
Theoretical Population Biology 155 (2024) 24–50

A
0

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

A mathematical framework for evo-devo dynamics
Mauricio González-Forero
School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, Fife, UK

A R T I C L E I N F O

Keywords:
Evolutionary dynamics
Developmental constraints
Genetic constraints
Life-history theory
Matrix population models
Adaptive dynamics

A B S T R A C T

Natural selection acts on phenotypes constructed over development, which raises the question of how develop-
ment affects evolution. Classic evolutionary theory indicates that development affects evolution by modulating
the genetic covariation upon which selection acts, thus affecting genetic constraints. However, whether genetic
constraints are relative, thus diverting adaptation from the direction of steepest fitness ascent, or absolute, thus
blocking adaptation in certain directions, remains uncertain. This limits understanding of long-term evolution
of developmentally constructed phenotypes. Here we formulate a general, tractable mathematical framework
that integrates age progression, explicit development (i.e., the construction of the phenotype across life subject
to developmental constraints), and evolutionary dynamics, thus describing the evolutionary and developmental
(evo-devo) dynamics. The framework yields simple equations that can be arranged in a layered structure that
we call the evo-devo process, whereby five core elementary components generate all equations including
those mechanistically describing genetic covariation and the evo-devo dynamics. The framework recovers
evolutionary dynamic equations in gradient form and describes the evolution of genetic covariation from
the evolution of genotype, phenotype, environment, and mutational covariation. This shows that genotypic
and phenotypic evolution must be followed simultaneously to yield a dynamically sufficient description of
long-term phenotypic evolution in gradient form, such that evolution described as the climbing of a fitness
landscape occurs in ‘‘geno-phenotype’’ space. Genetic constraints in geno-phenotype space are necessarily
absolute because the phenotype is related to the genotype by development. Thus, the long-term evolutionary
dynamics of developed phenotypes is strongly non-standard: (1) evolutionary equilibria are either absent or
infinite in number and depend on genetic covariation and hence on development; (2) developmental constraints
determine the admissible evolutionary path and hence which evolutionary equilibria are admissible; and (3)
evolutionary outcomes occur at admissible evolutionary equilibria, which do not generally occur at fitness
landscape peaks in geno-phenotype space, but at peaks in the admissible evolutionary path where ‘‘total
genotypic selection’’ vanishes if exogenous plastic response vanishes and mutational variation exists in all
directions of genotype space. Hence, selection and development jointly define the evolutionary outcomes if
absolute mutational constraints and exogenous plastic response are absent, rather than the outcomes being
defined only by selection. Moreover, our framework provides formulas for the sensitivities of a recurrence and
an alternative method to dynamic optimization (i.e., dynamic programming or optimal control) to identify
evolutionary outcomes in models with developmentally dynamic traits. These results show that development
has major evolutionary effects.
1. Introduction

Development may be defined as the process that constructs the
phenotype over life (Barresi and Gilbert, 2020). In particular, devel-
opment includes ‘‘the process by which genotypes are transformed into
phenotypes’’ (Wolf et al., 2001). As natural selection screens pheno-
types produced by development, a fundamental evolutionary problem
concerns how development affects evolution. Interest in this problem
is long-standing (Baldwin, 1896; Waddington, 1959 p. 399, and Gould
and Lewontin, 1979) and has steadily increased in recent decades. It
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has been proposed that developmental constraints (Gould and Lewon-
tin, 1979; Maynard Smith et al., 1985; Brakefield, 2006; Klingenberg,
2010), causal feedbacks over development occurring among genes,
the organism, and environment (Lewontin, 1983; Rice, 2011; Hansen,
2013; Laland et al., 2015), and various development-mediated fac-
tors (Laland et al., 2014, 2015), namely plasticity (Pigliucci, 2001;
West-Eberhard, 2003), niche construction (Odling-Smee et al., 1996,
2003), extra-genetic inheritance (Baldwin, 1896; Cavalli-Sforza and
Feldman, 1981; Boyd and Richerson, 1985; Jablonka and Lamb, 2014;
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Bonduriansky and Day, 2018), and developmental bias (Arthur, 2004;
Uller et al., 2018), may all have important evolutionary roles. Un-
derstanding how development – including these elements acting in-
dividually and together – affects the evolutionary process remains
an outstanding challenge (Baldwin, 1896; Waddington, 1959; Müller,
2007; Pigliucci, 2007; Laland et al., 2014, 2015; Galis et al., 2018).

Classic evolutionary theory indicates that development affects evo-
lution by modulating the genetic covariation upon which selection acts.
This can be seen as follows. In quantitative genetics, an individual’s
𝑖th trait value 𝑥𝑖 is written as 𝑥𝑖 = �̄�𝑖 +

∑

𝑗 𝛼𝑖𝑗 (𝑦𝑗 − �̄�𝑗 ) + 𝑒𝑖, where
he overbar denotes population average, 𝑦𝑗 is the individual’s gene
ontent at the 𝑗th locus, 𝛼𝑖𝑗 is the partial regression coefficient of the
th trait deviation from the average on the deviation from the average
f the 𝑗th locus content, and 𝑒𝑖 is the residual (Fisher, 1918; Crow
nd Kimura, 1970; Falconer and Mackay, 1996; Lynch and Walsh,
998; Walsh and Lynch, 2018). The quantity 𝛼𝑖𝑗 is Fisher’s additive
ffect of allelic substitution (his 𝛼; see Eq. I of Fisher, 1918 and
. 72 of Lynch and Walsh, 1998) and is a description of some of the
inear effects of development, specifically of how genotypic change is
ransformed into phenotypic change. In matrix notation, the vector
f an individual’s trait values is 𝐱 = �̄� + 𝜶(𝐲 − �̄�) + 𝐞, where the
atrix 𝜶 corresponds to what Wagner (1984) calls the developmental
atrix (his 𝐁). The breeding value of the multivariate phenotype 𝐱 is
efined as 𝐚𝐱 ≡ �̄� + 𝜶(𝐲 − �̄�), which does not consider the residual that
ncludes non-linear effects of genes on phenotype. Breeding value thus
epends on development via the developmental matrix 𝜶. The Lande
1979) equation describes the evolutionary change due to selection in
he mean multivariate phenotype �̄� as 𝛥�̄� = 𝐆𝜕 ln �̄� ∕𝜕�̄�, where the
dditive genetic covariance matrix is 𝐆 ≡ cov[𝐚𝐱 , 𝐚𝐱] = 𝜶cov[𝐲, 𝐲]𝜶⊺

e.g., Wagner, 1984), mean absolute fitness is �̄� , and the selection
radient is 𝜕 ln �̄� ∕𝜕�̄�, which points in the direction of steepest increase
n mean fitness (here and throughout we use matrix calculus notation
escribed in Appendix A). An important feature of the Lande equation
s that it is in gradient form, so the equation shows that, within the
ssumptions made, phenotypic evolution by natural selection proceeds
s the climbing of a fitness landscape. Moreover, the Lande equation
hows that additive genetic covariation, described by 𝐆, may divert
volutionary change from the direction of steepest fitness ascent, and
ay prevent evolutionary change in some directions if genetic variation

n those directions is absent (in which case 𝐆 is singular). Since additive
enetic covariation depends on development via the developmental
atrix 𝜶, the Lande equation shows that development affects evolution

y modulating genetic covariation via 𝜶 (Charlesworth et al., 1982;
heverud, 1984; Maynard Smith et al., 1985).

However, the Lande equation might provide a limited description
f how development affects evolution for two reasons. First, the Lande
quation does not explicitly consider phenotype construction, that is,
evelopment, but rather a regression-based description of development
n terms of 𝜶. This limits the possibility of translating a mechanistic
nderstanding of development, for instance, expressed as developmen-
ally dynamic equations, into a mechanistic understanding of genetic
ovariation. Second, the Lande equation describes short-term evolution
y assuming negligible allele frequency change (Walsh and Lynch,
018, pp. 504 and 879). More specifically, the Lande equation describes
he evolution of mean traits �̄� but not of mean gene content �̄�, that is,
t does not describe change in allele frequency but it depends on allele
requency; for instance, since 𝜶 is a matrix of regression coefficients

calculated for the current population, 𝜶 depends on the current state
of the population including allele frequency �̄�. The Lande equation
considers negligible genetic evolution by postulating Fisher’s (1918)
infinitesimal model, whereby each trait is assumed to be controlled by
an arbitrarily large number of loci such that allele frequency change
per locus per generation is negligible (Bulmer, 1971, 1980; Turelli
and Barton, 1994; Barton et al., 2017; Hill, 2017). Yet, over the long-
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term there is genetic evolution that is mapped to phenotypic evolution
via development. By assuming negligible genetic evolution, the Lande
equation might not reveal the effect of this mapping.

There is a lack of equations describing the long-term phenotypic
evolutionary dynamics in gradient form while explicitly considering the
developmental dynamics of phenotype construction and how develop-
ment translates into genetic covariation. Various research lines have
enabled the mathematical modeling of either phenotypic evolutionary
dynamics, age progression, development, or how development trans-
lates into genetic covariation, without including all these elements at
the same time. Both the classic Lande equation (Lande, 1979) and the
classic canonical equation of adaptive dynamics (Dieckmann and Law,
1996) describe the evolutionary dynamics of a multivariate trait in gra-
dient form without an explicit account of development, by considering
no explicit age progression nor phenotype construction. Extensions to
these equations have considered explicit age progression by implement-
ing age structure, which allows individuals of different ages to coexist
and to have age-specific survival and fertility rates (Lande, 1982;
Charlesworth, 1993, 1994; Durinx et al., 2008). An important feature
of age-structured models is that the forces of selection decline with age
due to demography, in particular due to mortality and fewer remaining
reproductive events as age advances (Medawar, 1952; Hamilton, 1966;
Caswell, 1978; Caswell and Shyu, 2017). Although age progression is
often taken as describing development, age structure does not explicitly
describe development defined as phenotype construction.

Another research line in life-history theory has extended age-
structured models to explicitly consider phenotype construction (Gadgil
and Bossert, 1970; Taylor et al., 1974; León, 1976; Schaffer, 1983;
Houston et al., 1988; Roff, 1992; Houston and McNamara, 1999;
Sydsæter et al., 2008). This line has considered models with two types
of age-specific traits: genotypic traits called control variables, which
are under direct genetic control, and developed traits called state
variables, which are constructed according to developmentally dynamic
equations called dynamic constraints. This explicit consideration of
development in an evolutionary context has mostly assumed that the
population is at an evolutionary equilibrium. Thus, this approach
identifies evolutionarily stable (or uninvadable) controls and associated
states using techniques from dynamic optimization such as optimal con-
trol and dynamic programming (Gadgil and Bossert, 1970; Taylor et al.,
1974; León, 1976; Schaffer, 1983; Houston et al., 1988; Roff, 1992;
Houston and McNamara, 1999). While the assumption of evolutionary
equilibrium yields great insight, it does not address the evolutionary
dynamics which would provide a richer understanding. Moreover, the
relationship between developmental dynamics and genetic covariation
is not made evident by this approach.

Yet another research line has made it possible to mathematically
model the evolutionary dynamics of developmentally constructed traits,
but this has remained prohibitively challenging. A first step in this re-
search line has been to consider function-valued or infinite-dimensional
traits, which are traits indexed by a continuous variable (e.g., age)
rather than a discrete variable as in the classic Lande equation. Thus,
the evolutionary dynamics of univariate function-valued traits (e.g., bod
size across continuous age) has been described in gradient form by the
Lande equation for function-valued traits (Kirkpatrick and Heckman,
1989) and the canonical equation for function-valued traits (Dieckmann
et al., 2006). Although function-valued traits may depend on age, they
are not constructed according to developmentally dynamic equations,
so the consideration of the evolutionary dynamics of function-valued
traits alone does not model the evolutionary dynamics of develop-
mentally constructed traits. To our knowledge, Parvinen et al. (2013)
were the first to mathematically model the evolutionary dynamics of
developmentally constructed traits (the first to do it analytically; there
have also been numerical models, for instance, integrating mathemat-
ical modeling of the developmental dynamics and individual-based
modeling of the evolutionary dynamics; Salazar-Ciudad and Marín-
Riera, 2013 and Watson et al., 2013). Parvinen et al. (2013) did so by

considering the evolutionary dynamics of a univariate function-valued
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trait (control variable) that modulates the developmental construction
of a multivariate developed trait (state variables; they refer to these
as process-mediated models). However, the analysis of these models
poses substantial technical challenges, by requiring calculation of func-
tional derivatives and the solution of (partial) differential equations at
evolutionary equilibrium with terminal age conditions in addition to
the equations describing the developmental dynamics with initial age
conditions (a two-point boundary value problem) (Dieckmann et al.,
2006; Parvinen et al., 2013; Metz et al., 2016; Avila et al., 2021).
Moreover, these models have yielded evolutionary dynamic equations
in gradient form for genotypic traits (control variables), but not for
developed traits (state variables) (Dieckmann et al., 2006), so they have
left unanswered the question of how the evolution of traits constructed
via developmental dynamics proceeds in the fitness landscape. Addi-
tionally, these models have not provided a link between developmental
dynamics and genetic covariation (Metz, 2011; Dieckmann et al., 2006
discuss a link between constraints and genetic covariation in controls,
not states; see Supplementary Information (SI) section S1.1 for further
details).

Finally, a separate research line in quantitative genetics has an-
alyzed how implicit development translates into genetic covariation.
This line has considered models where a set of traits are functions of un-
derlying traits such as gene content or environmental variables (Wag-
ner, 1984, 1989; Hansen and Wagner, 2001; Rice, 2002; Martin, 2014;
Morrissey, 2014, 2015). This dependence of traits on other traits is
used by this research line to describe development and the genotype–
phenotype map. However, this research line considers short-term evo-
lution, no explicit age progression, and no explicit development (i.e., no
developmentally dynamic phenotype construction). Although this line
has provided an understanding of how implicit development trans-
lates into genetic covariation, it might miss evolutionary effects of the
mapping of genotype to phenotype provided by development because
of its assumption of negligible genetic evolution. Furthermore, this
line has not provided equations describing the long-term evolution in
gradient form of traits constructed according to explicit developmental
dynamics.

Here we formulate a tractable mathematical framework to model
the evolutionary dynamics of developmentally constructed traits. The
framework provides closed-form equations to model the evolutionary
dynamics of genotypic traits and the concomitant developmental dy-
namics of developed traits subject to developmental constraints. More-
over, the framework provides equations describing the long-term evo-
lutionary dynamics in gradient form for developmentally constructed
traits and equations that translate explicit development into genetic
covariation. The framework is based on adaptive dynamics assump-
tions (Dieckmann and Law, 1996; Metz et al., 1996; Champagnat, 2006;
Durinx et al., 2008). We consider general developmental dynamics
that allow the phenotype to be ‘‘predisposed’’ to develop in certain
ways, thus allowing for developmental bias (Arthur, 2004; Uller et al.,
2018). We allow development to depend on the environment, which
allows for a mechanistic description of plasticity (Pigliucci, 2001; West-
Eberhard, 2003). We also allow development to depend on social
interactions, which allows for a mechanistic description of extra-genetic
inheritance (Boyd and Richerson, 1985; Jablonka and Lamb, 2014;
Bonduriansky and Day, 2018) and indirect genetic effects (Moore et al.,
1997). Social development entails that a mutant’s phenotype may
change as the mutant genotype spreads, which complicates evolution-
ary invasion analysis. In turn, we allow the environment faced by
each individual to depend on the traits of the individual and of social
partners, thus allowing for individual and social niche construction
although we do not consider ecological inheritance (Odling-Smee et al.,
1996, 2003). We also let the environment depend on processes that
are exogenous to the evolving population, such as eutrophication or
climate change caused by members of other species, thus allowing for
exogenous environmental change. To facilitate analysis, we let popu-
26

lation dynamics occur over a short time scale, whereas environmental
and evolutionary dynamics occur over a long time scale. Crucially, we
measure age in discrete time, which simplifies the mathematics yielding
closed-form formulas for otherwise implicitly defined quantities. Our
methods use concepts from optimal control (Sydsæter et al., 2008) and
integrate tools from adaptive dynamics (Dieckmann and Law, 1996)
and matrix population models (Caswell, 2001; Otto and Day, 2007). In
particular, we conceptualize the genotype as ‘‘control’’ variables and
the phenotype as ‘‘state’’ variables whose developmental dynamics are
modulated by controls. While we use concepts from optimal control, we
do not use optimal control itself. Instead, we derive a method to model
the evolutionary dynamics of controls, which yields an alternative
method to optimal control that can be used to obtain optimal controls in
a broad class of evolutionary models with dynamic constraints. Our use
of optimal control concepts is thus useful to see how our results relate
to optimal control, which has wide-ranging theory and applications.

We obtain three sets of main results. First, we derive several closed-
form formulas for the total selection gradient of genotypic traits �̄�
(i.e., of control variables) that affect the development of the pheno-
type �̄� (i.e., of state variables), formulas that can be easily computed
with elementary operations. Second, we derive equations in gradient
form describing the evolutionary dynamics of developed traits �̄� and
of the niche-constructed environment. These equations depend on a
mechanistic counterpart of the developmental matrix 𝜶, for which we
obtain developmentally explicit and evolutionarily dynamic formulas
for a broad class of models. Such formulas are in terms of closed-form
formulas that we derive for the sensitivity of a system of recurrence
equations, which are of use beyond evolutionary or biological appli-
cations. The obtained equation describing the evolutionary dynamics
of the developed traits �̄� is generally dynamically insufficient because
it depends on the genotypic traits �̄�, whose evolutionary dynamics
are not described by the equation, a problem similarly present in
the classic Lande equation. Third, we obtain synthetic equations in
gradient form simultaneously describing the evolutionary dynamics of
genotypic, developed, and environmental traits. These equations are
in gradient form and are dynamically sufficient in that they include
as many evolutionarily dynamic equations as evolutionarily dynamic
variables, which enables one to describe the long-term evolution of de-
veloped multivariate phenotypes as the climbing of a fitness landscape.
Such equations describe the evolutionary dynamics of the constraining
matrix analogous to 𝐆 as an emergent property, where genotypic traits
�̄� play an analogous role to that of allele frequency under quantitative
genetics assumptions while linkage disequilibrium is not an issue as we
assume clonal reproduction. The obtained dynamically sufficient gra-
dient system depends on a constraining matrix that is always singular,
which is mathematically trivial, but biologically crucial. The reason is
that this singularity entails that genetic variation is necessarily absent
in certain directions such that adaptive evolution at best converges to
outcomes defined by both selection and development rather than by
selection alone. Consequently, we find that development plays a major
evolutionary role.

2. Problem statement

We begin by describing the mathematical problem we address. We
consider a finite age-structured population with deterministic density-
dependent population dynamics with age measured in discrete time.
Each individual is described by three types of traits that we call
genotypic, phenotypic (or developed), and environmental, all of which
can vary with age and can evolve. We let all traits take continuous
values, which allows us to take derivatives. Genotypic traits are de-
fined by being directly specified by the genotype. Phenotypic traits
are defined by being constructed over life subject to a developmental
constraint: for instance, a phenotypic trait may be body size subject
to the influence of genes, developmental history, environment, social
interactions, and developmental processes constructing the body. En-

vironmental traits are defined as describing the local environment of
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the individual subject to an environmental constraint: for instance, an
environmental trait may be ambient temperature, which the individual
may adjust behaviorally such as by roosting in the shade. We assume
that reproduction transmits genotypic traits clonally, but developed
and environmental traits need not be transmitted clonally due to social
interactions. Given clonal reproduction of genotypic traits, we do not
need to specify the genetic architecture (e.g., ploidy, number of loci, or
linkage) and it may depend on the particular model. We assume that
the genotypic traits are developmentally independent, whereby genotypic
traits are entirely specified by the individual’s genotype and do not
depend on other traits expressed over development: in particular, this
means that a given genotypic trait at a given age can only be modified
by mutation, but does not depend on other genotypic traits, the pheno-
type, or the environment. Developmental independence corresponds to
the notion of ‘‘open-loop’’ control of optimal control theory (Sydsæter
et al., 2008). Genotypic traits may still be mutationally correlated,
whereby genotypic traits may tend to mutate together or separately.
We assume that environmental traits are mutually independent, which
facilitates derivations. We obtain dynamically sufficient equations in
gradient form for the evolution of the phenotype by aggregating the
various types of traits. We give names to such aggregates for ease of
reference. We call the aggregate of the genotype and phenotype the
geno-phenotype. We call the aggregate of the genotype, phenotype, and
environment the geno-envo-phenotype.

The above terminology departs from standard terminology in adap-
tive dynamics as follows. In adaptive dynamics, our genotypic traits
are referred to as the phenotype and our phenotypic traits as state
variables. We depart from this terminology to follow the biologically
common notion that the phenotype is constructed over development.
In turn, adaptive dynamics terminology defines the environment as any
quantity outside the individual, and thus refers to the global environ-
ment. In contrast, by environment we refer to the local environment of
the individual. This allows us to model niche construction as the local
environment of a mutant individual may differ from that of a resident.

We use the following notation (Table 1). Each individual can live
from age 1 to age 𝑁a ∈ {2, 3,…}. Each individual has a number 𝑁g of
enotypic traits at each age. A mutant’s genotypic trait 𝑖 ∈ {1,… , 𝑁g}

at age 𝑎 ∈ {1,… , 𝑁a} is 𝑦𝑖𝑎 ∈ R. For instance, 𝑦𝑖𝑎 may be the
value of a life-history trait 𝑖 at age 𝑎 assumed to be directly under
genetic control (i.e., a control variable in life-history models; Gadgil
and Bossert, 1970; Taylor et al., 1974; León, 1976; Schaffer, 1983).
Given our assumption of developmental independence of genotypic
traits, the genotypic trait value 𝑦𝑖𝑎 for all 𝑖 ∈ {1,… , 𝑁g} and all
𝑎 ∈ {1,… , 𝑁a} of a given individual is exclusively controlled by her
genotype but mutations can tend to change the value of 𝑦𝑖𝑎 and 𝑦𝑘𝑗
simultaneously for 𝑘 ≠ 𝑖 and 𝑗 ≠ 𝑎. Additionally, each individual
has a number 𝑁p of developed traits, that is, of phenotypes at each
age. A mutant’s phenotype 𝑖 ∈ {1,… , 𝑁p} at age 𝑎 ∈ {1,… , 𝑁a} is
𝑥𝑖𝑎 ∈ R, which is not directly under genetic control but constructed over
development (e.g., a state variable in life-history models). Moreover,
each individual has a number 𝑁e of environmental traits that describe
her local environment at each age. A mutant’s environmental trait
𝑖 ∈ {1,… , 𝑁e} at age 𝑎 ∈ {1,… , 𝑁a} is 𝜖𝑖𝑎 ∈ R. We do not consider the
developmental or evolutionary change of the number of traits (i.e., of
𝑁g, 𝑁p, or 𝑁e), but our framework allows for the modeling of the
developmental or evolutionary origin of novel traits (e.g., the origin
of a sixth digit where there was five previously in development or
evolution; Chan et al., 1995; Litingtung et al., 2002; Müller, 2010) by
implementing a suitable codification (e.g., letting 𝑥𝑖𝑎 mean sixth-digit
length, being zero in a previous age or evolutionary time).

We use the following notation for collections of these quantities. The
array of a mutant’s genotypic traits (or simply, the mutant’s genotype)
at age 𝑎 is denoted by the column vector 𝐲𝑎 = (𝑦1𝑎;… ; 𝑦𝑁g𝑎) ∈ R𝑁g×1,
where the semicolon indicates a line break, that is, 𝐲𝑎 = (𝑦1𝑎,… , 𝑦𝑁g𝑎)

⊺;
we write R𝑁g×1 rather than simply R𝑁g as it will be important to clearly
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distinguish column from row vectors. A mutant’s phenotype at age
Table 1
Notation summary.

