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Abstract

Sarcasm detection remains a challenging task in the discipline of natural language processing,
primarily due to the large levels of nuance, subjectivity, and context-sensitivity in expression of
the sentiment. Pre-trained large language models have been employed in a variety of sarcasm
detection tasks, including binary sarcasm detection and the classification of sarcastic speech
subcategories. However, such models remain compute-hungry solutions and thus there has been
a recent trend towards attempting to mitigate this through the creation of more lightweight
models - including ELECTRA. This dissertation seeks to assess the efficacy of the ELECTRA
pre-trained large language model, known for its computational efficiency and performant results
in various natural language processing tasks, for multi-class sarcasm subcategory classification.
This research proposes a partial fine-tuning approach to generalise on sarcastic data before the
model is applied in several manners to the task while employing feature engineering techniques
to remove overlap between hierarchical data categories. Preliminary results yield a macro
F1 Score of 0.0787 for 6-class classification and 0.2363 for 3-class classification, indicating
potential for further improvement and application within the field.
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Chapter 1

Introduction

Sentiment analysis, or opinion mining, is part of the Natural Language Processing (NLP)
discipline, and focuses primarily on extracting meaningful information from data relating
to subjective nuances within text utilising machines Liu (2020). Humans are inherently
complex creatures, whose ability to form sentences and express opinions is based on a plethora
of circumstances which help to create the a priori cultural and linguistic knowledge which
contributes to expressing sentiment. The identification of subjectivity in text is particularly
challenging for both humans and machines, with machines often requiring context to identify
subjective nuances such as sarcasm Wallace et al. (2014). Machine Learning approaches to
sentiment analysis have been common in the field since their resurgence in the mid-2000s,
culminating in applications of the now seemingly commonplace pre-trained large language
models (LLMs) such as GPT Radford et al. (2019) and BERT Devlin et al. (2019) to a variety
of sentiment analysis tasks.

Sarcasm, often described as the lowest form of wit and the greatest sign of intelligence, is
defined by the Cambridge Dictionary as "the use of remarks that clearly mean the opposite of
what they say, made in order to hurt someone’s feelings or to criticise something in a humorous
way" Cambridge English Dictionary (2023). Sarcasm is identified as being a communicative
form of irony, in which a situation occurs which was the opposite of the intended result
Joshi, Bhattacharyya and Carman (2018). Sentiment analysis for sarcasm detection has posed
a challenge to NLP practitioners for decades, with early researchers applying stochastic or
rule-based approaches in order to identify particular instances of words, syntaxes, or phrases
which denote the sentiment Liddy (2001). The absence of sufficient context along with
linguistic, facial, or tonal cues denoted in text makes sarcasm detection an interesting challenge
for machines which often require explicit programming to tackle the task as a result.

Pre-trained LLMs such as BERT and its numerous iterations have also been applied to sarcasm
detection Yaghoobian, Arabnia and Rasheed (2021). The application of LLMs to a challenge
such as sarcasm detection appears to be a natural progression for such models, primarily due
to their application of the Transformer-based architecture Vaswani et al. (2017) which has
been proven to attain superior results in the NLP field, and which has led to these models’
impressive ability to derive contextual information from the data provided. The Transformer’s
novel self-attention mechanism eliminated the requirement for recurrences or convolutions,
allowing the model to contextually process entire sequences at each time step during processing
Vaswani et al. (2017). However, these pre-trained LLMs are compute-hungry architectures,
which often comprise millions or billions of parameters while processing billions of tokens

1



CHAPTER 1. INTRODUCTION 2

derived from datasets of billions of words. The development of LLMs has therefore mostly
been restricted to teams working in industry, such as OpenAI’s Radford et al. (2019) and
Google’s Devlin et al. (2019) due to the large costs associated with powering the models and
cloud compute required for their storage.

