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Thesis Abstract 

 

Habitat fragmentation and loss are causing biodiversity declines across the globe. As 

biodiversity is unevenly distributed, with many hotspots located in the tropics, conserving 

and protecting these areas is important to preserve as many species as possible. Chapter 2 

presents an overview of the Ecology of the Atlantic Forest, a highly fragmented biodiversity 

hotspot. A major driver of habitat fragmentation is agriculture, and in the tropics coffee is 

major cash crop. Developing methods to monitor biodiversity effectively without labour 

intensive surveys can help us understand how communities are using fragmented landscapes 

and better inform management practices that promote biodiversity. Acoustic monitoring 

offers a promising set of tools to remotely monitor biodiversity. Developments in machine 

learning offer automatic species detection and classification in certain taxa. Chapters 3 and 4 

use acoustic monitoring surveys conducted on fragmented landscapes in the Atlantic Forest 

to quantify bird and bat communities in forest and coffee matrix, respectively. Chapter 3 

shows that acoustic composition can reflect local avian communities. Chapter 4 applies a 

convolutional neural network (CNN) optimised on UK bat calls to a Brazilian bat dataset to 

estimate bat diversity and show how bats preferentially use coffee habitats. In addition to 

monitoring biodiversity, monitoring microclimate forms a key part of climate smart 

agriculture for climate change mitigation. Coffee agriculture is limited to the tropics, 

overlapping with biodiverse regions, but is threatened by climate change. This presents a 

challenge to countries strongly reliant on coffee exports such as Brazil and Nicaragua. 

Chapter 5 uses data from microclimate weather stations in Nicaragua to demonstrate that sun-

coffee management is vulnerable to supraoptimal temperature exposure regardless of local 

forest cover or elevation. 
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Chapter 1 – Introduction  

 

1.1: Biodiversity crisis 

 

Biodiversity is in crisis, currently in the midst of a 6th mass extinction event (Ceballos et al., 

2015), with not only loss of species but loss of biomass across all taxa (Goulson, 2019). 

Ecosystems operate within fragile equilibria that have evolved over millennia which though 

resilient to some change, are not able to respond to the scale and pace of threats they are 

currently faced with (Hoegh-Guldberg, 2012). Amphibians, mammals and birds are 

experiencing the highest rates of extinction (Johnson et al., 2017). These dramatic declines 

are caused by anthropogenic influence through direct drivers such as land-use change leading 

to habitat degradation, pollution, invasive species and pathogens, overexploitation and 

climate change (Mace, 2011). Biodiversity provides essential services to humans such as 

pollination, pest control, nutrient cycling, seed dispersal, etc., which they are less able to 

provide when their previously stable ecosystems have altered functionality and lowered 

stability (Isbell et al., 2017). Reversing current declines is a conservation priority that has 

been ratified by the United Nations in their Sustainable Development Goals (SDGs) (United 

Nations, 2015), which requires a detailed understanding of the current state of biodiversity 

and its vulnerability at a suitable scale. 

 

Land use change is the main driver of local species loss globally, with a ~76.5%  reduction in 

within-sample richness predicted by 2095 (Newbold et al., 2015), much of which is driven by 

conversion to agriculture (Hurtt et al., 2011).  This is particularly pronounced in the tropics 

(Murphy and Romanuk, 2014), where forests are being lost at a rate of over 200 000 km2 per 

year (Hansen et al., 2013). Between 1980 and 2000, 55% of new agricultural land in the 
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tropics came from intact forests and an additional 28% was derived from disturbed forests 

(Gibbs et al., 2010), which is of particular concern due to the exceptional natural value of 

intact forests (Watson et al., 2018).  Much of this is driven by demand for crops that are 

physiologically limited to the tropics e.g. oil palm, rubber and coffee (Verbist, Putra and 

Budidarsono, 2005; Li et al., 2007; Ambinakudige and Choi, 2009; Vijay et al., 2016). 

However, agricultural intensification drives economic development, as it lowers food 

insecurity, reducing poverty rates (Galford et al., 2013), but its benefits are unevenly 

distributed between and within countries (World Resources Institute, 2005).  Agriculture is 

also a substantial contributor to greenhouse gas emissions, and thus climate change (Tubiello 

et al., 2015).  Though technological advances may improve crop yields to sufficiently meet 

demand, this may not be sufficient to discourage further tropical forest loss (Carrasco et al., 

2014). 

 

Climate change is estimated to cause global temperature to rise by up to 2oC by 2050 

(Yerlikaya, Ömezli and Aydoğan, 2020), presenting a major threat to both biodiversity and 

agriculture. Extensive and rapid shifts in suitable ranges have been predicted for cultivated 

crops (Arora, 2019) and biodiversity (Colwell et al., 2008), leaving many species at risk of 

extinction. Predictions in range shifts of tropical crops imply that new regions of suitability 

often fall within areas that are currently forested (Magrach and Ghazoul, 2015). These range 

shifts are under-considered in most conservation policies (Pecl et al., 2017). To ensure future 

food security and biodiversity, there has been much focus on nature-based solutions, which 

purportedly mitigate and adapt against climate change while simultaneously benefitting 

biodiversity (Naumann et al., 2011), although there is an overreliance on afforestation 

strategies in policy (Seddon et al., 2019). The interactions and feedbacks between climate 
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change, agriculture and biodiversity remain poorly understood and are a key research priority 

(Ortiz et al., 2021) if the effects of climate change are to be properly mitigated. 

 

To address the problem of biodiversity decline and demonstrate efficacy of various 

conservation solutions, monitoring is essential. This is not limited to biodiversity, but also 

specific local variables that may influence the local community including microclimate, land 

use, habitat quality and anthropogenic activity. The scale of this monitoring (spatially and 

temporally) is critical, as some tropical biodiversity hotspots are topographically complex, 

creating fine-scale microclimatic variation (Trew and Maclean, 2021), and current widely 

used environmental data is at a coarser scale, which is a source of inaccuracy (Storlie et al., 

2014). To fill this gap, scalable monitoring solutions are required that can be implemented at 

local scales, ideally with the collaboration of citizen science and farmers. 

 

1.2: Monitoring 

 

Terrestrial biodiversity it not uniformly distributed across the globe, there are regions that are 

home to disproportionately high numbers of species, but have lost large extents of their 

original extent, known as “biodiversity hotspots” (Myers et al., 2000; Kobayashi, Okada and 

Mori, 2019). This is a useful concept to identify regions for conservation and research 

priority, as 2.4% of land surface contains over half of all plant species and 43% of bird, 

mammal and herpetofauna species (Conservation International, 2021). Of the 36 formally 

identified hotspots, 24 are located within or on the tropics (CEPF, 2021). Hotspots have 

suffered high levels of biotic decline (Newbold et al., 2016) to beyond the limit of normal 

ecological functioning. Despite being an urgent conservation priority, biodiversity data in the 

tropics is relatively lower than regions nearer the poles (Collen et al., 2008) and even when 
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areas are designated for protection, they are poorly monitored (Oliveira et al., 2017), which 

gives rise to questions about the efficacy of such areas. Tropical regions therefore need 

scalable monitoring solutions to collect useful information about species and communities in 

order to assess species responses to change. 

 

Technological advances have resulted in rapid advances in monitoring with regards to 

methodologies and the volume of data that can be collected. Techniques such as eDNA 

analysis, acoustic monitoring, camera traps and remote sensing are providing ways to identify 

communities of species present without constant presence in the field (Bohmann et al., 2014; 

Rocchini et al., 2018; Gibb et al., 2019), though they are still mostly at a point where these 

methods should be paired with observer-based methods (Stephenson, 2020). These methods 

differ in the species they can optimally monitor, which should be considered within the 

context of designing monitoring protocols. These advances in technology allow for more 

citizen science participation in data collection which could result in accelerated scaling of 

monitoring (Chandler et al., 2017; Pocock et al., 2018).  

 

1.2.1: Acoustic monitoring  

 

Acoustic monitoring is a rapidly developing field using sound to detect patterns and trends in 

biodiversity as well as other sounds of interest (Browning et al., 2017), with the number of 

studies implementing these tools increasing fifteenfold since 1992 (Sugai et al., 2019). 

Recent technological advances have lowered the cost of recording equipment, e.g. 

Audiomoths and Raspberri Pi are affordable recorders that can be customised to different 

recording frequencies and schedules (Upton and Halfacree, 2014; Hill et al., 2019). Data 
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storage capacity is also inexpensive and no longer a limiting factor in many cases. However, 

the ease of data collection has now created a bottleneck in analysis methodologies.  

 

1.2.2: Analysis of acoustic data 

 

Once acoustic data has been collected, many analytical approaches are available that vary in 

complexity and robustness depending on the question being answered and factors such as 

study region and taxa of interest.  Acoustic data are complex, so summarising sound features 

with acoustic indices that act as proxies for biodiversity metrics has proved popular (Gibb et 

al., 2019). Soundscape analyses are used to characterise the acoustic characteristics of 

landscapes, including all present sound (Deichmann et al., 2017; Furumo and Mitchell Aide, 

2019; Sethi et al., 2020). More sophisticated tools are also emerging using machine learning 

to automate event detection and classification to species level, particularly for bats and birds 

in North America and Europe (Szewczak, 2015; Mac Aodha et al., 2018; Stowell et al., 

2018). Machine learning tools require a high level of input data to be robust, which currently 

poses a bottleneck, particularly in high diversity regions of the tropics.  

 

Acoustic indices are some of the more commonly used tools for analysing acoustic data, 

likely due to their ease of access and implementation. Over 60 acoustic indices have been 

developed (Bradfer‐Lawrence et al., 2019), many of which can be easily calculated using 

accessible programs. Some indices, such as the Acoustic Complexity Index (ACI) have been 

shown to positively correlate to peaks in avian activity and avian species richness (Gage et 

al., 2017; Hilje, Stack and Sánchez-Azofeifa, 2017). However, other studies found no 

correlations to species richness (Buxton et al., 2018). Lack of agreement on how indices 

relate to biodiversity may be linked to a failure to consider the effect of local vegetation, 
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(Darras et al., 2016) or the urban environment (Fairbrass et al., 2017). As a result of this 

mixed transferability between ecosystems, it is recommended to combine multiple indices as 

well as complementing them with other methods (such as soundscape analysis) when 

conducting biodiversity surveys (Fuller et al., 2015; Bradfer‐Lawrence et al., 2019).  

 

Machine learning methods have accelerated the potential for automated acoustic monitoring. 

Deep learning is a subset of machine learning and is still a relatively new field for 

bioacoustics, but significant work such as the publication of the AudioSet dataset and the 

VGGish neural network architecture (Hershey et al., 2017) have made deep learning more 

accessible to biodiversity researchers (Stowell, 2022) and has successfully been used for 

anomaly detection (Sethi et al., 2019).  However, to robustly train convolutional neural 

networks (CNNs) to identify and classify sounds of interest (Mac Aodha et al., 2018) these 

methods require large training datasets that have been expertly verified. This is a major 

hurdle to automated species detection, particularly in biodiverse regions. However, if a CNN 

is optimised to detect a particular taxa in one region, some aspects may be generalisable and 

can thus be applied to the same taxa in new regions without retraining.  

 

Bats are a highly biodiverse taxonomic group, with 1470 described species, which represents 

approximately one fifth of all mammal species (Solari and Baker, 2007; Lei and Dong, 2016). 

Around 1000 of these species use echolocation to navigate and hunt for prey (Boonman et al., 

2013), most of which are ultrasonic, making them a good target for CNNs as few other 

sounds overlap at these frequencies.  Call shape, frequency range and interval between pulses 

are strongly linked to body size, diet and skull morphology, so many species can be 

distinguished by their call (Bogdanowicz, Fenton and Daleszczyk, 1999; Arias-Aguilar et al., 

2018), though intraspecific variation can still be a confounding factor (Russo, Ancillotto and 
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Jones, 2017). As bats are present on all continents except Antarctica, convergent evolution 

has resulted in cases of different species occupying similar niches developing similar calls 

(Wowk et al., 2001). The development of regional bat detection and classification tools is 

well underway, but as CNNs require extensive input data, better knowledge of tropical bat 

calls is necessary to develop robust classification tools.  

 

Monitoring biodiversity and its abiotic surroundings is now more accessible than ever, with 

instruments that can be left in place to record data for days, weeks or indefinitely without the 

need for human interference. It must also be stated that despite these leaps in remote sensing 

tools, many species will be missed if using a single detection method e.g. acoustic monitoring 

will not detect quiet or non-vocal species. Therefore, to better capture an entire community, 

other detection methods should be used simultaneously. What these are will depend on the 

target species. With the rapid development of data collection tools, a current priority must be 

form standardized monitoring protocols and best practices for emerging tools.  Once such 

protocols are in place, the potential of monitoring schemes to form part of smart future 

solutions is extensive.    

 

 

1.2.3 Microclimatic monitoring 

 

The scale of climatic data used to inform predictions of species distributions under climate 

change tends to be relatively coarse, with many studies relying on the popular WorldClim 

datasets (Hijmans et al., 2005; Fick and Hijmans, 2017), with a combined number of citations 

over 23 400.  This type of data is constructed by interpolation of across regions between 

weather stations, and the distance between these tends to be higher in the tropics. Large 
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discrepancies have been uncovered between this data and locally collected data in highly 

heterogenous regions, such as tropical mountainous areas, as microclimatic effects in 

agricultural landscapes were not detected in the interpolated data (Faye et al., 2014). Other 

remotely sensed datasets have performed better, but the scale of these data remains coarse 

(Deblauwe et al., 2016). Considering this, predictions about how future climate change will 

affect the future of crops cultivated at high altitudes in topographically complex regions may 

be inaccurate and require re-examination with the inclusion of microclimatic data.  

 

1.3 Coffee 

 

The earliest evidence of coffee being consumed as a beverage comes from the 14th or 15th 

century in the Middle East (Haarer, 1956; Wrigley, 1988), and it  is now the most consumed 

beverages in the world after water (Butt and Sultan, 2011). Demand has recently outpaced 

production, causing a reduction of stockpiles (Vegro and de Almeida, 2020). Its global 

popularity is likely to continue to grow, so ensuring a sustainable supply is not only 

important to consumers, but also the at least 125 million people who rely on it for their 

livelihood (Osorio, 2002). Many producers are smallholders, who are particularly vulnerable 

to market volatility and the threat of climate change (Verburg et al., 2019). Due to the way 

coffee grows, automation is not possible to the extent it is in other agricultural commodities 

like wheat or maize, resulting in a high demand for labour and thus the number of people 

who rely on coffee production is high (Upendranadh and Subbaiah, 2016). Two varieties of 

coffee form the majority of the market: Coffea arabica and Coffea canephora var. robusta. 

The former is the more popular variety deemed better tasting and of higher quality, and is the 

focus of this work, so when referring to coffee, I am referring to C. arabica. To maintain 
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production in the long-term, sustainable management practices need to be implemented and 

supported. 

 

Coffee is native to Africa, originating from the mountains of what are now Ethiopia, Kenya 

and Sudan (Waller, Bigger and Hillocks, 2007). Coffee is adapted to grow in the tropics, and 

is cultivated in Latin and South America, Africa and Asia, with Brazil leading global 

production, producing ~30% of the export market (Mussatto et al., 2011). Coffee is a shade 

adapted species, evolved to live in forest undergrowth (Waller, Bigger and Hillocks, 2007), 

and traditionally farmed in forest. It has a narrow optimal climatic niche of 18-21oC mean 

annual temperature, though some varieties can tolerate higher means up to 24oC (DaMatta, 

2004), though temperatures above this result in heat stress and mean annual temperature 

below 17oC result in depressed growth (DaMatta and Ramalho, 2006). Coffee also requires a 

minimum of 1000 mm annual rainfall (though some varieties can tolerate as little as 750 

mm), the seasonality of which is important (Fain et al., 2017). This limits suitable growing 

regions to high altitudes of the tropics. However, with climate change, the minimum suitable 

altitude is increasing and the area considered suitable for coffee growth is predicted to 

decrease considerably: in Africa by 2080 up to 100% loss has been predicted (Davis et al., 

2012), 30% loss by 2050 in Mesoamerica (Ovalle-Rivera et al., 2015a), and globally 50% of 

suitable area could be lost (Bunn, Läderach, Rivera, et al., 2015). Current areas of natural 

forest at high altitudes will likely be lost to create more space for cultivation (Magrach and 

Ghazoul, 2015). 

 

Coffee has traditionally been cultivated as a shade crop, grown in a polyculture with taller 

trees grown for fruit production and timber (Campanha et al., 2004).  This type of agriculture 

is similar to forest, providing habitat for higher levels of biodiversity (Philpott et al., 2008). 
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However, demand and market forces have driven intensification, particularly in Latin 

America (Moguel and Toledo, 1999), where it is also thought that more exposure to light and 

a higher density of plants will help prevent fungal growth (Muschler, 1997). However, a 

growing concern over climate change and biodiversity loss as shaded management reduces 

water loss and lowers ambient temperatures (Lin, 2010; Rigal et al., 2020). In addition, 

international certification schemes from organizations such as Fairtrade, Rainforest Alliance 

and Bird Friendly Coffee offering higher prices have encouraged better practices, which have 

shown to aid conservation (Hardt et al., 2015), though their impact on farmer income has 

been debatable (Valkila, 2009; Beuchelt and Zeller, 2011). Sun coffee monocultures are 

particularly vulnerable to climate change, and as this management is most dominant globally, 

representing 41% of coffee cultivation area (traditional shade is only 24% (Jha et al., 2014)), 

shifts in management must be enacted quickly to minimize losses.   

 

Climate change does not simply present a direct threat to the physiology of coffee plants, it is 

also predicted to increase the range and intensity of common pests and diseases of coffee 

such as the coffee borer beetle Hypothenemus hampei and rust caused by the fungus Hemileia 

vastatrix (Avelino et al., 2015; Jaramillo et al., 2009). However, re-analysis with models 

constructed with high spatio-temporal resolution reject the finding that rust will increase with 

climate change (Bebber, Castillo and Gurr, 2016). H. hampei are predicted to double their 

number of generations per year in some coffee producing regions form 5 to 10, posing a 

serious threat to quality and quantity of harvests (Jaramillo et al., 2011). Borer beetles are 

hard  to control with pesticides (Silva and Beauvais, 2010), but high levels of biodiversity 

have been shown to reduce outbreak intensity. Shade coffee farms have been found to have 

higher rates of pest control by birds and ants than sun coffee (Milligan et al., 2016).  

However, it has also been found that the structure of the surrounding habitat may have a 
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stronger effect on biodiversity than the management type itself (Boesing, Nichols and 

Metzger, 2017).  Bats have also been found to reduce arthropods by up to 84% on coffee 

plantations (Williams-Guillén, Perfecto and Vandermeer, 2008). Therefore, providing more 

habitat for biodiversity is mutually beneficial for the crop and enables the provision of 

ecosystem services.  

 

Though the benefits of biodiversity and optimizing management to minimize climatic 

extremes caused by climate change are broadly understood, they tend to be poorly monitored. 

Monitoring species diversity on coffee farms consists of labour-intensive mist-netting and 

point counts, requiring good knowledge on local species. The inclusion of microclimatic data 

into broader models has demonstrated the importance of finer scale climate data (Storlie et 

al., 2014) and could explain local variation in coffee yields, pest risk and biodiversity. As 

coffee is grown in topographically complex regions, understanding how management, 

microclimate and biodiversity interact will be important at a local scale to best inform the 

most sustainable practices in the future. This type of work is starting to be done (Karungi et 

al., 2018), but to scale the pace of such work, more rapid monitoring protocols needs to be 

established. 

 

1.4 Study region introduction 

1.4.1 The Atlantic Forest domain 

Brazil is the world’s biggest producer and exporter of coffee, and Minas Gerais is the most 

productive coffee-producing region, growing primarily Coffea arabica (Volsi et al., 2019). 

Though traditionally grown as a shade crop, economic pressure has driven intensification, 

leading to large, sun-exposed monoculture C. arabica plantations. Climate change since the 

1970s in Minas Gerais has already caused a mean annual temperature increase of ~1oC and a 
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20% reduction in coffee yield (Koh et al., 2020). Interspersed between these plantations are 

fragments of forest that range in size and level of environmental degradation. These remain 

largely due to the enactment of the Brazilian Forest Code, which has stipulations such as 

“areas on hilltops, mountains and ridges with a minimum height of 100 metres…must 

maintain native habitat” (Machado and Anderson, 2016).The presence of forest on farms has 

been shown to increase pest control services by birds and bats and thus increase coffee yield 

(Williams-Guillén, Perfecto and Vandermeer, 2008; Karp et al., 2013; Jordani, Hasui and 

Silva, 2015). Forest fragments within coffee landscapes are an important area of study as they 

represent some of the only remaining habitat for biodiversity in the region (Rocha, Passamani 

and Louzada, 2011). 

 

The Atlantic forest of southern Brazil is recognised as a biodiversity hotspot (Myers et al., 

2000), but is highly threatened, with some arguing that it is the hottest hotspot (Laurance, 

2009). The remaining natural habitat exists as an archipelago of forest fragments surrounded 

by urban area or agriculture (Joly, Metzger and Tabarelli, 2014). This combination of high 

endemic biodiversity and high fragmentation signifies that it is a strategically important area 

for conservation efforts to protect remaining species, as the changes already made have 

driven biotic homogenisation  (Lôbo et al., 2011).  Despite legal conservation measures 

including the Forest Code mandating zero deforestation of primary forest since 2006, 

problems with enforcement have led to non-compliance (Sparovek et al., 2012) and the loss 

of over 180 000 hectares between 2008-2018, though rates of loss are decreasing (SOS Mata 

Atlantica and INPE, 2019). This region of Brazil is also its most populated: the states of São 

Paulo, Rio de Janeiro and Minas Gerais have a combined population over 85 million (IBGE, 

2020), mostly living in urban areas. Conservation measures thus have to protect as many 

species as possible while not impeding economic development.  
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The Atlantic Forest is one of the most studied regions with regards to species responses to 

habitat fragmentation, representing 63% of all fragmentation based studies in Brazil, with 

most studies focusing on the impact of fragment size (Teixido et al., 2020). The remaining 

native vegetation is highly fragmented, mostly consisting of fragments smaller than 50 ha in 

size (Ribeiro et al., 2011), and an estimated 28% of its initial extent remaining, (Rezende et 

al., 2018), much of which is on private land (Sparovek et al., 2012). There has been debate 

around the term “fragmentation” and how the effects of habitat loss versus fragmentation per 

se (defined as different spatial configurations at a given level of habitat loss) may interact 

(Didham, Kapos and Ewers, 2012), as landscape scale species responses to fragmentation per 

se have been found to be non-significant (Fahrig et al., 2019), though this has been strongly 

contested (Fletcher et al., 2018). A tipping point of ~30% forest cover has been found in 

several studies, below which richness and community intactness decline across multiple taxa 

(Banks-Leite et al., 2014; Lima and Mariano-Neto, 2014). Despite a rich literature on species 

responses to fragmentation (e.g. Banks-Leite, Ewers and Metzger, 2012; Uezu and Metzger, 

2016; Delciellos et al., 2018), knowledge gaps remain in behavioural responses and 

community composition responses (Teixido et al., 2020). 

 

Birds are one of the more studied taxonomic groups within the Atlantic Forest, as they are a 

conservation target. Out of at least 832 identified species  (Hasui et al., 2018), 223 have been 

identified as endemic to the domain (Vale et al., 2018). Birds have been the main indicator 

used to examine the effects of fragmentation in the Atlantic forest and are the primary focus 

of many studies (Piratelli et al., 2008; Uezu and Metzger, 2016). There is interest in how 

different functional groups of birds occupy and use fragmented landscape and how this 

relates to their vulnerability to extinction (Pardini et al., 2009). As many Atlantic Forest birds 
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are passerines, they are a good potential target for acoustic monitoring. Acoustic methods 

may detect differences in communities as well as responses to fragmentation and land use 

change.  

 

1.4.2 Field work region introduction 

 

Field work was carried out for Chapters 3 and 4 between January and March 2019 in the 

largest coffee producing area of Brazil (Volsi et al., 2019), in a region on the border between 

the states of Minas Gerais and São Paulo. This region is within the Atlantic Forest domain 

and is regulated by the Brazilian Forest Code, which requires that landowners conserve a 

minimum of 20% of native forest (Brock et al., 2021). Thus, the landscape is mostly 

heterogenous mosaics of coffee agriculture with forest patches. The type of coffee 

Figure 1.1: Map of sampling locations. Inset map of Brazil shows grey square where of the 

location. Colours denote land use, key on the right. The main urban region in the centre is the 

town of Poços de Caldas 
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management in this region is intensive, unshaded monoculture with varying plant densities 

and most farms apply herbicides, pesticides and fertilizers (Moguel and Toledo, 1999; 

Librán-Embid, De Coster and Metzger, 2017). This region has a subtropical highland climate 

with rainy summers and dry winters (Pompeu et al., 2009). 

 

 

The field work and sampling schedule was adapted to be performed alongside the existing 

field work and research permissions of a post-doctoral researcher from the University of São 

Paulo (Andrea Larissa Boesing). Her aim was to use mist-nets and a telemetry set-up to 

compare the activity of habitat specialist versus habitat generalist birds at coffee farms and 

adjacent forest. This field work was initially going to be performed twice, once during a 

season without pest outbreaks, and then later in the year (late April-June) when pest 

outbreaks were expected. Mist-nets were set up along the forest edge and in the coffee (more 

details in Chapter 3). Three days of mist-netting were performed at each sampling site, during 

which sufficient birds of interest were captured and tagged with telemetry devices. The sites 

were then unattended for 7-10 days, after which the telemetry and acoustic equipment were 

collected. This was repeated at 9 coffee farms across a gradient of local forest cover, as we 

were interested in the effect of local forest cover on the bird community and bird activity.  

 

To record sound at the sample sites, Audiomoths (Hill et al., 2019) were deployed. As both 

bats and birds were of interest, two recorders were deployed at each sampling point: one at a 

sampling rate of 48 kHz, which recorded from 04:00-22:00 and one at a sampling rate of 384 

kHz, which recorded from 22:00-04:00. This allowed the memory cards on the Audiomoths 

to fill at similar rates. The Audiomoths were placed in plastic zip-lock bags at 1.5 m above 

the ground, attached to branches or coffee plants with cable ties. Most recorders performed 
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well, though some did suffer minor water damage as field work was conducted during the 

rainy season. Unfortunately, due to equipment damage and logistical problems, the acoustic 

recording only took place during the first field work season, without the pest outbreaks.  

 

1.4.3 Nicaraguan field work 

Nicaragua is a small central American country, which relies heavily on coffee exports for 

income. Over 60% of producers are smallholders, farming on less than two hectares (ICO, 

2020), making them highly vulnerable to small fluctuations in production. Central America is 

particularly vulnerable to the impacts of climate change, with elevated temperatures already 

causing problems with yield due to hydric stress in 2019 in Honduras (IHCAFE, 2020). A 

consequence of increasing temperatures is increased risk of disease outbreaks such as leaf 

rust, which previously did not occur above elevations of 1000 m (Bacon et al., 2017). As 

Nicaragua has such high vulnerability to climate change as well as a high proportion of 

smallholders, providing microclimatic monitoring and making localised recommendations 

based on this monitoring may provide more income security for these farmers.  

 

Coffee production is most intense in the high-altitude regions, such as Jinotega, which is 

where the field work was conducted for Chapter 5. Field work was conducted by Climate-

Edge, who selected sites and deployed weather stations at selected coffee farms to measure 

microclimate. 

 

1.5 Thesis aims and objectives  

 

Chapter 2 is published in Oxford Bibliographies and provides an overview of the important 

literature on the ecology of the Atlantic Forest. This is aimed to help undergraduates navigate 
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the literature on this region and direct them to useful data sources. It discusses the history of 

the domain, how various taxonomic groups are affected by the current state of fragmentation, 

and current conservation policy. The structure was limited by constraints such as maximum 

references per section. In the original publication, each individual piece of literature was 

summarised in a sentence or two beneath the section from which it was taken. Permission to 

reproduce and the publication in its original format is attached in Appendix A.  

 

Chapter 3 investigates how acoustic composition changes across a forest cover gradient and 

whether this is driven by avian community composition.  

 

Chapter 4 examines how far a UK trained bat classification algorithm can be applied to 

acoustic data recorded in Brazil, a region without a formal call library.  

 

Chapter 5 investigates the relative strength of microclimates in sun-coffee farms in Nicaragua 

using data from portable weather stations.  

 

Chapter 6 discusses the implications of findings from the chapters within the thesis and what 

they mean for future monitoring schemes and research.  

 

1.6 Thesis collaborators and contributions 

 

Chapter 2: The Ecology of the Atlantic Forest 

This work was done in collaboration with Cristina Banks-Leite (Imperial College London) as 

part of an opportunity from Oxford Bibliographies who commissioned a summary of the 

most important literature on the Ecology of the Atlantic Forest. Oxford Bibliographies 
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provide online research guides aimed at undergraduates to provide a thorough summary of a 

topic. Each article features an annotated bibliography, where each reference is summarised in 

terms of its highlights and overall contribution to the field. I wrote most of the review with 

input from C.B.L.; C.B.L. led the section on conservation policy.  

Publication reference: 

Damstra-Oddy, E. & Banks-Leite, C. (2021) Ecology of the Atlantic Forest. In: David 

Gibson (ed.). Oxford Bibliographies in Ecology. . New York, Oxford University Press. 

p.  doi:10.1093/OBO/9780199830060-0233. 

 

Chapter 3: Acoustic composition reflects avian community composition across local 

forest-cover gradients in a coffee growing region in Minas-Gerais, Brazil 

I led this work in collaboration with Andrea Larissa Boesing, C.B.L. and Kate E. Jones 

(UCL/ Institute of Zoology). A.L.B. selected the study sites in Brazil and received the 

appropriate licenses. Field work was carried out by A.L.B. and myself. The study was 

designed with discussions from C.B.L. and K.E.J. I led the quantitative approach. The code I 

developed for this chapter was then used by a Masters student, Charis Declaudure, at Silwood 

Park (partly supervised by me) who compared my acoustic composition methodology to 

various acoustic indices with point count data. Her results showed acoustic composition 

outperformed all acoustic indices, and the manuscript to her upcoming publication can be 

found in Appendix B.2. 

 

Chapter 4: Applying a deep learning bat detection model to a challenging Brazilian 

acoustic data set 
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I led this work in collaboration with A.L.B., C.B.L., K.E.J. and Oisin Mac-Aodha (University 

of Edinburgh). A.L.B. selected the study sites in Brazil and received the appropriate licenses. 

Data collection was carried out by A.L.B. and myself. The study was designed with 

discussions from C.B.L., K.E.J. and O.M.A. O.M.A. designed and trained the CNN model 

and retrained it for the Brazilian dataset. The UK CNN model was trained with data from 

multiple sources including the Bat Conservation Trust and Martyn Cooke. Annotations for 

the UK training data were annotated by myself, OMA and Liz Walsh. The Brazilian training 

data was put together and labelled by me.  

This work contributed to an upcoming publication:  

Mac Aodha, O., Balvanera, S.M., Damstra, E., Cooke, M., et al. (n.d.) Deep Joint Detection 

and Classification of Bat Echolocation calls.  

The current manuscript can be found in Appendix C.2. My personal contribution to this work 

was the data I collected in Brazil as well as personally labelling over 3000 audio files of UK 

bat species to train the model. I also helped design the labelling protocol for others to follow, 

ensuring consistency. 

 

Chapter 5: Sun coffee plantations provide weak microclimatic buffering effects but not 

against supraoptimal temperatures. 

The data for this chapter was provided by Climate Edge, a start-up founded by Paul 

Baranowski and Peter Baker. The study was conceived with discussions from P.B., P.B., and 

C.B.L., with analysis ideas and contributions from Rob Ewers (Imperial College London).  

