated to the

upper level. The study period was specified as January 1997 to May 2020, as these were the first and

last reports in the conflict data (the cholera data had reports from 1970 to 2021). The temporal scale

was set to weekly, with continuous epidemiological weeks from week 1 (January) in 1997 to week 20

(May) in 2020, this resulted in 1,220 continuous weeks (1-1,220). Continuous weeks was chosen for

compatibility with the model and to include periods of conflict that endured from one year into the

next (as epidemiological weeks re-set to 1 at the end of each year). Weeks was chosen, rather than

days, to account for reporting lags. Previous work has reported issues in the granularity of data and

timeliness of reporting, especially in humanitarian crises, due to di↵erent sources of data and logistical

di�culties [26, 27, 28].

4.2.2 Model Structure and Fitting

The SCCS method investigates the association between an exposure and an outcome event. The

aim was to estimate the e↵ect, by comparing the relative incidence of the adverse events (outbreaks)

within an exposure period of hypothesised excess risk (conflicts), compared to all other times (peace,

according to the dataset used). The method is a case only method and has the advantage of not

needing separate controls, by automatically controlling for fixed confounders that remain constant

over the observational period using stratification [29, 30, 31].

Both the event (outbreaks) and exposure (conflict) were set as binary outcomes. Conflict data were

daily reports of a new conflict, transformed to either being reported in the epidemiological week (1), or

not (0). Cholera data were daily reports of new cases or deaths, transformed to either being reported

in the epidemiological week (1), or not (0). The observation period was the full study period from

epidemiological week 1 in 1997 to epidemiological week 20 in 2020 (1-1,220). The exposure period

was the first week after conflict report onset and was reported as multiple onsets for each conflict,

not one long exposure period incorporating all conflicts in that period. The event was defined by the
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week the new cholera cases or deaths were reported. Each event and exposure that occurred in the

same state/province and week were designated an identification number (termed: indiv, which here

represents the person-time (state/province-week)) and a pre-exposure, exposure, and post exposure

period (interval) (see Supplementary Table 4.1 for data setup and additional information).

The data were then fit to either conditional logistic regression models (R package “survival”, function

clogit() [32]) or generalised non-linear models (R package “gnm”, function gnm() [33]). Both model

options are comparable and yield similar results but conditional logistic regression models were chosen,

due to their superior model fit according to BIC and AIC. However, AIC and BIC were only expected

to see marginal di↵erences, as model complexity was not altered. Additionally, conditional logistic

regression models are superior if the events are recurrent and independent [31], which was assumed

here (although the potential for spatial and temporal autocorrelation was tested and discussed).

Conditional logistic regression is an extension of logistic regression that allows for matching and

stratification. The ability of conditional logistic regression to fit matched data means it is often used

in case-control studies, as it allows for comparison between exposed and unexposed groups. Here,

MLE was used for parameter estimation, based on an assumed Poisson probability distribution, with

the number of outcome events (outbreaks) in the interval as the dependant variable, stratified by

the individual (indiv). The outcome event, Y = 1, is the probability of cholera being reported. The

likelihood, ⇡, is a function of � which are the associated coe�cients values, xij which is the exposure

to a conflict event for i in interval j and tij which is the person-time (state/province-week) for i in

interval j. The total log likelihood is the sum over all intervals j and person-times i, o↵set by the log

of the time spent in the interval [34, 35].

log(⇡) =
⇡

1� ⇡
.

log(⇡) =
X

i

X

j

(�1xij + �2tij + 1log(jlength)).

The length of the interval between exposed to unexposed was logarithmically transformed and used

as an o↵set term in the function. An o↵set term is a predictor with fixed beta coe�cients (at 1).

The interval length was o↵set because it may have some predictive power e.g., a longer interval would
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increase the chances of the event occurring within it. However, the predictive power would not be

because the exposure increased the probability of the event but because there was a greater period

of time for it to occur by chance. By holding the beta coe�cient at 1, this evaluated the e↵ect of j

in time, in relation to cholera and conflict, not its length. To control for the fixed confounders, each

exposure and event were allocated a unique number (indiv) and used as a stratified term in the model.

The model coe�cient was given as a log rate ratio, which was then transformed exponential to incidence

rate ratio (IRR) (IRR = exp(coe�cient)). IRR is the ratio of the incidence rates in exposed and

unexposed individuals and indicates the magnitude in which conflict increased the risk of cholera

outbreaks. Expressed algebraically, ⇢ represents the rates in the exposed (⇢1) and unexposed (⇢2), e

is the number of events and n is the size of the populations:

IRR =
⇢1

⇢2
=

e1
n1
e2
n2

.

The datasets for each country were then split by state/province and the analysis repeated for each. The

aim of the sub-national analysis was to understand if the significance of conflict on cholera outbreaks

varied by sub-national location and if conflict was more important in some states/provinces compared

to others. All statistical analyses were carried out in R version 3.6.2 and the threshold for significance

was p <0.05.

4.2.3 Sensitivity Analysis

A sensitivity analysis was used to test di↵erent methods of defining the exposure end point (set to

one week in the main analysis) and to understand the impact this would have on the results, at both

a national and sub-national level. It allowed for further understanding of how long after a conflict

event the risk of cholera is heightened. Five alternative exposure periods were tested from the original

exposure period (1 week after the onset of exposure, lag 1) and were named lag periods due to the

potential lag e↵ect from conflict onset to cholera outbreaks, these included:

1. Lag 2 - Week of conflict onset + 2 weeks

2. Lag 4 - Week of conflict onset + 4 weeks
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3. Lag 6 - Week of conflict onset + 6 weeks

4. Lag 8 - Week of conflict onset + 8 weeks

5. Lag 10 - Week of conflict onset + 10 weeks

Supplementary Figures 4.1 & 4.2 show additional swimmer plots of lag 10 and line plots of the temporal

trends.

A second sensitivity analysis was used to understand the e↵ect of altering the cholera outbreak def-

inition (>1 cholera case reported in a specific week and state/province) and to test for the presence

of temporal autocorrelation, by removing preceding events and re-testing. The analysis involved two

scenarios, Scenario 1 removed all outbreaks within 2 weeks of each other (based on cholera biology,

<10 days shedding the bacteria + <5 days incubation period) [36, 37]. Scenario 2 was an extreme

scenario to fully test model robustness and removed all outbreaks within 6 months of each other.

4.2.4 Percentage Attributable Fraction

The recently developed percentage attributable fraction (PAF) equations [15] were adapted to the

model results and the data used. PAF is an epidemiological measure of the impact of an exposure

and is expressed as the fraction of all cases attributed to the exposure. Here, the PAF values were the

percentage of outbreaks that could be attributed to conflict at a national level, using the datasets and

the IRR values from the model output. Sub-national PAF values could not be obtained, as the data

from the unexposed vs exposed states/provinces are needed to calculate the percentage. To calculate

PAF, the number of outbreaks attributable to conflicts are first estimated, Ai, for each province i

using the formula:

Ai = �id
E+
i

(IRR� 1).

Where d
E+
i

is the total duration of conflict exposure for the province i (if no conflict in province i,

thus dE+
i

= 0), �i is the rate of outbreak occurrence in a Poisson process in the absence of conflict, and

IRR is the incidence rate ratio associated with exposure to conflict. The outbreak data were fit to a

Poisson probability distribution to test the assumed probability distribution and simulated counts were
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obtained from 10,000 random realizations of a Poisson process of rate � = number of total national

outbreaks/number of states or provinces. This leads to Â, the total number of outbreaks attributable

to conflicts, where N
E�
i

is the number of outbreaks observed in the province i during the un-exposed

period and T being the total period of observation, an estimator of �i is �̂i = N
E�
i

/(T � d
E+
i

):

Â =
X

i

N
E�
i

d
E+
i

T � d
E+
i

( ˆIRR� 1).

Bootstrap resampling (1,000 samples) was used to obtain 95% confidence intervals for Â. For each

sample, a value of IRR was randomly re-sampled around the mean, based on the parameters estimated

in the SCCS analysis (R packages “dplyr” [38] and “resample” [39], functions confint(), do() and

resample()). Using Â and N , the total number of outbreaks observed, the equivalent of the population

attributable fraction can be easily obtained, PAF , this is equivalent to the PAF obtained in classical

epidemiological studies, but here population refers to the “population of states/provinces”:

PAF =
Â

N
.

4.3 Results

4.3.1 Conflict and Cholera Occurrence

The distribution of conflict and cholera in Nigeria and the DRC in the datasets used here is shown

temporally and spatially in Figure 4.1. The data shows an increase in reported conflict and cholera,

especially after 2010 (Figure 4.1a) and a large proportion of the cholera cases have been reported in

conflict-a↵ected areas, namely eastern DRC and northeastern Nigeria (Figure 4.1b).

The total number of conflicts and outbreaks for each state/province during the study period is shown

below in Figure 4.2 and totaled 8,190 conflicts and 782 cholera outbreaks for Nigeria and in the DRC,

4,639 conflicts and 396 cholera outbreaks. The outbreak distribution applied satisfactorily to the

Poisson probability distribution (Supplementary Figures 4.3).
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Figure 4.2: Percentage of events (conflicts and cholera outbreaks) in each dataset, over the
instrumental period (1997-2020), for a, Nigeria and b, the Democratic Republic of Congo by
administrative level 1. FCT - Federal Capital Territory.

To be included in the analysis, the state/province had to report both outbreaks and conflicts in the

datasets during the study period. No states/provinces reported only outbreaks in the observation

period. As such, 22 provinces were included for the DRC and 36 states for Nigeria. States and

provinces excluded were (and the number of conflicts removed) Imo (239 conflicts) for Nigeria and for

the DRC, Haut-Uélé (629 conflicts), Kasäı-Central (234 conflicts), Lomani (101 conflicts) and Tshuapa

(70 conflicts). The temporal distribution of the exposure periods and outbreaks fit to the model for

each state/province are shown in Figure 4.3.
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Figure 4.3: Swimmer plots showing the conflict exposure period in the SCCS model (1 week
after the onset) and the outbreaks (purple diamonds) for each state/province for a, Nigeria
and b, the Democratic Republic of Congo.
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4.3.2 Model Output

Conflict significantly increased the risk of cholera outbreaks (according to IRR) in the past 23 years

in Nigeria and the DRC. Nigeria showed an e↵ect of greater magnitude, increasing the risk of cholera

outbreaks by 3.6 times (IRR = 3.6, 95%CI = 3.3-3.9). Whereas for the DRC, the risk was increased

by 2.6 times (IRR = 2.6, 95%CI = 2.3-2.9).

Of the 36 Nigerian states included in the analysis, 24 showed significant associations between conflict

and cholera outbreaks. The strongest e↵ect was found in Kebbi, Lagos, Osun, Borno and Nasarawa,

with IRR values ranging from 6.9 to 6.2 (Figure 4.4a).

Ten out of 22 DRC provinces included in the analysis showed a significant relationship between conflict

and cholera. Tanganyika, Kasäı-Oriental, Maniema, Nord-Kivu and Kasäı found the strongest values

and some were the highest values found in the analysis. In Tanganyika, conflict increased cholera risk

by 7.5 times and 3.7 times for Kasäı (Figure 4.4b).
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Figure 4.4: Incidence rate ratio (IRR) for the e↵ect of exposure to conflict within one week
of the event and cholera at a sub-national level. For a, Nigeria and b, the Democratic
Republic of Congo. Only results that were significant at the threshold p <0.05 are plotted
here and labelled.

4.3.3 Sensitivity Analysis

The e↵ect of conflict on cholera outbreaks at a national and sub-national level for both Nigeria and the

DRC decreased with increasing exposure period. By week 6 the change was minimal and plateaued

or increased. From week 1 to week 10 the risk decreased from 3.6 to 2.08 for Nigeria and from 2.6 to

1.5 for the DRC (Figure 4.5). This suggests that the risk of conflict on cholera is highest soon after

the event but a detectable association remains, albeit at a lower level for potentially a long period of

time after the event.
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Figure 4.5: Incidence rate ratio (IRR) with 95% confidence intervals for the national
sensitivity analysis. The points show the e↵ect of exposure to conflict within 1, 2, 4, 6, 8 and
10 weeks of the event and cholera for Nigeria (NGA) and the Democratic Republic of Congo
(COD).

Thirty Nigerian states and 13 DRC provinces were found to be significant for at least one of the

lag periods. The most significant states predominately followed the trends of the national analysis,

whereas some increased after 6 weeks following the conflict event (Kano & Nassarawa in Nigeria and

Tanganyika & Maniema in the DRC). The magnitude of change varied by state, Kebbi saw a decrease

in IRR from 6.9 (for the original 1 week exposure period) to 4.0 (for a lag of 10 weeks), whereas

Gombe’s risk decreased from 2.4 to 1.5 (from 1 week to 10 weeks lag). The IRR values for the

sub-national sensitivity analysis are presented in Figure 4.6.
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Figure 4.6: Incidence rate ratio (IRR) for the sub-national sensitivity analysis. The bars
show the e↵ect of exposure to conflict within 1, 2, 4, 6, 8 and 10 weeks of the event and
cholera at administrative level 1. For a, Nigeria and b, the Democratic Republic of Congo.
Only results that were significant at the threshold p <0.05 are plotted here.
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Changing the outbreak onset definition yielded similar results to the original analysis. Removing

events within both 2 weeks (Scenario 1) and 6 months (Scenario 2) of each other found IRR values

within the confidence interval of the initial definition (Figure 4.7). All results remained significant at

p <0.05 and provides evidence that temporal autocorrelation did not impact model robustness. How

removing these events (cholera outbreaks) a↵ected the data are presented in additional swimmer plots

in Supplementary Figures 4.4 & 4.5.
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Figure 4.7: Results of the outbreak definition sensitivity analysis. Incidence rate ratio (IRR)
values and 95% confidence interval for a, Nigeria and b, the Democratic Republic of Congo
for Scenario 1 (only events > 2 weeks apart) and Scenario 2 (only events > 6 months apart).
Both alternative scenarios are compared against the “Original” analysis using all weeks with
outbreaks.
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4.3.4 Percentage Attributable Fraction

Based on the randomly resampled IRR values (1,000 samples) from the model results (3.6 for Nigeria

and 2.6 for the DRC), the onset of a conflict event during epidemiological week 1 in 1997 to week 20

in 2020, was attributable to 19.7% (95%CI = 18.2%-21.2%) of cholera outbreaks in Nigeria and 12.3%

(95%CI = 10.2%-14.4%) for the DRC.

4.4 Discussion

Conflict events significantly increased the risk of cholera outbreaks by 3.6 times in Nigeria and 2.6

times in the DRC. The percentage of cholera outbreaks attributable to the conflicts reported here was

19.7% for Nigeria and 12.3% for the DRC. The states/provinces with the highest increased risk were

Kebbi, Nigeria at 6.9 times and Kasäı-Oriental, the DRC at 7.3 times. This finding showed that in

some states/provinces, the e↵ect of conflict was much greater than the national level.

States/provinces with the greatest increased risk often coincided with areas of high conflict. This

provides further evidence to the hypothesis that conflict may be a driver of cholera in Nigeria and

the DRC. States/provinces surrounding high conflict areas were also highly significant (e.g., Abia,

Ogun, Osun, Maniema, and Tanganyika). The states/provinces here were studied independently but

a possible explanation for this may be a spill-over e↵ect. People may flee areas of conflict or a cholera

outbreak to neighbouring states and displacement is a known risk factor for disease outbreaks [40].

Displacement is especially important for cholera, as a large proportion of people will be asymptomatic

but can still shed the pathogen into local reservoirs, which displaced populations may use as drinking

water due to a lack of alternatives [36].

The sensitivity analysis evaluating the e↵ect of lag showed a decrease in e↵ect as the weeks progressed,

with some states and provinces seeing a plateau or increase around 6 weeks after the event. The

decrease with the lag duration may be a “diluting” e↵ect, as the probability of an outbreak will increase

across a longer period (although o↵setting the interval helped account for this, see Supplementary

Table 4.1). The states/provinces that increased after week 6, were often those with the strongest initial

e↵ect, especially in the DRC. This larger initial e↵ect may have a longer lasting impact, potentially

due to conflict severity (e.g., more infrastructure damage), while the IRR values of more than 1 (2.08
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Nigeria and 1.5 for the DRC) even at 10 weeks after the conflict suggest the impacts are long lasting.

However, states/provinces with a large e↵ect in week 1 also had the greatest magnitude of change

through the lag periods, potentially because it is not biologically possible to sustain the increased risk

for long periods e.g., the number of susceptible individuals would quickly reduce.

Cholera outbreaks can be explosive and self-limiting, due to the high number of asymptomatic in-

dividuals, reducing the susceptible pool [36]. This potentially explains why the impacts of conflict

on cholera was seen just one week after the event. The incubation period of cholera is relatively

short [37], making the e↵ect within the first week found here biologically possible for the pathogen

and a realistic timeframe for elevated exposure to manifest in cases. Other examples of cholera cases

emerging within the first week after an adverse event include Cyclone Thane hitting the Bay of Bengal

[41], water supply interruption in the DRC [42] and Cyclone Aila in West Bengal [43]. This provides

further evidence of the need for quick and e↵ective aid in humanitarian crises to avoid outbreaks and

reduce mortality [44].

4.4.1 Cholera/Conflict-related Risk Factors

Healthcare facilities can su↵er in periods of conflict and cholera outbreaks can overwhelm systems, a

potential cause of the relationship between conflict and cholera. Care can be inaccessible because of

direct infrastructure damage or di�culties getting to the facilities due to impromptu roadblocks [45].

Supplies may be stolen and/or unable to be delivered, including ORS, pathogen-sensitive antibiotics

and OCV, which are important for cholera outbreak control and mortality [46]. Finally, safety is a

serious issue, both for healthcare workers and patients and NGOs can withdraw from these areas,

citing an inability to ensure the safety of their sta↵ [47]. Steps need to be taken globally to reduce

this violence, such as using active clinical management for all patients to enhance the acceptance of

pathogen-specific treatment centres [48].

