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Abstract

The linear stability of Newtonian ferrofluids subject to non-uniform magnetic fields is consid-

ered in different geometries. First, a ferrofluid column with constant magnetic susceptibility,

centred on a current-carrying rigid wire and surrounded by another ferrofluid with a differ-

ent susceptibility, is investigated. Ferrofluids with non-uniform susceptibilities are considered

next. For a constant susceptibility the magnetic forcing is confined to the interface, but for a

non-constant susceptibility the forcing is felt in the bulk of the fluid. It is postulated that a sta-

tionary state of a ferrofluid with a non-uniform susceptibility in the presence of a non-uniform

field, such that regions of highest susceptibility do not coincide with regions of highest field, may

be unstable. An instability could be driven by the release of magnetic energy, since a minimum

energy configuration may be reached when ferrofluid regions of high susceptibility and regions

of high field coincide. This is explored for equilibria in a cylindrical domain, a planar domain

and in a general three-dimensional domain. In a cylindrical domain, a stability condition is

determined for a ferrofluid surrounding a current-carrying rigid wire, whose susceptibility varies

radially. In a planar configuration, a stationary state of ferrofluid between two channel walls is

found. The susceptibility and field vary normal to the wall, such that the regions of highest field

and susceptibility do not coincide, and it is proven to be unstable. Methods of stabilising both

systems are determined. For the cylindrical system, a constant axial field suffices, but for the

planar domain it is shown that a rapidly rotating field is necessary to dampen unstable modes.

Lastly, a stability condition is obtained for a general volume of ferrofluid, whose susceptibility

varies slowly with position, subject to a non-uniform field.
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Chapter 1

Introduction

1.1 Introduction

Figure 1.1: Image of a ferrofluid surface exhibiting peaks when subject to a magnetic field.
Image taken from Arrighi et al. (2021).

This thesis investigates the linear stability of ferrofluids subject to non-uniform fields, in differ-

ent configurations. Ferrofluids are stable colloidal fluids, consisting of magnetic solids suspended

in a carrier solution (Cowley & Rosensweig, 1967). They are viscous fluids, and if no magnetic

field is present, they obey the governing equations for a Newtonian fluid. Yet, when a magnetic

field is applied to a ferrofluid, it becomes magnetised, whilst retaining its fluidity. Ferrofluids

are current-free and have no free electric charge, so that the Lorentz force and electric forces
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are not present (Rosensweig, 1985). However, if the magnetisation or applied field exhibit

discontinuities or gradients, a magnetic body force can act on the fluid (Rosensweig, 1985).

Consequently, the magnetic energy stored in the magnetic field has the potential to drive in-

stabilities. Figure 1.1 (Arrighi et al., 2021) shows an example of the Rosensweig normal-field

instability, the first ferrofluid instability to be discovered (Cowley & Rosensweig, 1967). The

instability occurs when a field is applied normal to the flat interface between a ferrofluid and

a non-magnetic medium. The field generates a magnetic forcing localised to the interface,

as a result of a jump in the magnetic susceptibility between the two mediums. The force is

destabilising, counteracting the stabilising effects from surface tension and gravity (if the less

dense fluid is the upper fluid). For a sufficiently strong field, the flat surface can no longer

be supported and a new surface deformation of peaks is reached, in order to achieve the mini-

mum energy configuration (Cowley & Rosensweig, 1967), as shown in Figure 1.2 (Andelman &

Rosensweig, 2009). Investigating the stability of equilibria where the magnetic susceptibility is

discontinuous, or continuous and non-uniform, forms this thesis.

Figure 1.2: Figure taken from Andelman & Rosensweig (2009) showing X-ray images of a
normal-field instability of a ferrofluid (a) oblique view (b) a plane view.
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In this chapter, we will introduce ferrofluids to the reader. Their properties, synthesis, pro-

cess of magnetisation, and applications are discussed. Complex processes occurring within the

ferrofluid are highlighted, and their effects on the dynamics of the ferrofluid reviewed. The dif-

ferent approaches for theoretically modelling the magnetisation of ferrofluids are outlined, and

the theory and assumptions used for the analysis in this thesis stated. Lastly, we give an outline

of each chapter and the relevant hydrodynamic, electrohydrodynamic and ferrohydrodynamic

literature is reviewed.

1.2 Ferrofluid properties, synthesis and magnetisation

Ferrofluids comprise of magnetic solids, typically magnetite, cobalt, hematite or other fer-

rites, suspended in a carrier solution, such as water, kerosene or oils (Bozhko & Suslov, 2018)

(Rosensweig, 1985). They can be synthesised by chemical precipitation, thermal decomposition,

emulsion technique and by wet-grinding ferrite powders in a carrier liquid with a stabilisation

agent (Shliomis, 1974; Charles, 1987). The magnetic particles interact through spherically

symmetric energy by steric repulsion, Van der Waals attraction, electrostratic repulsions and

dipole-dipole interactions (Shliomis, 1974; Ivanov & Kuznetsoza, 2001). The particles must

have a sufficiently high thermal energy in order to counteract magnetic forces which would oth-

erwise cause agglomeration of the particles, and subsequent sedimentation from gravitational

forces (Odenbach, 2002). Stabilisation of the particles, meaning the prevention of agglomera-

tion, is achieved by either coating the magnetic grains in a surfactant (soaps, alcohols or fatty

acids (Shliomis, 1974)), thereby producing an entropic repulsion, or by double electric layer

formation, where the particle is surrounded with an electrically charged shell, producing an

electrostatic repulsion (Bozhko & Suslov, 2018; Ivanov & Kuznetsoza, 2001; Charles, 1987).

The particle size ranges between 3−20nm, and for this reason each particle is treated as a single

magnetic domain in a permanent state of saturated magnetisation (Odenbachy, 2002; Charles,

1987). Each particle is therefore modelled as a small magnetic dipole in the carrier liquid with

a net magnetic moment (Odenbach, 2002; Bozhko & Suslov, 2018; Ivanov & Kuznetsoza, 2001).
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If no magnetic field is present their net magnetisation is zero and the particles are randomly

orientated. Yet, upon the application of a magnetic field, the dipoles move to align with the

field. For a sufficiently strong field, thermal agitation is overcome and the particles’ moments

will be aligned with the field, having reached the saturation magnetisation (Rosensweig, 1985).

This is analogous to that of a paramagnetic gas or liquid. Paramagnetic substances are com-

posed of atoms or ions with net magnetic moments, a result of unpaired electrons within the

atoms (ions) (Cullity et al., 2015). They are weakly magnetised and exhibit a process called

paramagnetism, where the individual particles align with an applied field, with no long-range

order between the particles. Ferrofluids display superparamagnetism, a behaviour analogous

to paramagnetism, but the magnetisation occurs for a much lower field strength (Rosensweig,

1985). In fact, a ferrofluid’s degree of magnetisation is 103 − 104 larger than those of param-

agnetic materials, resulting in them being more receptive to ordinary permanent magnets or

electromagnets (Bozhko & Suslov, 2018; Ivanov & Kuznetsoza, 2001).

The mechanism of alignment of the moment with an applied field and subsequent relaxation

when the field is removed, depends on whether the particle is classified as either magnetically

hard or weak. This is determined by the size of the particle, the specific anisotrophy energy

of the ferromagnetic material, and the viscosity of the carrier liquid (Muller & Liu, 2002).

In general, smaller particles are classified as magnetically weak particles, and larger particles

classified as magnetically hard. The Neel process of relaxation is said to occur in magnetically

weak particles, whereby the magnetic moment rotates within the particle, while a Brownian

relaxation process occurs in magnetically hard particles, in which the whole particle rotates

to align with the applied field. Specifically, it is found that the relaxation process becomes

Brownian for particles with a diameter greater ∼ 13nm (Odenbach, 2004). In reality, both

Brownian and Neel processes occur as a real ferrofluid has a variety of particle sizes (Muller

& Liu, 2002; Bozhko & Suslov, 2018; Odenbach, 2002). Characterising the way in which the

particles align with an applied field, and the subsequent behaviour of the magnetisation of the

ferrofluid, determines the complexity of the governing equations. The magnetisation of fer-

rofluids has been studied extensively theoretically and experimentally, and models have been
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derived to best describe the magnetisation of a ferrofluid. We now outline some (but not all)

methods of describing the magnetisation of ferrofluids.

It should be noted that when a ferrofluid is subject to temperature gradients, the magneti-

sation process will respond differently. The equations take a different form for a non-isothermal

ferrofluid subject to temperature changes, and different processes occur, for example thermo-

magnetic convection. This is not considered here and the reader is advised to read Bozhko &

Suslov (2018) for the theory on this.

1.2.1 Magnetisation characteristic diagrams

Figure 1.3: Diagram adapted from Figure 1 in Zelazo & Melcher (1969). The magnetisation
density M is plotted against the magnetic field strength H. The inserts of the original figure
have been removed.

For a homogeneous liquid sample, magnetisation characteristic diagrams can be produced,

where the magnetisation density is plotted as a function of the field density, starting from an

initial magnetisation, and reaching a saturation magnetisation as the magnitude of the field

strength is increased. The initial susceptibility is often given by

χ0 =
1

µ0

∂M

∂H

∣∣∣∣
H=0

, (1.1)
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where µ0 is the magnetic permeability, while M and H are the magnitude of the magnetisation

and applied field, respectively (Rosensweig, 2002). Figure 1.3 is an example of a magnetisation

characteristic diagram, adapted from Figure 1 in Zelazo & Melcher (1969). If it is assumed

that the magnetic susceptibility χ depends on H, you can assign relationships for M and H by

fitting the data from such plots for specific χ in known ferrofluids (Zelazo & Melcher, 1969).

1.2.2 Quasi-stationary theory

For sufficiently low concentrations of magnetic particles, effects of magnetic inter-particle in-

teraction can be neglected (Bozhko & Suslov, 2018; Jansons, 1983), and the particles can be

treated as small thermally agitated permanent magnets in a carrier liquid. This is named quasi-

stationary theory (Shliomis, 2002), and is used in many works; Rosensweig (1985); Zelazo &

Melcher (1969); Yecko (2009, 2010), to name a few.

Although the initial susceptibility of a ferrofluid is significantly larger than a paramagnetic fluid,

upon assuming quasi-stationary theory, the magnetisation can be described using Langevin’s

equation for paramagnetic systems;

M =Ms

(
coth(α)− 1

α

)
, α = µ0mH/kBT (1.2)

whereMs = CM0 is the saturation magnetization of the ferrofluid, C the volume concentration

of suspended magnetic material,M0 the spontaneous magnetisation, α is the Langevin parame-

ter, kB the Boltzmann constant, temperature T and m the total magnetic moment (Odenbach,

2009; Jansons, 1983). (1.2) assumes that the magnetisation is independent of the flow, and

the magnetisation relaxes instantaneously to an equilibrium value, but note that the flow may

depend on the magnetisation (Shliomis, 2002).

Moreover, in the low-magnetic field limit, if the relaxation rate is instantaneous on the same

time scale as the dynamic processes of interest, then the magnetisation M and applied field

H can be treated as sensibly co-linear (Rosensweig, 2002; Muller & Liu, 2002). The propor-
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tionality factor is named the magnetic susceptibility χ (Erne et al., 2003). By considering M

co-linear with H , the magnetisation is then determined at a given moment by an instantaneous

value, and thus the relaxation time is considered to be zero. Consequently, when the ferrofluid

is subject to a field H , it is magnetisable to a linear approximation ∼ χH. If χ is non-constant,

a force acts throughout the fluid often proportional to H2∇χ. However, for constant χ, the

forcing does not act in the bulk of the fluid, and will only act at an interface where there exists

a jump in χ, say between a ferrofluid and a different medium (e.g. the Rosensweig normal-field

instability in Figure 1.1 (Arrighi et al., 2021)), or two ferrofluids with different magnetic sus-

ceptibilities (see Chapter 3).

Assuming the magnetisation is co-linear with the field at all times, is named the quasi-equilibrium

theory and is used often in the literature; Cowley & Rosensweig (1967); Rosensweig (1985);

Bashtovoi & Krakov (1978); Arkhipenko et al. (1980); Doak & Vanden-Broeck (2019); Ran-

nacher & Engel (2007); Canu & Renoult (2021). However, Quasi-stationary theory is valid

only for colloids of Neel particles and the magnetisation can not be hysteric or rate-dependent

(Shliomis, 2002). Moreover, for sufficiently strong applied fields or for large volume concentra-

tions of magnetic particles, one can no longer neglect interactions between magnetic moments

of the particles (Shliomis, 1974). Since ferrofluids have a mix of particle sizes, and therefore

will have magnetically hard particles, as well as weak particles, there is an importance in incor-

porating inter-particle interactions and internal rotation in the ferrohydrodynamic equations,

due to the “magneto-viscous effect” and chain formation.

1.2.3 The magneto-viscous effect

It has been known since the work of Rosensweig et al. (1968) that a ferrofluid viscosity can

change when subject to a magnetic field, and it has been shown experimentally to occur for

both high (Rosensweig et al., 1968) and low (McTague, 1969) concentrated ferrofluids. This

is now commonly known as the magneto-viscous effect. In the absence of a magnetic field,

suspended particles in a vortical flow will rotate in accordance with the vorticity, generating
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a mechanical torque on the particle (Shliomis & Morozov, 1994). When the ferrofluid is then

subject to a magnetic field, the particles move to align their individual moment with the field,

a process achieved by either a Neel relaxation process or a Brownian relaxation process. The

latter generates a magnetic torque on the particle, since the whole particle rotates to align.

Consequently, if the vorticity and field are not parallel, there is a competition between the

mechanical and magnetic torque, increasing flow resistance, and generating a viscous friction

(Shliomis & Morozov, 1994; Odenbach, 2004).

Furthermore, an alternating field will induce “rotational swings” in the particles. For a sta-

tionary ferrofluid, these average out to give a zero mean angular velocity of the particles, but,

once vorticity is present in the ferrofluid, the mean angular velocity becomes non-zero. For slow

oscillations of the field, there is an increase in viscosity as the angular velocity of the magnetic

particles is less than the angular velocity of the flow. The magnetic torque prevents the free

particle rotation with the fluid, resulting in a dissipation of kinetic energy as the liquid has to

flow past the particle. For sufficiently fast oscillations, the particles rotate faster than the local

fluid rotation rate, creating a “spin up” of the flow. The energy from the field is converted to

kinetic energy, and the viscosity reduces (Shliomis & Morozov, 1994; Shliomis, 2002).

Aggregation of particles can occur if the particles aren’t spherical, by an increase of parti-

cle concentration, an increase in field strength, or a decrease in temperature (Bozhko & Suslov,

2018; Camp et al., 2021). Under certain conditions, aggregation can cause chains to be formed

(Shliomis, 1974), which in turn produces large changes in viscosity (Odenbach, 2004). The onset

of chain formation is governed by an “interaction parameter”, which measures the ratio of the

magnitude of the inter-particle interaction between two particles, to the thermal energy of the

particles (Odenbach, 2004; Camp et al., 2021). The chains have high net magnetic moments,

and the susceptibility of the ferrofluid is increased, invalidating the Langevin equation. The

chains can then form rings if the “interaction parameter” exceeds a critical value. The rings

have negligible net moments, and the Langevin relation is applicable again (Camp et al., 2021).

Aggregation utilises both Brownian and Neel mechanisms. It is postulated by Odenbach & Raj
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(2000) that although large particles are dominant in causing magnetoviscous effects, chains of

smaller particles may be formed, and these can then produce effects similar to those of large

particles. Odenbach (2004) supports this experimentally, showing that the magnetic hard par-

ticle concentration in a ferrofluid is not sufficient in producing the large changes in viscosity

seen at high fields, and it is therefore assumed that this is a product of magnetic inter-particle

interactions forming chains of both hard and weak particles.

1.2.4 Modelling a non-instant magnetisation relaxation and inter-

particle interactions

Various models exist to describe the magnetisation of a ferrofluid when there is not an instant

relaxation of magnetisation with the field, or when inter-particle interactions occur. Shliomis

(2002) produced a model taking into account the “visible” (Brownian relaxation process) and

“internal” (Neel relaxation process) rotations of the particles. Rosensweig (2002) employed

an irreversible thermodynamic framework to an applied field in a conductive ferrofluid with

internal rotation, to model a non-instantaneous alignment of the magnetic moments. Other,

more complicated models, have been developed that expand on Debye theory (Debye, 1929)

and effective-field theory (Shliomis, 2002; Muller & Liu, 2002). Namely, Ivanov et al. (2016)

uses a modified mean-field approach to model inter-particle dipole-dipole interactions, intro-

ducing an additional term into the Fokker-Plank equations. To describe the dynamics caused

from alternating fields, Yoshida & Enpuku (2009) uses a modification to Debye theory and

utilises the Fokker-Planck equations, but does not take into account inter-particle dipole-dipole

interactions. Rusanov et al. (2021) expands on Ivanov et al. (2016) and Yoshida & Enpuku

(2009), and models the effects of field amplitude and inter-particle interactions by a modified

mean-field approach. I have not gone into detail on the models here, as the complexity of

the models and the computational analysis necessary to employ them, meant quasi-stationary

theory was preferable for the analysis performed in this thesis.
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1.2.5 Our approach

We use a quasi-equilibrium approach to model the magnetisation. Although it may not fully

capture the ferrofluid dynamics on all scales, it is often assumed in the literature that the

magnetisation is colinear with the field at all times. Despite the simplification of the equations,

it can still produce accurate results, and many of the works discussed in Section 1.5 use quasi-

stationary theory. Moreover, it can be assumed that the concentration of particles is sufficiently

low to neglect particle interactions and magneto-viscous effects in the analysis. Furthermore,

we assume the ferrofluid is isotropic and neglect thermal effects.

1.3 Applications

Magnetic fluids are advantageous to many disciplines. They can be directed to an area or held

in place by a magnetic field, they can heat up an intended area by their ability to absorb elec-

tromagnetic energy, as well as having the properties of a viscous liquid (Scherer & Figueiredo

Neto, 2005). Ferrofluids are preferable, as they are manipulated with a relatively low field

strength in comparison to a paramagnetic fluid, minimising physical constraints for a desired

application, as well as energy costs. Furthermore, a wide range of carrier liquids can be used

for the synthesis of ferrofluids, and thus the desired viscosity, pressure and temperature of the

liquids can be chosen accordingly for each individual application (Charles, 1987).

Ferrofluids are most commonly used for dynamic sealing and heat dissipation in industrial

applications. Dynamic sealing with a ferrofluid, for example in the hard discs of computers,

allows the interior to be protected without restricting movement. Ferrofluids conduct heat and

they can be held in place by a magnetic field without the need for structural supports and allow

for movement of the object in question, where a solid conductor could block the functionality

of the equipment. For example, the coil of an audio speaker is commonly surrounded by a

ferrofluid, and the set up is shown by a simple diagram in Figure 1.4 (Rene, 2019). High vol-

umes can be reached, as the ferrofluid dissipates the thermal energy. Moreover, the ferrofluid
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also dampens unwanted resonances in the loudspeaker, and is often used in other systems for

vibration dampening, such as stepper motors (Scherer & Figueiredo Neto, 2005). Due to their

receptivity to a field, they are useful to ink-jet printing (Fattah et al., 2016; Charles, 1987) and

3-D printing ( Löwa et al., 2019), where the jet disintegrates into drops, which are then directed

by a magnetic field. Other industrial applications include actuators, modulators of laser radia-

tions, sensors, power transformers and converters, and solar collectors (Bozhko & Suslov, 2018).

Figure 1.4: Schematic of the mechanism within an audio speaker. Image taken from Rene
(2019).

Biological applications include hyperthermia treatment for cancer, and magnetic drug target-

ing. For the former, a ferrofluid is injected into a desired area of the body, for example at

a tumour site, and by applying a high frequency, alternating current field, the ferrofluid will

heat up and the heat released will weaken the malignant tissue (Asfer et al., 2017; Zhang et

al., 2007; Scherer & Figueiredo Neto, 2005). Magnetic drug targeting with ferrofluids has been

investigated experimentally (Asfer et al., 2017) and theoretically (Voltairas et al., 2002; Gonella

et al., 2020), and allows for a localised and generally non-invasive treatment in various medical

areas; early diagnosis, therapeutic treatments, and treatment for diseases, in particular cancer

therapy (Gonella et al., 2020). Nanoparticles are bounded with the required drug, injected into

the blood, and then directed to the target area by a field. The field is generated either by a

permanent magnet, or an electromagnet positioned directly beneath the area (Asfer et al., 2017).
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The geometry, configuration of the applied field and ferrofluid, and other parameters of the

system will vary with each application. Theoretical analysis is therefore necessary in determin-

ing the stability of various geometrical configurations, and the possible parameter ranges for a

chosen application.

1.4 Outline

The relevant governing equations for the analysis performed in this thesis are given in Chapter

2. Chapters 3-6 investigate the linear stability of ferrofluid equilibria subject to non-uniform

fields. Chapter 3 determines the stability of a Newtonian ferrofluid centred on a current carrying

wire, surrounded by another ferrofluid of a different magnetic susceptibility. Three-dimensional

disturbances are considered, and an analytical solution given to the linearised Navier-Stokes

equations. The associated growth rate of the disturbance is determined. Chapter 4 considers

one ferrofluid with a continuous radially-varying susceptibility, centred on a current-carrying

wire. A stability criterion is obtained for three-dimensional disturbances to the system. In

both Chapter 3 and 4, it is shown an axial field can dampen unstable disturbances. Chapter

5 investigates the stability of an equilibrium in a planar configuration. A ferrofluid is between

two channel walls, subject to a non-uniform field applied normal to the walls. The susceptibility

of the ferrofluid and the field vary normal to the walls. The system is proven to be unstable,

but it is shown that by applying a rapidly rotating field, the unstable modes can be dampened.

In Chapter 6 the stability of a general volume of ferrofluid in a stationary state, whose mag-

netic susceptibility varies spatially, subject to a non-uniform magnetic field, is investigated. A

stability condition is determined, provided the susceptibility varies slowly spatially within the

volume. In Chapter 7 concluding remarks are given, as well as the potential applications of the

analysis performed. Additionally, extensions and future work are discussed.
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1.5 Relevant literature

If the magnetisation characteristics of a ferrofluid are linear, then there is a direct analogue be-

tween a ferrofluid subject to a magnetic field in ferro-hydrodynamics and a dielectric exposed to

an electric field in electro-hydrodynamics (EHD) (Zelazo & Melcher, 1969; Rosensweig, 1985).

Provided the dielectric is current-free, and the electric field potential, the electric stress is anal-

ogous to the ferrofluid stress tensor under quasi-equilibrium theory. The dielectric constant is

replaced with 1 + χ, the electric permittivity of free space replaced with the magnetic permit-

tivity of free space, and the electric field replaced with H (Stone et al., 1999). Consequently,

certain ferro-hydrodynamic problems have been answered in the EHD literature, for example,

drop behaviour of a ferrofluid and dielectric fluid is discussed by Basaran & Wohlhuter (1992)

and Stone et al. (1999). Figure 1.5 (Andelman & Rosensweig, 2009) shows the similarity in pat-

tern formation of a ferrofluid subject to a magnetic field and a dielectric subject to an electric

field. The analogy has limitations in that the effects on a polarizable fluid from a electric field is

of much lower magnitude than the effects of a magnetic field on a ferrofluid (Rosensweig, 1985).

Cowley & Rosensweig (1967) argue that although the classic normal-field instability to the free

surface between two fluids (one magnetic) could be analogous to dielectrics theoretically, the

experiments for a ferrofluid interface show a stable interface is reached that exhibits a regular

periodic structure of peaks, as shown in Figure 1.2 (Andelman & Rosensweig, 2009). Moreover,

ferrofluids exhibit nonlinear magnetisation characteristics, and in general, EHD works consider

linear polarizable material. Saying this, Basaran & Wohlhuter (1992) consider the effect of non-

linear polarization on drop deformation, describing the nonlinear polarization with a Langevin

equation. In this case, the governing equations for the deformation of the drop are the same for

a dielectric liquid in an applied electric field, and a ferrofluid in an applied magnetic field, and

therefore the results of Basaran & Wohlhuter (1992) are applicable to both. Nevertheless, there

is limited literature on nonlinear polarization mediums in EHD. To the best of my knowledge,

the configurations considered in this thesis do not have a counterpart in the EHD literature.
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Figure 1.5: Figure taken from Andelman & Rosensweig (2009) showing photos (7cm2 in size)
of a labyrinth instability in (a) A ferrofluid subject to a magnetic field and (b) A dielectric oil
subject to an electric field

In Chapter 3, the first configuration considered is a ferrofluid column centred on a current-

carrying wire in a cylindrical domain, surrounded by another ferrofluid of a different suscepti-

bility. The instability of liquid jets and cylindrical columns of ideal fluids has been rigorously

researched for over a century, since the experimental work of Plateau (1873), which in turn

motivated the theoretical investigation by Rayleigh (1878). Rayleigh (1878) used an energy

argument to show that an axisymmetric liquid jet in a gas medium is unstable to axisymmet-

ric disturbances of wavelengths larger than the radius of the jet. Rayleigh then analysed the

effect of inertia (Rayleigh, 1892b) and viscosity (Rayleigh, 1892a) on the stability of a jet, by

defining a stream function, perturbing the system and seeking separable solutions of the new

surface, thereby producing a dispersion relation, supporting the result of the energy argument.

This was followed by many works. Christiansen (1955) analysed the more general case of no

axisymmetry with inertial effects and found that axisymmetric modes were the most unstable.

Christiansen & Hixson (1957) investigated the stability of an inviscid column of fluid, sur-

rounded by another inviscid fluid, theoretically and experimentally. Tomotika (1935) derived

the equations for the stability of a viscous jet in a viscous medium, and obtained an explicit

expression for the dispersion relation in the Stokes limit. Following Tomotika (1935), Meister

& Scheele (1969) investigated numerically the growth rate for the full Navier-Stokes equations.

In the absence of a magnetic field, a ferrofluid jet behaves just as a Newtonian fluid jet, and
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is unstable due to surface tension. However, in the presence of a sufficiently strong magnetic

field the system can be stable. Rosensweig (1985) shows an inviscid axisymmetric jet is linearly

stable to axisymmetric disturbances in the presence of a uniform axial field, generated by posi-

tioning a solenoid co-axially to the jet. Bashtovoi & Krakov (1978) was the first to consider the

effect of a multi-component field on an axisymmetric ferrofluid jet, surrounded by a vacuum.

They assume from the outset that the potential field satisfies the governing equations and does

not disturb the axial symmetry of the jet. An example given, has radial and azimuthal com-

ponents of the field behaving as the reciprocal of the radius, and constant axial components.

For solely a radial field, the axisymmetric disturbances are proven to be the most unstable. If

a tangential field is applied, with components in both the azimuthal and axial directions, the

critical values for the onset of instability vary with the form of the field, and interestingly, the

most unstable modes are not perpendicular to the tangential field, as might be expected. Note

that, the radial component of the field solution given by Bashtovoi & Krakov (1978) could be

generated by a line source at r = 0, but physically this is challenging to produce. The azimuthal

component is singular at r = 0, and in contrast to electrostatics, a current running along the

axis of the cylinder can produce such a field. Thus, subsequent works considered a column of

ferrofluid centred on a current carrying wire. The current produces an azimuthal field, resulting

in a magnetic stress at the interface of the ferrofluid with the surrounding medium, which can

stabilise the system. The critical parameter is the magnetic Bond number, B, which measures

the ratio between the capillary pressure and the magnetic forcing from the current through the

wire. The linear stability of a ferrofluid jet centred on a current-carrying wire has been studied

in the literature but with limiting assumptions.

Arkhipenko et al. (1980) consider axisymmetric disturbances to an irrotational, inviscid fer-

rofluid jet, and show increasing the current such that B > 1 produces a stable system. Ran-

nacher & Engel (2006) considers non-axisymmetric disturbances too, finding only axisymmetric

modes are unstable for a non-magnetic fluid surrounding the ferrofluid. The analysis performed

by Arkhipenko et al. (1980) and Rannacher & Engel (2006) is for an irrotational, inviscid sys-

tem, but the experimental work performed by Arkhipenko et al. (1980) and Bourdin et al.
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(2010), show the development of the instability is on a longer time-scale than the theoretical

results, suggesting viscous effects are important. Cornish (2018) considers the highly viscous

limit and Canu & Renoult (2021) studies a Newtonian ferrofluid jet, surrounded by a New-

tonian non-magnetic fluid. Both investigate axisymmetric disturbances only and the results

obtained by Canu & Renoult (2021) show that accounting for viscosity better agrees with the

experimental results of Arkhipenko et al. (1980) and Bourdin et al. (2010), than the inviscid

system. Canu & Renoult (2021), like Bashtovoi & Krakov (1978), consider fields in the axial

and radial directions, as well as the azimuthal direction, finding an axial field can dampen

unstable disturbances, but a radial field can destabilise the system. The analysis by Canu &

Renoult (2021), although the most developed of the literature, is relevant only if the outer-fluid

is non-magnetic. Arkhipenko et al. (1980) briefly discusses the outer-fluid as a magnetisable

liquid, but the analysis and results obtained focus on the outer fluid being a non-magnetic gas.