There has been a recent trend towards developing less compute-hungry LLMs which are capable
of being trained on the same amount of data using less or similar training times for smaller
compute costs. Such models have included ELECTRA, proposed by Clark et al. (2020) in
2020 to streamline BERT’s approach to Masked Language Modelling (MLM), thus using less
computational power. While ELECTRA has been applied to general sentiment analysis B
et al. (2023) and binary sarcasm detection in English Nigam and Shaheen (2022) and Arabic
Abu Farha and Magdy (2021), it has not yet been applied to the task of multi-class sarcasm
subcategory classification.

While binary sarcasm detection remains a difficult task, primarily due to a lack of open source
labelled corpora for training supervised deep learning models for sarcasm detection specifically,
this research aims to focus on the equally challenging task of multi-class classification of
subcategories of sarcastic speech. Abu Farha et al. (2022) proposed Semeval 2022 Subtask
B, which comprised a multi-label classification task for sarcastic speech subcategories. Du
et al. (2022) identified that there exist hierarchical relationships between the subcategories
in the dataset provided, and therefore the approach delineated in this project seeks to assess
ELECTRA’s efficacy when used for the task of multi-class sarcasm subcategory classification.
In this approach, each sample can only belong to one distinct class; as opposed to a multi-class
approach - in which samples can belong to more than one class. This research thus seeks to
address gaps in the existing literature by evaluating the effectiveness of ELECTRA, a more
compute-efficient pre-trained LLM, in a distinct, multi-class approach to the task of sarcasm
subcategory classification. This project aims to leverage ELECTRA’s proficiency in discerning
subtle linguistic nuances and context, which has resulted in performance comparable if not
superior to more compute-intensive models such as BERT Clark et al. (2020).

The structure of this dissertation is outlined as follows:

Chapter 1: Introduction. This chapter introduces the project, its background, and aims,
while encompassing the main problem areas addressed during its course.

Chapter 2: Literature and Technology Survey. This chapter explores the literature and
technology surrounding the project, focusing on three key areas: Natural Language Processing,
Sarcasm Detection, and LLMs - with particular emphasis on the Transformer and its iterations.

Chapter 3: Methodology. This chapter will endeavour to highlight methods included
in the project methodology when designing and implementing the project.

Chapter 4: Implementation and Testing. This chapter will encompass the various
iterations and experiments conducted when implementing the project, providing an overview
of the implementation at present.

Chapter 5: Results. This chapter will introduce the results obtained during testing of
the Custom ELECTRA Classifier module, contextualising these results while considering the
quantitative results obtained during the project.
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Chapter 6: Reflections. This chapter will seek to evaluate the process implemented
to arrive at the results obtained, while providing suggestions for future work in the discipline.



Chapter 2

Literature and Technology Survey

2.1 Natural Language Processing

The Natural Language Processing (NLP) discipline derives primarily from its foundational basis
in the 1940s, during which time researchers in the field initially focused on harnessing the
capabilities of machines for machine translation Liddy (2001). NLP broadly attempts to utilise
machines in order to accomplish "human-like language processing" (Liddy, 2001, p. 1) through
various approaches, and provides a nexus between disciplines including linguistics, computer
science, and psychology Liddy (2001) Jones (1994). NLP is considered to be a sub-division
of the Artificial Intelligence (AI) discipline due to its goal of emulating human-like language
processing through the creation of a Natural Language Understanding (NLU) system, which
is capable of understanding, translating, and inferring to and from written text Liddy (2001)
Rafail and Freitas (2020).

A divergence in NLP research became prevalent in the 1950s and 1960s, during which time
researchers took distinct approaches to achieve the above goal of "human-like language
processing" (Liddy, 2001, p.1). This division was categorised by either a symbolic, or rule-
based approach, in which principles of languages were manually constructed which were
subsequently employed to help machines generate syntaxes based on provided input, and a
stochastic approach, which attempted to quantify the statistic or probabilistic qualities of
language in order to process it Jones (1994) Stanford University (n.d.b) Yaghoobian, Arabnia
and Rasheed (2021). A common goal shared by researchers in the NLP development in the
latter 20th century was how to provide the machine with sufficient context in order to facilitate
learning and language processing Liddy (2001).