Conflict has the potential to worsen pre-existing vulnerabilities, which can exacerbate poverty, another

potential cause of the e↵ect of conflict on cholera. The impacts of poverty can be far reaching and

is a known risk factor for cholera [49, 50], along with other diseases [51]. For example, poor urban

settlements have faced the brunt of outbreaks including Zika, Ebola, typhoid, and cholera, due to

crowding and poor access to WASH [52]. Those in poorer communities may also have more contacts
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and greater transmission, creating a vicious cycle [52]. Conflict can result in loss of possessions,

habitual residence, and an inability to find employment, reducing income generation, savings and

financial backstops [53]. In times of worsening poverty, people may not be able to a↵ord healthcare

and basic medical supplies, especially in vulnerable groups. This disruption to daily life can cause

many more deaths than direct battlefield fatalities and leads to stagnation in development [54].

A lack of WASH facilities is likely to have contributed to the positive relationship between cholera and

conflict found here. Although WASH and poverty were not directly evaluated, their e↵ects are likely

to have been important. Conflict events can lead to disruption in sanitation and hygiene and adverse

events can act as catalysts in the interaction of contaminated water and the human population [55].

Displacement from conflict can cause issues in accessing WASH (e.g., latrine access, soap availability)

and several displacement camps have seen rapid cholera outbreaks, including the DRC after the

Rwandan genocide in 1994 [56]. If people are displaced due to conflict, this may result in the use of

water contaminated with toxigenic strains of Vibrio cholerae because alternatives are lacking, leading

to outbreaks.

4.4.2 Limitations

A potential limitation is the plausible existence of multiple causal pathways, leading to misclassifica-

tion, due to time-variant confounders. One causal pathway could be a conflict event in an adjacent

geographic area being causally linked to the conflict event in the current geographic area. This

classification bias would underestimate the e↵ect of conflict on cholera. If a cholera outbreak was

“imported” from a neighbouring state/province (spatial autocorrelation), this would be classified as

a genuine, autochthonous event, which would likely be non-di↵erential (likely to happen during an

exposed or non-exposed period). Additionally, by completing the sub-national analysis and recalcu-

lating the IRR, this accounted for spatial autocorrelation within the state/province, but not across

the country.

An additional causal pathway for cholera, that may have resulted in residual confounding here, could

be the presence of waterbodies. Water is considered fundamental in cholera transmission and large

basins are present in both study areas e.g., the Lake Chad basin in Nigeria and the African Great Lakes

Region in the DRC [57]. However, no study has yet demonstrated a long-term presence of toxigenic
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Vibrio cholerae in African lakes [58]. Understanding these additional environmental factors including

seasonal weather changes and the pre-existing vulnerabilities discussed is very important, as these are

known to impact disaster-related outbreaks and multi-disaster events [55, 59]. Although beyond the

scope of the methods used here, as conflict was investigated in isolation, this will be addressed in

Chapter 5.

Under-reporting, over-reporting and a reporting lag may have impacted the degree of e↵ect found

in Chapter 4. Under-reporting is a significant issue in global cholera and conflict estimates, due to

asymptomatic cases, disincentives to report, logistical issues and the ambiguity of classifying events

[28, 60]. Cholera surveillance is di�cult in conflicts, due to displaced populations and security is-

sues. Alternatively, during times of conflict health surveillance can be enhanced by the government

and/or NGOs (e.g., establishing cholera treatment centres (CTC)). Reporting delay is another poten-

tial problem and some national disease reporting delays have been found to range from 12 days for

meningococcal disease to 40 days for pertussis [27]. Additionally, ACLED (the source of the conflict

data used here) have stated that 17.4% of their published conflict data is delayed or lagged, which

ranges by event type, location and actor [25].

States which reported conflict but no cholera outbreaks were removed, as the SCCS model is a case-

only approach. Analysing cases only, instead of the corresponding complete cohort, translates into

a loss of e�ciency (by only analysing a sample of the data), but previous work showed that this

loss is small, especially when the fraction of the sample experiencing the exposure is high (92% of

states/provinces were included in the analysis). Moreover, the loss of e�ciency from this method

must be weighed against a better control of time-varying confounders (by fixing via stratification) as

discussed above. Previous examples illustrated that the SCCS design is likely to produce more trustful

results than the corresponding cohort analysis, especially when a strong residual confounding bias is

likely [29, 31].

The severity or intensity of both conflicts and cholera outbreaks were not evaluated here, as binary

variables were used. It was also assumed that the impacts of conflict were experienced evenly across

the state/province. Conflict severity is complex and far-reaching and despite some national indexes

being available [61, 62], these often focus more broadly on disasters and without a universal measure

of conflict severity, comparing studies remains challenging. Making assessments of how a conflict event

impacts a health outcome is di�cult and involve assumptions and oversimplifications. Despite these
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di�culties and although beyond the scope of this work, it is an important area of future research.

The conflict data used here were categorised and future analysis could assess if these di↵erent conflict

types impacted the e↵ect on cholera. Qualitative studies with those working in a variety of di↵erent

organisations in conflict-a↵ected areas, may be the best method to answer these questions.

Despite the limitations of conflict and cholera data, the data used here are to the highest standard

currently available and has been used by several other studies, making the research comparable [63,

64, 5]. Creating partnerships with those working on the ground and exploring more sensitive data

options is investigated in Chapter 5 [65]. Additional methods to account for data limitations included

setting both the event and the exposure to a binary outcome to reduce the impacts of severity and

using a weekly instead of daily temporal scale to account for delays. Furthermore, several methods of

validating the cholera data were used (e.g., comparing the dataset to other data sources, considering

multiple accounts of the same outbreak) [24] and the sensitivity analyses helped highlight the duration

of the e↵ect and possible lag e↵ects of the conflict data and the e↵ect of altering the cholera outbreak

definition.

4.4.3 Conclusion

In summary, this analysis shows a clear relationship between cholera and conflict in both Nigeria and

the DRC at both a national and sub-national level. Conflict increased the risk of cholera outbreaks by

7.3 times in some states/provinces and almost 20% of cholera outbreaks were attributable to conflict

in Nigeria. The e↵ect of conflict on cholera appears have a rapid and severe onset but should not

be considered acute, as it may have a long-lasting e↵ect, if not at a much lower level. This finding

potentially holds in other countries and diseases and highlights how the SCCS methodology could be

used in di↵erent contexts.

Cholera risks are likely multi-factorial in both northeastern Nigeria and eastern DRC and several

conditions need to be met for emergencies to lead to cholera outbreaks. Su�cient and rapid support,

along with enhanced e↵orts to build community trust can reduce this increased risk. Finding conflict

resolution should be the main priority in fragile states and pre-existing vulnerabilities need to be ad-

dressed, such as poverty, expansion of a↵ordable healthcare and improvements in WASH. By reducing

these vulnerabilities, communities will have greater resources to adapt to social extremes and could
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help to reduce vulnerabilities both in times of conflict and peace.

It is important to try and understand the complexities of the multiple risk factors involved in conflict-

related (and natural hazard-related) cholera outbreaks, incorporating as many as possible into mod-

elling studies. Chapter 5 will build on the methodologies from Chapters 3 and 4, using a data source

at a finer spatial scale. A continuous, rather than a binary outcome variable will be used to quantify

severity and evaluating multiple extremes together, rather than in isolation. Multiple hazard events

can occur, and the presence of a current extreme does not prevent further disasters from occurring.

Despite this, few studies have investigated the impacts of multiple disasters and even less in the context

of pre-existing vulnerabilities. In collaboration with the Nigeria Centre for Disease Control, Chapter

5 aims to address both these research gaps and build on the previous methodological limitations,

creating a framework for cholera outbreak risk in fragile settings.
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Démocratique du Congo en 2011. 2012. url: https://reliefweb.int/sites/reliefweb.int/

files / resources /RAPPORT%5C%20SUR%5C%20LA%5C%20SITUATION%5C%

20DU%5C%20CHOLERA%5C%20EN%5C%20RDC%5C%20EN%5C%202011%5C%

20DB-30 06 12.pdf.

[24] G.E.C. Charnley et al. “Accessing sub-national cholera epidemiological data for Nigeria

and the Democratic Republic of Congo during the seventh pandemic”. en. In: BMC

Infect. Dis. 22 (2022), pp. 1–7.

[25] H.D.X. The Humanitarian Data Exchange. en. 2021. url: https://data.humdata.org.

[26] R.A. Jajosky and S.L. Groseclose. “Evaluation of reporting timeliness of public health

surveillance systems for infectious diseases”. en. In: BMC Public Health 4 (2004), pp. 1–

9.

[27] S. Ri et al. “Attacks on healthcare facilities as an indicator of violence against civilians

in Syria: An exploratory analysis of open-source data”. en. In: PloS ONE 14 (2019),

p. 0217905.

[28] N.B. Weidmann. “A closer look at reporting bias in conflict event data”. en. In: Am. J.

Pol. Sci. 60 (2016), pp. 206–18.

[29] I. Petersen, I. Douglas, and H. Whitaker. “Self controlled case series methods: an alter-

native to standard epidemiological study designs”. en. In: BMJ (2016), p. 354.

203



[30] C.P. Farrington, H.J. Whitaker, and M.N. Hocine. “Case series analysis for censored,

perturbed, or curtailed post-event exposures”. en. In: Biostatistics 10 (2009), pp. 3–16.

[31] H.J. Whitaker et al. “Tutorial in biostatistics: the self-controlled case series method”.

en. In: Stat. Med. 25 (2006), pp. 1768–97.

[32] T.M. Therneau. survival: A Package for Survival Analysis in R. en. 2021. url: https:

//CRAN.R-project.org/package=survival.

[33] H. Turner and D. Firth. gnm: Generalized nonlinear models in R: An overview of the gnm

package. R package version 1.1-2. 2022. url: https://cran.r-project.org/package=gnm.

[34] E. Mostofsky, B.A. Coull, and M.A. Mittleman. “Analysis of observational self-matched

data to examine acute triggers of outcome events with abrupt onset”. In: Epidemiol.

29.6 (2018), p. 804.

[35] S. Xu et al. “Use of fixed e↵ects models to analyze self-controlled case series data in

vaccine safety studies”. In: J. Biom. Biostat. (2012), p. 006.

[36] A.A. King et al. “Inapparent infections and cholera dynamics”. en. In: Nature 454 (2008),

pp. 877–80.

[37] A.S. Azman et al. “The incubation period of cholera: a systematic review”. en. In: J.

Infect. 66 (2013), pp. 432–8.

[38] Hadley W. et al. dplyr: A Grammar of Data Manipulation. R package version 1.0.7.

2021. url: https://CRAN.R-project.org/package=dplyr.

[39] Tim H. resample: Resampling Functions. R package version 0.6. 2022. url: https://

CRAN.R-project.org/package=resample.

[40] J.T. Watson, M. Gayer, and M.A. Connolly. “Epidemics after natural disasters”. en. In:

Emerg. Infect. Dis. 13, 1 (2007).

[41] T. Fredrick et al. “Cholera outbreak linked with lack of safe water supply following a

tropical cyclone in Pondicherry”. en. In: J. Health Popul. Nutr. 33 (2012), p. 31.

204



[42] A. Jeandron et al. “Water supply interruptions and suspected cholera incidence: a time-

series regression in the Democratic Republic of the Congo”. en. In: PLoS Med. 12 (2015),

p. 1001893.

[43] R. Bhunia and S. Ghosh. “Waterborne cholera outbreak following cyclone Aila in Sun-

darban area of West Bengal, India, 2009”. en. In: Trans. R. Soc. Trop. 105 (2011),

pp. 214–9.

[44] R.V. Tauxe et al. “Epidemic cholera in Mali: high mortality and multiple routes of

transmission in a famine area”. en. In: Epidemiol. Infect. 100.2 (1988), pp. 279–289.

[45] C. Sousa and A. Hagopian. “Conflict, health care and professional perseverance: a qual-

itative study in the West Bank”. en. In: Glob. Public Health 6 (2011), pp. 520–33.

[46] E.J. Cartwright et al. “Recurrent epidemic cholera with high mortality in Cameroon:

persistent challenges 40 years into the seventh pandemic”. en. In: Epidemiol. Infect. 141

(2013), pp. 2083–93.

[47] M.S.F. DRC. Violent attacks against sta↵ force MSF to end projects in Fizi territory,

South Kivu. en. url: https://www.msf.org/msf-forced-pull-out-eastern-drc-territory-

following-violent-attacks.

[48] V.K. Nguyen. “An epidemic of suspicion—Ebola and violence in the DRC”. en. In: New

Engl. J. Med. 380 (2019), pp. 1298–9.

[49] A. Talavera and E.M. Perez. “Is cholera disease associated with poverty?” en. In: J.

Infect. Dev. Ctries. 3.06 (2009), pp. 408–411.

[50] K. Penrose et al. “Informal urban settlements and cholera risk in Dar es Salaam, Tan-

zania”. et. In: PLoS. Neglect. Trop. Dis. 4.3 (2010).

[51] M.P. Fallah et al. “Quantifying poverty as a driver of Ebola transmission”. en. In: PLoS

Neglect. Trop. Dis. 9 (2015), p. 0004260.

[52] M. Eisenstein. “Disease: poverty and pathogens”. no. In: Nature 531 (2016), pp. 61–3.

[53] O.C. Okunlola and I.G. Okafor. “Conflict–Poverty Relationship in Africa: A Disaggre-

gated Approach”. en. In: J. Interdiscip. Econ. (2020), pp. 1–26.

205



[54] J.F. Trani et al. “Poverty, vulnerability, and provision of healthcare in Afghanistan”. en.

In: Soc. Sci. Med. 70 (2010), pp. 1745–55.

[55] A. Jutla, R. Khan, and R. Colwell. “Natural disasters and cholera outbreaks: current un-

derstanding and future outlook”. nl. In: Curr. Environ. Health. Rep. 4.1 (2017), pp. 99–

107.

[56] D.B. Nkoko et al. “Dynamics of cholera outbreaks in Great Lakes region of Africa,

1978–2008”. en. In: Emerg. Infect. Dis. 17.11 (2011).

[57] M.E. Birmingham et al. “Epidemic cholera in Burundi: patterns of transmission in the

Great Rift Valley Lake region”. en. In: Lancet 349 (1997), pp. 981–5.

[58] D. Bompangue et al. “Lakes as source of cholera outbreaks, Democratic Republic of

Congo”. pt. In: Emerg. Infect. Dis. 14 (2008), p. 798.

[59] G.E.C Charnley et al. “Traits and risk factors of post-disaster infectious disease out-

breaks: a systematic review”. en. In: Sci. Rep. 11 (2021), pp. 1–4.

[60] K.O. Elimian et al. “Descriptive epidemiology of cholera outbreak in Nigeria, Jan-

uary–November, 2018: implications for the global roadmap strategy”. en. In: BMC Public

Health 19 (2019), pp. 1–1.

[61] Notre Dame Global Adaptation Initiative. ND-GAIN Country Index. en. 2019. url:

https://gain.nd.edu/our-work/country-index/.

[62] European Commission. INFORM Severity. en. 2022. url: https://drmkc.jrc.ec.europa.

eu/inform-index.

[63] M.U. Kraemer et al. “Dynamics of conflict during the Ebola outbreak in the Democratic

Republic of the Congo 2018–2019”. en. In: BMC Med. 18 (2020), pp. 1–.

[64] M. Gayer et al. “Conflict and emerging infectious diseases”. en. In: Emerg. Infect. Dis.

13 (2007), p. 1625.

[65] G.E.C. Charnley et al. “Investigating the impact of social and environmental extremes

on cholera time varying reproductive number in Nigeria”. en. In: PLoS Glob. Public

Health 2 (2022), e0000869.

206



Supplementary Material

Supplementary Figures

Stability Conflict Peace

Abia
Adamawa

Akwa Ibom
Anambra

Bauchi
Bayelsa

Benue
Borno

Cross River
Delta

Ebonyi
Edo
Ekiti

Enugu
FCT

Gombe
Jigawa

Kaduna
Kano

Katsina
Kebbi

Kogi
Kwara
Lagos

Nasarawa
Niger
Ogun
Ondo
Osun

Oyo
Plateau
Rivers

Sokoto
Taraba

Yobe
Zamfara

St
at
e

a

Bas−Uele

Equateur

Haut−Katanga

Haut−Lomami

Ituri

Kasaï

Kasaï−Oriental

Kinshasa

Kongo−Central

Kwango

Kwilu

Lualaba

Maï−Ndombe

Maniema

Mongala

Nord−Kivu

Nord−Ubangi

Sankuru

Sud−Kivu

Sud−Ubangi

Tanganyika

Tshopo

19
97

_1

20
00

_1

20
05

_1

20
10

_1

20
15

_1

20
20

_1

Year_Epiweek

St
at
e

b

Supplementary Figure 4.1: Swimmer plots showing the conflict dataset for lag 10 in the
sensitivity analysis. In relation to outbreaks (purple diamonds) for a Nigeria and b the
Democratic Republic of Congo. FCT - Federal Capital Territory.
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Supplementary Figure 4.2: Number of outbreak (orange) and conflict (purple) events by
year in a Nigeria and b the Democratic Republic of Congo over the full study period.
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Supplementary Figure 4.3: Poisson probability distribution fit to the outbreak data. The
simulated counts were obtained from 10,000 random realizations of a Poisson process of rate �
= number of total national outbreaks/number of states or provinces, for a, Nigeria and b, the
Democratic Republic of Congo. Expected values are the median simulated counts from the
distribution with a 95% confidence interval.