C.B.L., K.E.J., P.B., and P.B. contributed to the manuscript.  
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Chapter 2: The Ecology of the Atlantic Forest 

 

2.1: Introduction 

 

Extending along the southern coast of Brazil, into Argentina and Paraguay, the Atlantic 

Forest is a domain that once covered 150 Mha and includes many distinct forest subtypes and 

ecosystems. Its large latitudinal (29˚) and altitudinal (0–2,800 m above sea level) range, as 

well as complex topography in the region, has created microclimates within forest subtypes, 

which has led to biodiversity specifically adapted to narrow ecological ranges. The region is 

incredibly species-rich and is home to charismatic or economically important species such as 

the black and golden lion tamarin, the red-browned Amazon parrot, and the highly prized 

palm heart from Euterpe edulis. Through widespread human-driven change dating back to the 

arrival of European settlers in 1500, this realm has been extensively reduced, fragmented, and 

modified. Nowadays, this region is home to about 130 million people (60 percent of the 

Brazilian population) and is responsible for producing 70 percent of Brazil’s GDP, putting a 

strain on natural resources and providing challenges to conservation. Due to its high levels of 

endemic species coupled with a high threat of habitat loss and fragmentation, the Atlantic 

Forest has been identified as a “biodiversity hotspot.” Numerous studies have assessed the 

effects of habitat transformation on biodiversity and the consensus is that the majority of 

species are negatively affected. It was puzzling however that few species had actually gone 

extinct in the wild, even if some extinctions might have gone undetected. Extinctions do not 

immediately follow habitat change, there is often a time lag of many decades between habitat 

transformation and extinction. This may suggest that many species in the Atlantic Forest are 

“living deads,” as despite their presence the available habitat no longer supports their 

requirements. It also suggests that there is a window of opportunity to restoring the domain to 
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avert extinctions before they are realized. However, in this extinction lag may be ending as 

recent research, such as that by , showing that between 5-7 bird species have likely been 

driven to extinction, with a further 9 now critically endangered. Current research and policy 

actions are geared toward optimizing restoration and increasing the extent of native forest 

cover, bringing hope to the conservation of this unique domain. 

 

2.2: General Overview of Forest Ecology and Forest Extent 

 

Several good sources give detailed overviews of the forest ecology. Galindo-Leal & Gusmão 

Câmara (2003) is a good general introduction to the history, biodiversity, and human impacts 

in the region as well as conservation management strategies; however, certain aspects of this 

text pertaining to current trends and conservation management are likely outdated. Metzger & 

Sodhi (2009) a special issue in Biological Conservation, focuses on conservation issues in the 

Atlantic Forest. Joly, Metzger & Tabarelli (2014) provides a comprehensive review of the 

history of disturbance, the ecology, the ongoing effects of fragmentation, and how climate 

change is impacting and will impact the Atlantic Forest. Rates of land use change in the 

Atlantic Forest tend to be monitored on a country-by-country basis, with remote sensing 

efforts in Brazil, Argentina, and Paraguay revealing different levels of deforestation, as seen 

in Azevedo et al. (2018); Izquierdo, De Angelo & Aide (2008); and Huang et al. (2009), 

respectively. In Brazil, low levels of deforestation are mostly matched by reforestation, which 

means that the amount of forest cover has either been stable or slowly increased in the past 

decades. The amount of remaining forest cover in Brazil has been measured by several 

groups and has been repeatedly updated since the 2000s as high-resolution satellite imagery 

becomes available. Galindo-Leal and Câmara 2003 reported that about 7–8 percent of 

Atlantic Forest still remained. Ribeiro et al. (2009) calculated the existence of 11–16 percent 
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of native vegetation, but when secondary forest fragments are excluded, the estimated 

remaining forest would stand at around 8 percent. More recently, using RapidEye imagery 

with 5 m of resolution, the authors of Rezende et al. (2018) have shown that there is actually 

26 percent of native vegetation. Because each group used different methods to assess the 

extent of forest cover, these estimates cannot be compared, and do not indicate that the 

amount of forest has increased over time. 

 

2.3: Historical Background 

 

The earliest evidence of human activity within the Atlantic Forest is from at least 3220 years 

ago, and consists of indigenous settlements causing modest disturbance, leaving ceramic 

evidence, such as that presented by Scheel-Ybert, Beauclair and Buarque (2014). Since the 

arrival of Portuguese settlers in the 16th century, deforestation for urbanization and 

agriculture has been rampant. Two of the world’s most populous cities (São Paulo and Rio de 

Janeiro) are located within the Atlantic Forest realm, and Brazil’s economy also relies 

heavily on agriculture, including commodities such as coffee, cocoa, sugar, rice, soybean, 

and cotton, as explained by Martinelli et al. (2010). Much of Brazil’s agriculture is exported 

and/or transported by trucks across Brazil, requiring an extensive road network, which, as 

shown in Freitas, Hawbaker & Metzger (2010), further exacerbates land use change and 

forest fragmentation. As for pre-Anthropocene history, there has been some research into the 

underlying evolutionary and paleoclimatic drivers responsible for the centers of endemism 

found within this region, such as the study Carnaval & Moritz (2008). Álvarez-Presas et al. 

(2011) used planarians as model organisms to understand patterns of biodiversity, whereas 

the authors of Carnaval et al. (2009) used frogs as indicators in their paleoclimatic models. 

Fjeldsa & Rahbek (2006) used climate and phylogenetic data to explain the higher diversity 
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of tanagers in the Atlantic Forest around Rio de Janeiro. Batalha-Filho et al. (2013) used bird 

data to demonstrate how the Amazonian and Atlantic Forests were connected, linking the 

connection to geotectonic events. 

 

2.4: Habitat Types: Present and Future 

 

The Atlantic Forest is commonly divided either into forest types (a particular community of 

plant species that define a region can be referred to as a physiognomy) or into 

biogeographical subregions. The types of forest present are: dense and open ombrophilous 

forests, mixed ombrophilous forests, seasonal forests, and semideciduous as well as 

mangrove forests. The most studied forest physiognomy is the ombrophilous dense forest, 

which is believed to have higher levels of biodiversity and endemism than other 

physiognomies, although this could be due to differences in sampling effort. However, 

Scarano (2009) argues that these peripheral forest subtypes, including restingas and swamp 

forests, should be given more priority, making the case that they have a high conservation 

value due to their oligarchic diversity, with a few dominant species but many rare species at 

local scales. The western extent of the forest that extends into Argentina (an introduction to 

this forest can be found in Chebez & Hilgert (2003) and Paraguay (Cartes (2003) presents a 

background to this forest) forms part of the subtropical semideciduous forest. Silva & 

Casteleti (2003) defined eight biogeographical subregions: Araucaria, Bahia, Brejos 

Nordestinos, Diamantina, Interior, Pernambuco, Serra do Mar, and São Francisco. Five of 

these regions are considered to be centers of endemism, as shown by Tabarelli et al. (2010) 

(cited under Biodiversity of the Atlantic Forest). Assessments of the potential impacts of 

climate change on the Atlantic Forest have revealed the area to be extremely vulnerable: 

Lemes, Melo & Loyola (2014) found that as species ranges shift under climate change, 
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protected areas will need to shift with them, particularly for vulnerable taxa like amphibians. 

Scarano & Ceotto (2015) reviewed the vulnerability of both biodiversity and society of the 

Atlantic Forest to climate change and discusses important adaptive practices. 

 

2.5: Biodiversity of the Atlantic Forest 

 

Myers et al., (2000) showed that nearly half of all plant species and more than a third of 

mammals, birds, reptiles, and amphibians are found in only 1.4 percent of the Earth’s land 

surface area, regions which are known as biodiversity hotspots. Hence, by focusing 

conservation policies and protecting these areas, a disproportionately high level of 

biodiversity could be protected. A follow-up book about biodiversity hotspots, Mittermeier et 

al. (2005), discusses that 40 percent of the 20,000 plant species, 16 percent of the 688 bird 

species, 27 percent of the 261 mammal species, 31 percent of 200 reptile species, and 60 

percent of 280 amphibian species are endemic to the Atlantic Forest, which means they can 

only be found within this realm. Together, they represent over 8,650 species, 8,000 of which 

are tree species. The Atlantic Forest has shown some of the highest levels of biodiversity in 

the world. Martini et al. (2007) identified an area containing 144 species of trees (above 

diameter at breast height > 4.8 cm) within 0.1 ha in southern Bahia, which is the second 

highest concentration of tree species in the world. Among animal species, one notable 

example is the golden lion tamarin, an endangered primate species that Lapenta & Procópio-

de-Oliveira (2008) found to have a role in the seed dispersal of ninety-seven species of 

plants. The Atlantic Forest has high levels of endemism and of habitat loss, making it one of 

the most endangered biodiversity hotspots. The species that are still present are often trapped 

within small fragments and unable to migrate, as discussed in Tabarelli et al. (2010). 
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Amphibians are a taxon of particular concern due to their high endemicity and the increasing 

threat posed by chytrid fungus, as shown in Carnaval et al. (2006). 

 

2.6: Biodiversity Data 

 

There have been large-scale efforts to gather data on Atlantic Forest biodiversity. There are 

several public data sets known as the Atlantic data papers, which represent a high proportion 

of diversity present in the region, including: 94 species of mammal (Souza et al., 2019), 26 

primate species (Culot et al., 2019), 745 bird species (Hasui et al., 2018), 2,095 epiphyte 

species (Ramos et al., 2019), 279 butterfly species (Santos et al., 2018), 528 amphibian 

species (Vancine et al., 2018), and 98 bat species (Muylaert et al., 2017). Several of these 

data sets monitor assemblages (e.g. Culot, et al. (2019) over time. As well as simple 

occurrence records, some of the data sets collate information on species traits and 

interactions, such as plant–frugivore interactions in Bello et al. (2017), and bird traits 

including body mass and wing length in Rodrigues et al. (2019). Going beyond simple 

species occurrence data allows researchers to investigate patterns over time such as 

demographics and make inferences about how anthropogenic stressors affect morphology. 

Interaction data is particularly valuable as it can uncover species mutualisms and the extent to 

which certain species depend on others. This contributes to the deeper understanding of how 

ecological communities work, which can be useful to inform better conservation policies. For 

the state of São Paulo, there is also information available on the SinBiota 2.1 platform, as 

described in Mira et al. (2011). This was created by the Biota/Fapesp program to integrate 

information generated by all researchers funded by this program. 
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2.7: Habitat Transformation 

 

Habitat loss, fragmentation, and degradation are the major threats to biodiversity in the 

Atlantic Forest, thus there is a substantial body of literature on this subject. Lôbo et al. (2011) 

showed that habitat transformation has over time modified diverse communities within five 

physiognomic subtypes (including evergreen, semideciduous, and open forest) of the Atlantic 

Forest into a homogenized set of disturbance-specialist species. Indeed, studying in southern 

Bahia (world’s second highest concentration of tree species), the authors of Benchimol et al. 

(2017) found that forest loss leads to nonrandom floristic shifts, such that shade-intolerant 

species (e.g., pioneers) become more common than shade-tolerant species below 30 percent 

of forest cover. The loss of species also drives evolutionary changes in seed size, as shown by 

Galetti et al. (2013). Within the evergreen and semideciduous forests, Santos et al. (2008) 

demonstrated that fragmentation and the resulting creation of more edges have severely 

reduced functional traits of tree assemblages. But habitat loss is not the only driver of species 

loss. Using a multi-taxa database with over 2,200 community-level estimates from 1,097 

sites, Püttker et al. (2020) showed that forest-dependent species respond negatively to habitat 

loss and fragmentation, and that in areas with over 30 percent of forest cover, habitat 

fragmentation was as important as or more important than habitat loss in driving changes in 

species richness. This was not the first time that it has been shown that the effects of 

fragmentation on species are dependent on the amount of forest cover. Pardini et al. (2010) 

demonstrated that within the ombrophilous dense forests, the size of a forest fragment only 

positively affects biodiversity when the landscape level forest cover is intermediate (around 

30 percent of forest cover). The impacts of edge effects have been shown for a variety of 

abiotic and biotic conditions. Magnago et al. (2015) showed that forest edges are drier and 

warmer, and these abiotic changes affect forest structure. Changes to habitat structure can 
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then have knock-on effects on other taxa. For instance, Filgueiras, Iannuzzi & Leal (2011)  

found that dung beetle diversity was impacted by the impoverished flora of small patches. 

Banks-Leite, Ewers & Metzger (2010) found that edge effects likely drive the patch area 

effects on birds in the Atlantic Forest. This is because large patches experience a weaker 

influence of edge effects than small patches, which have higher edge-to-area ratio. 

 

2.8: Vertebrates and Habitat Transformation 

 

Birds are one of the most commonly studied taxa in the Atlantic Forest due to their diversity 

and sensitivity. Responses of birds to fragmentation have been well documented: Zurita & 

Bellocq (2010) found forest cover to be the main driver of differences in bird communities in 

Argentina, while Morante-Filho et al. (2015) showed the number of bird species in southern 

Bahia abruptly changed at a threshold of 50 percent forest cover. Banks-Leite, Ewers & 

Metzger (2012) showed that around São Paulo responses of bird communities to 

fragmentation do not conform to the classical ecological species–area relationship. Instead, 

the main drivers of changes in bird communities across a gradient of disturbance are 

purported to be individual species reaching their extinction threshold. Despite conservation 

efforts, many species remain at high risk of extinction (as demonstrated in Canale et al. 

(2012)), particularly large mammals such as the jaguar, which, as shown by Paviolo et al. 

(2016) have undergone high rates of extirpation. Umetsu & Pardini (2007) found that small 

mammals, particularly endemic species, have been found to be sensitive to land use change. 

The response of bats is less clear, as Gorresen & Willig (2004) found the highest levels of bat 

diversity in moderately fragmented landscapes. With regards to the response of amphibians to 

fragmentation, Becker et al. (2007) found habitat loss to be a key driver of amphibian 

declines, particularly for forest species; and amphibians are particularly vulnerable to the 
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coupled effects of fragmentation and climate change, as shown by Loyola et al. (2014). The 

effects of fragmentation on reptiles are less studied, but Lion et al. (2016) demonstrated that 

reptiles can benefit from even small forest fragments. 

 

2.9: Conservation and Policy 

 

The Atlantic Forest is protected by the Forest Code, which is an environmental law created in 

Brazil in 1965, when most of the deforestation had already taken place. By law, landowners 

are required to set aside 20 percent of their land for native habitat, as well as protect riparian 

forests, hilltops, and other environmentally sensitive areas. The Forest Code was revised 

recently, weakening the protection of the Atlantic Forest, as discussed by Soares-Filho et al. 

(2014). This revision is particularly problematic given that Banks-Leite et al. (2014) has 

shown that at least 30 percent of native habitat is required to protect biodiversity within the 

Atlantic Forest. Due to the pressing need to preserve its unique yet endangered biota, a group 

of academics, NGOs, industry, and government formed the Atlantic Forest Restoration Pact, 

an initiative which aims to restore 15 Mha of habitat in the Atlantic Forest by 2050. This 

pledge comes as part of Brazil’s commitment to the Bonn Challenge. Crouzeilles et al. 

(2019) shows that the Atlantic Forest Restoration Pact has already facilitated the restoration 

of roughly 700,000 ha, estimating that by 2020 there will be 1.5 Mha under restoration. 

Rezende et al. (2018) has estimated that if landowners comply with the new Forest Code to 

restore riparian forest (i.e., forest strip along rivers), by 2038 the vegetation cover in the 

Atlantic Forest will be close to 35 percent, bringing hope to the preservation of this 

charismatic and species-rich system. 
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Chapter 3: Acoustic composition reflects the avian community across local 

forest-cover gradients in a coffee growing region in Minas-Gerais, Brazil 

3.1: Abstract 

 

Understanding how groups of species respond to local land use and forest cover can 

contribute to more efficient conservation policy, but it is still challenging to obtain data on 

biodiversity. Acoustic analysis is emerging as a tool to rapidly assess biodiversity, but current 

methodologies vary in the extent to which they truly measure the underlying community. We 

use a holistic soundscape approach to examine how local avian community composition 

varies with local acoustic composition of Brazilian coffee farms and adjacent forest along a 

gradient of forest cover. This study built on recently developed methods to uncover drivers of 

acoustic differences between land uses and across a forest cover gradient. I found that 21% of 

variance between soundscapes could be explained by a forest cover gradient as well as 

different land uses, and that this variance correlated with bird community composition 

(Pearson’s r = 0.6). Specific indicator frequencies driving the acoustic differences were 

identified and these were distributed throughout the day, highlighting the importance 

collecting acoustic data across longer time spans rather than concentrated around dawn. A 

majority of indicator frequencies were found to be from avian sources, though insects also 

contributed. 
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3.2: Introduction 

 
Acoustic monitoring of biodiversity is a rapidly expanding field of ecology, as a lot of data 

can be collected without the need for labour intensive field work or detailed knowledge of 

local biodiversity in a non-invasive manner. It has the potential to contribute to rapid 

assessments of biodiversity which are necessary for achieving the UN 2030 Sustainable 

Development Goals (United Nations, 2015) . By building on emerging acoustic methods and 

thus creating techniques to assess communities from soundscape data is key to making rapid 

assessments a reliable form of monitoring.  

The potential of acoustic data as a tool to monitor biodiversity in a less labour intensive 

manner has been boosted by low-cost passive acoustic monitoring devices such as 

AudioMoths (Hill et al., 2019), customisable products such as Raspberry Pis (Upton and 

Halfacree, 2014), and the rapid development of machine learning technology (Stowell et al., 

2018). However, currently a gap exists in acoustic analytical tools between generalised 

acoustic indices and overly specific algorithms trained to detect a particular species or taxa, 

though this gap is starting to be filled (Buxton et al., 2018). The drawback of producing 

specific algorithms is they require extensive training datasets, which take time and expert 

verification to compile, as well as computational expertise to design, train and test the 

algorithm (Gibb et al., 2019). This is still a challenge for taxa like birds, as many other 

sounds are also made in the same frequency range, though progress is being made with neural 

network methodologies (Stowell et al., 2018). However, collecting and verifying sufficient 

data in megadiverse regions such as the Neotropics make automation a challenge.  

Over 60 acoustic indices have been developed to summarise various aspects of acoustic data 

that correlate with components of biodiversity, often species richness (Rajan et al., 2019; 

Sueur et al., 2014), however they have also been found to be inconsistent between biomes 

(Eldridge et al., 2018). Guidelines are improving, and more recent recommendations for the 
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use of acoustic indices proposes using a combination of at least four indices (Wimmer, 

Williamson and Roe, 2014; Buxton et al., 2018; Bradfer‐Lawrence et al., 2019).  In work that 

has used acoustic indices to examine avian responses across land use gradients, the responses 

of indices have been mixed (Shamon et al., 2021). So far links between indices and 

community composition of birds are uncertain, as specific drivers of acoustic indices are 

difficult to uncover, and often differences in acoustic indices between land uses is presented 

without the drivers of these indices being fully explored (Scarpelli, Ribeiro and Teixeira, 

2021). In addition, recent analysis of combinations of seven acoustic indices in the Atlantic 

Forest have found that they are more correlated to the number of vocalisations rather than 

richness or diversity (Gaspar, 2021). Though acoustic indices are sometimes used well, and 

protocols are improving, they may not necessarily reflect underlying community composition 

at local scales.  

Soundscapes are summaries of the sound in a particular place and are a useful tool to 

visualise patterns of acoustic activity in time (Pijanowski et al., 2011). An approach that 

explores broad patterns in soundscapes has been developed (Campos-Cerqueira and Mitchell 

Aide, 2017; Furumo and Mitchell Aide, 2019), based on the idea that spectrograms of sound 

across various locations can be treated in the same way as species composition data can be 

compared across sites. In this methodology, each time-frequency pixel within an averaged 

spectrogram is treated as if it were a species, and each respective amplitude value indicates 

the presence or absence of that sound.  This is based on “acoustic niche hypothesis” which 

states that birds living in the same community separate their calls by either time or frequency 

to avoid overlaps with other species (Farina et al., 2011). Therefore, if a site has an occupied 

acoustic niche that is not occupied in another site, this can be detected as an indicator time-

frequency, which can lead to the identification of taxa contributing to the acoustic 

composition of certain locations or differences in temporal acoustic composition.  If 



42 

 

conducted in parallel with in situ monitoring of biodiversity, the validity of these methods as 

indicators of local biodiversity trends can be demonstrated.  

The impact of fragmentation on avian communities is well studied in the Atlantic Forest of 

Brazil, but thus far most studies rely on intensive field work to monitor communities 

(Morante-Filho et al., 2015; Boesing, Nichols and Metzger, 2018). Here, we set out to answer 

how acoustic community composition varies across a land use and degradation gradient and 

whether acoustic community composition reflects the composition of avian communities. By 

monitoring acoustics at different local land uses across a gradient of surrounding forest cover, 

biotic indicators of each landscape type can be recorded. I predict that soundscapes will vary 

most between land use types as well as across a forest cover gradient. It is expected that the 

edge of the forest will sound more similar to the forest than the agricultural land use.  I 

hypothesise that there will be a correlation between the bird community and the acoustic 

communities across sites and as a result most indicator frequencies be driven by bird taxa. In 

addition, I predict that the times at which the indicator frequencies occur will be widely 

dispersed across the day, as this method extracts the main sources of difference between sites 

is likely to occur when one site contains sound when others so not. We present a potential 

suite of generalised acoustic analysis methods that monitor and capture acoustic indicators of 

environmental degradation using a field case study done in Brazil’s Atlantic Forest.  

3.3: Methods 

 

Study area 
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Fieldwork was conducted between January and March 2019 on the boundary of Minas Gerais 

and São Paulo states of Brazil, within 50km of the town of Poços de Caldas. The altitude in 

this region is 750-1200 m a.s.l., with a mean annual temperature of 17.7oC and average 

annual rainfall of 1695 mm (Pompeu et al., 2009). Prior to agricultural intensification, the 

original forest physiognomies in this region were a mixture of ecotonal, semi-deciduous and 

ombrophilous dense (Joly, Metzger and Tabarelli, 2014). Sampling was conducted at 11 sites 

within a 250 000 hectare highly fragmented region (21o47’S, 46o33’W), which has 13% 

native forest cover and 80% agriculture (dominated by Coffea arabica monoculture 

plantations). The remaining 7% landcover consists of urbanised areas, water bodies and 

forest plantations. In total, 11 sites (Figure 3.1A) were surveyed using a paired forest-coffee 

plantations design (i.e. sampling sites were composed by a farm adjacent to a forest 

fragment). Sites were selected to reflect a wide range of landscape level forest cover, which 

ranged from 9% to 60% within a 1000 m radius. The scale at which responses to 

Figure 3.2: A: Map of study area land use and sampling sites. B: Diagram of AudioMoth placement at 

each sampling site as well as placements of mist nets at relevant sites. C: Diagram of acoustic sampling 

rate schedule, at each sampling point. 
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fragmentation are best measured varies between species, but 1000 m has been found to be 

significant and is commonly used across multiple studies (Boscolo and Metzger, 2009; 

Pereira, Oliveira and Torezan, 2013; Regolin et al., 2017). This field work and bird sampling 

permissions were granted under the research permit number SISBIO 64745/1.  

Acoustic sampling 

Acoustic sampling was conducted using AudioMoth recorders (Hill et al., 2018). These are 

small, low-cost acoustic recorders that can record customised recording schedules at 

sampling rates up 384kHz. At each sampling site, five recorders were deployed every 75 m 

along a transect (see Figure 3.1B). The recorders were deployed at 1m from the ground, in 

plastic bags to protect from rain. The recorders were set to record 1 minute every 5 minutes 

from 04:00 to 22:00 at a sampling rate of 48 kHz. This schedule was selected due to previous 

work in the Atlantic Forest showing that recording every fifth minute retains the most 

information across sites (Pieretti et al., 2015). The recorders were deployed for 8-14 

consecutive days.  Recorders were firstly placed at the edge, then 75m and 150m into the 

forest and coffee plantation in such a way that they were at least 75 m and 150 m from any 

edges respectively. Due to this constraint, in a few of the smaller forest fragments, the 

recorder at transect point 5 was not deployed at three sites. Though distances between 

recorders of 100m would have been ideal (Dixon, Baker and Ellis, 2020), this was not 

possible due to the size of small forest fragments.  

The temporal resolution of acoustic data collection is also important and must consider the 

patterns of activity of the target taxa. However, this has resulted in acoustic monitoring 

surveys for bird activity focusing heavily (sometimes exclusively) at dawn (Venier et al., 

2012; Farina et al., 2015), with limited recording during the middle of the day (Scarpelli, 

Ribeiro and Teixeira, 2021). This type of temporal sampling misses species that are 
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acoustically active at other times of day (Metcalf, Barlow, Devenish, et al., 2021) and also 

may miss differences in behaviours of the same species at different sites. Higher temporal 

resolution in acoustic sampling can contribute to fill knowledge gaps in how communities of 

species and their behaviour respond to their local environment (Teixido et al., 2020). 

Therefore, to better assess as much of the community as possible, many shorter recordings 

large sections of the day should be done.   

  

Bird sampling 

At nine of the eleven sites (Figure 3.1A), mist-netting was performed for three consecutive 

days (this matched the first three days of recording). Six 12 × 3 m with 29 mm mesh Ecotone 

mist nets were placed along the edge of the forest as well as 100m into the coffee plantation, 

parallel to the edge (Figure 3.1B). Mist nets were operated between sunrise until 6 hours 

later, to capture the higher bird activity time, totalling 216 mist net hours per site, where one 

mist-net hour represents one mist net open for one hour (Roos, 2010). All captured birds were 

identified to species level in the field and marked (by painting neon pink nail polish onto a 

talon) before release, to avoid double counting individuals.  

To determine the composition of the bird community, a Principle Coordinates Analysis 

(PCoA) was done, with a Bray-Curtis similarity and the first axis (PCo1) was selected for 

further investigation. This was done using the vegan package (Oksanen et al., 2019) in R 

version 4.0.2  (R Core Team, 2020). 

 

Forest cover data 
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Forest cover was calculated within a 1000m radius of each site, using QGIS (QGIS 

Development Team, 2021). A 5 m resolution land-cover map was provided by A.L.B. for this 

work.  

 

Acoustic analysis 

All acoustic and statistical analyses were performed in R version 4.0.2 (R Core Team, 2020). 

A general soundscape approach, as described in (Furumo and Mitchell Aide, 2019) was 

selected as it compares the each time/frequency point explicitly to reflect temporal acoustic 

composition. These methods create an average soundscape for each site, then treats each 

soundscape as an acoustic community which can be compared to other acoustic communities. 

This was done by creating spectrograms of all recordings taken at the same time of day for 

each recorder, then a mean spectrogram for that minute is calculated. The frequency bin 

width of the spectrograms was set to 0.2kHz in width and all files were resampled to a 

frequency of 24 kHz, which corresponds to a Nyquist frequency of 12 kHz, to make sure all 

avian activity was included, as most birds call up to 8kHz (Kasten et al., 2012). This was 

done by adapting the spectrogram binning function described in Kasten et al. (2012). The 

lower 1 kHz was removed, as these bandwidths contain the most geophony (noise created by 

wind, rain etc.) (Furumo and Mitchell Aide, 2019). The mean amplitude of each frequency 

bin for the spectrograms was obtained so a single vector for each recorded minute of the day 

could be calculated. These vectors were collated into a soundscape matrix.  

Once the matrices were obtained for each recorder, they were flattened into vectors and 

arranged into a data structure analogous to a community matrix where each column 

represented a single time frequency bin and each row represented a different site. By 
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approaching soundscapes as a community, each time-frequency bin can be thought of as a 

species.  

The next step was to determine whether there were clear differences in acoustic composition 

across both the land-use transects and the forest cover gradient. To uncover whether 

differences in soundscapes could be correlated to bird communities, the soundscapes were 

trimmed to only include the sound from 04:30 to 19:30. This corresponded to half an hour 

before sunrise and half an hour after sunset during the fieldwork season to capture a 

maximum of bird activity. 

PCoA were performed on these trimmed soundscapes using Bray-Curtis similarity, and the 

first axis (PCo1) was selected for further investigation. This was done using the vegan 

package (Oksanen et al., 2019) in R.  

 

Statistical analysis 

A linear mixed effect model was constructed to investigate the relationship between the 

acoustic composition PCoA 1 score, forest cover and land use. To determine the optimal 

model structure of the forest cover and land use variables, the beyond optimal model 

selection protocol from Zuur et al. (2009) was used.  This protocol determines the order in 

which fixed and random effects are selected, and then the best model is selected using AIC.  

Models were compared using the Akaike Information Criterion (AIC) (Burnham and 

Anderson, 2016) and the selected model had ΔAIC>2 than the next best model. 

Sampling site was a random factor within the model.  Model assumptions were verified by 

plotting the residuals against fitted values (see Appendix B.1 Figure 1). All model 

verification and analysis was done using the nlme package in R (Pinheiro et al., 2020). 
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Then to examine the relationship between the acoustic community and the bird community, a 

simple linear model was run between the PCoA of the acoustic data and the bird data.  

Indicator analysis 

To determine the acoustic niches driving the differences between different sites, indicator 

analysis was performed on the soundscape community matrix using the labdsv package in R 

(Roberts, David and Roberts, 2019). This indicator frequency analysis is based on indicator 

species analysis, where the value is highest when all individuals of a species are found within 

a single group of sites (Dufrêne and Legendre, 1997). Specific time-frequency points were 

considered in the same way as species would be.  Amplitude values that were less than 0.1 

were set to zero to ignore less important frequencies. The diurnal soundscapes were firstly 

grouped by land-use, then categorised according to forest cover in 10% bins. The indicator 

analysis then extracted particular time-frequencies which were strongly associated with 

certain forest cover categories. This type of analysis removes sounds common across multiple 

categories, and highlights those that are strongly associated to a single category. Specific 

time-frequencies were considered indicators if they a p-value below 0.05, based on 10.000 

iterations.   

To determine the source of clusters of the indicator frequencies, one minute in the centre of 

the cluster was selected, and a random subset of ten files recorded at that minute for the 

corresponding land use and forest cover level were systematically listened to. For each file, 

the taxa producing the sounds made at the frequency of interest were noted. For broader 

clusters, multiple minutes within the cluster were listened to. Details of files listened to are in 

Table 4 of the Supplementary Information.  
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3.4: Results 

 
Soundscape and bird community analysis 

Around 77, 000 60-second files were recorded and analysed for this work, representing over 

53 full days of sound. For spectrograms of average soundscapes, see supplementary material.  

A total of 773 birds were captured, 471 in the coffee and 302 at the edge. A total of 77 

species were captured: between 9 and 29 species of birds were captured in the coffee (mean 

17, s.d. 6.48), and between 10 and 26 species were captured at the edge (mean 17, s.d. 4.74). 

The most common species were Zonotrichia capensis (122 individuals) and Sporophila 

caerulescens (121 individuals) totalling 43% of all captures.  

The mixed effects linear model showed that across the forest cover gradient there was a 

directional shift in composition of both acoustic and bird communities which was consistent 

between land use categories (Figure 3.2). Forest and edge acoustic communities were more 

similar to one another than the coffee acoustic community within each site. 

Table13.1: Model selection results. A is acoustic composition (PCoA 1 value), F is forest 

cover within 1000m, L is land use category, and S is site. 

Model structure AIC 

A~F+L+(1|S) -62.78473 

A~F*L+(1|S) -43.34625 

A~F*L -44.17307 

A~F*L+(1|S +1|F) -42.39815 
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Figure 3.2: A: Graph of soundscape PC 1 against forest cover within 1000 m radius. Land 

uses are denoted by colour (brown = coffee, orange = edge, green = forest). Lines represent 

the best fit model, showing the different intercepts between land uses B: Graph of bird PC 1 

against forest cover within 1000 m radius, with lines denoting the best model fit. C: Graph 

showing PC 1 of soundscape against PC 1 of bird data, the line denotes a linear model fit 

with an adjusted R2 of  0.36 , p=0.0086. 

The best model was a linear mixed effect model with forest cover and landuse as additive 

fixed effects see Table 3.1 for outputs. This model structure was the best fit for both the 

soundscape and bird community PC data. 
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Table 3.2: Output parameters of selected model with lowest AICs for both the soundscape 

model and the bird model. The intercept values denote the baseline of coffee land use. Models 

are both linear mixed effects model with the formula:  PCoA output ~ Forestation + Landuse 

with site as a categorical random effect. Model validation plots and full model outputs are in 

the Supplementary Materials. 