Symbol Meaning

𝐱 Phenotype (developed traits)
𝐲 Genotype (genotypic traits)
𝐳 Geno-phenotype (genotype and phenotype)
𝝐 Environment
𝐦 Geno-envo-phenotype (genotype, phenotype, and environment)
𝑁a Number of ages
𝑁p Number of developed traits
𝑁g Number of genotypic traits
𝑁e Number of environmental traits
𝐠 Developmental map
𝐡 Environmental map
𝐧 Population density
𝑓 Fertility
𝑝 Survival probability
𝓁 Survivorship
𝑤 Fitness
𝜆 Invasion fitness
𝐮 Stable age distribution
𝐯 Reproductive value
𝜙 Force of selection on fertility
𝜋 Force of selection on survival
𝑡 Ecological time
𝜏 Evolutionary time
𝜃 Socio-devo time
𝑇 Generation time
�̌� Resident phenotype in the context of mutant
�̂� Unperturbed geno-phenotype
𝜻 , 𝝃 Arbitrary vectors
𝐛𝜻 Mechanistic breeding value of 𝜻
𝐛s𝜻 Stabilized mechanistic breeding value of 𝜻

𝐇𝜻 Mechanistic additive genetic covariance matrix of 𝜻
𝐋𝜻 Mechanistic additive socio-genetic cross-covariance matrix of 𝜻
𝜕𝜻⊺

𝜕𝝃
Direct effects of 𝝃 on 𝜻

𝛿𝜻⊺

𝛿𝝃
Total immediate effects of 𝝃 on 𝜻

d𝜻⊺

d𝝃
Total effects of 𝝃 on 𝜻

s𝜻⊺

s𝝃
Stabilized effects of 𝝃 on 𝜻

𝑎 is denoted by the column vector 𝐱𝑎 = (𝑥1𝑎;… ; 𝑥𝑁p𝑎) ∈ R𝑁p×1. A
mutant’s environment at age 𝑎 is denoted by the column vector 𝝐𝑎 =
(𝜖1𝑎;… ; 𝜖𝑁e𝑎) ∈ R𝑁e×1. A mutant’s genotype across all genotypic traits
and all ages is denoted by the block column vector 𝐲 = (𝐲1;… ; 𝐲𝑁a

) ∈
R𝑁a𝑁g×1. A mutant’s phenotype across all developed traits and all
ages is denoted by the block column vector 𝐱 = (𝐱1;… ; 𝐱𝑁a

) ∈
R𝑁a𝑁p×1. A mutant’s environment across all environmental traits and
all ages is denoted by the block column vector 𝝐 = (𝝐1;… ; 𝝐𝑁a

) ∈
R𝑁a𝑁e×1. To simultaneously refer to the genotype and phenotype, we
denote the geno-phenotype of the mutant individual at age 𝑎 as 𝐳𝑎 =
(𝐱𝑎; 𝐲𝑎) ∈ R(𝑁p+𝑁g)×1, and the geno-phenotype of a mutant across all
ages as 𝐳 = (𝐱; 𝐲) ∈ R𝑁a(𝑁p+𝑁g)×1. Moreover, to simultaneously refer
to the genotype, phenotype, and environment, we denote the geno-
envo-phenotype of a mutant individual at age 𝑎 as 𝐦𝑎 = (𝐳𝑎; 𝝐𝑎) ∈
R(𝑁p+𝑁g+𝑁e)×1, and the geno-envo-phenotype of the mutant across all
ages as 𝐦 = (𝐳; 𝝐) ∈ R𝑁a(𝑁p+𝑁g+𝑁e)×1. We denote resident values
analogously with an overbar (e.g., �̄� is the resident geno-phenotype).

The developmental process that constructs the phenotype is as
follows, with causal dependencies described in Fig. 1. We assume that
an individual’s multivariate phenotype at a given age is a function of
the genotypic, phenotypic, and environmental traits that the individual
had at the immediately previous age as well as of the social interactions
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experienced at that age. Thus, we assume that a mutant’s multivariate
phenotype at age 𝑎 + 1 is given by the developmental constraint

𝐱𝑎+1 = 𝐠𝑎(𝐦𝑎, �̄�) (1)

for all 𝑎 ∈ {1,… , 𝑁a − 1} with initial condition 𝐱1 = �̄�1. The function

𝐠𝑎(𝐦𝑎, �̄�) = (𝑔1𝑎(𝐦𝑎, �̄�);… ; 𝑔𝑁p𝑎(𝐦𝑎, �̄�))

is the developmental map at age 𝑎, which we assume is a continuously
differentiable function of the individual’s geno-envo-phenotype at that
age and of the geno-phenotype of the individual’s social partners who
can be of any age; thus, an individual’s development directly depends
on the individual’s local environment but not directly on the local
environment of social partners. For simplicity, we assume that the
phenotype 𝐱1 = �̄�1 at the initial age is constant and does not evolve.
This assumption corresponds to the common assumption in life-history
models that state variables at the initial age are given (Gadgil and
Bossert, 1970; Taylor et al., 1974; León, 1976; Schaffer, 1983; Sydsæter
et al., 2008). The term developmental function can be traced back
to Gimelfarb (1982) through Wagner (1984).

The developmental constraint (1) allows for a wide range of models.
Eq. (1) is a mathematical, deterministic description of Waddington’s
(1957) ‘‘epigenetic landscape’’. Eq. (1) is a constraint in that the
phenotype 𝐱𝑎+1 cannot take any value but only those that satisfy the
equality (e.g., an individual’s body size today cannot take any value
but depends on her body size, gene expression, and environment since
yesterday). The developmental map in Eq. (1) is an extension of the
notions of genotype–phenotype map (often a function from genotype
to phenotype, without explicit developmental dynamics) and reaction
norm (often a function from environment to phenotype, also without
explicit developmental dynamics), as well as of early mathematical
descriptions of development in an evolutionary context (Alberch et al.,
1979). The developmental constraint (1) can describe gene regulatory
networks (Alon, 2020), for instance, letting 𝑥𝑖𝑎 be the expression level
of gene 𝑖 at age 𝑎; learning in deep neural networks (Russell and
Norvig, 2021), for instance, letting 𝝐𝑎 describe the network’s input at
age 𝑎 and 𝐱𝑎 describe the network’s weights at that age; and reaction–
diffusion models of morphology (Murray, 2003), for instance, letting 𝑥𝑖𝑎
be a morphogen’s level at the 𝑖th spatial location at age 𝑎 (SI section
S1.2). The developmental map in Eq. (1) may be non-linear and can
change over development (e.g., from 𝑔𝑖𝑎 = sin 𝑥𝑖𝑎 to 𝑔𝑖𝑗 = 𝑥𝛽𝑖𝑗 for
𝑎 < 𝑗 and some parameter 𝛽, for instance, due to metamorphosis)
and over evolution (e.g., from a sine to a power function if 𝑔𝑖𝑎 =
[𝑦𝑗𝑎 sin 𝑥𝑖𝑎 + (1 − 𝑦𝑗𝑎)𝑥

𝛽
𝑖𝑎] as genotypic trait 𝑦𝑗𝑎 evolves from 1 to 0).

The dependence of the mutant phenotype on the phenotype of social
partners in (1) allows one to implement Jablonka and Lamb’s (2014)
notion that extra-genetic inheritance transmits the phenotype rather
than the genotype (see their p. 108), such that the mutant phenotype
can be a possibly altered copy of social partners’ phenotype. Simpler
forms of the developmental constraint (1) are standard in life-history
models (Gadgil and Bossert, 1970; Taylor et al., 1974; León, 1976;
Schaffer, 1983; Sydsæter et al., 2008) and physiologically structured
models of population dynamics (de Roos, 1997, Eq. 7).

We describe the local environment as follows. We assume that
an individual’s local environment at a given age is a function of the
genotypic traits, phenotype, and social interactions of the individual
at that age, and of processes that are not caused by the population
considered. Thus, we assume that a mutant’s environment at age 𝑎 is
given by the environmental constraint

𝝐𝑎 = 𝐡𝑎(𝐳𝑎, �̄�, 𝜏) (2)

for all 𝑎 ∈ {1,… , 𝑁a}. The function

𝐡𝑎(𝐳𝑎, �̄�, 𝜏) = (ℎ1𝑎(𝐳𝑎, �̄�, 𝜏);… ;ℎ𝑁e𝑎(𝐳𝑎, �̄�, 𝜏))

is the environmental map at age 𝑎, which can change over development
28

and evolution. We assume that the environmental map is a continuously
Fig. 1. Causal diagram among the framework’s components. Variables have age-specific
values that are not shown for clarity. The phenotype 𝐱 is constructed by a develop-
mental process. Each arrow indicates the direct effect of a variable on another one. A
mutant’s genotypic traits may directly affect the phenotype (with the slope quantifying
developmental bias from genotype), environment (niche construction by genotype), and
fitness (direct selection on genotype). A mutant’s phenotype at a given age may directly
affect her phenotype at the immediately subsequent age (quantifying developmental
bias from the phenotype), thus the direct feedback loop from phenotype to itself. A
mutant’s phenotype may also directly affect her environment (niche construction by the
phenotype) and fitness (direct selection on the phenotype). A mutant’s environment
may directly affect the phenotype (plasticity) and fitness (environmental sensitivity
of selection). The social partners’ genotype may directly affect their own phenotype
(quantifying developmental bias from genotype), the mutant’s phenotype (indirect
genetic effects from genotypes), and the mutant’s fitness (social selection on genotype).
The social partners’ phenotype at a given age may directly affect their own phenotype
at the immediately subsequent age (quantifying developmental bias from phenotypes),
thus the direct feedback loop. The social partners’ phenotype at a given age may also
directly affect the mutant’s phenotype (quantifying indirect genetic effects from the
phenotype), the mutant’s environment (social niche construction), and the mutant’s
fitness (social selection on the phenotype). The environment may also be directly
influenced by exogenous processes. We assume that the genotype is developmentally
independent (i.e., controls 𝐲 are open-loop), which means that there is no arrow towards
the genotype.

differentiable function of the individual’s geno-phenotype at that age
(e.g., the individual’s behavior at a given age may expose it to a
particular environment at that age), the geno-phenotype of the individ-
ual’s social partners who can be of any age (e.g., through social niche
construction), and evolutionary time 𝜏 due to slow exogenous environ-
mental change (so the exogenous process changing the environment in
Fig. 1 acts as forcing, as 𝜏 appears explicitly in Eq. (2)). We assume slow
exogenous environmental change to enable the resident population to
reach carrying capacity to be able to use relatively simple techniques
of evolutionary invasion analysis to derive selection gradients. The
environmental constraint (2) may also be non-linear and can change
over development (i.e., over 𝑎) and over evolution (as the genotype or
phenotype evolve or exogenously as evolutionary time advances).

The environmental constraint (2) is a minimalist description of the
environment of a specific kind (akin to ‘‘feedback functions’’ used in
physiologically structured models to describe the influence of indi-
viduals on the environment; de Roos, 1997). We use the minimalist
environmental constraint (2) as a first approximation to shorten deriva-
tions; our derivations illustrate how one could obtain equations with
more complex developmental and environmental constraints. With the
minimalist environmental constraint (2), the environmental traits are
mutually independent in that changing one environmental trait at one
age does not directly change any other environmental trait at any age
(i.e., 𝜕𝜖𝑘𝑗∕𝜕𝜖𝑖𝑎 = 0 if 𝑖 ≠ 𝑘 or 𝑎 ≠ 𝑗). We say that development is social
f d𝐱⊺∕d�̄�|𝐲=�̄� ≠ 𝟎.

Our aim is to obtain closed-form equations describing the evolution-
ry dynamics of the resident phenotype �̄� subject to the developmental
onstraint (1) and the environmental constraint (2). The evolutionary
ynamics of the phenotype �̄� emerge as an outgrowth of the evolution-
ry dynamics of the genotype �̄� and environment �̄�. In the SI section
2.5, we show that under our assumptions the evolutionary dynamics of
he resident genotype �̄� are given by the canonical equation of adaptive
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dynamics (Dieckmann and Law, 1996):
𝛥�̄�
𝛥𝜏

≈ 𝜄𝐇𝐲
d𝜆
d𝐲

|

|

|

|𝐲=�̄�
, (3)

where 𝜆 = 𝜆(𝐦, �̄�) is invasion fitness, 𝜄 = 1
2𝜇(�̄�)�̄�∗(�̄�) is a non-negative

scalar measuring mutational input in terms of the mutation rate 𝜇(�̄�)
and the carrying capacity �̄�∗(�̄�), and 𝐇𝐲 = cov[𝐲, 𝐲] is the mutational
covariance matrix (of genotypic traits). The selection gradient in Eq. (3)
involves total derivatives so we call it the total selection gradient of the
genotype, which measures the effects of genotypic traits 𝐲 on invasion
fitness 𝜆 across all the paths in Fig. 1 (𝜆 has the same derivatives
with respect to mutant trait values as fitness 𝑤, defined below). Total
selection gradients differ from Lande’s selection gradient in that the
latter is defined in terms of partial derivatives and so measures only the
direct effects of traits on fitness (e.g., 𝜕𝑤∕𝜕𝐲|𝐲=�̄� measures the effect of 𝐲
on 𝑤 only across the path directly connecting the two in Fig. 1). We will
be concerned with describing the evolutionary dynamics to first-order
of approximation, so we will treat the approximation in Eq. (3) as an
equality although we keep the approximation symbols throughout to
distinguish what is and what is not an approximation.

The arrangement above describes the evolutionary and developmen-
tal (evo-devo) dynamics: the evolutionary dynamics of the resident
genotype are given by the canonical Eq. (3), while the concomitant
developmental dynamics of the phenotype are given by the develop-
mental (1) and environmental (2) constraints evaluated at resident
trait values. To complete the description of the evo-devo dynamics,
we obtain closed-form expressions for the total selection gradient of
the genotype. Moreover, to determine whether the evolution of the
resident developed phenotype �̄� can be understood as the climbing of
a fitness landscape, we derive equations in gradient form describing
the evolutionary dynamics of the resident phenotype �̄�, environment
�̄�, geno-phenotype �̄�, and geno-envo-phenotype �̄�. Before presenting
such results, we first give an overview of the model underpinning
the arrangement above, which describes a complication introduced by
social development, how we handle it, and a fitness function that has
the same gradient as invasion fitness in age-structured populations. We
then use these descriptions to write our results.

3. Model overview

Here we give an overview of the model. We describe it formally in
the SI section S2.

3.1. Set up

We base our framework on standard assumptions of adaptive dy-
namics, particularly following Dieckmann and Law (1996), but social
development introduces a non-standard complication. We separate time
scales, so developmental and population dynamics occur over a short
discrete ecological time scale 𝑡 and evolutionary dynamics occur over
a long discrete evolutionary time scale 𝜏. Although the population is
finite, in a departure from Dieckmann and Law (1996), we let the pop-
ulation dynamics be deterministic rather than stochastic for simplicity,
so there is no genetic drift. Thus, the only source of stochasticity in our
framework is mutation. We assume that mutation is rare, weak, and
unbiased. Weak mutation means that the variance of mutant genotypic
traits around resident genotypic traits is marginally small (i.e., 0 <
E[‖𝐲 − �̄�‖2] = tr(cov[𝐲, 𝐲]) =

∑𝑁g
𝑖=1

∑𝑁a
𝑎=1 E[(𝑦𝑖𝑎 − �̄�𝑖𝑎)2] ≪ 1). Weak mu-

tation (Gillespie, 1983; Walsh and Lynch, 2018, p. 1003) is also called
𝛿-weak selection (Wild and Traulsen, 2007). Unbiased mutation means
that mutant genotypic traits are symmetrically distributed around the
resident genotypic traits (i.e., the mutational distribution 𝑀(𝐲 − �̄�) is
even). Unbiased mutation in genotypic traits allows for bias in the
distribution of mutant phenotypes (i.e., the distribution of 𝐱 − �̄� is
not necessarily even). Thus, we do not make the isotropy assumption
of Fisher’s (1930) geometric model (Orr, 2005), although isotropy may
29

c

Fig. 2. A difficulty introduced by social development. (A) Illustration of socio-devo
dynamics converging to a quasi socio-devo stable equilibrium (solid, black line). The
dashed line is a socio-devo initial resident phenotype �̄�𝑎(𝜃) = 0.1 for all 𝑎 ∈ {1,… , 4},
̄1 = 0.1, and socio-devo time 𝜃 = 1. The gray line immediately above is a phenotype
eveloped in the context of such resident, where �̄�𝑎+1(2) = 𝑔𝑎(�̄�𝑎 , �̄�𝑎+1) = �̄�𝑎(2)+�̄�𝑎{�̄�𝑎(2)+
[�̄�𝑎+1(1)]2}, with �̄�𝑎 = 0.5 for all 𝑎 ∈ {1,… , 4} and 𝑞 = 0.5. Setting this phenotype �̄�(2)
s resident and iterating up to 𝜃 = 10 yields the remaining gray lines, with iteration 10
iven by the black line, where �̄�𝑎+1(10) = �̄�𝑎(10)+�̄�𝑎{�̄�𝑎(10)+𝑞[�̄�𝑎+1(9)]2} and �̄�(10) ≈ �̄�(9)
s approximately a socio-devo stable equilibrium, which breeds true. (B) Introducing in
he context of such resident �̄�(10) (dashed line) a mutant genotype 𝐲 yields the mutant
henotype 𝐱 (gray line), where 𝑥𝑎+1 = 𝑥𝑎 + 𝑦𝑎{𝑥𝑎 + 𝑞[�̄�𝑎+1(10)]2} and 𝑦𝑎 = 0.6 for all
∈ {1,… , 4}. Such mutant does not breed true: a mutant 𝐱′ (solid black line) with the

ame genotype developed in the context of mutant 𝐱 has a different phenotype, where
′
𝑎+1 = 𝑥′𝑎 + 𝑦𝑎{𝑥′𝑎 + 𝑞[𝑥𝑎+1]2}. One can use socio-devo dynamics (A) to find for such
utant genotype 𝐲 a phenotype that breeds true under social development.

rise for mechanistic breeding values (defined below) with large 𝑁a𝑁g
nd additional assumptions (e.g., high pleiotropy and high develop-
ental integration) from the central limit theorem (Martin, 2014). We

ssume that a monomorphic resident population having geno-envo-
henotype �̄� undergoes density-dependent population dynamics that
ring it to carrying capacity. At this carrying capacity, rare mutant
ndividuals arise which have a marginally different genotype 𝐲 and
hat develop their phenotype in the context of the resident. If the
utant genotype increases in frequency, it increasingly faces mutant

ather than resident individuals. Thus, with social development, the
utant phenotype may change as the mutant genotype spreads, which

omplicates invasion analysis.

.2. A complication introduced by social development

With social development, the phenotype an individual develops
epends on the traits of her social partners. This introduces a com-
lication to standard evolutionary invasion analysis, for two reasons.
irst, the phenotype of a mutant genotype may change as the mutant
enotype spreads and is more exposed to the mutant’s traits via social
nteractions, making the mutant phenotype frequency dependent. Thus,
he phenotype developed by a rare mutant genotype in the context of a
esident phenotype may be different from the phenotype developed by
he same mutant genotype in the context of itself once the mutant geno-
ype has approached fixation. Second, because of social development, a
ecently fixed mutant may not breed true, that is, her descendants may
ave a different phenotype from her own despite clonal reproduction
f the genotype and despite the mutant genotype being fixed (Fig. 2;
ee also Kobayashi et al., 2015, Eq. 14 in their Appendix). Yet, to
pply standard invasion analysis techniques, the phenotype of the fixed
enotype must breed true.

Thus, to carry out invasion analysis, we proceed as follows. Ideally,
ne should follow explicitly the change in mutant phenotype as the mu-
ant genotype increases in frequency and achieves fixation, and up to
point where the fixed mutant phenotype breeds true. Yet, to simplify

he analysis, we separate the dynamics of phenotype convergence and
he population dynamics. We thus introduce an additional phase to the
tandard separation of time scales in adaptive dynamics so that pheno-
ypic convergence occurs first and then resident population dynamics
ollow. Such additional phase does not describe a biological process but
s a mathematical technique to facilitate mathematical treatment (akin
o using best-response dynamics to find Nash equilibria). However,
his phase might still be biologically justified under somewhat broad

onditions. In particular, Aoki et al. (2012, their Appendix A) show
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Fig. 3. Phases of an evolutionary time step. Evolutionary time is 𝜏. SDS means socio-
devo stable. The socio-devo dynamics phase is added to the standard separation of time
scales in adaptive dynamics, which only consider the other two phases. The socio-devo
dynamics phase is only needed if development is social (i.e., if the developmental map
𝐠𝑎 depends directly or indirectly on social partners’ geno-phenotype for some age 𝑎).

hat such additional phase is justified in their model of social learning
volution if mutants are rare and social learning dynamics happen
aster than allele frequency change; they also show that this additional
hase is justified for their particular model if selection is 𝛿-weak. As
first approximation, here we do not formally justify the separation

f phenotype convergence and resident population dynamics for our
odel and simply assume it for simplicity.

.3. Phases of an evolutionary time step

To handle the above complication introduced by social develop-
ent, we partition a unit of evolutionary time into three phases: socio-
evelopmental (socio-devo) dynamics, resident population dynamics,
nd resident–mutant population dynamics (Fig. 3).

At the start of the socio-devo dynamics phase of a given evolu-
ionary time 𝜏, the population consists of individuals all having the
ame resident genotype, phenotype, and environment. A new individual
rises which has identical genotype as the resident, but develops a
henotype that may be different from that of the original resident due
o social development. This developed phenotype, its genotype, and
ts environment are set as the new resident. This process is repeated
ntil convergence of the geno-envo-phenotype to what we term a

‘socio-devo stable’’ (SDS) resident equilibrium or until divergence.
hese socio-devo dynamics are formally described by Eq. S2.1.1 and

llustrated in Fig. 2A. If development is not social, the resident is
rivially SDS so the socio-devo dynamics phase is unnecessary. If an
DS resident is achieved, the population moves to the next phase; if an
DS resident is not achieved, the analysis stops. We thus study only the
volutionary dynamics of SDS resident geno-envo-phenotypes. More
pecifically, we say a geno-envo-phenotype �̄� = (�̄�; �̄�; �̄�) is a socio-
evo equilibrium if and only if �̄� is produced by development when
he individual has such genotype �̄� and everyone else in the population
as that same genotype, phenotype, and environment (Eq. S2). A socio-
evo equilibrium �̄� = (�̄�; �̄�; �̄�) is locally stable (i.e., SDS) if and only
f a marginally small deviation in the initial phenotype �̄�(1) from the
ocio-devo equilibrium keeping the same genotype leads the socio-devo
ynamics (Eq. S1) to the same equilibrium. A socio-devo equilibrium
̄ is locally stable if all the eigenvalues of the matrix
d𝐱
d�̄�⊺

|

|

|

|𝐲=�̄�

have absolute value (or modulus) strictly less than one. For instance,
this is always the case if social interactions are only among peers
(i.e., individuals of the same age) so the mutant phenotype at a given
age depends only on the phenotype of immediately younger social
partners (in which case the above matrix is block lower triangular so
all its eigenvalues are zero; Eq. S5.6.9). We assume that there is a
unique SDS geno-envo-phenotype for a given developmental map at
every evolutionary time 𝜏.

If an SDS resident is achieved in the socio-devo dynamics phase, the
opulation moves to the resident population dynamics phase. Because
he resident is SDS, an individual with resident genotype developing in
he context of the resident geno-phenotype is guaranteed to develop the
esident phenotype. Thus, we may proceed with the standard invasion
30
analysis. Hence, in this phase of SDS resident population dynamics, the
SDS resident undergoes density dependent population dynamics, which
we assume asymptotically converges to the carrying capacity.

Once the SDS resident has achieved carrying capacity, the popula-
tion moves to the resident–mutant population dynamics phase. At the
start of this phase, a random mutant genotype 𝐲 marginally different
from the resident genotype �̄� arises in a vanishingly small number of
mutants. We assume that the mutant becomes either lost or fixed in the
population (Geritz et al., 2002; Geritz, 2005; Priklopil and Lehmann,
2020), establishing a new resident geno-envo-phenotype.

Repeating this evolutionary time step generates long term evolu-
tionary dynamics of an SDS geno-envo-phenotype.

3.4. Fitness in age structured populations

To compute the total selection gradient of the genotype, we now
write a fitness function that is more tractable than invasion fitness and
that has the same first-order derivatives with respect to mutant trait
values as invasion fitness for age-structured populations. To do this, we
first write a mutant’s survival probability and fertility at each age. At
the resident population dynamics equilibrium, a rare mutant’s fertility
at age 𝑎 is

𝑎 = 𝑓𝑎(𝐦𝑎, �̄�) (4a)

and the mutant’s survival probability from age 𝑎 to 𝑎 + 1 is

𝑝𝑎 = 𝑝𝑎(𝐦𝑎, �̄�). (4b)

The first argument 𝐦𝑎 in Eqs. (4) is the direct dependence of the
mutant’s fertility and survival at a given age on her own geno-envo-
phenotype at that age. The second argument �̄� in Eqs. (4) is the direct
dependence on social partners’ geno-envo-phenotype at any age (thus,
fertility and survival may directly depend on the environment of social
partners, specifically, as it may affect the carrying capacity, and fertility
and survival are density dependent).