�NGA =
782

38
= 20.59

�COD =
396

26
= 15.23

R function ”rpois(n,�)”, with n representing the number of states, was then used to generate Poisson

random variables, which could be plotted in Sup. Fig. 4.3 against the data fitted to the model.
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Supplementary Figure 4.4: Swimmer plots showing the e↵ect of the outbreak definition
sensitivity analysis on distribution of outbreaks and conflicts. Scenario 1, removing all
outbreaks < 2 weeks apart, is presented here for a Nigeria and b the Democratic Republic of
Congo.
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Supplementary Figure 4.5: Swimmer plots showing the e↵ect of the outbreak definition
sensitivity analysis on distribution of outbreaks and conflicts. Scenario 2, removing all
outbreaks < 6 months apart, is presented here for a Nigeria and b the Democratic Republic
of Congo.
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Supplementary Tables

Supplementary Table 4.1: The layout of the pseudo-dataset dataframe fitted to the model.

Each event and exposure are given a reference number (indiv).

indiv exday eventday start end event exgr interval loginterval
1 3 374 1 3 0 0 2 0.69314718
1 3 374 3 4 0 1 1 0
1 3 374 4 542 1 0 538 6.287859
2 4 374 1 4 0 0 3 1.09861229
2 4 374 4 5 0 1 1 0
2 4 374 5 542 1 0 537 6.285998

The data (datLong) was fit to the model as follows: clogit(event ⇠ exgr + strata(indiv) + o↵-

set(loginterval), data = datLong).

The data set up follows the work of Heather Whittaker, further code and examples are available at:

http://stats-www.open.ac.uk/sccs/r.htm. The data are based on the examples related to multiple

risk periods. The aim is to evaluate the likelihood of: event = 1 and exgr = 1, vs event = 1 and exgr

= 0. A pre and post exposure period are included to account for the possibility that the event could

increase or decrease the probability of an exposure and because exposures can occur after the event.

The interval is set up as an o↵set to account for that fact that a longer interval would increase the

chances of the event occurring within it, not because the exposure increased the event but because

there was a greater period of time for it to occur by chance.

Additional explanations of these assumptions are available at:

1. Petersen I, et al. Self controlled case series methods: an alternative to standard epidemiological

study designs. BMJ 2016;354.

2. Farrington CP, et al. Case series analysis for censored, perturbed, or curtailed post-event

exposures. Biostatistics 2009;10(1):3-16.
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Supplementary Information

Supplementary Information 4.1: Literature included in the cholera datasets for Chapter 4

(fitted to the SCCS models).
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The Impact of Social and

Environmental Extremes on Cholera

Time-Varying Reproduction Number

in Nigeria: A Machine Learning

Approach

Dissemination

A modified version of the full chapter is published at:

Charnley GEC, Yennan S, Ochu C, Kelman I, Gaythorpe KAM, Murray KA. Investigating the impact

of social and environmental extremes on cholera time-varying reproduction number in Nigeria. PLoS

Global Public Health 2022;2(12):e0000869
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Abstract

Nigeria currently reports the second highest number of cholera cases in Africa, with numerous socio-

economic and environmental risk factors, some of which have been discussed in previous chapters. Less

investigated are the role of extreme events, despite recent work showing their potential importance.

To address this gap, time-varying reproduction number (Rt) was estimated from cholera incidence

in Nigeria and a machine learning approach used to evaluate its association with extreme events

(conflict, flood, drought) and pre-existing vulnerabilities (poverty, sanitation, healthcare). Using the

best fit model, a tra�c-light system for cholera outbreak risk was created, with two scenarios (Red &

Green) and used to predict Rt. The system highlighted extreme events and socio-economic thresholds

for outbreaks to occur. Chapter 5 found that reducing poverty and increasing access to sanitation

lessened vulnerability to increased cholera risk caused by extreme events (monthly conflicts and the

Palmers Drought Severity Index). The work presented here shows the need for sustainable development

for disaster prevention and mitigation and to improve health.

5.1 Introduction

Pre-existing vulnerabilities, such as poverty and lack of access to clean water and sanitation, have a

significant impact on cholera control and the e↵ect of these pre-existing vulnerabilities on disease risk

can be exacerbated in times of environmental (drought, floods) and social extremes (conflicts). These

risk factors can in turn act as a catalyst for, or exacerbate the impacts of, outbreaks, especially in en-

demic countries where the disease already circulates. Despite the known catalytic e↵ect of disasters on

disease outbreaks, previous research has largely examined extreme events in isolation [1, 2] (Chapters

3 & 4), despite notable examples of multi-hazard outbreaks [3], while others do not include multiple

pre-existing socio-economic factors into the methodology [4, 5]. Research linking several social and

environmental extremes to diseases, including via risk factor cascades, is a global research gap and is

important for predicting cholera transmission and mitigating outbreaks [6].

Nigeria has one of the highest cholera burdens in Africa (and globally) [7, 8] and has experienced

many large outbreaks [9, 10, 11, 12]. This is likely due to the presence of many underlying social

and environmental risk factors, including a favourable climate [13, 14], poor access to WASH [15,
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16] and a high proportion of the population living in poverty (62% at <1.25/day) [17, 18, 19]. It

also has a relatively robust reporting system which may correlate with more cases, as cholera is an

under-reported disease and cases and deaths are often missed or misattributed. The country has been

frequently challenged by both social and environmental extremes such as droughts and floods, which

may alter in intensity and frequency with climate change [6, 18], along with ongoing conflict in the

northeastern region due to Boko Haram (Islamic State West Africa Province) [20, 6]. Due to the

ongoing presence of these issues in Nigeria (conflict and environmental change), it is important to

understand their specific e↵ects to protect the health of the population and inform e↵ective infectious

disease control policy.

The aim of Chapter 5 is to expand the current understanding of the role of extreme events in causing

or contributing to cholera in Nigeria. In collaboration with the Nigeria Centre for Disease Control

(NCDC), a range of environmental and social covariates were evaluated by way of machine learning

to understand how they influence cholera time-varying reproduction number (Rt). The chapter takes

advantage of the predictive capacity of machine learning techniques and uses Rt in a novel application

to understand the complexities of disaster-related risk factors on cholera outbreak evolution, rather

than case or deaths numbers. The originality of the data used here are important, as modelling and

testing cholera assumptions across multiple data sources are important to improve our understanding

of cholera dynamics.

A tra�c-light system of cholera risk will be created using the model with the best predictive power.

The system will help to illustrate how disasters and pre-existing vulnerabilities alter Rt in Nigeria,

stating specific quantitative thresholds and triggers. The aim of the tra�c-light system is to move

beyond stating and discussing risk factors more generally, creating thresholds to help guide policy

targets. Cholera predictions using quantitative models and scenarios are a global research gap, and

are important in understanding cholera risk factors and outbreak triggers now and in the future. The

novel approach presented here aims to use a relatively simple model, based on routinely collected

available data, to predict the level of cholera risk for Nigeria as low or high. The framework could be

employed by a range of professionals working in fragile settings to target interventions towards key

disaster-related risk factors. The objectives for Chapter 5 are as follows:

1. Use cholera surveillance data from Nigeria to calculate cholera incidence and model cholera

time-varying reproduction number.
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2. Understand the impacts of multiple extreme conditions on cholera outbreaks in Nigeria.

3. Evaluate how the pre-existing vulnerabilities of the population may alter the relationship be-

tween cholera and extreme events.

4. Predict a tra�c-light system of cholera outbreak risk, to understand triggers and thresholds for

outbreaks to occur in Nigeria.

5.2 Methods

5.2.1 Datasets

Cholera data were obtained from NCDC and contained surveillance linelist data for 2018 and 2019.

The data included information on patients’ age and sex and were on a daily temporal scale, to ad-

ministrative level 4 (village or settlement). The data also provided information on the outcome of

infection and whether the patient was hospitalised. The data were subset to only include cases that

were confirmed either by rapid diagnostic tests or by laboratory culture and only these confirmed

cases were used in the analyses. To test if removing suspected cases bias the results and to prove

model robustness, a sensitivity analysis was completed running the analysis on all the cholera data

(confirmed and suspected), further details and the results are shown in Supplementary Information

5.1.

Additionally, NCDC provided OCV data, which were represented by the campaign start and end date,

the location (administrative level 1, states) and the coverage. OCV was transformed to an annual

binary outcome variable (0-1) for each state (e.g., if coverage was 100% in a specific year and state,

the data point was assigned 1, no states that were vaccinated had less than 100% coverage). OCV

coverage was assigned annually based on the assumption that vaccine-derived immunity to cholera is

relatively short (see 1.3.1 History and Global Burden of Cholera).

A range of covariates were investigated based on previously understood cholera risk factors from the

literature and prior chapters. Covariates (and their temporal/spatial scales) included factors related

to conflict (monthly, daily/settlement) [21], drought (Palmers Drought Severity Index, Standardised

Precipitation Index (SPEI), monthly/state) [22, 23], internally displaced persons (IDPs) (households,
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individuals, annual/national) [24], WASH (improved drinking water, piped water, improved sanitation,

open defecation, basic hygiene, annual/state) [25], healthcare (total facilities, facilities per 100,000 peo-

ple, annual/state) [21], population (total, annual/state) [26] and poverty (Multidimensional Poverty

Index (MPI), headcount ratio in poverty, intensity of deprivation among the poor, severe poverty and

population vulnerable to poverty, annual/state) [21].

PDSI data were taken from the same source as Chapter 3, and additional information on the collection

and granularity of these data are available in 3.2.1 Datasets and Study Period. The SPEI data were

from the National Centre for Earth Observation’s Centre for Environmental Data Analysis archive.

The dataset is for the whole of Africa at 1 month to 48 months time scales and calculated based on

precipitation estimates from satellite-based and station data. The spatial resolution of the data was

5x5 kilometers at a monthly temporal scale. The dataset was provided as a netCDF file, and similar

to the PDSI data, shapefiles were used to attribute the grids to administrative levels and available at

administrative level 1 [23].

Here, several drought metrics were used, measured across multiple time windows. The benefits of

using multiple metrics when investigating both drought and floods have been suggested in Chapter 3.

The drought indices were used to measure relative dryness/wetness, not long-term drought changes,

due to the short timescale of the cholera surveillance dataset (2018-2019). Using a drought metric,

instead of raw precipitation or temperature data were selected to account for several environmental

variables (temperature, precipitation and potential evapotranspiration) and to better present how the

raw data translated into drier or wetter environments.

Covariate data were on a range of spatial and temporal scales (as stated above), therefore adminis-

trative level one (state) was set as the spatial granularity, as this best captured the data used. All

covariate data, other than IDPs (national) and conflict (settlement/village), were at administrative

level 1 and data on a finer spatial scale were attributed to administrative level 1 (counting the conflict

events) or repeated for national data. The finest temporal scale possible (daily) was used for covariate

selection and if two temporal scales were available, both were run through covariate selection. Covari-

ate values were repeated if data were not available at the daily level, which was the case for covariates

unlikely to change at a daily rate e.g., poverty, WASH.

For covariate predictions (5.2.4 Nowcasting and 5.2.5 Tra�c-Light System for Cholera Outbreak Risk),

monthly data were used, as this best captured the temporal scale of the data selected in the best fit
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model (monthly or annual). Additionally, values were also repeated if unlikely to change at a daily

rate (e.g., MPI), or if the daily change was likely to be incorrect due to lags and reporting issues

(e.g., conflict and cholera). The datasets and methods used here were approved by Imperial College

Research Ethics Committee and a data sharing agreement between NCDC and the research team.

5.2.2 Incidence and Reproduction Number

The 2018 and 2019 laboratory confirmed linelist data were used to calculate incidence. Incidence

was calculated on a daily scale by taking the sum of the cases (not the rates) reported by state and

date of onset of symptoms. This created a new dataset with a list of dates and corresponding daily

incidence for each state. All analyses were completed in R version 4.1.0. (packages “incidence” [27] &

“EpiEstim” [28]).

Rather than using incidence as the outcome variable (which has less implicit assumptions in terms

of latency, contacts and population size), Rt was calculated, as it is more descriptive and provides

information on epidemic evolution (e.g., Rt >= 1 means cases are increasing), instead of new reported

disease cases for a single time point. Rt was calculated from the incidence of confirmed cases using the

parametric serial interval method, which uses the mean and the standard deviation of the serial interval

(SI). The parametric SI method was used (vs non-parametric which uses a discrete distribution), as

cholera SI can be adequately modelled by a gamma probability distribution and has a fixed set of

parameters e.g., mean and standard deviation.

SI is the time from clinical onset in the primary case to onset in the secondary case and therefore

impacts the evolution of the epidemic and speed of transmission. It is defined as TA + IB, where

TA is the time from clinical onset in the first case to when they infect the second case and IB is

the incubation period of the subsequent case. The SI for cholera is well-documented and there are

several estimates in the literature [29, 30, 31]. To account for this reported variation in SI, a sensitivity

analysis was conducted with SI set at 3, 5 and 8 days and a standard deviation of 8 days.

The mean and the standard deviation of the SI was used in a renewal equation. Renewal theory

is a generalisation of a Poisson process for arbitrary holding times. A holding time is the time

between events and must have any positive distribution (usually exponential), be independant of each

other, have a finite mean and be identically distributed. The equation is shown below, where It is
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the incidence of symptom onset at time t, It�s is the past incidence and !s is the serial interval

distribution. The mean Rt value (with the standard deviation plotted in Figure 5.3) calculated from

this process was used as the outcome variable.

It ⇠ Pois(Rt

tX

s=1

It�s!s).

Estimating Rt too early in an epidemic increases error, as Rt calculations are less accurate when

there is lower incidence over a time window. When few or no case counts are available to constrain

inference, the method is largely driven by the inherent prior distributions (gamma) and assumptions.

A way to understand how much this impacts Rt values is to use the coe�cient of variation (CV),

which is a measure of how spread out the dataset values are relative to the mean (CV = standard

deviation/mean). The lower the value, the lower the degree of variation in the data, which is achieved

by having a higher incidence over the time window. A coe�cient of variation threshold was set to 0.3

(or less) as standard, based on previous work [28]. To reach the CV threshold, calculation start date

for each state was altered until the threshold CV was reached. States with <40 cases were removed,

as states with fewer cases did not have high enough incidence across the time window to reach the CV

threshold. Additionally, Rt values were calculated over monthly sliding windows, to ensure su�cient

cases were available for analysis within the time window.

5.2.3 Model Fitting and Covariate Selection

Supervised machine learning algorithms such as decision-tree based algorithms, are now a widely used

method for predicting disease outcomes and risk mapping [32, 33]. They work by choosing data points

randomly from a training set and building a decision tree to predict the expected value given the

attributes of these points. Transparency is increased by allowing the number of trees (estimators),

number of features at each node split and re-sampling method to be specified. Random Forests (RF)

then combines several decision trees into one model, which has been shown to increase predictive

accuracy over single tree approaches (due to less bias and overfitting), while also dealing well with

interactions (by taking hierarchical dependencies into account) and non-linear relationships (by using

regression random forests) [34, 35].
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The covariates listed above (conflict, drought, IDPs, WASH, healthcare, population and poverty)

were first clustered to assist in the selection of covariates for model inclusion and to understand

any multicolinearities. Despite RF automatically reducing correlation through subsetting data (re-

sampling helps reduce the chances of re-fitting the same patterns) and tuning the number of trees

and depth (the more the tree grows, the more likely it is to be overfit, controlling the depth reduced

this) [33, 36], the process here lends support that the final model is measuring somewhat independent

processes and not purely overfitting the same patterns [32]. The clustering was based on the correction

between the covariates meeting an absolute pairwise correlation of above 0.75. A secondary covariate

selection process (as used in Chapter 3) was run during preliminary analysis and acted as a method

of validation. The process is detailed in Supplementary Information 5.2.

Random forest variable importance was used to rank all 22 clustered covariates. Variable importance

provided an additional method of guiding the fitting of the best fit model, by testing the covariates

found to be of higher variable importance first, but still testing every possibility. In this context,

variable importance is a measure of the cumulative decreasing mean standard error each time a

variable is used as a node split in a tree. The remaining error left in predictive accuracy after a node

split, based on out-of-bag (OOB) sampling, is known as node impurity and a variable which reduces

this impurity is considered more important.

As RF models are a well established method, there are now a number of methods available to fit the

models using R software (R Studio). The methods vary in terms of fit and control over model tuning

(although di↵erences in model fit were expected to only be marginal). Here, three di↵erent packages

were tested for model fitting on a subset of the data, these included randomForest [37], ranger [38]

and caret [39]. The caret package was selected as it was found superior at fitting the model based on

correlation, R² and RMSE and also allowed for the greatest degree of control over tuning.

Training (70% of data) and testing (30%) datasets were created to train the model and test the

model’s predictive performance. A single binary split was set and used on the full dataset to create

the training set and testing set. Random forest regression models (as opposed to classification models)

were used since the outcome variable (Rt) was continuous. The model was manually tuned using a

parameter grid search and estimated an optimal number of predictors at each split of two, based

on the lowest OOB error rate with Root-Mean-Square Error (RMSE) used as the evaluation metric.

RMSE indicates how well the model can predict the value of a response variable in absolute terms.
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(R package “rsample”, functions initial split(), training() and testing() [40])

The parameters for training were set to repeated k-fold cross-validation for the re-sampling method.

Cross-validation was chosen over bootstrapping, as this allows the model performance to be assessed

based on test metrics. Ten re-sampling interactions (based on model stability) and five complete sets

of k-folds to complete were used. There is no one correct number of k-folds to choose, as it is hard to

estimate how well the folds represent the data. Generally, the number of k-folds is based on sample

size, and four or five are usually selected, unless the sample is particularly large (which was not the

case here). Five folds meant that around 20% of the data were used for validation, which has proved

robust in the past (R functions trainControl() and train() [39]).

A stepwise analysis was used to fit the models toRt for each SI (3, 5 & 8 days), taking into consideration

the covariate clustering and variable importance. One covariate was selected from each cluster, and

all combinations of covariates were tested until the best-fit model was found. Models were assessed

against each other in terms of predictive accuracy, based upon R² (coe�cient of determination) and

RMSE. Predictions were then calculated on the testing dataset to compare incidence-based (Rt values

calculated using the incidence data) vs covariate-based Rt values (Rt values calculated through model

predictions). The terms, actual vs predicted was not used here, as all Rt values were modelled making

the term “actual” misleading in this context. Model performance evaluations were built on multiple

metrics including correlation (against the testing dataset), R² (how well the predictor variable can

explain the variation in the response variable) and RMSE.