 Soundscape model Bird model 

Predictors Estimates df C.I. p-value Estimates df C.I. p-value 

(Intercept – 

coffee land 

use) 

0.152 32 0.063 – 

0.241 

0.0015** -0.473 8 -0.063 – 

-0.315 

<0.0001

*** 

Forest cover -0.003 9 -0.006 – 

-0.0004 

0.0311* -0.0087 7 0.005 – 

0.0125 

0.0001*

** 

Land use 

(Edge) 

-0.094 32 -0.149 – 

-0.040 

0.0012** 0.3644 8 0.218 – 

0.511 

0.0002*

** 

Land use 

(Forest) 

-0.086 32 -0.133 – 

-0.039 

0.0008**     

Conditional 

R2 

0.571    0.719    
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Indicator frequency analysis 

The indicator frequency analysis showed a contrast in both number and temporal distribution 

of indicator frequencies between land uses (Figure 3.3).  Within the coffee land use, 

surrounding forest cover of 30-39% had the most significant time- frequency indicators, 

whereas in the forest, more significant indicators were found for lower surrounding forest 

cover of 10-19%. There was a distinct difference in the temporal distribution of the indicator 

frequencies, as in the coffee land use, the number of indicators peaked in the morning, but in 

the forest the peak number of indicators occurred in the early afternoon. The sites with forest 

cover above 50% had very few indicator frequencies (none in the coffee sites and only 3 in 

the forest/edge sites).  

By selecting clusters of indicator frequencies, and listening to the raw data, the underlying 

biotic driver could be determined (see Table 4 of Appendix B.1 for additional detail).  

Sometimes both birds and insects were present within a certain frequency band, so a single 

biotic driver could not be isolated. 

 

Figure 3.3: Spectrograms showing times and frequencies of indicator frequencies at different levels of local forest 

cover. The taxa driving the certain clusters of indicator frequencies are marked with either a bird, insect or human 

icon.  A: Indicator frequencies between coffee samples. B: Indicator frequencies between forest samples 
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3.5: Discussion 

 
This study shows that acoustic composition can reflect avian community composition across 

a landscape gradient of change and habitat types. It can also identify the main drivers of 

difference between sites as indicator frequencies were driven by birds, and a few by insects. 

This allows for direct identification of drivers of acoustic trends, without the need to use 

proxy indicators such as acoustic diversity index or acoustic complexity index. This is an 

important finding as it shows acoustic composition is a straightforward, intuitive method to 

quantify soundscapes in biodiverse regions. Acoustic composition has the potential to make 

biodiversity monitoring more accessible, reliable and scalable. 

The main difference between soundscapes was between coffee, edge and forest land-uses, 

though edge and forest were similar, which was expected because of the small size and high 

levels of degradation of forest patches. Though a significant relationship was detected 

between the PCo1 of acoustic composition and the local forest cover, the lower limit of the 

95% confidence interval was close to zero (0.0004), so care should be taken when making 

conclusions from this data. However, the mist-netting data showed a more significant 

relationship between community composition and forest cover as well as a significant effect 

of land use.  As the soundscapes used in the this analysis were averaged over several days, 

the sounds that are present are highly characteristic of the recording site, which means they 

are biased towards loud insect sounds and territorial bird species that call at a particular time 

of day (Barbosa et al., 2017). This will make their call frequencies more pronounced when 

averaging across several days than a call from a species that is more sporadic in its acoustic 

activity.   

The wide temporal distribution of indicator frequencies confirms that acoustic differences 

between sites are not only driven by biotic sounds around dawn, and highlights the 

importance of high temporal resolution in acoustic sampling (Metcalf, Barlow, Devenish, et 
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al., 2021). The difference between the temporal distribution of indicator frequencies between 

coffee and forested land uses is unexpected. These results imply that the acoustic 

composition around dawn contributes to much of the differences across the forest cover 

gradient between coffee land use, and in contrast that between forested land uses, the drivers 

of difference are more evenly distributed throughout the day. One drawback of exploring 

indicator frequencies as opposed to manual species detection through systematic listening is 

that if multiple species call within the same frequency range at the same time it may obscure 

true diversity. This is likely to occur in the Atlantic Forest as bird calls have been shown 

remain relatively clustered in bandwidth and time (Kleyn, Kaizer and Passos, 2021). 

Therefore, despite detectable differences between land uses and across a fragmentation 

gradient, acoustic monitoring that is verified by experienced ornithologists may be more 

useful until such a time when robust species classification algorithms are built for the region.  

I found that birds drove most of the difference between coffee land use across a forest cover 

gradient, but a mixture of birds and insects drove differences between forested sites. Other 

studies using similar methods found that insects were the primary driver of acoustic space 

use, insects though much of this contribution occurred nocturnally (Aide et al., 2017), so 

though the differences in acoustic composition may correlate with differences in the bird 

community, the role of insects must be considered. This is consistent with an index-based 

approach study done in Africa, where insect acoustic richness peaked at night, while avian 

acoustic richness was higher in the day (Lopes, Roberto and De Brito, 2018). Since doing this 

work, a masters student (Charis Declaudure) used the acoustic composition methods at 

Silwood Park in the UK paired with avian point counts and found acoustic composition to be 

a more useful metric than any commonly used acoustic indices (see Appendix B.2). As 

species were not identified in this work, links to specific drivers from the mist-netting was 
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not done, which highlights the continued demand for expert ornithologists who can link calls 

to species.  

All monitoring methods have gaps and biases, which is why using a combination of 

techniques is optimal. Though acoustic monitoring is a useful tool to assess overall patterns 

in avian communities, non-vocal birds are missed through this type of analysis (Vold, Handel 

and McNew, 2017).  Using mist-nets to validate the findings of acoustic analysis has 

limitations as the types of birds typically captured in mist nets are small, understorey birds. 

Ground mist nets deployed in forested areas will primarily capture understorey birds, and not 

the full community of birds present within a forest (Robinson, Lees and Blake, 2018). 

However, understorey birds are more sensitive to habitat fragmentation and forest loss, which 

is better detected by mist netting surveys (Uezu and Metzger, 2011). Overall, conducting 

point counts or have an expert ornithologist listen to recorded audio could provide better 

validation for acoustic data.  

This holistic methodology can be useful in monitoring communities over time in changing 

landscapes as well as for cross-site comparisons, as it could detect temporal shifts in biotic 

sounds across seasons. Having a framework to monitor such changes and identify acoustic 

and hence biotic drivers of these changes could add to the current toolbox of acoustic 

methods. This method was able to detect broad differences in composition without the need 

for extensive machine learning tools or high-performance computing, lending it useful to 

form part of a low-cost toolkit. However, recent unsupervised machine learning approaches 

have been able to detect temporal trends in soundscapes as well as differences in avian 

communities (Sethi et al., 2020). If a good quality bird call detection and classification tool 

were to be developed, the specific sources of acoustic difference could be linked to particular 

species.  
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Chapter 4: Applying a deep learning bat detection model to a challenging 

acoustic data set 

 

4.1: Abstract 

 

Monitoring the current state of biodiversity and its responses to change over time is necessary 

to put forward effective conservation solutions. Tropical regions are highly biodiverse but 

lack data relative to the high numbers of species present.  Acoustic monitoring of biodiversity 

is a rapidly expanding field, but as data accumulation has become cheaper, there remains a 

need for accurate analyses tools. Bats are a highly diverse group that are well-suited to 

acoustic monitoring but current acoustic analysis tools have primarily been designed for bats 

in the northern hemisphere. 

Here, we show that by using an existing convolutional neural network (CNN) optimised with 

data from the UK, and retraining it with data from new location in Brazil, the model can 

successfully detect bat calls in the new region, with a high accuracy (0.9645). Two families 

of bats were detected (Molossidae and Vespertilionidae), for which the model had an average 

precision of 0.9523 and 0.9767 respectively. We also extracted spectral features of the 

detected calls and identified 17 bat call sonotypes (6 and 11 sonotypes within Molossidae and 

Vespertilionidae respectively).  With further manual examination, calls could be linked to 5 

bat genera. Then, we explored how these sonotypes responded to local land use type and 

forest cover. Though there was no effect of local forest cover, both families of bats were 

significantly more abundant in coffee land use than forest land use overall, as were 4 of the 

identified sonotypes.  This shows how applying a CNN specifically designed for bat calls can 

contribute to detection and identification of bat communities in biodiverse regions, which can 

then be used to monitor ecological trends.  
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4.2: Introduction 

Accurate biodiversity monitoring tools are critical to assess ongoing effects of anthropogenic 

change (Schmeller et al., 2017). Halting declines in biodiversity forms part of the 15th goal of 

the United Nations Sustainable Development Goals (United Nations, 2015), hence reliable 

data on biodiversity trends is essential to review progress towards this. Traditional in situ 

monitoring is labour intensive and expensive, hence the recent rise in the field of bioacoustic 

monitoring. With the development of cheap Passive Acoustic Monitoring (PAM) sensors, 

such as AudioMoths and Raspberry Pi recorders (Upton and Halfacree, 2014; Hill et al., 

2019), acoustic monitoring has become a popular option with its potential to collect vast 

amounts of data with ease and extract biologically relevant information (Browning et al., 

2017). Considering ongoing advances in remote sensing and machine learning, there is a 

strong potential for PAM to provide high quality monitoring in areas that are otherwise 

difficult to access. 

There has been a fifteen fold rise in the publication of PAM-based studies between 1992 and 

2018 (Sugai et al., 2019), and have been implemented in both terrestrial and aquatic 

environments, particularly where visual detection is difficult such as in dense forests, 

underwater or nocturnal monitoring (Desjonquères, Gifford and Linke, 2020).  Audiomoths 

(Hill et al., 2018) are a popular low-cost recording device that are beginning to be widely 

used for acoustic data collection as they perform well when compared to more expensive 

acoustic recording devices (Toenies and Rich, 2021). This increase in use of PAM has 

resulted in the rapid accumulation of data and a bottleneck forming with regards to analytical 

tools (Gibb et al., 2019; Stowell, 2022). More sophisticated machine learning based tools 

such as convolutional neural networks (CNNs) are emerging, which can identify the presence 

of particular species or taxa (Gibb et al., 2019; Stowell, 2022). To develop a robust species 

identification CNN, it must be trained on spectrogram data with an associated species label, 



59 

 

which still requires qualified human labellers, though this dataset can be augmented (Stowell, 

2022). This process is a hurdle in regions lacking in acoustic knowledge on target species, 

which is a challenge in megadiverse regions (Arias-Aguilar et al., 2018). 

Bats are a highly diverse order of mammals, with 1470 identified species, they represent ~20 

% of all known mammal species (Solari and Baker, 2007; Lei and Dong, 2016), and are 

sensitive to land-use change and habitat fragmentation (Meyer, Struebig and Willig, 2015). 

Around 1000 of these species use echolocation (Boonman et al., 2013), which makes them a 

good target for acoustic monitoring, particularly as they use ultrasound which does not 

overlap in frequency with most other taxa. Bat call detection tools (which locate bat calls 

within sound files, but do not identify the type of bat calling) are more generalisable than 

classifiers (classifiers sort detected calls into distinct groups such as species) as bat calls are 

quite distinctive from other sounds (Mac Aodha et al., 2018). However, once calls have been 

detected, classifying them into genera or species requires more detailed expertise of local call 

structures. In the early 2000s, bat identification tools were primarily based on multivariate 

statistical methods (Russo and Jones, 2002; MacSwiney G., Clarke and Racey, 2008), which 

were then overtaken by machine learning methods (Britzke et al., 2011; Walters et al., 2012; 

Zamora-Gutierrez et al., 2016; Roemer, Julien and Bas, 2021). Though machine learning 

methods have produced encouraging results, certain groups of bats remain difficult to discern 

from one another (Zamora-Gutierrez et al., 2016). More recently, deep learning approaches 

have shown to have high detection and classification accuracy, but require extensive verified 

reference calls for training, so call libraries must be compiled for regions of interest (Mac 

Aodha et al., 2018; Chen et al., 2020). Available commercial tools to detect and classify bat 

calls from acoustic data are heavily skewed towards Europe and North America (Sugai et al., 

2019) and vary in their agreement (Lemen et al., 2015; Nocera et al., 2019).  Megadiverse 
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regions such as Brazil lack such libraries, but by applying and adapting existing deep learning 

models with transfer learning, bat call libraries for new regions can start to be collated.  

BatDetect was the first CNN model developed for bat call detection within audio files (Mac 

Aodha et al., 2018; Zamora-Gutierrez et al., 2021). It has been updated and the most recent 

version aims to both detect calls and classify them into pre-determined classes, which are 

determined by the user (Mac Aodha et al., no date). The Bat Detect model takes in 

information about the location of calls within a spectrogram (maximum and minimum 

frequency, start and end time of call) and their associated class, then uses this to predict the 

presence, location and class of calls within other audio data. This is in contrast to existing 

deep learning based solutions that only identify the start time of calls (Mac Aodha et al., 

2018). BatDetect is free and open source (this includes all code and training data) in contrast 

to commercial bat detection software and can also be run without GPU. The BatDetect model 

can be applied to new regions by retraining and evaluating it with a new set of training and 

test data, without editing the analytical pipeline.  New data from regions lacking libraries can 

thus apply BatDetect not only to detect calls, but also to analyse and classify calls into 

classes, which can contribute to developing species ID tools for these regions.  

Brazil is a megadiverse country, with over 180 known species of bat present (Arias-Aguilar 

et al., 2018), of which 121 species occur in the Atlantic Forest domain that extends along the 

south east coast (Delgado-Jaramillo et al., 2020). The Atlantic Forest domain is threatened by 

fragmentation and land use change, having lost almost three quarters of its initial extent 

(Rezende et al., 2018), and bat communities are negatively affected by more deforested, 

fragmented landscapes (Faria, 2006). Currently no formal call libraries exist, though call 

information has been compiled for 65 species with varying levels of detail (Arias-Aguilar et 

al., 2018). This information ranges from descriptions of the acoustic features of a few calls, 

to more detailed call libraries based on recorded passes in the field, many of which are from 
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recordings in the north of Brazil and not from the Atlantic Forest domain. When bat calls 

cannot be conclusively linked to a particular species due to recording quality or lack of 

information, detected calls can be divided into call types, or sonotypes. Sonotypes can be 

used as proxies for species until more robust tools exist to measure the impact ecological 

stressors such as habitat fragmentation and land use on local bat communities. As this region 

is a biodiversity hotspot, creating a species ID tool for monitoring bats is important. 

Understanding the responses of Neotropical bats to land use change is a priority as they fulfil 

important ecological functions such as pest control, pollination and seed dispersal (Kunz et 

al., 2011). Currently Neotropical bat research is biased towards a single family, 

Phyllostomidae (this particular bias can rapidly be reversed using acoustic monitoring rather 

than mist netting), and major knowledge gaps exist regarding the extent to which 

anthropogenic disturbance affects bat communities and hence their ability to provide 

ecosystem services (Meyer, Struebig and Willig, 2015). Bat richness, functional richness and 

abundance have been shown to be positively related with local forest cover (García-Morales 

et al., 2016). However, an extensive meta-analysis of Neotropical bat publications found that 

overall more bat species were present within human-use land uses than in well preserved 

forests, though responses varied by factors such as family and feeding habit (García-Morales, 

Badano and Moreno, 2013). Monitoring bats using acoustic methods could help reveal how 

they use different land uses and further assess their response to habitat fragmentation and 

land use change.   

Here, I use BatDetect, an adaptable, open-source acoustic bat call detection and classification 

tool that is trained and tested on data from the UK with a graphical user interface (GUI) for 

quick and efficient visualisation and labelling of audio events to answer three questions: 

First, whether a CNN pipeline optimised using UK bat data can successfully be applied to 

data from a new region (Brazil’s Atlantic Forest), how many types of call (or sonotype) can 
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be identified from the model outputs, and finally how local land use affects the composition 

of the bat community. These methods could drive acoustic bat monitoring towards more 

detailed global datasets on bat biodiversity and ecosystem health. 

4.3: Methods 

 

4.3.1: Data collection and annotation  

 
I collected acoustic data between January and March 2019 in south-eastern Brazil (Figure 

4.1), where Audiomoth (Hill et al., 2019) recorders were set to record a sampling rate of 395 

kHz for one minute every five minutes between 22:00 and 04:00. The recorders were 

deployed on 11 coffee farms, in forest patches adjacent to the coffee, and on the edge 

between the two habitats. Five recorders were placed at each farm along a transect (two in the 

coffee: 75 m  and 150 m from the edge, one at the edge, and two in the forest: 75 m and 150 

m from the edge).  

Using the GUI developed as part of the BatDetect suite, a subsample of files (320 10-second 

files) was fully annotated, where every bat call was labelled to family level. This training set 

contained recordings from all sites and recorders as well as range of files containing 

previously identified false positives. This allowed the model to learn to exclude the range of 

background sounds present at all sites. Based on the identified calls, the labels used were: 

“Vespertillionidae_unknown”, “Molossidae_unknown”. This dataset had an additional 

challenge that within most audio files, a recurring click was present in the ultrasonic range 

which resembled bat echolocation calls, which had the potential to result in thousands of false 

positives.  

Call labelling was done using a GUI which forms part of the updated Bat Detect suite. For 

consistency, the boxes were drawn from the highest frequency of the main harmonic to the 

lowest frequency, excluding any echo. Most calls were part of a pass, which is a series of 

echolocation calls made by a bat moving past the recorder that start quieter, then get louder as 
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the bat approaches the recorder, and gets quieter as the bat moves further away. Only the 

main harmonic of each call was annotated.  Calls were labelled as part of a pass, and if the 

best quality calls within the pass (usually in the middle of the pass) could be identified to 

family level, this was extrapolated to all calls within the pass. In total, 2413 calls were 

labelled as unknown Molossidae and 5320 calls were labelled as unknown Vespertilionidae 

in the 320 files.  
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Figure 4.3: A: Map of sampling site locations. Audiomoth recorders were deployed at each 

site in both forest and agricultural land use. B: BatDetect GUI (adapted from Mac Aodha et 

al. (in prep)). The spectrograms are visualised (1) and the annotator selects the appropriate 
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class and event (2) when drawing boxes. An overview of files that have been labelled is 

displayed in the bottom right (3).  

 

4.3.2: Brazil model training and testing 

 
To train the BatDetect model for this data, the labelled Brazilian dataset was split into a 

training and test set. The training set consisted of 272 files and the test set had 48 files (15 

%). All files were fully annotated. In the training set, there were 2413 calls labelled as 

unknown Molossidae, and 5320 calls labelled as unknown Vespertilionidae. The number of 

labelled calls in the training and test sets was 8630 and 1368 respectively. All files were 10 

seconds in duration.  

Once the model was trained, a detection threshold had to be set before running on all the data. 

All detected calls have an associated probability score, the higher the score, the more certain 

the model is that it is a bat call. To select an appropriate threshold, twelve files were 

manually labelled (containing 425 true positives). The aim was to find the lowest threshold 

that resulted in 0 false positive detections (100% precision), which was 0.32. At this level, 

there were 0 false positives, and 91.3% of true positives were detected (see Supplementary 

Information for detail). The trained model was run with this threshold, so only calls with a 

probability score above 0.32 were included in the final outputs. 

 

4.3.3: Identifying sonotypes 

 
To identify the number of sonotypes, selected spectral features of all detected calls were 

clustered using k-means. Within known species, the minimum frequency of bat calls is often 

the parameter with least variation (Murray, Britzke and Robbins, 2001). This makes it a good 

variable to estimate the number of sonotypes. The number of clusters should give a good 
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indication of the types of calls within the dataset, which can then be associated to genera or 

species.  

The spectral features selected for clustering were minimum frequency, call duration and 

frequency of maximum power. Within all detections, unknown Molossidae and unknown 

Vespertilionidae, five subsamples of 25 000 random detected calls were analysed to find the 

optimum number of clusters for the k-means clustering. The optimal number of clusters was 

determined using the Gap statistic. The k-means analysis was run in R using the packages 

stats and cluster (R Core Team, 2020; Maechler et al., 2022).  

 

4.3.4: Calculating abundance  

 

Using sonotypes as a proxy for species (assuming a different species produces each sonotype 

detected), abundance for each sonotype at each sampling point was calculated. Abundance 

was calculated as number of calls of a sonotype detected by a deployed recorder divided by 

the number of sampling minutes (Lintott et al., 2013). This gave the number of calls per 

minute at each sampling point for each sonotype.  

 

4.3.5: Measuring the impact of land use  

 

Sonotype abundance was compared between coffee and forest land uses, but only for sites 

where recordings were captured at 75 m into the coffee and 75 m into the forest (eight out of 

eleven sites). To determine if land use type affected the abundance of bats, a paired Wilcoxon 

rank test was done between coffee and forest land uses for each individual sonotype as well 

as sonotypes grouped by bat family (Molossidae or Vespertilionidae).  

The impact of local forest cover, richness and diversity (measured using Shannon’s H) were 

measured against forest cover within 1 km. Bat species have been shown to respond to forest 
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cover at this scale in Mexico (García-Morales et al., 2016), though the most appropriate scale 

varies between species (Boughey et al., 2011). An ANCOVA was run for Shannon’s H 

against forest cover, grouped by land use. The diversity data met the relevant assumptions 

(normality of residuals and homogeneity of variance) which were confirmed by non-

significant Shapiro-Wilk and Levene’s tests. The species richness data did not meet the 

required assumptions for an ANCOVA, but showed no clear relationship with land use or 

forest cover. Forest cover calculations were done with QGIS (QGIS Development Team, 

2021) using a land use map at a 5 m scale provided by Andrea Larissa Boesing.  
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4.4 Results 

 

4.4.1: Model performance  

 

The trained model had an average precision of 0.9259 (average precision is the proportion of 

detections that were true positives) and a per class precision of 0.952 for unknown 

Molossidae and 0.977 for unknown Vespertilionidae (Figure 4.2).  

 

Figure 4.4: Precision recall curve for Brazil adapted model. The precision is the proportion of 

correctly classed detections per class and recall is the proportion of calls per class that were 

detected. 

 
 
 

4.4.2: Brazil model output  

 
In total, 817 377 calls were detected above the selected threshold (0.32) in 18 920 one-minute 

recordings. 305 353 calls were classified as unknown Vespertilionidae, and 512 024 were 

classified as unknown Molossidae.   
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4.4.3: Identifying number of sonotypes  

 

40 recorders successfully captured sound when deployed (19 in coffee, 6 at edges, and 15 in 

the forest). The number of sonotypes within all detected calls, as well as within unknown 

Vespertilionidae and unknown Molossidae was calculated using k-means clustering. Within 

all data, unknown Vespertilionidae, and unknown Molossidae, the k-means clustering 

showed an optimum of 17, 11 and 6 clusters respectively. As the number of clusters for all 

data was equal to the sum of the number of clusters in unknown Molossidae and unknown 

Vespertilionidae, only these were further examined.  

Based on exploration of the data and personal communication with Arias-Aguilar, calls could 

be associated with five genera with the two identified families: Eumops, Myotis, Histoitus, 

Lasiurus and Rhogeesa. Arias-Aguilar is the author of the an extensive database of Brazilian 

bat species call and call feature summaries (Arias-Aguilar et al., 2018). A wide subset of 

good-quality data was shared with Arias-Aguilar and they identified calls as far as possible 

based on their extensive experience and regional knowledge. Based on the duration and 

frequency of the Molossidae calls, these are likely calls by Eumops bat. The shape and 

duration of V1 may be those of Rhogeesa, V6 with Myotis and V9 with Lasiurus. 
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Figure 4.5: A: Scatterplot showing duration and minimum call frequency of bat calls 

detected by bat detect and classified as unknown Molossidae. Colour denotes the cluster 

assigned by the k-means clustering and each represents a distinct sonotype. B: Scatterplot 

showing duration and minimum call frequency of bat calls detected by bat detect and 

classified as unknown Vespertilionidae. Colour denotes the cluster assigned by the k-means 
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clustering and each represents a distinct sonotype. C: Spectrogram plot showing an example 

of each detected sonotype, of a typical call from within each sonotypes cluster. Certain 

clusters all had faint calls (e.g. V3, V5 and V7).  

 

4.4.4: Sonotype response to local forest cover and land use 

 
Neither sonotype richness nor Shannon’s diversity showed a relationship with local forest 

cover (Figure 4.4). 

 

 

 

Figure 4.6: The relationship between local forest cover and detected bat community A: 

Sonotype richness (number of sonotypes present) across a local forest cover gradient. Points 

have been slightly jittered along the y-axis for visibility. Colour denotes land use at the 

recorder (brown = coffee, orange = edge, green = forest). B: Sonotype diversity across local 

forest cover gradient. No significant trends were detected within land use types or across the 

whole dataset. 
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There was a significant effect of land use on the number of calls per minute for both bat 

families overall when applying a paired Wilcoxon rank sum test. Across the eight sites with 

coffee and forest pairs, the Molossidae sonotypes had significantly more calls per minute in 

the coffee land use than the forest, with an effect size (r) of 0.529, p = 0.0126 (Figure 4.5A). 

Vespertilionidae sonotypes also had significantly more calls per minute in the coffee land use 

than the forest, with an effect size (r) of 0.271, p = 0.0109 (Figure 4.5B). When comparing 

the effect of land use for each sonotype, four sonotypes (M1, M4, M6 and V2) had 

significantly higher call abundance in the coffee than the forest (Figure 4.5C).   
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Figure 4.7: The response of bat sonotypes to land use, irrespective of local forest cover. A: 

The difference in calls per minute for Molossidae sonotypes in coffee and forest (r= 0.529, 

p=0.0126*, paired Wilcoxon rank sum test). B: The difference in calls per minute for 

Vespertilionidae sonotypes in coffee and forest (r=0.271, p=0.0109**, paired Wilcoxon rank 

sum test). C: The difference in calls per minute for each individual sonotype. Four sonotypes 

had significantly more calls per minute in the coffee than the forest: M1, M4, M6 and V2 with 
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paired Wilcoxon rank sum effect sizes of 0.74, 0.74, 0.69 and 0.55, and p-values of 0.039, 

0.039, 0.05 and 0.015 respectively. 

 

4.5: Discussion 

 
The results show that the retrained model can successfully be applied to a new geographical 

region, with an overall precision of (0.9259) and recall across all classes (class AP 0.9645). 

The results also show that 17 distinct sonotypes can be separated and used to calculated 

relative abundance. Bat call abundance was higher overall in coffee land use than forest land 

use. However, sonotype diversity was not significantly related to local forest cover across 

land uses or overall. This demonstrates that this approach can be scaled to create a call library 

for new regions, with the potential to develop a species ID tool. 

 

The model’s high average precision of 0.9259 highlights its ability to correctly detect most 

calls present within this dataset. This result is particularly good given the challenging dataset 

that contained clicks that had the potential to be detected as bat calls. Compared to other 

available bat detection tools, the BatDetect model outperforms other available tools such as 

Tadarida (Mac Aodha et al., no date; Bas, Bas and Julien, 2017), though it is difficult to 

make accurate comparisons as currently other tools tend to output bat detections, and not 

classified detections based on a labelled subset. The high model precision can be partly 

attributed to thorough and extensive labelling of the training dataset. Labelled training data is 

the main barrier to developing species identification tools and thus collecting bat call data 

alongside species verification in the field, automated species identification tools can be 

kickstarted. The number of calls detected shows the potential for rapid data collection once a 

model has been trained.  However, the species verification work still represents a significant 

hurdle. 
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The k-means clustering analysis showed 17 sonotypes present. A single species could not be 

attributed to each sonotype due to lack of libraries for the region, though expert verification 

strongly suggested the presence of five genera: Eumops, Myotis, Histoitus, Lasiurus and 

Rhogeesa. This is a problem for south and east Brazil as even recent acoustic bat surveys use 

tools that have not been specifically trained for the target region (Pereira, Falcão and 

Bernard, 2022), maintaining a reliance on sonotypes and acoustic indices (de Aguiar Silva et 

al., 2022). This highlights the gap in bat call knowledge for many Brazilian species. For 

North America and Europe, researchers have a choice of commercial species classifiers 

available (Nocera et al., 2019), which in not the case for South America. Though the k-means 

approach managed to broadly detect sonotypes, this remains an estimate due to the number of 

similar calls as the data set is biased towards quieter calls as bats approach the recorder. It 

may also be the case that the sonotype groupings separate different phases of an approach 

from the same species as the shape and volume of the call change throughout the pass. 

However, clustering broadly allowed for local richness and abundance to be calculated as 

well as an analysis of how the sonotypes present responded to local ecological factors. 

 

Land use had a significant effect on the number of calls per minute for both Molossidae and 

Vespertilionidae groups as well as for 4 of the 17 sonotypes, with higher abundance in the 

coffee compared to the forest. This is consistent with observations from other studies, which 

showed that insectivorous bats prefer open habitats and may not enter forested areas with 

dense understories as vegetational complexity may restrict flight (Suarez-Rubio, Ille and 

Bruckner, 2018; Laurindo et al., 2020). As most sonotypes were detected at each sampling 

site, richness was not affected by land use or forest cover variables. This lack of difference in 

richness implies that the bat communities in this study region are relatively homogenous due 

to historical habitat loss and extensive fragmentation. Homogenisation of communities has 
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been observed across other taxa in the Atlantic Forest including epiphytes and birds, showing 

the importance of preserving large areas of unfragmented forest (Hatfield et al., 2020; Parra-

Sanchez and Banks-Leite, 2020). 

 

There were a few limitations to this work that can be improved upon for future studies. Much 

of the information on Brazilian bat acoustics is from calls recorded in the north of the 

country, or even other South American countries (Arias-Aguilar et al., 2018), where typical 

species calls are described based on a single pass.  Bat species are known to alter their calls 

depending on the habitat they are traversing, which can be source of misidentification (Pedro 

and Simonetti, 2014). Intraspecific acoustic variation is also present in different geographic 

communities (Farrell, Corben and Gannon, 2000), but not enough is known about how this 

affects Brazilian bat species, and would require rigorous acoustic surveys coupled to capture 

studies. Some bat calls had a prominent harmonic above the main call. The labelling protocol 

I helped develop did not label these as part of the call, but some were still detected by the 

model. Testing the impact of labelling entire calls with the harmonic on model performance 

should be done. The bat detection model retained little information on call shape or direction, 

so calls within the same frequency range and of similar duration but from different species 

were not distinguishable. 

 

This study shows that adapting a CNN with a relatively small additional dataset can detect 

bat calls to a high degree of precision. Even without a call library, estimates of diversity were 

made and used to measure responses to ecological stressors. However, the detected sonotypes 

appeared to be distributed across all sampling sites, implying that the bat community in this 

region is homogenous which may be a result of decades of habitat fragmentation. Automated 



77 

 

bat species monitoring with acoustic tools can be achieved in more biodiverse regions such as 

the Atlantic Forest with the creation of a high-quality call library. 

 

  



78 

 

Chapter 5: Sun coffee plantations provide weak microclimatic buffering effects 

but not against supraoptimal temperatures. 

 
 

5.1: Abstract 

 
Coffee (Coffea arabica), one of the most consumed global commodities, is threatened by 

climate change, as it has a narrow optimal thermal niche, and is particularly vulnerable to 

high temperature exposure which causes physiological stress. Though traditionally farmed as 

a shade crop, economic pressure has driven many producers to intensify their management to 

entirely sun-exposed coffee. However, it is possible that higher levels of surrounding forest 

cover could provide sufficient microclimatic buffering (defined here as the extent to which 

local temperature differs from regional temperature) to protect crops from sun-exposure. 

Here, I show, using low-cost sensors collecting hourly soil and air temperature data from ten 

Nicaraguan sun-coffee farms, that microclimate buffering causes lower mean and minimum 

temperatures, but none against maximum temperatures. The degree of microclimate buffering 

is independent of altitude and the level of local forest cover (defined as % forest within 1000 

m). The lack of a relationship between the degree of buffering and the levels of forest cover 

or altitude strongly suggests that mitigation strategies are necessary to protect coffee from 

rising temperatures. The outlook for Nicaraguan sun-coffee is uncertain, and that adaptation 

strategies are essential to maintain production in this region.  
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5.2: Introduction 

 
Coffee is one of the most consumed global commodities, with over 3 billion cups being 

drunk per day (USDA, 2020). Demand continues to grow, having recently outpaced 

production, causing a decline in global coffee stock (Vegro and de Almeida, 2020) . Coffea 

arabica, the more popular variety of coffee due to its higher quality, represents the majority 

of the global market share, and is vulnerable to climate change as it is primarily grown in the 

high elevation areas of the tropics (Bunn, Läderach, Rivera, et al., 2015), with Brazil, 

Colombia, Ethiopia and other countries of central and south America being the most 

productive (seven of the top ten producers are in Central and South America (USDA, 2020)).  