In the SI section S2.3, we show that the gradients of invasion fitness
𝜆 with respect to mutant trait values are equal to (not an approximation
of) the corresponding gradients of the relative fitness 𝑤 of a mutant
ndividual per unit of generation time (Eq. S2.3.9), defined as

=
𝑁a
∑

𝑗=1
𝑤𝑗 , (5a)

here a mutant’s relative fitness at age 𝑗 is

𝑗 =
1
𝑇

(

𝜙𝑗𝑓𝑗 + 𝜋𝑗𝑝𝑗
)

, (5b)

and generation time is

𝑇 =
𝑁a
∑

𝑗=1
𝑗𝓁◦

𝑗 𝑓
◦
𝑗 (6)

(Charlesworth, 1994, Eq. 1.47c; Bulmer, 1994, Eq. 25, Ch. 25; Bienvenu
and Legendre, 2015, Eqs. 5 and 12). The superscript ◦ denotes evalua-
tion at 𝐲 = �̄� (so at 𝐦 = �̄� as the resident is a socio-devo equilibrium).
The quantity 𝓁𝑗 =

∏𝑗−1
𝑘=1 𝑝𝑘 is the survivorship of mutants from age

1 to age 𝑗, and 𝓁◦
𝑗 is that of neutral mutants. Thus, the generation

time appearing in 𝑤 is for a neutral mutant, or resident, rather than
the mutant. This can be intuitively understood as the mutant having
to invade over a time scale determined by the resident rather than the
mutant. We denote the force of selection on fertility at age 𝑗 (Hamilton,
1966 and Caswell, 1978, his Eqs. 11 and 12) as

𝜙𝑗 (�̄�) = 𝓁◦
𝑗 (7a)

and the force of selection on survival at age 𝑗 (Baudisch, 2005, her
Eq. 5a) as

𝜋𝑗 (�̄�) = 1
𝑝◦

𝑁a
∑

𝓁◦
𝑘𝑓

◦
𝑘 , (7b)
𝑗 𝑘=𝑗+1
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which are independent of mutant trait values because they are eval-
uated at the resident trait values. It is easily checked that 𝜙𝑗 and 𝜋𝑗
ecrease with 𝑗 (respectively, if 𝑝◦𝑗 < 1 and 𝑓 ◦

𝑗+1 > 0 provided that
◦
𝑗 ≈ 𝑝◦𝑗+1).

In the SI section S2.4.2, we show that the gradients of invasion
itness 𝜆 with respect to mutant trait values are also equal to 1∕𝑇 times
he corresponding gradients of a rare mutant’s expected lifetime repro-
uctive success 𝑅0 (Eq. S2.4.11) (Bulmer, 1994; Caswell, 2009). This
ccurs because of our assumption that mutants arise when residents are
t carrying capacity (Mylius and Diekmann, 1995). For our life cycle,
mutant’s expected lifetime reproductive success is

0 =
𝑁a
∑

𝑗=1
𝓁𝑗𝑓𝑗 , (8)

Caswell, 2001). From the equality of the gradients of invasion fit-
ess and fitness, it follows that invasion fitness 𝜆 for age-structured
opulations is approximately equal to the mutant’s relative fitness 𝑤
o first-order of approximation around resident genotypic traits, that
s, 𝜆 ≈ 𝑤 (Eq. S2.3.11). Similarly, from the equality of the gradients
f invasion fitness and a mutant’s lifetime reproductive success per
eneration time, it follows that invasion fitness 𝜆 for age-structured
opulations is given by 𝜆 ≈ 1+(𝑅0−1)∕𝑇 to first-order of approximation
round resident genotypic traits (Eq. S2.3.13). Taking derivatives of 𝑤
ith respect to mutant trait values is generally simpler than for 𝜆 or
0, so we present most results below in terms of 𝑤.

. Summary of main results

We now give an overview of the three sets of main results. We
rovide a comprehensive presentation of ancillary results and further
nalysis in Section 5 and SI section S3. The derivations of all these
esults are in SI section S5 and involve repeated use of the chain rule
ue to the recurrence and feedbacks involved in the developmental
onstraint (1).

.1. Total selection gradient of the genotype

The total selection gradient of the genotype is
d𝜆
d𝐲

|

|

|

|𝐲=�̄�
= d𝑤

d𝐲
|

|

|

|𝐲=�̄�

=
(

d𝐱⊺
d𝐲

𝜕𝑤
𝜕𝐱

+ 𝜕𝑤
𝜕𝐲

+ d𝝐⊺
d𝐲

𝜕𝑤
𝜕𝝐

)

|

|

|

|

|𝐲=�̄�
(9)

∈ R𝑁a𝑁g×1.

The chain rule in Eq. (9) is reversed to its standard presentation because
the gradient in the canonical Eq. (3) is a column vector. Yet, the order
in Eq. (9) gives a natural biological interpretation: a perturbation in the
genotype first affects the phenotype and then the affected phenotype
affects fitness, and similarly for the effect of genotypic change on the
environment.

The total selection gradient of the genotype depends on the block
matrix of total effects of a mutant’s genotype on her phenotype, given by

d𝐱⊺
d𝐲

|

|

|

|𝐲=�̄�
=

(

𝛿𝐱⊺
𝛿𝐲

d𝐱⊺
d𝐱

)

|

|

|

|

|𝐲=�̄�
∈ R𝑁a𝑁g×𝑁a𝑁p . (10)

This matrix is a mechanistic counterpart of Fisher’s (1918) additive
effects of allelic substitution and of Wagner’s (1984) developmental
matrix. This matrix also gives the sensitivity of a recurrence of the
form (1) to perturbations in parameters 𝐲 at any time 𝑎. Moreover, this
matrix can be interpreted as measuring the total developmental bias of
the phenotype from the genotype (Uller et al., 2018).

The block matrix of total effects of a mutant’s phenotype on her
phenotype is

d𝐱⊺ |
|

|

=
(

2𝐈 − 𝛿𝐱⊺ )−1|
|

|

|

∈ R𝑁a𝑁p×𝑁a𝑁p . (11)
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d𝐱
|𝐲=�̄� 𝛿𝐱

|𝐲=�̄�
This matrix describes developmental feedback, is always invertible (SI
section S5.1, Eq. S5.1.15), and gives the sensitivity of a recurrence
of the form (1) to perturbations in state variables 𝐱 at any time 𝑎.

oreover, this matrix can be interpreted as a lifetime collection of total
mmediate effects of the phenotype on itself. Indeed, partitioning this
atrix into blocks of size 𝑁p ×𝑁p, the 𝑎𝑗-th block entry gives the total

ffects of the phenotype at age 𝑎 on the phenotype at age 𝑗, that is,

d𝐱⊺𝑗
d𝐱𝑎

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

↷
𝑗−1
∏

𝑘=𝑎

𝛿𝐱⊺𝑘+1
𝛿𝐱𝑘

=
𝛿𝐱⊺𝑎+1
𝛿𝐱𝑎

⋯
𝛿𝐱⊺𝑗
𝛿𝐱𝑗−1

for 𝑗 > 𝑎

𝐈 for 𝑗 = 𝑎

𝟎 for 𝑗 < 𝑎.

(12)

ince matrix multiplication is not commutative, the ↷ denotes right
ultiplication. Eq. (11) has the same form of an equation for total

ffects used in path analysis (Greene, 1977, p. 380; see also Morrissey,
014, Eq. 2), particularly if (𝛿𝐱⊺∕𝛿𝐱 − 𝐈)|𝐲=�̄� is interpreted as a matrix
isting the path coefficients of ‘‘direct’’ effects of the phenotype on itself
if environmental traits are not explicitly considered in the analysis).

The block matrix of total immediate effects of 𝜻 on a mutant’s pheno-
ype is

𝛿𝐱⊺
𝛿𝜻

|

|

|

|𝐲=�̄�
=

(

𝜕𝐱⊺
𝜕𝜻

+ 𝜕𝝐⊺
𝜕𝜻

𝜕𝐱⊺
𝜕𝝐

)

|

|

|

|

|𝐲=�̄�
. (13)

or 𝜻 ∈ {𝐱, 𝐲, �̄�, �̄�}. This matrix depends on direct niche construction
𝜕𝝐⊺∕𝜕𝜻) and direct plasticity (𝜕𝐱⊺∕𝜕𝝐). Thus, the developmental feed-
ack of the phenotype (Eq. (11)) depends on direct developmental
ias from the phenotype (𝜕𝐱⊺∕𝜕𝐱), direct niche-construction by the
henotype (𝜕𝝐⊺∕𝜕𝐱), and direct plasticity of the phenotype (𝜕𝐱⊺∕𝜕𝝐).

The total selection gradient of the genotype also depends on the
block matrix of total effects of a mutant’s genotype on her environment

d𝝐⊺
d𝐲

|

|

|

|𝐲=�̄�
=

(

d𝐱⊺
d𝐲

𝜕𝝐⊺
𝜕𝐱

+ 𝜕𝝐⊺
𝜕𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑁a𝑁g×𝑁a𝑁e . (14)

This matrix quantifies the total niche construction by the genotype
and depends on direct niche construction by the phenotype and the
genotype.

Additionally, the direct selection gradient of the phenotype is

𝜕𝑤
𝜕𝐱

|

|

|

|𝐲=�̄�
=

(

𝜕𝑤1
𝜕𝐱1

;⋯ ;
𝜕𝑤𝑁a

𝜕𝐱𝑁a

)

|

|

|

|

|

|𝐲=�̄�

∈ R𝑁a𝑁p×1, (15)

where the direct selection gradient of the phenotype at age 𝑎 ∈
{1,… , 𝑁a} is

𝜕𝑤𝑎
𝜕𝐱𝑎

|

|

|

|𝐲=�̄�
= 1

𝑇

(

𝜙𝑎
𝜕𝑓𝑎
𝜕𝐱𝑎

|

|

|

|𝐲=�̄�
+ 𝜋𝑎

𝜕𝑝𝑎
𝜕𝐱𝑎

|

|

|

|𝐲=�̄�

)

∈ R𝑁p×1, (16)

and the direct effect on fertility of the mutant phenotype at age 𝑎 ∈
{1,… , 𝑁a} is

𝜕𝑓𝑎
𝜕𝐱𝑎

|

|

|

|𝐲=�̄�
=

(

𝜕𝑓𝑎
𝜕𝑥1𝑎

;⋯ ;
𝜕𝑓𝑎

𝜕𝑥𝑁p𝑎

)

|

|

|

|

|

|𝐲=�̄�

∈ R𝑁p×1. (17)

The other direct selection gradients and direct effects on fertility or
survival are defined analogously.

In turn, the block matrix of direct effects of a mutant’s phenotype on
her phenotype is

𝜕𝐱⊺
𝜕𝐱

|

|

|

|𝐲=�̄�
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

𝐈
𝜕𝐱⊺2
𝜕𝐱1

⋯ 𝟎 𝟎

𝟎 𝐈 ⋯ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮

𝟎 𝟎 ⋯ 𝐈
𝜕𝐱⊺𝑁a

𝜕𝐱𝑁a−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

∈ R𝑁a𝑁p×𝑁a𝑁p , (18)
⎝𝟎 𝟎 ⋯ 𝟎 𝐈 ⎠

|𝐲=�̄�
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where the matrix of direct effects of a mutant’s phenotype at age 𝑎 on her
henotype at age 𝑎 + 1 is

𝜕𝐱⊺𝑎+1
𝜕𝐱𝑎

|

|

|

|

|

|𝐲=�̄�

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑥1,𝑎+1
𝜕𝑥1𝑎

⋯
𝜕𝑥𝑁p ,𝑎+1

𝜕𝑥1𝑎
⋮ ⋱ ⋮

𝜕𝑥1,𝑎+1
𝜕𝑥𝑁p𝑎

⋯
𝜕𝑥𝑁p ,𝑎+1

𝜕𝑥𝑁p𝑎

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

|

|

|

|𝐲=�̄�

∈ R𝑁p×𝑁p . (19)

Given the interpretations of d𝐱⊺∕d𝐲 and d𝝐⊺∕d𝐲, the total selection
gradient of the genotype (9) can then be interpreted as measuring
total (directional) genotypic selection in a fitness landscape modified
by: (1) the interaction of total developmental bias of the phenotype
from the genotype and directional selection on the phenotype, and
(2) the interaction of total niche construction by the genotype and
environmental sensitivity of selection 𝜕𝑤∕𝜕𝝐 (Chevin et al., 2010). In a
standard quantitative genetics framework, the total selection gradient
of the genotype would correspond to Lande’s (1979) selection gradi-
ent of the genotype if phenotypic and environmental traits are not
explicitly included in the analysis.

To build a minimal evo-devo dynamics model using our approach,
one first needs expressions for fertility 𝑓𝑎, survival 𝑝𝑎, and development
𝐠𝑎. Then, one computes the partial derivatives (17), (19), and analo-
gous partial derivatives, and finally feeds these partial derivatives to
Eqs. (9)–(11), (13)–(16), and (18) to compute the evo-evo dynamics
using Eqs. (1)–(3).

4.2. Evolutionary dynamics of the phenotype in gradient form

The evo-devo dynamics above allow for the modeling of the evo-
lutionary dynamics of the phenotype under explicit development, but
do not provide an interpretation of the evolutionary dynamics of the
phenotype as the climbing of a fitness landscape. To obtain such an in-
terpretation, we obtain equations in gradient form for the evolutionary
dynamics of the phenotype.

As a first step, temporarily assume that the following four conditions
hold: (I) development is non-social (d𝐱⊺∕d�̄�|𝐲=�̄� = 𝟎), and there is (II) no
xogenous plastic response of the phenotype (

[

(d𝐱∕d𝝐⊺)(𝜕�̄�∕𝜕𝜏)
]

|𝐲=�̄� =
), (III) no total immediate selection on the genotype (𝛿𝑤∕𝛿𝐲|𝐲=�̄� =
), and (IV) no niche-constructed effects of the phenotype on fitness
[

(𝜕𝝐⊺∕𝜕𝐱)(𝜕𝑤∕𝜕𝝐)
]

|𝐲=�̄� = 𝟎). Then, in the limit as 𝛥𝜏 → 0, the
volutionary dynamics of the resident phenotype satisfies

d�̄�
d𝜏

≈ 𝜄𝐇𝐱
𝜕𝑤
𝜕𝐱

|

|

|

|𝐲=�̄�
. (20)

This is a mechanistic version of the Lande equation for the phenotype
and is in gradient form, where the mechanistic additive genetic covariance
matrix of the phenotype 𝐱 ∈ R𝑁a𝑁p×1 is

𝐇𝐱 ≡ cov[𝐛𝐱 ,𝐛𝐱] =
(

d𝐱
d𝐲⊺

𝐇𝐲
d𝐱⊺
d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑁a𝑁p×𝑁a𝑁p (21)

(H for heredity), which guarantees that the developmental constraint
(1) is met at all times given the formulas for the total effects of the geno-
type on phenotype provided in Section 4.1. The matrix 𝐇𝐱 describes
genetic covariation in the phenotype as the covariation of mechanis-
tic breeding value 𝐛𝐱. Mechanistic breeding value is a mechanistic
counterpart of breeding value, defined not in terms of regression coef-
ficients but in terms of total derivatives and so has different properties
explained in Section 5.1.

Eq. (20) describes phenotypic evolution in gradient form but is
dynamically insufficient since it generally depends on the resident
genotype �̄� but does not describe its evolutionary dynamics. Hence,
the mechanistic Lande Eq. (20) is not generally sufficient to describe
32

phenotypic evolution as the climbing of a fitness landscape.
4.3. Evolutionary dynamics of the geno-envo-phenotype in gradient form

To describe phenotypic evolution as the climbing of a fitness land-
scape, we obtain dynamically sufficient equations in gradient form for
phenotypic evolution. Dropping assumptions (I–IV) above, one such
an equation describes the evolutionary dynamics of the resident geno-
envo-phenotype as
d�̄�
d𝜏

≈
(

𝜄𝐋𝐦
𝜕𝑤
𝜕𝐦

+ s𝐦
s𝝐⊺

𝜕𝝐
𝜕𝜏

)

|

|

|

|𝐲=�̄�
, (22)

which is an extended mechanistic Lande equation. This equation de-
scribes the evolution of the geno-envo-phenotype as the climbing of a
fitness landscape and is dynamically sufficient because it describes the
evolution of all the variables involved, including the resident genotype
�̄�.

The extended mechanistic Lande Eq. (22) depends on the mechanistic
additive socio-genetic cross-covariance matrix of the geno-envo-phenotype

𝐋𝐦 ≡ cov[𝐛s𝐦,𝐛𝐦]

=
(

s𝐦
s𝐲⊺

𝐇𝐲
d𝐦⊺

d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑁a(𝑁p+𝑁g+𝑁e)×𝑁a(𝑁p+𝑁g+𝑁e) (23)

(L for legacy). We say that the matrix 𝐋𝐦 describes the ‘‘socio-genetic’’
covariation of the geno-envo-phenotype, that is, the covariation be-
tween the stabilized mechanistic breeding value 𝐛s𝐦 and mechanistic
breeding value 𝐛𝐦. Whereas mechanistic breeding value considers the
total effect of mutations on the traits within the individual, stabilized
mechanistic breeding value considers the stabilized effect of muta-
tions on the traits across the population, after social development has
stabilized. The matrix 𝐋𝐦 may be asymmetric and its main diagonal
entries may be negative (unlike variances) due to social develop-
ment. Moreover, the matrix 𝐋𝐦 is always singular because d𝐦⊺∕d𝐲 has
ewer rows than columns, regardless of whether development is social.
his means that there are always directions in geno-envo-phenotypic
pace in which there cannot be socio-genetic covariation, so there
re always absolute socio-genetic constraints on adaptation of the
eno-envo-phenotype (see SI section S2.2 for a definition of absolute
utational or genetic constraints). In particular, this implies that evo-

ution does not generally stop at peaks of the fitness landscape where
he direct selection gradient is zero.

Although the extended mechanistic Lande Eq. (22) is useful to inter-
ret evolution as the climbing of a fitness landscape, in practice it may
ften be more useful to compute the evo-devo dynamics using Eqs. (1)–
3) since the extended mechanistic Lande equation may still require
omputing the evo-devo dynamics, particularly when development is
ocial.

In the remainder of this section, we give the formulas for addi-
ional quantities involved in the extended mechanistic Lande Eq. (22).
hese formulas show that stabilized effects depend on social feedback
Eq. (27)), joint total developmental bias (Eq. (26)), and joint direct
iche construction (Eqs. (29) and (32)). Analysis of the obtained equa-
ions for genetic covariation and evolutionary dynamics is given in
ection 5. A reader interested in seeing an illustration of the method
ay jump to Section 6.

The matrix 𝐋𝐦 depends on the block matrix of total effects of a
utant’s genotype on her geno-envo-phenotype

d𝐦⊺

d𝐲
|

|

|

|𝐲=�̄�
=

(

d𝐱⊺
d𝐲

𝐈 d𝝐⊺
d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑁a𝑁g×𝑁a(𝑁p+𝑁g+𝑁e), (24)

measuring total developmental bias of the geno-envo-phenotype from
the genotype, which is singular because it has fewer rows than columns.
The matrix 𝐋𝐦 also depends on the transpose of the matrix of stabilized
effects of a focal individual’s genotype on the geno-envo-phenotype
s𝐦
s𝐲⊺

|

|

|

|𝐲=�̄�
=

( s𝐱
s𝐲⊺

; 𝐈; s𝝐
s𝐲⊺

)

|

|

|

|𝐲=�̄�
∈ R𝑁a(𝑁p+𝑁g+𝑁e)×𝑁a𝑁g . (25)

This matrix gives the total effects of the genotype on the geno-envo-

phenotype after the effect of the mutation has propagated through the
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population via social development and such propagation has stabilized.
This matrix can be interpreted as measuring stabilized developmental
bias of the geno-envo-phenotype from the genotype.

Eq. (25) depends on the transpose of the matrix of stabilized effects
of a focal individual’s genotype on her phenotype

s𝐱
s𝐲⊺

|

|

|

|𝐲=�̄�
=

[

s𝐱
s�̄�⊺

(

d𝐱
d𝐲⊺

+ d𝐱
d�̄�⊺

)]

|

|

|

|

|

|𝐲=�̄�

∈ R𝑁a𝑁p×𝑁a𝑁g . (26)

This matrix can be interpreted as measuring stabilized developmental
bias of the phenotype from the genotype. It depends on the effect
of the genotype of the focal individual and of social partners on the
phenotype, and on the feedback of such altered phenotype through
the population (social feedback described by s𝐱∕s�̄�⊺|𝐲=�̄�). We say that
tabilized developmental bias is ‘‘joint’’ as it includes both the effects
f the focal individual and of social partners (i.e., d𝐱∕d𝜻⊺|𝐲=�̄� for
∈ {𝐲, �̄�}). If development is not social (i.e., d𝐱⊺∕d�̄�|𝐲=�̄� = 𝟎), then

he stabilized developmental bias matrix of the phenotype from the
enotype (s𝐱∕s𝐲⊺|𝐲=�̄�) reduces to the corresponding total developmental
ias matrix (d𝐱∕d𝐲⊺|𝐲=�̄�).

The matrix in Eq. (26) depends on social feedback, given by the
ranspose of the matrix of stabilized effects of social partners’ phenotypes
n a focal individual’s phenotype

s𝐱
s�̄�⊺

|

|

|

|𝐲=�̄�
=
(

𝐈 − d𝐱
d�̄�⊺

|

|

|

|𝐲=�̄�

)−1
∈ R𝑁a𝑁p×𝑁a𝑁p . (27)

This matrix is invertible by our assumption that all the eigenvalues
of d𝐱∕d�̄�⊺|𝐲=�̄� have absolute value strictly less than one, to guarantee
that the resident is socio-devo stable. The matrix s𝐱∕s�̄�⊺|𝐲=�̄� can be
interpreted as the total effects of social partners’ phenotypes on a focal
individual’s phenotype after socio-devo stabilization; or vice versa, of a
focal individual’s phenotype on social partners’ phenotypes. This matrix
corresponds to an analogous matrix found in the indirect genetic effects
literature (Moore et al., 1997, Eq. 19b and subsequent text). If devel-
opment is not social from the phenotype (i.e., d𝐱⊺∕d�̄�|𝐲=�̄� = 𝟎), then the
matrix s𝐱∕s�̄�⊺|𝐲=�̄� is the identity matrix. This is the only stabilized-effect
matrix that does not reduce to the corresponding total-effect matrix
when development is not social.

The transpose of the block matrix of total effects of social partners’
phenotype on a mutant’s phenotype is

d𝐱
d�̄�⊺

|

|

|

|𝐲=�̄�
=

(

d𝐱
d𝐱⊺

𝛿𝐱
𝛿�̄�⊺

)

|

|

|

|

|𝐲=�̄�
. (28)

This matrix can be interpreted as measuring total social developmental
bias of the phenotype from phenotype, as well as the total effects on the
phenotype of extra-genetic inheritance. It is also a mechanistic version
of the matrix of interaction coefficients in the indirect genetic effects
literature (i.e., 𝜳 in Eq. 17 of Moore et al., 1997, which is defined as
a matrix of regression coefficients). Moreover, the matrix d𝐱∕d�̄�⊺|𝐲=�̄�
can be interpreted as involving a developmentally immediate pulse of
phenotype change caused by a change in social partners’ traits followed
by the triggered developmental feedback of the mutant’s phenotype.