Despite random forest models being accurate and powerful for prediction, they are easily over-fit

(fitting to the testing dataset too closely or exactly), therefore calculating prediction error is important.

Little to no error in the predictions are an indication of over-fitting which can occur through predictions

based o↵ too small a dataset, more parameters than can be justified by the data (resulting in too many

tree/too deep) and multicollinearity. Here, error was calculated using mean absolute error (MAE),

which indicates how close the predictions are to the outcomes, in absolute terms. Where yi is the

prediction and xi is the true value, with the total number of data points as n.

MAE =

P
n

i=1 |yi � xi|
n

.
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5.2.4 Nowcasting

The best fit model, in terms of predictive power according to the metrics above, was used to predict

Rt for the remaining states which did not have su�cient reported cases (< 40) to calculate Rt using

incidence or had missing data for certain dates. Data for the best fit model covariates were collected

for the states and missing dates from the sources given above. This created a full monthly dataset for

each state for 2018 and 2019, with sliding monthly values of R predicted, using covariate data for the

same month.The data for the selected covariates are shown spatially in Supplementary Figure 5.1.

5.2.5 Tra�c-Light System for Cholera Outbreak Risk

The best fit model was then used to predict the tra�c-light system for cholera outbreak risk, by

manipulating the covariate values and using these to predict Rt. A disadvantage of RF models is that

they are considered a “black box” modelling technique, meaning the complexity of the model makes it

di�cult to see how the input produces the output and the relationships and patterns that the model is

based upon. The scenarios helps to address this methodological limitations, by further understanding

and illustrating the relationships between the covariates and the outcome variable. The tra�c-light

system was defined as:

• Red - High risk of cholera transmission = Covariate values which predicted Rt over 1

• Green - Low risk of cholera transmission = Covariate values which predicted Rt below 1

By using the scenarios, cholera outbreak triggers were identified based on the conditions of the four

selected covariates. The covariate values were manipulated in a similar way to the creation of the

marginal e↵ect plots in Chapter 3 (3.3.2 Output from the Best Fit Model). Covariate values were

changed in a step-wise pattern through a full range of possible values (Sanitation 30-70, PDSI -4-+4,

Conflict 0-40, MPI 0.1-0.5), while the other covariates were kept constant at the mean value for R >=

1 in the full dataset (Sanitation 43.64327, PDSI 0.2192958, Conflict 7.152047, MPI 0.3884532). The

mean value for R >= 1 was chosen for the other covariates, to identify the threshold needed to push

R values below one, when poor conditions (in terms of cholera risk) were present. To illustrate the

historical trends between the best fit model covariates and the Rt thresholds (Rt >= 1, Rt < 1), the
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data were split both spatially (by state) and temporally (by month) in Figure 5.1 & Supplementary

Figure 5.2.

5.2.6 Spatial Heterogeneities

To understand spatial di↵erences in the relationship between the selected social and environmental

extremes (conflict and PDSI) and cholera outbreak risk and the role pre-exiting vulnerabilities played

in altering these relationships, six states were selected for additional analysis. These states were

selected because they had either a clear positive or clear negative relationship with conflict or PDSI

and Rt (PDSI is hypothesised to increase Rt at either end of the scale, +4 = extreme wetness or -4

= extreme dryness) [41, 4] and similar mean values for the other covariates in the model, to increase

comparability. The included states were Borno, Kaduna, Nasarawa, Ekiti, Lagos and Kwara (see

Figure 5.1). The process above for predicting Rt under the tra�c-light scenarios was repeated for the

six states but only PDSI and conflict values were manipulated, keeping the other three covariates at

the mean value for Rt >= 1 across the full dataset for the state. The spatial analyses identified the

thresholds in conflict and PDSI needed to push Rt values below 1.
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Figure 5.1: Historical spatial trends between the selected social (conflict, left panel) and
environmental (PDSI, right panel) extremes and the Rt thresholds (Rt >= 1, Rt < 1).
Presented as the mean and standard error for the two covariates for the full dataset split by
state and Rt threshold. The “x” shows the states which were included in the spatial
heterogeneity analysis: Conflict (Borno and Kaduna), extreme wetness (Lagos and Ekiti),
extreme dryness (Nasarawa and Kwara).

5.3 Results

5.3.1 Incidence and Reproduction Number

In Nigeria, there were 837 and 564 confirmed cholera cases for 2018 and 2019, respectively, resulting in

279 data points at 70% training across 6 states (out of 44,208 and 2,486 total cases for 2018 and 2019,

respectively). The results from the sensitivity analysis (5,627 data points across 16 states) including

confirmed and suspected cases, proved model robustness and that the smaller dataset was not biasing

the results (see Supplementary Information 5.1). The geographic distribution of confirmed cases is

shown in Figure 5.2a and are concentrated in the northeast of the country, with Adamawa, Borno,

227



Katsina and Yobe having the highest burden. The high number of cases in Katsina may be a product

of population size, being the third most populous state in Nigeria, whereas for Adamawa (21/37),

Borno (13/37) and Yobe (30/37) this was not the case [42].
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Figure 5.2: Number of confirmed cholera cases in 2018 and 2019 in Nigeria by state, grey
indicates states that had no reported confirmed cases.

Six states for 2018 and two states for 2019 had su�cient cases (>40) to have Rt calculated, including

Adamawa (2018 & 2019), Bauchi (2018), Borno (2018 & 2019), Gombe (2018), Katsina (2018) and

Yobe (2018). Both the Rt values and the incidence data used to calculate Rt are shown temporally in

Figure 5.3 for each state and year. Some states appear to have a peak in transmission around June-

July (hottest and driest months), whereas others appear later during September to October (rainy

season) (see Supplementary Figure 5.3 for average Nigerian climate).
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Figure 5.3: Mean Rt values over monthly sliding windows with standard deviation around
the mean (line and shading), calculated from the daily incidence (bar) of cholera. The data
used were only confirmed cholera cases for 2018 and 2019 of states which met the threshold of
>= 40 cases. Presented are Rt values calculated using an SI of 5 days (8 days standard
deviation).

5.3.2 Covariate Selection and Model Fitting

Twenty-two covariates were included in the clustering and variable importance analysis and were

grouped into nine clusters. The clusters and variable importance (based on reducing node impurity)

of each covariate are shown in Figure 5.4. Stepping through di↵erent covariate combinations, the best

fit model included number of monthly conflict events, MPI (annual), PDSI (monthly) and improved

access to sanitation (annual), fitted to Rt values with a serial interval of 5 days (standard deviation:

8 days). The fit of the incidence-based vs covariate-based Rt values (including MAE) are shown in

Figure 5.5 and had a correlation of 0.87, with the model RMSE at 0.17 and R² of 0.51.
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Figure 5.4: The variable importance for the 22 covariates tested for inclusion in the best fit
model. All three serial interval values tested are shown (Rt3 - 3 days, Rt5 - 5 days, Rt8 - 8
days) and the numbers represent the clusters. Variable importance is measured through node
impurity (see 5.2.3 Methods for details). SPEI01, 12, 48 - Standardised Precipitation Index
calculated on 1, 12 and 48 month scale. PDSI - Palmers Drought Severity Index. MPI -
Multidimensional Poverty Index. IDP – Internally Displaced Persons. OCV - Oral Cholera
Vaccination.
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Figure 5.5: Incidence-based vs covariate-based Rt values for the best fit model, fitted to the
testing dataset. The error bars show mean absolute error and the line is a linear trend line.

5.3.3 Nowcasting

Using the best fit model, Rt was predicted for the remaining 31 states which did not have su�cient cases

to be included in the Rt calculations and any missing dates for the six states which were included.

The term “nowcasting” is used to describe this process, which is used throughout epidemiology to

understanding the current state of a disease by assessing key epidemiological characteristics of an

ongoing outbreak, in this case, using out of sample predictions [43]. This created estimates of Rt for

all 37 states on a monthly temporal scale for 2018 and 2019. The predictions provide further evidence

that the model accurately predicts Rt, as the higher Rt values were in areas with known elevated

cholera burden (northern and northeastern regions) and the states which only marginally fell below

the threshold (<40 confirmed cases) for Rt calculations (e.g., Niger, Sokoto, Taraba) (Figure 5.6).
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Figure 5.6: Average Rt values for 2018 and 2019 for all 37 Nigerian states. Incidence-based
(green) - the six states which met the >= 40 case thresholds. Covariate-based (purple) - the
31 states which did not meet the threshold and had Rt predicted using the best fit model.
State label colour shows which states had an average Rt value of Rt >= 1 (black) and Rt < 1
(orange).

5.3.4 Tra�c-Light System for Cholera Outbreak Risk

Figure 5.7 shows the predicted Rt values for the tra�c-light scenarios (Red = Rt over 1 and Green

= Rt less than 1) of cholera outbreak risk, based on the four selected covariates. Sanitation and MPI

had a clear relationship with the Rt threshold, with consistently lower MPI (less poverty) and a higher

proportion of people with access to sanitation seeing lower Rt values. Rt increased above 1 at 54% or

lower for improved sanitation access and MPI values of above 0.38. The historical average sanitation

level for Rt >= 1 was 43.6% for the full dataset, whereas for Rt < 1 it was 61.2%, for MPI the mean

values were 0.38 and 0.13 for Rt >= 1 and Rt < 1, respectively.

In contrast, PDSI shows a less defined relationship, with Figure 5.1 & 5.7 showing the polarity of the

relationship between PDSI and cholera. PDSI increased Rt values above 1 at around -0.25 to -4 and

+0.75 to +4, showing that both wetter and drier conditions increased cholera transmission. Similar
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to Chapter 3, this may also suggest that drought is more important in Nigeria, with drier conditions

(PDSI -4 to 0) having a wider range of values in the Red scenario.

For monthly conflict events, Rt values increased above 1 at 16 events but this varied widely among

states (Figure 5.1). Some states had very low conflict event frequency over the study period, which

may have resulted in a less defined relationship in several areas. Furthermore, some states appeared

to be less e↵ected by conflict, in terms of cholera transmission, even when conflict frequency was

high. Potentially due to less pre-existing vulnerability or due to the high conflict in the area resulting

in better population preparedness for the disruption caused by conflict and/or the risk of cholera

transmission in these fragile settings.
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Rt >= 1
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Palmers Drought Severity Index

R
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Figure 5.7: Tra�c-light system of cholera risk in Nigeria. The tra�c-light scenarios (Red =
Rt over 1 and Green = Rt less than 1) for each of the four covariates in the best fit model.
PDSI - Palmers Drought Severity Index. MPI - Multidimensional Poverty Index.
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5.3.5 Spatial Heterogeneities

Conflict

Borno and Kaduna were selected due to their clear positive relationship between conflict and Rt

(increased conflict and Rt >= 1). The tra�c-light scenarios created for conflict in these two states

found a consistently high cholera outbreak risk. The Green tra�c-light scenario was relatively small,

with only a narrow range of conflict values predicting Rt values less than 1. Both Kaduna and Borno

have high levels of poverty and low access to sanitation (40-41% access). For Borno, raising monthly

conflict events from 2 to 3 increased Rt above 1, but an increase in access to sanitation from 41%

to 46% pushed the Rt value back below one. This relationship continued in a stepwise pattern and

in a similar way for MPI but to a lesser degree. The results suggest that increasing sanitation and

therefore decreasing vulnerability, allowed the states to adapt to increasing conflict and keep the Rt

value below 1 (See Supplementary Figure 5.4).

Drought

Four states were investigated to evaluate the di↵erences between extreme wetness (Lagos and Ekiti)

and extreme dryness (Nasarawa and Kwara) and Rt values over 1 (Supplementary Figures 5.5 &

5.6). In contrast to Borno and Kaduna, all four states predicted consistently lower Rt values, a

potential explanation for this is the high variable importance of PDSI (Figure 5.4) and the high levels

of sanitation and low levels of poverty in all four states, contributing to overall lower predicted levels

of cholera. Therefore, the model was detecting a signal in only small PDSI changes, that resulted in

changing Rt values, which may not have been detected in other states with higher rates of poverty

and lower levels of sanitation access. It also helps to highlight the bidirectionally of the relationship

between PDSI and cholera transmission, confirming the hypothesis that both extreme wetness and

extreme dryness can cause Rt to increase.
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5.4 Discussion

The results presented here show the importance of social and environmental extremes on cholera

outbreaks in Nigeria, along with the importance of underlying vulnerability and socio-economic factors.

Of the 46,694 suspected cases in the full dataset, 1,401 were testing and found positive for cholera,

either by rapid diagnostic test or culture in Nigeria in 2018 and 2019. The northeast of the country

carried the highest burden of disease, particularly in Adamawa, Yobe, Borno and Katsina.

Six states were used to calculate the Rt values, including Adamawa, Bauchi, Borno, Gombe, Katsina

and Yobe. Twenty-two covariates were considered for model inclusion and the best fit model according

to the selected model performance measures (variable importance based on node impurity, RMSE,

R² and correlations) included monthly conflict events, percentage of the population with access to

sanitation, MPI and PDSI. Using the best fit model, nowcasting was used to calculate the Rt values

for the remaining thirty-one states which did not meet the threshold.

The predicted Rt values from the tra�c-light scenarios helped to shed light on the thresholds and

triggers for raising Rt values above 1 in Nigeria. MPI and sanitation showed a well-defined relationship

with Rt, with consistently higher access to sanitation and less poverty (lower MPI value) when Rt was

less than 1. Thresholds which pushed Rt above one included decreasing access to sanitation below

54% and increasing the MPI above 0.38.

The relationship between Rt and conflict events and PDSI varied spatially, with some states showing

a negative and some states a positive association. The e↵ect of PDSI and conflict on Rt predictions

appeared largely dependent on the access to sanitation and level of poverty within the states, with

high levels of sanitation and low poverty resulting in a decreased e↵ect on Rt. Better sustainable

development in the state appeared to act as a bu↵er to social and environmental extremes in the

results here, potentially due to people having less pre-existing vulnerability and therefore a greater

capacity to adapt to these events.

5.4.1 Environmental & Social Extremes and Cholera in Nigeria

Since 2002, Boko Haram (and Islamic State’s West Africa Province) has been gaining a foothold

and territory in northeastern Nigeria which has resulted in ongoing conflict, unrest and oppression
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of civilians [44]. Currently 5,860,200 people live in Borno state [45], where the fighting has been

most concentrated. Millions of people comprise conflict-a↵ected populations globally and there is an

increasing proportion of people living in early post conflict areas, which are still fragile and can lack

services [46]. In terms of health and disease, conflict has known risk factors for cholera along with

several other diseases [20, 2, 47] and can worsen several of the social risk factors discussed above (see

4.4.1 Cholera/Conflict-related Risk Factors).

Here, conflict was included in the best fit model and in some states, highly influential in terms

of cholera transmission. These results are the first to highlight the impacts of Boko Haram on a

specific infectious disease, whereas previous research has focused more generally on public health [48,

49, 50]. The influence of conflict shows the need to incorporate and include the impacts of conflict in

disease control measures in Nigeria and potentially other conflict-a↵ected countries. Providing services

and protecting health in conflict zones is especially challenging and coordination across organisations

in reporting and operations are needed to streamline resources and prevent duplication of services

[51]. The tra�c-light system used here helps highlight the need to protect basic services and reduce

inequities in conflict situations to protect health and prevent outbreaks.

PDSI and several of the other drought indices tested here showed high variable importance but, in

some states, had only marginal influence on Rt predictions when the PDSI values were manipulated.

When analysing spatial di↵erences between Rt and PDSI, the relationship appears to be bidirectional,

with both extreme wetness (PDSI = +4) and extreme dryness (PDSI = -4) associated with Rt values

above 1. Furthermore, access to sanitation and poverty were important in how PDSI impacted Rt,

similar to the impacts of conflict. These results should be interpreted with caution though due to the

limited timescale of the data used. Drought is a slow-onset disaster, occurring over long timescales

and PDSI is generally used to measure this long-term change. However, the insight presented shows

that when some areas are impacted by either a relatively wetter or drier environment, extra vigilance

may be needed to prevent cholera transmission.

There is significant evidence to show that both droughts [1, 4] and floods [5, 52] can cause cholera

outbreaks and elevated transmission and in Nigeria the risks of the dry season and wet season have

resulted in cholera outbreaks. This findings was also present in the cholera data here in Figure

5.3 and Supplementary Figure 5.3 Mechanisms through which this can occur includes a lack of water

increasing risky drinking water behaviour and floods allowing for the dispersal of the pathogen [41, 53].
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Continued work is essential to o↵set cholera risks related to droughts or floods through sanitation and

hygiene, which can take significant time and resources [54]. Additionally, drought and flood mitigation

strategies including sustainable water use and management and e↵ective drainage and runo↵ systems,

can reduce the overall impact of the disaster.

5.4.2 Pre-existing Vulnerabilities and Cholera in Nigeria

Currently, 73% of the enteric disease burden in Nigeria is associated with inadequate WASH [55] and

here the results show the need for expansion of sanitation to reduce cholera risks and the shocks of

extremes on its transmission. The results suggest that the expansion of sanitation would be particularly

impactful for cholera control in states with <50% access. In a recent review on the implementation

of non-pharmaceutical cholera interventions, there was generally a high acceptance of several WASH

interventions. Despite this, education was key and building community relationships is needed to

achieve this, such as understanding cultural di↵erences and barriers [56]. This is especially important

in areas with conflict, where trust between the government and residents may have been lost [53].

According to the World Bank [57], up to 47.3% (98 million people) of Nigeria’s population live in

multidimensional poverty. Poverty is a well-known risk factor for cholera [58], despite this, very few

studies have suggested quantitative thresholds where poverty leads to disease, which is important for

resource allocation. The results here showed that states with an MPI value above 0.38 should be areas

for poverty alleviation prioritisation (which includes most of the northern states). Poverty can result

in several risk factor cascades, which puts people at risk of not just cholera but several other diseases.

