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Abstract

We propose a new estimation method for the blind source separation model of Bachoc

et al. (2020). The new estimation is based on an eigenanalysis of a positive definite matrix

defined in terms of multiple normalized spatial local covariance matrices, and, therefore,

can handle moderately high-dimensional random fields. The consistency of the estimated

mixing matrix is established with explicit error rates even when the eigen-gap decays to zero

slowly. The proposed method is illustrated via both simulation and a real data example.

Key works: Eigen-analysis; Eigen-gap; High-dimensional random field; Mixing matrix; Nor-

malized spatial local covariance matrix.

1 Introduction

Blind source separation is an effective way to reduce the complexity in modelling p-variant

spatial data (Nordhausen et al., 2015; Bachoc et al., 2020). The approach can be viewed as

a version of independent component analysis (Hyvärinen et al., 2001) for multivariate spatial

random fields. Though only the second moment properties are concerned, the challenge is to
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decorrelate p spatial random fields at the same location as well as across different locations.

Note that the standard principal component analysis does not capture spatial correlations, as

it only diagonalizes the covariance matrix (at the same location). Nordhausen et al. (2015)

introduced a so-called local covariance matrix (see (4) in section 2.2 below) to represent the

dependence across different locations. Furthermore, it proposed to estimate the mixing matrix,

defined in (1) in section 2.1 below, in the blind source separation decomposition based on a gen-

eralized eigenanalysis, which can be viewed as an extension of the principal component analysis

as it diagonalizes a local covariance matrix in addition to the standard covariance matrix. To

overcome the drawback of using the information from only one local covariance matrix, Bachoc

et al. (2020) proposed to use multiple local covariance matrices in the estimation (see (5) in

section 2.2). The method of Bachoc et al. (2020) has a clear advantage in incorporating the

spatial dependence information over different ranges. It is in the spirit of JADE (joint approxi-

mate diagonalization of eigenmatrices) in non-spatial contexts. See Chapter 11 of Hyvärinen et

al. (2001) and the references within. Its estimation is based on a nonlinear optimization with

p2 parameters. Hence it is compute-intensive and cannot cope with very large p.

Inspired by Bachoc et al. (2020), we propose a new method also based on multiple (nor-

malized) local covariance matrices for estimating the mixing matrix. Different from Bachoc

et al. (2020), the new method is computationally efficient as it boils down to an eigenanalysis

of a positive definite matrix which is a matrix function of multiple normalized spatial local

covariance matrices. Therefore it can handle the cases with the dimension of random fields in

the order of a few thousands on an ordinary personal computer. While the basic idea resembles

that of Chang, Guo and Yao (2018) which dealt with multiple time series, the spatial random

fields concerned are sampled irregularly and non-unilaterally, and the spatial correlations spread

in all directions. Furthermore, we incorporate the pre-whitening in our search for the mixing

matrix. This implies estimating the covariance matrix of the process, which is assumed to be

an identity matrix in Chang, Guo and Yao (2018). The normalized spatial local covariance

matrix, defined in (10) below, is a modified version of the spatial local covariance matrix in

Nordhausen et al. (2015), and is introduced to facilitate the effect of the pre-whitening. All

these entail completely different theoretical exploration; leading to the asymptotic results under

the similar setting of Bachoc et al. (2020) but allowing the dimension of the random field to

diverge together with the number of the observed locations, which is assumed to be fixed in

Bachoc et al. (2020).
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The efficiency gain in computing of the proposed method is due to adding together the

information from different normalized local covariance matrices. However different from adding

covariance matrices directly such as in TDSEP (Ziehe and Müller, 1998), each term in the sum

of (9) in Section 2.3 below is the product of a normalized local covariance matrix and its trans-

pose, which, therefore, is non-negative definite matrix. This avoids the possible cancellation of

the information from different normalized local covariance matrices. Note covariance matrices

are not non-negative definite, and adding them together directly may leads to volatile perfor-

mance due to information cancellation; see Table 1 of (Ziehe and Müller, 1998). Although the

sample fourth moments occur in (9) in order to avoid the information cancellation, our goal

is decorrelaton across space via diagonalizing multiple normalized local covariance matrices.

Indeed the way to use the fourth moments and the purpose of using them are radically different

from those of FOBI (forth-order blind identification) algorithms. See Chapter 11 of Hyvärinen

et al. (2001) and the references within.