Today NLP is a broad discipline, and the ultimate parent of many subsets of learning, including
machine translation, information retrieval, information extraction, and sentiment analysis
Rafail and Freitas (2020). The increase in computational power, in tandem with the greater
availability of labelled language corpora in dataset form, has greatly contributed to the field’s
progression in the past 20 years Rafail and Freitas (2020). As such, most subsets of the field
now focus at least in part on employing neural architectures for NLP, with significant exemplars
of state-of-the-art applications of such architectures, including OpenAI’s GPT Radford et al.
(2019), profoundly increasing the field’s profile outside of research.
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CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 5

2.1.1 Sentiment analysis

The sentiment analysis NLP sub-discipline has existed in its current form since at least the early
2000s Liu (2020). The overarching goal of sentiment analysis, also known as opinion mining,
is to analyse the opinions, attitudes, or sentiments of an individual expressed in text towards
ideas, events, products, services, or other topics Liu (2020). Most generally, the sentiment
analysis field was born out of a necessity to help NLP systems to understand subjectivity behind
the meaning of textual words expressed by individuals Liu (2020). Although there is a slight
semantic difference between the meaning of ‘opinion’ and that of ‘sentiment’, the inherent
meaning of both is that these things rely on the subjectivity of the expressor Liu (2020).

The practical applications of sentiment analysis today include opinion mining on social media or
for marketing purposes, analysis of political and social discourse, psychological and educational
research, and customer support Chatterjee, Aggarwal and Maheshwari (2020). Approaches
to sentiment analysis have varied, but have broadly included: lexicon-based approach, in
which sentiment is determined based on the identification of pre-determined words present in
text which correlate with the sentiment being classified; machine learning approach, in which
a classifier is trained on labelled data in a supervised environment to identify instances of
a particular sentiment based on previously seen examples; and the hybrid approach, which
incorporates the two Thelwall (2020). The increase in popularity of deep learning has led to
greater capabilities of machine learning systems in the task of sentiment analysis, and has
become a dominant approach in the field Chatterjee, Aggarwal and Maheshwari (2020).

2.1.2 Sarcasm in text

The issue of subjectivity is compounded in text, where commonly-used triggers or identifiers
humans usually employ to evaluate whether an expression indicates sentiment or opinion, such
as tone, inflection, facial expression, or body language, are not present. Sarcastic sentiment is
therefore particularly difficult to identify in text, as there can be subjective degrees of what is
deemed to be ‘clearly’ expressing an oppositional subversive sentiment, i.e. there exists an
intentional level of nuance between what the speaker says and that which is perceived (or
not) by the receiver Joshi, Bhattacharyya and Carman (2016). The presence of sarcasm in
text ultimately prevents NLP systems’ performance, affecting their ability to complete the
prerequisite tasks for which they were designed Yaghoobian, Arabnia and Rasheed (2021).

The sarcasm detection problem remains a challenge for NLP deep and machine learning
applications as these systems are as of yet not fully adept at identifying this sentiment, or
ironic speech in general Yaghoobian, Arabnia and Rasheed (2021). There is a great deal of
not only subjectivity but also subtlety and nuance involved in sarcastic or ironic expressions,
often incorporating idiomatic or figurative phraseology - “Isn’t that just the cherry on top" -
which obfuscate the true meaning intended by the speaker. Such phraseology often also relies
heavily on shared cultural knowledge and context which are difficult for models to understand
without explicit training Yaghoobian, Arabnia and Rasheed (2021) Joshi, Bhattacharyya and
Carman (2016). Models are thus prevented from deriving the true meaning behind these
sentences during learning, and often are not provided with sufficient contextual information
surrounding an interaction to identify whether instances of sarcasm are present in the text.
Context is crucial when training NLP systems for sarcasm detection Wallace et al. (2014),
and thus directing a model’s focus simply to linguistic cues or semantic rules in the text is
insufficient, particularly given the existing constraints surrounding a lack of non-linguistic cues
(inflection, facial expression) which are often not delineated in text.
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2.2 Sarcasm detection benchmark

2.2.1 Semeval

The International Workshop on Lexical and Computational Semantics and Semantic Evaluation
(Semeval) is an annual NLP workshop run in tandem with the Annual Meeting of the Association
of Computational Linguistics (ACL). ACL was founded in 1962, and is one of the most significant
associations for professionals and researchers working in the field of NLP. Semeval, established
in 1998, operates annual research workshops which comprise of several shared research tasks
run by Semeval organisers in which members of the NLP community participate. Semeval’s
stated aim is to "advance the current state-of-the-art" Semeval (n.d.) datasets and processes
employed for semantic analysis in NLP.