Examples of these risks include marginalisation, poor access to WASH [15], inadequate housing [59],

malnutrition [53] and overcrowding [60].

The expansion of sustainable development helps to reduce these risks and meeting or exceeding the

Sustainable Development Goals would see significant gains in global health [61]. People living in

poverty have fewer options and abilities to adapt to new and extreme situations, becoming trapped in

the a↵ected area or displaced to areas where their needs are not met [62, 63]. Measuring poverty in

monetary terms alone can create issues due to its far reaching impacts and is an advantage of using

MPI as a poverty indicator (which takes into account several factors). Nigeria currently has a cash

transfer scheme, to increase people’s social safety net. The scheme has allowed many Nigerians to
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meet the household income limit for poverty elimination but there is a case for turning these funds

and attention onto structural reform [64], or more targeted health and WASH programmes [65].

5.4.3 Limitations

A potential limitation may be lagged e↵ects of the covariates on cholera [66, 67]. Both long-term

and short-term changes to the population may take time before changes in cholera transmission are

evident. Furthermore, some influential factors may be considered slow-onset or rapid-onset and there-

fore defining their beginning is subjective. The incubation period of cholera is short (<2 hours - 5

days) and Chapter 4 found that acute events are likely to cause an increase in cholera cases within

the first week of the event [68, 69, 70]. Calculating Rt on monthly sliding windows and using monthly

covariate data helped to reduce potential lagged e↵ects on the Rt values, which would be captured if

the one-week lag estimate is applicable here.

As previously discussed, cholera is considered an under-reported disease, and the lack of symptomatic

cases means that many are likely to be missed. The data used in Chapter 5 are also on a relatively

short timescale and therefore is more accurate at presenting cholera at the current time in Nigeria,

rather than historically. Consequently, caution is needed when making generalisable conclusions.

There are also incentives not to report cholera cases, due to travel restrictions and isolation and

implications for trade and tourism [71]. While during times of crisis, cholera may be over-reported

or more accurately represent the cholera burden in the area. This is due to the presence of CTCs,

increased awareness among the population and healthcare workers and external assistance from non-

governmental organization, detecting cases that may have been missed previously [20].

Despite the temporal (2 years) and spatial (6 states meeting the case threshold) limitations of the

surveillance data, data of this detail is time consuming and di�cult to collect in fragile settings and is

the best data currently available to quantify cholera in Nigeria. Using confirmed cases only is necessary

for modelling disease accurately, as in resource poor settings (such as outbreaks and conflicts) only a

certain number of cases are confirmed, while it is very likely that several other intestinal pathogens

could be causing disease, even in confirmed cholera cases. Therefore, the results and conclusions here

are valid, if not more so, than models fit to longer but less accurate data sources.

Calculating Rt can have wide-ranging uncertainty (green shading in Figure 5.3), particularly when
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data are lacking. Therefore, uncertainty is particularly high when there is a lull in reported cholera

cases e.g., in January to July 2018 in Borno. Calculating Rt over monthly sliding windows and altering

the Rt calculation start date for each state helped to reduce this uncertainty and in future studies,

using other metrics of disease transmission, such as growth rates, would help reduce uncertainty.

Rt calculations assumes that if cases occur, they are detected, which with cholera may be unlikely.

Additional reporting assumptions for Rt include a constant reporting rate over the epidemic (CTCs

and increased awareness make this unlikely), no cases are imported and therefore each case can be

attributed to a previous case and the SI remains constant over the outbreak [72].

Using accurate data is particularly important when fitting RF models as they have relatively powerful

predictive capacity. The performance metrics such as the correlation between covariate and incidence-

based Rt values, along with the predictions of Rt replicating the reality of cholera in Nigeria (e.g.,

southern states predicted lower Rt) suggest that the model accurately predicts cholera Rt across the

country. However, a limitation of RF models is that they are a predictive, rather than a descriptive

tool and therefore are not as e↵ective as other methods in highlighting patterns and relationships in

data, which the tra�c-light scenarios aimed to address.

5.4.4 Conclusion

The GTFCC 2030 target of reducing cholera deaths by 90% [73] will require acceleration of current

e↵orts and significant commitment, particularly in high burden countries. Increasing cholera research

and data are important in achieving this and the tra�c-light system for cholera risk presented here

sheds light on ways to reduce cholera outbreaks in fragile settings. The results use cholera Rt to

highlight the importance of extreme events on cholera transmission in Nigeria, specifically droughts,

floods and conflict and how reducing pre-existing vulnerability could o↵set the resultant cholera risk.

The tra�c-light system has identified specific targets and thresholds to avoid cholera outbreaks and

will hopefully enable targeted and therefore more successful policy strategies.

The research presented in this chapter is the first time several disaster types and measures of population

vulnerability have been evaluated together quantitatively in terms of cholera and shows the importance

of doing so to gain a more accurate understanding of disease outbreaks in complex emergencies. The

work helps to further quantify the impacts of Boko Haram in Nigeria and expand the understanding
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of the extent of the conflict. Nigeria is currently working towards its ambitious goal of lifting 100

million people out of poverty by 2030 [54]. If it is successful, this could significantly improve health,

increase quality of life and decrease the risks posed by social and environmental extremes.

The previous three chapters, along with the work here in Chapter 5 have presented a number of

extremes and risk factors that influence cholera outbreaks. Conclusions from each chapter have drawn

on similar themes, that reducing pre-existing vulnerabilities lessens the impacts of extreme conditions

and o↵sets the health risks in fragile settings. It is important to put these findings and conclusions

into a policy context and understand if global cholera targets can be met and what may be needed to

do so.

The rate at which sustainable development is advancing is arguably too slow and despite several gains

and increased attention in recent decades, whether this will be at a pace fast enough to reach the

GTFCC 2030 targets mentioned above is very uncertain. It is also important to consider that global

shocks and events (e.g., COVID-19), has the potential to erode this development. In Chapter 6, the

evidence from the thesis so far, along with historical data and future projections will be used used to

investigate if, based on the current evidence, the 2030 goals are likely to be achieved in Nigeria.
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Supplementary Material

Supplementary Figures

Supplementary Figure 5.1: Average values of the four covariates included in the best fit
model. By state, covariates included: a, monthly conflict events, b, Palmers Drought Severity
Index (PDSI), c, percentage access to sanitation and d, Multidimensional Poverty Index
(MPI).
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Supplementary Figure 5.2: Historical temporal trends between the best fit model
covariates and the Rt thresholds (Rt >= 1, Rt < 1). The mean and standard error for the four
covariates included in the best fit model for the full dataset split by month and Rt threshold.
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Supplementary Figure 5.3: Monthly Nigerian climatology of minimum, mean and
maximum temperature (red lines and shading) and precipitation (blue bars) based on
averages from 1991-2020, with the cholera peaks found in the NCDC dataset used here (green
arrows) [74].
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Supplementary Figure 5.4: Tra�c-light system of cholera risk for conflict only for Borno
and Kaduna. The other three (PDSI, Sanitation and MPI) covariate values were retained at
the mean value for Rt >= 1 for the full dataset: Sanitation 41.1 and 40.4, MPI 0.33 and 0.31
and PDSI 1.95 and 1.49 for Borno and Kaduna, respectively.
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Supplementary Figure 5.5: Tra�c-light system of cholera risk for PDSI (drier conditions)
only for Kwara and Nasarawa. The other three (Conflict, Sanitation and MPI) covariate
values were retained at the mean value for Rt >= 1 for the full dataset: Sanitation 69.9 and
68, MPI 0.14 and 0.27 and Conflict 1 and 2 for Kwara and Nasarawa, respectively.
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Supplementary Figure 5.6: Tra�c-light system of cholera risk for PDSI (wetter
conditions) only for Ekiti and Lagos. The other three (Conflict, Sanitation and MPI)
covariate values were retained at the mean value for Rt >= 1 for the full dataset: Sanitation
70.5 and 70.5, MPI 0.086 and 0.016 and Conflict 2 and 10 for Ekiti and Lagos, respectively.
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Supplementary Information

Supplementary Information 5.1: Sensitivity analysis using confirmed and suspected cholera

cases. The analysis includes Rt calculations, variable importance and model fitting for the full

dataset.

The data for the confirmed and suspected cholera cases had Rt calculated for 16 states (compared

to 6 in the original model), which met the >40 cases thresholds for inclusion. The incidence and Rt

calculations for the included states are shown below:
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Rt values over monthly sliding windows (line) calculated from the daily incidence (bar) of cholera.
The data used were suspected and confirmed cholera cases for 2018 and 2019 of states which met the
threshold equal to or more than 40 cases.

The new dataset consisted of 5,627 data-points for variable importance and model fitting (compared

to 279 in the original model). The variable importance plot (shown below) was similar to the variable

importance for the original model (Figure 5.4), with only minimal changes in covariate importance

order. In summary, IDPs, OCV and population were ranked much lower and some of the poverty

metrics were much higher. This suggested that only small changes would be found in terms of the

best fit model to the new dataset.
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interval of 5 days (with 8 days SD) was used and the numbers represent the clusters. SPEI01, 12, 48
- Standardised Precipitation Index calculated on 1, 12 and 48 month scale. PDSI - Palmers Drought
Severity Index. MPI - Multidimensional Poverty Index. OCV – Oral cholera vaccination.

The new model did not improve model fit in terms of predictive power (shown below) and the same

best fit model was selected. Any changes in the performance metrics were negligible (0.001 di↵erence)

and there was a slight decrease in correlation (0.71 in the new model), potentially due to the larger

dataset creating greater variation. The sensitivity analysis using all the data, proved that the original

model was robust and that the smaller dataset did not bias the results.
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Supplementary Information 5.2: Additional covariate selection for Chapter 5 using linear

regression.

The same 21 covariates (conflict, drought IDPs, WASH, healthcare, population and poverty) analysed

using variable importance were also run through an additional covariate selection process and stepwise

analysis as developed by (and used in Chapter 3):

1. Garske, T. et al. Yellow fever in Africa: estimating the burden of disease and impact of mass

vaccination from outbreak and serological data. PLoS Med. 11, e1001638 (2014).

2. Gaythorpe, K. A. M. et al. The global burden of yellow fever. Elife 10, e64670 (2021).

The selection process removes covariates that are not significantly associated with the outcome variable

(Rt3, Rt5, Rt8) at p <0.1 using linear regression. It then clusters the remaining covariates based on

the correction between them at an absolute pairwise correlation of above 0.75.
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The variable importance for the eleven remaining covariates
after variable selection. All three serial interval values tested
are shown (Rt3 - 3 days, Rt5 - 5 days, Rt8 - 8 days) and the
numbers represent the clusters. SPEI01, 12, 48 -
Standardised Precipitation Index calculated on 1, 12 and 48
month scale. PDSI - Palmers Drought Severity Index. MPI
- Multidimensional Poverty Index.

Ten were removed, either because they

were not significantly associated with

the outcome variable (Rt) or because

they were too highly correlated with

other covariates (healthcare facilities,

piped water, open defecation, popu-

lation, IDPs, severe poverty, vulnera-

ble to poverty, basic hygiene). Eleven

covariates remained and were grouped

into five clusters, the clusters and vari-

able importance of each covariate are

shown below

256



Chapter 6

Cholera Past and Future in Nigeria:

are the GTFCC 2030 Roadmap Targets

Achievable?

Dissemination

A modified version of the full chapter is available as a pre-print at:

Charnley GEC, Yennan S, Ochu C, Kelman I, Gaythorpe KAM, Murray KA. Cholera past and future in

Nigeria: are the Global Task Force on Cholera Control’s 2030 targets achievable? medRxiv 2022;https:

//doi.org/10.1101/2022.12.06.22283154 [pre-print].

257



Abstract

Understanding and continually assessing the achievability of global health targets is very important

in reducing the burden of disease and subsequent mortality. The GTFCC Roadmap aims to reduce

cholera deaths by 90% and eliminate the disease from twenty countries by 2030. The Roadmap

has three axes which focus on reporting, response and coordination. Chapter 6 aims to assess the

likelihood that the GTFCC targets will be reached by 2030 in Nigeria and how the three axes could

be strengthened to reach and exceed these goals. By analysing the historical data and creating future

scenario projections, a 2050 target appears more realistic in Nigeria based on the results, although

for the more urban and developed southern states, the 2030 targets could be reached. Improving

reporting capacity and the monitoring of risk factors will help in continually assessing these targets

and whatever target year is set, cholera elimination and control should aim to be achieved as quickly

as possible. Additionally, long-term investments in WASH services, poverty alleviation and conflict

resolution is particularly important in the northern states. A global coordinated e↵ort is essential to

control not just cholera but also to prevent pandemics in the future.

6.1 Introduction

Global target setting for both health and development are widely used strategies, examples include the

Global Fund Strategy [1] and the United Nations SDGs [2]. The aim of these strategies are often to set

a target in which all countries can work towards a common goal, with the hope that this will encourage

commitment and knowledge and resource sharing. Development and health are interconnected and

several global development goals will be fundamental to reaching health targets. Many countries and

regions with the lowest levels of development in terms of poverty, education and health, also overlap

with areas of high disease burden, particularly infectious diseases [3].

Despite the commitment of many governments and organisations to global scale strategies and targets,

several fail to produce significant gains in development and health. Some notable examples include

an inability to curb carbon emissions at a pace that will prevent a 2°C rise in temperatures (despite

the signing of the Paris Agreement and Conferences of the Parties) [4] and shortcoming in the SDGs

that have evoked only limited transformative policy impact towards the goals [5]. To reach these
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ambitious targets, it is essential to continually assess both the successes and shortcomings to ensure

that progress is continually made towards and beyond the target.

In 1992, the GTFCC was established as a global partnership of more than 50 institutions. The aim was

to increase the capacity, tools and assistance for developing and implementing National Cholera Plans

(NCPs). In 2017, the GTFCC launched “Ending Cholera: A Global Roadmap to 2030”, encouraging

partner organisations to sign the Declaration to End Cholera. The Roadmap focuses on three axes:

early detection and response, interventions in cholera hotspots and e↵ective coordination at all levels.

The GTFCC believes that through these three axes there will be no more country-wide uncontrolled

cholera outbreaks by 2030 and the disease will be eliminated from twenty countries, resulting in a 90%

reduction in cholera deaths (Figure 6.1) [6].

Figure 6.1: The GTFCC theory of change for cholera elimination. NCP - National Cholera
Plan. Adapted from: [6].

As the 2030 goal approaches, whether these targets will, and can be achieved and what resources and

investments are needed, are essential questions to answer. Understanding the achievability of these

goals (Figure 6.1) will help countries and global partnerships to plan for 2030 and beyond, continuing

to make gains in cholera prevention and control. Goals should be ambitious and encourage partners

to strive for the best outcome possible but they also need to be clear and have significant commitment

and motivation from governments, non-governmental organisations and the population.

There is an estimated 1.3 billion people at risk of cholera globally and approximately 2.86 million
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annual cases (1.3-4.0 million) [7, 8], the majority of which are in sub-Saharan Africa and the Indian

Subcontinent. The global overlap between poverty and cholera is well established and cholera control

successes will heavily depend upon improving quality of life. There have been gains in cholera control

at a local level, through socio-economic development, particularly access to water and sanitation,

although this has been minimal at the global level [9]. Increased access to treatment has also been very

important in controlling outbreaks such as ORS and OCV [10]. However, whether global improvements

will be fast enough is highly uncertain as the 2030 target nears, while accounting for the fact that

global crisis may cause regression of development and progress. For example, COVID-19 is estimated

to have erased four years of progress against poverty and caused disaster-related deaths to rise sixfold

[2].

Cholera forecasting is a useful tool in understanding the achievability of the 2030 targets. However,

relatively few studies have used cholera projections, most of which taking a climate change focus [11,

12, 13] and even fewer studies have evaluated the likelihood of meeting the 2030 GTFCC targets

using forecasting tools [14, 15]. Chapter 6 aims to address this research gap and to understand if the

current pace of development will be enough to reach the 2030 targets in Nigeria. A number of future

scenarios will be created and used to project cholera to 2070 in Nigeria. The scenarios will range

from “best-case” to “worst-case”, with both progress and regression from the current figures. Both

national and sub-national scenario data will be be used to project cholera outbreak occurrence and

transmission with the best fit models from Chapter 3 and Chapter 5.

The projections, along with historical cholera data and the environmental and socio-economic covariate

data that were found most significant in this thesis, will be used to evaluate the achievability of the

2030 targets in Nigeria and make policy suggestions going forward. The research will highlight both

successes and areas for improvement in the current strategy and where development needs accelerating.

Incorporating the results of cholera research and modelling into policy is important to improve the

relevance of epidemiological research and Chapter 6 aims to highlight how this can be achieved. The

objectives for Chapter 6 are as follows:

1. Evaluate the historical data for cholera and the environmental and social risk factors found

important in the models.

2. Project cholera transmission and outbreak occurrence to 2070 both nationally and sub-nationally
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with varying degrees of global change.

3. Use the historical data and projections to assess the achievability of the 2030 targets in Nigeria

based on the three axes outlined in the Roadmap.

6.2 Methods

6.2.1 Datasets

Historical

The number of reported cholera deaths (from suspected or confirmed cholera cases) were used in the

historical analysis. Two data sources were chosen, as cholera data can vary widely and as previously

stated has several limitation including over-reporting, under-reporting and reporting lags. The sources

included the WHO’s Global Health Observatory [16], which was used to fit the models in Chapter

3 (1970-2016) and the Global Health Data Exchange (GHDx) (1990-2016) [17]. The temporal and

spatial scale of both sources were annual and national. Cholera deaths were transformed to deaths per

100,000, to make the analysis more comparable, as Nigeria is currently the most populous country in

Africa at 211 million (2021), significantly higher than the next largest population, which is Ethiopia

at 118 million.