Another new contribution of the paper concerns the eigen-gap in the eigenanalysis for esti-

mating the mixing matrix. In order to identify a consistent estimator for the mixing matrix,

the standard condition is to assume that the minimum pairwise absolute difference among the

eigenvalues remains positive. See Assumptions 8 and 9 of Bachoc et al. (2020). The similar

conditions have been imposed in the literature in order to identify factor loading spaces in factor

models (Lam and Yao, 2012). However this condition is invalid under the setting concerned in

this paper when the dimension of random field p diverges to infinity, as the maximum order of

the eigen-gap is p−1. We show that the identification of the mixing matrix is still possible when

p → ∞ at the rate p = o(n1/3). See Theorem 2 and Remark 2 in Section 3.

The rest of the paper is organised as follows. We present the spatial blind source separation

model and the new estimation method in Section 2. The asymptotic properties are developed

in Section 3. Numerical illustration with both simulated data and a real data set is presented

in Section 4. All the technical proofs are given in the Appendix.

The R-package BSSoverSpace, available in the CRAN project, implements the methods

proposed in this paper.
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2 Setting and Methodology

2.1 Model

We adopt the spatial blind source separation model of Bachoc et al. (2020). More precisely,

let X(s) = {X1(s), · · · , Xp(s)}⊤ be a p-variate random field defined on s ∈ S ⊂ Rd, and X(s)

admits the representation

X(s) = ΩZ(s) ≡ Ω{Z1(s), · · · , Zp(s)}⊤, (1)

where Z1(s), · · · , Zp(s) are p independent latent random fields, and Ω is a p × p invertible

constant matrix and is called the mixing matrix. Furthermore, Bachoc et al. (2020) assumes

that for any s, u ∈ S,

EZ(s) = µ0, Var{Z(s)} = Ip, Cov{Z(s), Z(u)} = H(s− u), (2)

where µ0 is an unknown constant vector, Ip denotes the p× p identity matrix, H(·) is a p× p

diagonal matrix

H(s− u) = diag{K1(s− u), · · · ,Kp(s− u)},

i.e. Cov{Zi(s), Zj(u)} = Ki(s− u) if i = j, and 0 otherwise. Let µ = Ωµ0. Under (1) and (2),

X(·) is a weakly stationary process as

EX(s) = µ, Var{X(s)} = ΩΩ⊤, Cov{X(s), X(u)} = ΩH(s− u)Ω⊤. (3)

2.2 The existing methods

Let X(s1), · · · , X(sn) be available observations. Put

X̃(si) = X(si)−
1

n

n∑
j=1

X(sj), Z̃(si) = Z(si)−
1

n

n∑
j=1

Z(sj), i = 1, · · · , n.

Then the spatial local covariance matrix of Nordhausen et al. (2015) is defined as

M̃(f) =
1

n

n∑
i,j=1

f(si − sj)X̃(si)X̃(sj)
⊤, (4)

where f(·) is a kernel function such as f(s) = 1(h1 ≤ ∥s∥ ≤ h2) for some constants 0 ≤ h1 <

h2 < ∞, and 1(·) denotes the indicator function. To recover the mixing matrix Ω, Bachoc et
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al. (2020) proposed to estimate the unmixing matrix (i.e. the inverse of the mixing matrix)

Γ = Ω−1 ≡ (γ1, · · · , γp)⊤ by

Γ̂ ∈ arg max
ΓM̃(f0)Γ⊤=Ip

k∑
i=1

p∑
j=1

{γ⊤j M̃(fi)γj}2, (5)

where f0(s) = I(s = 0), and f1, · · · , fk are appropriately specified kernels. This is a nonlinear

optimization problems with p2 variables, which Bachoc et al. (2020) adopted the algorithm

of Clarkson (1988) to solve. When k = 1, the objective function contains only one kernel

function. Then the above optimization can be solved based on a generalized eigenanalysis; see

Nordhausen et al. (2015) and Bachoc et al. (2020), though the estimation based on a single

kernel requires the prior knowledge on which kernel to use for a given problem.

2.3 The new method

We now propose a new method to estimate the mixing matrix using multiple kernels but based

on a single eigenanalysis. To this end, we define, for any given k kernel function f1(·), · · · , fk(·),

N = E
[1
k

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}{ 1

n

n∑
i,j=1

fh(si − sj)Z̃(si)Z̃(sj)
⊤}⊤

]
, (6)

W = E
[1
k

k∑
h=1

{ 1
n

n∑
i,j=1

fh(si − sj)Σ
−1/2X̃(si)X̃(sj)

⊤}Σ−1

×
{ 1
n

n∑
i,j=1

fh(si − sj)X̃(si)X̃(sj)
⊤Σ−1/2

}⊤
]
,

where Σ = Var{X(s)} = ΩΩ⊤. Then N and W are p × p non-negative definite matrices.