Though traditionally farmed as part of an agroforest system, high demand has led to 

intensification and many farmers now grow sun-exposed coffee (Jha et al., 2014).  To ensure 

coffee production remains sustainable, predicting the effect of climate change on different 

farming strategies in relation to their local geography and biodiversity is essential (Coltri et 

al., 2019; Ennis and Philpott, 2019).  

 

C. arabica has a narrow optimal climatic niche, requiring mean annual temperatures of 

around 20oC but no lower than 18oC and no higher than 24oC, and around 1200mm of annual 

rainfall (DaMatta and Ramalho, 2006). Extended periods of over 30oC and  frost exposure 

can be particularly damaging to coffee crops (DaMatta, 2004). High altitude areas of the 

tropics meet these criteria, with Central American countries being particularly suitable, 

having cultivated coffee for over 200 years (Staver et al., 2001). However, global 

temperatures have already risen by approximately 1oC relative to pre-industrial times 

(Haustein et al., 2017), with an increase of at least 1.5 degrees by 2050 predicted and higher 

increases possible (IPCC, 2018), lowering the suitability of this area for coffee production 

(Läderach et al., 2017). Increased variations in rainfall and temperature in the 21st century, 
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particularly by the El Niño-La Niña cycle, have reflected in a high fluctuation in coffee 

yields, (Baker and Haggar, 2007). Predicting the impacts of climate change on coffee 

agriculture is difficult as climate change also appears to act synergistically with other threats 

to coffee production, such as increased pest risk and outbreak intensity (Jaramillo et al., 

2009), higher disease risk (Avelino et al., 2015) and lower pollinator diversity (Imbach et al., 

2017). To lessen the severity of climate change on coffee agriculture, better understanding 

the effect of different management and local environmental variables on microclimatic 

buffers is necessary.  

 

Predictions about the future of coffee using species distribution modelling have mainly found 

that most countries currently producing coffee will lose suitable areas (Laderach et al., 2011; 

Bunn, Läderach, Rivera, et al., 2015; Ovalle-Rivera et al., 2015a). However, commonly used 

climatic data sets used in species distribution modelling have major discrepancies with 

satellite data or data collected in situ within tropical agricultural landscapes (Faye et al., 

2014; Deblauwe et al., 2016), as local conditions can cause localised microclimatic buffering 

(Frey et al., 2016). Microclimatic buffering can be defined as the difference in temperature 

between two sites measured by the slope of the regression between a pair of sites (Ewers and 

Banks-Leite, 2013). For instance, if the temperature in one location increases by 1oC and 

temperature at the second location only increases by 0.1oC, this represents a 0.9oC buffer. 

Microclimatic buffering is regularly seen in forests, which are usually cooler than 

temperatures in open land use given the protective shade cover from canopies (Ewers and 

Banks-Leite, 2013), both above ground and in the soil. Quantifying microclimate is becoming 

much cheaper with low-cost data loggers and weather stations (Climate Edge, 2021). Within 

agroforest coffee systems, farmers can create microclimatic buffers by planting coffee in the 
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shade of other trees to mitigate temperature extremes (Lin, 2007), but the extent to which 

sun-coffee monocultures are buffered is not known.  

 

Forests can only act as thermal buffers if they are intact (De Frenne et al., 2019) and as 

forests become more fragmented, their buffering ability is reduced (Ewers and Banks-Leite, 

2013; Lin et al., 2020; Mendes and Prevedello, 2020). Croplands adjacent to forests 

experience higher temperatures than the forest interior, as they lack shade protection (Pinto et 

al., 2010; Senior et al., 2017). Trees may not only reduce maximum temperatures as they can 

also protect against high windspeeds, which may benefit forest-adjacent agriculture 

(Pezzopane et al., 2011). Sun-coffee planted in an area of high local forest cover may 

therefore benefit from lower wind speeds and cooler adjacent regions. However, these studies 

do not specifically examine how far buffering may extend over forest edges to different land 

uses and how different levels of surrounding forest cover could affect this relationship.   

 

Elevation plays an important role in climate as air pressure decreases at higher elevations 

(Jacob, 1999). In the context of climate change, higher elevation regions have been warming 

at higher rates in subtropical regions (Dong et al., 2014).  Predictions of future habitat 

suitability for growing coffee often show that the minimum lower elevation boundary will 

shift upwards (Ovalle-Rivera et al., 2015a). For instance, in Nicaragua the lowest suitable 

elevation for coffee is predicted to increase from 800 m to 1200 m by 2050 (Laderach et al., 

2011). Elevation influences humidity and light intensity (Karungi et al., 2018), which also 

contribute to the local microclimate. In addition, the elevational topography of a region is 

important, as more complex topography results in wider heterogeneity of microclimate 

(Opedal, Armbruster and Graae, 2014).  Examining the impact of elevation on microclimatic 
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buffering has not been fully investigated and may help to identify elevations that mitigate 

more against temperature extremes. 

 

Here, I investigate two questions: firstly, whether there is evidence for microclimatic 

buffering on sun-coffee farms, and secondly how the extent of this buffering varies across a 

local forest cover between 28% and 78% and an elevational gradient covering a range of 600 

m. I expect weak thermal buffering against daily maximum temperatures on sun-coffee farms 

given the lack of shade trees. However, I also expect that higher elevations and higher levels 

of forest cover should confer more protection from higher temperatures. For this case study, 

weather stations were deployed on ten sun-grown coffee farms in the region of Jinotega, 

Nicaragua, Central America. Nicaragua relies heavily on coffee exports, with coffee 

representing approximately 7.2% of total GDP (Flores et al., 2002). It is at particular risk of 

loss of coffee suitability with climate change (Gourdji et al., 2015), as it is affected by the El 

Nino-southern oscillation (Almeida Silva et al., 2020) and Nicaragua is ranked 4th on the 

Global Climate Risk Index (Kreft et al., 2013). The northern Nicaragua region of Jinotega is 

currently one of the country’s most productive coffee producing areas (UCA Soppexcca, 

2011), thus this is a highly relevant area to study the impact of microclimatic buffering.  

 

5.3: Methods 

 
Data Collection 

I used hourly air and soil temperature data collected from Climate Edge® (Climate Edge, 

2021) weather stations deployed on ten coffee farms ranging in elevation from 504 to 1101m 

above sea level in Jinotega, Nicaragua (Figure 5.1) between May and September 2016 (Table 

S1).  Climate Edge is a start-up that set up weather stations at farms with multiple sensors to 

provide customised management recommendations (Climate Edge, 2021). Temperatures 
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were recorded for a mean of 125 days per farm during the rainy season (Figure 5.3). These 

weather stations consisted of two DS18B20 (Maxim Integrated Products, 2019) sensors (one 

for soil temperature and one for air temperature, measured 1 m above ground), accurate to 

±0.5oC. They were calibrated against Lascar temperature data loggers (Lascar Electronics, 

Salisbury, UK) to ensure consistency between stations. These sensors are relatively cheap 

and can therefore be deployed widely. Information concerning precise locations of the 

weather stations on the coffee farms relative to the crops was not available and location data 

was based on farm addresses and estimations based on conversations with members of 

Climate Edge.   

Microclimatic buffering is a relative measure, for example, forests buffer against high 

temperatures relative to adjacent unforested areas (Ewers and Banks-Leite, 2013). Therefore, 

a different dataset from the same region, but not from a coffee farm was required. I obtained 

daily mean, maximum and minimum air temperature data from a regional weather station 

(sometimes the data were collected every two days), station ID number 787340 (National 

Climatic Data Center et al., 2017), located on the outer boundary of the city of Jinotega at 

985 m altitude. The daily temperature was given to the nearest 0.1 oC, but maximum and 

minimum were only given to the nearest integer. This weather station is referred to as the 

regional station to distinguish it from the in situ weather stations at the coffee farms.  

I calculated the percentage of forest cover within a 1000 m radius of the coffee farm weather 

stations using 30 m resolution tree cover maps (Hansen et al., 2013), recalculated to 2015 

levels of forest cover by including subsequent maps of gain and loss onto the initial forest 

cover map from 2000. Metadata on the forest quality was not available. A 1000 m buffer was 

chosen as previous studies examining microclimatic variation have used landscape variables 

at this scale (Fridley, 2009). The elevation data was obtained from 1-arc second resolution 
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SRTM data from USGS (USGS, 2019). Mapping analysis was done using QGIS (QGIS 

Development Team, 2021). 

 

Figure 5.8: Distribution of coffee plantation sampling locations in Jinotega, Nicaragua and the 

two environmental variables examined (elevation and forest cover). Black dots denote the farm 

weather stations, and the yellow dot denotes the location of the regional weather station. A: Elevation 

map (USGS, 2019) B: Local forest cover (Hansen et al., 2013).  

 

Statistical analyses 

Overall microclimatic buffering 

To assess whether there was any overall buffering across farms, I first calculated the daily 

mean, maximum and minimum temperatures for each farm for the entire period of recording 

for both the above ground and soil temperatures. This could then be directly compared to the 
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daily mean, maximum and minimum temperature obtained from the regional weather station. 

For each group of data (mean, maximum and minimum for above ground and soil 

temperature respectively), temperature data from the farm weather stations were regressed 

against the regional weather station data, and the slope of the linear regression was taken to 

represent the buffering effect. In each model, the data collected at the farm was the dependent 

variable and the regional weather station data was the independent variable. The data met the 

required assumptions for a simple linear regression.  A buffering effect of 1 means there was 

no difference between the local and regional data, whereas a buffering effect below one 

shows a cooling effect at the farm, and a buffering effect above 1 represents that farm 

temperatures were higher than the regional weather station temperatures. Figure 5.2 shows a 

graphical description of the methodology. To calculate the buffering in soil, the same process 

was repeated, but as soil temperature data was not available from the public station, the 

buffering in soil was calculated relative to air temperatures. The methodology from Ewers & 

Banks-Leite (2013) was followed. All data analysis was performed in R (R Core Team, 

2020), with the application of the dplyr package (Wickham et al., 2020).  

 

Figure 5.9: Diagram showing methods process to obtain the buffering data. 
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The effect of elevation and forest cover on microclimatic buffering 

To assess whether the extent of buffering varied with either local forest cover or the elevation 

of the farm, the previously calculated coefficients of regression at each farm were regressed 

using a multiple linear regression against both elevation (in m) and local forest cover (as a 

percentage of forest cover within a 1000 m radius) using the “lm” function in base R (R Core 

Team, 2020). This was also calculated independently for above ground and soil mean, 

maximum, and minimum temperatures according to the formula: buffer ~ elevation + forest 

cover.  

To format the dates to create Figure 5.3A, the package lubridate was used (Grolemund and 

Wickham, 2011). The package pracma was used to create the boxplots in Figures 5.2B and 

5.2C (Borchers, 2021).  All code is available at: https://github.com/emdo1/Microclimate.  

 

 

5.4: Results 

 
Overall microclimatic buffering 

The mean daily temperature across all farms for the duration of the study was 22.06 oC above 

ground, 23.41oC in the soil, and 23.86 oC at the regional weather station (Figure 5.3 A and B). 

Daily maximum air temperatures reached in excess of 30oC for an average of 27.6 days per 

farm (range from 0 to 86 days). The mean of regional temperature data daily maximum 

temperatures was 26.88 oC  (s.d. 1.79 oC) and the mean of the regional daily minimum 

temperatures was 20.08 oC (s.d. 0.89 oC). 

 

https://github.com/emdo1/Microclimate
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Figure 2: Summaries of temperature data collected across the study period, with a detailed example 

from a single farm as well as boxplots of above ground temperatures from all farms. A: Temperature 

data collected at farm 4 (elevation 1101 m), where the scatterplot shows hourly above ground 

temperature (blue), hourly soil temperature (red) and daily mean, max and minimum data from 

regional weather (green). B: Boxplots of above ground, soil and regional temperatures from farm 4, 

where the bold line represents the median temperature over the study period,  the box represents the 

interquartile range (IQR) and the whisker plots represent are 1.5 times the IQR and the dots 

represent outliers. C: Boxplots of above ground temperature collected at each farm, which are 

ranked and denoted by their elevations the bold line is the median buffering effect, the grey box is 

the IQR, the whiskers are 1.5 times the IQR and the circles are outliers .  

Figure 5.10: Summaries of temperature data collected across the study period, with a detailed 

example from a single farm as well as boxplots of above ground temperatures from all farms. A: 

Temperature data collected at farm 4 (elevation 1101 m), where the scatterplot shows hourly above 

ground temperature (blue), hourly soil temperature (red) and daily mean, max and minimum data 

from regional weather (grey). B: Boxplots of above ground, soil and regional temperatures from farm 

4, where the bold line represents the median temperature over the study period, the box represents 

the interquartile range (IQR) and the whisker plots represent are 1.5 times the IQR and the dots 

represent outliers. C: Boxplots of above ground temperature collected at each farm, which are 

ranked and denoted by their elevations the bold line is the median buffering effect, the grey box is the 

IQR, the whiskers are 1.5 times the IQR and the circles are outliers. 
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An overall buffering effect of the farms compared to the regional weather station was 

observed for both mean and minimum above ground temperatures (Figure 5.4A), but there 

was no significant buffering against maximum temperatures. If no buffering were observed, 

the regression coefficients would be close to 1. The closer the coefficient is to zero, the 

stronger the buffering effect. At several farms, there was even negative buffering, where the 

slope of maximum local temperature was more than 1 (this means if the regional maximum 

Figure 5.4: Boxplots of the microclimatic buffers calculated from regressions of farm temperatures 

against the regional weather station temperatures. The dotted lines at 1.0 represent a regression 

coefficient of 1, which represents zero buffering effect. The closer the buffer is to zero, the stronger the 

buffering effect. A: Buffers calculated for daily mean, maximum and minimum at 1 m above ground 

temperature. B Buffers calculated for daily mean, maximum and minimum for soil temperature. The 

black line is the median buffering effect, the grey box is the interquartile range (IQR), the whiskers are 

1.5 times the IQR and the circles are outliers 
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increased by 1oC, the local temperature increased by up to 1.4oC. All soil temperatures 

showed clear buffering effects (Figure 5.4B) against ambient air temperatures recorded from 

the regional weather station.  

The effect of elevation and forest cover on microclimatic buffering 

I found a significant relationship between the extent of buffering of minimum air 

temperatures and elevation (Figure 5.5B, p = 0.032), but found no other statistically 

significant relationships between buffering of the air or soil temperatures on farms compared 

A                                                                         
B 

Figure 5.5: Summaries of multiple linear regressions (buffer~ Forest cover+ Elevation) investigating 

the impact of forest cover and elevation on the extent of buffering. The dots denote the regression 

coefficient of the multiple linear regression and the lines denote the 95% confidence interval; the 

corresponding p-values and adjusted R2 for each model is displayed on the right-hand side. A:  

Regression coefficients and associated confidence intervals for forest cover and buffering. No significant 

trends were observed. B:  Regression coefficients and associated confidence intervals for elevation and 

buffering. A significant trend was observed between the minimum air temperature buffer and elevation 

(p=0.032). 
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to the regional weather station temperatures and the elevation or the percentage of forest 

cover at the farms (Figure 5.5).  

5.5: Discussion 

 
I found that the current conditions in sun-coffee do offer some level of microclimatic 

buffering for both mean and minimum temperatures but provides no mitigation against high 

peaks in temperature during the day. The extent of local forest cover and elevation did not 

have any effect on the level of buffering compared to the regional weather station, either 

above ground or in soil. A significant trend was observed between minimum temperature and 

elevation, where lower elevation sites had a stronger buffering effect for minimum 

temperatures. Nonetheless, the overall pattern of results suggests that the higher elevation 

sun-coffee farms and those surrounded by higher levels of forest cover are just as vulnerable 

to exposure to temperature extremes as lower elevation sun-coffee farms in deforested areas.  

 

Overall microclimatic buffering 

The most important finding is the lack of any thermal protection against supraoptimal 

temperatures; on two of the farms, there was even a negative buffering effect (Figure 5.4A).  

High temperatures pose one of the greatest threats to coffee, as long-term exposure results in 

depressed growth and development (Haggar and Schepp, 2012). Without changes in 

management, it is unlikely that these regions will be as productive for coffee in the long-term, 

as relative to other coffee growing regions, Nicaragua is considered relatively hot and dry 

(Bunn, Läderach, Jimenez, et al., 2015). It has been predicted that approximately 50% shade 

cover will be necessary at altitudes around 1000 m.a.s.l. (which is considered “low elevation” 

for coffee) to maintain the suitability of these areas for this crop (Rahn et al., 2018).  

 

The effect of elevation and forest cover 
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The results show that elevation had a significant effect on the extent of buffering for 

minimum temperatures (p=0.032), where lower elevation sites had a stronger buffering effect 

for minimum temperatures. This suggests that lower elevations may buffer against increases 

in minimum temperatures. Increases in minimum temperatures have been linked to wider 

susceptibility to coffee rust in Central America (Avelino et al., 2015), resulting in outbreaks 

at higher altitude, which this result corroborates if higher altitudes are less able to protect 

against higher minimums. Though no previous research has examined the effect of elevation 

on the extent of buffering, Karungi et al. (2018) found an inverse relationship between light 

intensity and humidity across all types of management, which varied across elevations: mid-

level elevations (1500-1679 m.a.s.l.) had low humidity and high light intensity, whereas low 

and high elevations had the reverse. However, the lowest elevation farms in their study 

exceed the altitude of the highest elevation farm in our study, so the relationships between 

humidity, light-intensity, buffering and elevation may vary considerably and warrant further 

investigation. For coffee growing regions with a climate like that of Nicaragua, the median 

elevation for C. arabica is predicted to increase from ~800 m to ~1200 m by 2050 (Bunn, 

Läderach, Jimenez, et al., 2015), and as elevation has not been shown to affect the extent of 

microclimatic buffering on mean or maximum temperatures, changes in management are 

essential to ensure sustained production. 

 

The lack of relationship against local forest cover shows that though forests are able to create 

their own microclimate, this has no effect on adjacent non-forested land uses. Even if the 

farm is surrounded by over 80% forest, there is no additional microclimatic buffering than at 

a farm without any surrounding forest. This demonstrates that buffering within forest 

interiors is largely due to shade and wind protection. Coffee with high levels of shade cover 

has been found to be cooler with higher humidity both above ground and in soil (Lin, 2010). 
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This is because the presence of protective shade trees reduces light intensity, reduces wind 

speeds (Pezzopane et al., 2011), and limits water loss in the soil (de Carvalho et al., 2021), 

which is important for soil macrofauna (Prayogo et al., 2019). These microclimate studies 

have also found other variables such as light intensity, humidity and topography, to be 

impactful. Having more data on light intensity, humidity and hill shading may have revealed 

trends between these factors and local elevation, as the topographic layout of a farm and how 

many hours of sunlight the crop is exposed to has an impact on microclimate.  

 

Soil temperature buffering 

The mean soil temperature across all farms was higher than the above ground air temperature, 

which is unexpected. No relationship between soil buffering and either elevation or forest 

cover was detected. However, the lack of an equivalent below ground temperature data set 

for direct comparison means drawing strong conclusions from this part of the study is 

premature, particularly as other studies found below-ground buffering effects to be strongest 

(Ewers and Banks-Leite, 2013). 

 

Limitations of this study: 

Metadata on the location of the weather stations at each farm was lacking. For instance, the 

coordinates of the exact location of each weather station were not recorded. This is important 

as it affects the reliability of the elevation data, as coffee farms are often located on hillsides. 

It was assumed that the stations were located adjacent to the coffee growing the closest to the 

farmhouse for accessibility reasons. Additionally, a lack of data concerning topography and 

light intensity means that the role of topographic shading, which plays an important role in 

microclimatic buffering (Ashcroft, 2010), could not be explored. However, current versions 

of the Climate Edge weather stations have sensors to measure light intensity, humidity, dew 
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point and windspeed, which will allow a more complete analysis of these variables to be 

performed in future. There were gaps in the regional weather station data, as it sometimes 

only recorded temperature every second day. In addition, having higher temporal resolution 

from the regional data would have allowed daily patterns of temperature to be more fully 

explored, as for example, the minimum temperature at night has been found to be a 

significant related to yield (Craparo et al., 2015). The fact that minimum and maximum 

temperature data from the regional weather station were only available as integers implies 

that it is only collected as integers, which is a source of uncertainty. Though a simpler 

analysis between only Climate Edge data sets could have been performed, we decided it 

would be preferable to have a baseline dataset from a non-agricultural area to quantify 

buffering. It would have been ideal to compare the farm soil temperature data to soil 

temperature data from the same location as the regional weather station. 

Conclusion 

This study highlights the importance of quantifying microclimatic buffers, as despite 

temperatures differing between farms, and evidence for some buffering against mean 

temperatures, sun-exposed coffee is vulnerable to supraoptimal temperatures regardless of 

local environmental variables. Future studies should examine more environmental variables 

and also collect microclimate data from a range of management types, to explore to relative 

protection provided by different managements. This may also fill knowledge gaps on how 

exposure to different temperatures affect various physiological processes such as flowering 

(Rahn et al., 2018). Microclimates could also be explored at a higher spatial resolution, as 

within a single coffee plant, leaf temperatures have been shown to experience a difference of 

up to 5oC depending on which direction they are facing (Bis et al., 2020). This would allow 

for better informed management, particularly on larger farms. The future of Nicaraguan 

coffee remains uncertain, but with demand showing no signs of subsiding, providing better 
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localised projections and mitigation solutions is essential (Bro, 2020) as the region remains 

highly vulnerable to climatic extremes (Hannah et al., 2013). 

 

 

 

Chapter 6: General Discussion 

 

Loss of habitat and fragmentation present major threats to global biodiversity, particularly in 

areas of the tropics, which are home to a disproportionately high number of species (Myers et 

al., 2000).  Monitoring these species using low-cost methods such as passive acoustic 

monitoring (PAM) is key to understanding their responses to stressors. The tropics are also 

economically important for coffee agriculture, which only grows in high altitudes of the 

tropics. Ensuring continued production under less certain climatic conditions is economically 

important to countries like Brazil and Nicaragua which rely heavily on coffee exports. 

Monitoring how coffee, biodiversity and local microclimate interact can inform future 

climate smart management of agriculture. Developing methods that can accurately reflect 

biodiversity trends is necessary to accurately inform conservation policy as well as 

sustainable agriculture policy.  

 

6.1: Acoustic monitoring: best uses and implementations 

 
 
Acoustic monitoring is a rapidly developing field particularly in the field of biodiversity 

monitoring. The advantages of acoustic monitoring are the ease of data collection and the 

wide range of environments which can be monitored using acoustics: marine, freshwater and 

terrestrial (Browning et al., 2017). The range of analytical tools available has rapidly 

expanded, from more general soundscape and index approaches to more modern machine 
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learning models (Gibb et al., 2019; Stowell, 2022) that detect and classify specific sounds of 

interest. Acoustic indices remain popular due to their ease of application though they have 

mixed effects in their ability to accurately quantify biodiversity and require careful selection 

(Buxton et al., 2018). Not many tools exist between indices and more complex machine 

learning methods, which require more computational knowledge to apply. However, the 

acoustic composition approach presented in Chapter 3 both reflects biodiversity and does not 

require extensive machine learning knowledge. As the number of available tools expand, 

more consensus is needed in acoustic survey protocols that are region specific. 

 

Birds have been a key target for acoustic monitoring surveys. As in other fields, automated 

species detection models are more advanced in temperate regions than in the tropics, with 

BirdNET being able to identify 984 North American and European species (Kahl et al., 

2021). However, in the tropics, researchers often have to resort to acoustic indices, manual 

listening, spectrogram analysis and expert ornithologist verification (Metcalf, Barlow, 

Marsden, et al., 2021). In some cases where automation was attempted, comparison with 

manual inspection revealed low detection rates (Szymański et al., 2021). Expansion of tools 

such as BirdNET into tropical regions will allow for easier monitoring of communities.  Once 

species identification tools are developed, the next hurdle is developing accurate methods to 

estimate abundance, which is starting to be explored (Pérez-Granados et al., 2019).  

 

Acoustic composition methods, as applied in Chapter 3, show potential for monitoring of 

avian and insect biodiversity. The advantage of this approach is its transferability to other 

regions and the ease with which drivers can be detected and identified. The methodology in 

Chapter 3 was applied in a master’s project by C. Declaudure (Appendix B.2), with point 

count data and commonly used acoustic indices as well. Acoustic composition was shown to 
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best reflect the avian community above any individual acoustic index or combination of 

indices. However, with the advance of machine learning methodologies, acoustic 

composition may fill a gap between simplistic acoustic indices and automated species 

detection but is likely to be overtaken by species detection methods when these become 

available. Other similar approaches using machine learning and soundscape analysis suggest 

the field could move away from acoustic indices (Sethi et al., 2020), although existing large-

scale monitoring projects are implementing index based approaches (Towsey et al., 2018). 

 

In the field of species-level acoustic monitoring, bats are one of the most advanced taxa, as in 

some countries all species can be identified by echolocation calls alone. As is the case for 

most biodiversity monitoring, tools available in North America and Europe are far ahead of 

those in the tropics. Live bat detection systems in London have already been successfully 

deployed with smart monitors that detect bat approaches, and identify the species based on a 

pass (Gallacher et al., 2021). The challenge for UK bats is smaller as there are only 18 

species present (Bat Conservation Trust, 2022), whereas Brazil is known to have over 180 

(Arias-Aguilar et al., 2018).  However, the work presented in Chapter 4 shows that a CNN 

designed to detect bat calls in the UK can successfully be applied to data from Brazil.  Across 

all bats, the number of echolocation call shapes is limited (estimated to seven distinct types) 

(Jones and Teeling, 2006), and although there is variation between species, a sufficiently 

trained CNN should detect the presence of echolocating bats. This work is at the forefront of 

species-specific acoustic monitoring in biodiversity hotspots, providing a sound analytical 

pipeline that can be applied and expanded to other regions. The next challenge is creating 

robust classifiers for the tropics, which requires the creation of reliable call libraries. Beyond 

monitoring bat species, machine learning has the potential to distinguish between call types 
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such as social calls and feeding buzzes, which can give insights into bat activity and 

behaviour.  

 

Acoustic monitoring has a promising future and the potential to fill many knowledge gaps. 

With machine learning and more specifically, deep learning methods, species-level detections 

are being achieved more an increasing number of taxa. Recording devices with a power 

supply (e.g. solar power) and ability to transfer data wirelessly can remain in remote 

locations for extensive periods of time without interference (Sethi et al., 2018). More 

recently, biodegradable sensors have been developed which can be deployed without being 

collected (Sethi et al., 2022). In Australia, sensor networks have been deployed for the 

automatic detection of cane toads, an invasive species, to provide early warning systems (Roe 

et al., 2018). Models for non-biotic sounds such as gunshots are also improving (Sigmund 

and Hrabina, 2021), which can detect levels of human impacts such as hunting pressures. If 

most acoustically active species could be detected and classified, rolling out networks of 

acoustic monitors could remotely monitor communities, anomalies, population trends and 

responses to ecological stressors. Considering the pace of technological advances, some of 

the approaches used in this thesis may already be redundant, particularly the generalised 

soundscape approaches. Using current technology, an unsupervised machine learning 

approach paired with expert ornithologist listening would be a better alternative to what I did 

in chapter 3. Expert labelled clips could then contribute to a training library for Brazilian 

biodiversity and an open data bank. Acoustic monitoring is going to be a key part of 

biodiversity monitoring across all ecosystems and will be able to provide detailed 

information on acoustically active biodiversity at a global scale.  

 

6.2: Microclimate monitoring for coffee 
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Coffee crops are sensitive to extremes in temperature and are at risk of physiological damage 

with climate change particularly due to supraoptimal temperature exposure (Ovalle-Rivera et 

al., 2015b).  Coffee is grown mainly in mountainous regions with topographic complexity, 

therefore that farms within close geographic proximity may have very different 

microclimates to one another. Elevation of coffee farms has a considerable effect on 

microclimate as well as taste of the bean (Smith, 2018; Getachew et al., 2022). 

Understanding the impacts of microclimate on coffee growth can inform better management 

and mitigate the  impacts of climate change. Microclimate also impact soil fauna (Karungi et 

al., 2018) and the likelihood of pest and disease outbreaks (Liebig et al., 2019), a 

phenomenon that is set to increase with climate change (Jaramillo et al., 2009). Monitoring 

microclimate at farm-level will likely form part of future agricultural management so farmers 

can customise management to their local needs. 

 

Deployment of microclimate weather stations can form part of climate smart agriculture as 

farm-level problems can be solved by better understanding of local weather (Tenzin et al., 

2017). This is only possible due to the availability of low-cost sensors that can be customised 

to measure desired variables of import and deployed. To better understand the impact of local 

microclimate on coffee production, and build on the trends observed in Chapter 5, more data 

on coffee yield, farm-level management as well as more detail on farm topography is needed.  

If some farms do transition to more agroforest management, then performing a pairwise study 

over the course of several years would be informative to compare the performance of coffee 

under different conditions, as in other locations, shade coffee has shown more resilience 

against extremes in temperature (Vaast et al., 2016). The options for farmers to mitigate 

against temperature extremes is limited. Apart from changing management, new technologies 

such as kaolin spray have been successful in reducing leaf surface temperature and doubled 
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the yield compared to non-treated sun coffee (Steiman, Bittenbender and Idol, 2007), though 

this is expensive. The future of coffee in Nicaragua is currently uncertain, as lower elevations 

are no longer suitable, and there is little space at higher altitudes for farms to expand into.  

 

As the cost of sensors and data storage is low, there is global interest in exploring and 

maximising opportunities they offer. Integrating information from multiple sources forms 

part of agricultural modernisation within the Internet of Things paradigm (Sinha and 

Dhanalakshmi, 2022). Under this paradigm, a range of sensors can contribute to broad 

automation within the agricultural sector with minimal human intervention. Though the work 

conducted in chapter 5 used data from such sensors, the full potential of these weather 

stations was not realised.  

 

6.3: The future of coffee, implications for stakeholders 

 
 
Coffee is at high risk of yield and quality loss as a result of climate change (Bunn, Läderach, 

Rivera, et al., 2015; Ovalle-Rivera et al., 2015b; Kath et al., 2020). This will likely lead to 

volatility in production, and thus price. The majority of coffee producers are smallholders (an 

estimated 20 million globally people rely on coffee agriculture for income (Toledo and 

Moguel, 2012)), who cannot afford losses in yield, so require strategies to provide a stable 

income, which may be through climate smart agriculture, diversification or management 

changes (Rahn et al., 2018; Djufry, Wulandari and Villano, 2022). Though some recent 

literature has argued that increased atmospheric CO2 may mitigate the physiological stress 

caused by supraoptimal temperatures on coffee plants limits (Verhage, Anten and Sentelhas, 

2017; Rakocevic et al., 2018; DaMatta et al., 2019), this is not sufficient to prevent all 

damage (Marques et al., 2021).  Unlike other cash crops, developing new varieties of C. 

arabica is difficult, as it is an allotetraploid with low levels of variation (Scalabrin et al., 
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2020).  Certification schemes such as Fairtrade can provide higher income per quantity of 

coffee, which has been a popular option for many smallholders, but results have been mixed 

(Bray and Neilson, 2017; Jena, Stellmacher and Grote, 2017).  Though mostly grown under 

direct sunlight, shade is considered advantageous for coffee production (Biruk, 2018) and 

transitioning to mixed agroforest management is gaining popularity (Rahn et al., 2018). 

 

Farmers may be hesitant to transition from sun-coffee to agroforest due to uncertainty, 

potential yield loss from coffee, higher labour costs and insufficient models and knowledge 

in the region (Sagastuy and Krause, 2019). Best practices for agroforest management rely on 

local knowledge and research on which species perform best with coffee for intercropping 

(Santos et al., 2011), a field that requires more development for Brazil. A range of 

certification schemes exist that encourage shade adaptation such as Rainforest Alliance and 

Bird Friendly Coffee, which have demonstrably improved economic outcomes for farmers 

whilst simultaneously promoting conservation and biodiversity (Philpott et al., 2007). 