Korovin (2001) and Korovin (2004) do consider the surrounding liquid being a ferrofluid, but

with a lower susceptibility than the inner fluid. Korovin (2001) considers the outer ferrofluid be-

ing inviscid and in an unbounded domain. Whereas, Korovin (2004) considers both ferrofluids

as viscous but the outer fluid filling a cuvette, rather than an infinite domain. The dispersion

relation for axisymmetric disturbances is derived using a modified equation of motion, much

simpler than the full Newtonian problem.

Similar results are found in EHD. When the inner fluid is a ferrofluid and the outer fluid

non-magnetic, the magnetic susceptibility could be treated as continuous radially such that

∼ dχ/dr > 0. Since the magnetic forcing behaves ∼ H2∇χ (under quasi-equilibrium the-

ory), the magnetic field gradient is directed to the center, and there is a compression of the

column of ferrofluid similar to the “pinch effect” in plasmas (Bashtovoi & Krakov, 1978). In

dielectrics, a jet of charged fluid will be unstable due to capillary and charge relaxation forces

but a suitably strong electric field can dampen disturbances. Nayyar & Murty (1960) and

Goldman et al. (1997) study, respectively, the stability of an inviscid and viscous dielectric

liquid column, subject to a longitudinal electric field. The first uses an energy argument to

show the electric field has a stabilising effect. The latter considers axisymmetric perturbations
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to the system and produces a dispersion relation, showing viscous dissipation and dielectric

forces at the interface work to stabilise the system. A crucial difference between the dielectric

work on jets and the ferrofluid work is the presence of a wire and the associated azimuthal field.

An extension to previous works is performed in Chapter 3. We determine the linear stabil-

ity of a column of ferrofluid, centred on a current-carrying wire, surrounded by a ferrofluid with

a different magnetic susceptibility, where both the susceptibilities are modelled as constant. For

constant susceptibilities, the magnetic forcing acts as a stress at the interface and is not felt

in the bulk of the fluids. We consider three-dimensional disturbances to the full Navier-Stokes

equations, and obtain an analytic expression for the respective growth rate of the disturbance

for arbitrary Reynolds number. In the inviscid and viscous limits the growth rate is given

explicitly and a stability condition is determined. For arbitrary Reynolds number, the implicit

expression for the growth rate is solved numerically using a root solver, and the results given

for a range of different parameters of the system. It has been shown theoretically (Rosensweig,

1985; Canu & Renoult, 2021) and experimentally (Bashtovoi & Krakov, 1978) that an axial

field will stabilise axisymmetric disturbances to a ferrofluid jet surrounded by a vacuum, and

Kazhan & Korovin (2003) show an axial field will dampen unstable modes for a non-magnetic

viscous thread surrounded by a ferrofluid. We prove an axial field stabilises all disturbances of

our system, with finite wave length in the axial direction.

Some works have used non-linear theory to analyse the behaviour of a ferrofluid jet. Ran-

nacher & Engel (2006) shows, in the long-wave limit, axisymmetric surface deformations can

propagate at the surface, but non-axisymmetric disturbances always dissipate. They also in-

vestigate whether effects of non-linearity and dispersion can balance each other to give rise to

axisymmetric soliton solutions at the interface. Blyth & Parau (2014) use a fully non-linear,

numerical model to show axisymmetric solitary waves propagate at the surface of an inviscid

column of ferrofluid and compare their results with the experimental work by Bourdin et al.

(2010), who show the existence of axisymmetric periodic and solitary waves at the interface of

a ferrofluid jet. Doak & Vanden-Broeck (2019), as well as studying the linear stability, use a
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numerical model to find stable travelling wave solutions on an inviscid ferrofluid jet. Cornish

(2018) uses weakly non-linear stability theory and long wave theory for both a highly viscous

and inviscid axisymmetric jet, studying the resultant drop formation. In this thesis, we focus

solely on linear stability analysis.

In Chapter 3 we find that if the outer fluid is more magnetic than the inner fluid, the sys-

tem is unstable as a result of magnetic forcing generated from the current in the wire, as well

as capillary forces. Whereas, when the inner fluid is more magnetic, the magnetic forcing can

dampen the unstable modes caused by surface tension. Zelazo & Melcher (1969) consider two

ferrofluids, both whose susceptibilities have a non-linear dependence on the non-uniform ap-

plied field, between two current sheets. When the magnetic susceptibility is non-uniform, the

magnetic forcing is felt in the bulk of the ferrofluid, but Zelazo & Melcher (1969) assume a form

of the force density, such that the forcing remains confined to the interface. They implement

a quasi-one-dimensional model, transforming a cylindrical geometry to a planar geometry, and

use a Boussinesq approximation to obtain a dispersion relation, showing that when the field

decreases upwards, and the stronger ferrofluid is the lower fluid, only capillary forces are desta-

bilising. Yet, if the stronger ferrofluid is the upper fluid, both capillary and magnetic forcing

are destabilising, implying that the magnetic force is destabilising when the highest region

of susceptibility does not coincide with the highest region of field. Indeed, when a magnetic

fluid is subject to an inhomogeneous field, the magnetic particles are attracted to regions of

strongest field, obtaining a minimum energy configuration (Scherer & Figueiredo Neto, 2005).

In the system in Chapter 3, the azimuthal field produced by the current in the wire decreases

inversely with radius. Consequently, the magnetic forcing is destabilising when the ferrofluid

with the highest susceptibility, is not in the region of strongest field. This motivates the stabil-

ity analysis of Chapter 4, where a ferrofluid with a continuous radially-varying susceptibility,

centred on a current-carrying wire is investigated. A stability condition is derived, depending

on the sign of the gradient of the field strength with respect to the susceptibility, in particular

dχ/dr > 0 produces an instability. Moreover, it is shown that an axial field will suppress all

disturbances of finite wavelength.
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The results of Chapter 4 prompt the investigation of the linear stability of other configurations

where the magnetic susceptibility and field are non-uniform. In Chapter 5 a planar configu-

ration is considered, where a stationary state is found by considering equipotential surfaces of

zero-mean curvature. For a planar domain, it is well-known that a layer of ferrofluid with a

non-magnetizable fluid above it, experiences destabilising forces from a uniform field applied

normal to the interface of the two fluids (Cowley & Rosensweig, 1967). In the EHD literature,

Li et al. (2007) investigate the stability of a two-fluid interface between two walls, subject to a

normal electric field, where the lower wall is grounded and the upper wall has a constant electric

potential. They find the configuration is unstable for perfect dielectrics, a result that holds for

the analogous system of two ferrofluids with linear magnetic susceptibilities, but not necessarily

for non-linear susceptibilities. Yecko (2009) and Yecko (2010) consider a Poiseuille flow in an

analogous set up to Li et al. (2007), but with the lower fluid a ferrofluid with a non-linear

susceptibility, and a uniform field is applied at some orientation to the interface. They assume

a Langevin relation for the magnetic susceptibility, and allow the susceptibility to depend on

the applied field. Despite the susceptibility being non-linear, Yecko (2009) and Yecko (2010)

assume a form of the magnetic stress tensor such that the forcing remains confined to the in-

terface, rather than in the bulk of the fluids. Yecko (2009) initially considers linear material,

and upon adding a non-linearity approximation to the susceptibility, different stability regions

arise, with a greater impact to the viscous regime. For a linear susceptibility and a sufficiently

large strength of field, there is an instability for all orientations of the field. If there exists an

unstable mode, a tangential orientated field is more unstable than a normal field. Moreover,

as the orientation of the field is varied, unstable modes are dampened, but modes that were

stable are rendered unstable. They find an analogy of Squire’s theorem holds, namely that two

dimensional modes are the most unstable. Yecko (2009) varied the magnetic parameters only,

and Yecko (2010) goes further by also varying thickness and viscosity of the layers. Moreover,

Yecko (2010) consider a fully non-linear magnetic material but, in light of the results of Yecko

(2009, 2010) only considers two-dimensional disturbances. Yecko (2010) considers normal or

parallel fields applied to the interface and shows that both normal and parallel fields to the
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interface will produce an instability, but a parallel field will produce a smaller growth rate.

The equilibrium found in Chapter 5 is such that the ferrofluid is between two parallel walls,

subject to a non-uniform magnetic field acting normal to the walls, where the susceptibility

and field vary normal to the channel walls. It is proven that this configuration is unstable to

all three-dimensional disturbances, and a method of stabilising the system is investigated.

It is known that a uniform field applied parallel to the plane interface between a ferrofluid

and a non-magnetic fluid will suppress linearly unstable modes at the interface whose wave

vector is parallel to the field, and Zelazo & Melcher (1969) shows this for a non-uniform field

too. Yet, for a three-dimensional system, modes perpendicular to the field will not be dampened

(Rannacher & Engel, 2007). Korovin (2014) considers the stability in the inviscid limit of the

classical Rosensweig instability, subject to a tilted piecewise-constant magnetic field, and shows

that in the presence of a horizontal field, a stronger vertical field is needed to produce the insta-

bility. Dorbolo & Falcon (2011) show experimentally and theoretically, a horizontal magnetic

field acting on sinusoidal waves at a fixed frequency produces a monotonic dispersion relation,

but observe that in the nonlinear regime wave turbulence occurs. In a channel system, Zelazo

& Melcher (1969) and Yecko (2010) both show that adding a constant field down the channel

does not stabilise all modes, and we demonstrate that a constant field across the channel is not

sufficient in stabilising the system in Chapter 5 either. Rannacher & Engel (2007) employ a

rotating field to stabilise the classical Rayleigh-Taylor instability, for a ferrofluid as the upper

(more dense) fluid. By Floquet theory, they find a rotating field will stabilise the modes where

the modulus of the wave-number exceeds a threshold value, but otherwise the modes remain

unstable. In Chapter 5 it is proven that a constant field applied across the domain will not

dampen all disturbances, and neither will an alternating-current field. Yet, a rapidly rotating

field can stabilise the system for a sufficiently large field strength.

The analysis of Chapter 4 and 5 both agree that the stability of the system is determined

by the sign of the gradient of the applied field strength with respect to the susceptibility, for

a non-uniform field and susceptibility. Chapter 6 proves the stability of a stationary state of a
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general volume of ferrofluid, whose susceptibility varies slowly spatially, is indeed determined by

the sign of the gradient of the magnitude of the applied field with respect to the susceptibility.

Lastly, in Chapter 7 a stability condition for a general configuration of a ferrofluid subject to

a magnetic field is discussed.
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Chapter 2

Governing equations

2.1 Introduction

Here we outline the relevant equations for the analysis that follows in the subsequent chapters.

Ferrofluids are generally modelled as non-conducting fluids and obey Maxwell’s equations with

free current density and Maxwell’s displacement current deemed negligible (Rosensweig, 1985).

The stress tensor for a ferrofluid consists of the hydrodynamic stress tensor for a viscous fluid,

Maxwell’s stress tensor and extra terms unique to ferrohydrodynamics. The full derivation,

along with the derivation for the boundary conditions can be found in Rosensweig (1985).

2.2 Maxwell’s equations

In ferrohydrodynamics the free charge and electric displacement are regarded as absent in

Maxwell’s equations. Relevant here is Ampere’s law,

∇×H = Jf +
∂D

∂t
, (2.1)

Gauss’ magnetisation law,

∇ ·B = 0, (2.2)
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and Faraday’s law,

∇×E =
−∂B
∂t

, (2.3)

where H is the magnetic field, Jf is the free current density, D the electric displacement field

and B the induced magnetic field. For a non-conducting ferrofluid the electric conductivity σ

and Jf are zero. Consequently, in ferrohydrodynamics (2.1) becomes

∇×H = 0, (2.4)

and (2.2) remains the same. For a magneto-static system (2.3) is irrelevant. However, in

Chapter 5 a rapidly rotating magnetic field is employed and (2.3) should be considered in the

governing equations. We address the effects of a time-varying magnetic field here, rather than

in Chapter 5. It proves helpful to consider the magnetic induction equation for a small magnetic

Reynolds number, namely

∂B

∂t
=

1

µ0σ
∇2B. (2.5)

Observe from (2.5), for a length scale L and a time scale T of a system, if µ0σL
2 ≪ T then

the magneto-static limit of Maxwell’s equations remains valid in governing the dynamics of the

system. In Chapter 5, a time scale of 1/ω is used, where ω ≫ 1, and therefore T ≪ 1. Yet,

σ = 0, resulting in ωµ0σL
2 ≪ 1. Consequently, the relevant Maxwell’s equations are (2.2) and

(2.4), with (2.3) deemed negligible.

(2.4) allows us to define a magnetic potential, ϕ, such that

H = ∇ϕ. (2.6)

Moreover, B is given by

B = µ0(H +M ), (2.7)

where µ0 is the permeability of free space, and M the magnetisation.
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2.3 Magnetisation colinear with applied field

For a sufficiently low concentration of magnetic particles, or if the magnetic relaxation of the

particles is slow in comparison with the other processes of interest, it can be assumed that M

is colinear with H , named quasi-equilibrium theory. Under this approach, it is assumed that

M = χH , (2.8)

where χ is the magnetic susceptibility of the ferrofluid. χ can depend both on position and

explicitly on the magnitude of the magnetic field H, that is

χ ≡ χ(x, H). (2.9)

χ may not depend explicitly on H, and therefore χ ≡ χ(x). However, if H is a function of

position, it may be such that χ can be written in terms ofH, without explicitly depending onH.

(2.7) can now be written as

B = µ0(1 + χ)H . (2.10)

It follows from (2.2) that

∇·((1 + χ)∇ϕ) = 0, (2.11)

and for constant χ, ϕ satisfies

∇2ϕ = 0. (2.12)

2.4 Stress tensor for a ferrofluid

Rosensweig (1985) gives the most general form of the magnetic stress tensor for a ferrofluid as

Tm = −µ0

(∫ H

0

(
∂(vM)

∂v

)
dH +

1

2
H2

)
I+BHT , (2.13)
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where M = |M | the magnitude of M , v is the specific volume (defined as the reciprocal of

the density of the material), I is the identity matrix, and the partial differentiation is done

holding H and temperature constant. Mv represents the magnetic moment per unit mass of

the mixture. Observe that for a non-magnetisable material, the first term of (2.13) is zero, and

we retrieve Maxwell’s stress tensor in the absence of an electric field. Tm can be written as

Tm = −µ0

(∫ H

0

(
v
∂M

∂v

)
dH +

∫ H

0

MdH +
1

2
H2

)
I+BHT . (2.14)

The first integral, named the magnetostrictive pressure, can be neglected for incompressible

fluids upon assuming no changes in the physical properties or chemical structure of the ferrofluid

(Rosensweig, 1985). We do so hereon, giving

Tm = −µ0

(∫ H

0

MdH +
1

2
H2

)
I+BHT . (2.15)

The magnetic force density is obtained by

fm = ∇ ·Tm

= −∇
((

µ0

∫ H

0

MdH +
1

2
µ0H

2

)
I

)
+H(∇ ·B) +B ·∇H , (2.16)

which from (2.2) results in

fm = −∇
((

µ0

∫ H

0

MdH +
1

2
µ0H

2

)
I

)
+B ·∇H . (2.17)

For colinear field vectors, we can write

B ·∇H =
B

H
H ·∇H , (2.18)
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where here B = |B|, not the Bond number. Since H is curl free,

H ·∇H =
1

2
∇(H ·H), (2.19)

and therefore,

B ·∇H =
B

H

1

2
∇H2 = B∇H. (2.20)

Consequently, (2.17) simplifies to

fm = −∇
((

µ0

∫ H

0

MdH

)
I

)
+ µ0M∇H. (2.21)

Using an extension of the Leibniz formula such that

∇
∫ H

0

MdH =M∇H +

∫ H

0

∇HMdH, (2.22)

where ∇H is ∇ performed at constant H, reduces (2.21) to

fm = −µ0

∫ H

0

∇HMdH. (2.23)

Furthermore, assuming (2.8) results in

Tm = −
(
µ0

∫ H

0

χHdH +
1

2
µ0H

2

)
I+ µ0(1 + χ)HHT , (2.24)

and

fm = −µ0

∫ H

0

H∇HχdH. (2.25)

Note that since χ ≡ χ(x, H),

∇χ = ∇Hχ+
∂χ

∂H
∇H. (2.26)
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If χ does not depend explicitly on the field, then the integral in (2.25) is performed for constant

∇χ, to give

fm = −µ0H
2

2
∇χ. (2.27)

If χ is constant,

fm = 0. (2.28)

The stress tensor for an incompressible Newtonian fluid is given by

Tf = η
[
∇u+ (∇u)T

]
− pI, (2.29)

where η is the viscosity, u is the velocity and p the pressure of the fluid. Consequently, the

stress tensor for an incompressible, Newtonian ferrofluid is given by

T = −µ0

(∫ H

0

MdH +
1

2
H2

)
I+BHT + η

[
∇u+ (∇u)T

]
− pI, (2.30)

and assuming (2.8),

T = −µ0

(∫ H

0

χHdH +
1

2
H2

)
I− pI+ µ0(1 + χ)HHT + η(∇u+ (∇u)T ). (2.31)

The force density is

f = ∇ ·T = −∇
((

µ0

∫ H

0

MdH +
1

2
µ0H

2

)
I

)
+B ·∇H + η∇2u−∇p, (2.32)

and assuming (2.8) is

f = −µ0

∫ H

0

H∇HχdH + η∇2u−∇p. (2.33)
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2.5 Equations of motion

The Navier-Stokes equations for an incompressible fluid are

∇ · u = 0, (2.34)

ρ
Du

Dt
= ∇ ·T+ ρg, (2.35)

where ρ is the density of the fluid, g is the local acceleration due to gravity and

D

Dt
=

∂

∂t
+ u ·∇ (2.36)

is the material derivative. We neglect forces due to gravity hereon.

For T given by (2.31), ∇ ·T is given by (2.25), and (2.35) is

ρ
Du

Dt
+∇p = η∇2u− µ0

∫ H

0

H∇HχdH, (2.37)

the equation of motion, for an incompressible, isothermal, Newtonian ferrofluid, assuming (2.8)

holds.

For the analysis that follows in subsequent chapters, it will be useful to have the vorticity

equation. Taking the curl of (2.37) gives

ρ
Dω

Dt
= (ω ·∇)u+ η∇2ω + µ0H∇χ×∇H, (2.38)

where ω = ∇×u. Note that (2.38) is true when f is given by either (2.25) or (2.27). It follows

that for a stationary state χ ≡ χ(H). Here we write χ ≡ χ(H) to mean χ can be written in

terms of H. Both H and χ may depend on position so that χ can be written in terms of H,

but χ does not need to depend explicitly on H. If χ does depend explicitly on H we will state

this.
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2.5.1 Non-dimensionalising

For a given system, (2.35) can be non-dimensionalised to give

Re
Du∗

Dt∗
+∇∗p∗ = ∇2

∗u∗ +B(fm)∗, (2.39)

and

∇∗ · u∗ = 0, (2.40)

where the subscript star denotes the dimensionless variables and operators,

Re =
ρUL

η
, B =

µ0LJ
2

ηU
, (2.41)

J is the chosen scaling for H, and U ,L are the velocity and length scales of the system, respec-

tively. The scaling for p is P = L/(ηU) and the scaling for time T = L/U . When fm is given

by (2.25),

(fm)∗ =

∫ H∗

0

H∗(∇H)∗χdH∗, (2.42)

and for fm given by (2.27),

(fm)∗ =
1

2
H2

∗∇∗χ. (2.43)

Taking the curl of (2.39) gives the non-dimensionalised vorticity equation;

Re
Dω∗

Dt∗
= ∇2

∗ω∗ +BH∇∗χ×∇∗H∗. (2.44)

The chosen scalings are determined by the individual problem and are therefore different in

Chapters 3-6.

2.6 Magnetic susceptibility as a fluid property

As discussed in Section 1.2.4, there are many interpretations as how to best model the magnetic

susceptibility of a ferrofluid. Since we assume the magnetisation is colinear with the applied
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field, M = χH , we neglect effects of inter-particle interactions, and assume the magnetic

relaxation of the particles is instantaneous. Nevertheless, we allow χ to vary spatially, and

depend explicitly on H, thereby allowing for non-linear magnetisation characteristics, and for

the application of (1.2) if desired.

Zelazo & Melcher (1969) consider χ ≡ χ(αi, H), where αi are physical properties of the fer-

rofluid, and both αi and H can depend on position. They require

Dαi

Dt
= 0, (2.45)

but not the field dependent parts of χ, such that a fluid parcel retains its physical properties

over time scales of interest. For simplicity, we impose

Dχ

Dt
= 0. (2.46)

If χ does not depend explicitly on H, but solely on position, (2.45) and (2.46) are analogous.

However, for (2.46) to hold when χ depends explicitly on H, any change in χ due to its

dependence on H, must happen on a slower time scale than time scales of interest. Under this

assumption, we allow for an initial dependence of χ on H that remains fixed when the parcel

is displaced.

2.7 Boundary conditions

At a boundary we require continuity of the normal component of B and continuity of the

tangential component of H , for which the full derivations can be found in Rosensweig (1985).

In terms of H , [
µ0(1 + χ)H · n

]
= 0, (2.47)

and [
H · τ

]
= 0, (2.48)
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where n and τ are respectively the unitary normal and tangential vectors to the boundary, and

the square brackets denotes the jump across it. Thus ϕ satisfies

[
µ0(1 + χ)∇ϕ · n

]
= 0, (2.49)

and [
∇ϕ · τ

]
= 0. (2.50)

Furthermore, we require continuity of u in the normal and tangential directions;

[
u · n

]
= 0, (2.51)

[
u · τ

]
= 0, (2.52)

and a normal and tangential stress balance across a boundary;

[
n ·T · n

]
= σ∇ · n, (2.53)

[
n ·T · τ

]
= 0, (2.54)

where σ is the surface tension at the interface, T is given by (2.30), or (2.31) under the

assumption of (2.8).

2.8 Summary

From here on we assume an isothermal, Newtonian flow, and assume the magnetisation and

field are colinear. We allow the susceptibility to depend on H and position, but to be a fluid

property. Under these assumptions, the dimensional governing equations are

∇·((1 + χ)∇ϕ) = 0, (2.55)
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∇ · u = 0, (2.56)

ρ
Du

Dt
+∇p = η∇2u− µ0

∫ H

0

H∇HχdH, (2.57)

ρ
Dω

Dt
= (ω ·∇)u+ η∇2ω + µ0H∇χ×∇H. (2.58)

At a boundary [
µ0(1 + χ)∇ϕ · n

]
= 0, (2.59)

[
∇ϕ · τ

]
= 0, (2.60)[

u · n
]
= 0, (2.61)

[
u · τ

]
= 0, (2.62)

[
n ·T · n

]
= σ∇ · n, (2.63)

[
n ·T · τ

]
= 0, (2.64)

where

T = −µ0

(∫ H

0

χHdH +
1

2
H2

)
I− pI+ µ0(1 + χ)HHT + η(∇u+ (∇u)T), (2.65)

and finally,

Dχ

Dt
= 0. (2.66)
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Chapter 3

Cylindrical column of ferrofluid,

centred on a current-carrying wire,

surrounded by another ferrofluid

3.1 Introduction

The work in this Chapter appears in Ferguson Briggs & Mestel (2022a), investigating the

linear stability of a column of ferrofluid, with constant magnetic susceptibility, centred on a

current-carrying wire, surrounded by a ferrofluid of a different magnetic susceptibility. Three-

dimensional disturbances are considered and an analytic solution to the linearised governing

equations is given. The corresponding growth rate is analysed for arbitrary Reynolds number,

and a stability condition is obtained for the inviscid and Stokes regimes. Moreover, it is shown

unstable modes can be dampened by an axial field.
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3.2 Formulation

We consider a ferrofluid (fluid 1) with χ = χ(1), centred on a rigid conducting wire of radius

a, surrounded by another ferrofluid (fluid 2) with χ = χ(2), where χ(1), χ(2) are constant. Both

fluids have constant density ρ and viscosity η. We choose the cylindrical system (r, θ, z), such

that r and θ are the radial and azimuthal co-ordinates, and z points along the wire. Fluid 1

occupies the region a < r < R in the stationary state, and fluid 2 is unbounded, such that

χ = 0 for r ≤ a,

χ = χ(1) for a < r < R,

χ = χ(2) for r ≥ R.


(3.1)

A steady electric current runs through the wire, J = J0ez and produces an azimuthal mag-

netic field H = J0/2πreθ, satisfying (2.1), where ez is the unit vector in the z direction and

eθ the unit vector in the anti-clockwise, azimuthal direction. The set up is shown in Figure 3.1.

𝑎

χ	 = χ1

χ = χ2

Fluid 1

Interface between  
fluid 1 and 2 at 
𝑟 = 𝑅

𝜃

𝑱 = 𝐽!𝒆"

𝑱

𝑯 =
𝐽!
2𝜋𝑟

𝒆𝜽

Fluid 2

𝑟

𝑧χ = 0 wire

Figure 3.1: Schematic of the two-fluid system

Since χ and the pressure are piecewise constant in a stationary state, it follows that fm = 0

in (2.57). The magnetic forcing acts as a magnetic stress confined to the interface of the

two fluids, which at rest is located at r = R. Take R as the length scale, and define
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a = a∗R. We non-dimensionalise pressure as p = σp∗/R, where σ is the surface tension,

the field as H = J0H∗/2πR, and pick the time scale T = ηR/σ, such that the velocity is

non-dimensionalised as u = (σ/η)u∗. Consequently, (2.39) is

Re
Du

Dt
+∇p = ∇2u, (3.2)

where

Re =
ρσR

η2
(3.3)

and the subscripts have been dropped. The equilibrium is given by p = p
(ι)
0 , u(ι) = 0, ϕ(ι) = θ,

where ι = 0, 1, 2 for the wire, inner and outer fluid respectively. In the next section, three-

dimensional disturbances are considered to the stationary state and linear stability analysis is

performed.

3.3 Stability Analysis

We consider perturbations to the equilibrium such that the interface is located at r = S(θ, z, t)

and

S = 1 + ϵR
(
Ŝζ
)
, (3.4)

where ζ = ei(kz+mθ)+st, ϵ ≪ 1, k, m are real and positive wave numbers, Ŝ may be a complex

constant (or it could be unity) and s is the growth rate of the disturbance and could be complex.

In (3.4) the real part of the perturbation is taken, and this is done here on (and in subsequent

chapters) for the other variables, but it is not written explicitly. A schematic of the perturbed

system is shown in Figure 3.2. Neglecting terms of O(ϵ2), the normal vector to the interface

becomes

n =

(
1,−ϵimŜζ

r
,−ϵikŜζ

)T

, (3.5)

and the tangential vectors,

τ1 =

(
ϵikŜζ, 0, 1

)T

, τ2 =

(
ϵimŜζ

r
, 1, 0

)T

. (3.6)
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χ	 = χ1

χ = χ2

Fluid 1

Perturbed interface between  
fluid 1 and 2 at 𝑟 = 𝑆(𝜃, 𝑧, 𝑡)

𝜃

𝑱𝟎 = 𝐽!𝒆"

𝑱𝟎

𝑯𝟎 =
𝐽!
2𝜋𝑟

𝒆𝜽

Fluid 2

𝑟

𝑧
χ = 0

𝑯 = 𝜵𝜙(")

𝑯 = 𝜵𝜙($) In the wire 𝑯 = 𝜵𝜙(%)

Figure 3.2: Schematic of the perturbed two-fluid system

We perturb the magnetic potential such that

ϕ(ι) = θ + ϵϕ̂(ι)(r)ζ, (3.7)

and (2.55) gives

r2ϕ̂′′(ι) + ϕ̂′(ι) − (m2 + k2r2)ϕ̂(ι) = 0, (3.8)

where ′ denotes the first derivative with respect to r, and (3.8) has general solution

ϕ̂(r)(ι) = q
(ι)
1 Im(kr) + q

(ι)
2 Km(kr), (3.9)

for constants q
(ι)
1 , q

(ι)
2 , where In(Φ) and Kn(Φ) are the modified Bessel functions of the first and

second kind, respectively, with argument Φ and order n. For ϕ̂(0) regular at r = 0,

ϕ̂(0) = q
(0)
1 Im(kr), (3.10)

and imposing ϕ(2) → 0, as r → ∞ gives

ϕ̂(2) = q
(2)
2 Km(kr). (3.11)
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(2.59) and (2.60) give

(
1 + χ(2)

)
ϕ̂′(2) −

(
1 + χ(1)

)
ϕ̂′(1) + im(χ(1) − χ(2))Ŝ = 0, (3.12)

ϕ̂(1) = ϕ̂(2) (3.13)

at r = 1, and (
1 + χ(1)

)
ϕ̂′(1) − ϕ̂′(0) = 0, (3.14)

ϕ̂(1) = ϕ̂(0) (3.15)

at r = a, determining the constants q
(0)
1 , q

(1)
1 , q

(1)
2 , q

(2)
2 , given in the Appendix (A.1)-(A.4).