Furthermore, N is a diagonal matrix, as its (i, j)-th element, for i ̸= j, is

1

n2k

k∑
h=1

p∑
ℓ=1

n∑
i1,i2,j1,j2=1

fh(si1 − sj1)fh(si2 − sj2)E{Z̃i(si1)Z̃ℓ(sj1)Z̃j(si2)Z̃ℓ(sj2)} = 0,

which is guaranteed by the fact that the components of Z(·) are the p independent random

fields. Since Ω is a p × p full rank matrix, we can rewrite Ω = VΩΛΩUΩ, where VΩ and UΩ

are two p × p orthogonal matrices, and ΛΩ is a diagonal matrix. Then Σ−1/2 = VΩΛ
−1
Ω V ⊤

Ω .

Combining this and (1), we have

W = VΩUΩNU⊤
Ω V ⊤

Ω , (7)
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i.e. the columns of UW ≡ VΩUΩ are the p orthonormal eigenvectors of matrix W with the

diagonal elements of N as the corresponding eigenvalues. As Σ1/2UW = VΩΛΩV
⊤
Ω VΩUΩ = Ω,

this paves the way to identifying mixing matrix Ω. We summarize the finding in the proposition

below.

Proposition 1. Under the condition (2), the mixing matrix Ω defined in (1) is of the form

Σ1/2UW , where the columns of UW are the p orthonormal eigenvectors of matrix W . Moreover,

those p eigenvectors are identifiable, upto the sign changes, if the p diagonal elements of N are

distinct from each other.

Note that the sign changes of any columns of UW will not change the independence of the

components of Z(·) in (1), as Z(s) = U⊤
WΣ−1/2X(s). By Proposition 1, we define an estimator

for the mixing matrix as

Ω̂ = Σ̂1/2ÛW , (8)

where Σ̂ = n−1
∑

1≤j≤n X̃(sj)X̃(sj)
⊤, and the columns of ÛW are the p orthonormal eigenvec-

tors of matrix

Ŵ =
1

k

k∑
h=1

M̂(fh)M̂(fh)
⊤. (9)

In the above expression, M̂(fh) is a normalized local covariance matrix defined as

M̂(f) =
1

n

n∑
i,j=1

f(si − sj)Σ̂
−1/2X̃(si)X̃(sj)

⊤Σ̂−1/2. (10)

This estimation procedure is implemented in Algorithm 1 below. In comparison to the local

covariance matrix (4), we replace X(·) by its standardized version Σ̂−1/2X̃(·). This effectively

pre-whitens the data in our search for the mixing matrix.

Algorithm 1: Eigenanalysis approach for BSS over space

Input: X(s1), · · · , X(sn) and f1(·), · · · , fk(·).

(i) Compute X̃(si) = X(si)− 1
n

∑n
j=1X(sj) and Σ̂ = n−1

∑
1≤j≤n X̃(sj)X̃(sj)

⊤.

(ii) Compute Ŵ in (9).

(iii) Compute eigenvalues Λ̂W and eigenvectors ÛW of matrix Ŵ .

(iv) Compute Ω̂−1 = Û⊤
W Σ̂−1/2.

Output: Ẑ(si) = Ω̂−1X(si), i = 1, · · · , n.

Remark 1. The proposed new method makes use of the normalized 4th moments of the

observations while the methods of Bachoc et al. (2020) and Nordhausen et al. (2015) only
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depend on the 2nd moments. However the 4th moments occur only in the matrix products

M̂(fh)M̂(fh)
⊤ in defining Ŵ in (9), and each of those products is a non-negative definite

matrix. We add together those non-negative definite matrices, instead of M̂(fh) (as suggested

in Ziehe and Müller (1998)), to avoid the information cancellation from different M̂(fh). See

also Chang, Guo and Yao (2018). Note that both our way of using the fourth moments and

our purpose of using them are radically different from those of FOBI (Hyvärinen et al., 2001,

Chapter 11). For example W in (6) is a p× p matrix with the (l,m)-th element

E
[ 1

n2k

k∑
h=1

p∑
v=1

n∑
i,j,c,d=1

fh(si − sj)fh(sc − sd)Z̃l(si)Z̃m(sc)Z̃v(sj)Z̃v(sd)
]
,

while a FOBI algorithm would use instead a p2× p2 quadricovariance matrix with the elements

being the fourth order cumulants (Ferreol, 2005). Our goal is to avoid information cancellation

while diagonalizing different local covariance matrices. FOBI is to diagonalize a quadricovari-

ance matrix.