Schemes such as these provide synergistic solutions that benefit both coffee farmers and 

biodiversity in the longer term. However, these schemes are often run by private companies 

and becoming certified can be a difficult process for farmers. There is space to bring in policy 

solutions and incentives that have the same results without private certification companies. 

 

6.4: Implications for the Atlantic Forest, conservation and policy 

 
The Atlantic Forest remains a key conservation target for biodiversity, but with an estimated 

26% of its original extent remaining, much of which is made up of smaller fragments and 

only 30% of this forest within protected areas (Rezende et al., 2018), there is room for more 

policy intervention.  To preserve the maximum amount of biodiversity, at least 30% native 

vegetation cover is required (Banks-Leite et al., 2014). Currently the Brazil Forest Code 
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requires native vegetation to be maintained in areas including hilltops and steep slopes (Areas 

of Permanent Protection) (Brancalion et al., 2016), and evidence suggests that the presence of 

native forest fragments positively impacts coffee production in Brazil’s most productive 

coffee regions (Latini et al., 2020). Agricultural subsidies could be made available for 

farmers keen to transition to agroforest schemes to offset initial losses. Even small changes 

like tree planting around plantation edges should be promoted for intensive smallholders. 

Policies intended to promote agroforest have had mixed impacts so should be made carefully 

with strong inputs from smallholders involved (Vaast et al., 2016) to benefit both future 

coffee production and local biodiversity. 

 

Given the low cost and ease of deployment of PAM, it can play a significant role in ongoing 

and future monitoring schemes. However, acoustic data, particularly ultrasonic data results in 

a lot of data being collected. More efficient systems with on-board algorithms that can extract 

species identity without storing the data exist for British bats (Gallacher et al., 2021). If a 

similar system could be developed for Brazil, monitoring Atlantic Forest bat populations in 

real-time could become a reality.  Acoustic monitoring have already demonstrated that 

poaching pressure remains high in protected areas of the Atlantic Forest, highlighting the 

need for urgent intervention (Pardo et al., 2022). Implementing an acoustic-composition 

based monitoring scheme could provide useful insights into avian community trends while 

better species detection tools are developed, as acoustic-indices have highly variable outputs 

(Scarpelli, Ribeiro and Teixeira, 2021). 

 

6.5: Limitations of fieldwork design  

 
The use of PAM for data collection with Audiomoths (Hill et al., 2018) allowed for hundreds 

of hours of sound to be collected at desired sampling rates with relative ease. However, in the 
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years since this fieldwork was carried out, Audiomoths and other devices have been 

significantly improved. For instance, those used in this study had to be pre-ordered months in 

advance and had no protective covering, so they were deployed in resealable plastic bags 

containing silica packets to absorb any excess moisture. This was insufficient protection for 

some devices, as they malfunctioned due to water damage, though more recently, 

Audiomoths are available with protective cases that are suitable for all weather and 

underwater deployment (Open Acoustic Devices, 2022). The recorders were also limited by 

the capacity of the 32 GB SD cards. Due to time constraints, sound detection ranges of the 

devices in different land uses were not explored. Low-cost PAM devices are fragile, but can 

now be better protected and other studies have adapted recorders to send data remotely via 

mobile networks (Sethi et al., 2018), removing the need for on-board storage and creating the 

potential for very long-term monitoring, which is ideal for remote locations.  

 

The field work study design was pre-organised by my collaborator, Andrea Larissa Boesing, 

who had previously selected the coffee farms and obtained the relevant permits. Though 

initially the plan was to deploy the recorders for two seasons (one without, and one during an 

outbreak of coffee borer beetle), acoustic recording was only done for the first season. This 

changed the questions being explored as seasonal comparisons and impact of pest could no 

longer be explored. The field work schedule only permitted for 3 days of mist netting at each 

site, which may not have fully captured the avian communities at all sites, particularly if the 

weather was cold or rainy. Given more time and if more visits could have been made to each 

farm, I would have extended the recording schedule for recorders at both sampling rates, 

recording 1 minute every 5 minutes for 24 hours. This would then include more of the dusk 

bat activity and any diurnal ultrasonics. Ideally more data on the vegetation density in the 
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forest fragments would have been collected as this may explain the variance in bat presence 

within the forest.  

 

6.6: Main conclusions 

 

Acoustic monitoring of tropical biodiversity can give useful insights into species responses to 

ecological stressors, though tools available for tropical regions lag behind those available in 

more temperate regions. Acoustic composition methods show that bird communities strongly 

correlate with local forest cover in coffee-fragmented regions of the Atlantic Forest. This 

reflects other work from the Atlantic Forest highlighting the sensitivity of bird communities 

to fragmentation (Martensen et al., 2012). The potential for highly localised predictions is 

more tangible than ever and I foresee a future where microclimate, biodiversity and soil 

health data can be integrated for individual farms (as part of IoT), so climate smart 

agriculture models can make recommendations that promote both crop and ecosystem health.  

 

Bat calls in the Atlantic Forest can successfully be detected using a CNN designed for the 

UK, though a lack of call libraries limits current species classification approaches. The 

richness of the bat communities was relatively homogenous across the sample sites, though 

abundance was significantly higher within coffee land use than in adjacent forest patches.  

 

Microclimatic buffering on Nicaraguan sun-coffee farms showed some buffering against 

mean and minimum temperatures, but the lack of buffering against high temperatures means 

that the crop remains vulnerable to the ongoing effects of climate change. As local forest 

cover and elevation did not impact the buffering, changes in management towards climate-

smart agriculture is necessary.  
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Tropical regions such as the Atlantic Forest can provide habitat for their valuable biodiversity 

as well as continue producing high quality coffee, though not by keeping current practices in 

place.  
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Extending along the southern coast of Brazil, into Argentina and Paraguay, the Atlantic Forest is a domain that once covered 150 Mha 

and includes many distinct forest subtypes and ecosystems. Its large latitudinal (29˚) and altitudinal (0–2,800 m above sea level) 

range, as well as complex topography in the region, has created microclimates within forest subtypes, which has led to biodiversity 

specifically adapted to narrow ecological ranges. The region is incredibly species-rich and is home to charismatic or economically 

important species such as the black and golden lion tamarin, the red-browned Amazon parrot, and the highly prized palm heart from 

Euterpe edulis. Through widespread human-driven change dating back to the arrival of European settlers in 1500, this realm has been 

extensively reduced, fragmented, and modified. Nowadays, this region is home to about 130 million people (60 percent of the Brazilian 

population) and is responsible for producing 70 percent of Brazil’s GDP, putting a strain on natural resources and providing challenges 

to conservation. Due to its high levels of endemic species coupled with a high threat of habitat loss and fragmentation, the Atlantic 

Forest has been identified as a “biodiversity hotspot.” Numerous studies have assessed the effects of habitat transformation on 

biodiversity and the consensus is that the majority of species are negatively affected. It is puzzling however that few species have 

actually gone extinct in the wild, even if some extinctions might have gone undetected. Extinctions do not immediately follow habitat 

change, there is often a time lag of many decades between habitat transformation and extinction. This may suggest that many species 

in the Atlantic Forest are “living deads,” as despite their presence the available habitat no longer supports their requirements. It also 

suggests that there is a window of opportunity to restoring the domain to avert extinctions before they are realized. Current research 

and policy actions are geared toward optimizing restoration and increasing the extent of native forest cover, bringing hope to the 

conservation of this unique domain. 

 
 

General Overview of Forest Ecology and Forest Extent 
 

Several good sources give detailed overviews of the forest ecology. Galindo-Leal and Câmara 2003 is a good general introduction to 

the history, biodiversity, and human impacts in the region as well as conservation management strategies; however, certain aspects of 

this text pertaining to current trends and conservation management are likely outdated. Metzger and Sodhi 2009, a special issue in 

Biological Conservation, focuses on conservation issues in the Atlantic Forest. Joly, et al. 2014 provides a comprehensive review of the 

history of disturbance, the ecology, the ongoing effects of fragmentation, and how climate change is impacting and will impact the 

Atlantic Forest. Rates of land use change in the Atlantic Forest tend to be monitored on a country-by-country basis, with remote 

sensing efforts in Brazil, Argentina, and Paraguay revealing different levels of deforestation, as seen in Azevedo, et al. 2018; Izquierdo, 

et al. 2008; and Huang, et al. 2009, respectively. In Brazil, low levels of deforestation are mostly matched by reforestation, which 

means that the amount of forest cover has either been stable or slowly increased in the past decades. The amount of remaining forest 

cover in Brazil has been measured by several groups and has been repeatedly updated since the 2000s as high-resolution satellite 

imagery becomes available. Galindo-Leal and Câmara 2003 reported that about 7–8 percent of Atlantic Forest still remained. Ribeiro, 

et al. 2009 calculated the existence of 11–16 percent of native vegetation, but when secondary forest fragments are excluded, the 

estimated remaining forest would stand at around 8 percent. More recently, using RapidEye imagery with 5 m of resolution, the authors 

of Rezende, et al. 2018 have shown that there is actually 26 percent of native vegetation. Because each group used different methods 

to assess the extent of forest cover, these estimates cannot be compared, and do not indicate that the amount of forest has increased 

over time. 

 
 
 

Azevedo, T., C. M. Souza, J. Shimbo, and A. Alencar. 2018. MapBiomas initiative: Mapping annual land cover and land use 
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2018, Washington D.C. 

MapBiomas is an excellent interactive tool to visualize high-resolution land use change in Brazil as well as a reliable source of free 

geographical data to use in research. 

 
 
 

Galindo-Leal, C. G., and I. G. Câmara, eds. 2003. The Atlantic Forest of South America: Biodiversity status, threats, and 

outlook. Vol. 1. Washington, DC: Island Press. 

This book provides an excellent initial overview of the history and threats to the Atlantic Forest, divided into sections by country. 

 
 

 
Huang, C., S. Kim, K. Song, et al. 2009. Assessment of Paraguay’s forest cover change using Landsat observations. Global 

and Planetary Change 67.1–2: 1–12. 

This analysis of Paraguay’s forest cover shows that most forests outside of protected areas were lost by the 2000s, demonstrating the 

importance of protected areas. 

 
 
 

Izquierdo, A. E., C. D. De Angelo, and T. M. Aide. 2008. Thirty years of human demography and land-use change in the Atlantic 

Forest of Misiones, Argentina: An evaluation of the forest transition model. Ecology and Society 13.2: 3. 

This paper examines changes in forest cover in Misiones, showing that there has been increased planting of pine and eucalyptus 

monocultures associated with a loss in natural forest. 

 
 
 

Joly, C. A., J. P. Metzger, and M. Tabarelli. 2014. Experiences from the Brazilian Atlantic Forest: Ecological findings and 

conservation initiatives. New Phytologist 204.3: 459–473. 

This article provides a good discussion, with the use of conceptual models, of how large-scale landscape ecological processes can 

help maintain biota, as well as providing a research agenda that would conserve biodiversity of tropical forests. 

 
 
 

Metzger, J. P., and N. Sodhi, eds. 2009. Special issue: Conservation issues in the Atlantic Forest. Biological Conservation 

142.6: 1137–1252. 

This special issue of Biological Conservation contains some key articles on the Atlantic Forest including the highly impactful paper 

Ribeiro, et al. 2009 on how much of the Atlantic Forest remains and the distribution of the remnants. 

 
 
 

Rezende, C. L., F. R. Scarano, E. D. Assad, et al. 2018. From hotspot to hopespot: An opportunity for the Brazilian Atlantic 

Forest. Perspectives in Ecology and Conservation 16.4: 208–214. 

This study presents high-resolution (5-m) remote sensing data of the Brazilian Atlantic Forest to reveal that there are in fact 32 Mha of 

forest within the domain, which corresponds to 28 percent of the original extent (2 percent of the area is planted forest). 

 
 
 

Ribeiro, M. C., J. P. Metzger, A. C. Martensen, F. J. Ponzoni, and M. M. Hirota. 2009. The Brazilian Atlantic Forest: How much is 

left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142.6: 1141–1153. 

This article provides a highly detailed analysis of how much forest cover remains in the Atlantic Forest by taking into account even 

quite small patches of forest. It discusses how the majority of the remaining patches are small, isolated, and composed of secondary 

vegetation, and it proposes four main strategies for protecting and restoring the Atlantic Forest. 

 
 
 

Historical Background 
 

The earliest evidence of human activity within the Atlantic Forest is from approximately 500 CE, and consists of indigenous settlements 

causing modest disturbance. Since the arrival of Portuguese settlers in the 16th century, deforestation for urbanization and agriculture 
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has been rampant. Two of the world’s most populous cities (São Paulo and Rio de Janeiro) are located within the Atlantic Forest realm, 

and Brazil’s economy also relies heavily on agriculture, including commodities such as coffee, cocoa, sugar, rice, soybean, and cotton, 

as explained by Martinelli, et al. 2010. Much of Brazil’s agriculture is exported and/or transported by trucks across Brazil, requiring an 

extensive road network, which, as shown in Freitas, et al. 2010, further exacerbates land use change and forest fragmentation. As for 

pre-Anthropocene history, there has been some research into the underlying evolutionary and paleoclimatic drivers responsible for the 

centers of endemism found within this region, such as the study Carnaval and Moritz 2008. Álvarez-Presas, et al. 2011 used planarians 

as model organisms to understand patterns of biodiversity, whereas the authors of Carnaval, et al. 2009 used frogs as indicators in 

their paleoclimatic models. Fjeldså and Rahbek 2006 used climate and phylogenetic data to explain the higher diversity of tanagers in 

the Atlantic Forest around Rio de Janeiro. Batalha-Filho, et al. 2013 used bird data to demonstrate how the Amazonian and Atlantic 

Forests were connected, linking the connection to geotectonic events. 

 
 
 

Álvarez-Presas, M., F. Carbayo, J. Rozas, and M. Riutort. 2011. Land planarians (Platyhelminthes) as a model organism for 

fine‐scale phylogeographic studies: Understanding patterns of biodiversity in the Brazilian Atlantic Forest hotspot. Journal of 

Evolutionary Biology 24.4: 887–896. 

Paleoclimatic models have previously had variable success in predicting the observed habitat stability in southern Atlantic Forest. This 

research uses two land planarians as model organisms because they have low dispersal capability, whereas previous work focused on 

species with high dispersal ability. Results suggest that there were no recent colonizations or population expansions, indicating a long- 

term stability scenario. 

 
 
 

Batalha-Filho, H., J. Fjeldså, P. H. Fabre, and C. Y. Miyaki. 2013. Connections between the Atlantic and the Amazonian forest 

avifaunas represent distinct historical events. Journal of Ornithology 154.1: 41–50. 

This study uses phylogenetic and distribution data of birds to unravel the spatiotemporal dynamics of how the Atlantic and Amazon 

forests, which used to be connected, may have diverged. 

 
 
 

Carnaval, A. C., M. J. Hickerson, C. F. Haddad, M. T. Rodrigues, and C. Moritz. 2009. Stability predicts genetic diversity in the 

Brazilian Atlantic forest hotspot. Science 323.5915: 785–789. 

This article uses frogs as indicators to examine different potential scenarios of community responses to climate change in the late- 

Quaternary period. The results show that the Brazilian Atlantic Forest had a relatively unstable climate, with the exception of three 

refugia that provided a suitable habitat for many neotropical species in the late Pleistocene. The authors suggest conservation priorities 

based on their results. 

 
 
 

Carnaval, A. C., and C. Moritz. 2008. Historical climate modelling predicts patterns of current biodiversity in the Brazilian 

Atlantic forest. Journal of Biogeography 35.7: 1187–1201. 

This research models the range of the Atlantic Forest under current and past climatic scenarios to investigate whether these can 

predict current patterns of biodiversity distribution. The past range of the forest was verified using fossil pollen data. The authors find 

evidence for two refugia (Bahia and Pernambuco) and suggest that southern forests may have been more unstable. 

 
 
 

Fjeldså, J., and C. Rahbek. 2006. Diversification of tanagers, a species rich bird group, from lowlands to montane regions of 

South America. Integrative and Comparative Biology 46.1: 72–81. 

This paper links rates of speciation within tanagers to geological events, and links the elevated levels of speciation in the Rio de 

Janeiro area and the Andean forelands to mountains being uplifted in the late Pleistocene. 

 
 
 

Freitas, S. R., T. J. Hawbaker, and J. P. Metzger. 2010. Effects of roads, topography, and land use on forest cover dynamics in 

the Brazilian Atlantic Forest. Forest Ecology and Management 259.3: 410–417. 

This article examines the effect of road density, land use, and topography on forest fragmentation, deforestation, and regrowth. Roads 

were found to have the strongest links to deforestation and forest fragmentation, as they facilitate both processes by creating increased 

accessibility. 
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Martinelli, L. A., R. Naylor, P. M. Vitousek, and P. Moutinho. 2010. Agriculture in Brazil: Impacts, costs, and opportunities for a 

sustainable future. Current Opinion in Environmental Sustainability 2.5–6: 431–438. 

This is a thorough article that sets out the current state of Brazilian agriculture, the potential for sustainable development, and the 

major hurdles to achieving socioeconomic development without further environmental damage. Though it is about the whole of Brazil, it 

highlights key areas of conflict between economic and environmental priorities. 

 
 
 

Habitat Types: Present and Future 
 

The Atlantic Forest is commonly divided either into forest types (a particular community of plant species that define a region can be 

referred to as a physiognomy) or into biogeographical subregions. The types of forest present are: dense and open ombrophilous 

forests, mixed ombrophilous forests, seasonal forests, and semideciduous as well as mangrove forests. The most studied forest 

physiognomy is the ombrophilous dense forest, which is believed to have higher levels of biodiversity and endemism than other 

physiognomies, although this could be due to differences in sampling effort. However, Scarano 2009 argues that these peripheral 

forest subtypes, including restingas and swamp forests, should be given more priority, making the case that they have a high 

conservation value due to their oligarchic diversity, with a few dominant species but many rare species at local scales. The western 

extent of the forest that extends into Argentina (an introduction to this forest can be found in Chebez and Hilgert 2003) and Paraguay 

(Cartes 2003 presents a background to this forest) forms part of the subtropical semideciduous forest. Silva and Casteleti 2003 defined 

eight biogeographical subregions: Araucaria, Bahia, Brejos Nordestinos, Diamantina, Interior, Pernambuco, Serra do Mar, and São 

Francisco. Five of these regions are considered to be centers of endemism, as shown by Tabarelli, et al. 2010 (cited under Biodiversity 

of the Atlantic Forest). Assessments of the potential impacts of climate change on the Atlantic Forest have revealed the area to be 

extremely vulnerable: Lemes, et al. 2014 found that as species ranges shift under climate change, protected areas will need to shift 

with them, particularly for vulnerable taxa like amphibians. Scarano and Ceotto 2015 reviewed the vulnerability of both biodiversity and 

society of the Atlantic Forest to climate change and discusses important adaptive practices. 

 
 

 
Cartes, J. L. 2003. Brief history of conservation in the Interior Atlantic Forest. In The Atlantic Forest of South America: 

Biodiversity status, threats, and outlook. Edited by C. G. Leal and I. G. Câmara, 269–287. Washington, DC: Island Press. 

This book chapter presents a thorough introduction to a lesser-researched area of the Atlantic Forest, the Paraguayan Atlantic Forest. 

The author details the key differences to Brazilian and Argentinian forests and discusses its history. 

 
 
 

Chebez, J., and N. Hilgert. 2003. Brief history of conservation in the Paraná Forest. In The Atlantic Forest of South America: 

Biodiversity status, threats, and outlook. Edited by C. G. Leal and I. G. Câmara, 141–159. Washington, DC: Island Press. 

A descriptive history of the Argentinian Atlantic Forest from its early history to current land use in the region as well as an introduction 

to the local economic concerns and conservation efforts. 

 
 
 

Colombo, A. F., and C. A. Joly. 2010. Brazilian Atlantic Forest lato sensu: The most ancient Brazilian forest, and a biodiversity 

hotspot, is highly threatened by climate change. Brazilian Journal of Biology 70.3: 697–708. 

This study examines how the distribution of thirty-eight different species of tree that are typical to the Brazilian Atlantic Forest would be 

affected by different potential future climate scenarios. They use species distribution models to show that at best, they would lose 

about 25 percent of their distribution, but under the worst scenarios, 50 percent could be lost, demonstrating the sensitivity of the 

region to climate change. 

 
 
 

Lemes, P., A. S. Melo, and R. D. Loyola. 2014. Climate change threatens protected areas of the Atlantic Forest. Biodiversity 

and Conservation 23.2: 357–368. 

This article makes the excellent point that as species ranges change with climate change, protected areas need to expand to contain 

them, particularly in highland areas. By using amphibians as an example, the paper shows that without changes to protected areas, the 

number of species within them will decline. 
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Neves, D. M., K. G. Dexter, R. T. Pennington, et al. 2017. Dissecting a biodiversity hotspot: The importance of environmentally 

marginal habitats in the Atlantic Forest Domain of South America. Diversity and Distributions 23.8: 898–909. 

This article shows that marginal habitats with poor environmental protection are very important to maintain high species richness in the 

Atlantic Forest, as 45 percent of Atlantic Forest endemic species only occur within these habitats. 

 
 
 

Scarano, F. R. 2009. Plant communities at the periphery of the Atlantic rain forest: Rare-species bias and its risks for 

conservation. Biological Conservation 142.6: 1201–1208. 

Scarano makes the case for a wider range of Atlantic Forest subtypes on the periphery of the core forest to be made a higher 

conservation priority despite lower diversity and endemism. 

 
 
 

Scarano, F. R., and P. Ceotto. 2015. Brazilian Atlantic forest: Impact, vulnerability, and adaptation to climate change. 

Biodiversity and Conservation 24.9: 2319–2331. 

This review identifies vulnerabilities of biodiversity and society in the Atlantic Forest, as over 60 percent of Brazil’s population live within 

it. It discusses the role of ecosystem base adaptation strategies and highlights examples of good adaptive practice. 

 
 
 

Silva, J. M. C., and C. H. M. Casteleti. 2003. Status of the biodiversity of the Atlantic Forest of Brazil. In The Atlantic Forest of 

South America: Biodiversity status, threats, and outlook. Edited by C. G. Leal and I. G. Câmara, 43–59. Washington, DC: 

Island Press. 

This chapter summarizes the threat posed by deforestation to the Brazilian Atlantic Forest and how much of the biodiversity is now 

threatened due to habitat loss. It also outlines potential solutions and conservation strategies. 

 
 
 

Biodiversity of the Atlantic Forest 
 

Myers, et al. 2000 showed that nearly half of all plant species and more than a third of mammals, birds, reptiles, and amphibians are 

found in only 1.4 percent of the Earth’s land surface area, regions which are known as biodiversity hotspots. Hence, by focusing 

conservation policies and protecting these areas, a disproportionately high level of biodiversity could be protected. A follow-up book 

about biodiversity hotspots, Mittermeier, et al. 2005, discusses that 40 percent of the 20,000 plant species, 16 percent of the 688 bird 

species, 27 percent of the 261 mammal species, 31 percent of 200 reptile species, and 60 percent of 280 amphibian species are 

endemic to the Atlantic Forest, which means they can only be found within this realm. Together, they represent over 8,650 species, 

8,000 of which are tree species. The Atlantic Forest has shown some of the highest levels of biodiversity in the world. Martini, et al. 

2007 identified an area containing 144 species of trees (above diameter at breast height > 4.8 cm) within 0.1 ha in southern Bahia, 

which is the second highest concentration of tree species in the world. Among animal species, one notable example is the golden lion 

tamarin, an endangered primate species that Lapenta and Procópio-de-Oliveira 2008 found to have a role in the seed dispersal of 

ninety-seven species of plants. The Atlantic Forest has high levels of endemism and of habitat loss, making it one of the most 

endangered biodiversity hotspots. The species that are still present are often trapped within small fragments and unable to migrate, as 

discussed in Tabarelli, et al. 2010. Amphibians are a taxon of particular concern due to their high endemicity and the increasing threat 

posed by chytrid fungus, as shown in Carnaval, et al. 2006. 

 
 
 

Carnaval, A. C. O. Q., R. Puschendorf, O. L. Peixoto, V. K. Verdade, and M. T. Rodrigues. 2006. Amphibian chytrid fungus 

broadly distributed in the Brazilian Atlantic Rain Forest. EcoHealth 3.1: 41–48. 

This research reports the results of histological screenings on nearly one hundred anurans from the Atlantic rain forest, showing a wide 

spread of chytrid fungus, with an infection record coinciding with the first observed declines in amphibians. 

 
 
 

Lapenta, M. J., and P. Procópio-de-Oliveira. 2008. Some aspects of seed dispersal effectiveness of golden lion tamarins 

(Leontopithecus rosalia) in a Brazilian Atlantic forest. Tropical Conservation Science 1.2: 122–139. 
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This article examines the role of golden lion tamarins in the dispersal of seeds by analyzing the seeds found in fecal deposits. This 

evidence shows that the golden lion tamarin may be a keystone species, as it provides ecosystem services for so many other species. 

 
 
 

Martini, A. M. Z., P. Fiaschi, A. M. Amorim, and J. L. da Paixão. 2007. A hot-point within a hot-spot: A high diversity site in 

Brazil’s Atlantic Forest. Biodiversity and Conservation 16.11: 3111–3128. 

This paper describes an area of exceptionally high biodiversity within the Atlantic Forest, located within southern Bahia, revealing it to 

be the second most diverse area in the world. 

 
 
 

Mittermeier, R. A., P. R. Gill, M. Hoffmann, et al. 2005. Hotspots revisited: Earth’s biologically richest and most endangered 

terrestrial ecoregions. Washington, DC: CEMEX. 

This book takes a detailed look at the world’s biodiversity hotspots, looking into levels of endemism for many taxonomic groups. 

 
 

 
Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. Da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation 

priorities. Nature 403.6772: 853. 

This is a key paper on the subject of biodiversity hotspots. It identifies areas of the world that are most concentrated in biodiversity and 

puts them forward as a “silver bullet” conservation strategy to conserve the highest level of biodiversity within the smallest area. 

 
 
 

Tabarelli, M., A. V. Aguiar, M. C. Ribeiro, J. P. Metzger, and C. A. Peres. 2010. Prospects for biodiversity conservation in the 

Atlantic Forest: Lessons from aging human-modified landscapes. Biological Conservation 143.10: 2328–2340. 

This review provides a good introduction to the history of Atlantic Forest disturbance and discusses in detail various potential 

conservation options, highlighting the value of protected areas and old-growth forests. It also contains a useful table of studies that 

have examined the effects of habitat loss on different taxa and the conservation insights they provide. 

 
 
 

Biodiversity Data 
 

There have been large-scale efforts to gather data on Atlantic Forest biodiversity. There are several public data sets known as the 

Atlantic data papers, which represent a high proportion of diversity present in the region, including: 94 species of mammal (see Souza, 

et al. 2019), 26 primate species (see Culot, et al. 2019), 745 bird species (see Hasui, et al. 2018), 2,095 epiphyte species (see Ramos, 

et al. 2019), 279 butterfly species (see Santos, et al. 2018), 528 amphibian species (see Vancine, et al. 2018), and 98 bat species (see 

Muylaert, et al. 2017). Several of these data sets monitor assemblages (e.g. Culot, et al. 2019) over time. As well as simple occurrence 

records, some of the data sets collate information on species traits and interactions, such as plant–frugivore interactions in Bello, et al. 

2017, and bird traits including body mass and wing length in Rodrigues, et al. 2019. Going beyond simple species occurrence data 

allows researchers to investigate patterns over time such as demographics and make inferences about how anthropogenic stressors 

affect morphology. Interaction data is particularly valuable as it can uncover species mutualisms and the extent to which certain 

species depend on others. This contributes to the deeper understanding of how ecological communities work, which can be useful to 

inform better conservation policies. For the state of São Paulo, there is also information available on the SinBiota 2.1 platform, as 

described in Mira, et al. 2011. This was created by the Biota/Fapesp program to integrate information generated by all researchers 

funded by this program. 

 
 
 

Bello, C., M. Galetti, D. Montan, et al. 2017. Atlantic frugivory: A plant–frugivore interaction data set for the Atlantic Forest. 

Ecology 98.6: 1729. 

This data set contains pairwise observations between 331 vertebrate species and 788 plant species from the Atlantic Forest. 

 
 

 
Culot, L., L. A. Pereira, I. Agostini, et al. 2019. ATLANTIC‐PRIMATES: A dataset of communities and occurrences of primates 

in the Atlantic Forests of South America. Ecology 100.1: e02525. 



153 

 

 

This detailed data set contains georeferenced locations of all twenty-six primate species found in the Atlantic Forest as well as one 

introduced species. It describes 700 primate communities made up of over 8,000 individual single-species occurrences and covers the 

entire Atlantic Forest range including Brazil, Argentina, and Paraguay. 

 
 
 

Hasui, É., J. P. Metzger, R. G. Pimentel, et al. 2018. ATLANTIC BIRDS: A data set of bird species from the Brazilian Atlantic 

Forest. Ecology 99.2: 497. 

This is a large data set comprising over 33,000 individual birds of 832 species from the Atlantic Forest in Brazil. It includes location, 

date, sampling mode, altitude, and type of habitat. 

 
 
 

Mira, C., P. Feijao, T. Duque-Estrada, J. Meidanis, and C. A. Joly. 2011. The SinBiota 2.0 biodiversity information system. In 

Proceedings 2011 Seventh IEEE International Conference on e-Science. 5–8 December 2011. pp. 142–149. Los Alamitos, CA: 

IEEE. 

This conference paper discusses the history of the SinBiota platform and future plans to include new technologies. 

 
 

 
Muylaert, R. d. L., R. D. Stevens, C. E. L. Esbérard, et al. 2017. ATLANTIC BATS: A data set of bat communities from the 

Atlantic Forests of South America. Ecology 98.12: 3227. 

This data set comprises information on over 90,000 individual bat captures totaling ninety-eight species. The data reported were 

collected in 205 sites from 135 studies. 

 
 
 

Ramos, F. N., S. R. Mortara, N. Monalisa-Francisco, et al. 2019. ATLANTIC EPIPHYTES: A data set of vascular and non‐ 

vascular epiphyte plants and lichens from the Atlantic Forest. Ecology 100.2: e02541. 

An extensive data set containing 2,095 species of epiphytes from the Atlantic Forest including 89,270 individual records. The data set 

includes records from 1824 to early 2018. 

 
 
 

Rodrigues, R. C., É. Hasui, J. C. Assis, et al. 2019. ATLANTIC BIRD TRAITS: A data set of bird morphological traits from the 

Atlantic forests of South America. Ecology 100.6: e02647. 

A large data set of bird traits from 67,197 individuals of 711 species. The traits recorded include sex, body mass, body length, and 

reproductive stage. 

 
 
 

Santos, J. P. dos, A. V. L. Freitas, K. S. Brown, et al. 2018. Atlantic butterflies: A data set of fruit‐feeding butterfly communities 

from the Atlantic forests. Ecology 99.12: 2875. 

A large data set of butterfly occurrence records from the Atlantic Forest including 7,062 presence records for 279 species dating from 

1949 to 2018. 

 
 
 

Souza, Y., F. Gonçalves, L. Lautenschlager, et al. 2019. ATLANTIC MAMMALS: A dataset of assemblages of medium and large- 

sized mammals of the Atlantic Forest of South America. Ecology 100.10: e02785. 

This data set compiles 129 studies resulting in occurrence data of ninety-four species of mammal in the Atlantic Forest across 244 

assemblages. 

 
 
 

Vancine, M. H., K. da Silva Duarte, Y. S. de Souza, et al. 2018. ATLANTIC AMPHIBIANS: A data set of amphibian communities 

from the Atlantic Forests of South America. Ecology 99.7: 1692. 

This data set of Atlantic Forest amphibians includes 17,619 records of 528 species. The records date between 1940 and 2017. 
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Habitat Transformation 
 

Habitat loss, fragmentation, and degradation are the major threats to biodiversity in the Atlantic Forest, thus there is a substantial body 

of literature on this subject. Lôbo, et al. 2011 showed that habitat transformation has over time modified diverse communities within five 

physiognomic subtypes (including evergreen, semideciduous, and open forest) of the Atlantic Forest into a homogenized set of 

disturbance-specialist species. Indeed, studying in southern Bahia (world’s second highest concentration of tree species), the authors 

of Benchimol, et al. 2017 found that forest loss leads to nonrandom floristic shifts, such that shade-intolerant species (e.g., pioneers) 

become more common than shade-tolerant species below 30 percent of forest cover. The loss of species also drives evolutionary 

changes in seed size, as shown by Galetti, et al. 2013. Within the evergreen and semideciduous forests, Santos, et al. 2008 

demonstrated that fragmentation and the resulting creation of more edges have severely reduced functional traits of tree assemblages. 