The pressure p(ι) and velocity u(ι), for ι = 1, 2 after the perturbation are

p(ι) = p0 + ϵp̂(ι)(r)ζ and u(ι) = ϵû(ι)(r)ζ, (3.16)

and satisfy the linearised equations (2.56) and (3.2);

∇ · û(ι) = 0 and sReû(ι) +∇p̂(ι) = ∇2û(ι). (3.17)

In component form we have

(rû(ι))′ + imv̂(ι) + ikrŵ(ι) = 0, (3.18)

r2(p̂(ι))′ = −2imv̂(ι) − û(ι) + r2(û(ι))′′ + r(û(ι))′ −
(
m2 + k̄2r2

)
û(ι), (3.19)

imrp̂(ι) = −v̂ + 2imû(ι) + r2(v̂(ι))′′ + r(v̂(ι))′ −
(
m2 + k̄2r2

)
v̂(ι), (3.20)

ikr2p̂(ι) = r2(ŵ(ι))′′ + r(ŵ(ι))′ −
(
m2 + k̄2r2

)
ŵ(ι), (3.21)
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where k̄ =
√
k2 + sRe. The general solution of (3.17) is modified from Saville (1971) and Mestel

(1966) to account for the inner wire at r = a and is given by

p̂(ι) = c
(ι)
1 Im + c

(ι)
2 Km, (3.22)

û(ι) = − 1

(sRe)2r

(
c
(ι)
1 (krIm+1 +mIm) + c

(ι)
2 (mKm − krKm+1)

)
− ik

k̄

(
c
(ι)
3 Īm+1 + c

(ι)
4 K̄m+1

)
+

2m

k̄r

(
c
(ι)
5 Īm + c

(ι)
6 K̄m

)
, (3.23)

v̂(ι) =

(
−c(ι)3 k

k̄
+ 2ic

(ι)
5

)
Īm+1 +

2im

k̄r

(
c
(ι)
5 Īm + c

(ι)
6 K̄m

)
−
(
c
(ι)
4 k

k̄
+ 2ic

(ι)
6

)
K̄m+1

− im

(sRe)2r

(
c
(ι)
2 Km + c

(ι)
1 Im

)
, (3.24)

ŵ(ι) =
−ik

(sRe)2
(
c
(ι)
1 Im + c

(ι)
2 Km

)
+ c

(ι)
3 Īm − c

(ι)
4 K̄m, (3.25)

for constants c
(ι)
1 ...c

(ι)
6 . We write In,Kn when Φ = kr and Īn, K̄n when Φ = k̄r, for the modified

Bessel functions In(Φ),Kn(Φ), but give the argument otherwise. To satisfy u(2) → 0 as r → ∞,

R(k̄) > 0 and c
(2)
1 = c

(2)
3 = c

(2)
5 = 0. The constants c

(1)
1 ...c

(1)
6 , c

(2)
2 , c

(2)
4 and c

(2)
6 are determined

by (2.61)-(2.64). Firstly,

û(1) = û(2), (3.26)

at r = 1 and

û(1) = 0 (3.27)

at r = a. For piecewise constant χ,

T(ι) = −
(
p(ι)+

µ0

2
(1+χ(ι))(H(ι))2

)
I+µ0(1+χ

(ι))H(ι)(H(ι))T +η(ι)(∇u(ι)+(∇u(ι))T ) (3.28)

and substituting (3.28) into (2.63), non-dimensionalising, substituting the perturbed variables

and linearising, we obtain

(
m2 + k2 − 1 +B(χ(1) − χ(2))

)
Ŝ = imB

(
χ(1) − χ(2)

)
ϕ̂(1) + p̂(1) − p̂(2) − 2û′(1) + 2û′(2) (3.29)
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at r = 1, where

B =
µ0J

2
0

4π2σR
, (3.30)

the magnetic Bond number. Here, B measures the ratio of magnetic forcing to capillary forcing.

B appears in (3.29) after non-dimensionalising (2.63) with the chosen scalings of the problem

given in Section 3.2. Moreover, substituting the chosen scalings into (2.41) also produces (3.30).

Similarly, (2.64) gives

v̂′(1) − v̂′(2) = 0 (3.31)

and

ŵ′(1) − ŵ′(2) = 0 (3.32)

at r = 1. The full derivation for (3.29), (3.31) and (3.32) are given in the Appendix A.2

and A.3. (3.26), (3.27), (3.29)-(3.32) determine the constants c
(ι)
1 ...c

(ι)
6 , given in the Appendix

(A.40)-(A.48).

The growth rate appears in a kinematic condition, namely

∂S

∂t
+ (u(ι) ·∇)(r − S) = 0 (3.33)

at r = S. Substituting the perturbed variables into (3.33) and linearising gives

sŜ − û(ι) = 0. (3.34)

at r = 1. Consequently, substituting û(ι) into (3.34) we obtain

s = −gF
(
f1
(
k2 +m2 − 1 +B(χ(1) − χ(2))

)
+ f2B(χ(1) − χ(2))2m2

)
, (3.35)

where g, f1, f2 > 0. g, f1, f2 are functions ofm, k, a, χ
(1), χ(2), and F is a function of k̄,m, k, a, χ(1), χ(2),

all given in the Appendix (A.37)-(A.39). Since k̄ is a function of s, F is also a function of s

and therefore (3.35) is an implicit relation which must be solved numerically for an arbitrary

Reynolds number. These results are outlined in Section 3.3.2. However, in the highly viscous
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and inviscid limits, the growth rate is given explicitly in 3.3.1 and an exact stability condition

is obtained.

3.3.1 The highly viscous and inviscid limits

In the highly viscous limit, Re → 0, F → Fv where Fv is a function no longer depending on

s and Fv > 0, given in the Appendix (A.49). Consequently, we obtain the growth rate in the

highly viscous regime, sv, by taking the limit Re→ 0 in (3.35) to give

sv = −gFv

(
f1
(
k2 +m2 − 1 +B(χ(1) − χ(2))

)
+ f2B(χ(1) − χ(2))2m2

)
. (3.36)

In the inviscid limit, η → 0, and a more appropriate scaling for time, TI , is TI =
√
R3ρ/σ.

Since TI =
√
ReT we substitute s = sI/

√
Re into (3.35), where sI is the inviscid growth rate.

Taking the limit as Re → ∞ gives F → FI/sI , where FI is a function no longer depending on

the growth rate and FI > 0, given in the Appendix (A.50). We obtain

s2I = −gfI
(
f1
(
k2 +m2 − 1 +B(χ(1) − χ(2))

)
+ f2B(χ(1) − χ(2))2m2

)
. (3.37)

More simply, (3.37) can be obtained by taking the limit η → 0 in the governing equations from

the outset, and applying the boundary conditions for an inviscid system; (3.29) and (3.32) with

η = 0 and

[û] = 0 (3.38)

at the wire and interface.

Since (3.36) and (3.37) are explicit expressions for the growth rate and g, fI , fv > 0, the system

is stable (or neutrally stable), in both the inviscid and highly viscous regimes, if and only if,

f1
(
k2 +m2 − 1 +B(χ(1) − χ(2))

)
+ f2B(χ(1) − χ(2))2m2 ≥ 0. (3.39)
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Note that in the inviscid regime, if (3.39) holds, the system is neutrally stable as the growth

rate is imaginary.

If the inner fluid has a higher susceptibility than the outer fluid, any instability is a result

of capillary forces only. Solely axisymmetric modes can be unstable when k < 1, and increasing

the current in the wire will stabilise the system provided B(χ(1)−χ(2)) > 1. Figures 3.3 and 3.4

show the growth rate of the modes being dampened as the current in the wire is increased for

the viscous and inviscid regime, respectively. It is important to note that when comparing the

inviscid regime with the viscous regime, sI and sv are on different time scales. Consequently, for

χ(1) > χ(2), the axisymmetric modes are the “most” (and only) unstable modes, supporting the

assumptions made by previous works, where only axisymmetric disturbances are considered,

on the grounds that they would be the most unstable.

Figure 3.3: Viscous growth rate plotted when a = 0.1, χ1 = 5, χ2 = 1, [a] B = 0, [b] B = 0.1,
[c] B = 0.25, [d] B = 4.
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Figure 3.4: Inviscid growth rate plotted when a = 0.1, χ1 = 5, χ2 = 1, [a] B = 0, [b] B = 0.1,
[c] B = 0.25, [d] B = 4.

On the other hand, when the outer fluid has a higher susceptibility, both capillary and magnetic

forces may be destabilising. Increasing the current increases the magnetic forcing at the inter-

face, and non-axisymmetric modes can be rendered unstable, as well as axisymmetric modes.

In fact, for sufficiently large B all modes m can be rendered unstable. Figures 3.5, 3.6 and 3.7

show increasing B not only increases the magnitude of the growth rate of unstable modes, but

also results in an increase in unstable modes.
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Figure 3.5: Inviscid growth rate plotted when a = 0.1, χ1 = 1, χ2 = 5, [a] B = 0, [b] B = 1, [c]
B = 10.

Figure 3.6: Viscous growth rate plotted when a = 0.1, χ1 = 1, χ2 = 5, [a] B = 0, [b] B = 1, [c]
B = 10.

Figure 3.7: Viscous growth rate plotted when a = 0.5, χ1 = 1, χ2 = 5, [a] B = 0, [b] B = 1, [c]
B = 10.

Figures 3.8-3.11 show that increasing a, decreases the magnitude of the growth rate of both

unstable and stable modes, irrespective of whether χ(1) > χ(2) or χ(2) > χ(1), and this is true for

all B. Thus, the smaller the ratio between the radius of the wire and the the radius of the inner
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fluid, the greater the magnitude of the growth rate. Moreover, when χ(2) > χ(1), in the highly

viscous regime, Figures 3.6 and 3.11 show that for a = 0.1, the most unstable mode is m = 1,

k → 0, yet when a is increased to a = 0.5 in Figure 3.7, m = 0 is the most unstable mode.

Figure 3.6 shows increasing the current in the wire, increases the magnitude of the growth rate,

and in fact s → ∞ as k → 0 for a = 0.1. On the other hand, in the inviscid regime, Figure

3.5 shows that although m = 1 is the most unstable mode when k → 0 and a = 0.1, there

exists a more unstable axisymmetric mode for other values of k. Performing a series expansion

on the viscous growth rate as a, k → 0, we find s ∼ −ln(a) when m = 1, and thus s → ∞ in

the limit, but s converges to a constant when m = 0 or m > 1, a result seen in the context of

electro-hydrodynamics too (Saville, 1971), (Mestel, 1966).

Figure 3.8: Inviscid growth rate plotted when B = 0.1, χ1 = 5, χ2 = 1, [a] a = 0.1, [b] a = 0.5,
[c] a = 0.9.

Figure 3.9: Viscous growth rate plotted when B = 0.1, χ1 = 5, χ2 = 1, [a] a = 0.1, [b] a = 0.5,
[c] a = 0.9.
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Figure 3.10: Inviscid growth rate plotted when B = 1, χ1 = 1, χ2 = 5, [a] a = 0.1, [b] a = 0.5,
[c] a = 0.9.

Figure 3.11: Viscous growth rate plotted when B = 1, χ1 = 1, χ2 = 5, [a] a = 0.1, [b] a = 0.5,
[c] a = 0.9.

3.3.2 Arbitrary Reynolds number

We use a root solver in Maple on (3.35) for specific values of k, a,m, χ(1), χ(2), B and Re, to

find the associated growth rate of the mode. We find the stability condition (3.39) appears to

hold for all Reynolds numbers.
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Figure 3.12: Growth rate plotted when a = 0.1, k = 0.5, χ1 = 1, χ2 = 5 and B = 0.1 for
arbitrary Re. [a] and [b] are, respectively, the real and imaginary parts of s. The m = 0 branch
is solely real, but the m = 1 branch starts as real for low Re and then becomes a complex
conjugate pair.

Figure 3.12 is the growth rate plotted when a = 0.1, k = 0.5, χ(1) = 1, χ(2) = 5, B = 0.1, for a

range of Reynolds numbers, showing two stable branches when m = 1 and an unstable branch

for m = 0. Given a stable mode, as Re → 0, there are two branches, both real, where one

branch tends to sv, and the other tends to −∞, the latter a result of Re→ 0 for the chosen time

scale. As Re is increased the two branches meet and then split, becoming complex conjugates

of each other, tending towards ±sI as Re→ ∞, where sI is solely imaginary for a stable mode.

Given an unstable mode, we get one branch, starting at sv and tending to |sI |. There exists a

branch which tends to the negative inviscid root, −|sI |, but this is invalid for finite Re, since the

boundary conditions require R(k̄) ≥ 0. Figure 3.12 is an example of this, but this behaviour

of the stable and unstable modes happens for all other values of a, k, χ1, χ2, B,m considered.

When χ(1) > χ(2), only axisymmetric modes are unstable, and we find that increasing the

current in the wire stabilises the system for arbitrary Reynolds number too. This is shown in

Figure 3.13 where the current is increased from B = 0.1 to B = 0.5. Note that when B = 0.5,

the branch is stable, and we see the bifurcation at Re ∼ 10, where one branch will tend to −∞

as Re → 0, but we do not include this on the graph. Figures 3.12 and 3.14, where χ(2) > χ(1),
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show increasing B from B = 0.1 to B = 0.5 renders the mode m = 1 unstable. We find for

all Reynolds numbers, increasing the current does not stabilise the system if χ(2) > χ(1), but

renders more modes unstable. Consequently non-axisymmetric modes can be unstable, as well

as axisymmetric modes. When χ(2) > χ(1), and a, k are sufficiently small, m = 1 modes are

more unstable than axisymmetric modes. Yet, for all k, m = 1 is only the most unstable mode

for sufficiently small Re. This is shown in Figure 3.15 where the growth rate is plotted against

k, for different Reynolds numbers; when Re = 0.001, 0.1, m = 1 is the most unstable mode,

but this not the case for the other Reynolds numbers shown.

Figure 3.13: Growth rate plotted when m = 0, a = 0.1, k = 0.5, χ1 = 5 and χ2 = 1 for
arbitrary Re
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Figure 3.14: Growth rate plotted when a = 0.1, k = 0.5, χ1 = 1, χ2 = 5 and B = 0.5 for
arbitrary Re
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Figure 3.15: Growth rate plotted against k, when a = 0.1, χ1 = 1, χ2 = 5, B = 10, for Reynolds
numbers: (a) Re = 0.0001 (b) Re = 0.1 (c) Re = 0.5 (d) Re = 1 (e) Re = 10 (f) Re = 100

3.3.3 Suppressing unstable modes with an axial field

To stabilise the system, irrespective of whether χ(2) > χ(1) or χ(1) > χ(2), we consider adding an

axial field. Physically, an axial field can be produced by adding a solenoid positioned co-axially

with the wire. Note, the radius of the coil must be sufficiently large so as not to alter the

boundary conditions of the problem.

Now, let H0 = (0, 1/r, Z)T , Z constant, thereby adding an axial field. It follows that

ϕ0 = θ + Zz

and we perform analogous analysis to Section 3.3. The general solutions (3.9), (3.22) still hold

and ϕ̂(0), ϕ̂(2) are still given by (3.10) and (3.11), respectively. At r = a we apply (3.14), (3.15)
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and (3.27). At r = 1 we apply (3.26), (3.31), (3.32), but (2.59), (2.60) and (2.63) now give

(
1 + χ(2)

)
ϕ̂′(2) −

(
1 + χ(1)

)
ϕ̂′(1) + i(m+ kZ)(χ(1) − χ(2))Ŝ = 0, ϕ̂(1) = ϕ̂(2), (3.40)

and

(
m2+k2−1+B(χ(1)−χ(2))

)
Ŝ = 2i(m+kZ)B

(
χ(1)−χ(2))ϕ̂(1)

)
+p̂(1)−p̂(2)−2û′(1)+2û′(2), (3.41)

at r = 1. Consequently, the growth rates become

s = −gF
(
f1
(
k2 +m2 − 1 +B(χ(1) − χ(2))

)
+ f2B(χ(1) − χ(2))2(Zk +m)2

)
, (3.42)

sv = −gFv

(
f1
(
k2 +m2 − 1 +B(χ(1) − χ(2))

)
+ f2B(χ(1) − χ(2))2(Zk +m)2

)
, (3.43)

s2I = −gFI

(
f1
(
k2 +m2 − 1 +B(χ(1) − χ(2))

)
+ f2B(χ(1) − χ(2))2(Zk +m)2

)
, (3.44)

in an analogous approach to obtaining (3.35), (3.36) and (3.37).

(3.43) and (3.44) show that a sufficiently large kZ will stabilise all modes in the inviscid and

highly viscous regimes, irrespective of the sign of (χ(1) − χ(2)), provided B ̸= 0. This result is

found to hold for arbitrary Reynolds number too. Comparing Figure 3.12, where the system

was unstable for m = 0, a = 0.1, k = 0.5, χ(1) = 5, χ(2) = 1, B = 0.1, with Figure 3.16,

where the values are the same but with the addition of the axial field, shows that kZ = 10

is sufficient to dampen the unstable modes. We conclude, that a sufficiently large axial field

will dampen unstable modes. Although extremely long waves in the z-direction, k → 0, would

remain unstable, k can be bounded away from zero by physical restrictions of the system.
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Figure 3.16: Real part of the growth rate plotted when a = 0.1, k = 0.5, χ1 = 1, χ2 = 5 and
B = 0.1 for arbitrary Re, when Z = 20.

3.4 Concluding remarks

Three-dimensional disturbances to a ferrofluid column, surrounded by another ferrofluid of a

different susceptibility, centred on a current-carrying wire have been analysed. An analytical

solution was found to the linearised Navier-Stokes equations for two Newtonian ferrofluids, and

an implicit expression for the growth rate obtained. In the highly viscous and inviscid regimes

the growth rate is given explicitly, and a stability condition is determined. The greatest growth

rate is found when the ratio between the radius of the wire and the radius of the inner fluid,

a/R, is at its smallest. This agrees with Arkhipenko et al. (1980) and Korovin (2004), who

find a decrease in the relative thickness of the jet to the wire slows down the decay of the

column. When the inner fluid is more magnetic, only axisymmetric modes with k < 1 and

B(χ(1) − χ(2)) < 1 are unstable, supporting the previous literature on the subject (if χ(2) = 0).

Novel results are found when the outer fluid is more magnetic. When the outer fluid is more
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magnetic, both non-axisymmetric and axisymmetric modes can be unstable. Interestingly, for

sufficiently small Reynolds numbers, the non-axisymmetric mode m = 1 is the most unstable,

but otherwise axisymmetric modes are the most unstable.

Sufficient current in the wire suppresses instabilities due to surface tension, only if the in-

ner fluid is more magnetic than the outer fluid. On the other hand, when the outer fluid

is more magnetic, instabilities are not only due to capillary forcing from the surface tension,

but also a result of magnetic forcing at the interface, produced from the current in the wire.

Thus, when χ(2) > χ(1), increasing the current in the wire will only increase the strength of the

forcing at the interface, thereby increasing the growth rate of the perturbation and rendering

more modes unstable. However, adding a large enough axial field will suppress all disturbances,

irrespective of which fluid has a higher susceptibility, provided there exists some current in the

wire.
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Chapter 4

A ferrofluid column, with a radially

varying magnetic susceptibility,

centred on a current-carrying wire

4.1 Motivation

In the previous chapter, we saw that when the inner fluid had a higher susceptibility than the

outer fluid, the system was unstable due to capillary forcing only. But, when the outer fluid was

more magnetic than the inner fluid, the system was unstable as a result of both capillary and

magnetic forcing. The latter may be a result of the highest region of magnetic susceptibility not

being aligned with the highest region of field. When magnetic fluids are subject to non-uniform

fields, the magnetic fluid is attracted to the region where the field intensity is maximum (Scherer

& Figueiredo Neto, 2005). This motivates the investigation of the stability of one ferrofluid,

whose susceptibility varies continuously with radius. The ferrofluid is centred on a current-

carrying wire, with an associated azimuthal field decreasing as the reciprocal of the radius.

The results of Chapter 3 suggest that the system may be stable if the susceptibility decreases

radially, since the regions of highest strength of field and susceptibility will coincide, and there

is no longer forcing from surface tension at an interface. Similarly, a stationary state where
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the susceptibility increases radially may be unstable. However, this is not trivial due to the

global variation of the susceptibility and field. The magnetic forcing acts throughout the fluid,

where as for a constant discontinuous susceptibility, the magnetic forcing is confined to the

interface. This chapter rigorously proves that the stability is indeed determined by the sign of

the gradient of the susceptibility. Moreover, it is shown that adding an axial field can suppress

the instability. The analysis in this chapter has appeared in Ferguson Briggs & Mestel (2022a).

4.2 Formulation

𝜃

𝑯 =
𝐽!
2𝜋𝑟

𝒆𝜽

𝑱 = 𝐽!𝒆"

𝑱 𝑧𝑎

𝑟

χ r

Figure 4.1: Schematic of the system

We consider one incompressible, isothermal, ferrofluid whose susceptibility depends on position

and the field. Consequently the magnetic forcing acts throughout the fluid, and f ̸= 0 in

(2.37). The ferrofluid is centred on a current-carrying wire, which produces an azimuthal

field, H = J0/2πreθ, as shown in Figure 4.1. Retaining the scaling choice in Chapter 3 for

non-dimensionalising the governing equations, (2.44) gives

Re
Dω

Dt
= (ω ·∇)u+∇2ω +BH∇χ×∇H. (4.1)

where Re and B are given by (3.3) and (3.30), respectively.
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Since H0 ≡ H0(r), (4.1) is satisfied by u = 0, χ = χ0(r), and to satisfy (2.39),

∇p = −B(H0(r))
2

2
∇χ0(r). (4.2)

After non-dimensionalising, the stationary state is

H0 = 1/r, u = 0, χ = χ0(r) and p = −
∫ r

0

B

2r2
χ′
0dr, (4.3)

where χ′
0 is defined as

χ′
0 =

dχ0

dr
. (4.4)

4.3 Linear stability analysis

We now perform linear stability analysis on the given equilibrium to derive a stability condition.

Consider a perturbation to the equilibrium;

χ = χ0(r) + ϵχ1 +O(ϵ2), H = H0 + ϵH1 +O(ϵ2), u = ϵu1 +O(ϵ2), (4.5a, b, c)

and

|H| = H = H0 + ϵH1 +O(ϵ2), where H0 =
√
H0 ·H0, H1 =

H0 ·H1

H0

. (4.6)

Note H1 is defined by (4.6) and H1 ̸= |H1|. Substituting into (4.1) and linearising gives

Re
∂ω1

∂t
= ∇2ω1 +BH0

(
∇χ0 ×∇H1 +∇χ1 ×∇H0

)
, (4.7)

where ω1 = ∇× u1. We consider perturbations such that

ω1 = ∇× (û(r)ζ), χ1 = χ̂(r)ζ, H1 = ∇(ϕ̂(r)ζ) and H1 =
imϕ̂(r)ζ

r
, (4.8)
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where ζ = ei(kz+mθ)+st and ϕ̂ were defined in Chapter 3; ϕ1 = ϕ̂(r)ζ is the magnetic potential

perturbation, but here we write ϕ̂ for ϕ̂ in the fluid and ϕ̂0 to denote ϕ̂ in the wire. Substituting

(4.8) into (4.7), we obtain

(sRe− L)ω̂r +
2im

r2
ω̂θ = 0, (4.9)

(sRe− L)ω̂θ −
2im

r2
ω̂r = B

(
mkχ′

0ϕ̂

r2
− ikχ̂

r3

)
, (4.10)

(sRe−D)ω̂z = B

(
−m2χ′

0ϕ̂

r3
+

imχ̂

r4

)
, (4.11)

where

ω̂r =
imŵ

r
− ikv̂, ω̂θ = ikû− ŵ′, ω̂z =

1

r

(
(rv̂)′ − imû

)
, (4.12)

L =
d2

dr2
+

1

r

d

dr
− m2

r2
− k2 − 1

r2
, (4.13)

D =
d2

dr2
+

1

r

d

dr
− m2

r2
− k2. (4.14)

It follows from (2.56), that û satisfies

(rû)′ + imv̂ + ikrŵ = 0. (4.15)

(2.61) and (2.62) result in û = 0 at r = a and û → 0 as r → ∞. Substituting the perturbed

variables into (2.66) and linearising, results in

sχ̂ = −χ′
0û, (4.16)

and therefore, χ̂ = 0 at r = a and χ̂→ 0 as r → ∞. ϕ̂ in the fluid satisfies

r2
(
(1 + χ0)Dϕ̂+ χ′

0ϕ̂
′) = −imχ̂. (4.17)

and

ϕ̂(0) = q
(0)
1 Im. (4.18)
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(2.59) and (2.60) give

(ϕ̂(0))′ = (1 + χ0)ϕ̂
′ (4.19)

and

ϕ̂(0) = ϕ̂, (4.20)

respectively, at r = a. Consequently, (4.18)-(4.20) result in

ϕ̂′ =

(
Im(kr)

)′
ϕ̂

(1 + χ0)Im(kr)
(4.21)

on r = a, which evaluates to

ϕ̂′ =
ϕ̂

1 + χ0

(
kIm+1(ka)

Im(ka)
+
m

a

)
, (4.22)

at r = a. Moreover, ϕ̂, ϕ̂′ → 0 as r → ∞. Note that ′ denotes the derivative with respect to r.

We now consider situations in which the equations are simplified, allowing us to produce an

eigenvalue equation, and in turn, an expression for the growth rate.

4.3.1 Axisymmetric disturbances

Consider solely axisymmetric disturbances m = 0. For axisymmetric disturbances, (4.9)-(4.11)

becomes

(sRe− L0)ω̂r = 0, (4.23)

(sRe− L0)ω̂θ = − ikBχ̂

r3
, (4.24)

(sRe−D0)ω̂z = 0, (4.25)

where

L0 =
d2

dr2
+

1

r

d

dr
− k2 − 1

r2
, (4.26)
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D0 =
d2

dr2
+

1

r

d

dr
− k2. (4.27)

Define a stream function Ψ, such that û = ∇ × (0,Ψ/r, 0), and use the change of variables,

Ψ = rψ, to give

ω̂ = −L0ψ̂eθ, ∇2ω̂ = −L2
0ψ̂eθ, (4.28)

where ψ = ψ̂(r)eikz+st. It follows from the boundary conditions for u that ψ̂, ψ̂′ = 0 at r = a

and as r → ∞. (4.16) and (4.23)-(4.25) give the eigenvalue equation

(
s2ReL0 − sL2

0

)
ψ̂ = −k

2Bχ′
0ψ̂

r3
. (4.29)

Rather than find the eigenvalues of (4.29) numerically, we prove a stability condition. Multiply

(4.29) by rψ̂∗, where ψ̂∗ is the complex conjugate of ψ̂ and integrate over the domain to give

∫ ∞

a

rψ̂∗(s2ReL0 − sL2
0

)
ψ̂dr = −

∫ ∞

a

k2Bχ′
0|ψ̂|2

r2
dr. (4.30)

Due to the self-adjoint properties of L0, we use integration by parts and the boundary condi-

tions, to obtain

s2Re

∫ ∞

a

(
|ψ̂′|2 +

(
1

r2
+ k2

)
|ψ̂|2

)
rdr + s

∫ ∞

a

|L0ψ̂|2rdr − k2B

∫ ∞

a

χ′
0|ψ̂|2

r2
dr = 0, (4.31)

an equation for s. (4.31) is of the form as2 + bs + c = 0, where a,b,c all depend on ψ̂ and

therefore s too, but a,b,c are real, as well as a, b positive and bounded from zero. We conclude

that if χ′
0 > 0, c < 0 and there exists a root with R(s) > 0. In fact, in this case s and ψ̂ are

real. Whereas, when χ′
0 < 0, c > 0, R(s) < 0 and s, ψ̂ could be complex. Thus, if χ′

0 > 0

everywhere, there exists an unstable mode, while if χ′
0 ≤ 0 everywhere, all axisymmetric modes

are stable.