3 Asymptotic properties

We consider the asymptotic behaviour of the estimator Ω̂ when n → ∞ and p either remaining

fixed or p = o(n). Since Ω̂−1X(s) = Ω̂−1ΩZ(s), we will focus on Γ̂Ω = Ω̂−1Ω. We introduce

some regularity conditions first.

A1. In model (1), Z1(·), · · · , Zp(·) are p independent and strictly stationary random fields on

Rd, and condition (2) holds. Furthermore, Z(·) is sub-Gaussian in the sense that there

exists a constant C0 > 0 independent of p for which

sup
β≥1,1≤i≤p

β−1/2{E|Zi(s)|β}1/β ≤ C0. (11)

Moreover, for any unit vector (a1, · · · , an)⊤ ∈ Rn and 1 ≤ ℓ ≤ p,
∑n

i=1 aiZℓ(si) is sub-

Gaussian.

A2. There exist positive constants ∆, α and A (independent of n and p) such that for any

1 ≤ i ̸= j ≤ n and n ≥ 2, ∥si − sj∥ ≥ ∆, and for s, u ∈ Rd, 1 ≤ ℓ ≤ p and 1 ≤ h ≤ k (k is

fixed),

|Cov{Zℓ(s+ u), Zℓ(s)}| ≤ A/(1 + ∥u∥d+α), (12)

|fh(s)| ≤ A/(1 + ∥s∥d+α). (13)
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A3. Let λ1 ≥ · · · ≥ λp ≥ 0 be the diagonal elements of matrix N defined in (6), arranged in

the descending order. There exist integers 0 = p0 < p1 < · · · < pm = p for which

lim sup
n→∞

max
1≤i≤m

|λpi−1+1 − λpi | = 0, and (14)

lim inf
n→∞

min
1≤i<m

|λpi − λpi+1| = C1 > 0, (15)

where m ≥ 2 is a fixed integer, and C1 is a constant independent of p.

Conditions A1 and A2 are essentially the same as Assumptions 1-7 of Bachoc et al. (2020),

though we impose only the sub-Gaussianality instead of requiring Z(·) to be normally dis-

tributed. In addition, our setting allows p to diverge together with n. Condition A3 is required

for distinguishing the columns of the mixing matrix Ω from each other. Those p columns are

completely identifiable when p is fixed and m = p. Then condition (14) vanishes, and (15)

ensures that the p diagonal elements of matrix N are distinct from each other (see Proposition

1). The similar conditions (i.e. with p fixed) were imposed in Bachoc et al. (2020): see As-

sumptions 8 and 9 therein. Note that condition (15) cannot hold when m = p → ∞. When

p → ∞ together with n, (14) and (15) ensure that the estimated mixing matrix Ω̂ transforms

X(·) into m independent subvectors; see Theorem 1 below. Recalling the definition of N in

(6), we can see that the choice of kernels should satisfy Condition A3. This is the same for

Bachoc et al. (2020).

Without the loss of generality, we assume that the p components of Z(·) are arranged in

the order such that the diagonal elements of matrix N in (6) are in the descending order. This

simplifies the presentation of Theorem 1 substantially. Write Ŵ = ÛW Λ̂W Û⊤
W as its spectral

decomposition, i.e.

Λ̂W = diag(λ̂W,1, · · · , λ̂W,p),

where λ̂W,1 ≥ · · · ≥ λ̂W,p ≥ 0 are the eigenvalues of Ŵ , and the columns of the orthogonal

matrix ÛW are the corresponding eigenvectors. Consequently,

Γ̂Ω = Ω̂−1Ω = Û⊤
W Σ̂−1/2Ω. (16)

Corollary 1 below shows that Ω̂−1Ω = Γ̂Ω
P−→ Ip when p is finite and m = p in Condition A3.

To state a more general result first, put qi = pi− pi−1 for i = 1, · · · ,m (see Condition A3), and

Ω̂−1Ω = Γ̂Ω =


Γ̂Ω,11 · · · Γ̂Ω,1m

· · · · · · · · ·

Γ̂Ω,m1 · · · Γ̂Ω,mm

 , (17)
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where submatrix Γ̂Ω,ij is of the size qi × qj .