2.2.2 Semeval 2022 Task 6

The iSarcasmEval Semeval Task 6 (2022) produced by Abu Farha et al. (2022), was created
for the identification of "intended sarcasm" (Abu Farha et al., 2022, p. 802) in text. The
task contains two languages, English and Arabic, and is split into three sub-tasks: (A) binary
"sarcasm detection, (B) sarcasm category classification, and (C) pairwise sarcasm detection
given a sarcastic text and its non-sarcastic rephrase" (Abu Farha et al., 2022, p. 805). The
two datasets for the task were provided by Abu Farha et al. (2022), and comprised of training
and test datasets in English and Arabic for Subtasks A and C, and English language training
and test datasets for Subtask B. 1

iSarcasmEval received participation from over 60 teams internationally, with the majority of
the participants utilising various implementations of several neural architectures for the tasks
Abu Farha et al. (2022). Data was collated directly from English and Arabic speakers, with
further labelling required for Subtask B conducted by trained annotators who were compensated
for their work Abu Farha et al. (2022). The majority of the participating teams across all tasks
utilised various iterations of Google’s Bidirectional Encoder Representations from Transformers
(BERT) model, initially proposed by Devlin et al. (2019). BERT is renowned in the NLP
community for its significant contributions to the field, due to its novel iteration of the
transformer architecture in introducing bi-directionality, in which sequence inputs can be read
from both directions (i.e. left to right and right to left) simultaneously, providing the model
with greater contextual understanding of sequenced inputs Devlin et al. (2019).

22 teams submitted results for their participation in Subtask B of iSarcasmEval Abu Farha et al.
(2022). Although not all participating teams published their results formally, Abu Farha et al.
(2022) provide an overview of the approaches used and results obtained by select participants.
The iSarcasmEval paper highlights that almost all of the top results across all tasks were
obtained by employing iterations of BERT, including MARBERT Abdul-Mageed, Elmadany
and Nagoudi (2021) and ALBERT Lan et al. (2019). We are not aware of any teams who
employed the ELECTRA, “Efficiently Learning an Encoder that Classifies Token Replacements
Accurately" (Clark et al., 2020, p.2) model for sarcasm subcategory classification, a novel
iteration of the BERT model which utilises adversarial training through a novel approach to
masked language modelling during its pre-training phase. ELECTRA has however attained
demonstrably superior results compared to BERT when applied to general sentiment analysis

1All datasets for the Semeval task are available at: https://sites.google.com/view/semeval2022-
isarcasmeval#h.t53li2ejhrh8
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B et al. (2023), and highly performant results when applied to Arabic sentiment and sarcasm
detection Abu Farha and Magdy (2021). Further information in respect of ELECTRA can be
found in section 2.4.1.

2.3 Sentiment analysis for sarcasm detection in NLP

Research regarding sentiment analysis for sarcasm detection has seen several changes in the past
decades. Early attempts to use machines for the task encompassed the rule-based approach
commonly found in early NLP practices, in which the machine was used to identify syntactic
or linguistic samples of sarcasm or ironic speech which closely correlated with predefined
words or phrases defined as sarcastic. Tepperman, Traum and Narayanan (2006) utilised
the identification of textual and verbal speech acts and features which denoted sarcasm, but
identified that context was required to attain high accuracy.