The historical environmental and social data were taken from the previously used data sources of

selected covariates. These included PDSI (national, annual, 1895-2016) [18], average temperature

(°C, national, annual, 2000-2016) [19], water withdrawal per capita (national, annual, 1985-2010) [20],

poverty headcount at <$1.25/day (national, annual, 1985-2018) [21], proportion of the population in

extreme poverty (national, annual, 1981-2019) [22], MPI (administrative 1, annual, 2017-2018) [23],

conflict events and fatalities (administrative 3, daily, 1997-2020) [23], percentage access to improved

sanitation (administrative 1, annual, 2003-2017) [24].
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Projected

WorldClim [25] was used for the projected environmental data at a monthly temporal granularity.

WorldClim data are gridded and were transformed here to administrative level 1, as this spatial

scale best captured the range of the other data sources. The data included minimum temperature and

maximum temperature measured in degrees Celsius and precipitation (in mm). Projections were single

values for 2050 and 2070 at three di↵erent RCP pathways (RCP4.5, 6.0 and 8.5, further explanation

of the RCPs is available in Supplementary Information 3.2).

6.2.2 Historical Analysis

Pearson correlation coe�cients (r) was used to understand the strength and direction of the linear

relationship between the covariates analysed. The correlation coe�cient is a ratio (0 to +1/-1) between

variance and standard deviation and is expressed algebraically below. xi and yi are the values of the

x and y variable in the sample and x̄ and ȳ are the means of the values of the x and y variables.

One data source for cholera and poverty were selected for the correlations based on the length of the

timescale (WHO cholera data and the proportion of the population in extreme poverty), to increase

data completeness.

r =

P
(xi � x̄)(yi � ȳ)pP

(xi � x̄)2
P

(yi � ȳ)2

Time series of the historical data were used to illustrate how the covariates changed through time. To

visualise and analyse the trends, linear regression trend lines and loess curves, ACF and AutoRegressive

Integrated Moving Average (ARIMA) were used for the historical cholera death data. ARIMA is based

upon three terms where p is the order (number of time lags) of the autoregressive model, d is the degree

of di↵erencing (the number of times the data have had past values subtracted), and q is the order of the

moving-average model. ACF is a measure of autocorrelation and describes how well the present value

of the series is related with its past values. ACF helps to illustrate the e↵ect of time on the data and

the appropriateness of ARIMA forecasting. The forecasting was based on a variation of the Hyndman-

Khandakar algorithm, which combines unit root tests, minimisation of AIC and MLE, to return the

best ARIMA forecast model according the AIC (R package “forecast”, function auto.arima() [26])
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6.2.3 Projections

The national projections for Nigeria used the best fit model from Chapter 3. In summary, this was a

generalised linear model, with a binary outcome variable of cholera outbreak occurrence. The selected

covariates included PDSI, average temperature, poverty headcount at <$1.25/day and freshwater

withdrawal per capita. The sub-national projections used the best fit model from Chapter 5, this

was a random forest model using cholera time-varying reproduction number as the outcome variable.

The model included PDSI, MPI, percentage access to improved sanitation and monthly conflict event

frequency.

Bootstrap resampling (10,000 samples) was used to obtain 95% confidence intervals for all projections.

The projections were applied to the 2030 Roadmap targets and a new 2050 target delineated, based

on the results. Twenty-fifty was chosen as the target year, due to it being halfway from the current

target (2030) to the end of the projection period (2070), taking into consideration the full scope of

the projections. Additionally, the results indicate 2050 as a realistic target, at the current pace of

progress, and the two global initiatives the scenarios are based upon, the RCPs and SDGs, have newly

developed 2050 targets [27, 28].

6.2.4 Projection Scenarios

Five projection scenarios were created to project cholera to 2070 using the two models from Chapter 3

and 5. Despite 2030 being the year of interest here, 2070 was selected as the projection end point, as

this was the furthest time point the climate projections provided and allowed for further analysis and

discussion beyond 2030. Single year projections were used, rather than averages, to take advantage

of the single year environmental projections that were available and have proved accurate (see 1.2.1

Climate Change and Natural Hazards) [29].

The scenarios are based on several degrees of global change and are based upon the RCP scenarios and

attainment of the SDGs. The RCPs and SDGs have been used throughout the thesis and cover a wide

range of environmental and social scenarios, accounting for varying degrees of emissions reductions

and socio-economic development. Several of the scenarios, especially the national scenarios are based

on those created in Chapter 3. The scenarios are defined as follows:
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• Scenario 1 (S1) - Best-case scenario meeting RCP4.5 and the SDGs

• Scenario 2 (S2) - Intermediate scenario between S1 and S3

• Scenario 3 (S3) - Minimal development and emissions reductions but progress is still made

towards to SDGs and RCP8.5 is met

• Scenario 4 (S4) - Some regression from the current levels of sustainable development and in-

creased emissions

• Scenario 5 (S5) - Worst-case scenario with significant regression in development and emissions

increases

National

The national projection scenarios were taken from Chapter 3 for S1, S2 and S3, which were more

optimistic and saw improvements to varying degrees (see 3.2.4 Projection Scenarios for more details).

In summary, PDSI projections related to dataset averages and future conditions following the historical

linear trend (PDSI ⇠ Year, coe�cient -0.014961, p-value 0.000512). Temperature was based on the

WorldClim projections (RCP4.5, 6.0 and 8.5 for 2050 and 2070) and water withdrawal on varying

degrees of meeting SDG6.4 (increase sustainable water-use e�ciency across all sectors to address

water scarcity). Nigeria is a high water resource and low withdraw country (Figure 3.2), therefore its

more optimistic scenarios saw increased water use. Poverty scenarios were set at varying degrees of

achieving SDG1.1 and 1.2, which state a 50% reduction in extreme (<$1.25/day) poverty by 2030 and

poverty eliminated by 2070.

For S4 and S5, temperature values for RCP6.0 and 8.5 were reached 20 years earlier (2050 by 2030

and 2070 by 2050). This was based on the assumption that emissions reductions would be even slower

and therefore the radiative forcing threshold would be met sooner. For PDSI, previous literature

was used to understand the full extent of drought changes across Nigeria, due to the limitations

suggested in Chapter 3 (3.2.4). As previously stated, Africa is not projected to be significantly drier

and historical studies suggest relative stability [30, 31, 32, 33]. However, projected PDSI changes

are spatial heterogeneous and for Nigeria, drought projections suggest both stability [34] and drying

[35, 36]. To account for the full range of projected changes and uncertainty stated in the literature,

264



the scenarios include both stability and significant drying to 2070. The poverty projections represent

a 30% and 50% increase by 2070 for S4 and S5, respectively and for water withdrawal, instead of

increasing from 2050 as seen in S1-S3, withdrawal would decrease by 10% (S4) and 20% (S5). Both

poverty and water withdrawal scenarios were based upon the assumption that in S4 and S5 conditions

would move in the opposite direction to the target. A summary of the national scenarios is shown in

Table 6.1.

Table 6.1: National cholera projection scenarios for 2020-2070 at decadal intervals.

Scenario Year PDSI Temperature Poverty Water withdrawal
Scenario 1 2020 Historical average 2016 value 2016 value 2016 value
Scenario 1 2030 Historical average 2016 value 50% decrease 2016 value
Scenario 1 2040 Historical average 2016 value 50% decrease 2016 value
Scenario 1 2050 Historical average RCP4.5 2050 Median 2040-2070 20% increase
Scenario 1 2060 Historical average RCP4.5 2050 Median 2040-2070 20% increase
Scenario 1 2070 Historical average RCP4.5 2070 Elimination 20% increase
Scenario 2 2020 Median value (S1-S3) 2016 value 2016 value 2016 value
Scenario 2 2030 Median value (S1-S3) 2016 value 2016 value 2016 value
Scenario 2 2040 Median value (S1-S3) 2016 value 2016 value 2016 value
Scenario 2 2050 Median value (S1-S3) RCP6.0 2050 50% decrease 10% increase
Scenario 2 2060 Median value (S1-S3) RCP6.0 2050 Median 2050-2070 10% increase
Scenario 2 2070 Median value (S1-S3) RCP6.0 2070 Elimination 10% increase
Scenario 3 2020 ((Coe�cient*4) + 2016 value) 2016 value 2016 value 2016 value
Scenario 3 2030 ((Coe�cient*10) + 2020 value) 2016 value 2016 value 2016 value
Scenario 3 2040 ((Coe�cient*10) + 2030 value) 2016 value 2016 value 2016 value
Scenario 3 2050 ((Coe�cient*10) + 2040 value) RCP8.5 2050 2016 value 5% increase
Scenario 3 2060 ((Coe�cient*10) + 2050 value) RCP8.5 2050 Median 2050-2070 5% increase
Scenario 3 2070 ((Coe�cient*10) + 2060 value) RCP8.5 2070 50% decrease 5% increase
Scenario 4 2020 Historical average 2016 value 2016 value 2016 value
Scenario 4 2030 Historical average RCP6.0 2050 2016 value 2016 value
Scenario 4 2040 Historical average RCP6.0 2050 Median 2030-2070 2016 value
Scenario 4 2050 Median 2040-2070 RCP6.0 2070 Median 2030-2070 10% decrease
Scenario 4 2060 Median 2040-2070 RCP6.0 2070 Median 2030-2070 10% decrease
Scenario 4 2070 50% drier RCP6.0 2070 30% increase 10% decrease
Scenario 5 2020 Historical average 2016 value 2016 value 2016 value
Scenario 5 2030 Median 2040-2070 RCP8.5 2050 2016 value 2016 value
Scenario 5 2040 Median 2040-2070 RCP8.5 2050 Median 2030-2070 2016 value
Scenario 5 2050 50% drier RCP8.5 2070 Median 2030-2070 20% decrease
Scenario 5 2060 50% drier RCP8.5 2070 Median 2030-2070 20% decrease
Scenario 5 2070 50% drier RCP8.5 2070 50% increase 20% decrease

Sub-national

As the sub-national projections could account for the known spatial heterogeneity in PDSI projections

stated above. Sub-national monthly PDSI projections were calculated using the projected 2050 and

2070 environmental data. First, PET (mm/day) was calculated with the temperature data and latitude

using the Hargreaves method [37], where Ra is the mean extra-terrestrial radiation in mm/day, which
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is a function of latitude and T represents daily air temperature in °C.

PEThargreaves = 0.0023 ⇤Ra ⇤ (Tmax � Tmin)
0.5 ⇤ (Tmean + 17.8)

PDSI is the output of a supply-and-demand model of soil moisture, which includes supply in the form

of precipitation, demand from PET and fluxes, which represent how energy and water change in time

and space, to give soil moisture. Soil moisture models can then be calibrated using station and satellite

observations. A common critique of PDSI is that the behaviour of the index varies by location, making

spatial comparisons di�cult. The self-calibrated (scPDSI) method accounts for this by automatically

calibrating the behaviour of the index at any location by replacing empirical constants in the index

computation with dynamically calculated values [38]. Therefore, scPDSI was used to provide PDSI

values for 2050 and 2070 for the three RCP scenarios (packages “SPEI” [39] & “scPDSI” [40]).

The scenarios for temperature and poverty followed the same pattern and targets as those in the

national scenarios. Sanitation was based on SDG6.2 (achieve access to adequate and equitable san-

itation and hygiene for all and end open defecation by 2030) and conflict scenarios were guided by

SDG16.1 (Significantly reduce all forms of violence and related death rates everywhere). The SDGs

for both sanitation and conflict are particularly ambiguous, regardless of this di�culty, the sanitation

and conflict targets are based on a similar pattern to MPI, achieving universal access to sanitation

and conflict elimination by 2070 in S1 and a 50% decrease in sanitation access and 50% increase in

conflict events by 2070 in S5. A summary of the sub-national scenarios is shown in Table 6.2.
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Table 6.2: Sub-national cholera projection scenarios for 2020-2070 at decadal intervals.

Scenario Year PDSI MPI Sanitation Conflict
Scenario 1 2020 2020 value 2020 value 2020 value 2020 value
Scenario 1 2030 2020 value 50% decrease 50% increase 50% decrease
Scenario 1 2040 2020 value 50% decrease 50% increase 50% decrease
Scenario 1 2050 RCP4.5 2050 Median 2040-2070 Median 2040-2070 Median 2040-2070
Scenario 1 2060 Median 2050-2070 Median 2040-2070 Median 2040-2070 Median 2040-2070
Scenario 1 2070 RCP4.5 2070 Elimination 100% access Elimination
Scenario 2 2020 2020 value 2020 value 2020 value 2020 value
Scenario 2 2030 2020 value 2020 value Median 2020-2050 2020 value
Scenario 2 2040 2020 value 2020 value Median 2020-2050 2020 value
Scenario 2 2050 RCP6.0 2050 50% decrease 50% increase 50% decrease
Scenario 2 2060 Median 2050-2070 Median 2050-2070 50% increase Median 2050-2070
Scenario 2 2070 RCP6.0 2070 Elimination 50% increase Elimination
Scenario 3 2020 2020 value 2020 value 2020 value 2020 value
Scenario 3 2030 2020 value 2020 value 2020 value 2020 value
Scenario 3 2040 2020 value 2020 value 2020 value 2020 value
Scenario 3 2050 RCP8.5 2050 2020 value Median 2040-2070 2020 value
Scenario 3 2060 Median 2050-2070 Median 2050-2070 Median 2040-2070 Median 2050-2070
Scenario 3 2070 RCP8.5 2070 50% decrease 30% increase 50% decrease
Scenario 4 2020 2020 value 2020 value 2020 value 2020 value
Scenario 4 2030 RCP6.0 2050 2020 value 2020 value 2020 value
Scenario 4 2040 RCP6.0 2050 Median 2030-2070 2020 value Median 2030-2070
Scenario 4 2050 RCP6.0 2070 Median 2030-2070 Median 2040-2070 Median 2030-2070
Scenario 4 2060 RCP6.0 2070 Median 2030-2070 Median 2040-2070 Median 2030-2070
Scenario 4 2070 RCP6.0 2070 30% increase 30% decrease 30% increase
Scenario 5 2020 2020 value 2020 value 2020 value 2020 value
Scenario 5 2030 RCP8.5 2050 2020 value 2020 value 2020 value
Scenario 5 2040 RCP8.5 2050 Median 2030-2070 2020 value Median 2030-2070
Scenario 5 2050 RCP8.5 2070 Median 2030-2070 Median 2040-2070 Median 2030-2070
Scenario 5 2060 RCP8.5 2070 Median 2030-2070 Median 2040-2070 Median 2030-2070
Scenario 5 2070 RCP8.5 2070 50% increase 50% decrease 50% increase

6.3 Results

6.3.1 Historical Analysis

Figure 6.2 shows the time series for the WHO and GHDx cholera deaths data for 1970-2016, compared

to the mean values for Africa (average of 0.1 cases/100,000). The time series highlights the historically

high cholera burden in Nigeria, which is particularly evident in the GHDx data. The di↵erences be-

tween the two datasets shows the importance of considering multiple cholera data sources for analyses.

The GHDx data illustrates a steep decline from 16.0 cases/100,000 in 1991 to 1.8 cases/100,000 in

2017, with some plateauing periods. Whereas for the WHO data, cholera appears relatively stable

over time (average of 0.5 cases/100,000), instead witnessing large peaks, particularly in 1971 (5.1
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cases/100,000), 1991 (7.8 cases/100,000) and 1999 (1.7 cases/100,000). Furthermore, the di↵erence in

magnitude of the death rate should be noted here, with the GHDx data reporting much higher deaths

per 100,000.
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Figure 6.2: Time series of historical total annual cholera deaths per 100,000 of the
population. GHDx [17] and WHO [16] are the total deaths rates (according to each source)
per 100,000 for Nigeria. Africa is the mean annual death rates per 100,000 of the African
population. Africa cholera data were from the WHO source [16] and population data for
Nigeria and Africa from the UN Department of Economic and Social A↵airs [41].

The linear trends and loess curves for the cholera data illustrates a flat trend in the WHO data,

whereas the GHDx data shows a steady decrease (Supplementary Figure 6.1). ACF for both datasets

show a slow decay (gradual decrease) to within the confidence interval bands (Supplementary Figure

6.2). The ACF decay suggests that the e↵ect of time is not particularly significant in either of the

cholera datasets. The weak e↵ect of time was also illustrated in the ARIMA analysis, which showed

a flat forecast, predicting the current rate of cholera deaths to continue.

For the environmental and social risk factors analysed here (meteorological drought, temperature,

water withdrawal, poverty, conflict and sanitation), data incompleteness meant that calculating cor-
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relations were di�cult (Supplementary Figure 6.3). Assumptions and averages of the data had to

be taken when fitting the models used (3.4.4 Limitations). Regardless of data limitations, cholera

deaths had a strong negative correlation between sanitation access and a slight positive correlation

with temperature from 1970 to 2016 (Figure 6.3).
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Figure 6.3: Correlation plot for the Pearson correlation coe�cient of the six commonly
selected covariates analysed here against the WHO cholera deaths data. Positive coe�cients
are blue suggesting a strong positive association between the corresponding row and column
and negative coe�cients are in red, suggesting a negative association. The ‘?’ represents a
negligible value due to data incompleteness.

6.3.2 Scenario Projections

National

Figure 6.4 shows the national cholera projections (in cholera outbreak occurrence, 0-1) to 2070 for

the five scenarios, with 95% confidence intervals. The trends for Nigeria are similar to the continental

projections presented in Figure 3.6, national cholera occurrence decreased where conditions improved

in S1 to S3, starting at 0.95 for all scenarios to 0.83 for S1 and 0.92 for S3 by 2070. These changes were
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minimal, especially considering the levels of development achieved in the S1 “best-case” scenario, and

several of the confidence intervals overlap (the linear relationship, with standard error is presented

in Supplementary Figure 6.4). For S4 and S5, where socio-economic and environmental conditions

regressed, there was an increase in cholera outbreak occurrence from 0.95 to 0.98 for S4 and 0.99 for

S5.
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Figure 6.4: National cholera projections for Nigeria (with 95% confidence intervals), in
cholera outbreak occurrence (0-1) to 2070, for the five scenarios. The scenarios were from most
optimistic with strong progress towards emissions reductions and sustainable development
(Scenario 1) to least optimistic, with regression in the current conditions (Scenario 5).