But habitat loss is not the only driver of species loss. Using a multi-taxa database with over 2,200 community-level estimates from 

1,097 sites, Püttker, et al. 2020 showed that forest-dependent species respond negatively to habitat loss and fragmentation, and that in 

areas with over 30 percent of forest cover, habitat fragmentation was as important as or more important than habitat loss in driving 

changes in species richness. This was not the first time that it has been shown that the effects of fragmentation on species are 

dependent on the amount of forest cover. Pardini, et al. 2010 demonstrated that within the ombrophilous dense forests, the size of a 

forest fragment only positively affects biodiversity when the landscape level forest cover is intermediate (around 30 percent of forest 

cover). The impacts of edge effects have been shown for a variety of abiotic and biotic conditions. Magnago, et al. 2015 showed that 

forest edges are drier and warmer, and these abiotic changes affect forest structure. Changes to habitat structure can then have knock- 

on effects on other taxa. For instance, Filgueiras, et al. 2011 found that dung beetle diversity was impacted by the impoverished flora of 

small patches. Banks-Leite, et al. 2010 found that edge effects likely drive the patch area effects on birds in the Atlantic Forest. This is 

because large patches experience a weaker influence of edge effects than small patches, which have higher edge-to-area ratio. 

 
 
 

Banks-Leite, C., R. M. Ewers, and J. P. Metzger. 2010. Edge effects as the principal cause of area effects on birds in 

fragmented secondary forest. Oikos 119.6: 918–926. 

This article demonstrates that edge and area effects are intrinsically confounded in fragmented landscapes, but that the magnitude of 

edge-to-interior differences increases in larger patches. When controlling for edge effects, the authors show that patch size does not 

affect birds. 

 
 
 

Benchimol, M., E. Mariano-Neto, D. Faria, et al. 2017. Translating plant community responses to habitat loss into conservation 

practices: Forest cover matters. Biological Conservation 209:499–507. 

This study shows that species richness of plants declines drastically below 30 percent of forest cover, and that in deforested areas the 

assemblages of seedlings and saplings is very different from that of mature trees. These results suggest that the incredibly speciose 

forest of southern Bahia will progressively lose species as mature trees are replaced by younger individuals. 

 
 
 

Filgueiras, B. K., L. Iannuzzi, and I. R. Leal. 2011. Habitat fragmentation alters the structure of dung beetle communities in the 

Atlantic Forest. Biological Conservation 144.1: 362–369. 

This research is based on field work performed in nineteen forest fragments of varying size in the Atlantic Forest in northeastern Brazil. 

It demonstrates not only that fragment area directly affects dung beetle diversity, but that low tree species diversity and lower levels of 

shade-tolerant plants also lowered dung beetle diversity. 

 
 
 

Galetti, M., R. Guevara, M. C. Côrtes, et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. 

Science 340.6136: 1086–1090. 

This article makes the link between the reduction in seed size of a keystone palm species and the functional extinction of large-gape 

seed dispersers in the Brazilian Atlantic Forest. This shows a short-term adaptation to loss of large birds. 

 
 
 

Lôbo, D., T. Leão, F. P. Melo, A. M. Santos, and M. Tabarelli. 2011. Forest fragmentation drives Atlantic forest of northeastern 

Brazil to biotic homogenization. Diversity and Distributions 17.2: 287–296. 
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This article makes the important observation that land cover change is altering tree flora communities and that since 1980 similarity in 

species composition has increased by 20–40 percent. 

 
 
 

Magnago, L. F. S., M. F. Rocha, L. Meyer, S. V. Martins, and J. A. A. Meira-Neto. 2015. Microclimatic conditions at forest edges 

have significant impacts on vegetation structure in large Atlantic forest fragments. Biodiversity and Conservation 24.9: 2305– 

2318. 

This study provides a good working example of how edge effects impact microclimatic conditions and how these changes affect 

vegetation structure at edges. 

 
 
 

Pardini, R., A. A. Bueno, T. A. Gardner, P. I. Prado, and J. P. Metzger. 2010. Beyond the fragmentation threshold hypothesis: 

Regime shifts in biodiversity across fragmented landscapes. PloS One 5.10: e13666. 

This article presents a model that describes mechanisms and consequences of changes in biodiversity within fragmented landscapes, 

taking factors such as local extinction risk and immigration rates. They show that patch size only positively affects biodiversity in 

landscapes with intermediate amounts of cover (30 percent). In highly forested (50 percent) or deforested (10 percent) landscapes, 

species richness is not affected by patch size. 

 
 
 

Püttker, T., R. Crouzeilles, M. Almeida-Gomes, et al. 2020. Indirect effects of habitat loss via habitat fragmentation: A cross- 

taxa analysis of forest-dependent species. Biological Conservation 241:108368. 

This article analyzes data from the Synthesis in Atlantic Forest Ecology and Sustainability Group. This group has collated data from 

various projects, putting together a database on amphibians, reptiles, birds, mammals, spiders, harvestmen, beetles, butterflies, 

termites, bees, ants, and other insects, as well as bryophytes, pteridophytes, and higher plants. Here they report their first results on 

the relative effects of habitat loss and fragmentation on forest specialists. 

 
 
 

Santos, B. A., C. A. Peres, M. A. Oliveira, A. Grillo, C. P. Alves-Costa, and M. Tabarelli. 2008. Drastic erosion in functional 

attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biological Conservation 141.1: 249–260. 

This article examines data of tree assemblages in a hyperfragmented part of the Atlantic Forest in northeastern Brazil, showing that 

smaller fragments and higher edge length within the evergreen and semideciduous physiognomies have drastic effects on functional 

traits from seed size to proportion of pioneer and emergent species. 

 
 
 

Vertebrates and Habitat Transformation 
 

Birds are one of the most commonly studied taxa in the Atlantic Forest due to their diversity and sensitivity. Responses of birds to 

fragmentation have been well documented: Zurita and Bellocq 2010 found forest cover to be the main driver of differences in bird 

communities in Argentina, while Morante-Filho, et al. 2015 showed the number of bird species in southern Bahia abruptly changed at a 

threshold of 50 percent forest cover. Banks-Leite, et al. 2012 showed that around São Paulo responses of bird communities to 

fragmentation do not to conform to the classical ecological species–area relationship. Instead, the main drivers of changes in bird 

communities across a gradient of disturbance are purported to be individual species reaching their extinction threshold. Despite 

conservation efforts, many species remain at high risk of extinction (as demonstrated in Canale, et al. 2012), particularly large 

mammals such as the jaguar, which, as shown by Paviolo, et al. 2016, have undergone high rates of extirpation. Umetsu and Pardini 

2007 found that small mammals, particularly endemic species, have been found to be sensitive to land use change. The response of 

bats is less clear, as Gorresen and Willig 2004 found the highest levels of bat diversity in moderately fragmented landscapes. With 

regards to the response of amphibians to fragmentation, Becker, et al. 2007 found habitat loss to be a key driver of amphibian declines, 

particularly for forest species; and amphibians are particularly vulnerable to the coupled effects of fragmentation and climate change, 

as shown by Loyola, et al. 2014. The effects of fragmentation on reptiles are less studied, but Lion, et al. 2016 demonstrated that 

reptiles can benefit from even small forest fragments. 
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Banks-Leite, C., R. M. Ewers, and J. P. Metzger. 2012. Unraveling the drivers of community dissimilarity and species 

extinction in fragmented landscapes. Ecology 93.12: 2560–2569. 

This article demonstrates that using species–area relationship in fragmentation studies does not hold for bird communities in the 

Atlantic Forest and that changes in community composition are primarily driven by species-level extinction thresholds. 

 
 
 

Becker, C. G., C. R. Fonseca, C. F. B. Haddad, R. F. Batista, and P. I. Prado. 2007. Habitat split and the global decline of 

amphibians. Science 318.5857: 1775–1777. 

This article shows that as well as habitat loss and the rapid spread of chytrid fungus driving the losses of amphibians globally, 

fragmentation of habitat is also a key driver, particularly in species that migrate to forests from an aquatic larval stage. 

 
 
 

Canale, G. R., C. A. Peres, C. E. Guidorizzi, C. A. F. Gatto, and M. C. M. Kierulff. 2012. Pervasive defaunation of forest 

remnants in a tropical biodiversity hotspot. PloS One 7.8. 

This paper examines local extinctions of 18 mammal species in 196 patches of the Brazilian Atlantic Forest, and finds that of a possible 

3,528 populations that could have persisted, only 767 have, and each forest patch only retains an average of 3.9 species. 

 
 
 

Gorresen, P. M., and M. R. Willig. 2004. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay. 

Journal of Mammalogy 85.4: 688–697. 

This article reports the outcome of an extensive survey effort on different landscape within the Atlantic Forest of Paraguay, finding the 

highest species richness in partly forested fragments. 

 
 
 

Lion, M. B., A. A. Garda, D. J. Santana, and C. R. Fonseca. 2016. The conservation value of small fragments for Atlantic Forest 

reptiles. Biotropica 48.2: 265–275. 

This fragmentation study focuses on reptile communities in the Brazilian Atlantic Forest; though the main predictor of reptile species 

richness and abundance is fragment size, both the matrix quality and shape of the fragment contribute to the communities present. 

 
 
 

Loyola, R. D., P. Lemes, F. T. Brum, D. B. Provete, and L. D. Duarte. 2014. Clade‐specific consequences of climate change to 

amphibians in Atlantic Forest protected areas. Ecography 37.1: 65–72. 

This paper shows that the suitable range for most amphibian species would contract under climate change and that the responses are 

clade-specific. It starts to piece together how understanding the changes in the phylogenetic pool may lead to a more comprehensive 

idea of the effect of climate change on assembly-related processes. 

 
 
 

Morante-Filho, J. C., D. Faria, E. Mariano-Neto, and J. Rhodes. 2015. Birds in anthropogenic landscapes: The responses of 

ecological groups to forest loss in the Brazilian Atlantic Forest. PLoS One 10.6. 

The authors examined bird species grouped by whether they were forest specialists or habitat generalists and ran models to 

investigate the effect of fragmentation. The results find that all ecological groups show a similar forest cover threshold value of 50 

percent, where species numbers abruptly change. 

 
 
 

Paviolo, A., C. De Angelo, K. M. Ferraz, et al. 2016. A biodiversity hotspot losing its top predator: The challenge of jaguar 

conservation in the Atlantic Forest of South America. Scientific Reports 6.1: 1–16. 

A thorough review of the status of the jaguar’s habitat in the Atlantic Forest, combining information from fourteen research groups. It 

shows that jaguars only persist in 2.8 percent of the Atlantic Forest in low densities. 
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Umetsu, F., and R. Pardini. 2007. Small mammals in a mosaic of forest remnants and anthropogenic habitats—evaluating 

matrix quality in an Atlantic forest landscape. Landscape Ecology 22.4: 517–530. 

This paper investigates matrix use by small mammals of the Atlantic Forest, showing that assemblages of small mammals are highly 

dissimilar between native vegetation and anthropogenic land use. Endemic small mammals typically occupy native vegetation. 

 
 
 

Zurita, G. A., and M. I. Bellocq. 2010. Spatial patterns of bird community similarity: Bird responses to landscape composition 

and configuration in the Atlantic forest. Landscape Ecology 25.1: 147–158. 

This paper examines how continuous and fragmented forest landscapes affect the similarity of bird communities, finding that forest 

cover explains most of the variation. It also finds that native bird communities are more resilient to forest loss in landscapes dominated 

by planted trees. 

 
 
 

Conservation and Policy 
 

The Atlantic Forest is protected by the Forest Code, which is an environmental law created in Brazil in 1965, when most of the 

deforestation had already taken place. By law, landowners are required to set aside 20 percent of their land for native habitat, as well 

as protect riparian forests, hilltops, and other environmentally sensitive areas. The Forest Code was revised recently, weakening the 

protection of the Atlantic Forest, as discussed by Soares-Filho, et al. 2014. This revision is particularly problematic given that Banks- 

Leite, et al. 2014 has shown that at least 30 percent of native habitat is required to protect biodiversity within the Atlantic Forest. Due to 

the pressing need to preserve its unique yet endangered biota, a group of academics, NGOs, industry, and government formed the 

Atlantic Forest Restoration Pact, an initiative which aims to restore 15 Mha of habitat in the Atlantic Forest by 2050. This pledge comes 

as part of Brazil’s commitment to the Bonn Challenge. Crouzeilles, et al. 2019 shows that the Atlantic Forest Restoration Pact has 

already facilitated the restoration of roughly 700,000 ha, estimating that by 2020 there will be 1.5 Mha under restoration. Rezende, et 

al. 2018 has estimated that if landowners comply with the new Forest Code to restore riparian forest (i.e., forest strip along rivers), by 

2038 the vegetation cover in the Atlantic Forest will be close to 35 percent, bringing hope to the preservation of this charismatic and 

species-rich system. 

 
 
 

Banks-Leite, C., R. Pardini, L. R. Tambosi, et al. 2014. Using ecological thresholds to evaluate the costs and benefits of set- 

asides in a biodiversity hotspot. Science 345.6200: 1041–1045. 

This study analyzes the responses of mammals, birds, and amphibians to habitat loss to show that the minimum amount of area 

required to maintain biodiversity is 30 percent of forest cover. The authors used these results to plan a domain-wide restoration 

strategy and demonstrate that with 6.5 percent of Brazil’s annual expenditure on agricultural subsidies, it would be possible to restore 

priority areas back to 30 percent of cover. 

 
 
 

Crouzeilles, R., E. Santiami, M. Rosa, et al. 2019. There is hope for achieving ambitious Atlantic Forest restoration 

commitments. Perspectives in Ecology and Conservation 17.2: 80–83. 

The authors document the amount of forest that has been restored between 2011 and 2015 and how much restoration they expect to 

be under way by 2020. They discuss how this progress is due to the activities promoted by the Atlantic Forest Restoration Pact. They 

discuss how these activities could help restoration elsewhere. 

 
 
 

Rezende, C. L., F. R. Scarano, E. D. Assad, et al. 2018. From hotspot to hopespot: An opportunity for the Brazilian Atlantic 

Forest. Perspectives in Ecology and Conservation 16:208–214. 

This study presents the most updated estimate of extent of forest cover within the Atlantic Forest. It also discusses that landowners are 

legally required to restore 5.2 Mha of currently degraded riparian area. Through adequate enforcement, restoring these areas could 

cause native vegetation cover to increase to 35 percent of forest cover. 

 
 
 

Soares-Filho, B., R. Rajão, M. Macedo, et al. 2014. Cracking Brazil’s Forest Code. Science 344.6182: 363–364. 

This policy forum discusses the origins of Brazil’s Forest Code, the changes that were implemented recently, and their impacts on 

forest cover and carbon storage. 
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Appendix B: 

B.1: Supplementary Information for Chapter 3 

Table B.2: Farm location and forest cover metadata 

Farm 

ID 

Forest cover (% within 

1000m radius) 

Recorders 

deployed 

Recorders 

collected 

Latitude Longitude Mist 

netting  

1 9 09/02/2019 18/02/2019 -21.6231 -46.5461 Y 

2 13 04/01/2019 18/01/2019 -21.6171 -46.526 Y 

3 25 19/01/2019 31/02/2019 -21.7822 -46.4457 N 

4 25 09/01/2019 21/01/2019 -21.6959 -46.6279 Y 

5 27 25/02/2019 09/03/2019 -22.0338 -46.5738 Y 

6 29 07/01/2019 18/01/2019 -21.7439 -46.4738 N 

7 37 27/01/2019 06/02/2019 -21.7987 -46.6777 Y 

8 37 22/01/2019 01/02/2019 -21.9579 -46.6782 Y 

9 44 20/02/2019 05/03/2019 -21.6591 -46.3403 Y 

10 50 05/02/2019 17/02/2019 -21.7728 -46.4806 Y 

11 60 09/03/2019 20/03/2019 -21.7668 -46.5452 Y 

 

Table B.3: Spectrograms of mean soundscapes from the transect points at each sample site. The Farm 

IDs correspond to those in Table 1. The x-axis corresponds to 4:30 am to 19:30 pm. The y-axis 

represents frequency from 1000 Hz to 12,000 Hz. 

Farm 

ID 

Transect 

1 2 3 4 5 

1 

  
  

- 
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2 

    

- 

3 - 

    

4 - 

   

- 

5 

    
 

6 

 

- 

   

7 

     

8 

    

- 

9 - 

    

10 
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CSV files of the bird communities and soundscape matrices as well as metadata are available. 

Code to run the PCoA analysis, modelling, and plotting are also available  

 

Table B.4: Model selection results. A is acoustic composition (PCoA 1 value), F is forest cover within 

1000m, L is land use category, and S is site.  

Model structure AIC 

A~F+L+(1|S) -62.78473 

A~F*L+(1|S) -43.34625 

A~F*L -44.17307 

A~F*L+(1|S +1|F) -42.39815 

 

 

 

 

 

 

 

11 

 

- 

 

- - 
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Figure B.11: Model validation plots. Residuals vs fitted for (A) soundscape model and (B) bird model 

 

Table B.5: Output parameters of selected model with lowest AICs for both the soundscape model and 

the bird model. The intercept values denote the baseline of coffee land use. Models are both linear 

mixed effects model with the formula:  PCoA output ~ Forestation + Landuse with site as a 

categorical random effect.  

 Soundscape model Bird model 

Predictors Estimates df C.I. p-value Estimates df C.I. p-value 

(Intercept – 

coffee land 

use) 

0.152 32 0.063 – 

0.241 

0.0015** -0.473 8 -0.063 – 

-0.315 

<0.0001

*** 

Forest 

cover 

-0.003 9 -0.006 – 

-0.0004 

0.0311* -0.0087 7 0.005 – 

0.0125 

0.0001*

** 

Land use 

(Edge) 

-0.094 32 -0.149 – 

-0.040 

0.0012** 0.3644 8 0.218 – 

0.511 

0.0002*

** 

A B 



162 

 

Land use 

(Forest) 

-0.086 32 -0.133 – 

-0.039 

0.0008**     

Random 

Effects: 

        

σ2 0.004    0.00002    

ICC 0.315    <0.00001    

N Site 11    9    

No. obs 45    18    

Marginal 

R2 

0.374    0.719    

Conditiona

l R2 

0.571    0.719    

 

 

Table B.6: Table of files listened to, to determine source of indicator frequencies. Only files with 

drivers present are included. 

Cluster Forest cover Time Frequency Sound Date 

c1 37 07:56 3000-7000 bird 24/01/2019 

c1 37 07:56 4200-4500 Insect  24/01/2019 

c1 37 08:06 2000-2100 bird 30/01/2019 

c1 37 08:06 6500-9000 bird 30/01/2019 

c1 37 08:36 3000-6700 bird 28/01/2019 

c1 37 08:36 6200-9000 bird 28/01/2019 

c1 37 06:31 2600 birds 28/01/2019 

c1 37 06:31 2600 birds 28/01/2019 

c1 37 06:31 2600 birds 30/01/2019 

c1 37 06:31 2600 birds 27/01/2019 
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c1 37 06:31 2600 birds 28/01/2019 

c1 37 06:31 2600 birds 31/01/2019 

c1 37 06:31 2600 birds 27/01/2019 

c1 37 08:51 1600-2200 birds 05/02/2019 

c1 37 08:51 2000-3000 birds 20/01/2019 

c1 37 08:51 2800 bird 26/01/2019 

c4 9 09:16 4400 insect 12/02/2019 

c4 9 09:16 4400 insect 17/02/2019 

c4 9 09:16 4400 insect 11/02/2019 

c4 9 09:16 4400 insect 16/02/2019 

c2 13 06:21 3600-4000 bird and insect 13/01/2019 

c2 13 06:21 3600-4000 bird 16/01/2019 

c2 13 06:21 3600-4000 bird 06/01/2019 

c2 13 06:21 3600-4000 bird 17/01/2019 

c2 13 06:21 3600-4000 bird 08/01/2019 

c3 27 08:21 3200-5400 geophony 26/02/2019 

c3 27 08:21 3200-5400 bird and insect 01/03/2019 

c3 27 08:21 3200-5400 bird and insect 26/02/2019 

c3 27 08:21 3200-5400 bird and insect 28/02/2019 

c3 29 08:21 3200-5400 bird and insect 14/01/2019 

c3 29 08:21 3200-5400 insect 12/01/2019 

c3 25 08:21 3200-5400 bird and insect 14/01/2019 

c3 25 08:21 3200-5400 bird 19/01/2019 

f1 13 06:51 3600-4200 insect 12/01/2019 

f1 13 06:51 3600-4200 insect 13/01/2019 

f1 13 06:51 3600-4200 insect 06/01/2019 

f1 13 06:51 3600-4200 insect 05/01/2019 

f1 13 06:51 3600-4200 insect 05/01/2019 

f1 13 06:41 3800-4200 insect, some bird 06/01/2019 
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f4 13 06:26 8000-12000 bird 05/01/2019 

f4 13 06:26 8000-12000 bird 10/01/2019 

f3 37 07:51 11000-

12000 

bird 

29/01/2019 

f3 37 07:51 11000-

12000 

bird 

24/01/2019 

f3 37 07:51 11000-

12000 

bird 

25/01/2019 

f3 37 07:51 11000-

12000 

bird 

27/01/2019 

f3 37 07:51 11000-

12000 

bird 

31/01/2019 

f3 37 07:51 11000-

12000 

insect 

02/02/2019 

f3 37 07:51 11000-

12000 

bird 

01/02/2019 

f6 25 17:21 6200-6600 bird and insect 19/01/2019 

f6 25 17:21 6200-6600 bird 10/01/2019 

f6 25 17:21 6200-6600 insect 14/01/2019 

f6 29 17:21 6200-6600 insect 08/01/2019 

f6 29 17:21 6200-6600 insect 16/01/2019 

f6 29 17:21 6200-6600 insect 16/01/2019 

f6 27 17:21 6200-6600 insect 25/02/2019 

f6 27 17:21 6200-6600 insect 04/03/2019 

f6 25 17:21 6200-6600 insect 19/01/2019 

f5 13 15:56 10800-

11800 

bird 

07/01/2019 

f5 13 15:56 10800-

11800 

bird 

06/01/2019 
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f5 13 15:56 10800-

11800 

bird 

12/01/2019 

f2 13 12:26 2800-4400 bird 04/01/2019 

f2 13 12:26 2800-4400 bird 05/01/2019 

f2 13 12:26 2800-4400 anthrophony 07/01/2019 

f2 13 12:26 2800-4400 bird 08/01/2019 

f2 13 12:26 2800-4400 bird and insect 13/01/2019 

f2 13 11:06 2200-4200 bird 13/01/2019 

f2 13 11:06 2200-4200 bird 06/01/2019 

f2 13 11:06 2200-4200 bird 07/01/2019 

f7 37 04:41 4600-5200 insect 23/01/2019 

f7 37 04:41 4600-5200 insect 27/01/2019 

f7 37 04:41 4600-5200 insect 25/01/2019 

f7 37 04:41 4600-5200 insect 29/01/2019 

f7 37 04:41 4600-5200 insect 30/01/2019 

f7 37 04:41 4600-5200 insect 28/01/2019 
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Figure B.12: Conceptual diagram to explain acoustic niche hypothesis: Each box represents the 

typical calling frequency and time of a species, the box colour represents the land use. When running 

the indicator frequency analysis, only times and frequencies that do not overlap any others will 

remain. Therefore, some species will be lost, which could be the source of difference in community. 
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Abstract 

Biodiversity monitoring is key to understand anthropogenic pressures on ecosystems. 

The use of audio recording units (ARUs) in hand with acoustic indices within soundscape 

ecology has greatly improved efficiency of biodiversity monitoring. However, the 

effectiveness of acoustic indices is debated, and a novel soundscape method that measures 

acoustic composition could potentially be more biologically meaningful. In this study, we used 

38 ARUs across a gradient of habitat types in rural England to assess the effectiveness of a 

combination of nine acoustic indices and acoustic composition for monitoring the bird 

community. Our results show that most acoustic indices performed poorly. Although the 

combination of NDSI and LFC were significantly correlated to bird species richness and 

composition, acoustic indices did not reveal the same ecological trends across habitats as 

observed with the bird community. On the other hand, acoustic composition was significantly 

correlated to both species richness and composition, and revealed similar ecological trends 

across habitats. These results suggest that acoustic composition is a more reliable method for 

monitoring biodiversity. We recommend its effectiveness as a biodiversity monitoring method 

be tested further in different global climatic regions and at various global spatial and temporal 

scales.  

 

Keywords: acoustic composition, acoustic indices, biodiversity monitoring, community 

composition, soundscapes. 
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Introduction 

Biodiversity monitoring is essential to understand the magnitude of biodiversity change 

induced by anthropogenic pressures (Proença et al., 2017). Gaps and biases undermine 

biodiversity monitoring through inconsistencies in the type of data collected and the sampling 

scale, as well as taxonomic biases. These all need to be addressed by new, global, long-term, 

and effective monitoring schemes (Proença et al., 2017). 

 

The most common method for collecting data on biological communities involve 

manual surveys (Doser et al., 2021; Farnsworth et al., 2005). Birds are one of the easiest taxa 

to survey and point counts are the most common surveillance method. A trained observer 

reports all birds seen and heard; at a site, during a set amount of time, and in a set radius 

(Matsuoka et al., 2014). However, this type of manual survey is labour-intensive and may be 

biased, particularly in tropical regions where bird diversity is very high and requires extensive 

observer training (Buxton et al., 2016). Technological innovations have allowed for the use of 

ARUs (Autonomous Recording Units) in large scale studies, conducted over longer periods of 

time, passively, and with no observer effect (Deichmann et al., 2018; Hill et al., 2018). 

Furthermore, the vocal nature of birds renders ARUs particularly pertinent tools for monitoring 

them (Sekercioglu, Wenny & Whelan, 2016). For instance, Celis-Murillo, Deppe & Allen, 

(2009), found that species detection probability and relative abundance measures were better 

captured through ARUs than through point counts. They reason that ARUs avoid bias and are 

deployed for longer periods allowing to detect more cryptic species, which rarely vocalise and 

are harder to detect on site (Celis-Murillo, Deppe & Allen, 2009). 

 

Within ecology, ARUs can be used for bioacoustics or soundscape analyses. Bioacoustics 

are the monitoring of one or more focus species (Deichmann et al., 2018).  
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However, the vast amounts of data ARUs generate make bioacoustics demanding, as 

complex machine learning algorithms are required to identify presence or absence of species 

of interest within audio files (Doser et al., 2021; Obrist et al., 2010.). As birds, especially 

songbirds (oscine passerines), can adopt wide ranges of vocalisations, creating automated 

systems of individual species recognition seems arduous (Obrist et al., 2010). By contrast, 

soundscape analyses are aimed at monitoring the effect of geophysical and anthropogenic 

factors on entire acoustic communities, therefore averting the need to create automated systems 

for individual species recognition (Deichmann et al., 2017; Sueur et al., 2014). Soundscape 

methods are considered the sound-focused equivalent of spatial remote sensing, due to their 

non-invasiveness and speed (Scarpelli, Ribeiro & Teixeira, 2021). As birds occupy a large part 

of the terrestrial soundscapes (from 4kHz to 8kHz and above), acoustic diversity measures 

could inform on avian diversity and help improve general biodiversity assessments by 

validating both theoretical frameworks and methodologies (Gasc et al., 2017).  

 

Using soundscapes, acoustic indices can be extracted through processing large amounts of 

acoustic data (Hill et al., 2018). Over 60 indices have been proposed, but there is still some 

discussion as to whether these indices are biologically meaningful (Sueur et al., 2014). Just as 

is the case for biodiversity metrics (Mason et al., 2005; Vandewalle et al., 2010), no one 

acoustic index can capture soundscapes as a whole (Sueur et al., 2014). Towsey et al., (2014) 

recommended the use of a combination of indices to best characterise soundscapes, as 

efficiency of the representation can be increased up to 87%. However, acoustic indices should 

not be applied to all communities identically as they can be affected by geophony, dominant 

species, vegetation structure, and scale (Deichmann et al., 2018; Scarpelli, Ribeiro & Teixeira, 

2021). There have indeed been discrepancies in the results of acoustic-focused avian studies 

(Bradfer-Lawrence et al., 2020). Some studies have found that only a few acoustic indices were  
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only weakly correlated with avian diversity derived from manual survey data (Bradfer-

Lawrence et al., 2020; Dröge et al., 2021; Mammides et al., 2017). Another study found a weak 

correlation of only a few indices with avian diversity in experimentally controlled 

environments (Zhao et al., 2019). This highlights the need to continue assessing the reliability 

of acoustic indices as indicators of avian diversity, and potentially propose new, more effective 

methods.  

 

While some acoustic indices have been shown to correlate with avian species richness, 

a single aspect of bird diversity, little is known on the relationship between soundscapes and 

avian community composition (Depraetere et al., 2012; Dröge et al., 2021; Smith et al., 2020; 

Sueur et al., 2014). A relatively new methodology, acoustic composition, was developed to 

encompass community composition in soundscape analyses (Furumo & Mitchell Aide, 2019). 

Assuming sound recordings from specific sites are themselves communities, it is possible to 

treat single pixels (time-frequency bins) of spectrograms as species. Levels of amplitude 

indicate the abundance of these pseudo-species, which are then arranged in a “site x pseudo-

species” matrix treated similarly to a traditional “site x species” matrix. A way of determining 

how well novel methods capture biodiversity is to compare its trends with trends of diversity 

metrics from manual surveys in habitat type gradients (Pijanowski et al., 2011).   

 

In this study, we assessed the effectiveness of acoustic indices and acoustic composition 

in monitoring the bird community in rural England. Specifically, we asked: 1) How well does 

a combination of acoustic indices and acoustic composition capture variation in avian species 

richness and community composition? 2) Do acoustic indices and acoustic composition reveal 

similar ecological trends as those detected by traditional methods of sampling bird community?  
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Methods 

Study area 

The study was conducted in the Silwood Park, an Imperial College campus, located in 

South-East England, 25 miles west of London in Ascot, Berkshire (51-24’23.162N, 0-

38’55.33”W). The 100 hectares area is composed of cultivated fields, parklands, and “Habitats 

of Principal Importance”, such as acid grasslands, an orchard, and wet woodlands surrounding 

a lake. South-East England is a low elevation (<100m above sea level on average) area with a 

mean annual rainfall of 697mm and mean annual temperature of 10 ̊C.  

 

Data collection: Fractal design 

Sites were selected using a fractal design as part of “The Ecological Fractal Network” 

(Pearse, 2021). Fractals provide an excellent framework for capturing environmental gradients 

at several scales, and thus provide a good compromise between accuracy of community 

composition estimates and sampling effort (Simpson & Pearse, 2021). Their nested structures 

allow for an optimal number of sampling points in contrast to a grid, for instance, in which the 

number of sampling points increases with scale (Marsh & Ewers, 2013). The fractal network 

created for Silwood Park is composed of nine sampling points on the vertices of an equilateral 

triangle with 900m-long sides (to fit the size of Silwood Park, 1st order, Figure 1). These large 

triangles were subset into three 300m-long sided equilateral triangles (2nd order), themselves 

subset into three 100m-long sided triangles (3rd order). In the centre, the pattern was completed 

with a hexagon and a final central sampling point. All sample points were placed at least 100m 

from one another. Two additional 100m sided equilateral triangles were created to place 

sampling points in habitat types poorly represented by the fractal design. This amounted to 38 

sites, which were representative of the area, as they varied in habitat, vegetation structure, and 

distances to roads, buildings, and the lake. Site coordinates were obtained with a GPS (GPSmap  
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62s) accurate to approximately 10-15meters (Garmin Ltd, 1996-2021). Sampling points 

were located in four habitat types: (1) Grassland, (2) Edge, (3) Woodland, (4) Wet woodland 

(Table IIIs in Appendix).  

 

 

Figure 1: Map of sample sites within Silwood Park Campus. All sites within the fractal 

design (white points) were sampled, however some acoustic monitors were stolen (purple 

points). For this reason, we added some sites (green points). We also shifted some points 

slightly for practical purposes, such as lack of presence of trees to place audios or proximity to 

homes (grey points).  