We prove a stronger stability condition using variational methods. Crucially, we have shown

that if the flow is unstable then s must be real and therefore ψ̂ is real, thus it suffices to only
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consider y real in the following argument. Consider the functional

F (y) =
−
∫∞
a
(L0y)

2rdr +
√(∫∞

a
(L0y)2rdr

)2
+ 4k2ReB

∫∞
a

(
(y′)2 +

(
1
r2

+ k2
)
y2
)
rdr

∫∞
a

χ′
0y

2

r2
dr

2Re
∫∞
a

(
(y′)2 +

(
1
r2

+ k2
)
y2
)
rdr

,

(4.32)

for all real functions y(r) satisfying y, y′ = 0 at r = a, r → ∞, and proceed in a manner similar

to the Rayleigh-Ritz argument.

First, we argue F (y) is bounded above. Since F (y) is homogeneous in y, we could normalise

the denominator such that the denominator is bounded from zero. If y′′ is bounded, then the

numerator is bounded, but suppose y is highly oscillatory and y′′ is large. By a series expansion

for y′′ ≫ 1,

F (y) ∼
−
∫∞
a
(y′′)2rdr +

√(∫∞
a
(y′′)2rdr

)2
2Re

∫∞
a

(
(y′)2 +

(
1
r2

+ k2
)
y2
)
rdr

+
k2B

∫∞
a

χ′
0y

2

r2
dr∫∞

a
(y′′)2rdr

, (4.33)

and

F (y) →
k2B

∫∞
a

χ′
0y

2

r2
dr∫∞

a
(y′′)2rdr

, (4.34)

a small departure from zero, where the sign is dependant on χ′
0. Thus for χ′

0 > 0, F (y) is

positive, and is bounded above. It follows that F (y) has a global maximum.

We now prove that stationary points of F (y) are real eigenvalues of (4.29). Suppose y = y0 is

a stationary point of F and F (y0) = F0. Consider y = y0 + ϵy1, where ϵ ≪ 1, and y1 satisfies

the boundary conditions for y. Taylor expanding

F (y0+ϵy1) =
−(C3 + ϵC4) +

√
C2

3 + 4k2ReBC1C5 + ϵ
(
2C3C4 + 4k2ReB

(
C2C5 + C1C6

))
C1 + ϵC2

+O(ϵ2),

(4.35)

we obtain

F (y0 + ϵy1) = F0 +
ϵ

C1

(
− C4 − F0C2 +

4k2ReB(C1C6 + C2C5) + 2C3C4

2
√
4k2ReBC1C5 + C2

3

)
+O(ϵ2), (4.36)
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where

C1 = 2Re

∫ ∞

a

(
(y′0)

2 +

(
1

r2
+ k2

)
y20

)
rdr,

C2 = 4Re

∫ ∞

a

(
y′0y

′
1 +

(
1

r2
+ k2

)
y0y1

)
rdr,

C3 =

∫ ∞

a

(L0y0)
2rdr,

C4 = 2

∫ ∞

a

(L0y0)(L0y1)rdr,

C5 =

∫ ∞

a

χ′
0y

2
0

r2
dr,

C6 = 2

∫ ∞

a

χ′
0y0y1
r2

dr. (4.37)

Note that

F0 = F (y0) =
−C3 +

√
C2

3 + 4k2ReBC1C5

C1

. (4.38)

F0 consists of y0 values, and since y0 is a stationary point of F (y), in the ϵ neighbourhood of

y0 the first variation must be zero, and therefore

−C4 − F0C2 +
4k2ReB(C1C6 + C2C5) + 2C3C4

2
√
C2

3 + 4k2ReBC1C5

= 0. (4.39)

After some algebra, we write this as

−ReF 2
0

∫ ∞

a

(
y′0y

′
1 +

(
1

r2
+ k2

)
y0y1

)
rdr − F0

∫ ∞

a

L0y0L0y1rdr = k2B

∫ ∞

a

χ′
0y0y1
r2

dr. (4.40)

Invoking the self adjoint property of L0, using integration by parts, and the boundary conditions

for y0, y1, write (4.40) as

ReF 2
0

∫ ∞

a

y1rL0y0dr − F0

∫ ∞

a

ry1L2
0y0dr = k2B

∫ ∞

a

χ′
0y0y1
r2

dr. (4.41)

(4.41) is valid for any y1, and therefore

ReF 2
0L0y0 − F0L2

0y0 =
k2Bχ′

0y0
r3

, (4.42)
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which is (4.29) for F0 = s. It follows that the stationary points of F (y) satisfy (4.29) with real

eigenvalues s = F0. Thus, the stationary points of F (y) correspond to the real eigenvalues of

(4.29), and crucially, the global maximum of F (y) is an eigenvalue of (4.29). We now seek a

function y such that F (y) > 0 and therefore the global maximum must be positive (and real),

proving the existence of a positive real eigenvalue, and therefore an unstable mode.

Suppose

χ′
0 > 0 for r1 ≤ r ≤ r2, (4.43)

and pick an arbitrary, real function, ŷ(r), that satisfies the boundary conditions of y, such that

ŷ(r) ̸= 0 for r1 ≤ r ≤ r2,

ŷ(r) = 0 for r /∈ [r1, r2].

 (4.44)

Substitute y = ŷ(r) into (4.32) and define ξ̂ = F (ŷ), where ξ̂ must be a real value. It follows that

ξ̂ > 0, and either ξ̂ is the global maximum stationary point of F (y), or the global maximum of

F (y) is greater than ξ̂, since F (y) is bounded above. Thus there exists a positive real stationary

point of F (y) and therefore a positive real eigenvalue of (4.29), resulting in an unstable mode.

We conclude that, if, and only if, χ′
0 > 0 anywhere in the domain, every axisymmetric mode is

unstable.

4.3.2 Two-dimensional modes

An alternative way to simplify the equations is to consider any m, but two-dimensional modes

such that k = 0. By considering k = 0 in (4.9)-(4.17), we obtain an eigenvalue equation,

(s2ReLm − sL2
m)Mmϕ̂ = −m2B

(
χ′
0Mmϕ̂

r5
+
m2χ′

0ϕ̂

r3

)
, (4.45)

where

Lm =
1

r

d

dr

(
r
d

dr

)
− m2

r2
, Mm =

r3

χ′
0

(
(1 + χ0)Lm + χ′

0

d

dr

)
, (4.46)
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and ϕ, ϕ′ → 0 as r → ∞. Taking the limit k → 0 in (4.22) gives

ϕ̂′ =
m

r(1 + χ0)
ϕ̂(r) (4.47)

at r = a. Since, for small z

Im(z) ∼
(
z
2

)m
m!

, (4.48)

where m! is the factorial of m (Abramowitz et al., 1988), and therefore

kIm+1(ka)

Im(ka)
+
m

r
∼ k2a2 + 2m(m+ 1)

2(m+ 1)a
(4.49)

and

kIm+1(ka)

Im(ka)
+
m

r
→ m

a
(4.50)

in the limit k → 0.

We multiply (4.45) by rMmϕ̂
∗, where ϕ̂∗ is the complex conjugate of ϕ̂, and integrate over

the domain to obtain

∫ ∞

a

(
Mmϕ̂

∗(s2ReLm − sL2
m)Mmϕ̂

)
rdr = −Bm2

∫ ∞

a

(
χ′
0|Mmϕ̂|2

r4
+
m2χ′

0

r2
ϕ̂Mmϕ̂

∗
)
dr.

(4.51)

Now,

∫ ∞

a

1

r2
χ′
0ϕ̂Mmϕ̂

∗dr =

∫ ∞

a

(
(1 + χ0)ϕ̂(r(ϕ̂

∗)′)′ + rχ′
0ϕ̂(ϕ̂

∗)′ − m2(1 + χ0)|ϕ̂|2

r

)
dr, (4.52)

and integration by parts gives

∫ ∞

a

1

r2
χ′
0ϕ̂Mmϕ̂

∗dr = −m|ϕ̂(a)|2 −
∫ ∞

a

r(1 + χ0)

(
|ϕ̂′|2 + m2|ϕ̂|2

r2

)
dr. (4.53)
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(4.53) and the self-adjoint property of Lm allows (4.51) to be written as

s2Re

∫ ∞

a

(∣∣(Mmϕ̂)
′∣∣2 + m2|Mmϕ̂|2

r2

)
rdr + s

∫ ∞

a

∣∣Lm(Mmϕ̂)
∣∣2rdr +Bm2

(
m3|ϕ̂(a)|2

+

∫ ∞

a

(
−χ′

0|Mmϕ̂|2

r4
+m2r(1 + χ0)

(
|ϕ̂′|2 + m2|ϕ̂|2

r2

))
dr

)
= 0. (4.54)

It follows that if χ′
0 ≤ 0 everywhere, two-dimensional modes are stable. Yet, if

∫ ∞

a

χ′
0|Mmϕ̂|2

r4
rdr > m3|ϕ̂(a)|2 +m2

∫ ∞

a

r(1 + χ0)

(
|ϕ̂′|2 + m2|ϕ̂|2

r2

)
dr (4.55)

holds for an eigenfunction ϕ̂, then there exists a growing mode (s > 0) and therefore a two-

dimensional unstable mode. Moreover, s and therefore ϕ̂ are real if (4.55) holds, otherwise

R(s) < 0 and s could be complex.

Furthermore, consider the functional

F (y) =
−
∫∞
a

(
Lm(Mmy)

)2
rdr +

√(∫∞
a

(
Lm(Mmy)

)2
rdr
)2 −W1

2Re
∫∞
a

((
Mmy′

)2
+ m2

r2

(
Mmy

)2)
rdr

, (4.56)

where

W1 = 4m2BRe

(∫ ∞

a

((
Mmy

′)2 + m2

r2
(
Mmy

)2)
rdr

)(
m3|ϕ̂(a)|2

+

∫ ∞

a

(
−χ′

0|Mmϕ̂|2

r4
+m2r(1 + χ0)

(
|ϕ̂′|2 + m2|ϕ̂|2

r2

))
dr

)
, (4.57)

for all real functions y satisfying the boundary conditions of ϕ̂. By an analogous argument to

Section 4.3.1, F (y) has a global maximum, and we can prove the stationary points of F (y)

correspond to the real eigenvalues of (4.45). Again, if (4.43) is true, then by picking a y = ŷ(r),

where ŷ satisfies (4.44), with highly oscillatory behaviour in the interval r ∈ [r1, r2], then

F (ŷ) > 0 and (4.55) holds as (Mmŷ)
2 ≫ ŷ′2 ≫ ŷ2. Consequently, if, and only if, χ′

0 > 0

anywhere in the fluid, every mode where k = 0 is unstable.
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4.3.3 The inviscid limit

To deduce a stability condition for all wave numbers, we consider the inviscid limit, Re → ∞,

of (4.9)-(4.17) to obtain an eigenvalue equation valid for three-dimensional disturbances. In

the inviscid limit (4.9)-(4.11) becomes

sI ω̂r = 0, (4.58)

sI ω̂θ = B

(
mkχ′

0ϕ̂

r2
− ikχ̂

r3

)
, (4.59)

sI ω̂z = B

(
−m2χ′

0ϕ̂

r3
+

imχ̂

r4

)
, (4.60)

and consequently

mŵ = krv̂. (4.61)

(4.15) and (4.61) result in

v̂ =
im
(
rû
)′

m2 + k2r2
, (4.62)

and substituting (4.62) into (4.58) provides

sI

((
r
(
rû
)′

m2 + k2r2

)′

− û

)
= B

(
mχ′

0ϕ̂

r2
+
χ̂

r3

)
. (4.63)

Substituting (4.16) into (4.17) results in an expression for û in terms of ϕ̂;

û =
sIr

2

imχ′
0

(
(1 + χ0)Dϕ̂+ χ′

0ϕ̂
′
)
. (4.64)

Finally, by substituting (4.16) and (4.64) into (4.63), we obtain an eigenvalue equation for ϕ̂;

−
(

r

m2 + k2r2
(
Mϕ̂

)′)′

+
Mϕ̂

r
= λ

(
m2

r2
χ′
0ϕ̂+

χ′
0Mϕ̂

r4

)
, (4.65)

where

Mϕ̂ =
r3

χ′
0

(
(1 + χ0)Dϕ̂+ χ′

0ϕ̂
′
)
, (4.66)
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λ = B/(s2I). For an inviscid system, û = 0 at r = a, r → ∞, and it follows from (4.16) and

(4.17) that Mϕ̂ = 0 at r = a, r → ∞.

Multiply (4.65) by Mϕ̂∗, the complex conjugate of Mϕ̂, and integrate over the domain to

obtain

−
∫ ∞

a

(
Mϕ̂∗

(
r

m2 + k2r2
(
Mϕ̂

)′)′

+
|Mϕ̂|2

r

)
dr

= λ

∫ ∞

a

(
m2rϕ̂

(
(1 + χ0)

(
d2

dr2
+

1

r

d

dr
− m2

r2
− k2

)
ϕ̂∗ + χ′

0(ϕ̂
∗)′
)
+
χ′
0|Mϕ̂|2

r4

)
dr. (4.67)

Integration by parts gives

∫ ∞

a

(
r

m2 + k2r2

∣∣∣∣(Mϕ̂
)′∣∣∣∣2 +

∣∣Mϕ̂
∣∣2

r

)
dr

= λ

([
m2r(1 + χ0)ϕ̂(ϕ̂

∗)′
]∞
a

+

∫ ∞

a

(
χ′
0

r4
∣∣Mϕ̂

∣∣2 −m2r(1 + χ0)

(
|ϕ̂′|2 +

(
m2

r2
+ k2

)
|ϕ̂|2
))

dr

)
,

(4.68)

and imposing the boundary conditions gives

∫ ∞

a

(
r

m2 + k2r2

∣∣∣∣(Mϕ̂
)′∣∣∣∣2 +

∣∣Mϕ̂
∣∣2

r

)
dr

= λ

(
C1 +

∫ ∞

a

(
χ′
0

r4
∣∣Mϕ̂

∣∣2 −m2r(1 + χ0)

(
|ϕ̂′|2 +

(
m2

r2
+ k2

)
|ϕ̂|2
))

dr

)
m (4.69)

where

C1 = −m2a|ϕ̂|2
(
kIm+1(ka)

Im(ka)
+
m

a

)
. (4.70)

Note that C1 < 0 since the modified Bessel functions of the first kind are positive increasing

functions. Writing this in the form

s2I = B
−C1 +

∫∞
a

(
χ′
0

r4

∣∣Mϕ̂
∣∣2 −m2r(1 + χ0)

(
|ϕ̂′|2 +

(
m2

r2
+ k2

)
|ϕ̂|2
))

dr∫∞
a

r
m2+k2r2

∣∣(Mϕ̂
)′∣∣2 + 1

r

∣∣Mϕ̂
∣∣2dr , (4.71)
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we observe that if there exists an eigenfunction ϕ̂ such that

∫ ∞

a

χ′
0

r4
∣∣Mϕ̂

∣∣2dr > ∫ ∞

a

m2r(1+χ0)

(
|ϕ̂′|2 +

(
m2

r2
+ k2

)
|ϕ̂|2
)
dr+m2a|ϕ̂|2

(
kIm+1(ka)

Im(ka)
+
m

a

)
,

(4.72)

then s2I > 0, and there exists a positive real eigenvalue, and therefore an unstable mode. Fur-

thermore, when (4.72) holds, s2I and ϕ̂ are real, and therefore sI is either real or imaginary, but

not complex.

To prove s2I is always real, multiply the complex conjugate of (4.65) by Mϕ̂, integrate over the

domain, and perform integration by parts, to obtain

∫ ∞

a

(
r

m2 + k2r2

∣∣∣∣(Mϕ̂
)′∣∣∣∣2 +

∣∣Mϕ̂
∣∣2

r

)
dr

= λ∗
(
C1 +

∫ ∞

a

χ′
0

r4
∣∣Mϕ̂

∣∣2 −m2r(1 + χ0)

(
|ϕ̂′|2 +

(
m2

r2
+ k2

)
|ϕ̂|2
)
dr

)
, (4.73)

where λ∗ is the complex conjugate of λ. Subtracting (4.69) from (4.73) gives

(λ∗ − λ)

(
C1 +

∫ ∞

a

(
χ′
0

r4
∣∣Mϕ̂

∣∣2 −m2r(1 + χ0)

(
|ϕ̂′|2 +

(
m2

r2
+ k2

)
|ϕ̂|2
))

dr

)
= 0. (4.74)

For a non-trivial solution,

C1 +

∫ ∞

a

(
χ′
0

r4
∣∣Mϕ̂

∣∣2 −m2r(1 + χ0)

(
|ϕ̂′|2 +

(
m2

r2
+ k2

)
|ϕ̂|2
))

dr = 0, (4.75)

or λ is real. If (4.75) holds s2I = 0 and is real, and therefore λ is real. Hence sI
2 and ϕ̂ are real

in the inviscid limit, irrespective of the sign of χ′
0. Furthermore, if χ′

0 ≤ 0 everywhere, observe

from (4.71) that s2I ≤ 0 and all three-dimensional disturbances are stable. Since s2I is real, sI

is imaginary (or zero) for stable modes.

80



By considering the functional

F (y) = B
C1 +

∫∞
a

(
χ′
0

r4

(
My

)2 −m2r(1 + χ0)
(
(y′)2 +

(
m2

r2
+ k2

)
y2
))

dr∫∞
a

r
m2+k2r2

((
My

)′)2
+ 1

r

(
My

)2
dr

(4.76)

for all real functions y satisfying the same boundary conditions as ϕ̂, with analogous reasoning

to Sections 4.3.1 and 4.3.2, it follows that, if χ′
0 > 0 somewhere in the domain, then there exists

an unstable mode. Consequently, in the inviscid limit, if, and only if, χ′
0 > 0 somewhere in the

ferrofluid, the system is unstable to all three-dimensional disturbances.

4.3.4 The Stokes regime

In the highly viscous limit the method and reasoning is analogous to Sections 4.3.1 and 4.3.2,

with Re→ 0, to prove that axisymmetric and k = 0 modes are unstable if, and only if, χ′
0 > 0

somewhere in the domain. For arbitrary Reynolds number, the eigenvalues (and eigenfunc-

tions) are proven to be real for only unstable axisymmetric and two-dimensional modes. In the

highly viscous limit however, we can prove the eigenvalues are real for all axisymmetric and

two-dimensional disturbances.

(4.29) and (4.45) in the highly viscous limit become

L2
0ψ̂ =

k2λ0χ
′
0ψ̂

r3
(4.77)

and

L2
mMmϕ̂ = m2λ1

(
χ′
0Mmϕ̂

r5
+
m2χ′

0ϕ̂

r3

)
, (4.78)

respectively, where λ0 = B/sv for m = 0 modes, and λ1 = B/sv for k = 0 modes. Multiply

(4.77) by ψ̂∗, and multiply the complex conjugate of (4.77) by ψ̂, to obtain

∫ ∞

a

|L0ψ̂|2rdr = k2λ0

∫ ∞

a

χ′
0|ψ̂|2

r2
dr, (4.79)
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and ∫ ∞

a

|L0ψ̂|2rdr = k2λ∗0

∫ ∞

a

χ′
0|ψ̂|2

r2
dr, (4.80)

respectively, where λ∗0 is the complex conjugate of λ0. It follows that

(λ0 − λ∗0)

∫ ∞

a

χ′
0|ψ̂|2

r2
dr = 0, (4.81)

and λ0 and ψ̂ are real. Note if the integral is zero, then sv = 0 and the growth rate is real.

Similarly for k = 0 modes, we obtain

∫ ∞

a

∣∣Lm(Mmϕ̂)
∣∣2rdr + λ1m

2

(
m3|ϕ̂(a)|2

+

∫ ∞

a

(
−χ′

0|Mmϕ̂|2

r4
+m2r(1 + χ0)

(
| ˆ̂ϕ′|2 + m2|ϕ̂|2

r2

))
dr

)
= 0 (4.82)

and

∫ ∞

a

∣∣Lm(Mmϕ̂)
∣∣2rdr + λ∗1m

2

(
m3|ϕ̂(a)|2

+

∫ ∞

a

(
−χ′

0|Mmϕ̂|2

r4
+m2r(1 + χ0)

(
|ϕ̂′|2 + m2|ϕ̂|2

r2

))
dr

)
= 0. (4.83)

Consequently,

(λ∗1 − λ1)

(
m3|ϕ̂(a)|2 +

∫ ∞

a

(
−χ′

0|Mmϕ̂|2

r4
+m2r(1 + χ0)

(
|ϕ̂′|2 + m2|ϕ̂|2

r2

))
dr

)
= 0, (4.84)

and either

m3|ϕ̂(a)|2 +
∫ ∞

a

(
−χ′

0|Mmϕ̂|2

r4
+m2r(1 + χ0)

(
|ϕ̂′|2 + m2|ϕ̂|2

r2

))
dr = 0 (4.85)

or λ1 is real. If (4.85) is true, then sv = 0 (and real), proving that λ1 is always real. Thus for

axisymmetric and k = 0 modes in the highly viscous regime, the growth rate and eigenfunctions

are real irrespective of the sign of χ′
0. By considering Re → 0 in Sections 4.3.1 and 4.3.2, we

can prove that axisymmetric and k = 0 modes are unstable if, and only if, χ′
0 > 0 somewhere

in the domain.
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4.4 Suppressing unstable modes with an axial field

We now show that by adding an axial field,

H0 =

(
0,

1

r
, Z

)
, (4.86)

we can suppress unstable disturbances. It follows that

H0 =

(
1

r2
+ Z2

) 1
2

, H1 =
i (m+ kZr2)

r2H0

ϕ̂(r)ζ, (4.87)

and (4.7) in component form is

(sRe− L)ω̂r +
2im

r2
ω̂θ = 0, (4.88)

(sRe− L)ω̂θ −
2im

r2
ω̂r = B

(
k(m+ kZr2)χ′

0ϕ̂

r2
+ ikH0H

′
0χ̂

)
, (4.89)

(sRe−D)ω̂z = B

(
− m(m+ kZr2)χ′

0ϕ̂

r3
− imH0H

′
0χ̂

r

)
. (4.90)

4.4.1 Axisymmetric disturbances

For solely axisymmetric disturbances

H1 =
ikZ

H0

ϕ̂(r)ei(kz)+st (4.91)

and (4.88)-(4.90) become

(sRe− L0)ω̂r = 0, (4.92)

(sRe− L0)ω̂θ = B
(
k2Zχ′

0ϕ̂+ ikH0H
′
0χ̂
)
, (4.93)

(sRe−D0)ω̂z = 0. (4.94)
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(2.55) gives

χ̂ =
i((1 + χ0)∇2ϕ̂+ χ′

0ϕ̂
′)

kZ
, (4.95)

and it follows from (4.16), for axisymmetric disturbances, that

ψ̂ =
−isχ̂

kχ′
0

, (4.96)

where ψ̂ was defined in Section 4.3.1.

(4.92)-(4.96) give an eigenvalue equation for ϕ̂,

(s2ReL0 − sL2
0)P0ϕ̂ = k2Bχ′

0

(
H0H

′
0P0ϕ̂− k2Z2ϕ̂

)
, (4.97)

where

P0ϕ̂ =
(1 + χ0)

χ′
0

(
1

r
(rϕ̂′)′ − k2ϕ̂

)
+ ϕ̂′. (4.98)

When m = 0, (4.22) becomes

ϕ̂′ =
kI1ϕ̂

(1 + χ0)I0
(4.99)

at r = a and ∇ϕ̂→ 0 as r → ∞. Moreover, due to the boundary conditions for χ̂, P0ϕ̂ = 0 at

r = a and as r → ∞.

Multiply (4.97) by rP0ϕ̂
∗, and integrate over the domain to give

∫ ∞

a

(
s2ReP0ϕ̂

∗L0P0ϕ̂− sP0ϕ̂
∗L2

0P0ϕ̂
)
rdr = k2B

∫ ∞

a

rχ′
0

(
H0H

′
0|P0ϕ̂|2 − k2Z2ϕ̂P0ϕ̂

∗)dr.
(4.100)

Invoking the self-adjoint property of L0 and the boundary conditions for ϕ̂ we can write (4.100)

as

∫ ∞

a

(
s2Re

(∣∣(P0ϕ̂
)′∣∣2 + (k2 + 1

r2

)∣∣P0ϕ̂
∣∣2)+ s

∣∣L0P0ϕ̂
∣∣2)rdr

+k2B

∫ ∞

a

(
H0H

′
0χ

′
0|P0ϕ̂|2 + k2Z2(1 + χ0)

(
|ϕ̂′|2 + k2|ϕ̂|2

))
rdr = 0. (4.101)
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Thus, for sufficiently large Z, R(s) < 0, provided long waves are omitted and B ̸= 0. Note

that if P0ϕ̂ was very large, this may not hold. However, for P0ϕ̂ ≫ ϕ̂, either χ′
0 → 0 (which is

irrelevant to our investigation), or ϕ̂′′ ≫ ϕ̂ (ϕ̂′ ≫ ϕ̂). For the latter, ϕ̂ must be highly oscillatory,

and L0P0ϕ̂≫ P0ϕ̂ and L2
0P0ϕ̂≫ P0ϕ̂. Consequently, (4.101) could be approximated as

∫ ∞

a

(
s2Re

(∣∣(P0ϕ̂
)′∣∣2 + (k2 + 1

r2

)∣∣P0ϕ̂
∣∣2)+ s

∣∣L0P0ϕ̂
∣∣2)rdr = 0. (4.102)

In which case s = 0 or

s = −
∫∞
a
(|L0P0ϕ̂|2)rdr∫∞

a
(Re(|(P0ϕ̂)′|2 + (k2 + 1

r2
)|P0ϕ̂|2))rdr

, (4.103)

and therefore s ≤ 0 (and real). Hence, it remains that applying a sufficiently large axial field

will suppress axisymmetric unstable modes.

4.4.2 The inviscid limit

Similarly, in the inviscid limit, for all three-dimensional disturbances it can be proved that s2I

and ϕ̂ are real when an axial field is present, by an analogous approach to Section 4.3.3. s2I is

given by

s2I =
C1 +B

∫∞
a

1
r2
χ′
0|Pϕ̂|2 − (1 + χ0)r

(
(ϕ̂′)2 + (m

2

r2
+ k2)ϕ̂2

)
dr∫∞

a
r

m2+k2r2
|(rPϕ̂)′|2 + r|Pϕ̂|2dr

(4.104)

where

Pϕ̂ =
r2

χ′
0(m+ Zkr2)

(
(1 + χ0)∇2ϕ̂1 + χ′

0ϕ̂
′
1

)
. (4.105)

It follows from (4.16) and (4.17) that Pϕ̂ = 0 at r = a and Pϕ̂ → 0 as r → ∞. Moreover,

(4.22) holds at r = a. We observe from (4.104), that applying a sufficiently large Z will ensure

s2I < 0, provided B, k ̸= 0.
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4.5 Concluding remarks

Although we have proven that if χ′
0 > 0 anywhere, all axisymmetric or two-dimensional dis-

turbances are unstable, I was unable to prove, for arbitrary Reynolds number, that if χ′
0 ≤ 0

everywhere, all modes are stable, only that axisymmetric or two-dimensional disturbances are

stable. However in the inviscid regime every three-dimensional disturbance will be stable if

χ′
0 < 0 everywhere. Consequently, in the inviscid limit the rigorous stability condition holds;

if, and only if, χ′
0 > 0 somewhere in the fluid, the system is unstable. I conjecture this holds

for arbitrary Reynolds number too.

As in Chapter 3, we find an axial field can dampen unstable modes. For arbitrary Reynolds

number this is only proven for axisymmetric modes, yet in the inviscid regime all unstable modes

are proven to be suppressed by a sufficiently large axial field, provided the axial wavenumber

is bounded from zero.

Moreover, we prove that the square of the eigenvalues is real in the inviscid limit, the eigenval-

ues are real in the Stokes regime, and for arbitrary Reynolds number they are real for unstable

modes. This was true for the eigenvalues in Chapter 3, where for arbitrary Reynolds number, a

stable branch started as real when Re ∼ 0, as Re increased it became complex, and as Re→ ∞

the real part of the growth rate tended to zero. On the other hand, an unstable branch re-

mained real for all Reynolds number.