Theorem 1. Let Conditions A1-A3 hold. As n → ∞ and p = o(n), it holds that

∥Γ̂Ω,ii∥ = 1 +Op{n−1/2p1/2}, ∥Γ̂Ω,ii∥min = 1 +Op{n−1/2p1/2} 1 ≤ i ≤ m, (18)

∥Γ̂Ω,ij∥ = Op{n−1/2p1/2}, 1 ≤ i ̸= j ≤ m, and (19)

∥Λ̂W − Λ∥ = Op(n
−1/2p1/2), (20)

where Λ = diag(λ1, · · · , λp), and λi are specified in Condition A3.

Theorem 1 implies that Γ̂Ω,ij
P−→ 0 for any i ̸= j. Hence the transformed process Ω̂−1X(·) =

Γ̂ΩZ(·) can only be divided into the m asymptotically independent random fields of dimensions

q1, · · · , qm respectively. This is due to the lack of separation of the corresponding eigenvalues

within each of those m groups; see (14). On the other hand, Theorem 1 still holds, under some

additional conditions, if the components of Z(·) within each of those m groups are not indepen-

dent with each other. Then this is in the spirit of the so-called multidimensional independent

component analysis of Cardoso (1998). In practice, one needs to identify the m latent groups

among the p components of Ω̂−1X(·), which can be carried out by adapting the procedures in

Section 2.2 of Chang, Guo and Yao (2018). By (20), Λ̂W will indicate how those eigenvalues

are different from each other; see Condition A3.

Note that Theorem 1 holds when either p is fixed and finite, or p/n → 0 as n → ∞. When

p is fixed and m = p in Condition A3, all Γ̂Ω,ij reduces to a scale and qi = 1. Then Corollary 1

below follows from Theorem 1 immediately.

Corollary 1. Let Conditions A1-A3 hold with m = p, and p be a fixed integer. Then as n → ∞,

∥Ip − Ω̂−1Ω∥ = Op(n
−1/2).

A key condition in Corollary 1 for identifying all the columns of the mixing matrix is that

the eigengap defined as

vgap = min
1≤i ̸=j≤p

|λi − λj | (21)

remains bounded away from 0, which is implied by (15) when p = m is fixed. This condition

cannot be fulfilled when p diverges (together with n). To appreciate the performance of the

proposed procedure when p is large in relation to n, we present Theorem 2 below which indicates

that the mixing matrix can still be estimated consistently but at much slower rates when the

eigengap vgap decays to 0 provided p diverges to ∞ not too fast; see Remark 2 below.
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A4. lim supn→∞ v−1
gapn

−1/2p1/2 = 0.

Theorem 2. Let conditions A1, A2 and A4 hold. Denote by γ̂Ω,ij the (i, j)-th entry of matrix

Γ̂Ω. Then as n, p → ∞, it holds that

γ̂Ω,ij = Op(n
−1/2p1/2v−1

gap|j − i|−1) for 1 ≤ i ̸= j ≤ p, and (22)

γ̂Ω,ii = 1 +Op(n
−1pv−2

gap + n−1/2p1/2) for i = 1, · · · , p. (23)

Moreover, (20) still holds.

Remark 2. Note that λ1 − λp ≥ (p − 1)vgap, and, therefore, vgap = O(p−1). Thus it follows

from condition A4 that p = o(n1/3), i.e. in order to fully identify the mixing matrix, p cannot

be too large in the sense that p/n1/3 → 0.

4 Numerical illustration

4.1 Simulation

We illustrate the finite sample properties of the proposed method by simulation. We set the

dimension of random fields at p =3 and 50, and the sample size n (i.e. the number of locations)

between 100 to 2000. The coordinates of those n locations are drawn independently from

U(0, 50)2. Both Gaussian and non-Gaussian random fields are used. Also included in the

simulation is the method of Bachoc et al. (2020). For each setting, we replicate the simulation

1000 times.