Eq. (25) also depends on the transpose of the matrix of stabilized
ffects of a focal individual’s genotype on the environment

s𝝐
s𝐲⊺

|

|

|

|𝐲=�̄�
=

[

( 𝜕𝝐
𝜕𝐱⊺

+ 𝜕𝝐
𝜕�̄�⊺

) s𝐱
s𝐲⊺

+ 𝜕𝝐
𝜕𝐲⊺

+ 𝜕𝝐
𝜕�̄�⊺

]

|

|

|

|

|𝐲=�̄�
∈ R𝑁a𝑁e×𝑁a𝑁g . (29)

This matrix can be interpreted as measuring stabilized niche construc-
tion by the genotype. This matrix is formed by stabilized develop-
mental bias of the geno-phenotype from genotype followed by joint
direct niche construction by the geno-phenotype (Layer 5, Eq. S6a).
If development is not social (i.e., d𝐱⊺∕d�̄�|𝐲=�̄� = 𝟎), then stabilized
iche construction by the genotype (s𝝐∕s𝐲⊺|𝐲=�̄�) reduces to total niche
onstruction by the genotype (d𝝐∕d𝐲⊺| ).
33

𝐲=�̄�
The extended mechanistic Lande Eq. (22) also depends on the trans-
ose of the matrix of stabilized effects of a focal individual’s environment
n the geno-envo-phenotype
s𝐦
s𝝐⊺

|

|

|

|𝐲=�̄�
=

( s𝐱
s𝝐⊺

; 𝟎; s𝝐
s𝝐⊺

)

|

|

|

|𝐲=�̄�
∈ R𝑁a(𝑁p+𝑁g+𝑁e)×𝑁a𝑁e , (30)

measuring stabilized plasticity of the geno-envo-phenotype.
The transpose of the matrix of stabilized effects of a focal individual’s

environment on the phenotype is
s𝐱
s𝝐⊺

|

|

|

|𝐲=�̄�
=

( s𝐱
s�̄�⊺

d𝐱
d𝐱⊺

𝜕𝐱
𝜕𝝐⊺

)

|

|

|

|𝐲=�̄�
∈ R𝑁a𝑁p×𝑁a𝑁e . (31)

This matrix measures the stabilized plasticity of the phenotype, where
the environment first causes direct plasticity in a focal individual,
and then there is developmental and social feedback. In contrast to
Eq. (26), stabilized plasticity does not depend on the joint effects of
the environment, due to our assumption that a mutant’s development
does not directly depend on the resident’s enviroment. If development
is not social (i.e., d𝐱⊺∕d�̄�|𝐲=�̄� = 𝟎), then stabilized plasticity reduces to
total plasticity.

Stabilized environmental feedback is given by the transpose of the
matrix of stabilized effects of a focal individual’s environment on the
environment
s𝝐
s𝝐⊺

|

|

|

|𝐲=�̄�
=

[( 𝜕𝝐
𝜕𝐱⊺

+ 𝜕𝝐
𝜕�̄�⊺

) s𝐱
s𝝐⊺

+ 𝐈
]

|

|

|

|𝐲=�̄�
∈ R𝑁a𝑁e×𝑁a𝑁e . (32)

This matrix depends on stabilized plasticity of the phenotype, joint
direct niche construction by the phenotype, and direct mutual environ-
mental dependence. Such direct mutual environmental dependence is
here the identity matrix because of our assumption that environmental
traits are mutually independent.

5. Top layers of the evo-devo process

The equations listed in Section 4 are part of a broader set of
equations that we derive to analyze the evolutionary dynamics under
explicit development. We term ‘‘evo-devo process’’ this set of equa-
tions. The evo-devo process can be arranged in a layered structure,
where each layer is formed by components in layers below (Fig. 4).
This layered structure helps see how complex interactions between
variables involved in genetic covariation are formed by building blocks
describing the direct interaction between variables. In this Section 5,
we present and analyze the top two layers of the evo-devo process,
namely, the layer of genetic covariation and the layer of evolutionary
dynamics (Fig. 4A-D). In SI section S3, we describe and analyze the
bottom layers, starting from the layer of elementary components up to
the layer of stabilized effects (Fig. 4E-I). Sections Section 5, S3, and S5
include multiple ancillary results. For instance, SI section S3.4 includes
closed-form equations for the total selection gradients of the genotype,
phenotype, environment, geno-phenotype, and geno-envo-phenotype,
and alternative arrangements thereof.

5.1. Layer 6: genetic covariation

In this section, we describe and analyze the layer of genetic co-
variation of the evo-devo process. We first define mechanistic breed-
ing value under our adaptive dynamics assumptions, which allows
us to define mechanistic additive genetic covariance matrices under
our assumptions. Then, we define (socio-devo) stabilized mechanistic
breeding value, which we use to define mechanistic additive socio-
genetic cross-covariance matrices. The notions of stabilized mechanistic
breeding values and mechanistic socio-genetic cross-covariance gen-
eralize the corresponding notions of mechanistic breeding value and
mechanistic additive genetic covariance to consider the effects of social
development.

We follow the standard definition of breeding value to define its

mechanistic analogue under our assumptions. The breeding value of
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Fig. 4. The evo-devo process and its layered structure. Here we summarize the equations composing the evo-devo process arranged in a layered structure. Each layer is formed
by components in layers below. Layer 7 describes the evolutionary dynamics as (A) evo-devo dynamics, which in the limit as 𝛥𝜏 → 0 implies (B) the evolutionary dynamics
of the geno-phenotype, and (C) the evolutionary dynamics of the geno-envo-phenotype. (D) Layer 6 describes genetic covariation. (E) Layer 5 describes stabilized effects (total
derivatives over life after socio-devo stabilization, denoted by s∕s). (F) Layer 4 describes total effects (total derivatives over life before socio-devo stabilization, denoted by d∕d).
(G) Layer 3 describes total immediate effects (total derivatives at the current age, denoted by 𝛿∕𝛿). (H) Layer 2 describes direct effects (partial derivatives, denoted by 𝜕∕𝜕). (I)
Layer 1 comprises the elementary components of the evo-devo process that generate all layers above. All derivatives are evaluated at 𝐲 = �̄�. See SI section S3.2 for the equations
of direct-effect matrices, which have structure due to age structure. See Fig. 1 and Table 1 for the meaning of symbols.
a trait is defined under quantitative genetics assumptions as the best
linear estimate of the trait from gene content (Lynch and Walsh,
1998; Walsh and Lynch, 2018). As described in the introduction, under
quantitative genetics assumptions, the 𝑖th trait value 𝑥𝑖 of an individual
is written as 𝑥𝑖 = �̄�𝑖 +

∑

𝑗 𝛼𝑖𝑗 (𝑦𝑗 − �̄�𝑗 ) + 𝑒𝑖, where the overbar denotes
population average, 𝑦𝑗 is the 𝑗th predictor (gene content in 𝑗th locus),
𝛼𝑖𝑗 is the partial least-square regression coefficient of 𝑥𝑖 − �̄�𝑖 vs 𝑦𝑗 − �̄�𝑗 ,
and 𝑒𝑖 is the residual; the breeding value of 𝑥𝑖 is 𝑎𝑖 ≡ �̄�𝑖+

∑

𝑗 𝛼𝑖𝑗 (𝑦𝑗 − �̄�𝑗 ).
Accordingly, we define the mechanistic breeding value 𝐛𝜻 of a vector 𝜻
as its first-order estimate with respect to genotypic traits 𝐲 around the
resident genotypic traits �̄�:

𝐛𝜻 ≡ 𝜻|𝐲=�̄� +
d𝜻
d𝐲⊺

|

|

|

|𝐲=�̄�
(𝐲 − �̄�)

= �̄� +
d𝜻
d𝐲⊺

|

|

|

|𝐲=�̄�
(𝐲 − �̄�). (Layer 6, Eq. 1)

The key difference of this definition with that of breeding value is that
rather than using regression coefficients, this definition uses the total
derivatives of 𝜻 with respect to the genotype, d𝜻∕d𝐲⊺|𝐲=�̄�, which are a
mechanistic analogue of Fisher’s additive effect of allelic substitution
(his 𝛼; see Eq. I of Fisher, 1918 and p. 72 of Lynch and Walsh, 1998).

There are material differences between breeding value and its mech-
anistic counterpart, as made evident with heritability. Because breed-
ing value under quantitative genetics uses linear regression via least
squares, breeding value 𝑎𝑖 is guaranteed to be uncorrelated with the
residual 𝑒𝑖. This guarantees that heritability is between zero and one.
Indeed, the (narrow sense) heritability of trait 𝑥𝑖 is defined as ℎ2 =
var[𝑎𝑖]∕var[𝑥𝑖], where using 𝑥𝑖 = 𝑎𝑖 + 𝑒𝑖 we have var[𝑥𝑖] = var[𝑎𝑖] +
var[𝑒𝑖] + 2cov[𝑎𝑖, 𝑒𝑖]. The latter covariance is zero due to least squares,
and so ℎ2 ∈ [0, 1]. In contrast, mechanistic breeding values may be
correlated with residuals. Indeed, in our framework we have that the
phenotype 𝑥𝑖𝑎 = 𝑏𝑖𝑎 + 𝑂(‖𝐲 − �̄�‖2), but mechanistic breeding value 𝑏𝑖𝑎
is not computed via least squares, so 𝑏𝑖𝑎 and the error 𝑂(‖𝐲− �̄�‖2) may
covary, positively or negatively. Hence, the classic quantitative genetics
partition of phenotypic variance into genetic and ‘‘environmental’’
(i.e., residual) variance does not hold with mechanistic breeding value,
34
as there may be mechanistic genetic and ‘‘environmental’’ covariance.
Consequently, since the covariance between two random variables is
bounded from below by the negative of the product of their standard
deviations, mechanistic heritability defined as the ratio between the
variance of mechanistic breeding value and phenotypic variance cannot
be negative but it may be greater than one.

Our definition of mechanistic breeding value recovers Fisher’s (1918)
infinitesimal model under certain conditions, but we do not assume the
infinitesimal model. According to Fisher’s (1918) infinitesimal model,
the normalized breeding value excess is normally distributed as the
number of loci approaches infinity. Using Layer 6, Eq. 1, we have that
the mechanistic breeding value excess for the 𝑖th entry of 𝐛𝜻 is

𝑏𝜁𝑖 − 𝜁𝑖 =
𝑁g
∑

𝑘=1

𝑁a
∑

𝑎=1

d𝜁𝑖
d𝑦𝑘𝑎

|

|

|

|𝐲=�̄�
(𝑦𝑘𝑎 − �̄�𝑘𝑎).

Let us denote the mutational variance for the 𝑘th genotypic trait at age
𝑎 by

𝜎2𝑘𝑎 = E[(𝑦𝑘𝑎 − �̄�𝑘𝑎)2],

and let us denote the total mutational variance by

𝑠2𝑁g𝑁a
=

𝑁g
∑

𝑘=1

𝑁a
∑

𝑎=1
𝜎2𝑘𝑎.

If the 𝑦𝑘𝑎 are mutually independent and Lyapunov’s condition is satis-
fied, from the Lyapunov central limit theorem we have that, as either
the number of genotypic traits 𝑁g or the number of ages 𝑁a tends to
infinity (e.g., by reducing the age bin size), the normalized mechanistic
breeding value excess

1
𝑠𝑁g𝑁a

(𝑏𝜁𝑖 − 𝜁𝑖)

is normally distributed with mean zero and variance 1. Thus, this limit
yields Fisher’s (1918) infinitesimal model, although we do not assume
such limit. Our framework thus recovers the infinitesimal model as a
particular case, when either 𝑁g or 𝑁a approaches infinity (provided
that the 𝑦 are mutually independent and Lyapunov’s condition holds).
𝑘𝑎
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From our definition of mechanistic breeding value, we have that
the mechanistic breeding value of the genotype is the genotype itself.
Indeed, the mechanistic breeding value of the genotype 𝐲 is

𝐛𝐲 = �̄� + d𝐲
d𝐲⊺

|

|

|

|𝐲=�̄�
(𝐲 − �̄�) = �̄� + 𝐲 − �̄� = 𝐲,

ince d𝐲∕d𝐲⊺|𝐲=�̄� = 𝐈 because, by assumption, the genotype does not
ave developmental constraints and is developmentally independent
Layer 4, Eq. S5). In turn, from Layer 6, Eq. 1, the expected mechanistic
reeding value of vector 𝜻 is

𝜻 ≡ E[𝐛𝜻 ] = �̄� .

We now define mechanistic additive genetic covariance matrices
nder our assumptions. The additive genetic variance of a trait is
efined under quantitative genetics assumptions as the variance of
ts breeding value, which is extended to the multivariate case so the
dditive genetic covariance matrix of a trait vector is the covariance
atrix of the traits’ breeding values (Lynch and Walsh, 1998; Walsh and

ynch, 2018). Accordingly, we define the mechanistic additive genetic
ovariance matrix of a vector 𝜻 ∈ R𝑚×1 as the covariance matrix of its
echanistic breeding value:

𝜻 ≡ cov[𝐛𝜻 ,𝐛𝜻 ]
= E[(𝐛𝜻 − �̄�𝜻 )(𝐛𝜻 − �̄�𝜻 )⊺] = E[(𝐛𝜻 − �̄�)(𝐛𝜻 − �̄�)⊺]

= E
[(

d𝜻
d𝐲⊺

|

|

|

|𝐲=�̄�
(𝐲 − �̄�)

)(

d𝜻
d𝐲⊺

|

|

|

|𝐲=�̄�
(𝐲 − �̄�)

)⊺]

= E
[

d𝜻
d𝐲⊺

|

|

|

|𝐲=�̄�
(𝐲 − �̄�)(𝐲 − �̄�)⊺ d𝜻⊺

d𝐲
|

|

|

|𝐲=�̄�

]

=
d𝜻
d𝐲⊺

|

|

|

|𝐲=�̄�
E
[

(𝐲 − �̄�)(𝐲 − �̄�)⊺
] d𝜻⊺

d𝐲
|

|

|

|𝐲=�̄�

=
(

d𝜻
d𝐲⊺

𝐇𝐲
d𝜻⊺

d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑚×𝑚, (Layer 6, Eq. 2)

where the fourth line follows from the property of the transpose of
a product (i.e., (𝐀𝐁)⊺ = 𝐁⊺𝐀⊺) and the last line follows since the
mechanistic additive genetic covariance matrix of the genotype 𝐲 is

𝐇𝐲 ≡ cov[𝐛𝐲 ,𝐛𝐲] = cov[𝐲, 𝐲] ∈ R𝑁a𝑁g×𝑁a𝑁g .

Layer 6, Eq. 2 has the same form of previous expressions for the
additive genetic covariance matrix under quantitative genetics assump-
tions, although using least-square regression coefficients in place of
the derivatives if the classic partitioning of phenotypic variance is to
hold (see Eq. II of Fisher, 1918, Eq. + of Wagner, 1984, Eq. 3.5b
of Barton and Turelli, 1987, and Eq. 4.23b of Lynch and Walsh, 1998;
see also Eq. 22a of Lande, 1980, Eq. 3 of Wagner, 1989, and Eq. 9
of Charlesworth, 1990). We denote the matrix 𝐇 rather than 𝐆 to
note that the two are different, particularly as the former is based on
mechanistic breeding value. Note 𝐇𝜻 is symmetric.

In some cases, Layer 6, Eq. 2 allows one to immediately determine
whether a mechanistic additive genetic covariance matrix is singular,
which means there are directions in the matrix’s space in which there is
no genetic variation. Indeed, a matrix with fewer rows than columns is
always singular (Horn and Johnson, 2013, section 0.5 second line), and
if the product 𝐀𝐁 is well-defined and 𝐁 is singular, then 𝐀𝐁 is singular
(this is easily checked to hold). Hence, from Layer 6, Eq. 2 it follows
that 𝐇𝜻 is necessarily singular if d𝜻⊺∕d𝐲 has fewer rows than columns,
that is, if 𝐲 has fewer entries than 𝜻 . Since 𝐲 has 𝑁a𝑁g entries and 𝜻
has 𝑚 entries, then 𝐇𝜻 is singular if 𝑁a𝑁g < 𝑚. Moreover, Layer 6,
Eq. 2 allows one to immediately identify bounds for the ‘‘degrees of
freedom’’ of genetic covariation, that is, for the rank of 𝐇𝜻 . Indeed, for
a matrix 𝐀 ∈ R𝑚×𝑛, we have that the rank of 𝐀 is at most the smallest
value of 𝑚 and 𝑛, that is, rank(𝐀) ≤ min{𝑚, 𝑛} (Horn and Johnson, 2013,
section 0.4.5 (a)). Furthermore, from the Frobenius inequality (Horn
35

and Johnson, 2013, section 0.4.5 (e)), for a well-defined product 𝐀𝐁,
we have that rank(𝐀𝐁) ≤ rank(𝐁). Therefore, for 𝜻 ∈ R𝑚×1, we have
that

rank(𝐇𝜻 ) ≤ min{𝑁a𝑁g, 𝑚}. (Layer 6, Eq. 3)

Intuitively, this states that the degrees of freedom of genetic covari-
ation are at most given by the lifetime number of genotypic traits
(i.e., 𝑁a𝑁g). So if there are more entries in 𝜻 than there are lifetime
genotypic traits, then there are fewer degrees of freedom of genetic
covariation than traits. This point is mathematically trivial but biolog-
ically crucial because the evolutionary dynamic equations in gradient
form that are generally dynamically sufficient involve an 𝐇𝜻 whose 𝜻
necessarily has more entries than 𝐲. These points on the singularity and
rank of 𝐇𝜻 also hold under quantitative genetics assumptions, where
the same structure (Layer 6, Eq. 2) holds, except that 𝐇𝐲 does not refer
to mutational variation but to standing variation in allele frequency
and total effects are measured with regression coefficients. Considering
standing variation in 𝐇𝐲 and regression coefficients does not affect the
points made in this paragraph.

Consider the following slight generalization of the mechanistic ad-
ditive genetic covariance matrix. We define the mechanistic additive
genetic cross-covariance matrix between a vector 𝜻 ∈ R𝑚×1 and a vector
𝝃 ∈ R𝑛×1 as the cross-covariance matrix of their mechanistic breeding
value:

𝐇𝜻𝝃 ≡ cov[𝐛𝜻 ,𝐛𝝃 ] =
(

d𝜻
d𝐲⊺

𝐇𝐲
d𝝃⊺

d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑚×𝑛. (Layer 6, Eq. 4)

hus, 𝐇𝜻𝜻 = 𝐇𝜻 . Note 𝐇𝜻𝝃 may be rectangular, and if square, asym-
etric. Again, from Layer 6, Eq. 4 it follows that 𝐇𝜻𝝃 is necessarily

ingular if there are fewer entries in 𝐲 than in 𝝃 (i.e., if 𝑁a𝑁g < 𝑛).
lso, for 𝝃 ∈ R𝑛×1, have that

ank(𝐇𝜻𝝃 ) ≤ min{𝑁a𝑁g, 𝑛}.

n words, the degrees of freedom of genetic cross-covariation are at
ost given by the lifetime number of genotypic traits.

The mechanistic additive genetic covariance matrix of the pheno-
ype takes the following form. Evaluating Layer 6, Eq. 2 at 𝜻 = 𝐱,
he mechanistic additive genetic covariance matrix of the phenotype
∈ R𝑁a𝑁p×1 is

𝐱 =
(

d𝐱
d𝐲⊺

𝐇𝐲
d𝐱⊺
d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑁a𝑁p×𝑁a𝑁p , (Layer 6, Eq. 5)

hich is singular because the developmental matrix d𝐱⊺∕d𝐲|𝐲=�̄� is sin-
ular since the developmentally initial phenotype is not affected by
he genotype and the developmentally final genotypic traits do not
ffect the phenotype (SI Section S5.2, Eq. S5.2.16). This singularity
s immaterial for our purposes because a dynamical system consisting
nly of evolutionary dynamic equations for the phenotype thus having
n associated 𝐇𝐱-matrix is underdetermined in general as the system
as fewer dynamic equations (i.e., the number of entries in 𝐱) than
ynamic variables (i.e., the number of entries in (𝐱; 𝐲; 𝝐)). Indeed, the
volutionary dynamics of the phenotype generally depends on the
esident genotype, in particular, because the developmental matrix
epends on the resident genotype (Layer 4, Eq. S2), for instance,
ue to non-linearities in the developmental map involving products
etween genotypic traits, or between genotypic traits and phenotypes,
r between genotypic traits and environmental traits, that is, gene–
ene interaction, gene–phenotype interaction, and gene–environment
nteraction, respectively. Thus, evolutionary dynamic equations of the
henotype alone are generally dynamically insufficient and so have
ither zero or an infinite number of solutions for any given initial
ondition. To have a determined evolutionary system in gradient form
hat is dynamically sufficient in general, we follow the evolutionary
ynamics of both the phenotype and the genotype, that is, of the
eno-phenotype, which depends on 𝐇𝐳 rather than 𝐇𝐱 alone.

The mechanistic additive genetic covariance matrix of the geno-
henotype takes the following form. Evaluating Layer 6, Eq. 2 at
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𝜻 = 𝐳, the mechanistic additive genetic covariance matrix of the
eno-phenotype 𝐳 ∈ R𝑁a(𝑁p+𝑁g)×1 is

𝐳 =
(

d𝐳
d𝐲⊺

𝐇𝐲
d𝐳⊺
d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑁a(𝑁p+𝑁g)×𝑁a(𝑁p+𝑁g). (Layer 6, Eq. 6)

This matrix is necessarily singular because the geno-phenotype 𝐳 in-
cludes the genotype 𝐲 so d𝐳⊺∕d𝐲 has fewer rows than columns (Layer 4,
Eq. S7). Intuitively, Layer 6, Eq. 6 has this form because the phenotype
is related to the genotype by the developmental constraint (1). From
Layer 6, Eq. 3, the rank of 𝐇𝐳 has an upper bound given by the number
of genotypic traits across life (i.e., 𝑁a𝑁g), so 𝐇𝐳 has at least 𝑁a𝑁p
eigenvalues that are exactly zero. Thus, 𝐇𝐳 is singular if there is at
least one trait that is developmentally constructed according to the
developmental constraint (1) (i.e., if 𝑁p > 0). This is a mathematically
trivial singularity, but it is biologically key because it is 𝐇𝐳 rather
than 𝐇𝐱 that occurs in a generally dynamically sufficient evolutionary
system in gradient form (provided the environment is constant; if the
environment is not constant, the relevant matrix is 𝐇𝐦 which is also
always singular if there is at least one phenotype or one environmental
trait).

Another way to see the singularity of 𝐇𝐳 is the following. From
Layer 6, Eq. 6, we can write the mechanistic additive genetic covariance
matrix of the geno-phenotype as

𝐇𝐳 =
(

𝐇𝐳𝐱 𝐇𝐳𝐲
)

,

where the mechanistic additive genetic cross-covariance matrix be-
tween 𝐳 and 𝐱 is

𝐇𝐳𝐱 =
(

d𝐳
d𝐲⊺

𝐇𝐲
d𝐱⊺
d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑁a(𝑁p+𝑁g)×𝑁a𝑁p ,

and the mechanistic additive genetic cross-covariance matrix between
𝐳 and 𝐲 is

𝐇𝐳𝐲 =
(

d𝐳
d𝐲⊺

𝐇𝐲
d𝐲⊺

d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑁a(𝑁p+𝑁g)×𝑁a𝑁g .

Thus, using Layer 4, Eq. S5, we have that

𝐇𝐳𝐱 = 𝐇𝐳𝐲
d𝐱⊺
d𝐲

|

|

|

|𝐲=�̄�
. (Layer 6, Eq. 7)

That is, some columns of 𝐇𝐳 (i.e., those in 𝐇𝐳𝐱) are linear combinations
of other columns of 𝐇𝐳 (i.e., those in 𝐇𝐳𝐲). Hence, 𝐇𝐳 is singular.

The mechanistic additive genetic covariance matrix of the geno-
henotype is singular because the geno-phenotype includes the geno-
ype (‘‘gene content’’). The singularity arises because the mechanistic
reeding value of the phenotype is a linear combination of the mech-
nistic breeding value of the genotype by definition of mechanistic
reeding value, regardless of whether the phenotype is a linear func-
ion of the genotype and regardless of the number of phenotypic
r genotypic traits. In quantitative genetics terms, the 𝐆-matrix is
function of allele frequencies (which correspond to our �̄�), so a

generally dynamically sufficient Lande system would require that allele
frequencies are part of the dynamic variables considered; consequently,
if the geno-phenotypic vector �̄� includes allele frequencies �̄�, then the
associated 𝐆 is necessarily singular since by definition, breeding value
under quantitative genetics assumptions is a linear combination of gene
content.