Physically, for an instability to occur, a source of energy is needed, enabling a perturbation

to grow. Rosensweig (1985) gives the energy change, ∆E, when introducing a volume V of

ferrofluid into a magneto-static field in free space as

∆E ∼ −
∫
V

χH2dV. (4.106)

For the system here,

∆E ∼ −
∫ ∞

a

χ(r)

r
dr. (4.107)
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Observe from (4.107) that the integral is maximised, and therefore ∆E is minimised, if χ is

largest where r is smallest. In this chapter we proved an instability occurs if ever dχ/dr > 0.

Since H0 = 1/r, when dχ0/dr > 0, dH0/dχ0 < 0, implying that an instability may occur

to achieve a minimum energy configuration with dH0/dχ0 > 0 everywhere. Although (4.107)

suggests the minimal energy configuration would have χ0 compacted as close to the wire as

possible, there exist other stable χ0 distributions such that dH0/dχ0 > 0.

Similar energy arguments occur in other areas of fluid dynamics. An example is the Rayleigh-

Taylor stability condition for the density of a fluid under gravity. The varying magnetic force

over the ferrofluid as χ changes, plays the part of gravity and the resulting condition for stabil-

ity is that χ must decrease continuously radially, just as the density must decrease continuously

with height for a stable equilibrium. However, the stability criterion only applies to inviscid

fluids. An analogous argument to Rayleigh’s stability argument for centrifugal instability would

be when one considers the change in energy when two parcels of ferrofluid at different radii are

interchanged while conserving χ(r), where the resulting condition for stability is that χ must

decrease continuously radially (dχ/dr < 0). Yet, this argument would not account for viscous

forces or three-dimensional disturbances.

Interestingly, dχ0/dr > 0 is a local condition, yet a global instability occurs, suggesting that

when dH0/dχ0 < 0 somewhere in the fluid, a release of energy locally suffices to drive a global

instability. We surmise that given a more general geometry where the equilibrium satisfies

H0 ≡ H0(χ0), if dH0/dχ0 > 0 everywhere the system would be stable, whereas there may be an

instability if dH0/dχ0 < 0 somewhere, a result that could be used to determine the stability of

a stationary state in a more complicated geometry. This hypothesis motivates the subsequent

chapters.
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Chapter 5

An inhomogeneous ferrofluid in a

channel, subject to a normal field

5.1 Introduction

Motivated by Chapter 4, we look for another equilibrium where the susceptibility and applied

field are non-uniform, in order to test the hypothesis that dH/dχ < 0 induces an instability.

However, finding equilibria to the governing equations when the susceptibility is non-constant

is not trivial. Nevertheless, in this chapter, by considering equipotential surfaces of zero mean

curvature we find a family of solutions to the governing equations, and hence a family of

equilibria, if the boundary conditions are satisfied. The stability of a specific configuration in a

planar domain with this feature is determined. The equilibrium is proven unstable for all three-

dimensional disturbances, for arbitrary Reynolds number. Yet, we prove a rapidly rotating field

applied across the plane can suppress the instability, even though a constant or alternating field

will not. The work in this chapter appears in Ferguson Briggs & Mestel (2022b).
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5.2 Equipotential surfaces with zero-mean curvature

Stationary equilibria must satisfy both χ ≡ χ(H) and (2.55). The simplest solutions have

χ constant throughout the fluid, but non-constant solutions are hard to find. If χ takes an

arbitrary but specific distribution in space, a field applied to the ferrofluid will adapt spatially

to satisfy (2.55) and (2.58). We find (2.58) is satisfied by a set of solutions where

χ =
A

H
− 1, (5.1)

for a positive constant A, such that A/H ⩾ 1 throughout the fluid, ensuring χ ⩾ 0. For χ

given by (5.1), (2.55) becomes

∇ ·
(

∇ϕ

|∇ϕ|

)
= 0. (5.2)

Since ∇ϕ/|∇ϕ| is a unit normal to the surface of constant ϕ, (5.2) implies that the field adapts

to produce equipotential surfaces with zero mean curvature (Goldman, 2005). Consequently,

the governing equations are satisfied (subject to boundary conditions) for a stationary fluid

where the spatial distributions of χ and H satisfy (5.1), and equipotential surfaces have zero

mean curvature. It should be noted that (5.1) is not a physical or chemical relationship between

H and χ, and is not valid for all H (for example H → 0 and H → ∞). χ does not need to

depend explicitly on H for (5.1) to be satisfied.

Thus, in theory, we have a set of stationary equilibria where χ and H are related by (5.1)

and ϕ satisfies (5.2), applicable to a general geometry, so long as the boundary conditions are

satisfied. Moreover, observe from (5.1) that dH/dχ < 0 and therefore we postulate they are

unstable, since the regions of highest susceptibility and regions of strongest field do not coincide.

Consequently, we have produced a family of equilibria that satisfy (2.55)-(2.58), such that

the equipotential surfaces have zero mean curvature. However, for the chosen geometry they

need to satisfy the required boundary conditions (2.59)-(2.64). In this chapter, we consider the

simplest zero-curvature surface; a planar domain.
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5.3 Formulation

𝑧

𝑦

𝑥

H= 𝐻!(𝑧)𝒆𝒛u= 𝟎

𝜒(z)

𝑧 = 𝑧#

𝑧 = 𝑧$

Figure 5.1: Schematic of the planar system

We consider a three-dimensional, Cartesian co-ordinate system, where a ferrofluid of spatially

varying χ is between two solid plates at z = z1 and z = z2, where z points normal to the plates

and x, y perpendicular to each other along the plates. An applied field varies normal to the

plates in the region z1 < z < z2 such that H = H0(z)ez, where ez is the unit vector in the z

direction. The ferrofluid is incompressible and isothermal with constant ρ, η and µ0. The fluid

is initially at rest, and the susceptibility of the fluid satisfies

χ(z) =
A

H0(z)
− 1 for z1 < z < z2, (5.3)

where A/H0 ⩾ 1, but elsewhere,

χ = 0 for z ≤ z1,

χ = 0 for z ≥ z2.

 (5.4)

Thus, in the plates the magnetic potential must satisfy,

∇2ϕ(l) = 0, (5.5)
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where l = 1, 2 for z < z1, z > z2, respectively, with the boundary conditions

∂ϕ(l)

∂z
= A, (5.6)

∂ϕ(l)

∂x
= 0,

∂ϕ(l)

∂y
= 0 (5.7)

at z = zl. For simplicity, choose ϕ(l) = Az. A schematic of the problem is shown in Figure 5.1.

Now, given (5.1), it follows that

dχ

dH
= − 1

A
(1 + χ)2 < 0, (5.8)

and we expect that a disturbance to this equilibrium will result in a release of magnetic energy,

driving an instability. For this equilibrium, an energy stability argument is easily applied, by

assuming a parcel of fluid will retain its value of χ, and we illustrate this argument in Figure

5.2. Figure 5.2.a shows the parcels of fluid with highest susceptibility do not coincide with the

regions of strongest field. Two parcels are swapped, resulting in the location of each parcel,

and its corresponding value of susceptibility, “coinciding more” with the strength of the field,

shown in Figure 5.2.b . This may result in a release of energy, as less energy is required for this

formation, and the perturbation can use this energy to grow. The lowest energy formation is

shown in figure 5.2.c . This argument is analogous to the energy arguments discussed in 4.5 in

other areas of fluid dynamics.
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𝜒

𝜒

𝜒

𝜒

𝜒

𝜒

𝜒

𝜒 𝜒

𝜒

𝜒

𝜒

𝑯

[a] [b] [c]

Figure 5.2: An illustration of an energy argument: The field acts in the vertical direction,
where the darker the blue colour, the stronger the field. The ferrofluid is illustrated as parcels
with individual values of susceptibility, where the darker the orange colour, the higher the
susceptibility. Energy is released moving from [a] to [b], and [c] shows the formation of minimum
energy.

Suspecting the system is unstable, we prove this using linear stability analysis. We consider

perturbations to the stationary state such that

ω = ϵ∇× (R(û(z)δ)) +O(ϵ2),

χ =
A

H0(z)
− 1 + ϵR(χ̂(z)δ) +O(ϵ2),

p = p0(z) + ϵR(p̂(z)δ) +O(ϵ2),

H = H0(z) + ϵR(ϕ̂′(z)δ) +O(ϵ2),

(5.9)

where ′ indicates the derivative w.r.t. z, û(z) = (û(z), v̂(z), ŵ(z))T , δ = ei(αx+βy)+st, ϵ ≪ 1, α,

β are real and positive wave numbers, the hat variables could be complex, s is the growth rate

of the disturbance and could be complex, and R denotes the real part. From now on, the real

part will not be written explicitly.

After substituting (5.9) and linearising, (2.58) in component form is

(sρ− η∇2)(iβŵ − v̂′) = iµ0β

(
AH ′

0ϕ̂
′

H0

+H0H
′
0χ̂

)
, (5.10)
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(sρ− η∇2)(û′ − iαŵ) = −iµ0α

(
AH ′

0

H0

ϕ̂′ +H0H
′
0χ̂

)
, (5.11)

(sρ− η∇2)(αv̂ − βû) = 0. (5.12)

(2.56) and (2.66) give

iαû+ iβv̂ + ŵ′ = 0 (5.13)

and

ŵ =
sH2

0 χ̂

AH ′
0

, (5.14)

respectively, where

∇2 =
d2

dz2
− (α2 + β2). (5.15)

We require ŵ = 0 at z = z1,2, and it follows that χ̂ = 0 at z = z1,2. Note that by considering

the sum of (5.10) multiplied by α and (5.11) multiplied by β, we find the equations are satisfied

by αv = βu. The direction of the wave-vector (α, β) is arbitrary, and we could have chosen

β = 0 without loss of generality.

ϕ̂(l) has general solution

ϕ̂(l) = q
(l)
1 e

√
α2+β2z + q

(l)
2 e

−
√

α2+β2z, (5.16)

for constants q
(l)
1 , q

(l)
2 . Imposing ∇ϕ(l) regular as z → ±∞ gives

ϕ̂(1) = q
(1)
1 e

√
α2+β2z and ϕ̂(2) = q

(2)
2 e−

√
α2+β2z. (5.17)

Substituting (5.9) into (2.55) and linearising gives

A∇2ϕ̂

H0

− AH ′
0ϕ̂

′

H2
0

= −(H0χ̂)
′. (5.18)

Write (5.18) as

(χ̂H0)
′ = −

(
Aϕ̂′

H0

)′

+
A(α2 + β2)ϕ̂

H0

(5.19)
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and integrate to give

χ̂ =
AH ′

0Hϕ̂
H2

0

, (5.20)

where

Hϕ̂ = − 1

H ′
0

(
ϕ̂′ −H0(α

2 + β2)

∫ z

0

ϕ̂(γ)

H0(γ)
dγ

)
. (5.21)

(2.59) and (2.60) applied at z = z1,2 gives

A

H0

ϕ̂′ = (ϕ̂(1,2))′ (5.22)

and

ϕ̂ = ϕ̂(1,2), (5.23)

respectively. Substituting (5.17) into (5.22) and (5.23) results in

Aϕ̂′

H0

+
√
α2 + β2ϕ̂ = 0 (5.24)

at z = z2, and

Aϕ̂′

H0

−
√
α2 + β2ϕ̂ = 0 (5.25)

at z = z1.

Apply the operator

−iα(sρ− η∇2) (5.26)

to (5.13) to give

α2(sρ− η∇2)û+ αβ(sρ− η∇2)v̂ = iα(sρ− η∇2)ŵ′. (5.27)

Substitute (5.12) into (5.27) to give

(α2 + β2)(sρ− η∇2)û = iα(sρ− η∇2)ŵ′, (5.28)
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and take the derivative w.r.t z to give

(α2 + β2)(sρ− η∇2)û′ = iα(sρ− η∇2)ŵ′′. (5.29)

Substitute (5.29) into (5.11) to give

(sρ− η∇2)∇2ŵ = −µ0(α
2 + β2)

(
H0H

′
0χ̂+ A

H ′
0

H0

ϕ̂′
)

(5.30)

and substitute (5.14) and (5.20) to give

(s2ρ− ηs∇2)∇2Hϕ̂ =
−µ0(α

2 + β2)AH ′
0

(
ϕ̂′ +H ′

0Hϕ̂
)

H0

. (5.31)

Substituting (5.21) into (5.31) produces the eigenvalue equation

(s2ρ− ηs∇2)∇2Hϕ̂ = −µ0(α
2 + β2)2AH ′

0

∫ z

0

ϕ̂(γ)

H0(γ)
dγ. (5.32)

(5.20) and (5.14) giveHϕ̂ = 0 and (Hϕ̂)′ = 0 at z = z1,2, as well as ϕ̂ satisfying (5.24) and (5.25).

For a specific H0 we can solve (5.32) to determine the eigenmodes, ϕ̂, and the associated

eigenvalues, s, but here we determine the stability of the system for general H0. Multiply

(5.32) by Hϕ̂∗, where ϕ̂∗ is the complex conjugate of ϕ̂, to obtain

s2ρ

∫ z2

z1

(
Hϕ̂∗∇2Hϕ̂

)
dz − sη

∫ z2

z1

(
Hϕ̂∗∇4Hϕ̂

)
dz

+µ0A(α
2 + β2)2

∫ z2

z1

(
H ′

0Hϕ̂∗
(∫ z

0

ϕ̂(γ)

H0(γ)
dγ

))
dz = 0, (5.33)

Using (5.21),

∫ z2

z1

(
H ′

0Hϕ̂∗
(∫ z

0

ϕ̂(γ)

H0(γ)
dγ

))
dz

= −
∫ z2

z1

(
ϕ̂∗′
(∫ z

0

ϕ̂(γ)

H0(γ)
dγ

)
−H0(α

2 + β2)

∣∣∣∣ ∫ z

0

ϕ̂(γ)

H0(γ)
dγ

∣∣∣∣2)dz. (5.34)
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Integration by parts on (5.34) and invoking the boundary conditions gives

∫ z2

z1

(
H ′

0Hϕ̂∗
(∫ z

0

ϕ̂(γ)

H0(γ)
dγ

))
dz =

∫ z2

z1

(
|ϕ̂′|2

H0

+H0(α
2 + β2)

∣∣∣∣ ∫ z

0

ϕ̂(γ)

H0(γ)
dγ

∣∣∣∣2)dz. (5.35)

Substituting (5.35) into (5.33) and performing integration by parts on the remaining terms

terms we obtain

s2ρ

∫ z2

z1

(
|(Hϕ̂)′|2 + (α2 + β2)|Hϕ̂|2

)
dz + sη

∫ z2

z1

|∇2Hϕ̂|2dz

−Aµ0(α
2 + β2)2

∫ z2

z1

(
|ϕ̂′|2

H0

+H0(α
2 + β2)

∣∣∣∣ ∫ z

0

ϕ̂(γ)

H0(γ)
dγ

∣∣∣∣2)dz = 0. (5.36)

(5.36) is of the form as2 + bs + c = 0, with a, b, c real and a, b > 0, c < 0. It follows

that s is real and therefore ϕ̂, χ̂ and ŵ are real, but û and v̂ are imaginary. Every three-

dimensional disturbance possesses a growing mode (s > 0) and is unstable. This result and the

stability condition in chapter 4, both support the theory that dH/dχ < 0 results in an unstable

configuration.

5.4 Adding a horizontal field

In an effort to stabilise the system, we apply a constant field in the x and y directions, such that

H0 = (D,E,H0(z))). The equilibrium still requires χ0 = A/H0(z)− 1, u0 = 0, and p = p0(z).

Consequently the perturbed variables are now

ω = ϵ∇× (R(û(z)δ)) +O(ϵ2),

χ =
A

H0(z)
− 1 + ϵR(χ̂(z)δ) +O(ϵ2),

p = p0(z) + ϵR(p̂(z)δ) +O(ϵ2),

H =
√
D2 + E2 + (H0(z))2 + ϵR

(
iαDϕ̂+ iβEϕ̂+H0(z)ϕ̂

′(z)√
D2 + E2 + (H0(z))2

δ

)
+O(ϵ2).

(5.37)
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and (2.58) in component form becomes

(sρ− η∇2)(iβŵ − v̂′) = −µ0AH
′
0

H2
0

(
Dαβ + Eβ2

)
ϕ̂+ iµ0β

(
AH ′

0ϕ̂
′

H0

+H0H
′
0χ̂

)
, (5.38)

(sρ− η∇2)(û′ − iαŵ) =
µ0AH

′
0

H2
0

(
α2D + αβE

)
ϕ̂− iµ0α

(
AH ′

0

H0

ϕ̂′ +H0H
′
0χ̂

)
, (5.39)

(sρ− η∇2)(αv̂ − βû) = 0. (5.40)

(3.26) and (2.66) remain the same, but substituting (5.37) into (2.55) and linearising gives

A∇2ϕ̂

H0

− AH ′
0ϕ̂

′

H2
0

= −(H0χ̂)
′ − i

(
αD + βE

)
χ̂. (5.41)

Consequently we obtain two simultaneous equations

(
s2ρ∇2 − sη∇4

)
H2

0 χ̂

H ′
0

= −µ0A(α
2 + β2)H ′

0

(
H0χ̂+

A

H2
0

(iDα + iEβ)ϕ̂+
A

H0

ϕ̂′
)

(5.42)

and (
Aϕ̂′

H0

)′

− A

H0

(α2 + β2)ϕ̂ = −
(
(H0χ̂)

′ + i(Dα + Eβ)χ̂
)
. (5.43)

Observe that modes satisfying Dα + Eβ = 0 remain unstable, since the equations return to

that of Section 5.3. Thus, applying a horizontal field cannot suppress all unstable modes.

5.5 Stabilisation with a rotating field

We now investigate whether a rapidly rotating field is sufficient to stabilise the system. Apply-

ing an alternating field is analogous to applying a constant field, in that there will exist modes

perpendicular to the field which remain unstable. But, for a rapidly rotating field, the field

direction changes sufficiently often that an unstable mode perpendicular to the field may not

have time to grow before it is no longer perpendicular to the field, and becomes dampened by
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the field.

Let H = (D cos(ωt), E sin(ωt), H0(z)), and for an equilibrium, it remains that χ = −1 +

A/H0(z), u = 0, and p = p0(z) in the fluid. Note that H0(z) ̸= |H|, but is the z-component of

H . In the plates let H = (D cos(ωt), E sin(ωt), A). Now, perturb the equilibrium such that

ω = ϵ∇× (R(û(z, t)eiαx+iβy) +O(ϵ2),

χ =
A

H0(z)
− 1 + ϵR(χ̂(z, t)eiαx+iβy) +O(ϵ2),

p = p0(z) + ϵR(p̂(z, t)eiαx+iβyδ) +O(ϵ2),

H =
√

(D cos(ωt))2 + (E sin(ωt))2 +H2
0

+ ϵR
(
iαD cos(ωt)ϕ̂+ iβE sin(ωt)ϕ̂+H0ϕ̂

′(z)√
(D cos(ωt))2 + (E sin(ωt))2 +H2

0

δ

)
+O(ϵ2). (5.44)

Substituting the perturbed variables into equations (2.55)-(2.58) and (2.66), linearising and ma-

nipulating the equations by an analogous method to Section 5.4, with D replaced by D cos(ωt)

and E replaced with E sin(ωt), we obtain two simultaneous equations;

(
ρ∂tt∇2 − η∂t∇4

)(
H2

0 χ̂

H ′
0

)
=− Aµ0(α

2 + β2)H ′
0

(
H0χ̂

− A

H2
0

(
i(Dα cos(ωt) + Eβ sin(ωt))ϕ̂+H0∂zϕ̂

))
(5.45)

and

∂z

(
A

H0

∂zϕ̂

)
− A

H0

(α2 + β2)ϕ̂ = −
(
∂z(χ̂H0) + i(D cos(ωt)α + E sin(ωt)β)χ̂

)
. (5.46)

The solution in the walls remains as (5.17), but (2.59) and (2.60) give

A

H0

∂zϕ̂+ χ̂H0 = ∂zϕ̂
(1,2) (5.47)

and

ϕ̂ = ϕ̂(1,2) (5.48)
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respectively, at z = z1,2. Consequently,

A∂zϕ̂

H0

+ χ̂H0 +

(√
α2 + β2

)
ϕ̂ = 0 (5.49)

at z = z2 and

A∂zϕ̂

H0

+ χ̂H0 −
(√

α2 + β2

)
ϕ̂ = 0 (5.50)

at z = z1. By requiring u = 0 at z = z1,2, we infer ∂tχ̂ = 0 at z = z1,2. Thus χ is constant at

the walls, which we define to be zero, and (5.49) and (5.50) simplify to

A∂zϕ̂

H0

+

(√
α2 + β2

)
ϕ̂ = 0 (5.51)

at z = z2 and

A∂zϕ̂

H0

−
(√

α2 + β2

)
ϕ̂ = 0 (5.52)

at z = z1, respectively. We now set D = E for simplicity, but the analysis is analogous for

D ̸= E.

We suppose there are two time scales; one for the growth rate of the instability and the other

for the rotation speed such that

ϕ̂ = ϕc(z, t) + A1(z, t) cos(ωt) + A2(z, t) sin(ωt), (5.53)

χ̂ = χc(z, t) +
A3(z, t) cos(ωt) + A4(z, t) sin(ωt)

ω
. (5.54)

The scaling in (5.54) anticipates that χt ∼ u ·∇χ in (2.66). The boundary conditions for χ,

give χc(z, t) = A3,4 = 0 at z = z1,2. (5.51) and (5.52) give

A∂zϕc

H0

√
α2 + β2

+ ϕc = 0,
A∂zA1,2

H0

√
α2 + β2

+ A1,2 = 0 (5.55a, b)
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at z = z2, and

A∂zϕc

H0

√
α2 + β2

− ϕc = 0,
A∂zA1,2

H0

√
α2 + β2

− A1,2 = 0 (5.56a, b)

at z = z1, respectively.

Substituting (5.53) and (5.54) into (5.45) gives

ωρ∇2

(
H2

0

H ′
0

(
∂2t χc +

(
∂ttA3

ω2
+ 2

∂tA4

ω
− A3

)
cos(ωt) +

(
∂ttA4

ω2
− A4 − 2

∂tA3

ω

)
sin(ωt)

))
−η∇4

(
H2

0

H ′
0

(
∂tχc +

(
A4 +

∂tA3

ω

)
cos(ωt) +

(
− A3 +

∂tA4

ω

)
sin(ωt)

))
= −Aµ0(α

2 + β2)

(
H0H

′
0

(
χc +

A3

ω
cos(ωt) +

A4

ω
sin(ωt)

)
+
AH ′

0

H2
0

(
iD(α cos(ωt) + β sin(ωt)) +H0∂z

)(
ϕc + A1 cos(ωt) + A2 sin(ωt)

))
, (5.57)

and into (5.46) gives

(
∂z

(
A

H0

∂z

)
− A

H0

(α2 + β2)

)
(ϕc + A1 cos(ωt) + A2 sin(ωt))

= −iD

(
α cos(ωt) + β sin(ωt)

)(
χc +

A3

ω
cos(ωt) +

A4

ω
sin(ωt)

)
−∂z

(
H0

(
χc +

A3

ω
cos(ωt) +

A4

ω
sin(ωt)

))
. (5.58)

Assume O(1/ω2) and O(1/ω) terms are negligible, as a result of the rapid rotation. Equating

terms in (5.57) gives

ρ∇2

(
H2

0A3

H ′
0

)
+ η∇4

(
H2

0A4

H ′
0

)
=
µ0A

2(α2 + β2)H ′
0

(
iDαϕc +H0∂zA1

)
H2

0

(5.59)

and

ρ∇2

(
H2

0A4

AH ′
0

)
− η∇4

(
H2

0A3

AH ′
0

)
=
AH ′

0µ0(α
2 + β2)

(
iDβϕ+H0∂zA2

)
H2

0

. (5.60)

Similarly, (5.58) gives

MA1 = −iDαχc (5.61)
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and

MA2 = −iDβχc, (5.62)

where

M = ∂z

(
A

H0

∂z

)
− A

H0

(α2 + β2). (5.63)

Time averaging over the fast time scale in (5.57) and (5.58) gives

ρ∇2

(
H2

0∂
2
t χc

H ′
0

)
− η∇4

(
H2

0∂tχc

H ′
0

)
=− µ0A(α

2 + β2)

(
H0H

′
0χc

+
AH ′

0(2H0∂zϕc + iD(αA1 + βA2))

2H2
0

)
(5.64)

and

Mϕc = −∂z(H0χc). (5.65)

Since the coefficients do not depend on t we assume ∂tχc = sχ(z)est, ∂tϕc = sϕ(z)est to give

(
ρs2∇2 − ηs∇4

)(H2
0χ

AH ′
0

)
= −µ0(α

2 + β2)

(
H0H

′
0χ+

AH ′
0(2H0ϕ

′ + iD(αA1 + βA2))

2H2
0

)
(5.66)

and

Mϕ = −(H0χ)
′. (5.67)

Integrating (5.67) gives

χ =
AH ′

0Hϕ
H2

0

, (5.68)

and substituting (5.68) into (5.66) results in

(
ρs2∇2− ηs∇4

)(
Hϕ
)
= −µ0A(α

2+β2)H ′
0

(
(α2+β2)

∫ z

0

ϕ(δ)

H0(δ)
dδ+

iD(αA1 + βA2)

2H2
0

)
. (5.69)

Apply the operator

MH2
0

H ′
0

(5.70)
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to (5.69), substitute for MA1, MA2, and use (5.68), to obtain the eigenvalue equation,

M
(
H2

0

H ′
0

(
s2ρ∇2−sη∇4

)
Hϕ
)

= −µ0A(α
2+β2)2

(
M
(
H2

0

∫ z

0

ϕ(δ)

H0(δ)
dδ

)
+
AD2H ′

0Hϕ
H2

0

)
. (5.71)

Coupled with the boundary conditions

Hϕ = 0, (Hϕ)′ = 0, Aϕ′ −H0

(√
α2 + β2

)
ϕ = 0 (5.72)

st z = z1, and

Hϕ = 0, (Hϕ)′ = 0, Aϕ′ +H0

(√
α2 + β2

)
ϕ = 0 (5.73)

at z = z2.

Next, suppose D is sufficiently large, such that

AD2H ′
0Hϕ

H2
0

≫ M
(
H2

0

∫ z

0

ϕ(δ)

H0(δ)
dδ

)
, (5.74)

so that (5.71) approximates as

M
(
H2

0

H ′
0

(
s2ρ∇2 − sη∇4

)
Hϕ
)

= −µ0(α
2 + β2)2A2D2H ′

0Hϕ
H2

0

. (5.75)

Rather than solve (5.75), we determine whether a sufficiently large D dampens all disturbances.

Multiply (5.75) by

H2
0

H ′
0

∇2Hϕ∗ (5.76)

and integrate over the domain to give

s2ρ

∫ z2

z1

H2
0

H ′
0

(∇2Hϕ∗)M
(
H2

0

H ′
0

∇2Hϕ
)
dz − sη

∫ z2

z1

H2
0

H ′
0

(∇2Hϕ∗)M
(
H2

0

H ′
0

∇4Hϕ
)
dz

= −µ0(α
2 + β2)A2D2

∫ z2

z1

Hϕ∇2Hϕ∗dz. (5.77)
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Integration by parts gives

s2ρ

∫ z2

z1

A

H0

(∣∣∣∣(H2
0

H ′
0

∇2Hϕ
)′∣∣∣∣2 + (α2 + β2)

∣∣∣∣H2
0

H ′
0

∇2Hϕ
∣∣∣∣2)dz

+sη

∫ z2

z1

H2
0

H ′
0

(∇2Hϕ∗)M
(
H2

0

H ′
0

∇4Hϕ
)
dz

+µ0(α
2 + β2)2A2D2

∫ z2

z1

(
|(Hϕ)′|2 + (α2 + β2)|(Hϕ)|2

)
dz = 0. (5.78)

To obtain a second equation multiply (5.75) by

H2
0

H ′
0

∇4Hϕ∗, (5.79)

integrate over the domain and use integration by parts to obtain

s2ρ

∫ z2

z1

H2
0

H ′
0

∇4(Hϕ∗)M
(
H2

0

H ′
0

∇2Hϕ
)
dz

+sη

∫ z2

z1

A

H0

(∣∣∣∣(H2
0

H ′
0

∇4Hϕ
)′∣∣∣∣2 + (α2 + β2)

∣∣∣∣H2
0

H ′
0

∇4Hϕ
∣∣∣∣2)dz

+µ0(α
2 + β2)2A2D2

∫ z2

z1

|∇2Hϕ|2dz = 0. (5.80)

Although ϕ is an eigenfunction that depends implicitly on s, we express (5.78) and (5.80)

in the form of a quadratic equation. We write ajs
2
j + bjsj +D2cj = 0, where j = 1, 2 for (5.78)

and (5.80) respectively, and a1 > 0, b2 > 0, cj > 0. It follows that if a2 > 0 and b1 > 0,

R(s1,2) < 0, and therefore R(s) < 0 for all disturbances, since s must satisfy (5.78) and (5.80)

simultaneously.