The p-variate random fields X(·) are generated according to (1) in which Z1(·), · · · , Zp(·) are

p independent random fields with either N(0, 1) or t5 marginal distributions, and the Matern

correlation function

ρ(s) = 21−κΓ(κ)−1(s/ϕ)κBκ(s/ϕ),

where κ > 0 is the shape parameter, ϕ > 0 is the range parameter, Γ(·) is the Gamma function,

and Bκ is the modified Bessel function of the second kind of order κ. We set different values

of (κ, ϕ) for different Zj . More precisely κ’s are drawn independently from U(0, 6), and ϕ’s are

drawn independently from U(0, 2). The mixing matrix Ω in (1) is set to be the p× p identity

matrix.
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To measure the accuracy of the estimation for Ω, we define

D(Ω, Ω̂) =
1

2p(
√
p− 1)

p∑
j=1

{(
∑

1≤i≤p d
2
ij)

1/2

max1≤i≤p |dij |
+

(
∑

1≤i≤p d
2
ji)

1/2

max1≤i≤p |dji|
− 2

}
,

where dij is the (i, j)-th element of matrix Ω−1Ω̂. As

p−1/2 ≤ max
1≤i≤p

|dij |
/( ∑

1≤i≤p

d2ij
)1/2 ≤ 1.

it holds that D(Ω, Ω̂) ∈ [0, 1], and D(Ω, Ω̂) = 0 if Ω̂ is a column permutation and/or column

sign changes of Ω.

We set k = 10 in (9), and

fh(s) = 1(ch−1 < ∥s∥ ≤ ch), h = 1, · · · , 10, (24)

where 0 = c0 < c1 < · · · < c10 = ∞ are specified such that for each h = 1, · · · , 10, {(si, sj) : 1 ≤

i < j ≤ n, ch−1 < ∥si − sj∥ ≤ ch} contains the 10% of the total pairs (si, sj), 1 ≤ i < j ≤ n.

The boxplots of D(Ω, Ω̂) obtained in the 1000 replications are presented in Figures 1–

4. Estimations by the method of Bachoc et al. (2020) are computed using the R-function

sbss, provided in R-package SpatialBSS. In addition to the multiple kernel estimation, we also

compute the estimates with a single kernel, using each of the 10 kernels in (24), For computing

the multiple kernel method of Bachoc et al. (2020), we set the maximum number of iterations

at 2000. By using a single kernel, the method of Bachoc et al. (2020) leads to almost identical

estimates as those obtained by the proposed method (with the same single kernel). Therefore

we omit the detailed results.

Figures 1 – 4 and Tables 1 – 4 indicate clearly that both the methods with multiple kernels

outperform most of those with a single kernel, and the proposed method outperforms the

multiple kernel method of Bachoc et al. (2020) especially when p is large (i.e. p = 50). The

proposed method with multiple kernels performs about the same as that with the best single

kernel (i.e. Kernel 1 f1(·)). The accuracy of estimation improves with the increase in the number

of observations n, which can be seen as a decrease in D(Ω, Ω̂) in Figures 1–4. Among all single

kernel methods, those using kernel f1 perform the best, as those estimations include the 10%

nearest locations. Indeed the Matern correlation is the strongest at the smallest distance. On

the other hand, the performances for the Gaussian and the non-Gaussian random fields are

about the same. See Figures 1 & 2, and Figures 3 & 4.
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The iterative algorithm for implementing the multiple kernel method of Bachoc et al. (2020)

is to solve a nonlinear optimization problem with p2 parameters. When p = 50, it failed to

converge within the 2000 iterations in some of the 1000 simulation replications. The numbers

of failures with n =100, 500, 1000 and 2000 are, respectively, 3, 1, 2 and 1 for the Gaussian

random fields, and 6, 3, 3 and 1 for the non-Gaussian random fields. We only include the results

from the converged replications in the figures.

Figure 1: Boxplots of D(Ω, Ω̂) for the proposed method using the 10 kernels (new) in (24), or

each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc et al. (2020)

using the 10 kernels (original) in a simulation with 1000 replications for the Gaussian random

fields. The number of observations n is 100, 500, 1000 or 2000 (from top to bottom), and the

dimension of random fields is p = 3.