The definition of mechanistic breeding value implies that if there
is only one phenotype and one genotypic trait, with a single age each,
then there is a perfect correlation between their mechanistic breeding
values (i.e., their correlation coefficient is 1). This also holds under
quantitative genetics assumptions (Via and Lande, 1985), in which
case the breeding value 𝑎 of a trait 𝑥 is a linear combination of a
single predictor 𝑦, so the breeding value 𝑎 and predictor 𝑦 are perfectly
correlated (i.e., cov[𝑎, 𝑦]∕

√

var[𝑎]var[𝑦] = cov[𝛼𝑦, 𝑦]∕
√

var[𝛼𝑦]var[𝑦] =
(𝛼∕𝛼)cov[𝑦, 𝑦]∕

√

var[𝑦]var[𝑦] = 1). The perfect correlation between a sin-
gle breeding value and a single predictor arises because, by definition,
36
breeding value excludes the residual 𝑒. Note this does not mean that
the phenotype and genotype are linearly related: it is (mechanistic)
breeding values and the genotype that are linearly related by definition
of (mechanistic) breeding value (Layer 6, Eq. 1).

A standard approach to remove the singularity of an additive genetic
covariance matrix is to remove some traits from the analysis (Lande,
1979). To remove the singularity of 𝐇𝐳 we would need to remove at
east either all phenotypic traits or all genotypic traits from the analysis.
owever, removing all phenotypic traits from the analysis prevents
nalyzing phenotypic evolution as the climbing of a fitness landscape
hereas removing all genotypic traits from the analysis renders the
nalysis dynamically insufficient in general because the evolutionary
ynamics of some variables is not described. Thus, in general, to
nalyze a dynamically sufficient description of phenotypic evolution as
he climbing of a fitness landscape, we must keep the singularity of 𝐇𝐳.

We now extend the notion of mechanistic breeding value to consider
ocial development. As stated above, we denote a matrix of stabi-
ized effects as s𝜻⊺∕s𝝃, which gives the total effects of 𝝃 on 𝜻⊺ over

the individual’s development and after the effects of the perturbation
have stabilized in the population. We define the stabilized mechanistic
breeding value of a vector 𝜻 as:

𝐛s𝜻 ≡ 𝜻|𝐲=�̄� +
s𝜻
s𝐲⊺

|

|

|

|𝐲=�̄�
(𝐲 − �̄�)

= �̄� +
s𝜻
s𝐲⊺

|

|

|

|𝐲=�̄�
(𝐲 − �̄�). (Layer 6, Eq. 8)

he stabilized-effect matrix s𝝃∕s𝐲⊺|𝐲=�̄� equals the total-effect matrix
𝝃∕d𝐲⊺|𝐲=�̄� if development is non-social (SI Section S3.5). Thus, if
evelopment is non-social, the stabilized mechanistic breeding value
s
𝜻 equals the mechanistic breeding value 𝐛𝜻 . Also, note that E[𝐛s𝜻 ] = �̄� .

We use this definition to extend the notion of mechanistic ad-
itive genetic covariance matrix to include the effects of social de-
elopment as follows. We define the mechanistic additive socio-genetic
ross-covariance matrix of 𝜻 ∈ R𝑚×1 as

𝜻 ≡ cov[𝐛s𝜻 ,𝐛𝜻 ]

=
(

s𝜻
s𝐲⊺

𝐇𝐲
d𝜻⊺

d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑚×𝑚. (Layer 6, Eq. 9)

Note 𝐋𝜻 may be asymmetric and its main diagonal entries may be
negative (unlike variances). If development is non-social, 𝐋𝜻 equals 𝐇𝜻 .
As before, 𝐋𝜻 is singular if 𝐲 has fewer entries than 𝜻 . Also, for 𝜻 ∈ R𝑚×1,
have that

rank(𝐋𝜻 ) ≤ min{𝑁a𝑁g, 𝑚}.

That is, the degrees of freedom of socio-genetic covariation are at most
also given by the lifetime number of genotypic traits.

As before, we generalize this notion and define the mechanistic
additive socio-genetic cross-covariance matrix between 𝜻 ∈ R𝑚×1 and 𝝃 ∈
R𝑛×1 as

𝐋𝜻𝝃 ≡ cov[𝐛s𝜻 ,𝐛𝝃 ]

=
(

s𝜻
s𝐲⊺

𝐇𝐲
d𝝃⊺

d𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑚×𝑛. (Layer 6, Eq. 10)

gain, if development is non-social, 𝐋𝜻𝝃 equals 𝐇𝜻𝝃 . Note 𝐋𝜻𝝃 may be
ectangular and, if square, asymmetric. Also, 𝐋𝜻𝜉 is singular if 𝐲 has

fewer entries than 𝝃. For 𝝃 ∈ R𝑛×1, have that

rank(𝐋𝜻𝜉 ) ≤ min{𝑁a𝑁g, 𝑛}.

That is, the degrees of freedom of socio-genetic cross-covariation are at
most still given by the lifetime number of genotypic traits.

In particular, some 𝐋𝜻𝜉 matrices are singular or not as follows. The
mechanistic additive socio-genetic cross-covariance matrix between 𝜻
and the geno-phenotype 𝐳

𝐋𝜻𝐳 =
(

s𝜻
⊺𝐇𝐲

d𝐳⊺
)

|

|

|

|

∈ R𝑚×𝑁a(𝑁p+𝑁g) (Layer 6, Eq. 11)

s𝐲 d𝐲

|𝐲=�̄�
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is singular if there is at least one phenotype (i.e., if 𝑁p > 0). Thus,
𝐋𝜻𝐳 has at least 𝑁a𝑁p eigenvalues that are exactly zero. Also, the
mechanistic additive socio-genetic cross-covariance matrix between 𝜻
and the geno-envo-phenotype 𝐦

𝐋𝜻𝐦 =
(

s𝜻
s𝐲⊺

𝐇𝐲
d𝐦⊺

d𝐲

)

|

|

|

|

|𝐲=�̄�
(Layer 6, Eq. 12)

∈ R𝑚×(1+𝑁a)(𝑁p+𝑁g+𝑁e)

is singular if there is at least one phenotype or one environmental
trait (i.e., if 𝑁p > 0 or 𝑁e > 0). Thus, 𝐋𝜻𝐦 has at least 𝑁a(𝑁p + 𝑁e)
eigenvalues that are exactly zero. In important contrast, the mecha-
nistic additive socio-genetic cross-covariance matrix between a vector
𝜻 ∈ {𝐲, 𝐳,𝐦} and the genotype 𝐲

𝐋𝜻𝐲 =
(

s𝜻
s𝐲⊺

𝐇𝐲

)

|

|

|

|

|𝐲=�̄�
∈ R𝑚×𝑁a𝑁g (Layer 6, Eq. 13)

is non-singular if 𝐇𝐲 is non-singular because the genotype is develop-
mentally independent (SI sections S5.7 and S5.9). The 𝐋-matrices share
various properties with similar generalizations of the 𝐆-matrix arising
in the indirect genetic effects literature (Kirkpatrick and Lande, 1989;
Moore et al., 1997; Townley and Ezard, 2013).

5.2. Layer 7: evolutionary dynamics

Now we describe the top layer of the evo-devo process, that of the
evolutionary dynamics. This layer contains equations describing the
evolutionary dynamics under explicit developmental and environmen-
tal constraints. In the SI sections S2.5 and S5.6-S5.9, we show that,
in the limit as 𝛥𝜏 → 0, the evolutionary dynamics of the resident
phenotype, genotype, geno-phenotype, environment, and geno-envo-
phenotype (i.e., for 𝜻 ∈ {𝐱, 𝐲, 𝐳, 𝝐,𝐦}) are given by

d�̄�
d𝜏

≈
(

𝜄𝐋𝜻𝐦
𝜕𝑤
𝜕𝐦

+
s𝜻
s𝝐⊺

𝜕𝝐
𝜕𝜏

)

|

|

|

|

|𝐲=�̄�
, (Layer 7, Eq. 1a)

which must satisfy both the developmental constraint

�̄�𝑎+1 = 𝐠𝑎(�̄�𝑎, �̄�) for all 𝑎 ∈ {1,… , 𝑁a − 1} with fixed �̄�1,

(Layer 7, Eq. 1b)

nd the environmental constraint

̄𝑎 = 𝐡𝑎(�̄�𝑎, �̄�, 𝜏) for all 𝑎 ∈ {1,… , 𝑁a}. (Layer 7, Eq. 1c)

f 𝜻 = 𝐳 in Layer 7, Eq. 1a, then the equations in Layers 2-6 guarantee
hat the developmental constraint is satisfied for all 𝜏 > 𝜏1 given that it

is satisfied at the initial evolutionary time 𝜏1. If 𝜻 = 𝐦 in Layer 7, Eq. 1a,
then the equations in Layers 2-6 guarantee that both the developmental
and environmental constraints are satisfied for all 𝜏 > 𝜏1 given that they
are satisfied at the initial evolutionary time 𝜏1. Both the developmental
and environmental constraints can evolve as the genotype, phenotype,
and environment evolve and such constraints can involve any family of
curves as long as they are continuously differentiable.

Importantly, although Layer 7, Eq. 1a describes the evolutionary dy-
namics of the resident 𝜻 , such equation is guaranteed to be dynamically
sufficient only for certain 𝜻 . Layer 7, Eq. 1a is dynamically sufficient if
𝜻 is the genotype 𝐲, the geno-phenotype 𝐳, or the geno-envo-phenotype
𝐦, provided that the developmental and environmental constrains are
satisfied throughout. In contrast, Layer 7, Eq. 1a is dynamically in-
sufficient if 𝜻 is the phenotype 𝐱 or the environment 𝝐, because the
evolution of the genotype is not followed but it generally affects the
system.

Layer 7, Eq. 1a describes the evolutionary dynamics as consisting
of selection response and exogenous plastic response. Layer 7, Eq. 1a
contains the term

𝜄𝐋𝜻𝐦
𝜕𝑤 |

|

|

, (Layer 7, Eq. 2)
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𝜕𝐦
|𝐲=�̄�
which comprises direct directional selection on the geno-envo-phen-
otype (𝜕𝑤∕𝜕𝐦|𝐲=�̄�), socio-genetic cross-covariation between 𝜻 and the
geno-envo-phenotype (𝐋𝜻𝐦), and mutational input (𝜄). The term in
ayer 7, Eq. 2 is the selection response of �̄� and is a mechanistic gen-

eralization of Lande’s (1979) generalization of the univariate breeder’s
equation (Lush, 1937; Walsh and Lynch, 2018). Additionally, Layer 7,
Eq. 1a contains the term
(

s𝜻
s𝝐⊺

𝜕𝝐
𝜕𝜏

)

|

|

|

|

|𝐲=�̄�
, (Layer 7, Eq. 3)

hich comprises the vector of environmental change due to exogenous
auses (𝜕�̄�∕𝜕𝜏) and the matrix of stabilized plasticity (s𝜻∕s𝝐⊺|𝐲=�̄�). The

term in Layer 7, Eq. 3 is the exogenous plastic response of �̄� and is a
mechanistic generalization of previous expressions (cf. Eq. A3 of Chevin
et al., 2010). Note that the endogenous plastic response of �̄� (i.e., the
plastic response due to endogenous environmental change arising from
niche construction) is part of both the selection response and the
exogenous plastic response (Layers 2-6).

Selection response is relatively incompletely described by direct
directional selection on the geno-envo-phenotype. Indeed, we saw that
the matrix 𝐋𝜻𝐦 is always singular if there is at least one phenotype or
one environmental trait (Layer 6, Eq. 12). Consequently, the selection
response of �̄� can generally vanish with persistent direct directional
selection on the geno-envo-phenotype.

Selection response is also relatively incompletely described by total
immediate selection on the geno-phenotype. We can rewrite the selec-
tion response, so the evolutionary dynamics of �̄� for 𝜻 ∈ {𝐱, 𝐲, 𝐳, 𝝐,𝐦}
(Layer 7, Eq. 1a) is equivalently given by

d�̄�
d𝜏

≈
(

𝜄𝐋𝜻𝐳
𝛿𝑤
𝛿𝐳

+
s𝜻
s𝝐⊺

𝜕𝝐
𝜕𝜏

)

|

|

|

|

|𝐲=�̄�
. (Layer 7, Eq. 4)

his equation now depends on total immediate selection on the geno-
henotype (𝛿𝑤∕𝛿𝐳|𝐲=�̄�), which measures total immediate directional
election on the geno-phenotype (or in a quantitative genetics frame-
ork, it is Lande’s (1979) selection gradient of the allele frequency
nd phenotype if environmental traits are not explicitly included in the
nalysis). The total immediate selection gradient of the geno-phenotype
an be interpreted as pointing in the direction of steepest ascent on
he fitness landscape in geno-phenotype space after the landscape is
odified by the interaction of direct niche construction and environ-
ental sensitivity of selection (Layer 3, Eq. S1). We saw that the matrix
𝜻𝐳 is always singular if there is at least one phenotype (Layer 6, Eq.
1). Consequently, the selection response of �̄� can generally vanish
ith persistent directional selection on the geno-phenotype after niche

onstruction has modified the geno-phenotype’s fitness landscape.
In contrast, selection response is relatively completely described by

otal genotypic selection. We can further rewrite the selection response,
o the evolutionary dynamics of �̄� for 𝜻 ∈ {𝐱, 𝐲, 𝐳, 𝝐,𝐦} (Layer 7, Eq. 1a)

is equivalently given by

d�̄�
d𝜏

≈
(

𝜄𝐋𝜻𝐲
d𝑤
d𝐲

+
s𝜻
s𝝐⊺

𝜕𝝐
𝜕𝜏

)

|

|

|

|

|𝐲=�̄�
. (Layer 7, Eq. 5)

his equation now depends on total genotypic selection (d𝑤∕d𝐲|𝐲=�̄�),
hich measures total directional selection on the genotype consider-

ng downstream developmental effects (or in a quantitative genetics
ramework, it is Lande’s (1979) selection gradient of allele frequency if
either the phenotype nor environmental traits are explicitly included
n the analysis). In contrast to the other arrangements of selection
esponse, in SI sections S5.7 and S5.9 we show that 𝐋𝜻𝐲 is non-singular
or all 𝜻 ∈ {𝐲, 𝐳,𝐦} if 𝐇𝐲 is non-singular (i.e., if there is mutational

variation in all directions of genotype space); this non-singularity of
𝐋𝜻𝐲 arises because genotypic traits are developmentally independent
by assumption. Consequently, the selection response of the genotype,
geno-phenotype, or geno-envo-phenotype can only vanish when total
genotypic selection vanishes if there is mutational variation in all

directions of genotype space.
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We can recover a mechanistic Lande equation by making four
simplifying assumptions, but such equation is dynamically insufficient.
Let us temporarily assume that the following four conditions hold:
(I) development is non-social (d𝐱⊺∕d�̄�|𝐲=�̄� = 𝟎), and there is (II) no
xogenous plastic response of the phenotype (

[

(d𝐱∕d𝝐⊺)(𝜕�̄�∕𝜕𝜏)
]

|𝐲=�̄� =
), (III) no total immediate selection on the genotype (𝛿𝑤∕𝛿𝐲|𝐲=�̄� =
), and (IV) no niche-constructed effects of the phenotype on fitness
[

(𝜕𝝐⊺∕𝜕𝐱)(𝜕𝑤∕𝜕𝝐)
]

|𝐲=�̄� = 𝟎). Then, the evolutionary dynamics of the
henotype reduces to
d�̄�
d𝜏

≈ 𝜄𝐇𝐱
𝜕𝑤
𝜕𝐱

|

|

|

|𝐲=�̄�
. (Layer 7, Eq. 6)

This is a mechanistic version of the Lande equation for the phenotype.
The mechanistic additive genetic covariance matrix of the phenotype
(Layer 6, Eq. 5) in this equation is singular because the developmentally
initial phenotype is not affected by the genotype and the developmen-
tally final genotypic traits do not affect the phenotype (so d𝐱⊺∕d𝐲|𝐲=�̄�
as rows and columns that are zero; SI section S5.2, Eq. S5.2.16).
his singularity might disappear by removing from the analysis the
evelopmentally initial phenotype and developmentally final genotypic
raits, provided additional conditions hold. Yet, the key point here
s that a system describing the evolutionary dynamics of the pheno-
ype alone is dynamically insufficient because such system depends
n the resident genotype whose evolution must also be followed. In
articular, setting d�̄�∕d𝜏 = 𝟎 does not generally imply an evolutionary
quilibrium, or evolutionary stasis, but only an evolutionary nullcline
n the phenotype, that is, a transient lack of evolutionary change in
he phenotype. To guarantee a dynamically sufficient description of the
volutionary dynamics of the phenotype, we simultaneously consider
he evolutionary dynamics of the phenotype and genotype, that is, the
eno-phenotype.

A dynamically sufficient system can be obtained by describing the
ynamics of the geno-phenotype alone if the environment is con-
tant or has no evolutionary effect. Let us now drop assumptions
-IV but assume that the following three conditions hold: (i) develop-
ent is non-social (d𝐱⊺∕d�̄�|𝐲=�̄� = 𝟎), and there is (ii) no exogenous
lastic response of the phenotype (

[

(d𝐱∕d𝝐⊺)(𝜕�̄�∕𝜕𝜏)
]

|𝐲=�̄� = 𝟎), and
(iii) no niche-constructed effects of the geno-phenotype on fitness
(
[

(𝜕𝝐⊺∕𝜕𝐳)(𝜕𝑤∕𝜕𝝐)
]

|𝐲=�̄� = 𝟎). Then, the evolutionary dynamics of the
eno-phenotype reduces to
d�̄�
d𝜏

≈ 𝜄𝐇𝐳
𝜕𝑤
𝜕𝐳

|

|

|

|𝐲=�̄�
. (Layer 7, Eq. 7)

This is an extension of the mechanistic version of the Lande equation
to consider the geno-phenotype. The mechanistic additive genetic co-
variance matrix of the geno-phenotype (Layer 6, Eq. 6) in this equation
is singular because the geno-phenotype 𝐳 includes the genotype 𝐲 (so
d𝐳⊺∕d𝐲 has fewer rows than columns; Layer 4, Eq. S7). Hence, the de-
grees of freedom of genetic covariation in geno-phenotype space are at
most given by the number of lifetime genotypic traits, so these degrees
of freedom are bounded by genotypic space in a necessarily larger geno-
phenotype space. Thus, 𝐇𝐳 is singular if there is at least one trait that
is developmentally constructed according to the developmental map
(Layer 7, Eq. 1b). The evolutionary dynamics of the geno-phenotype
is now fully determined by Layer 7, Eq. 7 provided that i-iii hold and
that the developmental (Layer 7, Eq. 1b) and environmental (Layer 7,
Eq. 1c) constraints are met, which 𝐇𝐳 guarantees they are if they are
met at the initial evolutionary time 𝜏1. In such case, setting d�̄�∕d𝜏 = 𝟎
does imply an evolutionary equilibrium to first order of approximation,
but this does not imply absence of direct directional selection on the
geno-phenotype (i.e., it is possible that 𝜕𝑤∕𝜕𝐳|𝐲=�̄� ≠ 𝟎) since 𝐇𝐳 is
always singular. Due to this singularity, if there is any evolutionary
equilibrium, there is an infinite number of them. Kirkpatrick and
Lofsvold (1992) showed that if 𝐆 is singular and constant, then the
evolutionary equilibrium that is achieved depends on the initial con-
ditions. Our results extend the relevance of Kirkpatrick and Lofsvold’s
38

(1992) finding by showing that 𝐇𝐳 is always singular and remains so
as it evolves. Moreover, since both the developmental (Layer 7, Eq.
1b) and environmental (Layer 7, Eq. 1c) constraints must be satisfied
throughout the evolutionary process, the developmental and environ-
mental constraints determine the admissible evolutionary trajectory
and the admissible evolutionary equilibria if mutational variation exists
in all directions of genotype space. Therefore, developmental and envi-
ronmental constraints together with direct directional selection jointly
define the evolutionary outcome if mutational variation exists in all
directions of genotype space.

Since selection response is relatively completely described by total
genotypic selection, further insight can be gained by rearranging the
extended mechanistic Lande equation for the geno-phenotype (Layer
7, Eq. 7) in terms of total genotypic selection. Using the rearrangement
in Layer 7, Eq. 5 and making the assumptions i-iii in the previous
paragraph, the extended mechanistic Lande equation in Layer 7, Eq.
7 becomes
d�̄�
d𝜏

≈ 𝜄𝐇𝐳𝐲
d𝑤
d𝐲

|

|

|

|𝐲=�̄�
. (Layer 7, Eq. 8)

f the mutational covariance matrix 𝐇𝐲 is non-singular, then the mecha-
istic additive genetic cross-covariance matrix between geno-phenotype
nd genotype 𝐇𝐳𝐲 is non-singular so evolutionary equilibrium (d�̄�∕d𝜏 =

𝟎) implies absence of total genotypic selection (i.e., d𝑤∕d𝐲|𝐲=�̄� = 𝟎)
to first order of approximation. Moreover, dropping assumptions i-
iii and to first order, lack of total genotypic selection provides a
necessary and sufficient condition for evolutionary equilibria in the
absence of exogenous environmental change and of absolute mutational
constraints (Layer 7, Eq. 5). Consequently, evolutionary equilibria
depend on development and niche construction since total genotypic
selection depends on the developmental matrix and on total niche
construction by the genotype (Eq. (9)). However, since d𝑤∕d𝐲|𝐲=�̄� = 𝟎
as only as many equations as there are lifetime genotypic traits and
ince not only the genotype but also the phenotype and environmental
raits must be determined, then d𝑤∕d𝐲|𝐲=�̄� = 𝟎 provides fewer equations
han variables to solve for. Hence, absence of total genotypic selection
till implies an infinite number of evolutionary equilibria. Again, only
he subset of evolutionary equilibria that satisfy the developmental
Layer 7, Eq. 1b) and environmental (Layer 7, Eq. 1c) constraints are
dmissible, and so the number of admissible evolutionary equilibria
ay be finite. Therefore, admissible evolutionary equilibria have a dual
ependence on developmental and environmental constraints: first,
y the constraints’ influence on total genotypic selection and so on
volutionary equilibria; and second, by the constraints’ specification
f which evolutionary equilibria are admissible.

Because we assume that mutants arise when residents are at car-
ying capacity, the analogous statements can be made for the evolu-
ionary dynamics of a resident vector in terms of lifetime reproductive
uccess (Eq. (8)). Using the relationship between selection gradients
n terms of fitness and of expected lifetime reproductive success (Eq.
2.3.12), the evolutionary dynamics of �̄� for 𝜻 ∈ {𝐱, 𝐲, 𝐳, 𝝐,𝐦} (Layer 7,
q. 1a) are equivalently given by

d�̄�
d𝜏

≈
(

𝜄 1
𝑇
𝐋𝜻𝐦

𝜕𝑅0
𝜕𝐦

+
s𝜻
s𝝐⊺

𝜕𝝐
𝜕𝜏

)

|

|

|

|

|𝐲=�̄�
(Layer 7, Eq. 9a)

=
(

𝜄 1
𝑇
𝐋𝜻𝐳

𝛿𝑅0
𝛿𝐳

+
s𝜻
s𝝐⊺

𝜕𝝐
𝜕𝜏

)

|

|

|

|

|𝐲=�̄�
(Layer 7, Eq. 9b)

=
(

𝜄 1
𝑇
𝐋𝜻𝐲

d𝑅0
d𝐲

+
s𝜻
s𝝐⊺

𝜕𝝐
𝜕𝜏

)

|

|

|

|

|𝐲=�̄�
. (Layer 7, Eq. 9c)

To close, the evolutionary dynamics of the environment can be
ritten in a particular form that is insightful. In SI section S5.8, we

how that the evolutionary dynamics of the environment satisfy
d�̄�
d𝜏

=
[( 𝜕𝝐

𝜕𝐳⊺
+ 𝜕𝝐

𝜕�̄�⊺
) d�̄�
d𝜏

+ 𝜕𝝐
𝜕𝜏

]

|

|

|

|𝐲=�̄�
. (Layer 7, Eq. 10)

Thus, the evolutionary change of the environment comprises ‘‘joint’’

direct niche construction and exogenous environmental change.
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6. Example: allocation to growth vs reproduction

We now provide an example that illustrates the method and some
of the points above. To do this, we use a life-history model rather than
a model of morphological development as the former is simpler yet
sufficient to illustrate the points. In particular, this example shows that
our results above enable direct calculation of the evo-devo dynamics
and the evolution of the constraining matrices 𝐇 and 𝐋 and provide
an alternative method to dynamic optimization to identify the evo-
lutionary outcomes under explicit developmental constraints. We first
describe the example where development is non-social and then extend
the example to make development social.