We now prove a2 > 0 and b1 > 0. Using the quadratic formula and expanding sj for D ≫ 1

gives

s1 =
−b1
2|a1|

±
√
D

2|a1|

(
2
√

−|a1||c1| −
b1

2
√

−|a1||c1|
8D|a1||c1|

+O(D−2)

)
(5.81)

103



and

s2 =
−|b2|
2a2

±
√
D

2a2

(
2
√
−a2|c2| −

b2
2
√

−a2|c2|
8Da2|c2|

+O(D−2)

)
, (5.82)

where we use the modulus sign to denote that the variable is positive. Thus to highest order

s1 = ±i

√
D|c1|
|a1|

, s2 = ±

√
−D|c2|

a2
. (5.83)

Since s1 is imaginary and to leading order s must equal both s1 and s2, it follows that s2 must

be imaginary, and therefore a2 > 0. To next order

s1 =
−b1
2|a1|

± i

√
D|c1|
|a1|

, s2 =
−|b2|
2a2

±

√
−D|c2|

a2
. (5.84)

Since a2 > 0, it follows that b1 > 0, and therefore Re(sj) < 0. We conclude that for sufficiently

large D, all modes are stable. We have thus demonstrated that adding a sufficiently strong

rapidly rotating field in the (x, y) plane stabilises the system.

5.6 Concluding remarks

A planar equilibrium where the susceptibility and field vary in the normal direction such that

dH/dχ < 0, has been proven to be unstable. Adding a sufficiently large, rapidly rotating

magnetic field will dampen all unstable modes, where a constant, or even an alternating field,

cannot. Here we have considered rigid boundaries, but we could have no plates and impose the

appropriate boundary conditions as z → ±∞ and follow analogous analysis.

We acknowledge that a rapidly rotating field may introduce thermal effects on the ferrofluid

(Beković et al., 2014) but we assume the system to be isothermal throughout. Arguably, a

rotating field may also cause a magneto-viscosity in the ferrofluid. However it is found that for

weakly non-equilibrium situations (and therefore in quasi-equilibrium situations), a rotating

field does not induce a “spin up” like an alternating field (Shliomis, 2002). Moreover, under

the quasi-equilibrium approach the magneto-viscous effects are ignored.
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More generally, when the field is a function of the susceptibility, equipotential surfaces of

zero mean curvature give a set of solutions to the governing equations. The planar geometry

is a special case of this, satisfying the appropriate boundary conditions. Thus, in theory, for

a general geometry there exist stationary states where dχ/dH < 0, if the boundary conditions

can be satisfied. We would expect these to be unstable, but there may be methods of stabilising

the system. A rotating field may not be sufficient in more complicated configurations, and the

addition of a different field may be needed to dampen all modes.
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Chapter 6

Stability condition for a general

volume of ferrofluid with non-uniform

susceptibility, in the presence of a

non-uniform field

6.1 Introduction

The stability of two equilibria where χ and H are both non-uniform, one in a cylindrical and

the other in a planar geometry, has been determined. The “simplicity” of the equilibria and the

resulting equations, allowed us to use linear stability analysis to prove that the equilibria were

unstable when dH/dχ < 0, supporting our hypothesis. However, linear stability analysis of

more complicated equilibria where χ and H are both non-constant, may not be easily achieved,

and a stability condition for a general geometry would therefore be useful, although this is not

trivial to determine.

In this chapter, we consider a general volume of ferrofluid, whose susceptibility varies with

position, in the presence of a non-uniform field. To simplify the equations so as to allow for
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the derivation of a stability condition, we consider the susceptibility varying slowly in space.

By performing linear stability analysis on a stationary state, we obtain a stability condition for

a general volume of ferrofluid, dependent on the sign of the gradient of the magnitude of the

field with respect to the susceptibility of the ferrofluid.

6.2 Equilibrium and the linearised equations

Suppose we have a stationary equilibrium of a volume of ferrofluid in the presence of a field

with magnitude H = H0, where u = 0 is imposed on the boundaries. χ varies with position

throughout the ferrofluid, and it may depend explicitly on H. For a stationary state, the initial

susceptibility is such that χ0 ≡ χ0(H0) and

∇ · ((1 + χ0)H0) = 0. (6.1)

From (2.58) it follows that

∇χ0 ×∇H0 = 0. (6.2)

Moreover, the initial pressure, p = p0, must satisfy

∇p0 = −µ0

∫ H0

0

H0∇H0χ0dH0 (6.3)

such that (2.57) is satisfied.

Consider perturbations to the stationary state such that

H = H0 + ϵH1e
st, (6.4)

χ = χ0 + ϵχ1e
st, (6.5)

u = ϵu1e
st, (6.6)
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p = p0 + ϵp1e
st, (6.7)

where the variables with subscript 1 are functions of position. Substituting (6.4)-(6.7) into

(2.55), (2.56), (2.44), (2.66), and linearising gives

(1 + χ0)∇ ·H1 +∇χ0 ·H1 + χ1∇ ·H0 +∇χ1 ·H0 = 0, (6.8)

∇ · u1 = 0, (6.9)

sReω1 = ∇2ω1 +BH0(∇χ0 ×∇H1 +∇χ1 ×H0), (6.10)

sχ1 + (u1 ·∇)χ0 = 0, (6.11)

where ω1 = ∇ × u1, and Re and B are defined in Section 2.5.1 and are determined by

the appropriate scales for the system under investigation. Rather than solving the eigenvalue

problem for a specific equilibrium, we seek a generic stability condition.

6.3 Formulation for a stationary state with a slowly spatially-

varying magnetic susceptibility

To allow progress in determining a stability condition, we simplify the equations by considering

χ0 varying slowly spatially. Namely, assume that ∇χ0 = O(ϵ2), where ϵ2 ≪ 1. It follows from

(6.3) that ∇p0 = O(ϵ2) and (6.1) to highest order becomes

∇ ·H0 = 0. (6.12)

In the perturbed system, (6.8)-(6.11) become

(1 + χ0)∇ ·H1 + ϵ2∇χ0 ·H1 + χ1∇ ·H0 +∇χ1 ·H0 = 0, (6.13)

∇ · u1 = 0, (6.14)
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sReω1 = ∇2ω1 +B(ϵ2∇χ0 ×∇H1 +∇χ1 ×H0), (6.15)

sχ1 + ϵ2u1 ·∇χ0 = 0. (6.16)

It follows from (6.16) that s = O(ϵ2) to retain the time-dependence, and as Re is scaled with

time in (6.15), Re = O(1/ϵ2). Define s∗ = s/ϵ2 and Re∗ = ϵ2Re, substitute these into (6.15)

and (6.16) and drop the stars. Consequently, to highest order;

(1 + χ0)∇ ·H1 +∇χ1 ·H0 = 0, (6.17)

∇ · u1 = 0, (6.18)

sReω1 = ∇2ω1 +BH0(∇χ1 ×∇H0), (6.19)

sχ1 + u ·∇χ0 = 0. (6.20)

Conveniently, the magnetic perturbation no longer appears in (6.18)-(6.20) and we no longer

need (6.17) in the analysis.

Substituting (6.20) into (6.19) results in

s2Reω1 − s∇2ω1 = BH0∇H0 ×∇(u1 ·∇χ0). (6.21)

Since χ0 is a function of H0, define

H ′
0 =

dH0

dχ0

, (6.22)

to write

H0∇H0 = H0H
′
0∇χ0. (6.23)

Re-write (6.21) as

s2Reω1 − s∇2ω1 = BH0H
′
0∇χ0 ×∇(u1 ·∇χ0), (6.24)

In the next three sections we use (6.18), (6.24), and impose u1 = 0 on the boundary of the

volume of ferrofluid, to deduce a stability condition for a volume of ferrofluid with a slowly
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spatially-varying χ. We drop the subscripts hereon. The vector identities and theorems that

we use in subsequent sections are given in Appendix A.6 for ease of reference.

6.4 Cartesian system

For simplicity, first consider a volume of ferrofluid V in a Cartesian co-ordinate system x, y, z,

where the vectors ex and ey are orthogonal unit vectors in the x and y directions, respectively,

and ez is the unit normal to the x, y plane. Suppose that the system is invariant in z. We

impose u = 0 and χ0 = 0 at the boundary of V , and define a cross-section of the volume as

the surface S in the x, y plane, such that ez is normal to S. It follows that u and χ0 are zero

on the boundary of S, which we define as ∂S.

Define a stream-function ψ such that

u = ∇× ψez, (6.25)

and therefore

∇ψ = 0, on ∂S. (6.26)

Given ω = ωez in Cartesian co-ordinates, it follows that

∇2ψ = −ω. (6.27)

Consequently (6.24) is written as

[
− s2Re∇2ψ + s∇4ψ

]
ez = BH0H

′
0∇χ0 ×∇((∇× ψez) ·∇χ0). (6.28)

Using (A.55), (6.28) can be written as

[
− s2Re∇2ψ + s∇4ψ

]
ez = BH0H

′
0∇χ0 ×∇((∇ψ × ez) ·∇χ0), (6.29)
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since ∇× ez = 0, and using (A.51),

[
− s2Re∇2ψ + s∇4ψ

]
ez = BH0H

′
0∇χ0 ×∇

(
(∇χ0 ×∇ψ) · ez

)
. (6.30)

Dot (6.30) with ez, multiply by ψ∗, and integrate over the surface S to give

−s2Re
∫∫

S

ψ∗∇2ψdS+ s

∫∫
S

ψ∗∇4ψdS = B

∫∫
S

H0H
′
0ψ

∗(∇χ0×∇
(
(∇χ0×∇ψ) ·ez

))
·ezdS,

(6.31)

where ψ∗ is the complex conjugate of ψ.

Define the integral

IR1 =

∫∫
S

H0H
′
0ψ

∗(∇χ0 ×∇
(
(∇χ0 ×∇ψ) · ez

))
· ezdS. (6.32)

Now,

∇χ0 ×∇
(
ψ∗((∇χ0 ×∇ψ) · ez

))
=ψ∗∇χ0 ×∇

(
(∇χ0 ×∇ψ) · ez

)
+
(
(∇χ0 ×∇ψ) · ez

)
∇χ0 ×∇ψ∗, (6.33)

thus

IR1 =

∫∫
S

H0H
′
0

(
∇χ0 ×∇ν − (∇χ0 ×∇ψ∗)

(
(∇χ0 ×∇ψ) · ez

))
· ezdS, (6.34)

where ν = ψ∗(∇χ0 ×∇ψ) · ez. Now,

∫∫
S

H0H
′
0(∇χ0 ×∇ν) · ezdS =

∫∫
S

(H0∇H0 ×∇ν) · ezdS

(6.35)
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by definition, and

∫∫
S

(H0∇H0 ×∇ν) · ezdS =
1

2

∫∫
S

∇× (H2
0∇ν) · ezdS. (6.36)

Consequently,

∫∫
S

H0H
′
0(∇χ0 ×∇ν) · ezdS =

∫∫
S

∇× (H2
0∇ν) · ezdS

= 0 (6.37)

by Stokes theorem, since H0 ≡ H0(χ0) and χ0 = 0 on the boundaries of the surface. Hence,

IR1 = −
∫∫

S

H0H
′
0|∇χ0 ×∇ψ|2dS. (6.38)

Substituting (6.38) into (6.31) gives

s2Re

∫∫
S

ψ∗∇2ψdS − s

∫∫
S

ψ∗∇4ψdS = B

∫
∂S

H0H
′
0|∇χ0 ×∇ψ|2dS. (6.39)

Integration by parts on the first term, twice on the second term, and invoking u = 0 at ∂S, we

obtain

s2Re

∫∫
S

|∇ψ|2dS + s

∫∫
S

|∇2ψ|2dS +B

∫∫
S

H0H
′
0|∇χ0 ×∇ψ|2dS = 0. (6.40)

It follows that

s =
−
∫∫

S
|∇2ψ|2dS ±

√
(
∫∫

S
|∇2ψ|2dS)2 − 4BRe

∫∫
S
|∇ψ|2dS(

∫∫
S
H0H ′

0|∇χ0 ×∇ψ|2dS)

2Re
∫∫

S
|∇ψ|2dS

,

(6.41)

and when ∫∫
S

H0H
′
0|∇χ0 ×∇ψ|2dS < 0, (6.42)

s is real and s > 0. (6.42) is true when H ′
0 < 0, thus if H ′

0 < 0 in all of S, the disturbances

are unstable modes. However, if H ′
0 ≥ 0 in all of S, s can be complex and R(s) ≤ 0, and the
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system is stable.

By a similar method to Chapter 4, we can consider the functional

F (f) =
−
∫∫

S
|∇2f |2dS +

√
(
∫∫

S
|∇2f |2dS)2 − 4BRe

∫∫
S
|∇f |2dS

∫∫
S
H0H ′

0|∇χ0 ×∇f |2dS

2Re
∫∫

S
|∇f |2dS

.

(6.43)

for all real functions f(x, y) satisfying the boundary conditions of ψ, to prove that the stationary

points of F correspond to the real eigenvalues of (6.30). Analogously to Section 4.3.1, we can

argue that F (f) is bounded above, since F (f) is homogeneous in f and

F (f) ∼
−
∫∫

S
|∇2f |2dS +

√(∫∫
S
|∇2f |2dS

)
2Re

∫∫
S
|∇f |2

−
B
∫∫

S
H0H

′
0|∇χ0 ×∇f |2dS∫∫

S
|∇2f |2dS

(6.44)

for |∇2f |2 ≫ 1. We conclude that for H ′
0 < 0, F (f) is positive and bounded above. Impor-

tantly, there exists a positive maximum point of F .

We now prove stationary points of F correspond to real eigenvalues of (6.30). Suppose f = f0

is a stationary point of F , such that F (f0) = F0 and consider f = f0 + ϵf1, where f0 and f1

satisfy the same boundary conditions as f , and ϵ ≪ 1. Since f = f0 is a stationary point of

F (f), the first variation of the Taylor expansion of F (f0 + ϵf1) is zero, and we obtain

− F 2
0Re

∫∫
S

∇f0 ·∇f1dS − F0

∫∫
S

∇2f0∇2f1dS

= B

∫∫
S

H0H
′
0(∇χ0 ×∇f0) · (∇χ0 ×∇f1)dS. (6.45)

Repeated integration by parts on the left-hand side of (6.45), and invoking the boundary

conditions for f gives

F 2
0Re

∫∫
S

f0∇2f1dS − F0

∫∫
S

f0∇4f1dS = B

∫∫
S

H0H
′
0(∇χ0 ×∇f0) · (∇χ0 ×∇f1)dS.

(6.46)
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Concerning the right-hand side of (6.46), we can write

∫∫
S

H0H
′
0(∇χ0 ×∇f0) · (∇χ0 ×∇f1)dS

=

∫∫
S

H0H
′
0

(
∇χ0 ×∇(f0(∇χ0 ×∇f1) · ez)− (∇χ0 ×∇f0)

(
(∇χ0 ×∇f̂1) · ez

))
· ezdS.

(6.47)

Since we can add any integral that evaluates to zero to (6.47) and

∫∫
S

(
∇χ0 ×∇(∇χ0 ×∇f1

))
· ezdS =

∫∫
S

∇× (χ0∇(
(
(∇χ0 ×∇f1

)
) · ezdS

= 0 (6.48)

by Stokes’ theorem. Using (A.53), we write

∫∫
S

H0H
′
0

(
∇χ0 ×∇(f0(∇χ0 ×∇f1) · ez)− (∇χ0 ×∇f0)

(
(∇χ0 ×∇f̂1) · ez

))
· ezdS

=

∫∫
S

f0

(
∇χ0 ×∇

(
(∇χ0 ×∇f1

)
· ez

))
· ezdS. (6.49)

Consequently (6.45) can be written as

− F 2
0Re

∫∫
S

f0∇2f1dS + F0

∫∫
S

f0∇4f1dS

= B

∫∫
S

H0H
′
0f0

(
∇χ0 ×∇

(
(∇χ0 ×∇f1) · ez

))
· ezdS. (6.50)

(6.50) is valid for any function f1, thus

−F 2
0Re∇2f1 + F0∇4f1 = BH0H

′
0

(
∇χ0 ×∇

(
(∇χ0 ×∇f1) · ez

))
· ez. (6.51)

Since F (ψ) is the same expression as the positive root of 6.41, we substitute F0 = s into (6.51),

giving (6.30). We deduce that stationary points of F correspond to real eigenvalues of (6.30).

If H ′
0 < 0 in part of the domain, there exists an arbitrary function f̂(x, y), satisfying the

boundary conditions of ψ, where f̂ is zero everywhere, apart from in the region where H ′
0 < 0.
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Suppose F (f̂) = ξ̂, it follows that ξ̂ > 0, and ξ̂ is either the (positive) global maximum point of

F or there exists a global maximum larger than ξ̂. Thus, there exists a positive real eigenvalue

of (6.30), and therefore an unstable mode.

Consequently, we obtain a stability condition for a volume of ferrofluid in a three-dimensional

Cartesian domain, where the system is invariant in z. Namely, if and only if, dH0/dχ0 < 0

somewhere in the ferrofluid, the system is unstable.

6.5 Axisymmetric domain

Alternatively, consider a volume of ferrofluid in a cylindrical co-ordinate system, r, θ, z, where

r and θ are the radial and azimuthal co-ordinates, and z the longitudinal, with co-ordinate unit

vectors er, eθ and ez. Suppose the system is invariant in θ. We impose u = 0 and χ0 = 0 on

the boundary of the volume, and define S as a cross-section of the volume, occupying the r, z

plane, such that eθ is normal to the surface S. We now determine an eigenvalue equation for an

axisymmetric domain using (6.18) and (6.24). However, the subsequent method and reasoning

to obtain a stability condition follows that of Section 6.4 and is not given here.

Define Stokes’ stream function ψ such that

u = −∇× ψeθ (6.52)

and

ω =

(
∇2 − 1

r2

)
ψeθ, ∇2ω =

(
∇2 − 1

r2

)2

ψeθ. (6.53)

Consequently, (6.24) becomes

s2Re

(
∇2− 1

r2

)
ψeθ−s

(
∇2− 1

r2

)2

ψeθ = −BH0H
′
0∇χ0×∇

((
1

r
∇χ0×∇(rψ)

)
·eθ

)
. (6.54)
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Multiply (6.54) by rψ∗, dot with eθ, and integrate over S, to give

∫∫
S

rψ∗
(
s2Re

(
∇2 − 1

r2

)
− s

(
∇2 − 1

r2

)2)
ψdS = −B

∫∫
S

H0H
′
0r

2ψ∗O2(rψ)dS, (6.55)

where

O =
eθ

r
·
(
∇χ0 ×∇

)
. (6.56)

Integration by parts on the first term on the left-hand side, repeated integration by parts on

the second, and invoking boundary conditions on ψ, gives

s2Re

∫∫
S

(
|∇ψ|2+ |ψ|2

r2

)
rdS+ s

∫∫
S

∣∣∣∣∇2ψ− ψ

r2

∣∣∣∣2rdS = −B
∫∫

S

H0H
′
0r

2ψ∗O2(rψ)dS. (6.57)

Now, ∫∫
S

H0H
′
0r

2ψ∗O2(rψ)dS =

∫∫
S

H0H
′
0r
(
O(rψ∗O(rψ))− |O(rψ)|2

)
dS (6.58)

and

∫∫
S

H0H
′
0r
(
O(rψ∗O(rψ))

)
dS =

∫∫
S

H0H
′
0

(
∇χ0 ×∇

(
rψ∗O(rψ)

))
· eθdS. (6.59)

But, using (A.55) and Stokes’ theorem with χ0 = 0 on ∂S, gives

∫∫
S

H0H
′
0r
(
O(rψ∗O(rψ))

)
dS =

∫∫
S

H0H
′
0

(
∇×

(
χ0∇

(
rψ∗O(rψ)

)))
· eθdS = 0. (6.60)

Resulting in ∫∫
S

H0H
′
0r

2ψ∗O2(rψ)dS = −
∫∫

S

H0H
′
0r|O(rψ)|2dS. (6.61)
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Substituting (6.61) into (6.57) results in

s2Re

∫∫
S

(
|∇ψ|2+ |ψ|2

r2

)
rdS+s

∫
∂S

(∣∣∣∣∇2ψ− ψ

r2

∣∣∣∣2)rdS+2B

∫
∂S

H0H
′
0|O(rψ)|2rdS = 0 (6.62)

and therefore

s =
−
∫∫

S
|(∇2 − 1

r2
)ψ|2rdS ±

√
W0

2Re
∫∫

S
(|∇ψ|2 + 1

r2
|ψ|2)rdS

, (6.63)

where

W0 =

(∫
∂S

∣∣∣∣(∇2 − 1

r2

)
ψ

∣∣∣∣2rdS)2

− 8BRe

∫∫
S

(
|∇ψ|2 + |ψ|2

r2

)
rdS

∫∫
S

H0H
′
0|O(rψ)|2rdS.

(6.64)

By analogous reasoning to Section 6.4, we prove that if, and only if, H ′
0 < 0 somewhere in the

domain, the system is unstable.

6.6 General three-dimensional domain

We now seek to obtain a stability condition for a three-dimensional configuration where there is

variance in all co-ordinates. By requiring an invariance in one co-ordinate, we could determine

a stability condition for arbitrary Reynolds number when χ depended explicitly on H. How-

ever, upon removing the invariance, the equations become more complicated. When χ depends

explicitly on H and position, fm is given by (2.42), and proving a definite sign of the forcing

term and the viscous term in (6.24) is not trivial. We give a rigorous proof in the inviscid limit

in Section 6.6.1. Yet, as a result of the complicated nature of the viscous term, we cannot prove

it for the highly viscous limit nor arbitrary Reynolds number.

Nevertheless, by assuming fm is given by (2.43), such that χ does not depend explicitly on H,

a stability condition can be proven for arbitrary Reynolds number. This is outlined in Section

6.6.2. It is convenient to use (2.39) rather than the vorticity equation, and we multiply by u∗

instead of ω∗. After integrating over the domain, the integrals of each term can be manipulated

into an integral of definite sign (dependent on the sign of H ′
0). As a consequence, a stability
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condition follows, by similar reasoning to previous sections.

6.6.1 Magnetic susceptibility depending explicitly on the field

As a result of the integral form of (2.42) in (2.39), we continue using the linearised vorticity

equation obtained in Section 6.3. We suppose we have a volume of ferrofluid, where χ varies

slowly spatially, and can depend on both position and H. There is variance in all co-ordinates

of the three-dimensional system. Moreover, the stationary state is such that χ0 ≡ χ0(H0), and

we impose u = 0 and χ0 = 0 on the boundary of the ferrofluid volume, ∂V . Using (6.24) we

now determine a stability condition.

To manipulate the right-hand side of (6.24), it proves useful to define a potential Ā, such

that u = ∇× Ā. We then add a potential γ to Ā and define

A = Ā+∇γ. (6.65)

It follows that

u = ∇×A (6.66)

and we can argue that ∇ ·A = 0 by choosing Ā and γ such that

∇ · Ā = −∇2γ. (6.67)

Consequently,

ω = ∇× (∇×A)

= −∇2A. (6.68)

(6.20) and (6.24) in terms of A are

sχ1 = −∇χ0 · (∇×A) (6.69)
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and

−s2Re∇2A+ s∇2(∇2A) = BH0H
′
0∇χ0 ×∇(∇χ0 · (∇×A)), (6.70)

respectively.

In an effort to determine a stability condition, dot (6.70) with A∗, the complex conjugate

of A, and integrate over the volume, to give

− s2Re

∫∫∫
V

A∗ · ∇2AdV + s

∫∫∫
V

A∗ · ∇2(∇2A)dV

= B

∫∫∫
V

H0H
′
0A

∗ · (∇χ0 ×∇(∇χ0 · (∇×A)))dV. (6.71)

We consider the inviscid limit of (6.71), since we cannot prove the viscous term, namely

∫∫∫
V

A∗ · ∇2(∇2A)dV, (6.72)

is of definite sign. An attempt to determine the sign of (6.72) is shown in Appendix (A.7). It

should be noted that if we were to dot (6.24) with u∗ or ω∗, in an effort to make the viscous

term of definite sign, the forcing term becomes

B

∫∫∫
V

H0H
′
0u

∗ · (∇χ0 ×∇(∇χ0 · u))dV, (6.73)

or

B

∫∫∫
V

H0H
′
0ω

∗ · (∇χ0 ×∇(∇χ0 · u))dV, (6.74)

respectively. Disappointingly, as it stands, I cannot prove (6.73) or (6.74) are of definite sign

(when H ′
0 is of definite sign).

(6.71) in the inviscid limit (η → 0) becomes

−s2I
∫∫∫

V

A∗ · ∇2AdV = B̄

∫∫∫
V

H0H
′
0A

∗ · (∇χ0 ×∇(∇χ0 · (∇×A)))dV, (6.75)
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where B̄ ̸= B in (6.70), and B̄ is determined by an appropriate inviscid scaling for the given

system, but we now drop the bar.

Consider

IL1 = −
∫∫∫

V

A∗ · (∇2A)dV

=

∫∫∫
V

A∗ · (∇× u)dV, (6.76)

and use (A.56) to write

IL1 =

∫∫∫
V

(
|u|2 +∇ · (u×A∗)

)
dV, (6.77)

and therefore

IL1 =

∫∫∫
V

|u|2dV +

∫∫
S

(u×A∗) · n̂dS

=

∫∫∫
V

|u|2dV, (6.78)

by the divergence theorem. As a result,

−
∫∫∫

V

(A∗ · (∇2A)dV =

∫∫∫
V

|u|2dV. (6.79)

Consider the integral on the right-hand side of (6.75),

IR =

∫∫∫
V

H0H
′
0A

∗ · (∇χ0 ×∇)(∇χ0 · (∇×A))dV, (6.80)

and define

µ = ∇χ0 · (∇×A), (6.81)
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to obtain

IR =

∫∫∫
V

H0H
′
0(∇χ0 · (∇µ×A∗))dV, (6.82)

by use of (A.51). Next, use (A.55) to write

IR =

∫∫∫
V

(
H0H

′
0∇χ0 · (∇× (µA∗)− µ(∇×A∗))

)
dV

=

∫∫∫
V

H0H
′
0(∇χ0 · (∇× (µA∗)))dV −

∫∫∫
V

H0H
′
0|∇χ0 · (∇×A)|2dV. (6.83)

The first term of (6.83) can be shown to be zero using (A.54) and the divergence theorem,

coupled with χ0 = 0 (and therefore H0 = 0) on the boundary. Hence,

IR = −
∫∫∫

V

H0H
′
0|∇χ0 · (∇×A)|2dV. (6.84)

Substituting (6.79) and (6.84) into (6.75) we obtain

s2I = −
B
∫∫∫

V
H0H

′
0|∇χ0 · u|2dV∫∫∫

V
|u|2dV

. (6.85)

By analogous reasoning to Section 6.4 we can prove that if, and only if, H ′
0 < 0 somewhere in

the volume, the system is unstable in the inviscid limit. The proof is given in Appendix A.8.

6.6.2 Magnetic susceptibility not depending explicitly on the field

When χ does not depend explicitly on H, fm takes the simpler form of (2.43), and it proves

easier to use (2.39) to obtain a stability condition. Substituting the perturbed variables, (6.4)-

(6.7), into (2.39), linearising and assuming ∇χ0 = O(ϵ2) we obtain

sReu1 +∇p1 = ∇2u1 −BH2
0∇χ1, (6.86)
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Substituting (6.20) into (6.86) results in

s2Reu− s∇2u = −∇p+BH2
0∇(∇χ0 · u), (6.87)

where the subscripts 1 have been dropped.

We suppose we have a volume V of ferrofluid subject to a field, such that χ0 ≡ χ0(H0),

but χ does not depend explicitly on H, only on position. We impose u = 0 and χ0 = 0 at

the boundaries of the volume ∂V . To determine a stability condition dot (6.87) with u∗ and

integrate over the volume, to give

s2
∫∫∫

V

Re|u|2dV − s

∫∫∫
V

u∗ · ∇2u = −s
∫∫∫

V

u∗ ·∇pdV +B

∫∫∫
V

H2
0u

∗ ·∇(∇χ0 · u)dV.