Sub-national

For the sub-national projections, measured in terms of cholera Rt, there were several spatial hetero-

geneities, resulting in much wider uncertainty than the national projections. Supplementary Figure

6.5 shows a national average Rt value with 95% confidence intervals for comparison with Figure 6.4.

Generally, Rt values decreased through the three time points shown and the number of states with

Rt values over 1 decreased (Figure 6.5 & Supplementary Figure 6.6) for S1, S2 and S3, where current

conditions improved. For S4 and S5 (conditions regressed), the changes appear more complex, with

some states faring better than others when faced with worsening social and environmental conditions.
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The south of the country had particularly high Rt values in these less optimistic scenarios, whereas the

north saw little change, and in some cases, a slight improvement. Despite the heterogeneity, by 2050

average projected Rt values for most regions (based on Nigeria’s six geopolitical zones) of the country

were less than 1 in Scenario 1, lending to the new proposed 2050 target (Supplementary Figure 6.6).
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Figure 6.5: Sub-national cholera projections for Nigeria, in cholera reproduction number
(Rt), for the five scenarios from most optimistic with strong progress towards emissions
reductions and sustainable development (S1) to least optimistic, with regression in the current
conditions (S5) (S1 - orange, S2 - blue, S3 - green, S4 - red and S5 - purple) at 3 of the
decadal time points (2030, 2050 & 2070).
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6.4 Discussion

Using the historical evidence and future projections, Chapter 6 has shed light on the future of cholera

in Nigeria to 2030 and beyond. The historical data highlighted the historically high cholera burden in

Nigeria, compared to the rest of Africa. The data also showed the wide range of cholera values that

are reported and the value of evaluating multiple data sources. The cholera projections provided a

more detailed understanding of future trends and if socio-economic development and climate change

mitigation could reduce cholera in Nigeria to 2070. Both the national and sub-national projections

showed decreases in cholera burden with the more optimistic scenarios (S1-S3). Under S4 and S5, the

cholera burden worsened, despite the already high cholera outbreak occurrence, showing the need for

continued development. Further discussion of the historical and future trends of cholera in Nigeria

and how this could inform the GTFCC Roadmap are provided below.

6.4.1 Evidence from the Historical Data

The WHO data presented large outbreaks and peaks through the instrumental period, whereas the

GHDx data steadily decreases but with higher cholera deaths overall. A potential explanation for this

is that more sources are considered in the GHDx dataset, compared to the WHO source. The historical

cholera trends do not suggest a significant increase or decrease based on previous burden. The ARIMA

forecasting and ACF suggested a weak relationship with time in the two datasets analysed. The results

show no clear trend to suggest whether cholera is increasing or decreasing and whether the 2030 targets

can be met from these data alone.

The lack of relationship between cholera and time found here further highlights the importance of

understanding cholera risk factors and their temporal changes over time. As stated in Chapter 1, there

has been progress in terms of disease burden and sustainable development, but there are concerns over

the pace of this progress. Understanding these risk factors going forward, in terms of monitored and

collecting accurate data, will help inform cholera burden and identify hotspots and interventions.

Sanitation had the strongest correlation with the WHO dataset used in Chapter 6 and was selected

in several of the models here over other metrics of WASH, including access to clean water and hand

washing facilities. Progress has been made in the last 20 years (2000-2020) in terms of expanding access
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to WASH services in Nigeria, with the national average percentage access to improved sanitation

increasing from 52% to 62% and an expansion in access to improved drinking water by 31% [9].

However, if access to sanitation continues to increase by 10% every 20 years, this would result in

87,120,000 Nigerians without access by 2030 and therefore at a high risk of cholera (based on a 5%

increase in access and a projected population of 264 million by 2030 [41]).

In Nigeria, there is a divide in terms of WASH and development between the northern and southern

regions of the country (See Supplementary Figure 5.1) [42]. Northern states are generally more

rural, and less development. For example, there is a 40% deficit in access to sanitation in the rural

compared to the urban population. Nigeria’s rural population comprises 47% (99,895,289, 2021) of

the population, putting millions of people at risk of cholera in these potentially less developed areas

[43]. However, in the last sixty years the rural population has decreased by 38% and with e↵ective

urban planning, this continued trend could significantly reduce cholera in Nigeria.

6.4.2 Evidence from the Scenario Projections

Similar to Chapter 3, the projections showed that continued progress towards and beyond the SDGs (in

particular SDG1 and 6) and emissions reductions (contributing to PDSI and temperature) could help

to improve global health and particularly cholera. The national scenarios showed clear trends in terms

of both improvements from S1 (lowest cholera occurrence) to S3 and regression in S4 and S5 (highest

cholera occurrence). However, by 2030 none of the national cholera outbreak occurrence projections

were close to the 2030 target, achieving only a 12.6% decrease (vs 90% decrease in deaths needed).

By 2070, with significant improvements in development and environmental protection, cholera was far

from eliminated. Cholera eradication will likely take time, even with development improvements, due

to the pathogen circulating in the population and environmental reservoirs [44, 45].

The sub-national projections were more optimistic in regards to the achievability of the GTFCC

targets. Overall, for the most optimistic sub-national projections (S1) there was a decrease in Rt

values to less than 1 for most states by 2050 and for most southern states by 2030 (Supplementary

Figure 6.6). An explanation for this is that more time will be needed in the northern states to reach

the required development for significant transmission reductions. However, the projections here and

Chapter 5 (5.3.5 Spatial Heterogeneities) suggest that only marginal changes in development could have
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a significant impact on transmission. The projections suggest that southern Nigeria could potentially

reach the 2030 targets and eradication may be possible in the future, while northern Nigeria must be

an area of prioritisation for development, cholera response and conflict resolution.

The sub-national projections additionally highlighted how vital it will be for the development and

peace achieved in the south to continue or at a minimum, remain the same. As previously stated

in the Results (6.3.2), the worsened conditions of S4 and S5 had a large impact on the southern

states in terms of increasing cholera transmission. Whereas, for the northern states the changes were

minimal, potentially due to the socio-economic development being already poorer and conflict already

high in northern regions, resulting in a smaller change to cholera risk. Decreasing levels of peace

and development would potentially be catastrophic in the southern states and to the overall cholera

burden in the country.

6.4.3 An Update on the 2030 Targets and Roadmap

Overall, the achievability of the GTFCC targets at the current pace of cholera control and development

appears unlikely to be met by 2030 in Nigeria. However, there has been progress towards the GTFCC

goals and the southern states appear far more likely to meet these goals in the near term. A new

proposed 2050 target, building on the GTFCC Roadmap and expanding on the three axes will now be

delineated. Despite the new target being twenty years later, this is not encouraging complacency and

a lack of urgency, and e↵ort should still be made to reach the GTFCC goals as quickly as possible, no

matter the target year set. The new targets will aim at bringing the northern states to the same levels

of development and peace achieved in the south. The 2050 target was set based on the sub-national

projection results showing that for the S1 scenario, most states Rt values were less than 1 by 2050.

Axis 1

Axis 1 largely focuses on surveillance and data, which are vital in target setting, allocation of resources

and response. Improved surveillance may also help to reduce the cholera data inconsistencies found

here. The axis focuses on early detection, but with cholera this can be di�cult. Large numbers of

infections are often mild or asymptomatic, meaning people do not know they have the disease, and

therefore do not seek testing or treatment [8]. While in regions where cholera is circulating, diarrhoeal
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disease burden caused by many other pathogens is also high (e.g., shigella, typhoid, dysentery) [46].

Other causative agents can complicate testing, as a positive test does not always mean that cholera

is the causative agent of the diarrhoeal disease symptoms. Furthermore, there is reluctance to report

cholera at both an individual and national level, due to restrictions on movement and trade and

stigmatisation [7].

A method to help improve reporting in Nigeria, would be to o↵er incentives to test and report.

Financial incentives have proved e↵ective at improving health outcomes in Nigeria and are often

cost-e↵ective in the long-term as they prevent serious disease and morbidity [47, 48]. To reduce

nosocomial transmission, modification and improvements to the cholera rapid diagnostic tests [49],

allowing them to be used at home, may be helpful. Furthermore, the rapid diagnostic test for cholera

has recently provided highly e↵ective in Nigeria, outperforming laboratory culture [50]. The tests

would need to be easy to use and report, inexpensive and widely available. At home testing may also

reduce testing hesitancy, to avoid restrictions and stigmatisation [48], while allowing people to make

informed decisions about behaviour modifications to limit transmission.

Emphasis is needed both at a government and academic level on improving data quantity and quality.

Understanding reporting e↵ort and the accuracy and precision of data are key areas of future research

in order to fully understand how well the current data are representing cholera burden. At a global

level, a metric of reporting e↵ort would help when comparing disease data that have been collected

across multiple countries and therefore with di↵erent methods and uncertainty.

Furthermore, risk factor data are needed to fully understand disease dynamics and plan for e↵ective

response and interventions. The results here suggest that improvements in tracking poverty and

sanitation would be beneficial areas of prioritisation. In Nigeria, benefit could also be gained from

testing environmental reservoirs, such as major lakes and rivers, which are known to be used for

washing and drinking and can be fundamental in cholera transmission [51, 52]. Water testing would

increase the understanding of the environmental burden and would be useful for both research and to

understand local risk factors.
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Axis 2

Axis 2 (cholera interventions) is arguably the most important area for reaching the GTFCC goals

and several other health targets. The Roadmap highlights the need for long-term sustainable WASH

implementation and strengthening of healthcare systems to anticipate cholera outbreaks (e.g., capacity

building of sta↵, resources, diagnostics, education and societal engagement and emergency WASH

intervention). However, the GTFCC Roadmap and previous research on cholera interventions heavily

focuses on outbreak response [15], rather than socio-economic development.

The Roadmap suggests that interventions should target states most at risk, with the analysis presented

here suggesting northern states as a priority. Additionally, healthcare should be strengthened more

generally, with greater resources and service availability, making healthcare an attractive career option

(e.g., fair pay and benefits) to ensure su�cient human resources [53, 54]. For example, Sierra Leone, a

country similar to Nigeria in terms of geography and challenges, began their Free Health Care Initiative

in 2010, which has helped bring about important health system gains that have particularly benefits

vulnerable people [55]. Development planning and targets must also consider that global crises can

cause regression of progress, increasing the need to strive beyond health targets.

Designating significant financial resources on outbreak response, is not a cost-e↵ective way of reaching

cholera targets, although fundamental to reducing mortality in outbreaks. More emphasis needs to

be placed on improving peoples’ quality of life, lifting them out of poverty, providing them with basic

services and empowering them to improve their own health through resources and education. In the

absence of this development, outbreaks will continue to occur, and financial resources will be spent in

a reactionary way, rather than with careful planning towards continued progress.

Axis 3

Axis 3 of the Roadmap involves commitment and coordination on a global level, across many sectors.

NCDC currently works across multiple levels of the national system and has a detailed response plan

for diarrhoeal (including cholera) outbreaks titled, “Preparedness and Response to Acute Watery

Diarrhoea Outbreaks” [56]. However, for NCDC to work e↵ectively, there must be a functioning

national system and currently bureaucratic and corruption challenges threaten this. Nigeria has

seen regression in its anti-corruption progress since 2016, currently scoring 154/180 countries in the
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Corruption Perceptions Index [57]. At a global level, a “One World - One Health” approach is needed

to prevent pandemics and achieve the GTFCC targets at this level. Recent pandemics and global

outbreaks (e.g., COVID-19 and monkeypox) have shown the catastrophic results of countries not

working together in a global e↵ort to control disease [58].

NCDC have a designated team working on cholera elimination as a priority within the country. Con-

tinued and increased funding to NCDC will be vital for them to continue their work towards cholera

control. A barrier to achieving this is healthcare spending, which is comparatively low in Nigeria.

Health expenditure is currently at a level not seen since 2002, at 3.03% of Gross Domestic Product.

Only fourteen countries globally and five countries in Africa spend less on healthcare than Nigeria

[59]. Health needs to be a greater priority in terms of policy and government spending, in order to

tackle not just cholera but several other diseases and health challenges.

Nigeria has made several gains in weakening the Boko Haram stronghold in the northeastern states,

both in terms of territory and numbers. However, the conflict continues to threaten Nigeria’s national

security and several previous studies have suggested the negative impacts of conflict on health [60,

61, 62, 63]. Bottom-up stabilisation e↵orts are working to address local level drivers of insecurity,

including strengthening local conflict prevention, restoring governance and services and fostering social

cohesion. Reducing regional inequities in Nigeria will not only help reduce the cholera burden, but also

increase trust in the government, reducing population vulnerability to extremist recruitment. While

at a regional level, the Lake Chad Basin Commission and African Union Commission have highlighted

short-, medium- and long-term stabilisation, resilience and recovery needs [64, 65, 66].

In summary, Figure 6.6 illustrates the current Roadmap, and summarises the suggestions made here

to improve cholera control beyond 2030 and achieve the GTFCC targets in Nigeria by 2050, while still

striving to achieve them as close to 2030 as possible. Here, even with the most optimistic scenarios

(Scenario 1 and 2), the uncertainty of the projected changes in cholera at a national and sub-national

level (Supplementary Figure 6.5), make it di�cult to say with certainty when a 90% reduction in

deaths can be achieved in Nigeria. However, with the suggestions and improvements stated above and

summarised below, cholera deaths will undoubtedly reduce and therefore with time, the 90% reduction

target met.
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Figure 6.6: The 2030 GTFCC Roadmap for cholera elimination (black) with additional
suggestions and areas of prioritisation (blue) for 2050 in Nigeria.

6.4.4 Limitations

Data incompleteness and inconsistencies were issues when trying to evaluate the historical data. As

stated above, improving surveillance and a greater e↵ort to collect data on cholera risk factors will

be very important for target setting and resource allocation and prevent duplication of services [67].

More e↵ort needs to be made globally to collect and collate socio-economic data not just for research

purposes but to understand where people need assistance. Multiple data sources were used here to

try and account for this issue, and in future cholera research, using sensitivity analysis and testing

cholera assumptions across multiple data sources is one method to understand these di↵erences.

All scenario projections have limitations, due to the uncertainty in trying to predict future conditions

(particularly human behaviour), along with the limitations of the models (3.4.4 Limitations & 5.4.3

Limitations). The wide range of future scenarios helps to account for some of this uncertainty but will

still not be su�cient in capturing all potential future environments. For example, the scenarios here are

uni-directional, either getting better or worse from current conditions. All social and environmental

drivers either getting better or worse is unlikely, with some metrics improving and some worsening. To

add further complexity, these changes could be spatially heterogeneous. Regardless of these limitations,

this should not discourage scenario projection analysis, as it is still useful and valid in terms of
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understanding future changes and helping to inform cholera prevention and policy.

A further limitation is the di↵erent outcome variables and methodology of the two projections. It could

be argued that two model types (GLM and RF) and two outcome variables (outbreak occurrence and

Rt), make the results here di�cult to compare. The GTFCC targets largely focus on reducing cholera

deaths, which is why deaths (death rate) were chosen as the cholera metric for the historical data

analyses. Although the discrepancies create di�culties in interpretation, in order to reach the 2030

targets and subsequently reduce deaths by 90%, global burden will have to substantially decrease,

regardless of the metric used. Therefore, the projections are still useful in presenting the required

decrease in burden.

6.4.5 Conclusion

In conclusion, Chapter 6 highlights the importance of and how modelling studies can be used to inform

cholera policy. Using the knowledge gained through the work in this thesis, the GTFCC targets look

di�cult to achieve by 2030 in Nigeria. There is a vital need for continued investment in long-term

development, especially in northern Nigeria. The progress and achievements already made in Nigeria

in terms of development have not just improved the quality of life of the population but also had a

positive e↵ect on cholera and several other diseases. Despite the financial capital needed to improve

healthcare, WASH and education, these interventions are cost-e↵ective [68, 69, 70] due to their wide-

reaching impacts.

Nigeria currently has one of the largest cholera burdens globally, making it a critical area of study

and several of the policy suggestions here could be applied in other countries and regions. Nigeria is

also one of the largest African economies, has the largest populations and is arguably set to see the

greatest levels of development in the coming decades (due to its vast natural and human resources). If

the GTFCC targets are met in Nigeria, this will reduce the risk of cholera for hundreds of millions of

people and greatly reduce the global burden of diarrhoeal disease mortality in children under 5 years.

This work has shown the threat of disasters to impact disease and their associated risk factors. Dis-

asters have the ability to erode health and development gains and improvements and progress to go

beyond the goals and targets set would be highly beneficial in combating this. Continued progress

in development (especially at an accelerated pace) and sustainable urban planning in Nigeria, would
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see great improvements in its cholera burden and health status in the coming decades and help the

country withstand the shocks of disasters.
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Supplementary Material

Supplementary Figures

Supplementary Figure 6.1: Time series of cholera deaths for a, WHO data for 1970 to
2016, with a linear trend line [16], b, with a loess curve and c, the GHDx data for 1990-2016
[17], with a linear trend line and d, with a loess curve.
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Supplementary Figure 6.2: ACF plots for a, the WHO data and b, the GHDx data. The
dashed blue line represents the confidence interval (blue-dashed line at 95%), with ACF
measured as the correlation coe�cient of the residuals (between the time series and it lagged
values). The lag is set to 10log10(N/m), where N is the number of observations and m the
number of series.
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Supplementary Figure 6.3: Data for the covariates most commonly found as significant in
the models fitted. Correlation coe�cient (r) represents the correlation between the covariate
and the WHO cholera deaths data [16] and the p-values. Most are not found to be significant,
potentially due to a lack of complete data.
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Supplementary Figure 6.6: Sub-national projected changes in cholera transmission (Rt)
for Nigeria. Top panel, number of states with projected Rt values over 1 for each year and
scenario and bottom panel, average regional Rt value for each scenario at 2050.