 

Acoustic monitoring 

 Data were collected every two weeks from 12th March to 1st May 2021, thereby 

capturing the beginning of Spring, the breeding season of most European birds and when bird 

activity is at its peak (Lack, 2008). AudioMoth (Hill et al., 2018) devices were placed at around 

2 meters high and slightly tilted (~30°) towards the sky on the nearest trees to the GPS locations 

to best capture bird vocalisation. The peak activity periods of birds are early mornings and late  
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evenings, which correspond to dawn and dusk choruses (Morgan et al., 1983). Using the 

AudioMoth application (Hill et al., 2018), the devices were set to record continuously during 

these dawn and dusk choruses for seven days every two weeks (Table IIs in Appendix). This 

resulted in 2,940 1-minute, 5.49MB .wav audio files per week. The sample rate was set to 

48kHz as a trade-off between optimisation of birdsong resolution (most birds sing between 4-

8kHz) and SD card space preservation. Whilst file names corresponded to date and time of 

recording, some were in hexadecimal format, so a python script was run to modify the names 

using Spyder (Rossum & Boer, 1991). The ARUs for sites 9D6 and 8C1 were faulty, and most 

of the audio files contained static, so these sites were removed from the analyses (see Figure 

4s in Appendix). 

 

Point-counts 

Point count surveys were conducted by CD once a month per site during the acoustic 

recording periods (Table IVs). These consisted of a 5-minute buffer time and a 10-minute 

counting period during which the identity and abundance (i.e. number of individuals) of all 

bird species detected within a 50-meter radius were reported. Point counts were not conducted 

in rain, or when wind speed was higher than 12mph. 

 

Acoustic analyses 

Acoustic composition  

For the acoustic composition analysis, we used the packages seewave (Sueur, Aubin & 

Simonis, 2008) bioacoustics (Marchal, Fabianek & Scott, 2021), and tuneR (Ligges et al., 

2018) in R (R Core Team, 2020). The code creates a spectrogram for each minute file, 

summarises the amplitude in frequency bins of 1kHz, then averages the amplitudes within the 

time-frequency bins of consecutive days. This produces matrices with minutes as columns and  
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frequency bins as rows for each site. This code was run over 4 weeks-worth of audio files 

ranging from 6-9am and 5-7pm. Each site matrix was then gathered into one vector and all site 

vectors were compiled to produce one final “site x pseudo-species” matrix, termed an “acoustic 

composition matrix”. 

 

Acoustic indices  

We used AnalysisPrograms.exe in a PowerShell script developed by the Ecoacoustics 

Research Group (ERG) of Queensland University of Technology to generate both spectral and 

summary indices for each 1-minute audio file (Towsey et al., 2018). Summary indices are 

single statistics representing various aspects of acoustic energy distributions within time 

periods across a broad frequency range, whereas spectral indices are vectors which summarise 

aspects of energy distribution in time periods over specific frequency bands (Oliveira et al., 

2021). In total, we calculated 9 acoustic indices: events per second (EPS), high frequency cover 

(HFC), medium frequency cover (MFC), low frequency cover (LFC), acoustic complexity 

index (ACI), temporal entropy (TE), cluster count (CC), three gramm count (TGC), normalised 

difference soundscape index (NDSI) (see Table IIIs in Appendix for a description of each). 

Files of the same day were concatenated using another PowerShell script from the ERG. 

The program generates spectral images from the spectral indices (False Colour Spectrograms, 

FCS) that allowed identification of periods where geophony (wind, rain or rushing water) 

covered all frequencies of the spectrum, potentially masking biophony. These obstructive 

periods were removed from the output files of indices, as they could have biased analyses by 

inflating or reducing the values of some indices (Scarpelli, Ribeiro & Teixeira, 2021). FCS 

depict frequency (y axis) over time (x axis) (Figure 2). Colours (red, green, and blue) are 

inferred from three orthogonal Acoustic index. AnalysisPrograms.exe generates, by default, 

two spectrograms based on these groups of spectral indices: (a) ACI-ENT-EVN, and (b) BGN- 
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PMN-EVN. To remove obstructive periods, their characteristics were identified on 

spectrograms by listening to corresponding audio files for rain or wind. For instance, rain 

appears as a red curtain covering the spectrogram (a) or a blue curtain in the spectrogram (b). 

Similarly, wind is yellow on spectrogram (a), and green on (b). 

 

Figure 2: Example of false colour spectrograms (FCS) generated by AnalysisPrograms.exe 

used to identify periods of rain. They depict 24hour soundscapes, with frequency (x axis) over 

time (y axis) and colours inferred from the combination of spectral indices. There is a clear 

difference in the morning, where the soundscape is dominated by biophony, in pink and blue, 

and the evening where geophony dominates (represented by yellow, red and green). Times 

when then spectrogram was dominated by geophany, such as here, was deleted from the 

summary indices to avoid inflation or reduction of acoustic indices’ values. 
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Statistical analyses   

All analyses were performed in R version 4.0.3. (R Core Team, 2020).  

 

Computing model variables 

 We calculated species richness per site from the point count data using R packages 

reshape (Wickam, 2007) and vegan (Oksanen et al., 2020). To calculate community composition 

from the point count data, we calculated the Bray-Curtis dissimilarity index in vegan and then 

performed a Principal Coordinates Analyses (PCoA) using “cmdscale”. We applied the same 

approach to calculate acoustic composition from the matrix containing the pseudo-species 

amplitudes. This allowed us to reduce the data and use the scores from each PCoA as proxies 

for community composition and acoustic composition.  

Preliminary analysis of the data revealed that the two values of goodness of fit for both the 

PCoAs were above 0.8 and the first two axes of these PCoAs represented together 38.56% 

(acoustic composition), and 54.54% (community composition) of variation. However, the 

results obtained with the second axes were essentially the same as those obtained for the first 

axes, therefore we here present only the results from the first axis (see Appendix for full 

results).  

  

To calculate acoustic diversity, we first z-scaled the Acoustic indices as they varied in 

range. Most indices were moderately to highly correlated (r2 > 0.4), so we conducted Principal 

Component Analysis to reduce the dimensionality of the data. The scores of the first two 

Principal Component (PC) axes were used in the analyses. 

Preliminary analysis of the data revealed that the acoustic diversity PC1 accounted for 

54.3% of the variation in the data, while acoustic diversity PC2 accounted for 21.9% of the  
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variation (Figure 3s in Appendix). Together, the acoustic diversity PC1 and PC2 

represented 76.2% of the variation, and thus were both kept. 

 

Modelling   

Species richness, a count variable, was log-transformed to correct for its positive skew, 

and all variables were scaled. We created six linear models to explore the relationship between 

each soundscape measurements and the point count measurements. For clarity, community 

composition axes computed from PCoA on the point count matrix will be referred to as “species 

composition”. Species richness calculated based on the point count data will simply be referred 

to as “species richness”. As for soundscape metrics, we will refer to “acoustic diversity PC1” 

and “acoustic diversity PC2”, and “acoustic composition”. 

To understand how well a combination of acoustic diversity and acoustic composition 

capture variations in bird species richness and composition, we ran a series of single 

regressions, where we had as response variables: acoustic diversity (PC1 or PC2) and acoustic 

composition, and as explanatory variables: species richness and species composition. 

 

To answer the question “Do we detect the same ecological patterns in bird diversity 

with data collected from point counts and soundscape analyses?” we explored how these 

variables changed across the different Silwood habitat types. We thus created a set of linear 

regressions with each diversity/composition metric as a response, and habitat type as an 

explanatory variable. Species richness was a count variable following a Poisson distribution. 

 

Spatial autocorrelation (SAC) violates the assumption of error independence in linear 

models (Moran, 1950) . SAC was verified in model residuals using spdep (Bivand & Wong, 

2018). First, we created a matrix of nearest neighbours using latitude and longitude values for  
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each site with “knearneigh” (setting k=2, 3rd order of the fractal design). It was 

converted to a list using “knn2nb”, and then a neighbourhood matrix was created in list format 

with “nb2listw”. We used the “moran.test” function to calculate Moran’s I values. It calculates 

a correlation value, whilst considering the neighbourhood matrix, and estimates similarities 

among outliers of a variable (here the residuals) that are spatially aggregated. It then compares 

the estimate to an expected variable in which value similarity is not influenced by position. If 

the observed and expected estimates are non-significantly different, the H0 is accepted, there 

is no spatial autocorrelation, and the model’s assumptions are not violated. The observed 

statistic was tested using “moran.mc”, with nsim=600 permutations of the residuals, which also 

takes the spatial weights list into account. 

 

For the models where H0 was rejected, and there was spatial autocorrelation in model 

residuals, we constructed simultaneous autoregressive models (SAR models), which use a 

neighbourhood matrix to account for the relationship values of a variable of interest (here 

model residuals) and those of neighbours (F. Dormann et al., 2007). These models allowed to 

account for SAC when necessary, using spatialreg (Bivand, Hauke, & Kossowski, 2013). The 

possible models were “spatial error models” (SARerr), which assume that the autoregressive 

process is found in the error term, “spatial lag models” (SARlag), which assume that it takes 

place in the response variable, and “spatial mixed models” (SARmix), which assume it takes 

place in both the response and explanatory variables (Kissling & Carl, 2007). To identify the 

correct model structure, we conducted Lagrange multiplier diagnostics for spatial dependence 

(Anselin et al., 1996).   

 

Moran’s I estimate was significantly different from the expected value in three models 

(Tables Vs and VIs in Appendix). Using the Lagrange multiplier diagnostics for spatial  
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dependence, we selected SARlag for the first two models, and SARerr for the third. The SAR 

models effectively eliminated SAC in the residuals and the summary statistics are in Tables 

VIIs and VIIIs of the Appendix. 

 

Results 

In all, 52 bird species were identified (Table IVs in Appendix), with a mean species richness 

of 9.3 and a mean abundance of 22.9 during point counts. The most common species detected 

were Corvus monedula (Jackdaw), Cyanistes caeruleus (Blue tit), and Parus major (Great tit). 

Although we should have collected a total of 196 hours of audio files per site 6 audio devices 

were stolen during week 4 (30/04/2021) (Figure 1) and other malfunctions occurred, such as 

SD or batteries being removed from their slots or rain and wind knocking the audios over. 

Therefore, a total of 6,958 hours of recording was returned.  

 

No significant relationship nor trend was found between acoustic diversity PC1 and 

species richness or species composition (Figure 3A).  Acoustic diversity PC2 was negatively 

correlated with species richness (F=9.169, p=0.005, Figure 3B), and positively correlated with 

species composition (F=6.498, p=0.004, Figure 3B).  

Acoustic composition had a significant positive relationship with species richness 

(F=8.312, p=0.007, Figure 3C), and negatively correlated with species composition (F=8.732, 

p=0.001, Figure 3C). 
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Figure 3: Regression plots depicting relationships between soundscape metrics and point 

count metrics. The significance level is symbolised through stars: * <0.05, ** <0.01, *** 

<0.001. The estimated slope of significant relationships is represented with a black line, and 

its respective 95% confidence interval with a grey ribbon. 
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Figure 4: Trends of diversity metrics according to habitat types. Boxplots are completed with white diamonds to 

represent means. The linear models took grassland habitats as a base level for mean comparison. The significance 

level is symbolised with stars (*<0.05, **<0.01, ***<0.001). 

 

Species richness was higher in woodlands and wet woodlands, and species composition in 

the grassland was different to all other habitats (Figure 4). Acoustic composition followed the 

same trend as species richness and was significantly different in woodland and wet woodland 

compared to other habitats (Figure 4). Acoustic diversity PC1 did not vary  
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significantly according to habitat type, but acoustic diversity PC2 was lower in wet 

woodlands compared to other habitats (Figure 4). 

 

Discussion 

Our results show that most acoustic diversity indices, as represented by the first PCA 

axis, were a poor measure of either bird species richness or species composition. However, the 

second axis, which is highly influenced by NDSI and LFC, was correlated to changes in species 

richness and composition, but did not reflect the same ecological trends across habitats. 

Acoustic composition, on the other hand, was strongly correlated to species richness and 

composition, and it also reflected similar ecological trends across habitats. These findings 

suggest that acoustic composition is a simpler, more effective, and intuitive method for 

measuring soundscapes; and, it has the potential to make biodiversity monitoring easier and 

more reliable. 

 

Acoustic composition was correlated to species richness whilst the combination of acoustic 

indices was not. Acoustic indices are single values per minute over large frequency bands, 

usually averaged over long periods of time (Oliveira et al., 2021). This could lead to signal 

masking, where dominant species or noises mask target species (Metcalf et al., 2021). Metcalf 

et al., (2021) calculated two acoustic indices (ACI, Bioacoustic Index) at narrower time-

frequency bins and determined that the efficacy of the acoustic indices was significantly 

increased. The acoustic composition method averages amplitudes (the pseudo-abundances) per 

minute and per frequency, then keeps all measures in site matrices (Damstra, unpublished; 

Furumo & Mitchell Aide, 2019). This implies that the time-frequency bins are much narrower 

and birds that rarely sing or sing at a particular time of day will be given more weight. However, 

there is a possibility that birds of different species vocalising at the same frequency and time  
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could be perceived as the same pseudo-species in the acoustic composition matrix. For 

example, Goldcrest (Regulus regulus) calls are similar to Fircrest (Regulus ignicapillus) songs, 

which are both produced at around 9-10 kHz. As these two species are often seen foraging 

together at Silwood, they may have been attributed the same pseudo-species. In that sense, 

acoustic composition could underestimate species richness. However, the time-frequency bins 

remain narrower using acoustic composition rather than the acoustic indices, and thus reflect 

the diversity of vocal species more accurately. 

 

The acoustic composition method gave a representative measurement of the avian 

species composition in Silwood Park, whilst the combination of acoustic indices did not. There 

was a clear difference between the grassland acoustic community and the wetland acoustic 

community, confirmed by manual surveys. This shows that the acoustic composition method 

reflects real change in avian communities across habitats. This conforms with a recent study 

on landscape structure in grasslands, which found that a measure of acoustic composition 

represented species composition of birds better than single indices (Müller et al., 2022). 

Furumo & Mitchell Aide (2019), who were the first to use acoustic composition as a way of 

determining differences in species composition between habitat types, discovered specialist 

bird species exclusive to forests and absent in plantations, highlighting the value of the acoustic 

composition method for conservation efforts. 

 

The combination of acoustic indices was ineffective in capturing trends of bird diversity 

metrics calculated from point counts. These results were unexpected because British biophony 

is mostly dominated by birds (Gasc et al., 2017), and the acoustic indices associated with this 

PCA axis have been shown in other studies to be correlated to biodiversity (Buxton et al., 

2016). It is possible that these acoustic indices are reflecting the number of bird calls rather  
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than the variety of calls (Alcocer et al., 2022, Bradfer-Lawrence et al., 2020; Lawson, 

unpublished). In other words, highly vocal species present in some habitats, such as jackdaws 

(Corvus monedula) or ring-necked parakeets (Psittacula krameri) in grasslands, could inflate 

acoustic diversity values so that no change can be detected across habitats. Previous studies 

have also raised red flags over the use of acoustic indices. A study testing acoustic indices in 

urban environments found that aircraft noise, which is quite frequent over our study site, could 

bias results so that they are not correlated with variety of bird calls (Devos, 2016). Another 

found that most of the acoustic indices tested were biased by anthrophony or geophony 

(Fairbrass et al., 2017). This implies that a study using a metric of combined acoustic indices 

might overlook significant biodiversity change in habitats and infer that none of the habitats 

harbour a greater number of species, or a more sensitive community.  

 

It is noteworthy that acoustic diversity PC2 was correlated with the species composition 

axes. Acoustic diversity PC2 represents acoustic activity in the lower frequency bands (1-

1000Hz) and the ratio of activity between the lower (1000-2000Hz) and mid-frequency bands 

(1000-8000Hz). Previous studies have suggested that NDSI captures anthrophony (Fuller et 

al., 2015; Kasten et al., 2012; Machado, Aguiar & Jones, 2017), though these results are 

difficult to generalise across regions. Avian communication is indeed affected by human noise, 

or noise pollution, with evidence emerging to suggest that bird populations alter the frequency 

of their calls in urban soundscapes (Schindler, Gerber & Quinn, 2020; Phillips et al., 2020). 

While we cannot be certain what environmental changes acoustic diversity PC2 is reflecting 

(i.e., bird community or anthrophony), it is clear that this metric is not able to capture the same 

ecological trends across habitats as acoustic composition. Future research should further 

investigate what sounds are captured by NDSI and LFC and the extent to which anthrophony 
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affects bird communication and behaviour, as this has profound consequences for 

population monitoring. 

 

As this study demonstrated, ARUs are sensitive to malfunction and data can be lost at 

many stages of the fieldwork process. Furthermore, pre-processing of the large amounts of 

audio data is extremely long, but less so using the novel method. Pre-processing for one 

month’s worth of audio data per site took approximately 24h50min using the acoustic indices, 

while it took 4h45min using the acoustic composition method. Future research could aim to 

increase efficiency of pre-programming and lower the cost of ARUs that allow real-time 

transfer of audio data. In the meantime, the advantages of ARUs outweigh the limitations and 

allow informative soundscape methods, such as the novel acoustic composition method, to 

replace laborious manual surveys. 

 

In this study, the acoustic composition method captured bird diversity measurements 

better than a combination of biotic acoustic indices. This novel method shows great promise 

for enabling effective, and reliable ways of conducting fieldwork and processing large amounts 

of audio data. It could help quantify various components of biodiversity, thus improving 

methods of testing and approving action plans to preserve ecosystem health. “Remote sensing” 

data collection such as the acoustic composition method may contribute to creating a global 

and unbiased database of biodiversity change. We recommend this method be tested at different 

spatial and temporal scales to test if it is unaffected by scale-dependency, and in various 

climatic regions where dominant acoustic taxa are not birds, to test its robustness as a measure 

of biodiversity.
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Appendix 

 

Methods 

 

Habitat types: 

Using ArcMap 10.6.1., I selected sample sites from Prof. Crawley’s vegetation surveys 

that were closest to my own sampling sites and classified them accordingly (Table Is). I chose 

to keep the four main habitat types (grassland, edge, woodland, wet woodland), and changed 

the category of sites in less frequent habitats to the closest main habitats based on similarity. I 

changed habitat category of sites to “Edge” when these were at the border of habitats differing 

in openness.   

 

Table Is: Classification of sites into habitat and dates and times of point count surveys. 

Each site was surveyed once a month. 

Fractal 

Site 

Longitude Latitude Habitat Type  March point 

count dates 

Point count 

time 1 

April point 

count dates 

Point count 

time 2 

 

0A1 -0.652 51.414 Edge 13.03 07:05 13.04 18:12  

0A2 -0.652 51.415 Grassland 13.03 07:23 13.04 18:30  

0A3 -0.651 51.415 Edge 13.03 07:36 13.04 18:45  

1A1 -0.649 51.414 Wet woodland 1.04 17:25 29.04 06:46  

1A2 -0.650 51.414 Woodland 1.04 17:10 29.04 07:03  

1A3 -0.648 51.414 Wet woodland 29.03 06:56 29.04 06:30  

2A1 -0.651 51.412 Wet woodland 29.03 07:27 1.05 08:25  

2A2 -0.651 51.413 Grassland 29.03 07:42 1.05 08:40  

2A3 -0.650 51.413 Wet woodland 29.03 07:12 1.05 08:05  

3B1 -0.643 51.413 Edge 2.04 07:45 26.04 17:36  

3B2 -0.644 51.414 Edge 2.04 07:30 26.04 17:20  

3B3 -0.642 51.414 Woodland 2.04 07:15 26.04 17:00  

4B1 -0.641 51.413 Woodland 1.04 07:10 30.04 18:45  

4B2 -0.641 51.413 Grassland 1.04 07:25 30.04 19:20  

4B3 -0.640 51.413 Woodland 1.04 07:40 30.04 19:00  

5B1 -0.642 51.411 Edge 16.03 07:20 14.04 18:15  
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5B2 -0.643 51.412 Grassland 16.03 07:04 14.04 18:30  

5B3 -0.641 51.412 Woodland 16.03 06:50 14.04 18:45  

6C1 -0.649 51.409 Grassland 3.04 07:28 30.04 08:05  

6C2 -0.649 51.410 Grassland 3.04 07:55 30.04 07:45  

6C3 -0.648 51.409 Grassland 3.04 07:40 30.04 08:15  

7C1 -0.646 51.409 Grassland 13.03 16:00 16.04 06:32  

7C2 -0.647 51.409 Edge 13.03 16:20 16.04 06:18  

7C3 -0.645 51.409 Woodland 13.03 15:45 16.04 06:07  

8C1 -0.648 51.407 Woodland 16.03 16:13 13.04 06:11  

8C2 -0.648 51.408 Wet woodland 16.03 16:30 13.04 06:30  

8C3 -0.647 51.408 Wet woodland 16.03 16:53 13.04 06:45  

9D1 -0.648 51.411 Grassland 3.04 08:12 30.04 07:30  

9D2 -0.648 51.412 Edge 15.03 07:40 16.04 17:53  

9D3 -0.647 51.413 Woodland 15.03 07:00 16.04 17:25  

9D4 -0.647 51.412 Wet woodland 15.03 07:20 16.04 17:38  

9D5 -0.646 51.411 Edge 29.03 17:24 14.04 07:40  

9D6 -0.646 51.412 Grassland 29.03 16:52 14.04 07:10  

9D7 -0.645 51.412 Edge 29.03 17:10 14.04 07:25  

E1 -0.646 51.414 Wet woodland 3.04 06:58 27.04 18:25  

E2 -0.646 51.415 Woodland 3.04 06:43 27.04 18:55  

E3 -0.645 51.415 Woodland 3.04 07:14 27.04 18:40  

F1 -0.640 51.409 Grassland 17.03 07:02 27.04 08:00  

F2 -0.640 51.410 Edge 17.03 06:48 27.04 07:40  

F3 -0.639 51.410 Edge 17.03 07:15 27.04 10:13  

 

 

Sampling dates and times: 

 

 Every two weeks, audios were placed at sampling sites to record 0h30 minutes before 

sunrise and 1h30 after sunrise, and 1.30 before sunset and 0.30h after sunset (Table IIs). During 

recording periods at dawn and dusk, I also conducted point counts, one a month per site (Table 

Is). 
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Table IIs: Timetable of recording periods, capturing the start of Spring season, the peak 

activity period of birds. 

Week Start date End date Dawn times Dusk times 

1 12/03 18/03 6-9.30am 3-6.30pm 

2 27/03 03/04 6-9.30am 3.30-7pm 

3 10/04 17/04 5.30-9am 5-8.30pm 

4 24/04 01/05 5.30-9am 5-8.30pm 

 

Acoustic Indices: 

Table IIIs: Description of each acoustic index mentioned in this thesis, and reference to the 

first paper in which they were developed. 

Index Description of measure Reference 

Backgroun

d Noise 

(BGN) 

Remaining noise (dB) in the waveform after removal of 

acoustic activity. This index is used in calculations of several 

other indices but was not included in our analyses. 

Towsey (2014) 

Events per 

Second 

(EPS) 

The number of acoustic events (= the signal envelope crosses 

a BGN + 3dB threshold) in a second. 

Towsey (2014) 

High 

Frequency 

Cover 

(HFC) 

The number of noise-reduced spectrogram cells exceeding 

3dB above BGN in the high frequency band (8000-

11025Hz). 

Towsey (2014) 

Mid 

Frequency 

Cover 

(MFC) 

The number of noise-reduced spectrogram cells exceeding 

3dB above BGN in the mid frequency band (1000-8000Hz). 

Towsey (2014) 

Low 

Frequency 

Cover 

(LFC) 

The number of noise-reduced spectrogram cells exceeding 

3dB above BGN in the low frequency band (1-1000Hz). Is 

often linked to human-induced noise. 

Towsey (2014) 

Acoustic 

Complexity 

Index (ACI) 

Short-time averaged changes in energy across frequency bins 

in consecutive spectrums (main value is the average over 1 

minute). It is meant to exclude constant low-frequency 

sounds and noises (geophony or anthrophony) and include 

short signals, reflecting complexity when many differences 

occur. 

Pieretti, 

Farina, et 

Morri (2011) 
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Temporal 

Entropy 

(H[t], or 

TE) 

Concentration of mean energy, or Shannon entropy of 

probability mass function, of each frequency bin in the 

amplitude envelope. 

(Sueur et al., 

2008) 

Cluster 

Count (CC) 

Number of spectral clusters (= spectral diversity) in the mid 

frequency band (1000-8000Hz). 

Towsey (2014) 

Three 

Gramm 

Count 

(TGC) 

Derived measure from CLS and repeated sequences Towsey (2014) 

Normalised 

Difference 

Soundscape 

Index 

(NDSI) 

NDSI= (biophony – anthrophony) / (biophony + 

anthrophony). Gives a value between 0 and 1, where 1 

reflects pure biotic sounds, and 0 reflects pure anthrophony. 

(Kasten et al., 

2012) 

 

Preliminary results: 

 

Figure 1s: Variable correlation plot depicting correlations between each index and the first 

two PCs. Most acoustic indices contribute to PC1, whereas NDSI and LFC are loaded onto 

PC2.  
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Results 

Table IVs: The 52 bird species identified during the point counts. 

Barn owl, Tyto alba Common kingfisher, Alcedo atthis 

Blackbird, Turdus merula Long-tailed tit, Aegithalos caudatus 

Blackcap, Sylvia atricapilla Eurasian magpie, Pica pica 

Blue tit, Cyanistes caeruleus Mallard duck, Anas platyrhynchos 

Buzzard, Buteo buteo Mandarin duck, Aix galericulata 

Canada goose, Branta canadensis Mistle thrush, Turdus viscivorus 

Carrion crow, Corvus corone Common Moorhen, Gallinula chloropus 

Chaffinch, Fringilla coelebs Eurasian nuthatch, Sitta europaea 

Chiffchaff, Phylloscopus collybita Ring-necked pheasant, Phasianus colchicus 

Coal tit, Periparus ater Pied wagtail, Motacilla alba 

Dunnock, Prunella modularis Raven, Corvus corax 

Egyptian goose, Alopochen aegyptiaca Red kite, Milvus milvus 

Eurasian jay, Garrulus glandarius Redwing, Turdus iliacus 

Feral pigeon, Columba livia Ring-necked parakeet, Psittacula krameri 

Firecrest, Regulus ignicapilla European robin, Erithacus rubecula 

Goldcrest, Regulus regulus Rook, Corvus frugilegus 

Goldfinch, Carduelis carduelis Siskin, Spinus spinus 

Great spotted woodpecker, Dendrocopos major Song thrush, Turdus philomelos 

Great tit, Parus major Common starling, Sturnus vulgaris  

Green woodpecker, Picus viridis Stock dove, Columba oenas 

Greenfinch, Chloris chloris Tawny owl, Strix aluco 

Grey heron, Ardea cinerea Teal duck, Anas crecca 

Grey wagtail, Motacilla cinerea Eurasian treecreeper, Certhia familiaris 

Greylag goose, Anser anser Willow warbler, Phylloscopus trochilus 
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Model results: 
Moran’s I: 

Moran’s I estimates of linear model residuals were both calculated with  “moran.test” 

and tested with “moran.mc” in spdep (Bivand & Wong, 2013). After identification of 

significant p-values, we used the Lagrange multiplier diagnostic estimates and respective p-

values to choose from the three Simultaneous Autoregressive Models (SAR) models in 

spatialreg (Table Vs; Table VIs, Bivand, Hauke, & Kossowski, 2013). We concluded that 

SARlag model was the most appropriate except for one formula, which required a SARerr model. 

Calculating Moran’s I on residuals of SAR models confirmed they had removed the spatial 

autocorrelation appropriately. The nature of the relationships was unaffected by spatial 

autocorrelation, only the estimate values (which were largely uninformative as most variables 

were PCA axes) and the levels of significance were slightly modified from linear models to 

SAR models.  

Jackdaw, Corvus monedula Woodpigeon, Columba palumbus 

Common kestrel, Falco tinnunculus Eurasian wren, Troglodytes troglodytes 



 

 

Table Vs: Moran's I estimate of lm residuals for the first set of models (Soundscape metric 

~ point count metric). Significant p.values are shaded. Lagrange multiplier diagnostic estimates 

and respective p.values are given for the models where SAC was detected. The Moran’s I 

estimates recalculated after fitting the appropriate SAR are presented in the last section of the 

table. 

 Moran's I from 

residuals of lms 

Lagrange multiplier diagnostics 

for spatial dependence 

Moran's I from 

residuals of SARs 

Model formula Obs Exp p LMerr p LMlag p Obs Exp p 

Acoustic diversity PC1 ~ 

species richness  

0.109 -0.029 0.178        

Acoustic diversity PC1 ~ 

species composition  

0.153 -0.029 0.113        

Acoustic diversity PC2 ~ 

species richness  

0.303 -0.029 0.013 3.675 0.055 2.907 0.015 -0.068 -0.029 0.604 

Acoustic diversity PC2 ~ 

species composition  

0.19 -0.029 0.074        

Acoustic composition ~ 

species richness 

-0.08 -0.029 0.629        

Acoustic composition ~ 

species composition  

-0.326 -0.029 0.973 4.127 0.042 2.368 0.124 -0.001 -0.029 0.43 
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Table VIs: Moran's I estimate of lm residuals for the second set of models (Diversity metric 

~ Habitat type). Significant p.values are shaded. Lagrange multiplier diagnostic estimates and 

respective p.values are given for the models where SAC was detected. The Moran’s I estimates 

recalculated after fitting the appropriate SAR are presented in the last section of the table. 

 Moran's I from 

residuals of lms 

Lagrange multiplier diagnostics for 

spatial dependence 

Moran's I from residuals 

of SARs 

Model formula Obs Exp p LMerr p LMlag p Obs Exp p 

Species richness 0.059 -0.029 0.285        

Species 

composition  

0.032 -0.029 0.346        

Acoustic 

composition  

-0.136 -0.029 0.755        

Acoustic 

diversity PC1 

0.102 -0.029 0.195        

Acoustic 

diversity PC2 

0.314 -0.029 0.012 3.82 0.051 6.46 0.011 -0.084 -0.029 0.642 

 



 

The ARUs at sites 9D6 and 8C1 were faulty and influenced model results drastically, 

thus were deleted from the dataset. 

Figure 4s: diagnostic plots of two models showing outliers that were removed from 

appropriate models: A] Acoustic composition PC1, site 9D6 was an outlier (row 33) so was 

removed from dataset for the models involving this response variable. B] Acoustic composition 

PC2, site 8C1 was an outlier (row25) so was removed from dataset for the models involving 

this response variable.  

A B 



 

Table VIIs: Model summary statistics of the first set of models (Soundscape metric ~ point 

count metric) 

Model formula Linear models SAR models 

Model formula Fstat Rsquare AdjRsquare p-value z Wald p-value 

Acoustic diversity PC1 ~ species richness  2.098 0.058 0.03 0.158    

Acoustic diversity PC1 ~ species composition  0.198 0.012 -0.048 0.824    

Acoustic diversity PC2 ~ species richness  9.169 0.212 0.189 0.005 2.557 6.54 0.011 

Acoustic diversity PC2 ~ species composition  6.498 0.2825 0.239 0.004    

Acoustic composition ~ species richness 8.312 0.2 0.177 0.007    

Acoustic composition ~ species composition  8.732 0.353 0.312 0.001 -2.202 4.8486 0.028 

 

 

Table VIIIs: Model summary statistics of the second set of models (Diversity metric ~ 

Habitat type) 

 Linear models SAR models 

Model formula Fstat Rsquare AdjRsquare p-value z Wald p-value 

Species richness (Poisson distribution)  0.395 (pseudo)      

Species composition  9.789 0.487 0.437 0.000    

Acoustic composition  5.309 0.339 0.276 0.005    

Acoustic diversity PC1 0.286 0.027 -0.067 0.836    

Acoustic diversity PC2 2.176 0.174 0.094 0.111 2.822 7.962 0.005 
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Appendix C:  

C.1: Supplementary Information for Chapter 4 

 

 

Figure 13: Examples of gap statistic plots for unknown Vespertilionidae and Molossidae clustering 

analysis. The gap statistic was plotted for five random subsets of 25 000 calls from each class.  