(6.88)

(6.88) can be written as

s2
∫∫∫

V

Re|u|2dV − s

∫∫∫
V

u∗ · ∇2udV = −s
∫∫∫

V

∇ · (pu∗)dV

+B

∫∫∫
V

(
∇ ·

(
H2

0 (∇χ0 · u)u∗)− (∇χ0 · u)(∇H2
0 · u∗)

)
dV, (6.89)

using (A.54) and (A.53). Moreover, by the divergence theorem and invoking u∗ = 0 at the

boundary of the volume, (6.89) simplifies to

s2
∫∫∫

V

Re|u|2dV − s

∫∫∫
V

u∗ · ∇2u = −B
∫∫∫

V

(∇H2
0 · u∗)(∇χ0 · u)dV. (6.90)

Expressing ∇(H2
0 ) as 2H0∇H0, we substitute (6.23) into (6.90) to obtain

s2
∫∫∫

V

Re|u|2dV − s

∫∫∫
V

u∗ · ∇2udV = −2B

∫∫∫
V

H0H
′
0|∇χ0 · u|2dV. (6.91)
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Now,

∫∫∫
V

u∗ · ∇2udV = −
∫∫∫

V

u∗ · (∇× ω)dV

=

∫∫∫
V

(
∇ ·

(
u∗ × ω)− |ω|2

)
dV (6.92)

But, by the divergence theorem,

∫∫∫
V

∇ ·
(
u∗ × ω

)
dV =

∫∫
∂V

(u∗ × ω) · n̂dS

=

∫∫
∂V

(ω × n̂) · u∗dS

= 0. (6.93)

Thus, ∫∫∫
V

u∗ · ∇2udV = −
∫∫∫

V

|ω|2dV. (6.94)

Consequently, (6.91) can be written as

s2
∫∫∫

V

Re|u|2dV + s

∫∫∫
V

|ω|2dV + 2B

∫∫∫
V

H0H
′
0|∇χ0 · u|2dV = 0, (6.95)

and therefore

s =
−
∫∫∫

V
|ω|2dV ±

√
(
∫∫∫

V
|ω|2dV )2 − 8BRe

∫∫∫
V
|u|2dV (

∫∫∫
V
H0H ′

0|∇χ0 · u|2dV )

2Re
∫∫∫

V
|u|2dV

.

(6.96)

We conclude that, if, and only if, H ′
0 < 0 somewhere in the volume, the system is unstable.

The proof follows that of Section 6.4 and is given in Appendix A.9.
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6.7 Conclusions

To simplify the governing equations for a general volume of ferrofluid subject to a non-uniform

magnetic field, we assume that the susceptibility of the ferrofluid varies slowly with position.

Assuming we have a stationary state satisfying the governing equations, such that χ can be

written as a function of H, and imposing u = 0 on the boundaries of the ferrofluid, we can

prove a stability condition. By linear stability analysis we prove that if, and only if, dH/dχ < 0

somewhere in the ferrofluid, the system will be unstable. If χ does not depend explicitly on H,

it can be proved rigorously for a system with arbitrary Reynolds number in three-dimensions.

When χ depends explicitly on H, it can be proven in the inviscid limit in three-dimensions.

But, for arbitrary Reynolds number it can be proven when the system is invariant in one co-

ordinate. At moderate Reynolds number the viscous term is unlikely to effect an instability, and

I suspect the result is true in general, but I have not been able to demonstrate this rigorously.
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Chapter 7

Conclusion

7.1 Summary and concluding remarks

Ferrofluids with both constant and non-uniform susceptibilities have been considered in differ-

ent domains in the presence of non-uniform fields, and their respective stability determined.

Initially, a two-fluid cylindrical system centred on a current-carrying wire was considered. The

susceptibility was modelled as constant but discontinuous, with a jump at the interface of the

two ferrofluids. Consequently, the magnetic forcing acts at the interface only. When the inner

fluid was more magnetic than the outer fluid, the magnetic forcing produced from the current

in the wire acted inwards, stabilising the disturbed interface. Only axisymmetric modes were

found to be unstable and a sufficiently strong current in the wire suppressed any instabilities

due to capillary forcing. The results found agreed with the literature. Novel results were found

when the outer fluid was more magnetic than the inner fluid, in which case, the magnetic forc-

ing generated from the current in the wire acted to destabilise the column. Axisymmetric and

non-axisymmetric modes could be unstable, and increasing the current in the wire increased the

magnitude of the growth rate of the disturbances, as well as rendering more modes unstable.

Moreover, as the ratio between the radius of the wire and the radius of the inner fluid shrunk,

non-axisymmetric modes became the most unstable at low Reynolds number. Although in-

creasing the current in the wire couldn’t dampen unstable modes when the outer fluid had
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a higher susceptibility, it was found that adding a sufficiently large axial field will suppress

unstable modes, irrespective of which fluid had a higher susceptibility.

Next, configurations where the susceptibility is continuous and non-uniform were investigated.

When a ferrofluid with a non-constant susceptibility is subject to a magnetic field, the magnetic

forcing is felt throughout the bulk of the fluid, even for a uniform field. For a non-uniform field,

it was proven for two equilibria, that if the gradient of the magnitude of the field with respect to

the susceptibility (dH/dχ) was negative, the system was unstable. First, a column of ferrofluid

centred on a current-carrying wire, such that the susceptibility of the ferrofluid varied contin-

uously radially, and the azimuthal field decreased as the reciprocal of the radius, was proven

unstable if ever the susceptibility increased radially. That is, if ever dH/dχ < 0 somewhere in

the fluid. Secondly, a ferrofluid in a channel, where the susceptibility and field varied normal

to the channel walls, such that dH/dχ < 0 everywhere, was proven to be linearly unstable

to all three-dimensional disturbances. For an unstable configuration with a non-uniform field

and susceptibility, we found applying an additional field could suppress unstable modes. In

the cylindrical configuration, a constant axial field was sufficient, yet in the planar domain, a

rapidly rotating field applied across the channel was needed.

The stability analysis of both equilibria support the hypothesis that when the regions of fluid

with highest susceptibility do not coincide with the regions of strongest field, an instability

occurs to achieve a minimum energy configuration. Analogies with energy stability arguments

seen in other areas of fluid dynamics can be made, yet these would only hold for one-dimensional

disturbances, and do not take into account viscous effects. However, we have proven rigorously,

for a stationary state of a volume of Newtonian ferrofluid in the presence of a non-uniform

field, where the magnetic susceptibility varies slowly with position, that the system will be

unstable, if and only if, dH/dχ < 0 somewhere in the volume. We postulate that this condition

holds when there is no restriction on the variance of the susceptibility, although it has not been

proven analytically here. This condition allows for the stability of a general configuration to

be determined without the need for an in depth analysis of the governing equations.
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Moreover, a set of solutions to the governing equations have been found such that the field

is a function of the susceptibility and equipotential surfaces have zero mean curvature. In

theory, this gives a set of equilibria, if configurations can be found that satisfy the boundary

conditions, and we would expect the equilibria to be unstable, since the gradient of the suscep-

tibility with respect to the magnitude of the field is negative for these solutions.

In Chapter 4-6 the magnetic susceptibility depends on position and field, allowing for non-

linear magnetisation characteristics to be applied to the results outlined. In particular, (1.2)

would be valid. Furthermore, due to the analogy of ferro-hydrodynamics with EHD, the results

could be applied to EHD for non-linear polarizable material.

7.2 Applications

Theoretical analysis of ferrofluids in different configurations is necessary for their use in all dis-

ciplines. Knowing the thresholds of parameters for a stable system is vital for the functionality

of each application, and it is advantageous to know the minimum strength of field needed in

a given system to minimise costs and energy usage. Moreover, the ability to destabilise and

stabilise a system at will is appealing. The ferrous particles can be held in place using a field

configuration known to produce a stable system, and released at will by turning off the field

or re-orientating it. Allowing unstable modes to grow can induce mixing and dispersion, or

release a solid/liquid interior that the ferrofluid is surrounding.

Theoretical understanding of ferrofluids in cylindrical configurations is relevant to cylindrical

systems seen in ferrofluid applications, in particular ink-jet printing, 3D-printing and magnetic

drug targeting. We have expanded on the current literature by investigating the stability of a

two-fluid cylindrical interface with very few limitations to the applicability of the results, since

both fluids are Newtonian and can be magnetic, as well having considered three-dimensional

disturbances to the system. Many industrial applications will involve apparatus where the fer-
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rofluid is in a channel, and we have proved the instability of a particular planar configuration in

a channel and shown stability can be maintained by an additional rotating field. Furthermore,

we have determined a stability condition for a general volume of ferrofluid, which can be used

to gauge the stability of a potential system for an application, before doing an in depth analysis

which may be computationally expensive or not possible. Moreover, we hope that the work

could inspire novel applications where the ferrofluid susceptibility distribution is not uniform.

7.3 Future work

Establishing other equilibria and ensuring their stability extends the possible applications of

ferrofluids in different configurations. At present, we have two approaches to find new equi-

libria. The first approach to find new equilibria is to perturb a known 2-D or axisymmetric

equilibrium three-dimensionally. This generates another equilibrium family, subject to solving

a second order eigenvalue problem with given boundary conditions. For some susceptibility

distributions the equation has analytic solutions, however for the desired susceptibility, it must

be solved numerically to find the new stationary state. Continually perturbing each new equi-

librium, leads eventually to a state significantly different from the original equilibrium. The

second approach is to find equipotential surfaces of zero mean curvature, which we have found

form a set of solutions to the governing equations when the field is a function of the suscep-

tibility. The equilibrium found for the planar domain was the simplest example of this. This

forms a set of equilibria if the boundary conditions are satisfied, that theoretically could exist

in more complex configurations than planar and cylindrical geometries. Moreover, we expect

them to be unstable, since they are such that dχ/dH < 0.

Finding new equilibria will be of interest in itself, even if they prove unstable. Unstable equi-

libria are of limited practical importance. However, we demonstrated how equilibria can be

stabilised by the addition of a further magnetic field. It was proven that a constant axial field

was sufficient in stabilising the cylindrical configuration, but a rapidly rotating field was nec-

essary in stabilising the planar configuration. In other geometries, it may be that a constant
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field nor one rotating field is sufficient in stabilising the system. Two rotating fields may be

needed to dampen all modes. It may be that the geometry may not support a rotating field,

and a more complicated high frequency field may be required, and this would need to be de-

termined. Additionally, in the analysis for the cylindrical system and for the general volume, a

local condition gave rise to a global instability, something which would be interesting to explore.

The stability analysis could be taken further by investigating a nonlinear regime. Previous

works have considered the nonlinear stability of axisymmetric disturbances for a ferrofluid

jet surrounded by a non-magnetic fluid, and that same analysis could be applied for non-

axisymmetric disturbances, with a magnetic fluid being the outer fluid. Travelling wave solu-

tions may exist at the interface of the two ferrofluids and studying the full non-linear regime,

as Doak & Vanden-Broeck (2019) and Blyth & Parau (2014) have done, could show this. The

study of the resultant drop formations by methods similar to Cornish (2018) could also be of

interest. Additionally, investigating the non-axisymmetric disturbances at low Reynolds num-

ber when the outer fluid is more magnetic is of particular interest. It was found that in the

long wave limit, for a sufficiently small ratio between the radius of the wire and the radius of

the inner fluid, that the non-axisymmetric mode was the most unstable. This warrants more

investigation in the non-linear regime, and in a similar manner to Rannacher & Engel (2006)

and Doak & Vanden-Broeck (2019), one could use long wave theory to analyse this further.

In conclusion, the options for extensions are vast, and we hope the novel results outlined

in this thesis inspire further research and applications.
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Appendix A

A.1 Constants in the solution to the perturbation of the

magnetic potential

The constants q
(ι)
1,2 in (3.9) are as follows,

q
(2)
2 =

(
imŜ(χ(1) − χ(2))(akIm(k)Im(ka)(1 + χ(1))Km+1(ka) + ka(χ(1)Km(k)Im(ka)

+ Km(ka)Im(k))Im+1(ka)−mχ(1)Im(ka)(Km(ka)Im(k)−Km(k)Im(ka)))

)
×
(
Im(ka)a(1 + χ(1))k(kIm(k)(1 + χ(2))Km+1(k) + (k(1 + χ(1))Im+1(k)

+mIm(k)(χ
(1) − χ(2)))Km(k))Km+1(ka) + a(−χ(1)Km(k)(χ

(1) − χ(2))

× (Km+1(k)k −mKm(k))Im(ka) + Km(ka)(kIm(k)(1 + χ(2))Km+1(k)

+ (k(1 + χ(1))Im+1(k) +mIm(k)(χ
(1) − χ(2)))Km(k)))kIm+1(ka)

− Im(ka)(Km(k)(χ
(1) − χ(2))(Km+1(k)k −mKm(k))Im(ka)

+ Km(ka)(kIm(k)(1 + χ(2))Km+1(k) + (k(1 + χ(1))Im+1(k)

+mIm(k)(χ
(1) − χ(2)))Km(k)))mχ

(1)

)−1

, (A.1)
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q
(0)
1 =

(
i

a
ŜKm(k)(1 + χ(1))ma(χ(1) − χ(2))

)
×
(
k(1 + χ(1))aIm(ka)(kIm(k)(1 + χ(2))Km+1(k) + Km(k)(k(1 + χ(1))Im+1(k)

+mIm(k)(χ
(1) − χ(2))))Km+1(ka) + k(−χ(1)Km(k)(χ

(1) − χ(2))(Km+1(k)k

−mKm(k))Im(ka) + Km(ka)(kIm(k)(1 + χ(2))Km+1(k)

+ Km(k)(k(1 + χ(1))Im+1(k) +mIm(k)(χ
(1) − χ(2)))))aIm+1(ka)

−m(Km(k)(χ
(1) − χ(2))(Km+1(k)k −mKm(k))Im(ka)

+ Km(ka)(kIm(k)(1 + χ(2))Km+1(k) + Km(k)(k(1 + χ(1))Im+1(k)

+mIm(k)(χ
(1) − χ(2)))))Im(ka)χ

(1)

)−1

, (A.2)

q
(1)
1 =

(
iŜKm(k)(akIm(ka)(1 + χ(1))Km+1(ka) + Km(ka)(akIm+1(ka)

−mχ(1)Im(ka)))m(χ(1) − χ(2))

)(
k(1 + χ(1))aIm(ka)(kIm(k)(1 + χ(2))Km+1(k)

+ Km(k)(k(1 + χ(1))Im+1(k) +mIm(k)(χ
(1) − χ(2))))Km+1(ka)

+ k(−χ(1)Km(k)(χ
(1) − χ(2))(Km+1(k)k −mKm(k))Im(ka)

+ Km(ka)(kIm(k)(1 + χ(2))Km+1(k) + Km(k)(k(1 + χ(1))Im+1(k)

+mIm(k)(χ
(1) − χ(2)))))aIm+1(ka)−m(Km(k)(χ

(1) − χ(2))(Km+1(k)k

−mKm(k))Im(ka) + Km(ka)(kIm(k)(1 + χ(2))Km+1(k)

+ Km(k)(k(1 + χ(1))Im+1(k) +mIm(k)(χ
(1) − χ(2)))))Im(ka)χ
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(A.3)
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and

q
(1)
2 =

(
iŜIm(ka)χ

(1)Km(k)m(χ(1) − χ(2))
(
akIm+1(ka) +mIm(ka)

))
×
(
k(1 + χ(1))aIm(ka)(kIm(k)(1 + χ(2))Km+1(k) + Km(k)(k(1 + χ(1))Im+1(k)

+mIm(k)(χ
(1) − χ(2))))Km+1(ka) + k(−χ(1)Km(k)(χ

(1) − χ(2))(Km+1(k)k

−mKm(k))Im(ka) + Km(ka)(kIm(k)(1 + χ(2))Km+1(k)

+ Km(k)(k(1 + χ(1))Im+1(k) +mIm(k)(χ
(1) − χ(2)))))aIm+1(ka)

−m(Km(k)(χ
(1) − χ(2))(Km+1(k)k −mKm(k))Im(ka)

+ Km(ka)(kIm(k)(1 + χ(2))Km+1(k) + Km(k)(k(1 + χ(1))Im+1(k)

+mIm(k)(χ
(1) − χ(2)))))Im(ka)χ

(1)

)−1

. (A.4)

A.2 Derivation of normal stress condition

After the disturbance to the stationary state

H(ι) =

(
ϵ(ϕ̂(ι))′ζ,

1

r

(
1 + ϵimϕ̂(ι)ζ

)
, ϵikϕ̂(ι)ζ

)T

, (A.5)

and it follows that

H(ι) =

√
1

r2
+ 2ϵ

imϕ̂(ι)ζ

r2
. (A.6)

First, consider

n ·
((

1 + χ(1)
)
(H(1))2 −

(
1 + χ(2)

)
(H(2))2

)
I ·n =

(
1 + χ(1)

)
(H(1))2 −

(
1 + χ(2)

)
(H(2))2 (A.7)

and substitute the perturbed variables and (3.5), into (A.7) to obtain

n ·
((

1 + χ(1)
)
(H(1))2 −

(
1 + χ(2)

)
(H(2))2

)
I · n

=
χ(1) − χ(2)

r2
+

2ϵimζ

r2

((
1 + χ(1)

)
ϕ̂(1) −

(
1 + χ(2)

)
ϕ̂(2)

)
+O(ϵ2). (A.8)
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(A.8) at r = S gives

n ·
((

1 + χ(1)
)
(H(1))2 −

(
1 + χ(2)

)
(H(2))2

)
I · n =

χ(1) − χ(2)

(1 + ϵŜζ)2

+
2ϵimζ

(1 + ϵŜζ)2

((
1 + χ(1)

)
ϕ̂(1) −

(
1 + χ(2)

)
ϕ̂(2)

)
+O(ϵ2). (A.9)

For small ϵ

1

(1 + ϵŜζ)2
= 1− 2ϵŜζ +O(ϵ2), (A.10)

and therefore, to O(ϵ),

n ·
((

1 + χ(1)
)
(H(1))2 −

(
1 + χ(2)

)
(H(2))2

)
I · n = 2(χ(2) − χ(1))Ŝζ

+2imζ
((
1 + χ(1)

)
ϕ̂(1) −

(
1 + χ(2)

)
ϕ̂(2)
)
. (A.11)

Substituting (3.13) into (A.11) gives

n ·
((

1+χ(1)
)
(H(1))2−

(
1+χ(2)

)
(H(2))2

)
I ·n = 2

(
χ(2)−χ(1)

)
Ŝ+2im

(
χ(1)−χ(2)

)
ϕ̂(1) (A.12)

For a cylindrical domain,

(∇u+ (∇u)T) = (A.13)
2∂u
∂r

1
r
∂u
∂θ

− v
r
+ ∂v

∂r
∂u
∂z

+ ∂w
∂r

∂v
∂r

+ 1
r
∂u
∂θ

− v
r

2
r
∂v
∂θ

+ 2u
r

∂v
∂z

+ 1
r
∂w
∂θ

∂w
∂r

+ ∂u
∂z

1
r
∂w
∂θ

+ ∂v
∂z

2∂w
∂z


and

n ·
(
∇u(ι) + (∇u(ι))T

)
· n =

1

1 + 1
r2
S2
θ + S2

z

(
2
∂u(ι)

∂r
− Sθ

r

(
2
∂v(ι)

∂r
+

2

r

∂u(ι)

∂θ
− 2v(ι)

r

− Sθ

r

(
2

r

∂v(ι)

∂θ
+

2u(ι)

r

)
− Sz

(
∂v(ι)

∂z
+

1

r

∂w(ι)

∂θ

))
− Sz

(
2

(
∂u(ι)

∂z
+
∂w(ι)

∂r

)
− Sθ

r2

(
∂w(ι)

∂θ
+ r

∂v(ι)

∂z

)
− 2Sz

∂w(ι)

∂z

))
, (A.14)
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where n is given by (3.5). Substituting the perturbed variables and linearising (A.14) gives

n ·
[
∇u+ (∇u)T

]
· n = 2

((
û(2)
)′ − (û(1))′)ζ (A.15)

Then

n ·
[
HHT

]
· n = n ·

(
H(2)(H(2))T −H(1)(H(1))T

)
· n

= (n ·H(2))(H(2) · n)− (n ·H(1))(H(1) · n) (A.16)

and after substituting (A.5) and (3.5) we find

n ·
[
HHT

]
· n = O(ϵ2). (A.17)

(3.28) non-dimensionalised with the chosen scalings becomes

T(ι) = −
(
p(ι) + B̄(1 + χ(ι))(H(ι))2

)
I+ B̄(1 + χ(ι))H(ι)(H(ι))T +∇u(ι) + (∇u(ι))T (A.18)

where

B̄ =
J2
0

4π2σR
. (A.19)

and we have used η(1) = η(2). Substituting (A.12), (A.15) and (A.17) gives, to O(ϵ),

n ·
[
T
]
· n = p(1) − p(2) +B

(
χ(2) − χ(1)

)(
Ŝ − imϕ̂(1)

)
, (A.20)

where B = 2B̄.

Next, in the disturbed system,

∇ · n =
1

r
+ ϵ

(
m2

r2
+ k2

)
Ŝζ +O(ϵ2), (A.21)
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and at r = S,

∇ · n =
1

1 + ϵŜζ
+

(
ϵm2

(1 + ϵŜζ)2
+ k2ϵ

)
Ŝζ +O(ϵ2) (A.22)

Taylor expanding, gives, to O(ϵ),

∇ · n = 1 + ϵ
(
m2 + k2 − 1

)
Ŝζ (A.23)

Consequently (2.63) after non-dimensionalising, substituting the perturbed variables and lin-

earising, becomes

(m2+k2−1+B(χ(1)−χ(2)))Ŝ = 2imB(χ(1)−χ(2))ϕ̂(1)+p(1)−p(2)+2

((
û(2)
)′−(û(1))′). (A.24)

A.3 Derivation of the tangential stress conditions

Since n and τ1,2 are orthogonal, all diagonal terms in T(ι) can be neglected. Moreover,

n ·
[
(1 + χ)HHT

]
1,2

· τ1,2 = n ·
((

1 + χ(2)
)
H(2)

(
H(2)

)T (
1 + χ(1)

)
H(1)

(
H(1)

)T) · τ1,2

=
(
1 + χ(2)

)
(n ·H(2))(H(2) · τ1,2)

−
(
1 + χ(1)

)(
n ·H(1)

)(
H(1) · τ1,2

)
=
(
1 + χ(2)

)(
n ·H(2)

)((
H(2) −H(2)

)
· τ1,2

)
, (A.25)

and thus by (2.60),

n · [(1 + χ)HHT ]1,2 · τ1,2 = 0. (A.26)
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Using (A.13), (3.5) and (3.6),

n ·
[
∇u(ι) + (∇u(ι))T

]
· τ1 =

1√
1 + 1

r2
S2
θ + S2

z

√
1 + 1

r2
S2
θ

(
1

r

∂u(ι)

∂θ
− v(ι)

r
+
∂v(ι)

∂r

+
Sθ

r

(
2
∂u(ι)

∂r
− Sθ

r

(
∂v(ι)

∂r
+

1

r

∂u(ι)

∂θ
− v(ι)

r

)
− 2

r

∂v(ι)

∂θ
− 2u(ι)

r

)
− Sz

(
Sθ

r

(
∂w(ι)

∂r
+
∂u(ι)

∂z

)
+

1

r

∂w(ι)

∂θ
+
∂v(ι)

∂z

))
(A.27)

and

n ·
[
∇u(ι) + (∇u(ι))T

]
· τ2 =

1√
1 + 1

r2
S2
θ + S2

z

√
1 + S2

z

(
2
∂u(ι)

∂r
Sz +

∂u(ι)

∂z

+
∂w(ι)

∂r
− Sθ

r

(
Sz

(
∂v(ι)

∂r
+

1

r

∂u(ι)

∂θ
− v(ι)

r

)
+
∂v(ι)

∂z
+

1

r

∂w(ι)

∂θ

)
− Sz

(
Sz

(
∂w(ι)

∂r
+
∂u(ι)

∂z

)
+ 2

∂w(ι)

∂z

))
. (A.28)

Non-dimensionalising (A.27) and (A.28), substituting the perturbed variables and linearising

results in [
imû− v̂ + v̂′

]
1,2

= 0 (A.29)

and [
ikû+ ŵ′

]
1,2

= 0 (A.30)

at r = 1, respectively. But, invoking (3.26) results in

[
v̂′
]
1,2

= 0 and

[
ŵ′
]
1,2

= 0 (A.31)

at r = 1.
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A.4 Functions in the expression for the growth rate

F in (3.35) is given by

F =
F̂1

F̂2

, (A.32)

where

F̂1 = k2a2k̄((−k̄2k(Im(k)m+ Im+1(k)k)Km+1(k) + k̄k2(k̄Im+1(k̄) +mIm(k̄))Km+1(k̄)

+m(k̄2Im+1(k)kKm(k)− k̄k2Km(k̄)Im+1(k̄) +m(Im(k̄)(k̄
2 − 2k2)Km(k̄)

+ k̄2Im(k)Km(k))))Km(ka) + k̄2(−Im(ka)(Km+1(k))
2k2 + k(k̄Km+1(k̄)Im(k̄a)

+ 2(
1

2
Km(k̄)(Im(k)mKm(k)− 1)Im(k̄a) + Im(ka)Km(k))m)Km+1(k)

− (k̄Km+1(k̄)Im(k̄a) +mKm(k)(−Im+1(k)kKm(k̄)Im(k̄a)

+ Im(ka)))mKm(k)))(Km+1(k̄a))
2 − a(k((−k̄2k(Im(k)m+ Im+1(k)k)Km+1(k)

+ k̄k2(k̄Im+1(k̄) +mIm(k̄))Km+1(k̄) +m(k̄2Im+1(k)kKm(k)− k̄k2Km(k̄)Im+1(k̄)

+m(Im(k̄)(k̄
2 − 2k2)Km(k̄) + k̄2Im(k)Km(k))))Km(k̄a) + k2Im(k̄a)(k̄Km+1(k̄)

−Km(k̄)m)2)ak̄2Km+1(ka)− k̄k2a(k̄2(kKm+1(k)−mKm(k))(k̄Km+1(k̄)

−Km(k̄)m)Km(k̄a)− (k̄2(Km+1(k̄))
2k2 − 2k̄Km(k̄)Km+1(k̄)k

2m

−m2(Km(k̄))
2(k̄2 − 2k2))Km(ka))Im+1(k̄a) + k̄4Km(k̄a)ak(kKm+1(k)

−mKm(k))
2Im+1(ka) + ((k(−2k̄k2mIm(k̄)Im(k)Km+1(k̄) + (k̄2k − 2k3)Im+1(k)

+ Im(k)m(k̄ − k)(k̄ + k))k̄2Km+1(k) + ((−k̄4k2 + 2k̄2k4)Im+1(k̄)

+ 2k̄k4mIm(k̄))Km+1(k̄)− (k̄2kKm(k)(−2k̄k2Km(k̄)Im+1(k̄) + k̄2 − k2)Im+1(k)

+ 2k̄k4Km(k̄)Im+1(k̄) +m(Im(k̄)(k̄
2 − 2k2)Km(k̄) + k̄2Im(k)Km(k))(k̄

2

− 2k2))m)Km(ka) + (Im(ka)k
2(k̄2 − 2k2)(Km+1(k))

2 − 2k

(
− 1

2
k̄Km+1(k̄)k

2Im(k̄a)

+m

(
− k̄2Km(k̄)

2
(mIm(k)Km(k)− 1)Im(k̄a) + Im(ka)Km(k)(k̄

2 − 2k2)

))
Km+1(k)

+ (−k̄Km+1(k̄)k
2Im(k̄a) + (k̄2Im+1(k)kKm(k̄)Im(k̄a) + Im(ka)(k̄

2
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−2k2))mKm(k))mKm(k))k̄
2)mKm(k̄a)− k2(mIm(k̄a)(k̄ − k)(k̄ + k)(k̄Km+1(k̄)

− 2Km(k̄)m)2Km(ka) + k̄2(kKm+1(k)−mKm(k))(k̄Km+1(k̄)−Km(k̄)m)))Km+1(k̄a)

+ Km(k̄a)m(−k(k̄(Km(k̄))
2am(k̄ − k)(k̄ + k)Im+1(k̄a)