6.1. Non-social development

We consider the classic life-history problem of modeling the evo-
lution of resource allocation to growth vs reproduction (Gadgil and
Bossert, 1970; León, 1976; Schaffer, 1983; Stearns, 1992; Roff, 1992;
Kozłowski and Teriokhin, 1999). Let there be one phenotype (or state
variable), one genotypic trait (or control variable), and no environ-
mental traits. In particular, let 𝑥𝑎 be a mutant’s phenotype at age 𝑎
(e.g., body size or resources available) and 𝑦𝑎 ∈ [0, 1] be the mutant’s
fraction of resource allocated to phenotype growth at that age. Let the
mutant survival probability 𝑝𝑎 = 𝑝 be constant for all 𝑎 ∈ {1,… , 𝑁a−1}
with 𝑝𝑁a

= 0, so survivorship is 𝓁𝑎 = 𝑝𝑎−1 for all 𝑎 ∈ {1,… , 𝑁a} with
𝓁𝑁a+1 = 0. Let the mutant fertility be

𝑓𝑎 = 𝑑(�̄�)(1 − 𝑦𝑎)𝑥𝑎,

where (1−𝑦𝑎)𝑥𝑎 is the resource a mutant allocates to reproduction at age
𝑎 and 𝑑(�̄�) is a positive density-dependent scalar that brings the resident
population size to carrying capacity. Let the developmental constraint
be

𝑥𝑎+1 = 𝑔𝑎(𝐳𝑎, �̄�) = 𝑥𝑎 + 𝑦𝑎𝑥𝑎 = (1 + 𝑦𝑎)𝑥𝑎, (Example, Eq. 1)

with initial condition 𝑥1 = �̄�1, where 𝑦𝑎𝑥𝑎 is the resource a mutant
allocates to growth at age 𝑎. These equations are a simplification of
those used in the classic life-history problem of finding the optimal re-
source allocation to growth vs reproduction in discrete age (Gadgil and
Bossert, 1970; León, 1976; Schaffer, 1983; Stearns, 1992; Roff, 1992;
Kozłowski and Teriokhin, 1999). In life-history theory, one assumes
that at evolutionary equilibrium, a measure of fitness such as lifetime
reproductive success is maximized by an optimal control 𝐲∗ yielding
an optimal pair (𝐱∗, 𝐲∗) that is obtained with dynamic programming
or optimal control theory (Sydsæter et al., 2008). Instead, here we
illustrate how the evolutionary dynamics of (�̄�, �̄�) can be analyzed
with the equations derived in this paper, including identification of an
optimal pair (𝐱∗, 𝐲∗).

We begin by obtaining analytical expressions for the phenotype and
the density dependent scalar. Although an analytical expression for
the phenotype is possible for this simple model, numerical solution
is sufficient for more complex models. Iterating the recurrence given
by the developmental constraint (Example, Eq. 1) yields the mutant
phenotype at age 𝑎

𝑥𝑎 = 𝑥1
𝑎−1
∏

𝑘=1
(1 + 𝑦𝑘). (Example, Eq. 2)

To find the density-dependent scalar, we note that a resident at carrying
capacity satisfies the Euler–Lotka equation ∑𝑁a

𝑎=1 𝑓
◦
𝑎 𝓁𝑎 = 1 (Eq. S2.4.9),

which yields

𝑑(�̄�) = 1
∑𝑁a

𝑎=1(1 − �̄�𝑎)�̄�𝑎𝓁𝑎
.

We now calculate the elements of the bottom layers that we need to
alculate genetic covariation and the evolutionary dynamics. Because
here are no environmental traits, total immediate effects equal direct
39
effects (i.e., layer 3 is immaterial). Also, because development is non-
social, stabilized effects equal total effects (except for social feedback,
which is simply the identity matrix; i.e., layer 5 is immaterial). So, we
only need to compute layers 2 and 4, that is, direct and total effects.
Using Eq. (5a), the entries of the direct selection gradients are given
by

𝜕𝑤
𝜕𝑥𝑎

|

|

|

|𝐲=�̄�
=

𝑁a
∑

𝑗=1

𝜕𝑤𝑗

𝜕𝑥𝑎

|

|

|

|

|𝐲=�̄�
=

𝜕𝑤𝑎
𝜕𝑥𝑎

|

|

|

|𝐲=�̄�

= 1
𝑇

(

𝜙𝑎
𝜕𝑓𝑎
𝜕𝑥𝑎

+ 𝜋𝑎
𝜕𝑝𝑎
𝜕𝑥𝑎

)

|

|

|

|

|𝐲=�̄�
= 1

�̃�
𝓁𝑎(1 − �̄�𝑎),

𝜕𝑤
𝜕𝑦𝑎

|

|

|

|𝐲=�̄�
=

𝑁a
∑

𝑗=1

𝜕𝑤𝑗

𝜕𝑦𝑎

|

|

|

|

|𝐲=�̄�
=

𝜕𝑤𝑎
𝜕𝑦𝑎

|

|

|

|𝐲=�̄�

= 1
𝑇

(

𝜙𝑎
𝜕𝑓𝑎
𝜕𝑦𝑎

+ 𝜋𝑎
𝜕𝑝𝑎
𝜕𝑦𝑎

)

|

|

|

|

|𝐲=�̄�
= − 1

�̃�
𝓁𝑎�̄�𝑎. (Example, Eq. 3)

where the generation time without density dependence is

�̃� =
𝑁a
∑

𝑗=1
𝑗𝓁𝑗 (1 − �̄�𝑗 )�̄�𝑗 .

Thus, there is always direct selection for increased phenotype and
against allocation to growth (except at the boundaries where �̄�𝑎 = 1 or
̄𝑎 = 0). The entries of the matrices of direct effects on the phenotype
(𝑎: row, 𝑗: column) are given by

𝜕𝑥𝑗
𝜕𝑥𝑎

|

|

|

|

|𝐲=�̄�
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 + �̄�𝑎 if 𝑗 = 𝑎 + 1

1 if 𝑗 = 𝑎

0 otherwise,

𝜕𝑥𝑗
𝜕𝑦𝑎

|

|

|

|

|𝐲=�̄�
=

⎧

⎪

⎨

⎪

⎩

�̄�𝑎 if 𝑗 = 𝑎 + 1

0 otherwise.

Using Eq. (12) and Eq. S5.2.15, the entries of the matrices of total
effects on the phenotype are given by

d𝑥𝑗
d𝑥𝑎

|

|

|

|

|𝐲=�̄�
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑗−1
∏

𝑘=𝑎

𝜕𝑥𝑘+1
𝜕𝑥𝑘

|

|

|

|

|

|𝐲=�̄�

if 𝑗 > 𝑎

1 if 𝑗 = 𝑎

0 otherwise

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑗−1
∏

𝑘=𝑎
(1 + �̄�𝑘) if 𝑗 > 𝑎

1 if 𝑗 = 𝑎

0 otherwise,

d𝑥𝑗
d𝑦𝑎

|

|

|

|

|𝐲=�̄�
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝜕𝑥𝑎+1
𝜕𝑦𝑎

𝑗−1
∏

𝑘=𝑎+1

𝜕𝑥𝑘+1
𝜕𝑥𝑘

)

|

|

|

|

|

|𝐲=�̄�

if 𝑗 > 𝑎 + 1

𝜕𝑥𝑎+1
𝜕𝑦𝑎

|

|

|

|𝐲=�̄�
if 𝑗 = 𝑎 + 1

0 otherwise

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̄�𝑎
𝑗−1
∏

𝑘=𝑎+1
(1 + �̄�𝑘) if 𝑗 > 𝑎 + 1

�̄�𝑎 if 𝑗 = 𝑎 + 1

0 otherwise.

(Example, Eq. 4)
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Then, using Layer 4, Eq. S20 and Eq. (9), the entries of the total
selection gradients are given by

d𝑤
d𝑥𝑎

|

|

|

|𝐲=�̄�
=

(

d𝐱⊺
d𝑥𝑎

𝜕𝑤
𝜕𝐱

)

|

|

|

|

|𝐲=�̄�
=

𝑁a
∑

𝑗=1

( d𝑥𝑗
d𝑥𝑎

𝜕𝑤
𝜕𝑥𝑗

)

|

|

|

|

|𝐲=�̄�

=

(

d𝑥𝑎
d𝑥𝑎

𝜕𝑤
𝜕𝑥𝑎

+
𝑁a
∑

𝑗=𝑎+1

d𝑥𝑗
d𝑥𝑎

𝜕𝑤
𝜕𝑥𝑗

)

|

|

|

|

|

|𝐲=�̄�

= 1
�̃�

[

𝓁𝑎(1 − �̄�𝑎) +
𝑁a
∑

𝑗=𝑎+1
𝓁𝑗 (1 − �̄�𝑗 )

𝑗−1
∏

𝑘=𝑎
(1 + �̄�𝑘)

]

,

d𝑤
d𝑦𝑎

|

|

|

|𝐲=�̄�
=

(

𝜕𝑤
𝜕𝑦𝑎

+ d𝐱⊺
d𝑦𝑎

𝜕𝑤
𝜕𝐱

)

|

|

|

|

|𝐲=�̄�
=

(

𝜕𝑤
𝜕𝑦𝑎

+
𝑁a
∑

𝑗=1

d𝑥𝑗
d𝑦𝑎

𝜕𝑤
𝜕𝑥𝑗

)

|

|

|

|

|

|𝐲=�̄�

=

(

𝜕𝑤
𝜕𝑦𝑎

+
d𝑥𝑎+1
d𝑦𝑎

𝜕𝑤
𝜕𝑥𝑎+1

+
𝑁a
∑

𝑗=𝑎+2

d𝑥𝑗
d𝑦𝑎

𝜕𝑤
𝜕𝑥𝑗

)

|

|

|

|

|

|𝐲=�̄�

= − 1
�̃�
𝓁𝑎�̄�𝑎 + �̄�𝑎

1
�̃�
𝓁𝑎+1(1 − �̄�𝑎+1)

+
𝑁a
∑

𝑗=𝑎+2
�̄�𝑎

𝑗−1
∏

𝑘=𝑎+1
(1 + �̄�𝑘)

1
�̃�
𝓁𝑗 (1 − �̄�𝑗 )

= 1
�̃�
�̄�𝑎

[

−𝓁𝑎 +
𝑁a
∑

𝑗=𝑎+1
𝓁𝑗 (1 − �̄�𝑗 )

𝑗−1
∏

𝑘=𝑎+1
(1 + �̄�𝑘)

]

,

(Example, Eq. 5)

where we use the empty-product notation such that ∏𝑎−1
𝑘=𝑎 𝐹𝑘 = 1 and

the empty-sum notation such that ∑𝑎−1
𝑘=𝑎 𝐹𝑘 = 0 for any 𝐹𝑘. There

is thus always total selection for increased phenotype (except at the
boundaries), although total selection for allocation to growth may be
positive or negative.

Now, using Eqs. (1) and (3), the evo-devo dynamics are given by
𝛥�̄�
𝛥𝜏

≈ 𝜄𝐇𝐲
d𝑤
d𝐲

|

|

|

|𝐲=�̄�

̄𝑎+1 = 𝑔𝑎(�̄�𝑎, �̄�).
(Example, Eq. 6)

Using Layer 7, Eq. 1a, Layer 7, Eq. 4, and Layer 7, Eq. 5, the evolu-
tionary dynamics of the resident phenotype in the limit as 𝛥𝜏 → 0 are
iven by

d�̄�
d𝜏

≈ 𝜄𝐇𝐱𝐳
𝜕𝑤
𝜕𝐳

|

|

|

|𝐲=�̄�
= 𝜄𝐇𝐱𝐲

d𝑤
d𝐲

|

|

|

|𝐲=�̄�
. (Example, Eq. 7)

ote these are not equations in Lande’s form. In particular, the mech-
nistic additive genetic-cross covariance matrices involved are not
ymmetric and the selection gradients are not those of the evolving trait
n the left-hand side; Example, Eq. 7 cannot be arranged in Lande’s form
ecause the genotypic trait directly affects fitness (i.e., 𝜕𝑤∕𝜕𝐲|𝐲=�̄� ≠ 𝟎;
Example, Eq. 3)). Importantly, 𝐇𝐱𝐳 and 𝐇𝐱𝐲 depend on �̄� because of
ene–phenotype interaction in development (i.e., the developmental
ap involves a product 𝑦𝑎𝑥𝑎 such that the total effect of the genotype

n the phenotype depends on the genotype; (Example, Eq. 4)); conse-
uently, Example, Eq. 7 is dynamically insufficient because the system
oes not describe the evolution of �̄�. In turn, the evolutionary dynamics
f the geno-phenotype are given by

d�̄�
d𝜏

≈ 𝜄𝐇𝐳
𝜕𝑤
𝜕𝐳

|

|

|

|𝐲=�̄�
= 𝜄𝐇𝐳𝐲

d𝑤
d𝐲

|

|

|

|𝐲=�̄�
. (Example, Eq. 8)

his system contains dynamic equations for all the evolutionarily dy-
amic variables involved, namely both the resident phenotype �̄� and
he resident genotype �̄�, so it is determined and dynamically suffi-
ient. The first equality in Example, Eq. 8 is in Lande’s form, but 𝐇𝐳
s always singular. In contrast, the matrix 𝐇𝐳𝐲 in the second equal-
ty is non-singular if the mutational covariance matrix 𝐇𝐲 is non-
ingular. Thus, the total selection gradient of the genotype provides

relatively complete description of the evolutionary process of the
eno-phenotype.
40

H

Let the entries of the mutational covariance matrix be given by

𝑦𝑎 ,𝑦𝑗 =

{

𝛾�̄�𝑎(1 − �̄�𝑎) if 𝑗 = 𝑎
0 otherwise,

here 0 < 𝛾 ≪ 1 so the assumption of marginally small mutational
ariance, namely 0 < tr(𝐇𝐲) ≪ 1, holds. Thus, 𝐇𝐲 is diagonal and
ecomes singular only at the boundaries where the resident genotype
s zero or one. Then, from Example, Eq. 6, the evolutionary equilibria
f the genotypic trait at a given age and their stability are given by the
ign of its corresponding total selection gradient.

Let us now find the evolutionary equilibria and their stability for
he genotypic trait. Using Example, Eq. 5, starting from the last age,
he total selection on the genotypic trait at this age is

d𝑤
d𝑦𝑁a

|

|

|

|

|𝐲=�̄�
∝ −𝓁𝑁a

,

which is always negative so the stable resident genotypic trait at the
last age is

�̄�∗𝑁a
= 0. (Example, Eq. 9a)

That is, no allocation to growth at the last age. Continuing with the
second-to-last age, the total selection on the genotypic trait at this age
is

d𝑤
d𝑦𝑁a−1

|

|

|

|

|𝐲=�̄�
∝ − 𝓁𝑁a−1 +

𝑁a
∑

𝑗=𝑁a

𝓁𝑗 (1 − �̄�𝑗 )
𝑗−1
∏

𝑘=𝑁a

(1 + �̄�𝑘)

= − 𝓁𝑁a−1 + 𝓁𝑁a
(1 − �̄�𝑁a

).

valuating at the optimal genotypic trait at the last age (Example, Eq.
a) and substituting 𝓁𝑎 = 𝑝𝑎−1 yields

d𝑤
d𝑦𝑁a−1

|

|

|

|

|𝐲=�̄�=�̄�∗
∝ −𝑝𝑁a−2 + 𝑝𝑁a−1 ∝ −1 + 𝑝,

which is negative (assuming 𝑝 < 1) so the stable resident genotypic trait
t the second-to-last age is

�̄�∗𝑁a−1
= 0. (Example, Eq. 9b)

ontinuing with the third-to-last age, the total selection on the geno-
ypic trait at this age is

d𝑤
d𝑦𝑁a−2

|

|

|

|

|𝐲=�̄�
∝ − 𝓁𝑁a−2 +

𝑁a
∑

𝑗=𝑁a−1
𝓁𝑗 (1 − �̄�𝑗 )

𝑗−1
∏

𝑘=𝑁a−1
(1 + �̄�𝑘)

= − 𝓁𝑁a−2 + 𝓁𝑁a−1(1 − �̄�𝑁a−1)

+ 𝓁𝑁a
(1 − �̄�𝑁a

)(1 + �̄�𝑁a−1).

valuating at the optimal genotypic trait at the last two ages ((Example,
q. 9a) and (Example, Eq. 9b)) and substituting 𝓁𝑎 = 𝑝𝑎−1 yields

d𝑤
d𝑦𝑁a−2

|

|

|

|

|𝐲=�̄�=�̄�∗
∝ −𝑝𝑁a−3 + 𝑝𝑁a−2 + 𝑝𝑁a−1 ∝ −1 + 𝑝 + 𝑝2,

which is positive if

𝑝 > 𝑝∗𝑁a−2
= 1

2
(−1 +

√

5) ≈ 0.62,

(thus, 𝑝∗𝑁a−2
is the reciprocal of the golden ratio). So the stable resident

genotypic trait at the third-to-last age is

�̄�∗𝑁a−2
=

⎧

⎪

⎨

⎪

⎩

0 if 𝑝 < 𝑝∗𝑁a−2
= 1

2 (−1 +
√

5) ≈ 0.62

1 if 𝑝 > 𝑝∗𝑁a−2
= 1

2 (−1 +
√

5) ≈ 0.62.
(Example, Eq. 9c)

f 𝑝 = 𝑝∗𝑁a−2
, the genotypic trait at such age is selectively neutral,

but we ignore this case as without an evolutionary model for 𝑝 it is
iologically unlikely that survival is and remains at such precise value.
ence, there is no allocation to growth at this age for low survival and
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full allocation for high survival. Continuing with the fourth-to-last age,
the total selection on the genotypic trait at this age is

d𝑤
d𝑦𝑁a−3

|

|

|

|

|𝐲=�̄�
∝ − 𝓁𝑁a−3 +

𝑁a
∑

𝑗=𝑁a−2
𝓁𝑗 (1 − �̄�𝑗 )

𝑗−1
∏

𝑘=𝑁a−2
(1 + �̄�𝑘)

= − 𝓁𝑁a−3 + 𝓁𝑁a−2(1 − �̄�𝑁a−2)

+ 𝓁𝑁a−1(1 − �̄�𝑁a−1)(1 + �̄�𝑁a−2)

+ 𝓁𝑁a
(1 − �̄�𝑁a

)(1 + �̄�𝑁a−2)(1 + �̄�𝑁a−1).

Evaluating at the optimal genotypic trait at the last three ages (Exam-
ple, Eq. 9a)–(Example, Eq. 9c) and substituting 𝓁𝑎 = 𝑝𝑎−1 yields

d𝑤
d𝑦𝑁a−3

|

|

|

|

|𝐲=�̄�=�̄�∗
∝ − 𝑝𝑁a−4 + 𝑝𝑁a−3(1 − 𝑦∗𝑁a−2

) + 𝑝𝑁a−2(1 + 𝑦∗𝑁a−2
)

+ 𝑝𝑁a−1(1 + 𝑦∗𝑁a−2
)

∝ − 1 + 𝑝(1 − 𝑦∗𝑁a−2
) + 𝑝2(1 + 𝑝)(1 + 𝑦∗𝑁a−2

).

If 𝑝 < 𝑝∗𝑁a−2
, this is

d𝑤
d𝑦𝑁a−3

|

|

|

|

|𝐲=�̄�=�̄�∗
∝ −1 + 𝑝 + 𝑝2(1 + 𝑝),

which is positive if

𝑝 > 𝑝∗𝑁a−3
≈ 0.54.

If 𝑝 > 𝑝∗𝑁a−2
, the gradient is

d𝑤
d𝑦𝑁a−3

|

|

|

|

|𝐲=�̄�=�̄�∗
∝ −1 + 2𝑝2(1 + 𝑝),

which is positive if

𝑝 > �̃�∗𝑁a−3
≈ 0.565.

Hence, the stable resident genotypic trait at the fourth-to-last age is

�̄�∗𝑁a−3
=

⎧

⎪

⎨

⎪

⎩

0 if 𝑝 < 𝑝∗𝑁a−3
≈ 0.54

1 if 𝑝 > 𝑝∗𝑁a−3
≈ 0.54,

(Example, Eq. 9d)

for 𝑝 ≠ 𝑝∗𝑁a−2
≈ 0.62. Again, this is no allocation to growth for

low survival, although at this earlier age survival can be smaller for
allocation to growth to evolve. Numerical solution for the evo-devo
dynamics using Example, Eq. 6 is given in Fig. 5. The associated
evolution of the 𝐇𝐳 matrix, plotting Layer 6, Eq. 6, is given in Fig. 6. The
code used to generate these figures is in the Supplementary materials.

6.2. Social development

Consider a slight modification of the previous example, so that
development is social. Let the mutant fertility be

𝑓𝑎 = 𝑑(�̄�)(1 − 𝑦𝑎)(𝑥𝑎 + 𝑞�̄�𝑎+1),

where the available resource is now given by 𝑥𝑎 + 𝑞�̄�𝑎+1 for some
constant 𝑞 (positive, negative, or zero). Here the source of social de-
velopment can be variously interpreted, including that an immediately
older resident contributes to (positive 𝑞) or takes from (negative 𝑞)
the resource of the focal individual, or that the focal individual learns
from the older resident (positive or negative 𝑞 depending on whether
learning increases or decreases the phenotype). Let the developmental
constraint be

𝑥𝑎+1 = 𝑔𝑎(𝐳𝑎, �̄�) = 𝑥𝑎 + 𝑦𝑎(𝑥𝑎 + 𝑞�̄�𝑎+1),

with initial condition 𝑥1 = �̄�1.
To see what the stabilization of social development is, imagine the

first individual in the population having a resident genotype developing
with such developmental constraint. As it is the first individual in the
41
Fig. 5. Example. Numerical solution of the evolutionary dynamics of the genotype
and associated developmental dynamics of the phenotype. Large plots give the resident
genotype (left) or phenotype (right) vs age over evolutionary time for various survival
probabilities 𝑝. For low survival, (A) the genotypic trait evolves from mid allocation
to growth over life to no allocation to growth over life. (B) This leads the phenotype
to evolve from indeterminate growth to no growth over life. For medium survival, (C)
the genotypic trait evolves from mid allocation to growth over life to full allocation
to growth at the first age and no allocation to growth at later ages. (D) This leads
the phenotype to evolve from indeterminate growth to determinate growth for one
age. For high survival, (E) the genotypic trait evolves from mid allocation to growth
over life to full allocation to growth at the first two ages and no allocation to growth
at later ages. (F) This leads the phenotype to evolve from indeterminate growth to
determinate growth for two ages, thus reaching the largest size of all these scenarios.
Small plots give the associated direct and total selection gradients; the costate variable
of 𝑥 is proportional to the total selection gradient of the phenotype at large 𝜏. In all
scenarios, there is always negative direct selection for allocation to growth (small left
plots in A,C,E) and non-negative direct selection for the phenotype (small left plots in
B,D,F); hence, the genotype does not reach a fitness peak in geno-phenotype space, but
for medium and high survival the phenotype at early ages reaches a fitness peak. Total
selection for growth (small right plots in A, C,E) is positive only for early ages and
sufficiently high survival; it remains non-zero at evolutionary equilibrium because �̄�𝑎
cannot evolve further as mutational variation vanishes as �̄�𝑎 approaches 0 or 1. Total
selection for the phenotype (small right plots in B,D,F) is always positive, even at
evolutionary equilibrium; the phenotype cannot evolve further despite persistent total
selection for it because genetic variation vanishes as mutational variation vanishes. The
numerical evolutionary outcomes match the analytical expressions for the genotype
(Example, Eq. 9) and associated phenotype (Example, Eq. 2). 𝑥1 = �̄�1 = 1. From
Eq. S2.3.5a, the carrying capacity is �̄�∗ = �̄�∗1

∑4
𝑎=1 𝑝

𝑎−1. We let �̄�∗1 = 2∕(𝜇𝛾), so
𝜄 = 𝛾−1

∑4
𝑎=1 𝑝

𝑎−1.

population, such individual has no social partners so the developed
phenotype is

�̃�𝑎+1 = �̃�𝑎 + �̄�𝑎(�̃�𝑎 + 𝑞 × 0),

with �̃�1 = �̄�1. Imagine a next resident individual who develops in the
context of such initial individual. This next individual develops the
phenotype

̃̃𝑥𝑎+1 = ̃̃𝑥𝑎 + �̄�𝑎( ̃̃𝑥𝑎 + 𝑞�̃�𝑎+1),

with ̃̃𝑥1 = �̄�1, but then ̃̃𝑥𝑎+1 ≠ �̃�𝑎+1. Iterating this process, the resident
phenotype �̄� may converge to a socio-devo equilibrium �̄�∗∗, which
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𝑥

𝑥

𝑥

Fig. 6. Resulting evolutionary dynamics of the mechanistic additive genetic covariance
matrix 𝐇𝐳 . The upper-left quadrant (blue) is the mechanistic additive genetic covariance
matrix 𝐇𝐱 of the phenotype, that is, of the state variable. For instance, at the initial
evolutionary time, the genetic variance for the phenotype is higher at later ages, and
the phenotype at age 3 is highly genetically correlated with the phenotype at age 4.
As evolutionary time progresses, genetic covariation vanishes as mutational covariation
vanishes (𝐇𝐲 becomes singular) as genotypic traits approach their boundary values.
𝑝 = 0.7. The evolutionary times 𝜏 shown correspond to those of Fig. 5.

satisfies

̄∗∗𝑎+1 = �̄�∗∗𝑎 + �̄�𝑎(�̄�∗∗𝑎 + 𝑞�̄�∗∗𝑎+1).