The estimated eigengaps for the proposed method for the Gaussian random fields are pre-

sented in Figures 5 and 6. As n increases, the eigengap also increases. Under low-dimensional

setting p = 3, the estimates based on single kernel f1 entail the largest eigengaps and the small-

est estimation errors D(Ω, Ω̂) (see also Theorem 2). However when p = 50, using the multiple

kernels leads to the largest eigengaps and the smallest estimation errors. The patterns with the

non-Gaussian random fields are similar and not reported here to save space.
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Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.0814 0.2284 0.2707 0.2584 0.2594 0.2617 0.2542 0.2688 0.2619 0.2517 0.0933 0.1298

n=500 0.0248 0.1437 0.2019 0.2051 0.2042 0.1873 0.1830 0.1926 0.2076 0.2071 0.0327 0.0444

n=1000 0.0189 0.1124 0.1992 0.1782 0.1800 0.1746 0.1862 0.1803 0.1823 0.1887 0.0233 0.0324

n=2000 0.0164 0.1194 0.1870 0.1631 0.1686 0.1746 0.1533 0.1761 0.1701 0.1845 0.0204 0.0260

Table 1: Median of D(Ω, Ω̂) from the proposed method using the 10 single kernels, or multiple

kernel(including all 10 ring kernels), and the method of Bachol et el. using the multiple kernel

(multiple original) in a simulation with 1000 replications for the Gaussian random fields. The

number of observations n is 100, 500, 1000 or 2000 , and the dimension of random fields is

p = 3.

Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.0837 0.2377 0.2656 0.2579 0.2676 0.2664 0.2478 0.2503 0.2440 0.2531 0.0915 0.1194

n=500 0.0244 0.1526 0.2028 0.2001 0.2052 0.1998 0.1923 0.1964 0.2028 0.2107 0.0284 0.0424

n=1000 0.0178 0.1096 0.1767 0.1943 0.1868 0.1812 0.1741 0.1627 0.1885 0.1911 0.0215 0.0326

n=2000 0.0165 0.1230 0.1907 0.1765 0.1676 0.1663 0.1652 0.1625 0.1742 0.1818 0.0194 0.0293

Table 2: Median of D(Ω, Ω̂) from the proposed method using the 10 single kernels, or multiple

kernel(including all 10 ring kernels), and the method of Bachol et el. using the multiple kernel

(multiple original) in a simulation with 1000 replications for the non-Gaussian random fields.

The number of observations n is 100, 500, 1000 or 2000 , and the dimension of random fields is

p = 3.

4.2 A real data example

We apply the proposed method to the moss data from the Kola project in the R package StatDa

(See Filzmoser (2015)). The data consists of chemical elements discovered in terrestrial moss

at the 594 locations in northern Europe; see the map in Fig.D.1 of Bachoc et al. (2020). More

information on the data is presented in Reimann et al. (2008). Following the lead of Nordhausen

et al. (2015) and Bachoc et al. (2020), we apply the so-called isometric-log-ratio transformation

to the 31 compositional chemical elements in the data. The transformed data are used in our

analysis with n = 594 and p = 30. We standardize the data first such that the sample mean is

0 and the sample variance is I30.

We apply the proposed estimation method with 10 kernels specified as in (24). The scores

of the first six independent components (IC), corresponding to the six largest eigenvalues of Ŵ

(see table 5), are plotted in Figure 7; showing some interesting spatial patterns. For example,

13



Figure 2: Boxplots of D(Ω, Ω̂) for the proposed method using the 10 kernels (new) in (24), or

each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc et al. (2020) using

the 10 kernels (original) in a simulation with 1000 replications for the non-Gaussian random

fields. The number of observations n is 100, 500, 1000 or 2000 (from top to bottom), and the

dimension of random fields is p = 3.

the 1st IC can be viewed as a contrast between the locations in the west and those in the

east, and the 2nd IC is that between the north and the south. Figure 8 displays the absolute

correlation coefficients between the first twelve ICs and those obtained in Nordhausen et al.

(2015) which was referred as ‘gold standard’ by Bachoc et al. (2020). While the ICs derived

from the two methods differ from each other, the two sets of ICs correlate with each other

significantly. For example the correlation between the 1st IC derived from our new method

and the 2nd IC obtained in Nordhausen et al. (2015) is 0.92. Note that the ‘gold standard’

estimation was obtained using the kernel specified with the relevant subject knowledge. In

contrast our estimation is based on the multiple kernels defined generically in (24).