+ (k̄2k(Im(k)m+ Im+1(k)k)Km+1(k)− k̄k2(k̄Im+1(k̄) +mIm(k̄))Km+1(k̄)

−m(k̄2Im+1(k)kKm(k)− k̄k2Km(k̄)Im+1(k̄) +m(Im(k̄)(k̄
2 − 2k2)Km(k̄)

+ k̄2Im(k)Km(k))))Km(k̄a)− k̄2Im(ka)Km+1(k)kmKm(k̄)− Im(k̄a)(k̄
2(Km+1(k̄))

2k2

− 2k̄Km(k̄)Km+1(k̄)k
2m−m2(Km(k̄))

2(k̄2 − 2k2)))aKm+1(ka) + k̄((Km(k̄)mk̄

−Km+1(k̄)k
2)(k̄(kKm+1(k)−mKm(k))Km(k̄a) + (Km(k̄)mk̄

−Km+1(k̄)k
2)Km(ka))aIm+1(k̄a) + k((kKm+1(k)−mKm(k))

2Km(k̄a)

+ Km(ka)Km+1(k)kmKm(k̄))ak̄Im+1(ka)−Km+1(k̄)Km+1(k)k
3

−mKm(k)(Km(k̄)mk̄ −Km+1(k̄)k
2)))k̄ (A.33)

and

F̂2 = −k̄2
(
(Km+1(k̄a))

2Km(ka)k̄ak
2 +Km(k̄a)(−ak̄2kKm+1(ka) + Km(ka)m(k̄2

− 2k2))Km+1(k̄a) + (Km(k̄a))
2Km+1(ka)k̄km

)
(k̄ + k)(k̄ − k)a. (A.34)

Let

F̄ = f1(k
2 +m2 − 1 +B(χ(1) − χ(2))) + f2B(χ(1) − χ(2))2m2, (A.35)

such that (3.35) is

s = −gF F̄ , (A.36)
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where

f1 = (aIm(ka)χ
(1)k(Im(k)χ

(2)Km+1(k)k + χ(1)Km(k)Im+1(k)k + 1

+mKm(k)Im(k)(χ
(1) − χ(2)))Km+1(ka)− akχ(1)Km(k)Im(ka)(χ

(1)

− χ(2))(kKm+1(k)−mKm(k))Im+1(ka)− χ(1)Km(k)m(χ(1) − χ(2))(kKm+1(k)

−mKm(k))(Im(ka))
2 −Km(ka)χ

(1)m(Im(k)χ
(2)Km+1(k)k

+ χ(1)Km(k)Im+1(k)k + 1 +mKm(k)Im(k)(χ
(1) − χ(2)))Im(ka)

+ Im(k)χ
(2)Km+1(k)k + χ(1)Km(k)Im+1(k)k + 1

+mKm(k)Im(k)(χ
(1) − χ(2))), (A.37)

f2 = 2

(
Km(k)(Im(ka)Km(k)Im+1(ka)aχ

(1)k + Im(ka)Im(k)Km+1(ka)aχ
(1)k

+ (Im(ka))
2Km(k)χ

(1)m− Im(ka)Im(k)Km(ka)χ
(1)m+ Im(k))

)
, (A.38)

g = −
(
k

(
− aIm(ka)(Im(k)χ

(2)Km+1(k)k + kKm(k)(1 + χ(1))Im+1(k) + 1

+ Im(k)m(χ(1) − χ(2) + 1)Km(k))χ
(1)kKm+1(ka)− a(−(χ(1) − χ(2))(kKm+1(k)

−mKm(k))Im(ka) + Km(ka)(Im(k)m+ Im+1(k)k))χ
(1)kKm(k)Im+1(ka)

+ χ(1)Km(k)m(χ(1) − χ(2))(kKm+1(k)−mKm(k))(Im(ka))
2

+Km(ka)χ
(1)m(Im(k)χ

(2)Km+1(k)k + χ(1)Km(k)Im+1(k)k + 1

+mKm(k)Im(k)(χ
(1) − χ(2)))Im(ka)− Im(k)χ

(2)Km+1(k)k

+mKm(k)Im(k)χ
(2) − 1

))−1

. (A.39)

A.5 Constants in solution of the governing equations

The constants c
(ι)
1 ...c

(ι)
6 in (3.22) are as follows, c

(2)
1,3,5 = 0,

c
(1)
1 = gF̄ Ŝ(kK(m+1)(k)−mKm(k)), (A.40)
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c
(1)
2 = −gF̄ Ŝ

(
− ak̄k2

(
(−Km+1(k)k +mKm(k))Im(ka) + Im(k̄a)(k̄Km+1(k̄)

−mKm(k̄))
)
(Km+1(k̄a))

2 + (−k̄ak2(k̄Km+1(k̄)−mKm(k̄))Im+1(k̄a)

+ k̄2ak(Km+1(k)k −mKm(k))Im+1(ka) +m((k̄2 − 2k2)(Km+1(k)k

−mKm(k))Im(ka)− k̄Im(k̄a)(k̄Km(k̄)m− k2Km+1(k̄))))Km(k̄a)Km+1(k̄a)

−m(Km(k̄a))
2k̄((k̄Km(k̄)m− k2Km+1(k̄))Im+1(k̄a) + Im+1(ka)k(Km+1(k)k

−mKm(k)))

)
×
(
(Km+1(k̄a))

2Km(ka)k̄ak
2 + (−k̄2akKm+1(ka)

+ Km(ka)m(k̄2 − 2k2))Km(k̄a)Km+1(k̄a) +

(Km(k̄a))
2Km+1(ka)k̄km

)−1

, (A.41)

c
(2)
2 = −gF̄ Ŝ

(
− ak̄((−Km+1(k)k +mKm(k))Im(ka) + (−kIm+1(k)−mIm(k))Km(ka)

+ Im(k̄a)(k̄Km+1(k̄)−mKm(k̄)))k
2(Km+1(k̄a))

2 +Km(k̄a)(−k̄2ak(kIm+1(k)

+mIm(k))Km+1(ka)− k̄ak2(k̄Km+1(k̄)−mKm(k̄))Im+1(k̄a) + k̄2ak(Km+1(k)k

−mKm(k))Im+1(ka) +m((k̄2 − 2k2)(kIm+1(k) +mIm(k))Km(ka)

+ (k̄2 − 2k2)(Km+1(k)k −mKm(k))Im(ka)− k̄Im(k̄a)(k̄Km(k̄)m

− k2Km+1(k̄))))Km+1(k̄a)−m(Km(k̄a))
2k̄((−Im+1(k)k

2 − kmIm(k))Km+1(ka)

+ (k̄Km(k̄)m− k2Km+1(k̄))Im+1(k̄a) + Im+1(ka)k(Km+1(k)k −mKm(k)))

)
×
(
(Km+1(k̄a))

2Km(ka)k̄ak
2 + (−k̄2akKm+1(ka)

+ Km(ka)m(k̄2 − 2k2))Km(k̄a)Km+1(k̄a) + (Km(k̄a))
2Km+1(ka)k̄km

)
, (A.42)

c
(1)
3 =

k̄gF̄ Ŝ(ik̄Km+1(k̄) +mKm)

(k̄2 − k2)
, (A.43)

c
(1)
5 = gF̄ Ŝ

Km+1(k̄)k̄k
2 +Km(k̄)m(k̄2 − 2k2)

2k̄3 − 2k̄k2
, (A.44)
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c
(1)
4 = gF̄ Ŝ

(
i((−a(Im(k̄a)(k̄Km+1(k̄)−mKm(k̄))− Im(ka)(Km+1(k)k

−mKm(k)))k̄
2kKm+1(ka) + (−k̄ak2(k̄Km+1(k̄)−mKm(k̄))Im+1(k̄a)

+ k̄2ak(Km+1(k)k −mKm(k))Im+1(ka) + Im(k̄a)m(k̄ − k)(k̄ + k)

× (k̄Km+1(k̄)− 2mKm(k̄)))Km(ka))Km+1(k̄a)−mKm(k̄a)k̄(−(Im(k̄a)(k̄Km+1(k̄)

−mKm(k̄))− Im(ka)(Km+1(k)k −mKm(k)))kKm+1(ka)

+ Km(ka)((k̄Km(k̄)m− k2Km+1(k̄))Im+1(k̄a)

+ Im+1(ka)k(Km+1(k)k −mKm(k)))))k

)
×
(
(k̄ + k)((Km+1(k̄a))

2Km(ka)k̄ak
2 + (−k̄2akKm+1(ka) + Km(ka)m(k̄2

− 2k2))Km(k̄a)Km+1(k̄a) + (Km(k̄a))
2Km+1(ka)k̄km)(k̄ − k)

)−1

, (A.45)

c
(2)
4 = gF̄ Ŝ

(
ik(k̄Km(ka)ak

2(k̄Im+1(k̄) +mIm(k̄))(Km+1(k̄a))
2 + (−ak̄2((k̄Im+1(k̄)

+mIm(k̄))Km(k̄a) + Im(k̄a)(k̄Km+1(k̄)−mKm(k̄))− Im(ka)(Km+1(k)k

−mKm(k)))kKm+1(ka) + Km(ka)(−k̄ak2(k̄Km+1(k̄)−mKm(k̄))Im+1(k̄a)

+ k̄2ak(Km+1(k)k −mKm(k))Im+1(ka) + ((k̄2 − 2k2)(k̄Im+1(k̄)

+ +mIm(k̄))Km(k̄a) + Im(k̄a)(k̄ − k)(k̄ + k)(k̄Km+1(k̄)

− 2mKm(k̄)))m))Km+1(k̄a) +mKm(k̄a)k̄(((k̄Im+1(k̄)mIm(k̄))Km(k̄a)

+ Im(k̄a)(k̄Km+1(k̄)−mKm(k̄))− Im(ka)(Km+1(k)k

−mKm(k)))kKm+1(ka)−Km(ka)((k̄Km(k̄)m

− k2Km+1(k̄))Im+1(k̄a) + Im+1(ka)k(Km+1(k)k −mKm(k)))))

)
×
(
(k̄ + k)((Km+1(k̄a))

2Km(ka)k̄ak
2

+ (−k̄2akKm+1(ka) + Km(ka)m(k̄2 − 2k2))Km(k̄a)Km+1(k̄a)

+ (Km(k̄a))
2Km+1(ka)k̄km)(k̄ − k)

)−1

, (A.46)
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c
(1)
6 = gF̄ Ŝ

(
− 2(−a

2
(Im(k̄a)(k̄Km+1(k̄)−mKm(k̄))− Im(ka)(Km+1(k)k

−mKm(k)))k̄
2kKm+1(ka) + (−ak̄

2
(Km+1(k̄)k̄k

2 +Km(k̄)m(k̄2 − 2k2))Im+1(k̄a)

+
k̄2ak

2
(Km+1(k)k −mKm(k))Im+1(ka) + Im(k̄a)m(k̄ − k)(k̄ + k)(k̄Km+1(k̄)

− 2mKm(k̄)))Km(ka))k
2Km+1(k̄a) +mKm(k̄a)(−(k̄Km(k̄)a(k̄ − k)

× (k̄ + k)Im+1(k̄a) + (Km+1(k̄)k̄k
2 +Km(k̄)m(k̄2 − 2k2))Im(k̄a)− k̄2(Km+1(k)k

−mKm(k))Im(ka))kKm+1(ka) + k̄2Km(ka)((k̄Km(k̄)m− k2Km+1(k̄))Im+1(k̄a)

+ Im+1(ka)k(Km+1(k)k −mKm(k))))k̄

)
×
(
(2k̄ + 2k)k̄((Km+1(k̄a))

2Km(ka)k̄ak
2 + (−k̄2akKm+1(ka) + Km(ka)m(k̄2

− 2k2))Km(k̄a)Km+1(k̄a) + (Km(k̄a))
2Km+1(ka)k̄km)(k̄ − k)

)−1

, (A.47)

c
(2)
6 = gF̄ Ŝ

(
ak̄(−k̄Im+1(k̄)k

2 +mIm(k̄)(k̄
2 − 2k2))Km(ka)k

2(Km+1(k̄a))
2

+ (−ak̄2k((−k̄Im+1(k̄)k
2 +mIm(k̄)(k̄

2 − 2k2))Km(k̄a)− (Im(k̄a)(k̄Km+1(k̄)

−mKm(k̄))− Im(ka)(Km+1(k)k −mKm(k)))k
2)Km+1(ka)

+ Km(ka)(ak̄(Km+1(k̄)k̄k
2 +Km(k̄)m(k̄2 − 2k2))k2Im+1(k̄a)

− k̄2ak3(Km+1(k)k −mKm(k))Im+1(ka)

+m((k̄2 − 2k2)(−k̄Im+1(k̄)k
2 +mIm(k̄)(k̄

2 − 2k2))Km(k̄a)

− 2Im(k̄a)k
2(k̄ − k)(k̄ + k)(k̄Km+1(k̄)− 2mKm(k̄)))))Km+1(k̄a) +

mKm(k̄a)k̄(−(k̄Km(k̄)a(k̄ − k)(k̄ + k)Im+1(k̄a) + (k̄Im+1(k̄)k
2

−mIm(k̄)(k̄
2 − 2k2))Km(k̄a) + (Km+1(k̄)k̄k

2 +Km(k̄)m(k̄2 − 2k2))Im(k̄a)

− k̄2(Km+1(k)k −mKm(k))Im(ka))kKm+1(ka)

+ k̄2Km(ka)((k̄Km(k̄)m− k2Km+1(k̄))Im+1(k̄a)

+ Im+1(ka)k(Km+1(k)k −mKm(k))))

)
×
(
(2k̄ + 2k)k̄((Km+1(k̄a))

2Km(ka)k̄ak
2

+ (−k̄2akKm+1(ka) +Km(ka)m(k̄2 − 2k2))Km(k̄a)Km+1(k̄a)

+ (Km(k̄a))
2Km+1(ka)k̄km)(k̄ − k)

)−1

. (A.48)
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In the highly viscous limit, sv is given by (3.36) where

Fv = − 1

2k2

(
2((kIm+1(k)−

1

2
(k2 +m2 − 2m)Im(k))kKm+1(k) +

1

2
Km(k)(k

2 +m2

− 2m)(kIm+1(k) + 2Im(k)m))a2k2(Km+1(ka))
3 + a(−2ka((Km+1(k))

2k2

+ kKm(k)(k
2 +m2 − 2m)Km+1(k)−m(Km(k))

2(k2 +m2 − 2m))Im+1(ka) +

(k2(a2k2 +m2 − 2m)(Km+1(k))
2 − 2mKm(k)((a

2 + 1)k2 + 2m2 − 4m)kKm+1(k)

+ (Km(k))
2(k4 +m2(a2 + 4)k2 + 4m4 − 8m3))Im(ka)− 6((kIm+1(k)

− 1

2
Im(k)(k

2 +m2 − 2m))kKm+1(k) +
1

2
Km(k)(k

2 +m2 − 2m)(kIm+1(k)

+ 2Im(k)m))(m+ 2/3)Km(ka))k(Km+1(ka))
2 +Km(ka)(((a

2k2 +

(m+ 2)2)k2(Km+1(k))
2 − 2Km(k)((a

2m− 2m− 2)k2 −m3 + 4m)kKm+1(k)

+ (Km(k))
2(k4 + ((a2 − 2)m2 − 4m)k2 − 2m4 + 8m2))akIm+1(ka)

+ (−k2(m+ 2)(a2k2 +m2 − 2m)(Km+1(k))
2 − 2Km(k)(a

2k4 − (2a2m+m2 + 2m)k2

− 2m4 + 8m2)kKm+1(k) + 2m((a2 − 1

2
)k4 + (

1

2
a2m2 − a2m− 2m2 − 4m)k2 − 2m4

+ 8m2)(Km(k))
2)Im(ka)− 2((kIm+1(k)−

1

2
Im(k)(k

2 +m2 − 2m))kKm+1(k)

+
1

2
Km(k)(k

2 +m2 − 2m)(kIm+1(k) + 2Im(k)m))(a2k2 − 2m2 − 4m)Km(ka))Km+1(ka)

−m(((a2k2 + (m+ 2)2)(Km+1(k))
2 − 2kKm(k)(a

2m−m− 2)Km+1(k)

+ (k2 + a2m(m− 2))(Km(k))
2)kIm+1(ka)− 2a(((Km+1(k))

2k2 + kKm(k)(k
2 +m2

− 2m)Km+1(k)−m(Km(k))
2(k2 +m2 − 2m))Im(ka) + ((kIm+1(k)−

1

2
Im(k)(k

2 +m2

− 2m))kKm+1(k) +
1

2
Km(k)(k

2 +m2 − 2m)(kIm+1(k)

+ 2Im(k)m))Km(ka)))(Km(ka))
2k

)
×
(
− k2a2(Km+1(ka))

3

+ 3(m+ 2/3)Km(ka)ak(Km+1(ka))
2 + (Km(ka))

2(a2k2 − 2m2

− 4m)Km+1(ka)− ka(Km(ka))
3m

)−1

. (A.49)
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In this inviscid limit, sI is given by (3.37), where

FI =

(
(ka(kIm+1(k) + Im(k)m)Km+1(ka)− ka(kKm+1(k)−mKm(k))Im+1(ka)

−m((kKm+1(k)−mKm(k))Im(ka) + Km(ka)(kIm+1(k) + Im(k)m)))(kKm+1(k)

−mKm(k))

)
× 1

(Km+1(ka)ak −Km(ka)m)
. (A.50)

A.6 Vector identities and theorems

The following vector calculus identities and theorems are used in Chapter 6 and are given here

for ease of reference. Given vectors a, b, c, the scalar triple product is

a · (b× c) = b · (c× a) = c · (a× b), (A.51)

and the vector triple product is

a× (b× c) = (a · c)b− (a · b)c. (A.52)

Given scalars κ1, κ2, the product rule for scalars is

∇(κ1κ2) = κ1∇κ2 + κ2∇κ1. (A.53)

Moreover,

∇ · (κ1a) = κ1(∇ · a) +∇κ1 · a, (A.54)

∇× (κ1a) = κ1(∇× a) +∇κ1 × a, (A.55)

∇ · (a× b) = (∇× a) · b− (∇× b) · a, (A.56)

∇(∇ · a)−∇× (∇× a) = ∇2a, (A.57)

∇ · (∇2a) = ∇2(∇ · a), (A.58)
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∇ · (∇× a) = 0. (A.59)

The divergence theorem, states that for a volume V with boundary ∂V

∫∫
∂V

a · dS =

∫∫∫
V

(∇ · a)dV. (A.60)

Stokes theorem for a surface S in three-dimensions, with a boundary curve ∂S, states

∮
∂S

a · dl =
∫∫

S

(∇× a) · dS. (A.61)

A.7 The viscous term of (6.71)

Here, we show an attempt at proving

Iv =

∫∫∫
V

A∗ · ∇2(∇2A)dV (A.62)

is of definite sign. Iv can be written as

Iv =

∫∫∫
V

A∗ · ∇2(∇2A)dV −
∫∫∫

V

A∗ ·
(
∇× (∇× (∇2A))

)
dV, (A.63)

and use (A.56) to write

Iv =

∫∫∫
V

∇ ·
(
A∗ × (∇× (∇2A))

)
− (∇×A∗) · (∇× (∇2A))dV. (A.64)
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Using (A.56) again,

Iv =

∫∫∫
V

(
∇ ·

(
A∗ ×

(
∇× (∇2A)

))
−∇ ·

(
(∇×A∗)× (∇2A)

)
+
(
∇× (∇×A∗)

)
· (∇2A)

)
dV. (A.65)

Since ∇2A = −∇× (∇×A),

Iv =

∫∫∫
V

(
∇ ·

(
A∗ ×

(
∇× (∇2A)

))
−∇ ·

(
(∇×A∗)× (∇2A)

)
− |∇2A|2

)
dV, (A.66)

where the second term is zero by the divergence theorem. Now,

∫∫∫
V

∇ ·
(
A∗ × (∇× (∇2A))

)
dV =

∫∫
∂V

(
A∗ ×

(
∇× (∇2A)

))
· n̂dS

=

∫∫
∂V

(
A∗ ×

(
∇2(∇×A)

))
· n̂dS, (A.67)

by the divergence theorem. Ideally, either A = 0 or ∇2(∇×A) = 0 on the boundaries of the

volume, in which case (A.67) is zero and

Iv = s

∫∫∫
V

|ω|2dV. (A.68)

We know for certain that ∇×A = 0 at the boundary, but cannot say otherwise. Alternatively,

if by vector identities we can show

∫∫∫
V

∇ ·
(
A∗ ×

(
∇× (∇2A)

))
dV (A.69)

is of definite sign, then Iv will be of definite sign and we can proceed. However, at present, we

cannot do this and the integral in the term due to viscous forces in (6.71) remains of indefinite

sign.
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A.8 Proof of stability condition in Section 6.6.1

From (6.85) it follows that if H ′
0 < 0 throughout V , s2I > 0 and there exists a mode such that

R(s) > 0, and the system will be unstable. In contrast, if H ′
0 > 0 throughout V the system

will be stable. Here we prove a stronger stability condition in a similar manner to previous

sections.

Consider the functional

F (y) =

√
−
B
∫∫∫

V
H0H ′

0|∇χ0 · y|2dV∫∫∫
V
|y|2dV

. (A.70)

for all real vector functions y satisfying the boundary conditions of u. We now prove that

stationary points of the functional (A.70) correspond to real eigenvalues satisfying (6.70) in the

inviscid limit, namely

s2I∇2A+BH0H
′
0(∇χ0 ×∇)(∇χ0 · (∇×A)) = 0. (A.71)

Note that F (y) is bounded above and for H ′
0 > 0 has a global maximum. Let y = y0 be a

stationary point of F , such that F (y0) = F0 and consider y = y0 + ϵy1, where y0 and y1 are

divergence free and satisfy the same boundary conditions as u. Since y = y0 is a stationary

point of F (y), the first variation from Taylor expanding F (y0+ϵy1) will be zero, and we obtain

F 2
0

∫∫∫
V

y0 · y1dV +B

∫∫∫
V

H0H
′
0(∇χ0 · y0)(∇χ0 · y1)dV = 0, (A.72)

after some algebra.

Now, before we proceed, we must define vector potentials Ã0,1 such that

y0,1 = ∇× Ã0,1 (A.73)
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and

∇ · Ã0,1 = 0. (A.74)

Consider the first term of (A.72),

I1 =

∫∫∫
V

y0 · y1dV. (A.75)

We write

I1 =

∫∫∫
V

(∇× Ã0) · (∇× Ã1)dV

=

∫∫∫
V

(
∇ · ((∇× Ã1)× Ã0) + Ã0 · (∇× (∇× Ã1))

)
dV. (A.76)

But, by the divergence theorem and boundary conditions for ỹ1,

I1 =

∫∫∫
V

Ã0 · (∇× (∇× Ã1))dV

= −
∫∫∫

V

Ã0 · ∇2Ã1dV. (A.77)

For the second term of (A.72), namely

I2 =

∫∫∫
V

H0H
′
0(∇χ0 · y0)(∇χ0 · y1)dV, (A.78)

we write

I2 =

∫∫∫
V

H0H
′
0(∇χ0 · (∇× Ã0))(∇χ0 · (∇× Ã1))dV. (A.79)

It follows that

I2 =

∫∫∫
V

H0H
′
0∇χ0 ·

(
∇× (µ̃Ã0)

)
dV −

∫∫∫
V

H0H
′
0∇χ0 · (∇µ̃× Ã0)dV, (A.80)

where

µ̃ = ∇χ0 · (∇× Ã1). (A.81)
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But, by (A.54) and the divergence theorem the first time of (A.80) is zero. Hence,

I2 = −
∫∫∫

V

H0H
′
0Ã0 ·

(
∇χ0 ×∇

(
∇χ0 · (∇× Ã1)

))
dV, (A.82)

by (A.51).

Substituting (A.77) and (A.82) into (A.72) we obtain

F 2
0

∫∫∫
V

Ã0 · ∇2Ã1dV +B

∫∫∫
V

H0H
′
0Ã0 ·

(
∇χ0 ×∇

(
∇χ0 · (∇× Ã1)

))
dV = 0. (A.83)

Substitute F0 = sI and observe that (A.83) must be true for any vector Ã0, to give

s2I∇2Ã1dV +B

∫∫∫
V

H0H
′
0

(
∇χ0 ×∇

(
∇χ0 · (∇× Ã1)

))
dV = 0. (A.84)

Hence, stationary points of the functional A.70 correspond to real eigenvalues of A.71. It follows

that if, and only if, H ′
0 < 0 somewhere in the volume, the system is unstable in the inviscid

limit. The reasoning is analogous to Section 6.4, and is not given here.

A.9 Proof of stability condition in Section 6.6.2

Observe from 6.96 that s > 0 when H ′
0 < 0, thus if H ′

0 < 0 throughout the volume the flow

is unstable. Alternatively, if H ′
0 ≥ 0 everywhere, R(s) ≤ 0 and the flow is stable. To prove a

stronger stability condition, we consider the functional

F (y) =
−
∫∫∫

V
|∇× y|2dV +

√
S̄

2Re
∫∫∫

V
|y|2dV

, (A.85)

where

S̄ = (

∫∫∫
V

|∇× y|2dV )2 − 8BRe

∫∫∫
V

|y|2dV (

∫∫∫
V

H0H
′
0|∇χ0 · y|2dV ), (A.86)
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for all real functions y satisfying the boundary conditions of u. We can argue analogously to

Section 4.3.1 that F (y) is bounded above, and therefore F (y) has a positive maximum when

H ′
0 < 0. We now prove stationary points of F correspond to real eigenvalues of (6.87). Let

y = y0 be a stationary point of F , such that F (y0) = F0 and consider y = y0 + ϵy1, where

y0 and y1 are divergence free and satisfy the same boundary conditions as u. Since y = y0 is

a stationary point of F (y), the first variation from Taylor expanding F (y0 + ϵy1) will be zero,

and we obtain

−F 2
0Re

∫∫∫
V

y0·y1dV−F0

∫∫∫
V

(∇×y0)·(∇×y1)dV = 2B

∫∫∫
V

H0H
′
0(∇χ0·y0)(∇χ0·y1)dV.

(A.87)

We write the second term on the left-hand side of (A.87) as

∫∫∫
V

(∇×y0) · (∇×y1)dV =

∫∫∫
V

(
∇ · ((∇×y1)×y0)+y0 · (∇× (∇×y1))

)
dV. (A.88)

But, by the divergence theorem and boundary conditions for y0, the first term of (A.88) is

zero, and therefore

∫∫∫
V

(∇× y0) · (∇× y1)dV =

∫∫∫
V

y0 · (∇× (∇× y1))dV

= −
∫∫∫

V

y0 · ∇2y1dV. (A.89)

Now,

∫∫∫
V

2H0H
′
0(∇χ0 · y0)(∇χ0 · y1)dV =

∫∫∫
V

(∇H2
0 · y0)(∇χ0 · y1)dV

=

∫∫∫
V

(
∇ ·

(
H2

0 (∇χ0 · y1)y0

)
−H2

0y0 ·∇(∇χ0 · y1)

)
dV, (A.90)
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and the first term is zero by the divergence theorem. Therefore, (A.87) becomes

− F 2
0Re

∫∫∫
V

y0 · y1dV + F0

∫∫∫
V

y0 · ∇2y1dV

= −B
∫∫∫

V

H2
0y0 ·∇(∇χ0 · y1)dV. (A.91)

Since we can add any integral which evaluates to zero to (A.91), we add

−
∫∫∫

V

∇ · (py0)dV, (A.92)

which is zero due to the divergence theorem, to give

− F 2
0Re

∫∫∫
V

y0 · y1dV + F0

∫∫∫
V

y0 · ∇2y1dV

= −
∫∫∫

V

∇ · (py0)dV −B

∫∫∫
V

H2
0y0 ·∇(∇χ0 · y1)dV. (A.93)

Since, ∇ · y0 = 0, write (A.93) as

− F 2
0Re

∫∫∫
V

y0 · y1dV + F0

∫
V

y0 · ∇2y1dV

= −
∫
V

ŷ0 ·∇pdV −B

∫∫∫
V

H2
0y0 ·∇(∇χ0 · y1)dV. (A.94)

(A.94) is valid for any vector y1 and therefore

F 2
0Rey1 − F0∇2y1 = −∇p+BH2

0∇(∇χ0 · y1). (A.95)

Since F0 = s, this yields (6.87) and stationary points of F are eigenvalues of (6.87). Following

analogous reasoning to Section 6.4, it holds that if, and only if, H ′
0 < 0 somewhere in the

volume, the system is unstable.
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