Solving for �̄�∗∗𝑎+1 yields a recurrence for the resident phenotype at
socio-devo equilibrium

̄∗∗𝑎+1 =
1 + �̄�𝑎
1 − 𝑞�̄�𝑎

�̄�∗∗𝑎 (Example, Eq. 10)

provided that 1 − 𝑞�̄�𝑎 ≠ 0.
Iterating Example, Eq. 10 yields the resident phenotype at socio-

devo equilibrium

̄𝑎 = �̄�1
𝑎−1
∏

𝑘=1

1 + �̄�𝑘
1 − 𝑞�̄�𝑘

, (Example, Eq. 11)

where we drop the ∗∗ for simplicity. To determine when this socio-devo
equilibrium is socio-devo stable, we find the eigenvalues of d𝐱∕d�̄�⊺|𝐲=�̄�
(Eq. (28)) as follows. The entries of the matrix of the direct social effects
on the phenotype are given by

𝜕𝑥𝑗
𝜕�̄�𝑎

|

|

|

|

|𝐲=�̄�
=

{

�̄�𝑎−1𝑞 if 𝑗 = 𝑎
0 otherwise.

Hence, from Eq. S5.6.8 and Eq. S5.6.9, d𝐱∕d�̄�⊺|𝐲=�̄� is lower-triangular,
so its eigenvalues are the values in its main diagonal, which are given
by 𝜕𝑥𝑎∕𝜕�̄�𝑎|𝐲=�̄� = �̄�𝑎−1𝑞. Thus, the eigenvalues of d𝐱∕d�̄�⊺|𝐲=�̄� have
absolute value strictly less than one if |𝑞| < 1, in which case the
socio-devo equilibrium in Example, Eq. 11 is socio-devo stable.

Therefore, let �̄� be the SDS resident phenotype given by Example,
Eq. 11 with |𝑞| < 1. Then, the evo-devo dynamics are given by Example,
Eq. 6. Using Layer 7, Eq. 1a, Layer 7, Eq. 4, and Layer 7, Eq. 5, the
evolutionary dynamics of the phenotype in the limit as 𝛥𝜏 → 0 are now
given by
d�̄�
d𝜏

≈ 𝜄𝐋𝐱𝐳
𝜕𝑤
𝜕𝐳

|

|

|

|𝐲=�̄�
= 𝜄𝐋𝐱𝐲

d𝑤
d𝐲

|

|

|

|𝐲=�̄�
. (Example, Eq. 12)

This system is dynamically insufficient as 𝐋𝐱𝐳 and 𝐋𝐱𝐲 depend on �̄�
because of gene–phenotype interaction in development. In turn, the
evolutionary dynamics of the geno-phenotype are given by
d�̄�
d𝜏

≈ 𝜄𝐋𝐳
𝜕𝑤
𝜕𝐳

|

|

|

|𝐲=�̄�
= 𝜄𝐋𝐳𝐲

d𝑤
d𝐲

|

|

|

|𝐲=�̄�
. (Example, Eq. 13)

This system is dynamically sufficient as it contains dynamic equations
for all evolutionarily dynamic variables involved, namely both �̄� and �̄�.
42
While 𝐋𝐳 in the first equality is always singular, the matrix 𝐋𝐳𝐲 in the
second equality is non-singular if the mutational covariance matrix 𝐇𝐲
is non-singular. Thus, the total selection gradient of the genotype still
provides a relatively complete description of the evolutionary process
of the geno-phenotype.

We can similarly find that the total selection gradient of the geno-
typic trait at age 𝑎 is

d𝑤
d𝑦𝑎

|

|

|

|𝐲=�̄�
= 1

�̃�
�̄�𝑎

1 + 𝑞
1 − 𝑞�̄�𝑎

[

−𝓁𝑎 +
𝑁a
∑

𝑗=𝑎+1
𝓁𝑗 (1 − �̄�𝑗 )

𝑗−1
∏

𝑘=𝑎+1
(1 + �̄�𝑘)

]

,

where the generation time without density dependence is now

�̃� =
𝑁a
∑

𝑗=1
𝑗𝓁𝑗 (1 − �̄�𝑗 )�̄�𝑗

1 + 𝑞
1 − 𝑞�̄�𝑗

.

This total selection gradient of the genotypic trait at age 𝑎 has the same
sign as that found in the model for non-social development (Example,
Eq. 5). Hence, the stable evolutionary equilibria for the genotype are
still given by Example, Eq. 9. Yet, the associated phenotype, given by
Example, Eq. 11, may be different due to social development (Fig. 7).
That is, social development here does not affect the evolutionary equi-
libria, as it does not affect the zeros of the total selection gradient
of the genotype which gives the zeros of the evolutionary dynamics
of the geno-phenotype (Example, Eq. 13). Instead, social development
affects here the developmental constraint so it affects the admissible
evolutionary equilibria of the phenotype. Numerical solution for the
evo-devo dynamics using Example, Eq. 6 is given in Fig. 7. For the
𝑞 chosen, the phenotype evolves to much larger values due to social
feedback than with non-social development although the genotype
evolves to the same values. The associated evolution of the 𝐋𝐳 matrix,
using Layer 6, Eq. 9, is given in Fig. 8. The code used to generate these
figures is in the Supplementary materials.

7. Discussion

We have addressed the question of how development affects evolu-
tion by formulating a mathematical framework that integrates explicit
developmental dynamics into evolutionary dynamics. The framework
integrates age progression, explicit developmental constraints accord-
ing to which the phenotype is constructed across life, and evolutionary
dynamics. This framework yields a description of the structure of
genetic covariation, including the additive effects of allelic substitution
d𝐱⊺∕d𝐲|𝐲=�̄�, from mechanistic processes. The framework also yields a
dynamically sufficient description of the evolution of developed phe-
notypes in gradient form, such that their long-term evolution can be
described as the climbing of a fitness landscape within the assumptions
made. This framework provides a tractable method to model the evo-
devo dynamics for a broad class of models. We also obtain formulas
to compute the sensitivity of the solution of a recurrence (here, the
phenotype) to perturbations in the solution or parameters at earlier
times (here, ages), which are given by d𝐱⊺∕d𝜻 for 𝜻 ∈ {𝐱, 𝐲}. Overall,
the framework provides a theory of constrained long-term evolutionary
dynamics, where the developmental and environmental constraints
determine the admissible evolutionary path.

Previous understanding suggested that development affects evolu-
tion by inducing genetic covariation and genetic constraints, although
the nature of such constraints had remained uncertain. We find that
genetic constraints are necessarily absolute in a generally dynamically
sufficient description of long-term phenotypic evolution in gradient
form. This is because dynamic sufficiency in general requires that not
only phenotypic but also genotypic evolution is followed. Because the
phenotype is related to the genotype via development, simultaneously
describing the evolution of the genotype and phenotype in gradient
form entails that the associated constraining matrix (𝐇𝐳 or 𝐋𝐳) is
necessarily singular with a maximum number of degrees of freedom
given by the number of lifetime genotypic traits (𝑁 𝑁 ). Consequently,
a g
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Fig. 7. Example with social development. The genotype evolves to the same values as
those with non-social development in Fig. 5. However, the phenotype evolves to much
larger values due to social development. Total and direct selection for the phenotype
(small plots in B,D,F) are smaller than with non-social development, to the point of
there being almost no direct selection on the phenotype with high survival indicating
that the phenotype is near a fitness peak even for late ages (small left plot in F). Large
plots give the resident genotype (left) or phenotype (right) vs age over evolutionary
time for various survival probabilities 𝑝. Small plots give the associated direct and
total selection gradients. The numerical evolutionary dynamics of the genotype match
the analytical expressions for the genotype (Example, Eq. 9) and associated phenotype
(Example, Eq. 11). 𝜄 is as in Fig. 5. 𝑞 = 0.5.

Fig. 8. Resulting dynamics of the mechanistic additive socio-genetic cross-covariance
matrix 𝐋𝐳 . The structure and dynamics of 𝐋𝐳 here are similar to those of 𝐇𝐳 in Fig. 8
but the magnitudes are an order of magnitude larger (compare bar legends). 𝑝 = 0.7,
𝑞 = 0.5. The evolutionary times 𝜏 shown correspond to those of Fig. 7.

genetic covariation is necessarily absent in as many directions of geno-
phenotype space as there are lifetime developed traits (𝑁a𝑁p). Since
the constraining matrix is singular, direct directional selection is insuffi-
cient to identify evolutionary equilibria in contrast to common practice.
Instead, total genotypic selection, which depends on development, is
sufficient to identify evolutionary equilibria if there are no absolute
43
mutational constraints and no exogenous plastic response. Yet, absence
of total genotypic selection is insufficient to identify evolutionary out-
comes because the singularity of the constraining matrix associated to
direct geno-phenotypic selection entails that if there is any evolutionary
equilibrium and no exogenous plastic response, then there is an infi-
nite number of evolutionary equilibria that depend on development.
Which of these equilibria is attained also depends on development
as it determines the admissible evolutionary trajectory and so the
admissible equilibria. The adaptive topography in phenotype space is
often assumed to involve a non-singular 𝐆-matrix where evolutionary
outcomes occur at fitness landscape peaks (i.e., where 𝜕𝑤∕𝜕𝐱|𝐲=�̄�=�̄�∗ =
𝟎). In contrast, we find that the evolutionary dynamics differ from that
representation in that evolutionary outcomes occur at best (i.e., without
absolute mutational constraints) at peaks in the admissible evolutionary
path determined by development (i.e., where d𝑤∕d𝐲|𝐲=�̄�=�̄�∗ = 𝟎), and
that such path peaks do not typically occur at landscape peaks (so
generally 𝜕𝑤∕𝜕𝐳|𝐲=�̄�=�̄�∗ ≠ 𝟎).

The singularity of the constraining matrix (𝐇𝐳 or 𝐋𝐳) is not due
to our adaptive dynamics assumptions. Under quantitative genetics
assumptions, the additive genetic covariance matrix of phenotype 𝐱
is 𝐆𝐱 = 𝜶𝐱cov[𝐲, 𝐲]𝜶

⊺
𝐱 as described in the introduction, and here

we use the subscripts 𝐱 to highlight that this 𝜶 matrix is for the
regression coefficients of the phenotype with respect to gene content.
Under quantitative genetics assumptions, the matrix cov[𝐲, 𝐲] describes
the observed covariance in allele frequency due to any source, so it
describes standing covariation in allele frequency. Under our adaptive
dynamics assumptions, we obtain an 𝐇𝐱 matrix that has the same form
of 𝐆𝐱, but where cov[𝐲, 𝐲] describes the covariance in genotypic traits
only due to mutation at the current evolutionary time step among the
possible mutations, so it describes (expected) mutational covariation.
Regardless of whether cov[𝐲, 𝐲] describes standing covariation in allele
frequency or mutational covariation, the additive genetic covariance
matrix in geno-phenotype space 𝐆𝐳 = 𝜶𝐳cov[𝐲, 𝐲]𝜶

⊺
𝐳 is always singular

because the developmental matrix of the geno-phenotype 𝜶⊺
𝐳 has fewer

rows than columns: that is, the degrees of freedom of 𝐆𝐳 have an
upper bound given by the number of loci (or genetic predictors) while
the size of 𝐆𝐳 is given by the number of loci and of phenotypes.
Thus, whether one considers standing or mutational covariation, the
additive genetic covariance matrix of the geno-phenotype is always
singular. Eliminating traits from the analysis to render 𝐆𝐳 non-singular
as traditionally recommended (Lande, 1979) either renders the gradient
system underdetermined and so dynamically insufficient in general (if
allele frequency �̄� is removed), or prevents a description of phenotypic
evolution as the climbing of a fitness landscape (if the mean phenotype
�̄� is removed). The singularity of 𝐇 and 𝐋 in geno-phenotype space
persists despite evolution of the developmental map, regardless of the
number of genotypic traits or phenotypes provided there is any pheno-
type, and in the presence of endogenous or exogenous environmental
change. Thus, we find that a dynamically sufficient description of
phenotypic evolution in gradient form generally requires a singular
constraining matrix. It remains to be seen whether these conclusions
hold under other types of developmental constraints, for instance,
inequality constraints or stochastic development.

In our results, dynamic sufficiency for phenotypic evolution in gra-
dient form requires that the constraining matrix is in geno-phenotype
space particularly because of non-linear development. The 𝐇-matrix
in phenotype space generally depends on the resident genotype via
both the mutational covariance matrix and the developmental ma-
trix. The developmental matrix depends on the resident genotype due
to non-linear development, particularly gene–gene interaction, gene–
phenotype interaction, and gene–environment interaction (see text be-
low Layer 6, Eq. 5). The analogous dependence of 𝐆 on allele fre-
quency holds under quantitative genetics assumptions for the same
reasons (Turelli, 1988; Service and Rose, 1985). If development is linear
(i.e., the developmental map for all phenotypes is a linear function in all

its variables at all ages), the developmental matrix no longer depends
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on the resident genotype (or allele frequency under quantitative ge-
netics assumptions). If in addition the mutational covariance matrix is
independent of the resident genotype, then the constraining matrix 𝐇 in
henotype space is no longer dependent on the resident genotype. Thus,
f one assumes linear development and both mutational covariation and
henotypic selection being independent of the resident genotype (in
ddition to no social interactions, no exogenous plastic response, no
otal immediate genotypic selection, and no niche-constructed effects
f the phenotype on fitness; Layer 7, Eq. 6), the 𝐇 matrix in phenotype
pace becomes constant and the mechanistic Lande equation (Layer 7,
q. 6) becomes dynamically sufficient. However, even simple models
f explicit development involve non-linearities (e.g., Example, Eq. 1)
nd mutational covariation depends on the resident genotype when-
ver the genotype is constrained to take values within a finite range
e.g., between zero and one). Thus, consideration of even slightly
ealistic models of development seems unlikely to allow for a long-term
ynamically sufficient mechanistic Lande equation (i.e., following only
henotypic evolution).

Extensive research efforts have been devoted to determining the
elevance of constraints in adaptive evolution (Arnold, 1992; Hine
nd Blows, 2006; Hansen and Houle, 2008; Jones et al., 2014; Hine
t al., 2014; Engen and Sæther, 2021). Empirical research has found
hat the smallest eigenvalue of 𝐆 in phenotype space is often close to
ero (Kirkpatrick and Lofsvold, 1992; Hine and Blows, 2006; McGuigan
nd Blows, 2007). Mezey and Houle (2005) found a non-singular 𝐆-

matrix for 20 morphological (so, developed) traits in fruit flies. Our
results suggest 𝐆 singularity would still arise in these studies if enough
traits are included to provide a dynamically sufficient description of
long-term phenotypic evolution on an adaptive topography (i.e., if
allele frequency were included in the analysis as part of the multivariate
‘‘geno-phenotype’’).

Previous theory has offered limited predictions as to when the 𝐆-
matrix would be singular. These include that incorporating more traits
in the analysis renders 𝐆 more likely to be singular as the traits are
more likely to be genetically correlated, such as in infinite-dimensional
traits (Gomulkiewicz and Kirkpatrick, 1992; Kirkpatrick and Lofsvold,
1992). Suggestions to include gene frequency as part of the trait vector
in the classic Lande equation (e.g., Barfield et al., 2011) have been
made without noticing that doing so entails that the associated 𝐆-
matrix is necessarily singular. Kirkpatrick and Lofsvold (1992, p. 962
onwards) showed that, assuming that 𝐆 in phenotypic space is singular
and constant, then the evolutionary trajectory and equilibria depend on
the evolutionarily initial conditions of the phenotype. Such dependence
of evolutionary outcomes on the evolutionarily initial conditions is
sometimes called phylogenetic constraints (Hansen, 1997). Our results
extend the relevance of Kirkpatrick and Lofsvold’s (1992) analysis
by our observation that the constraining matrix is always singular
in a dynamically sufficient gradient system for long-term phenotypic
evolution, even with few traits and evolution of the constraining ma-
trix. In our framework, the evolutionarily initial conditions of the
phenotype are given by the developmental constraint evaluated at the
evolutionarily initial genotype and environment. Hence, the evolution-
ary trajectory, equilibria, and outcomes depend on the developmental
constraint, which provides the admissible evolutionary path.

Multiple mathematical models have studied whether 𝐆 is singular.
Recently, simulation work studying the effect of pleiotropy on the
structure of the 𝐆-matrix found that the smallest eigenvalue of 𝐆 is
very small but positive (Engen and Sæther, 2021, Tables 3 and 5).
Our findings indicate that this model and others (e.g., Wagner, 1984;
Barton and Turelli, 1987; Wagner, 1989; Wagner and Mezey, 2000;
Martin, 2014; Morrissey, 2014, 2015) would recover 𝐆-singularity by
considering the geno-phenotype, so that both allele frequency and phe-
notype change are part of the gradient system. Other recent simulation
work found that a singular 𝐆-matrix due to few segregating alleles
still allows the phenotype to reach its unconstrained optimum if all
44

loci have segregating alleles at some point over the long run, thus f
allowing for evolutionary change in all directions of phenotype space
in the long run (Barton, 2017, Fig. 3). Our results indicate that such
a model attains the unconstrained optimum because it assumes that
fitness depends on a single phenotype at a single age, that additive
effects of allelic substitution are never zero, and that there is no direct
genotypic selection and no niche-constructed effects of the genotype
on fitness (i.e., there 𝜕𝑤∕𝜕𝐲 = 𝟎 and (d𝝐⊺∕d𝐲)(𝜕𝑤∕𝜕𝝐) = 𝟎, so d𝑤∕d𝑦𝑖𝑎 =
∑𝑁a

𝑗=1
∑𝑁p

𝑘=1(d𝑥𝑘𝑗∕d𝑦𝑖𝑎)(𝜕𝑤∕𝜕𝑥𝑘𝑗 ), which since fitness depends on a single
trait k at a single age j further reduces to (d𝑥kj∕d𝑦𝑖𝑎)(𝜕𝑤∕𝜕𝑥kj); hence,
assuming d𝑥kj∕d𝑦𝑖𝑎 ≠ 0, there we have that d𝑤∕d𝑦𝑖j = 0 for any locus 𝑖
implies 𝜕𝑤∕𝜕𝑥kj = 0; Layer 4, Eq. S21). Our results show that when
at least one of these assumptions does not hold, the unconstrained
optimum is not necessarily achieved (as illustrated in Example, Eq.
3 and Fig. 5A-B, where 𝜕𝑤∕𝜕𝐲 ≠ 𝟎). In our framework, phenotypic
volution converges at best to constrained fitness optima, which may
nder certain conditions coincide with unconstrained fitness optima.
onvergence to constrained fitness optima under no absolute muta-
ional constraints occurs even with the fewest number of traits allowed
n our framework: two, that is, one genotypic trait and one phenotype
ith one age each (or in a standard quantitative genetics framework,
llele frequency at a single locus and one quantitative trait that is a
unction of such allele frequency). Such constrained adaptation has im-
ortant implications for biological understanding (see e.g., Kirkpatrick
nd Lofsvold, 1992; Gomulkiewicz and Kirkpatrick, 1992). It is also
onsistent with empirical observations of lack of selection response in
he wild despite selection and genetic variation (Merilä et al., 2001;
ansen and Houle, 2004; Pujol et al., 2018), and of relative lack
f stabilizing selection across many species (Kingsolver et al., 2001;
ingsolver and Diamond, 2011).

Other modeling work studied the evolutionary relevance of devel-
pmental factors without concluding that there are necessarily absolute
enetic constraints. Wagner (1984, 1989) constructed and analyzed
volutionary models considering developmental maps, and wrote the
-matrix in terms of his developmental matrix to assess its impact
n the maintenance of genetic variation. Wagner (1984, 1988, 1989)
nd Wagner and Mezey (2000) did not simultaneously track the evo-
ution of genotypes and phenotypes, so did not conclude that the
ssociated 𝐆-matrix is necessarily singular or that the developmental
atrix affects evolutionary equilibria. Altenberg (1995) used Wagner’s

1984, 1989) developmental matrix to model constrained adaptation
see Altenberg, 1995 Fig. 2), finding an analytical expression under
inear development for the constrained optimum phenotype that may
iffer from the globally optimum phenotype if there are fewer genes
han phenotypes (i.e., his Eq. 10). This result can be understood from
ur analysis in that total genotypic selection may vanish with persistent
irectional phenotypic selection if the developmental matrix is singular,
hich happens if there are fewer genotypic traits than phenotypic traits
𝑁g < 𝑁p; Eq. (9)). This and other studies (Via and Lande, 1985, Houle,
991, his Fig. 2 and Kirkpatrick and Lofsvold, 1992, their Fig. 5) have
llustrated how constrained evolutionary dynamics would proceed if
he 𝐆 matrix is singular, considering it as a possible case rather than

necessary case. Other models have found that epistasis can cause
he evolutionary dynamics to take an exponentially long time to reach
itness peaks (Kaznatcheev, 2019). We find that as the constraining
atrix in geno-phenotype space has at least as many zero eigenvalues

s there are lifetime phenotypes (i.e., 𝑁a𝑁p), even if there were infinite
ime, the population does not necessarily reach a fitness peak in geno-
henotype space. The population eventually reaches a fitness peak in
enotype space if there are no absolute mutational constraints after
he landscape is modified by: (1) the interaction of the total effects of
he genotype on phenotype and direct phenotypic selection and (2) the
otal niche-constructed effects of the genotype on fitness.

We find that total genotypic selection provides more information
egarding selection response than direct directional selection or other

orms of total selection. We show that evolutionary equilibria occur
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when total genotypic selection vanishes if there are no absolute muta-
tional constraints and no exogenous plastic response. Direct selection
or total selection on the phenotype need not vanish at evolutionary
equilibria, even if there are no absolute mutational constraints and no
exogenous plastic response. As total genotypic selection depends on
development rather than exclusively on direct selection, and as devel-
opment determines the admissible evolutionary trajectory along which
developmental and environmental constraints are satisfied, our findings
show that development plays a major evolutionary role by sharing
responsibility with selection for defining evolutionary equilibria and for
determining the admissible evolutionary path.

Total selection gradients correspond to quantities that have rece-
ived various names. Such gradients correspond to Caswell’s (1982,
2001) ‘‘total derivative of fitness’’ (denoted by him as d𝜆),
Charlesworth’s (1994) ‘‘total differential’’ (of the population’s growth
rate, denoted by him as d𝑟), van Tienderen’s (1995) ‘‘integrated sen-
sitivity’’ (of the population’s growth rate, denoted by him as IS),
and Morrissey’s (2014, 2015) ‘‘extended selection gradient’’ (denoted
by him as 𝜼). Total selection gradients measure total directional se-
lection, so in our framework they take into account the downstream
developmental effects of a trait on fitness. In contrast, Lande’s (1979)
selection gradients measure direct directional selection, so in our frame-
work’s terms they do not consider the developmentally immediate total
effects of a trait on fitness nor the downstream developmental effects of
a trait on fitness. We obtained compact expressions for total selection
gradients as linear transformations of direct selection gradients, arising
from the chain rule in matrix calculus notation (Layer 4, Eq. S19),
analogously to previous expressions in terms of vital rates that have
no developmental constraints (Caswell, 2001, Eq. 9.38).