The regions are based on the six Nigerian geopolitical zones. North Central : Benue, Kogi, Kwara,

Nasarawa, Niger, Plateau, Federal Capital Territory. North East : Adamawa, Bauchi, Borno, Gombe,

Taraba, Yobe. North West : Jigawa, Kaduna, Kano, Katsina, Kebbi, Sokoto, Zamfara. South East :

Abia, Anambra, Ebonyi, Enugu, Imo. South Central : Akwa Ibom, Bayelsa, Cross River, Delta, Edo,

Rivers. South West : Ekiti, Lagos, Ogun, Ondo, Osun, Oyo.
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Chapter 7

Conclusion

7.1 Summary of the Motivations and Objectives

The primary motivation for the thesis was to understand why disaster-related disease outbreaks occur,

even though disasters are not a new phenomenon. The thesis has helped answer this question by

highlighting the complexities and multi-factorial nature of disaster-related disease outbreaks, further

quantifying multiple risk factors and cascades. These outbreaks and their risk factors involve human

behaviours and are somewhat dependent on the capacity of the population to adapt. Disaster-related

disease outbreaks occur due to a breakdown in societal response and preparation, with several risk

factors commonly reported as important in both the review and modelling studies. Quantifying these

outbreak risks has been fundamental to understanding the health impacts of climate and global change

here. Common risk factors included WASH, poorly managed displacement and poverty. Furthermore,

certain regions were commonly impacted in the same disasters and resultant outbreak. For example,

the review found that in conflict settings, poor access to healthcare and immunisations increase viral

disease outbreaks.

Through the objectives of this thesis, key areas of disasters, infectious disease and climate change

research have been brought together into one project. The thesis has provided more detail on the

associated risk factors and links than previous studies, and investigated many areas deemed under-

researched e.g., the links between drought and cholera in Africa, cholera projections and investigating

the impacts of multi-hazard risks. The motivations (Introduction 1.5.1-3) of the thesis will be re-

iterated and integrated throughout the Conclusion, to highlight how they have helped form the research

questions and subsequent analysis presented here. How each objective (Introduction 1.5.4) has been

achieved is stated below, followed by a summary of the thesis chapters (7.2):

1. Create a comprehensive review - The review identified disaster-related disease outbreaks as a
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global issue, quantifying important characteristics and key areas of further research.

2. Use novel methodological approaches and datasets to gain a greater understanding of cholera

outbreak risk factors - Four cholera datasets and three modelling approaches were used and

analysed here to help understanding key cholera risk factors, particularly sanitation and poverty.

3. Evaluate a range of social and development indicators - Thirty five covariates, ranging across

environmental and social indicators were investigated. Twenty three of these were related to

social conditions including poverty, WASH, population, conflict, economics, health, education

and nutrition.

4. Apply the models to make quantitative predictions - Scenario projections for cholera were made,

accounting for climate and social changes, at both a national and sub-national scale to 2070,

along with scenarios for current ideal conditions for outbreak prevention.

5. Evaluate the achievability of global cholera targets - The achievability of the GTFCC 2030 targets

was assessed and further policy recommendations made to help achieve these targets by 2050 in

Nigeria, while striving to meet the goals as soon as possible.

7.2 Summary of the Research Chapters

After introducing the areas of study in Chapter 1, Chapter 2 starts by investigating the scale of disaster-

related infectious disease outbreaks through a systematic review. A greater understanding of the

characteristics of outbreaks in a disaster setting, including common regions, disasters and aetiologies

was gained. In the 132 studies reviewed, there were 137 di↵erent disasters and 140 disaster-related

disease outbreaks. The outbreaks were grouped into several categories by disaster, region and disease.

Many of the categorises were over-represented such as African conflicts leading to viral and vector-

borne disease outbreaks and South and South East Asian hydrological-related outbreaks caused by

water-borne bacterial pathogens. The analysis showed that human displacement, poor levels of WASH

and insu�cient housing were common risk factors relating to natural hazards. Whereas in conflict

settings, poorly managed displacement and access to healthcare were more commonly reported. It

was suggested in Chapter 2 though that disaster-related disease outbreaks are more complex than the

relatively simple way they were categorised in the results and noted the commonality of multiple risk
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reporting and the possibility of cascades in most of the reviewed outbreaks. Therefore, the remaining

chapters focused on understanding and quantitatively analysing risk factors which lead to disease

outbreaks in post-disaster settings.

For Chapter 3, drought-related cholera outbreaks in Africa were investigated using a covariate selec-

tion process and the data fit to generalised linear models, to further understand the environmental

and social risk factors involved. Droughts are complex natural hazards and di�cult to define, with

comparatively little research compared to other hazards e.g., flooding (33% of the 137 reviewed dis-

asters) and earthquakes (20%). The research gap was identified due to several reports of outbreaks

during droughts, while still being relatively underrepresented, limiting the chances of a reporting

bias. Cholera was identified as the most common aetiology in a drought setting in Chapter 2 and

a pathogen which frequently had multiple risk factors. The disease has a high global burden and

has proved di�cult to eradicate. Meteorological drought was found to be a significant risk factor for

African cholera outbreaks, along with a positive e↵ect of population, temperature and poverty and

a negative e↵ect of freshwater withdrawal. The results helped to confirm the hypothesis that during

droughts water is limited or mismanaged, while the population continues to shed cholera into the

environment, increasing pathogen concentration and risky drinking water behaviours due to a lack

of alternatives. National scenario projections across Africa, accounting for climate (temperature and

drought) and global (water withdrawal and poverty) change, helped to shed light on the potential for

increased sustainable development to o↵set future national cholera risk in Africa.

Chapter 4 used the Self Controlled Case Series methodology and conditional logistic regression models

to investigate the association between conflict and cholera in two high burden countries, Nigeria and

the DRC. Chapter 4 aimed to investigate why in high cholera burden countries (such as Nigeria and

the DRC), the drought projections in Chapter 3 saw only negligible change in cholera risk, even with

emission reductions and increased development. Other risk factors may have been a↵ecting cholera

in these countries, that were not considered in Chapter 3. An example of a cholera risk factor not

considered, yet present in Nigeria and the DRC were conflicts. The models found that conflict was

significantly associated with cholera outbreaks in both Nigeria and the DRC. Conflict increased the

risk of cholera outbreak onset by 3.6 times in Nigeria and 2.6 times in the DRC, with some sub-

national areas showing a greater risk. In Nigeria, 19.7% of cholera outbreaks could be attributed to a

conflict and in the DRC 12.3% of cholera outbreaks were attributed to conflict. Varying the exposure
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periods and outbreak definitions proved model robustness and that cholera was particularly likely to

arise within the first week following the conflict. The SCCS models not only proved to be a robust

modelling approach but also showed the importance of rapid assistance in conflict settings to prevent

outbreaks.

Chapter 5 used several measures of environmental and social extremes and pre-existing vulnerabilities,

to investigate the impacts of multiple hazards using random forest models and cholera Rt. The chapter

aimed to address several previous methodological limitations, including the use of binary outcome

variables, reducing the understanding of cholera outbreak severity and data accuracy issues. Using

confirmed cholera case data for 2018 and 2019, obtained from NCDC, incidence was calculated and

used to model Rt, which was then used as the outcome variable for the model. A machine learning

approached was taken, using random forest variable importance and several performance metrics

for covariate selection and the best fit model identified, in terms of predictive power. The best fit

model included PDSI, monthly conflict events, MPI and access to sanitation. A tra�c-light system

of cholera outbreak risk identified specific thresholds and triggers for cholera outbreaks in Nigeria.

The system used two hypothetical scenarios needed to predict Rt below 1 (Green) and over 1 (Red).

Additional spatial analysis helped understand the heterogeneities in the social and environmental

extremes identified as important (conflict and PDSI). The scenarios found that sanitation access below

54% and MPI values above 0.38 put states at high risk of cholera in Nigeria. The tra�c-light system

and spatial analysis also highlighted the potential for sustainable development to reduce the impacts

of disasters, as increasing sanitation and decreasing MPI reduced the e↵ect of PDSI and conflict on

Rt.

A motivation of the thesis was to understand where current policy falls short of preventing cholera

outbreaks in a disaster setting and Chapter 6 aimed to bring together the evidence and understanding

gained from Chapters 2-5 to evaluate the achievability of the GTFCC 2030 cholera goals in Nigeria.

Evaluating whether global health targets can be met is vital to prevent them being forgotten or

motivation being lost and the understanding gained from modelling work can inform this. Chapter

6 used historical data and trends and took the best fit models from Chapter 3 and 5 to project

cholera to 2070 with 5 alternative scenarios. The scenarios built on the work of Chapter 3 but

covered a wider range of future conditions, which included both improvements and regression. The

historical data, projections and the evidence presented throughout the thesis, suggested that 2030
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may not be a realistic target for a 90% reduction in cholera deaths in Nigeria. Research and policy on

cholera elimination largely relies on improving outbreak response but long-term development is needed.

Based on these results, a new 2050 target was suggested for Nigeria, looking at enhancing WASH

services and alleviating poverty, especially in the northern states. Conflict was repeatably found to be

detrimental to health in Nigeria and international commitment and coordination is needed in response

to Boko Haram as a matter of global security. Continuing to degrade the groups territorial control

and improving local-level stabilisation e↵orts will be vital in reducing attacks. Equitable development

across the country and e↵ective urban planning will be important in the future to achieve Nigeria’s

health targets and to empower the population to make informed health decisions. Pandemics should

not be seen as one country or region’s issue and an international approach (in terms of resources and

coordination) is essential for prevention and control.

7.3 Applications

7.3.1 Applications to Climate Change

How societies will and can respond and adapt to climate change in the future is di�cult to determine,

but understanding future risks is vitally important. Disasters provide a unique opportunity to attribute

a health outcome to a climate event and therefore climate change. This research has the potential to

inform several areas of policy including climate change mitigation and adaptation policy, and disaster

risk and reduction policy. Similar to Figure 3.1, which hypothesised the links between climate change,

drought and cholera outbreaks, the links more generally found here, between climate change and

cholera outbreaks and some of the pathways and cascades discussed in the thesis are summarised

below in Figure 7.1.
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Figure 7.1: Pathways from climate change to cholera outbreaks, with a focus on natural
hazards and sustainable development. The pathways link together how environmental changes
in terms of natural hazards (Environment), interact with a vulnerable population
(Population) and lead to cholera outbreaks (Disease) and how these can worsen pre-existing
vulnerability (dashed arrows). The mechanisms are not considered a complete list of all
potential pathways climate change may lead to increased cholera outbreaks, but instead
bringing together some specific evidence from this thesis.

Chapter 2 identified disaster-related disease outbreaks as a global issue, but also stated regional simi-

larities in terms of certain disasters and diseases, creating the opportunity for region/disaster-specific

policy. Examples of these regional similarities, and therefore potential policy recommendations, in-

cluded flooding leading to leptospirosis, particularly in Asia. Public health education and messaging

is therefore important in a post-flood setting, to make sure that people avoid contact with floodwater

and know the risks. Additionally, conflict in Africa and the Middle East disrupting access to health-

care and poor vaccination coverage was found to cause increases in viral diseases in children. E↵orts

should be taken globally to avoid the impact of conflict on childhood vaccination campaigns.

Risky drinking water behaviours are an issue during drought (Figure 3.1), and this thesis found evi-

dence that they can lead to cholera outbreaks. The model results from Chapter 3 found that su�cient

safe drinking water is an essential intervention in drought settings, while continually advocating for

the sustainable expansion of freshwater availability. Risky water practices are not a choice but because

alternatives are lacking and providing safe water, while also educating the population on the risks of
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water sources during droughts could help reduce cholera risk. The work presented here largely focuses

on low-income countries, where the e↵ects of climate change will be felt the hardest, and more research

is needed to prevent widening the health equity gap in the face of climate change.

The risks of climate change for health are far-reaching but gains in accuracy and precision of climate

models and attribution studies has helped improve the global understanding of this issue. Climate

models have continually demonstrated how climate change may alter hazard parameters, such as

changes in frequency and intensity. The links and risk factors found here (such as the need for safely

managed sanitation and provision of services) should be integrated into both climate change and

disaster-risk reduction policy, in preparation for changing hazard parameters.

7.3.2 Applications to Cholera Policy and Control

The thesis highlighted how the results from modelling studies could directly feed into cholera policy.

The quantification of cholera risk factors identified were used to develop national and sub-national

recommendations. Understanding cholera risk factors was the secondary motivation of the thesis, along

with using this to inform policy. The results from the modelling chapters shows poverty and sanitation

as policy priorities for cholera control. As the seventh cholera pandemic continues, understanding

cholera transmission factors are key to implementing outbreak mitigation strategies. Although Nigeria

was mainly the focus for policy suggestions, many of the recommendations made would likely be

relevant to other countries e.g., prioritising regions with sanitation access below 50%. At a global

level, increasing access to testing, enhancing data collection of measurable risk factors (e.g., percentage

access to sanitation and water, poverty headcount and number of healthcare facilities), environmental

testing and e↵ective urban planning, would undoubtedly help to control cholera in endemic countries.

7.3.3 Applications to Sustainable Development

The tertiary motivation of the thesis was to evaluate how sustainable development could benefit

disease control. Several links and co-benefits between health and development have been described

and should be used as further evidence for the need for greater long-term investment and coordination.

A conclusion of several of the modelling chapters was the potential for the expansion of sustainable
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development (particularly poverty alleviation) to o↵set the risks of both the disaster and therefore

disease outbreak. As stated in the Introduction, marked development inequities between regions

remain, an issue also found in Nigeria (Chapters 5 & 6), which significantly impacts the national and

global disease trends. Furthermore, the results from Chapter 6 show how bringing all regions and

countries to the same levels of development is important for disease control and finding key areas of

prioritisation could help to focus fund allocation and motivation.

7.3.4 Methodological Applications

Several of the methods adapted and applied here (GLMs, SCCS and RFs) could be used to expand the

body of work on disaster-related disease outbreaks. Additionally, the flexibility of conditional logistic

regression models used in the SCCS method, could allow for more variables to be included in the

analysis, such as social or environmental factors. Therefore, the flexibility of the modelling framework

lends itself to several other interesting research questions. The projections created here could also be

applied to other contexts and expanded. As stated, cholera forecasting and projection under global

change is relatively understudied and the scenarios created should be considered as a starting point

for more areas of global change and diseases. Furthermore, the work in Chapter 5 helped shed light

on specific risk factors and ideal conditions to avoid cholera outbreaks (e.g., <50% sanitation), the

concept of creating scenarios to inform the conditions needed to avoid outbreaks could be applied to

a range of fields and diseases.

7.4 Future Work

7.4.1 Developing Data Metrics

As stated above, many of the methods used here could be applied to other countries, analysing di↵erent

disasters and disease aetiologies, as this thesis could not comprehensively analyse all possible links

and relationships. The benefits of doing so would be to help further inform policy and understanding

and therefore lead to reductions of mortality and morbidity in disaster settings. To facilitate research

and aid those working in government and humanitarian organisations, the best available data are
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needed and both research institutions and governing bodies should continually stride to increase data

quality. Several limitations of the data were pointed out here and a way to potentially tackle these

limitations globally, to improve transparency and to make research more comparable, would be to

identify a universal metric of reporting e↵ort. Metrics have been used throughout this thesis including

MPI and the Corruptions Perception Index. The Global Health Security Index [0], which judges how

well prepared countries are for outbreaks, already has a detection and data parameter and could be

built upon to create a more specialised metric, accounted for (perhaps by penalisation of a total figure)

under-reporting, over-reporting, reporting lag and national barriers to report and test.

In terms of conflict, the development of additional metrics to better understand the impacts of the

conflict would be helpful. Conflict severity is di�cult to measure, due to its subjective nature and

would perhaps lead to some conflicts being termed “less severe”. However, in reality all conflicts are

very disruptive to those who live in the conflict-a↵ected or post-conflict areas. In terms of research

though, it could be helpful in clarifying the extensive impacts of conflict and further understand the

relationship between conflict and health. Possible variables to consider in a conflict severity metric

could be the number of events, fatalities, financial costs, damage to schools and hospitals and loss of

employment. To fully understand these complexities, those living in conflict-a↵ected regions would

need to be consulted and their insight would help gain a greater understanding of this issue.

7.4.2 Expanding Data Collection

As mentioned in Chapter 6, further data collection on risk factors is very important to fully under-

stand the changes in cholera data over time. Without monitoring both the disease and its associated

risks, the disease data are taken somewhat out of context. It makes it di�cult to understand how

and why changes in disease burden have occurred and is also a barrier to achieving health targets.

Data are needed on both environmental concentrations of the pathogen, particularly in water sources

commonly used for drinking and washing, and for socio-economic conditions such as WASH, poverty

and healthcare. By collecting data on risk factors, it is easier to identify the cause of the disease

case/death increase and act accordingly, implementing targeted interventions and identifying at-risk

areas. It is also important for epidemiological research to help further untangle the mechanisms and

characteristics of cholera outbreaks. For example, collecting and testing water samples would help to

further understand the role of waterbodies in cholera transmission, which is still relatively contentious.
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7.5 Final Thoughts

A result found across all spatial scales analysed here (global to sub-national) is that pre-existing

vulnerabilities need to be addressed before disasters occur and by doing so, this will reduce the need

for disaster assistance and humanitarian aid. Hazards will inevitably strike, as they have throughout

history, but it is how we as a society deal with these hazards, that result in the disaster. Giving

people agency to adapt to hazardous situations is important for their empowerment and to protect

their health. Ultimately the way to reduce disaster-related disease outbreaks and improve global

health is to invest heavily in sustainable development including poverty alleviation, expanding access

to housing and WASH and increasing access to education and healthcare. Doing so will give people

the opportunity to adapt and the knowledge they need to make informed health decisions.
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