The six largest eigenvalues of Ŵ are listed in Table 5. The eigengaps ∆i = λ̂i−1 − λ̂i for

i = 7, · · · , 30 are plotted in Figure 9. It is clear that the eigengaps among the 13 largest

eigenvalues are large. Based on Theorem 1, we have

Ω̂−1Ω = Γ̂Ω =

Γ̂Ω,aa Γ̂Ω,ab

Γ̂Ω,ba Γ̂Ω,bb

 , (25)

where Γ̂Ω,aa is a 12×12 matrix satisfying ∥Γ̂Ω,aa−I12∥ = Op(n
−1/2p1/2). Theorem 1 also shows
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Figure 3: Boxplots of D(Ω, Ω̂) for the proposed method using the 10 kernels (new) in (24), or

each of those 10 kernels (Kernel 1, · · · , Kernel 10), and the method of Bachoc et al. (2020)

using the 10 kernels (original) in a simulation with 1000 replications for the Gaussian random

fields. The number of observations n is 100, 500, 1000 or 2000 (from top to bottom), and the

dimension of random fields is p = 50.

that ∥Γ̂Ω,ab∥ = Op(n
−1/2p1/2), ∥Γ̂Ω,ba∥ = Op(n

−1/2p1/2) and ∥Γ̂Ω,bb∥ = 1+Op(n
−1/2p1/2). Thus,

we are reasonably confident that the estimated first 12 ICs are reliable. Moreover, we rewrite

Ω̂⊤Ω̂ as

Û⊤
W Σ̂ÛW = Ω̂⊤Ω̂ =

Ω̂aa Ω̂ab

Ω̂ba Ω̂bb

 , (26)

where Ω̂aa is a 12 × 12 matrix. We gain tr(Ω̂aa) = 6.62 and tr(Ω̂⊤Ω̂) = 8.89 by calculating.

Thus, the major variation of the 30 variables are largely reflected by the 12 largest ICs.

Supplementary material

We provide the proofs of Theorems 1-2 in Supplementary material. We also provide an addi-

tional example for simulations in Supplementary material.
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Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.2337 0.2404 0.2433 0.2438 0.2442 0.2442 0.2418 0.2408 0.2405 0.2394 0.2308 0.2339

n=500 0.2295 0.2348 0.2375 0.2378 0.2373 0.2377 0.2356 0.2356 0.2355 0.2369 0.2153 0.2276

n=1000 0.2247 0.2300 0.2326 0.2343 0.2331 0.2323 0.2313 0.2313 0.2321 0.2346 0.2059 0.2228

n=2000 0.2207 0.2254 0.2285 0.2303 0.2293 0.2288 0.2275 0.2275 0.2286 0.2310 0.1993 0.2184

Table 3: Median of D(Ω, Ω̂) from the proposed method using the 10 single kernels, or multiple

kernel(including all 10 ring kernels), and the method of Bachol et el. using the multiple kernel

(multiple original) in a simulation with 1000 replications for the Gaussian random fields. The

number of observations n is 100, 500, 1000 or 2000 , and the dimension of random fields is

p = 50.

Kernel 1 2 3 4 5 6 7 8 9 10 Multiple(new) Multiple(original)

n=100 0.2332 0.2391 0.2425 0.2429 0.2425 0.2425 0.2417 0.2393 0.2390 0.2383 0.2295 0.2336

n=500 0.2292 0.2331 0.2363 0.2374 0.2369 0.2369 0.2359 0.2348 0.2352 0.2372 0.2143 0.2278

n=1000 0.2250 0.2305 0.2324 0.2338 0.2338 0.2327 0.2317 0.2312 0.2328 0.2341 0.2059 0.2228

n=2000 0.2203 0.2249 0.2281 0.2296 0.2292 0.2281 0.2269 0.2277 0.2288 0.2303 0.1990 0.2172

Table 4: Median of D(Ω, Ω̂) from the proposed method using the 10 single kernels, or multiple

kernel(including all 10 ring kernels), and the method of Bachol et el. using the multiple kernel

(multiple original) in a simulation with 1000 replications for the non-Gaussian random fields.

The number of observations n is 100, 500, 1000 or 2000 , and the dimension of random fields is

p = 50.
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Figure 6: Boxplots of the estimated eigengaps of the proposed method using the 10 kernels

(Multiple kernels) in (24), or each of those 10 kernels (Kernel 1, · · · , Kernel 10) for the Gaussian

random fields. Number of observations n is set at 100, 500, 1000 and 2000, the dimension of

random fields is p = 50.
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Figure 7: The scores of the first six independent components over the 594 observation locations.
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Figure 8: The absolute correlation coefficients between the first 12 independent components

derived from the proposed method (New) and those obtained in Nordhausen et al. (2015)

(Original).

Figure 9: The estimated eigengaps ∆i = λ̂i−1 − λ̂i for i = 7, · · · , 30 on real data example from

proposed method with multiple kernel.
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