 

Table 7: Mean spectral features for each sonotype. Detection probability is the mean model detection 

probability. Maximum and minimum frequency are the highest and lowest frequencies of the call. 

Duration describes the length of the call. Bandwidth is the difference between the maximum and 

minimum frequencies. Frequency of maximum power is the frequency within the call that is loudest. 

Sonotype Detection 

probability 

Maximum 

frequency 

(Hz) 

Minimum 

frequency 

(Hz) 

Duration 

(s) 

Bandwidth 

(Hz) 

Frequency 

of 

Maximum 

power (Hz) 

M1 0.494115 21019.19 13703.24 0.016625 7315.432 15634.31 
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M2 0.40232 23191.26 17167.92 0.013132 6022.936 18653.57 

M3 0.45369 25551.65 19912.4 0.011975 5638.784 21821.17 

M4 0.489878 22767.32 16070.55 0.014193 6696.422 17695.85 

M5 0.420383 29398.07 12731.47 0.017085 16666.15 15018.39 

M6 0.444194 22628.4 16710.96 0.014046 5917.057 18328.53 

V1 0.467486 29303.59 21917.03 0.01108 7386.033 24216.84 

V2 0.563413 68373.25 44185.95 0.011791 24186.9 47027.31 

V3 0.499497 59933.85 48423.39 0.008802 11509.99 50811.88 

V4 0.427428 32269.16 24922.18 0.009327 7346.536 27178.98 

V5 0.415714 37778.43 29666.39 0.007921 8111.573 31964.6 

V6 0.566488 44756.15 31320.28 0.009116 13435.37 34001.56 

V7 0.406482 35683.69 27935.95 0.008466 7747.262 29915.07 

V8 0.459514 61426.75 51458.76 0.007764 9967.535 53815.77 

V9 0.515853 58446.03 48418.52 0.009476 10027.08 50210.74 

V10 0.406699 31732.68 24853.34 0.00911 6878.873 27100.93 

V11 0.587272 64360.52 47746.73 0.009857 16613.38 50214.05 

 

 

C.2: Manuscript of upcoming publication 
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Abstract 

1. Acoustic monitoring is an effective and scalable way to assess the  

health of important bioindicators like bats in the wild. However, the large 

amounts of resulting noisy data collected requires accurate tools for au- 

tomatically determining the presence of different species of interest. Ma- 

chine learning-based solutions offer the potential to reliably perform this 

task, but can require expertise in order to train and deploy. 

2. We propose, BatDetect, a novel deep learning-based pipeline for jointly 

detecting and classifying bat species from acoustic data. Distinct from 

existing deep learning-based acoustic methods, BatDetect’s outputs are 

interpretable as they indicate where in time and frequency a predicted 

echolocation call occurs. BatDetect also makes use of surrounding tem- 

poral information in order to improve its predictions, while still remaining 

efficient at deployment time. 

3. We present experiments on four challenging datasets, from three dis- 

tinct geographical regions. BatDetect results in a mean average precision 

of 0.88 for a dataset containing 17 bat species from the UK. This is sig- 

nificantly better than the 0.71 obtained by a traditional call parameter  

extraction-based baseline. 

4. We show that the same pipeline, without any modifications, can be ap- 

plied to acoustic data from multiple different regions and species groups. 

The data annotation, model training, and evaluation tools proposed will  

enable practitioners to easily develop and deploy their own models. Bat- 

Detect lowers the barrier to entry currently preventing researchers from 

availing of effective deep learning powered bat acoustic classifiers. 
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29      1   |   INTRODUCTION 

 
 

 
30      Reliable biodicators are necessary to enable us to better measure the impact of climate change and accelerati ng habitat 

 

31      loss. Bats have previously been identified as one promising candidate for this role due to their global distribution, 
 

32      taxonomic diversity, and sensitivity to environm ental and habitat change (Jones et al., 2009). Howev er, despite making 
 

33      up approximately one fifth of all mammalian diversity, we know comparatively less about them in relation to other 
 

34      well studied taxonomic groups (Frick et al., 2020). In order for them to fulfill this potential, there is a growing need for 
 

35      robust and reliable tools for monitoring their populations (Russo et al., 2021). 
 

36 Recent advances in hardware and software have resulted in low-cost solutions for automated bioacoustic mon- 
 

37      itoring. This enables us to unobtrusively monitor wild populations at unprecedented spatial and temporal scales via 
 

38      audio (Gibb et al., 2019). In the context of bats, there is a rich history of using acoustic methods for monitoring pur- 
 

39      poses (Zamora-G uti er rez et al., 2021) by leveragi ng the fact that bats use sound to navigate and communi c ate (Jones 
 

40      and Siemers , 2011; Prat et al., 2016). Machine learning-bas e d approac hes have been extensiv ely used by extracti ng 
 

41      acoustic features from audio recordi ngs and then classifying which species are present in the input audio (Parsons and 
 

42      Jones, 2000; Walters et al., 2012; Zamora-Gutierrez et al., 2016; Bas et al., 2017; Roemer et al., 2021). In this line of 
 

43      work, the extracted features are typically manually crafted so that they encode discriminative information related to 
 

44      the temporal and frequency-based characteristics of bat echolocation calls. 
 

45 Howev er, bat calls are complex and varied. They can exhibit regional, habitat, and species -s pecifi c variation which 
 

46      makes them challengi ng to precisely characte ris e using hand-desi gned rules (Walters et al., 2013; Russo et al., 2018). 
 

47      This is in addition to other complicating factors such as background noise and other vocalising species (e.g. small 
 

48      mammals and insects) that can be present in ultrasonic audio recordi ngs. Deep learning-bas ed approac hes attempt to 
 

49      address these challenges by learning discriminative representations directly from the raw input data. They have been 

K E Y W O R D S 

Bioacous tics , Bats, Passive Acoustic Monitoring, Deep Learni ng, 

Acoustic Event Detection 
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50      shown to be highly successful across a wide variety of applications in ecological monitoring (Christin et al., 2019), in 
 

51      addition to bioacoustics (Stowell, 2021). 

 
 

52 The first deep learning-based methods applied to bat acoustic monitoring focused on determining the presence 
 

53      of bats versus background noise (Mac Aodha et al., 2018) or the species present (Chen et al., 2020; Kobayashi et al., 
 

54      2021) from short audio clips, i.e. typically shorter than 50 milliseconds. The disadvantage of these approaches is that 
 

55      they cannot capture longer temporal information such as the interval between individual pulses which can sometimes 
 

56      be an important discriminative signal. To address this issue, other work has used longer input recordings in order 
 

57      to capture multiple individual calls in a sequence (Paumen et al., 2021; Zualkernan et al., 2020; Tabak et al., 2021). 
 

58      Unfortunately the higher dimensionality of the data, due to the longer input audio recording, can necessitate larger 
 

59      models and thus requires more supervised data at training time. Compact and efficient models are necessary in the 
 

60      context of low powered deployments on edge-based monitoring devices (Gallacher et al., 2021; Zualkernan et al., 
 

61      2021). In addition, there is also an increased chance that more than one species could be present in the longer input 
 

62      recording (Dierckx et al., 2022). This last point is especially problematic as it violates the ‘one species per input’ 
 

63      assumption of conventional classification approaches. 

 
 

64 Despite this recent progress in deep learning-based solutions for bat monitoring, there is still a gap between the 
 

65      latest research advances and the open-source tools available to practitioners. In this work, we attempt to address 
 

66      this gap by proposing a novel pipeline for bat echolocation call detection and species classification from acoustic 
 

67      data. Our approach, called BatDetect, combines the strengths of the short temporal window-based methods with the 
 

68      benefits of the longer-range temporal reasoning of the call sequence based methods. Our main contributions are: (i) 
 

69      An efficient model for joint detection and classification of bat echolocation calls. (ii) This model provides interpretable 
 

70      predictions that illustrate where in the input spectrogram, in terms of frequency and time, the model has detected a 
 

71      call. (iii) We evaluate the effectiveness of our proposed approach on four challenging datasets, collected from three 
 

72      distinct geographical regions, and show that it is superior to existing call parameter-based methods. (iv) We provide 
 

73      open-source tools for our full pipeline in order to enable practitioners to annotate data, train, and deploy models on 
 

74      their own datasets. 
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75      2   |   MATERIALS AND METHODS 
 

 

76      2.1 | Acoustic event detection 
 

 
77      Distinct acoustic vocalisation events created by a species of interest (e.g. a bat echolocation call or a bird song) can 

 

78      be characterised by the start time of the event, the duration of the event, and the minimum and maximum frequency 

 

79      bands that the event spans. Our goal is develop a model g () that takes a ultrasonic audio recording as input, repre- 

80      sented as a spectrogram x, and outputs a set of predictions related to the events of interest in the input audio file, 

 

81 O = g (x). In our case these events will be bat echolocation calls. Each prediction from the model, o ∈ O, represents a 

82      distinct event and contains information characterising the time and frequency components of the event. Specifically, 

 

83      each predicted event, o = [t start, t end, fmin, fmax, pspecies ], represents the start time, end time, minimum frequency, 

84      maximum frequency of the event, along with the predicted probability indicating which species the model thinks is 

 

85      present. Here, pspecies is a C + 1 dimensional vector that sums to one, and represents the probability of the species 

86      the model thinks emitted the call, for each one of C different species plus one additional background class (i.e. ‘Not 
 

87      bat’). Note, that this representation is distinct from conventional acoustic classification models that only attempt to 

 

88      determine the species present in a short duration input spectrogram, i.e. y = g (x), where y ∈ {1, ..., C + 1} is an 

89      integer denoting the predicted species label. 

 
 

 

90      2.2 | Detection and classification model 
 

91      We implement our joint classification and detection model g () as a deep neural network. Our model is inspired by 

92      computationally efficient one-stage object detection methods from computer vision (Zhou et al., 2019). Unlike two- 
 

93      stage methods that first propose a set of regions of interest and then assign each region to a class (i.e. a species), 
 

94      one-stage approaches directly predict the location and size of each class in the input. 

 

95 Our model makes use of a U-Net-style architecture (Ronneberger et al., 2015), with an encoder that extracts 
 

96      features from the input spectrogram, followed by a decoder that generates the predicted size and location of each 
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97      echolocation call along with the corresponding species id. The model also uses skip connections which facilitate the 
 

98      sharing of higher resolution feature information (in terms of frequency and time) from the encoder to the decoder. 
 

99      The output of the decoder is a distribution for over time and frequency indicating where the model thinks a set of 
 

100      calls are present and also the sizes (in terms of frequency range and duration) of the calls. As a final step, we pass this 
 

101      output to a non-maximal suppression layer, implemented via max pooling, in order to extract the local peak detections 
 

102      (Zhou et al., 2019). This step prevents the model from predicting multiple calls very close to each other (i.e. within a 
 

103      few milliseconds). A high-level depiction of the model is illustrated in Figure 1. 

 

104 A common issue with many current deep learning-based bat call detection and classification models, e.g. (Mac Aodha 
 

105      et al., 2018; Chen et al., 2020; Kobayashi et al., 2021), is that they typically only utilise very short temporal input win- 
 

106      dows (e.g. less than 50 milliseconds) to determine if a species is present. This prevents these models from reasoning 
 

107      about inter-pulse temporal information that can exist between individual calls and can span hundreds or thousands 
 

108      of milliseconds. This issue could be partially addressed by using more computationally expensive backbone encoder 
 

109      models that have a larger temporal receptive field size, e.g. (Simonyan and Zisserman, 2015; He et al., 2016). However, 
 

110      the downside of such models is that they are much larger, and thus have more parameters that need to be trained. 
 

111      This larger size necessitates larger supervised training datasets and results in a reduction in speed at inference time. To 
 

112      overcome this problem, without having to increase the size and capacity of the encoder, we introduce a self-attention 
 

113      layer into the middle of our network. Transformer-based self-attention architectures (Vaswani et al., 2017) are among 
 

114      the current most performant models in natural language processing owning to their ability to capture long-range de- 
 

115      pendencies that occur in the input data. The introduction of this layer allows our model to ‘attend’ to information 
 

116      from different points in time in the input audio file in order to increase or decrease its estimated likelihood that a 
 

117      given species is present at the current time step. Note that this self-attention layer only operates along the temporal 
 

118      dimension and is thus very computationally efficient. 

 

119 Our entire model is trained end-to-end using a three component loss function which includes a detection loss, 
 

120      a classification loss, and an event size loss. The first two losses are implemented using a focal loss (Lin et al., 2017), 
 

121      and the final one uses an L1 penalty. The model and associated training and evaluation code are implemented using 

 
122      the PyTorch deep learning framework (Paszke et al., 2019). A detailed description of the audio pre-processing steps, 
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F I G U R E 1 Overview of BatDetect, our echolocation call classification and detection model. In contrast to most 

existing deep learning-based bat call classifiers, our model directly predicts the time in file of each event of interest, 

along with the duration of the event, the frequency range, and the species. It utilises a self-attention layer in the 

middle of the model so that it can reason over a longer temporal scale. 

 

123      model architecture, training losses, and training settings are provided in the supporting information. 

 
 
 

 
124      2.3 | Audio annotation interface 

 
 

125      Our model requires supervision in the form of bounding boxes encompassing each individual echolocation call present 
 

126      in an audio file. In order to obtain this, we developed an audio annotation interface to enable human annotators to 
 

127      efficiently draw boxes and to assign a species class label to every audible echolocation call in a given input file. The 

 
128      interface is implement using the Flask web framework (Flask, 2021) and is is depicted in Figure 2. As a result, we 

 
129      can deploy the interface on the web to allow annotators to annotate remotely or we can also deploy it locally on an 

 

130      annotator’s own device. 

 

131 The interface has been optimised to speed up the annotation process. For example, we pre-cache the spectro- 
 

132      gram generation step for the next file to be annotated so that the annotator does not have to wait when switching 
 

133      between files. In addition, it is possible to change the spectrogram visualisation settings in order to trade-off frequency 
 

134      resolution for temporal resolution, or vice versa. The annotations are stored together in a separate JSON file for each 
 

135      audio file using a format similar to the one used for the COCO dataset (Lin et al., 2014). Annotators can playback the 
 

136      audio file using a time expansion factor of ten to ensure that the ultrasonic signals of interest are audible. 

 

137 Unless otherwise specified, the audio files that we annotated had information at the file-level related to which 
 

138      species were present in the recording. Annotators were instructed to draw boxes around each individual echolocation 
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139      call, irrespective of how faint the call was. They then assigned the recording-level species class label to an annotation 
 

140      unless it differed from a prototypical echolocation call for that species. Harmonics were not annotated as part of the 
 

141      main call. In cases where it was not possible to assign the correct class label, or when multiple species were present 
 

142      in a file, annotators marked unknown calls as being from the generic ‘Bat’ class. 

 

F I G U R E 2 Our audio annotation interface has three main components: (i) spectrogram visualisation and 

playback, (ii) editing of echolocation call annotations, and (iii) file-level metadata display. 

 
 
 

 

143      2.4 | Audio datasets 
 

 
144      We train and evaluate our model on three different full spectrum ultrasonic acoustic datasets. Additional details for 

 

145      each, including visual examples and per-species counts, are available in the supporting information. 

 
 

 

146      2.4.1   |   UK data 
 

 
147      This dataset contains audio data from 17 bat species that breed in the UK, and has been collated from six different 

 

148      sources. In total there are 2,809 distinct audio files, with an average duration of 1.04 seconds, and the dataset contains 
 

149      a total of 34,635 annotated echolocation calls. To increase our robustness to background noise, we supplement this 
 

150      data with 4,225 additional, 0.384 second duration, files from the iBats Program (Jones et al., 2013). This adds an 

3 File Summary  
 
 
2 Audio Event Summary 

1 Spectrogram Visualisation 
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151      additional 6,842 annotated bat calls that do not have an associated species id. Finally, we also add 345, one second 
 

152      duration, empty files (i.e. no bats present) from London, UK, collected using the recording devices from Gallacher et al. 
 

153      (2021). 
 

154 We split the UK data into two sets, UKsame and UKdiff. For UKsame we randomly assign files to the test set 

 
155      by ensuring a maximum of four files per species, per data source. The remaining files are kept for the training set. 

 
156      This results in 7,010 training files and 369 test files, containing 36,955 and 4,522 calls respectively. UKdiff is a more 

 
157      challenging split. Here we hold-out the largest single data source for testing. This leaves 5,991 training and 1,468 

 

158      test files, containing 24,315 and 17,162 echolocation calls. This second split represents a more challenging test-case 
 

159      where the data is guaranteed to be very different from the training set. This also results in a reduction in the overall 
 

160      amount of training data, both in terms of sheer quantity but also diversity. Both variants of the dataset retain the 
 

161      4,570 files without species labels as part of their respective training sets. 

 
 

 

162      2.4.2 | Yucatan data 
 

 
163      The second dataset consists of 1,193 one second audio clips extracted from 285 passive acoustic recordings from the 

 

164      Yucatan peninsula in Mexico. The data was collected as part of a study by MacSwiney G et al. (2008). It is smaller in 
 

165      size than the UK dataset, but is representative of the type of data that would be feasible to collect and annotate as 
 

166      part of a smaller-scale monitoring project. The annotations from the original study were used and then expanded to 
 

167      ensure that all audible echolocation events were annotated. The final annotated dataset contains 9,981 echolocation 
 

168      calls from 17 different species. We divided the data into 911 training and 282 test clips, making sure to separate at 
 

169      the original recording-level, and not the clip-level, to ensure that clips from the same recording were not in both sets. 

 
 

 

170      2.4.3 | Brazil data 
 

 
171      Our final dataset represents an orthogonal challenge to the first two. It contains 320, ten second duration, recordings 

 

172      collected between January and March 2019 in south-eastern Brazil using AudioMoth (Hill et al., 2018) recorders. Here 
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173      we have access to the recordings but do not have any species id metadata. As a result, instead of annotating the calls 
 

174      with species labels, we instead created ‘meta-categories’ based on the dominant frequency component exhibited 
 

175      by each call. This resulted in three distinct call groups in the final annotated dataset. Like the other datasets, this 
 

176      annotation was performed manually, where the protocol again stipulated that all echolocation call instances in each 
 

177      recording should be annotated. We split the data into 256 train files and 64 test files, which resulted in 7,989 and 
 

178      2,010 calls respectively. 

 
 

 

179      2.5 | Baseline model 
 

 
180      In order to evaluate the effectiveness of our model, we compare it to a traditional bat call parameter/feature extraction 

 

181      pipeline. To do this, we use the Tadarida-D model from Bas et al. (2017) which consists of two main components: 
 

182      (i) a bat echolocation call detector and (ii) a echolocation call feature extractor. The extracted call features are a set 
 

183      of numerical values that encode information about the shape and frequency content of each individual detected bat 
 

184      call. In the case of Tadarida-D, this amounts to 268 features for each detected event. For additional details about the 
 

185      specific set of call features in Tadarida-D, please consult the original paper (Bas et al., 2017). 

 

186 For each of our datasets, we first run Tadarida-D to detect the calls and extract the call features. Then for each 
 

187      detected event in the training set we compute the overlap between the event (using the reported time in file, duration, 
 

188      and frequency range from Tadarida-D) and our ground truth annotations. We select the detection that overlaps most 
 

189      in time and frequency with a given ground truth annotation and then assign the species label from the ground truth to 
 

190      that event. If a detected event does not match to a ground truth annotation it is assigned to the ‘Not bat’ class. Each 
 

191      ground truth annotation can only be assigned to one predicted detection. Finally, we train a Random Forest (Breiman, 

 
192      2001) classifier on the extracted calls using the implementation from scikit-learn (Pedregosa et al., 2011), using the 

 
193      default parameters. It is worth emphasising that while we are using Tadarida-D, our baseline is not directly equivalent 

 

194      to the full Tadarida method as we do not make use of their pre-trained models, labeling interface, or classification 
 

195      code. However, this baseline allows us to control for the impact of the training data as we can ensure that we are 
 

196      using the same audio and ground truth annotations at training and test time for both methods. This baseline also does 
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197      not make use of the additional echolocation events that only have the generic ‘Bat’ class label. However, this is only 
 

198      relevant for the UK datasets. 

 
 

 

199      2.6 | Evaluation metrics 
 

 
200      We use four different evaluation metrics to quantify the performance of our model. The first, detection average 

 

201      precision (‘AP Det’), evaluates the ability of the model to correctly identify all valid echolocation calls in the test data. 
 

202      This metric calculates the precision and recall resulting from varying a threshold on the model output predictions 
 

203      for the ‘Bat’ versus ‘Not bat’ task. We then average over these different thresholds to quantify the area under the 
 

204      precision-recall curve, using the interpolation method from Everingham et al. (2010). A prediction is counted as a true 
 

205      positive if its estimated start time overlaps with a ground truth echolocation call by at most ten milliseconds. This is 
 

206      the same evaluation criteria used in Mac Aodha et al. (2018). 
 

207 ‘AP Det’ does not evaluate the ability of the model to accurately assign the correct species label to a prediction. 
 

208      To address this, we also report the mean average precision across the classes (‘mAP Class’). This involves taking the 
 

209      per-class average precision and then averaging this value over each class. This also has the added effect of weighting 
 

210      each class equally, irrespective of the number of calls for each class in the test set. Here, we exclude calls for which 
 

211      there are no ground truth species labels available. 
 

212 ‘mAP Class’ suffers from one major limitation. As the classes are evaluated independently, it does not highlight 
 

213      cases where the underlying model may be poorly calibrated and thus require different output thresholds for each class. 
 

214      Calibration issues like this can result from class-level data imbalances in the training data. To overcome this limitation, 
 

215      we also report a third precision based metric which we refer to as ‘Top Class’. Here we simply take the top predicted 
 

216      class label, along with its corresponding probability, for each detected call and then evaluate the average precision as 
 

217      above. Unlike ‘mAP Class’, this metric can be biased if there is a large imbalance in the classes in the test set. 
 

218 The final metric, ‘File Acc’, evaluates the file-level classification accuracy. For this metric only, we exclude test 
 

219      files that have been manually annotated as containing more than one species. In order to convert the multiple pos- 
 

220      sible individual call predictions for a given file into a single file-level class label, we threshold each of the individual 



 

219 

 
 

 

 

TA B L E 1 Performance of our BatDetect model compared to the Random Forest baseline with uses traditional 

bat echolocation call features. We evaluate both models using the same four test datasets, and BatDetect performs 

best in all cases. For each of the metrics, higher numbers are better, and the results are averaged over three runs. 

BatDetect (Ours) Random Forest Baseline 

Dataset AP Det mAP Class Top Class File Acc AP Det mAP Class Top Class File Acc 

UKsame 0.971 0.884 0.843 0.866 0.890 0.706 0.638 0.800 

UKdiff 0.964 0.810 0.690 0.780 0.903 0.587 0.47 0.687 

Yucatan 0.927 0.769 0.809 0.805 0.651 0.409 0.454 0.603 

Brazil 0.926 0.962 0.940 1.000 0.883 0.912 0.910 1.000 

 

221      detections and remove any detection below the threshold. We then sum the per-class probabilities of the remaining 
 

222      detections and choose the class with the highest sum as the file-level prediction. Finally, we report the file-level accu- 
 

223      racy corresponding to the single best threshold across all files. The best possible score for each of these four metrics 
 

224      is 1.0, and the worst is 0.0. 

 
 
 

 
225      3 | RESULTS 

 
 

 
226      3.1 | Detection and classification performance 

 
 

227      In Table 1 we present the main results comparing the performance of our model, BatDetect, to the Random Forest 
 

228      baseline that uses Tadarida-D call features. The results represent the average of three different models, each trained 
 

229      with different random initialisation. We observe that across all datasets, and the four evaluation metrics, BatDetect 
 

230      performs best. The Random Forest baseline also performs well on the comparatively easy Brazil dataset, but struggles 
 

231      on the other three. The difference in performance is between 0.05 and 0.36 mean average precision (‘mAP Class’), 
 

232      across the datasets. 

 

233 We can see that BatDetect’s detection performance, reported via ‘AP Det’, is strong. This indicates that the model 
 

234      is capable of correctly detecting the vast majority of calls. However the lower performance for the two call-level 
 

235      classification metrics (‘mAP Class’ and ‘Top Class’) indicates that it can have difficulty identifying the correct species 

 
236      for a given call in some situations. Table 1 also highlights the challenge posed by the more difficult UKdiff dataset in 
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237      contrast to the performance on UKsame. In the supporting information, we illustrate the impact that the amount of 

 
238      training data per-class has on test performance, and broadly observe that more data increases performance. 

 
 

 

239 In Figure 3 we display the per-class precision-recall curves for BatDetect. We also show precision-recall curves 
 

240      at the genus-level. For these genus results, we do not retrain the models, but instead sum the predictions for each 
 

241      species belonging to a given genus, convert the ground truth class label to the genus label, and then evaluate in 
 

242      the same way as the species-level curves. We also display the file-level confusion matrix. Like the ‘File Acc’ metric, 
 

243      we only report results for files that have one reported species in them. By comparing the genus-level results in the 
 

244      second column for the challenging Myotis calls to the corresponding species-level ones in the first column for both 
 

245      UK datasets, we see that the model is capable of resolving the classification task to the genus-level for these calls, 
 

246      but has difficulty for some at the species level. This difficulty is most apparent when looking at the confusion matrix 

 
247      for UKdiff in the second row of Figure 3. Here we see that our model confuses some Myotis species at the file-level. 

 
 

 

248 We visualise the model’s predictions for a subset of files in Figure 4. We observe that BatDetect is capable of 
 

249      detecting faint calls, and also handles situations where multiple species are present in a recording. The model is 
 

250      also robust to background noise. This is most apparent in the example from the Brazil dataset recorded using an 
 

251      AudioMoth (Hill et al., 2018) on the bottom row of the figure. In this example we can see a repetitive high frequency 

 

252      signal, most prominent at ∼60kHz that repeats every 50 milliseconds. Despite this structured noise, our model does 

253      not produce any false positives in this example. 

 
 

 

254 It takes BatDetect just under four minutes to process and save the results for 424, ten second duration, 384kHz 
 

255      AudioMoth recordings using a GPU, i.e. 70.6 minutes of ultrasonic data in total. Tadarida-D takes 2.5 minutes for 
 

256      detection and feature extraction for the same data. Note that this processing time does not include the evaluation 
 

257      of the Random Forest and also Tadarida-D does not utilise a GPU. This benchmarking was performed on a desktop 
 

258      computer which contained an Intel i7-6850K CPU and an Nvidia TITAN Xp GPU. 
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259      3.2 |  Impact of self-attention 
 

 

260      In Table 2 we present results a variant of the model on the UKdiff dataset. Here we report the results for when we 

 
261      remove the self-attention layer, i.e. ‘No Self-Attn’, again averaged over three different runs. We observe a large drop in 

 

262      performance when compared to the full model. Notably, the detector results illustrated by ‘AP Det’ are not impacted, 
 

263      but two of the classification metrics, ‘mAP Class’ and ‘Top Class’, show a large decrease when removing this layer. This 
 

264      points to the value of longer temporal range reasoning when resolving species classification that is provided by the 
 

265      self-attention layer. In the supporting information, we provide a visualisation of how the self-attention layer makes 
 

266      use of information from different points in time in order to improve its species-level predictions. 

 
TA B L E 2 Performance of two different variants BatDetect on the UKdiff test set. Note, the results in the first row 

are the same as the BatDetect results in the second row of Table 1. ‘No Self-Attn’ is the same as the full BatDetect 

model but the self-attention layer has been removed at training and test time. 

Dataset AP Det mAP Class Top Class File Acc 

Full model 0.964 0.810 0.690 0.780 

No Self-Attn 0.962 0.725 0.614 0.790 

 
 
 
 
 

267      4   |   DISCUSSION 
 
 
 

268      4.1 |  Model performance 
 

 

269      BatDetect performs significantly better than the traditional call feature-based baseline tested. For the vast majority of 

 
270      species in the UKsame dataset, BatDetect results in high precision at high recall rates (see Figure 3). This is important 

 
271      as it enables practitioners to trade-off recall for precision to ensure that they obtain reliable, high confidence, predic- 

 
272      tions from the model. The file-level accuracy is 78% and 86.6% for the UKdiff and UKsame datasets, where a large 

 
273      percentage of the mistakes can be attributed to known challenging species, i.e. the Myotis species. While we observe 

 
274      a performance drop for UKdiff, the UKsame results indicate that training on larger quantities of more representative 

 
275      data results in a more effective model. 
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276 Unlike existing deep learning-based classifiers, our model produces interpretable predictions in the form of time 
 

277      and frequency boxes around the detected calls (see Figure 4). This is valuable as it will enable practitioners to inspect 
 

278      the model predictions to better understand any failure cases they may observe for their datasets. BatDetect can 
 

279      efficiently use information from longer input time scales via the self-attention layer without significantly increasing 

 

280      the amount of computation performed at test time. This results in a model that can perform inference ∼17 times 

281      faster than real time using a GPU, i.e. 17 minutes of recorded ultrasonic audio takes one minute to fully process. 
 

282 Perhaps most importantly, we showed that the same pipeline, without any modifications, can be applied to audio 
 

283      data from three distinct regions. This is valuable as it will allow practitioners to focus on collecting and annotating 
 

284      datasets for their species of interest. Our annotation interface assists this process and will enable researchers to make 
 

285      annotations available to others in a standardised and open format. 

 
 

 

286      4.2 |   Limitations 
 

 
287      BatDetect performs well across the four datasets tested, however it still suffers from some limitations. We rely on the 

 

288      availability of diverse, and exhaustively annotated, training data. Collecting such data can be challenging, in addition 
 

289      to being time consuming to annotate. This limitation is common to any supervised learning-based method. While 
 

290      methods for semi-supervised and self-supervised training offer the potential to learn effective models with limited 
 

291      to no training supervision, diverse labelled data is still needed to evaluate the performance of the developed models. 
 

292      Bat calls can exhibit plasticity depending on the population sampled (Montauban et al., 2021). As a result, care needs 
 

293      to be taken to ensure that the collected training datasets are representative of the downstream deployment situation. 
 

294      Finally, our training datasets currently only contain annotated echolocation calls, and thus the model cannot make 
 

295      predictions for other types of calls, e.g. social calls or feeding buzzes. With appropriate training data, this could be 
 

296      addressed. 
 

297 For a given input recording, BatDetect returns a list of detections along with their corresponding time in file and 
 

298      species id. It is left up to the user to decide how to best merge the individual detections into a set of ‘bat passes’, where 
 

299      a pass constitutes a sequence of individual calls. This summary step can be important, as practitioners often derive 
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301      to use a grouping-based heuristic based on the time between detected calls as in Mac Aodha et al. (2018). The high 
 

302      recall rates of BatDetect means that this type approach is less likely to separate individual bat passes into multiple 
 

303      different ones. In contrast, methods that produce high numbers of false negatives run the risk of overcounting the 
 

304      number of passes as they can miss faint calls in a sequence, and thus incorrectly break them up into a number of 
 

305      shorter passes. 

 
 

 

306      5   |   CONCLUSIONS 
 

 

307      We presented BatDetect, a general-purpose model for detecting and classifying bat echolocation calls in challenging 
 

308      high-frequency audio data. We showed that the same model, without modifications, can be trained and evaluated 
 

309      successfully on data from different geographical regions. In addition to pretrained models, we also make data and 
 

310      code for our models and annotation interface available to stimulate future research. 
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D.1 Supplementary Information for Chapter 5 

Table D.1: Table summarising weather station altitude and location from Climate Edge and NOAA 
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Data provider Source Latitude Longitude 

Climate Edge Farm altitude 504m 13.49032 -85.593 

Climate Edge Farm altitude 520m 13.05751 -85.7331 

Climate Edge Farm altitude 602m 13.23013 -85.6217 

Climate Edge Farm altitude 693m 13.0952 -86.0675 

Climate Edge Farm altitude 958m 12.96643 -85.8761 

Climate Edge Farm altitude 996m 12.78955 -85.9513 

Climate Edge Farm altitude 1036m 13.17411 -85.8832 

Climate Edge Farm altitude 1045m 13.21876 -85.9809 

Climate Edge Farm altitude 1094m 13.19047 -85.8119 

Climate Edge Farm altitude 1101m 12.82815 -85.9341 

NOAA Jinotega altitude 985m 13.08 -85.98 