Our mechanistic approach to total selection recovers the regression
approach to total selection of Morrissey (2014). Morrissey (2014) de-
fined the extended selection gradient as 𝜼 = 𝜱𝜷, where 𝜷 is Lande’s
selection gradient and 𝜱 is the matrix of total effects of all traits
on themselves (computed as regression coefficients between variables
related by a path diagram rather than as total derivatives, which
entails material differences with our approach as explained above).
Morrissey (2014) used an equation for the total-effect matrix 𝜱 (his
Eq. 2) from path analysis (Greene, 1977, p. 380), which has the
form of our matrices describing developmental feedback of the phe-
notype and the geno-phenotype (d𝐱⊺∕d𝐱|𝐲=�̄� and d𝐳⊺∕d𝐳|𝐲=�̄�; Eq. (11)
and Layer 4, Eq. S8). Thus, interpreting Morrissey’s (2014) 𝜱 as our
d𝐱⊺∕d𝐱|𝐲=�̄� (resp. d𝐳⊺∕d𝐳|𝐲=�̄�) and 𝜷 as our 𝛿𝑤∕𝛿𝐱|𝐲=�̄� (resp. 𝛿𝑤∕𝛿𝐳|𝐲=�̄�)
(i.e., Lande’s selection gradient of the phenotype or the geno-phenotype
if environmental traits are not explicitly included in the analysis), then
Layer 4, Eq. S20 (resp. Layer 4, Eq. S23) shows that the extended
selection gradient 𝜼 = 𝜱𝜷 corresponds to the total selection gradient
of the phenotype d𝑤∕d𝐱|𝐲=�̄� (resp. of the geno-phenotype d𝑤∕d𝐳|𝐲=�̄�).

e did not show that d𝐦⊺∕d𝐦|𝐲=�̄� has the form of the equation for 𝜱
rovided by Morrissey (2014) (his Eq. 2), but it might indeed hold. If
e interpret 𝜱 as our d𝐦⊺∕d𝐦|𝐲=�̄� and 𝜷 as our 𝜕𝑤∕𝜕𝐦|𝐲=�̄� (i.e., Lande’s

election gradient of the geno-envo-phenotype thus explicitly including
nvironmental traits in the analysis), then Layer 4, Eq. S24 shows
hat the extended selection gradient 𝜼 = 𝜱𝜷 corresponds to the total
election gradient of the geno-envo-phenotype d𝑤∕d𝐦|𝐲=�̄�.

Not all total selection gradients provide a relatively complete de-
cription of the selection response. We show in the SI sections S5.7 (Eq.
5.7.5) and S5.9 (Eq. S5.9.5) that the selection response of the geno-
henotype or the geno-envo-phenotype can respectively be written in
erms of the total selection gradients of the geno-phenotype d𝑤∕d𝐳|𝐲=�̄�
r the geno-envo-phenotype d𝑤∕d𝐦|𝐲=�̄�, but such total selection gradi-
nts are insufficient to predict lack of selection response because they
re premultiplied by a singular socio-genetic cross-covariance matrix.
lso, the selection response of the phenotype can be written in terms
f the total selection gradient of the phenotype d𝑤∕d𝐱|𝐲=�̄�, but this
xpression for the selection response has an additional term involving
45

he total immediate selection gradient of the genotype 𝛿𝑤∕𝛿𝐲|𝐲=�̄�, so t
he total selection gradient of the phenotype is insufficient to predict
ack of selection response (even more considering that following the
volutionary dynamics of the phenotype alone is generally dynami-
ally insufficient). In contrast, we have shown that the total selection
radient of the genotype d𝑤∕d𝐲|𝐲=�̄� predicts lack of selection response
f there are no absolute mutational constraints. Thus, out of all total
election gradients considered, only total genotypic selection provides
relatively complete description of the selection response. Morrissey

2015) considers that the total selection gradient of the genotype (his
‘inputs’’) and of the phenotype (his ‘‘traits’’) would be equal, but the
ast line of Layer 4, Eq. S21 shows that the total selection gradients
f the phenotype and genotype are different in general, particularly
ue to direct genotypic selection and the direct effects of genotype on
henotype.

Our results allow for the modeling of evo-devo dynamics in a
ide array of settings. First, developmental and environmental con-

traints (Eqs. (1) and (2)) can mechanistically describe development,
ene–gene interaction, and gene–environment interaction, while allow-
ng for arbitrary non-linearities and evolution of the developmental
ap. Several previous approaches have modeled gene–gene interaction,

uch as by considering multiplicative gene effects, but general analyt-
cal frameworks mechanistically linking gene–gene interaction, gene–
nvironment interaction, developmental dynamics, and evolutionary
ynamics have previously remained elusive (Rice, 1990; Hansen and
agner, 2001; Rice, 2002; Hermisson et al., 2003; Carter et al., 2005;
ice, 2011). A historically dominant yet debated view is that gene–
ene interaction has minor evolutionary effects (Hansen, 2013; Nelson
t al., 2013; Paixão and Barton, 2016; Barton, 2017). Our finding that
he constraining matrix (𝐇 or 𝐋) is necessarily singular in a long-
erm dynamically sufficient phenotypic adaptive topography entails
hat evolutionary equilibria depend on development and consequently
n gene–gene and gene–environment interactions. Hence, gene–gene
nd gene–environment interaction can generally have strong and per-
anent evolutionary effects in the sense of defining together with

election what the evolutionary equilibria are (e.g., via developmental
eedbacks described by d𝐱⊺∕d𝐱|𝐲=�̄�) even by altering the constraining
atrix alone. This contrasts with a non-singular constraining matrix
hereby evolutionary equilibria are pre-determined by selection.

Second, our results allow for the study of long-term evolution
f the constraining matrix as an emergent property of the evolution
f the genotype, phenotype, and environment (i.e., the geno-envo-
henotype). In contrast, it has been traditional to study short-term evo-
ution of 𝐆 by treating it as another dynamic variable under constant
llele frequency (Bulmer, 1971; Lande, 1979; Bulmer, 1980; Lande,
980; Lande and Arnold, 1983; Barton and Turelli, 1987; Turelli, 1988;
avrilets and Hastings, 1994; Carter et al., 2005; Débarre et al., 2014).
hird, our results allow for the study of the effects of developmental
ias, biased genetic variation, and modularity (Wagner, 1996; Pavlicev
nd Hansen, 2011; Pavlicev et al., 2011; Wagner and Zhang, 2011;
avlicev and Wagner, 2012; Watson et al., 2013). While we have
ssumed that mutation is unbiased for the genotype, our equations
llow for the developmental map to bias the phenotype distribution
nd the genetic variation of the phenotype. This may lead to modular
ffects of mutations, whereby altering a genotypic trait at a given age
ends to affect some phenotypes but not others.

Fourth, our equations facilitate the study of life-history models
ith dynamic constraints. Life-history models with dynamic constraints
ave typically assumed evolutionary equilibrium, so they are analyzed
sing dynamic optimization techniques such as dynamic programming
nd optimal control (e.g., León, 1976; Iwasa and Roughgarden, 1984;
ouston and McNamara, 1999; González-Forero et al., 2017; Avila
t al., 2021). In recent years, mathematically modeling the evolution-
ry dynamics of life-history models with dynamic constraints, that
s, of what we call the evo-devo dynamics, has been made possible
ith the canonical equation of adaptive dynamics for function-valued
raits (Dieckmann et al., 2006; Parvinen et al., 2013; Metz et al., 2016).
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However, such an approach poses substantial mathematical challenges
by requiring derivation of functional derivatives and solution of asso-
ciated differential equations for costate variables with terminal condi-
tions thus involving a two-point boundary problem (Parvinen et al.,
2013; Metz et al., 2016; Avila et al., 2021). By using discrete age, we
have obtained closed-form equations that facilitate modeling the evo-
devo dynamics, avoiding the need of functional derivatives, solving
costate equations, or facing a two-point boundary problem. By doing so,
our framework yields an alternative method to dynamic optimization
to analyze a broad class of life-history models with dynamic constraints
(Example and González-Forero, 2023).

Fifth, our framework allows for the modeling of the evo-devo
dynamics of pattern formation by allowing the implementation of
reaction–diffusion equations in discrete space in the developmental map,
nce equations are suitably written (e.g., Eq. 6.1 of Turing, 1952; Tom-
in and Axelrod, 2007; Deutsch and Dormann, 2017; SI section S1.2).
hus, the framework may allow one to implement and analyze the
vo-devo dynamics of existing detailed models of the development
f morphology (e.g., Salazar-Ciudad and Jernvall, 2010; Sheth et al.,
012), to the extent that developmental maps can be written in the
orm of Eq. (1). Sixth, our framework allows for the mechanistic model-
ng of adaptive plasticity, for instance, by implementing reinforcement
earning or supervised learning in the developmental map (Sutton and
arto, 2018; Paenke et al., 2007).

Our approach might also enable modeling developmental innova-
ion, whereby fully formed traits emerge de novo in an individual, such
s an extra digit (Goldschmidt, 1940; Gould, 1977; Orr and Coyne,
992; Orr, 2005; Müller, 2010). The developmental constraint (1)
dmits that a slight perturbation in the geno-envo-phenotype at an
arly age yields a large change in the phenotype at a later age, possibly
hanging it from zero to an appreciable value. This may be used to
odel developmental innovation, possibly via exploratory processes
escribed by Gerhart and Kirschner (2007) and Kirschner and Gerhart
2010) provided that a mathematical model of such processes satis-
ies Eq. (1). However, slight perturbations yielding large phenotypic
ffects might violate our assumption that invasion implies fixation.
t has previously been established that invasion implies fixation if
utant genotypes 𝐲 do not deviate substantially from resident genotypes

̄ (Geritz et al., 2002; Geritz, 2005; Dieckmann et al., 2006; Priklopil
nd Lehmann, 2020; Avila et al., 2021), which we assume. Application
f our framework to model developmental innovation will require
xplicitly determining whether large deviations in mutant phenotypes
n our sense of the word still entail that invasion implies fixation given
mall deviations in mutant genotypes.

By allowing development to be social, our framework allows for
mechanistic description of extra-genetic inheritance and indirect

enetic effects. Extra-genetic inheritance can be described since the
henotype at a given age can be an identical or modified copy of the
eno-phenotype of social partners. Thus, social development allows
or the modeling of social learning (Sutton and Barto, 2018; Paenke
t al., 2007) and epigenetic inheritance (Jablonka et al., 1992; Slatkin,
009; Day and Bonduriansky, 2011). However, in our framework extra-
enetic inheritance is insufficient to yield phenotypic evolution that is
ndependent of both genetic evolution and exogenous plastic change
e.g., in the framework, there cannot be cultural evolution without
enetic evolution or exogenous environmental change). This is seen by
etting mutational covariation and exogenous environmental change
o zero (i.e., 𝐇𝐲 = 𝟎 and 𝜕�̄�∕𝜕𝜏 = 𝟎), which eliminates evolutionary
hange (i.e., d�̄�∕d𝜏 = 𝟎). The reason seems to be that although
here is extra-genetic inheritance in our framework, there is no extra-
enetic variation because both development is deterministic and we use
daptive dynamics assumptions: without mutation, every SDS resident
evelops the same phenotype as every other resident. Extensions to
onsider stochastic development might enable extra-genetic variation
nd possibly phenotypic evolution that is independent of genetic and
46

xogenously plastic evolution. Also, we have only considered social s
nteractions among non-relatives, so our framework at present only
llows for social learning or epigenetic inheritance from non-relatives.

Our framework can mechanistically describe indirect genetic effects
ia social development because the developed phenotype can be mech-
nistically influenced by the genotype or phenotype of social partners.
ndirect genetic effects mean that a phenotype may be partly or com-
letely caused by genes located in another individual (Moore et al.,
997). Indirect genetic effect approaches model the phenotype consid-
ring a linear regression of individual’s phenotype on social partner’s
henotype (Kirkpatrick and Lande, 1989; Moore et al., 1997; Town-
ey and Ezard, 2013), whereas our approach constructs individual’s
henotype from development depending on social partners’ genotype
nd phenotypes. We found that social development generates social
eedback (described by s𝐱∕s�̄�⊺|𝐲=�̄�, Eq. (27)), which closely though not
ntirely corresponds to social feedback found in the indirect genetic
ffects literature (Moore et al., 1997, Eq. 19b and subsequent text).
he social feedback we obtain depends on total social developmental
ias from the phenotype (d𝐱∕d�̄�⊺|𝐲=�̄�, Eq. (28)); analogously, social
eedback in the indirect genetic effects literature depends on the matrix
f interaction coefficients (𝜳 ) which contains the regression coefficients
f phenotype on social partner’s phenotype. Social development leads
o a generalization of mechanistic additive genetic covariance matrices
= cov[𝐛,𝐛] into mechanistic additive socio-genetic cross-covariance

atrices 𝐋 = cov[𝐛s,𝐛]; similarly, indirect genetic effects involve a
eneralization of the 𝐆-matrix, which includes 𝐂𝐚𝐱 = cov[𝐚, 𝐱], namely
he cross-covariance matrix between multivariate breeding value and
henotype (Kirkpatrick and Lande, 1989; Moore et al., 1997; Townley
nd Ezard, 2013).

However, there are differences between our results and those in the
ndirect genetic effects literature. First, social feedback (in the sense
f inverse matrices involving 𝜳 ) appears twice in the evolutionary
ynamics under indirect genetic effects (see Eqs. 20 and 21 of Moore
t al., 1997) while it only appears once in our evolutionary dynamics
quations through s𝐱∕s�̄�⊺|𝐲=�̄� (Layer 6, Eq. 10). This difference may
tem from the assumption in the indirect genetic effects literature that
ocial interactions are reciprocal, while we assume that they are asym-
etric in the sense that, since mutants are rare, mutant’s development
epends on residents but resident’s development does not depend on
utants (we thank J. W. McGlothlin for pointing this out). Second, our
matrices make the evolutionary dynamics equations depend on total

ocial developmental bias from the genotype (d𝐱∕d�̄�⊺|𝐲=�̄�, Eq. (26)) in
non-feedback manner (specifically, not in an inverse matrix) but this

ype of dependence does not occur in the evolutionary dynamics under
ndirect genetic effects (Eqs. 20 and 21 of Moore et al., 1997). This
ifference might stem from the absence of explicit tracking of allele
requency in the indirect genetic effects literature in keeping with the
radition of quantitative genetics, whereas we explicitly track genotypic
raits. Third, ‘‘social selection’’ (i.e., 𝜕𝑤∕𝜕�̄�) plays no role in our results
onsistently with our assumption of a well-mixed population, but social
election plays an important role in the indirect genetic effects litera-
ure even if relatedness is zero (McGlothlin et al., 2010, e.g., setting
= 0 in their Eq. 10 still leaves an effect of social selection on selection

esponse due to ‘‘phenotypic’’ kin selection).
Our framework offers formalizations to the notions of developmen-

al constraints and developmental bias. The two notions have been
ften interpreted as equivalents (e.g., Brakefield, 2006), or with a
istinction such that constraints entail a negative, prohibiting effect
hile bias entails a positive, directive effect of development on the
eneration of phenotypic variation (Uller et al., 2018; Salazar-Ciudad,
021). We defined developmental constraint as the condition that the
henotype at a given age is a function of the individual’s condition
t their immediately previous age, which both prohibits certain val-
es of the phenotype and has a ‘‘directive’’ effect on the generation
f phenotypic variation. We offered quantification of developmental
ias in terms of the slope of the phenotype with respect to itself at

ubsequent ages. No bias would lead to zero slopes thus to identity
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matrices (e.g., 𝜕𝐱⊺∕𝜕𝐱|𝐲=�̄� = 𝐈 and d𝐱⊺∕d𝐱|𝐲=�̄� = 𝐈) and deviations from
the identity matrix would constitute bias.

Our results clarify the role of several developmental factors pre-
viously suggested to be evolutionarily important. We have arranged
the evo-devo process in a layered structure, where a given layer is
formed by components of layers below (Fig. 4). This layered structure
helps see that several developmental factors previously suggested to
have important evolutionary effects (Laland et al., 2014) but with little
clear connection (Welch, 2017) can be viewed as basic elements of the
evolutionary process. Direct-effect matrices (Layer 2) are basic in that
they form all the components of the evolutionary dynamics (Layer 7)
except mutational covariation and exogenous environmental change.
Direct-effect matrices quantify direct (i) directional selection, (ii) de-
velopmental bias, (iii) niche construction, (iv) social developmental
bias (e.g., extra-genetic inheritance and indirect genetic effects; Moore
et al., 1997), (v) social niche construction, (vi) environmental sensi-
tivity of selection (Chevin et al., 2010), and (vii) phenotypic plasticity.
These factors variously affect selection and development, thus affecting
evolutionary equilibria and the admissible evolutionary trajectory.

Our approach uses discrete rather than continuous age, which sub-
stantially simplifies the mathematics. This treatment allows for the
derivation of closed-form expressions for what can otherwise be a
difficult mathematical challenge if age is continuous (Kirkpatrick and
Heckman, 1989; Dieckmann et al., 2006; Parvinen et al., 2013; Metz
et al., 2016; Avila et al., 2021). For instance, costate variables are
key in dynamic optimization as used in life-history models (Gadgil and
Bossert, 1970; León, 1976; Schaffer, 1983; Stearns, 1992; Roff, 1992;
Kozłowski and Teriokhin, 1999; Sydsæter et al., 2008), but general
closed-form formulas for costate variables were previously unavailable
and their calculation often limits the analysis of such models. Costate
variables are key because they are needed to construct optimal con-
trols using Pontryagin’s maximum principle, which is a central tool
of optimal control theory to analytically solve dynamic optimization
problems (Sydsæter et al., 2008). In SI section S4, we show that our
results recover the key elements of Pontryagin’s maximum principle.
Under the assumption that there are no environmental traits (hence, no
exogenous plastic response), in SI section S4, we show that an admis-
sible locally stable evolutionary equilibrium of the evo-devo dynamics
solves a local, dynamic optimization problem of finding a genotype that
both ‘‘totally’’ maximizes a mutant’s lifetime reproductive success 𝑅0
nd ‘‘directly’’ maximizes the Hamiltonian of Pontryagin’s maximum
rinciple. We show that this Hamiltonian depends on costate variables
hat are proportional to the total selection gradient of the phenotype
t evolutionary equilibrium (Eq. S4.3; Metz et al., 2016), and that the
ostate variables satisfy the costate equations of Pontryagin’s maximum
rinciple. Thus, our approach offers an alternative method to optimal
ontrol theory to find admissible evolutionary equilibria for the broad
lass of models considered here. By exploiting the discretization of
ge, we have obtained various formulas that can be computed directly
or the total selection gradient of the phenotype (Layer 4, Eq. S20),
o for costate variables, and of their relationship to total genotypic
election (fifth line of Layer 4, Eq. S21), thus facilitating analytic and
umerical treatment of life-history models with dynamic constraints.
lthough discretization of age may induce numerical imprecision rela-

ive to continuous age (Kirkpatrick and Heckman, 1989), numerical and
mpirical treatment of continuous age typically involves discretization
t one point or another, with continuous curves often achieved by
nterpolation (e.g., Kirkpatrick et al., 1990; Rao, 2009). Numerical
recision with discrete age may be increased by reducing the age bin
ize (e.g., to represent months or days rather than years; Caswell,
001), at a computational cost.

By simplifying the mathematics, our approach yields insight that
ay be otherwise challenging to gain. Life-history models with dy-
amic constraints generally find that costate variables are non-zero
47

nder optimal controls (Gadgil and Bossert, 1970; Taylor et al., 1974;
León, 1976; Schaffer, 1983; Houston et al., 1988; Houston and McNa-
mara, 1999; Sydsæter et al., 2008). This means that there is persistent
total selection on the phenotype at evolutionary equilibrium. Our find-
ings show that this is to be expected for various reasons including if
there are absolute mutational constraints (i.e., active path constraints
so controls remain between zero and one, as in the Example), direct
genotypic selection, or more state variables than control variables (in
which case 𝛿𝐱⊺∕𝛿𝐲 is singular as it has more rows than columns, even
after removing initial states and final controls from the analysis; Eq.
S5.2.10) (fifth line of Layer 4, Eq. S21). Thus, zero total genotypic se-
lection at equilibrium may involve persistent total phenotypic selection.
Moreover, life-history models with explicit developmental constraints
have found that their predictions can be substantially different from
those found without explicit developmental constraints. In particular,
without developmental constraints, the outcome of parent–offspring
conflict over sex allocation has been found to be an intermediate
between the outcomes preferred by mother and offspring (Reuter and
Keller, 2001), whereas with developmental constraints, the outcome
has been found to be that preferred by the mother (Avila et al., 2019).
Our results show that changing the particular form of the developmen-
tal map may induce substantial changes in predictions by influencing
total genotypic selection and the admissible evolutionary equilibria. In
other words, the developmental map used alters the evolutionary out-
come because it modulates absolute socio-genetic constraints (i.e., the
𝐇 or 𝐋 matrices in geno-phenotype space).

We have obtained a term that we refer to as exogenous plastic
response, which is the plastic response to exogenous environmental
change over an evolutionary time step (Layer 7, Eq. 3). An analogous
term occurs in previous equations (Eq. A3 of Chevin et al., 2010).
Additionally, our framework considers endogenous plastic response due
to niche construction (i.e., endogenous environmental change), which
affects both the selection response and the exogenous plastic response.
Exogenous plastic response affects the evolutionary dynamics even
though it is not ultimately caused by change in the resident genotype
(or in gene frequency), but by exogenous environmental change. In par-
ticular, exogenous plastic response allows for a straightforward form of
‘‘plasticity-first’’ evolution (Waddington, 1942, 1961; West-Eberhard,
2003) as follows. At an evolutionary equilibrium where exogenous plas-
tic response is absent, the introduction of exogenous plastic response
generally changes socio-genetic covariation or directional selection at
a subsequent evolutionary time, thereby inducing selection response.
This constitutes a simple form of plasticity-first evolution, whereby
plastic change precedes genetic change, although the plastic change
may not be adaptive and the induced genetic change may have a
different direction to that of the plastic change.

Empirical estimation of the developmental map may be facilitated
by it defining a dynamic equation. Whereas the developmental map
defines a dynamic equation to construct the phenotype, the genotype–
phenotype map corresponds to the solution of such dynamic equation.
It is often impractical or impossible to write the solution of a dynamic
equation, even if the dynamic equation can be written in practice.
Accordingly, it may often prove impractical to empirically estimate the
genotype–phenotype map, whereas it may be more tractable to empiri-
cally infer developmental maps. Inference of developmental maps from
empirical data can be pursued via the growing number of methods to
infer dynamic equations from data (Schmidt and Lipson, 2009; Brunton
et al., 2016; Ghadami and Epureanu, 2022; Course and Nair, 2023).

To conclude, we have formulated a framework that synthesizes
developmental and evolutionary dynamics yielding a theory of long-
term phenotypic evolution on an adaptive topography, which also
mechanistically describes the long-term evolution of genetic covaria-
tion. This framework shows that development has major evolutionary
effects by finding that selection and development jointly define the
evolutionary outcomes if mutation is not absolutely constrained and
exogenous plastic response is absent, rather than the outcomes being
defined only by selection. Our results provide a tool to chart major

territory on how development affects evolution.
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Appendix A. Matrix calculus notation

Following Caswell (2019), for vectors 𝐚 ∈ R𝑛×1 and 𝐛 ∈ R𝑚×1, we
denote

𝜕𝐚
𝜕𝐛⊺

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑎1
𝜕𝑏1

⋯
𝜕𝑎1
𝜕𝑏𝑚

⋮ ⋱ ⋮
𝜕𝑎𝑛
𝜕𝑏1

⋯
𝜕𝑎𝑛
𝜕𝑏𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∈ R𝑛×𝑚,

o (𝜕𝐚∕𝜕𝐛⊺)⊺ = 𝜕𝐚⊺∕𝜕𝐛. The same notation applies with total derivatives.

ppendix B. Supplementary materials

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.tpb.2023.11.003.
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