Machine and deep learning approaches, implemented using supervised, semi-supervised, and
unsupervised learning, have been commonplace in the search for successful sarcasm detection
systems since the mid-2000s. Machine learning approaches have included the implementation
of support vector machines (SVMs) Godara and Aron (2021), neural networks Zhang, Zhang
and Fu (2016), and decision trees Bhakuni et al. (2022), often employing algorithms such as
naive bayes Bhakuni et al. (2022) and logistic regression Godara, Batra and Aron (2021) in a
hybrid approach to improve results.

Godara and Aron (2021) assessed four distinct hybrid machine learning approaches on data
collated from Twitter, and identified that an approach comprising of an SVM along with
logistic regression and decision trees attained an average F1 Score of 84% across 5 datasets.
SVMs remain a powerful tool for text classification tasks, and often produce impressive results
and generalisation abilities in supervised settings where there is a wide margin between the
hyperplanes of data to be categorised, though they attain less impressive results when there is
overlap or noise between the classes in the data Cervantes et al. (2020). Naive bayes classifiers
assume that all data features are distinct Chavan et al. (2014), while neural networks such as
recurrent neural networks (RNNs), convolutional neural networks (CNNs), and long short-term
memory networks (LSTMs) - the fundamental blocks on which current LLMs are built - remain
popular techniques due to their ability to generate word embeddings and extract sentiment
features from the data provided Chatterjee, Aggarwal and Maheshwari (2020).

Many approaches have incorporated datasets collated from social media sources, primarily
Twitter Joshi, Bhattacharyya and Carman (2016), and some have focused almost entirely on
the effects of emoticons and punctuation for identifying sarcasm Yaghoobian, Arabnia and
Rasheed (2021) Subramanian et al. (2019). Wallace et al. (2014) identified that, due to the
necessity for humans to rely on contextual information for sarcasm identification, it was also
highly important that approaches to the problem consider including some context for the
machine to efficiently learn on the data. Pre-trained language models, including BERT Baruah
et al. (2020) Nashold (2021), have been a popular choice in attempting to tackle the task,
and Yaghoobian, Arabnia and Rasheed (2021) suggested that there would be an increase in
employing these models for sarcasm detection in sentiment analysis in the coming years.
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2.3.1 The Transformer

The state-of-the-art Transformer neural architecture, initially proposed by Vaswani et al. (2017),
has revolutionised the deep learning field, and particularly the NLP discipline Tay et al. (2020).
Vaswani et al. (2017) proposed the Transformer’s novel self-attention mechanism, which built
on the recurrent neural network (RNN’s) encoder-decoder architecture. In this architecture, an
input sequence (x1, ..., xn) is processed in its entirety, encoded to an internal representation
(y1, ..., yn), and decoded as an output sequence (z1, ..., zn) thereby providing the model with
the context of the entire sequence Vaswani et al. (2017).

Unlike earlier sequence transduction models such as RNNs or LSTMs, whch process the input
sequence x1, ..., xn sequentially, the self-attention mechanism allows the model to employ
parallel computation over the input sequence in its entirety at every time step and at each
model layer Vaswani et al. (2017). The self-attention mechanism however does not inherently
account for token order. The Transformer thus applies positional encodings - a fixed function
of input sequence position - to the input embeddings. This allows the model to utilise valuable
positional information to better capture relationships between tokens based on their "relative
or absolute" (Vaswani et al., 2017, p. 5) position in the sequence.

Vaswani et al. (2017) propose Scaled Dot-Product Attention - a measure of similarity between
pairs of input tokens. This attention is computed as a weighted sum of the values V based
on the similarity (dot product) of the query Q with each key K . For a query Q, keys K , and
values V , the Scaled Dot-Product Attention is defined as:

Attention(Q,K ,V ) = softmax(
QKT

√
dk

)V , (2.1)

Where dk is the dimensionality of queries and keys scaling the dot-product to prevent exponential
increases in tandem with increase in dimensionality. The matrix of outputs is calculated as a
series of n queries packed into a matrix Q, and n keys and values are packed into matrices
K and V (Vaswani et al., 2017, p. 4). The Scaled Dot-Product Attention can formally be
visualised as so:

Figure 2.1: Scaled Dot-Product Attention

(Vaswani et al., 2017, p. 4)

Multiple parallel attention layers or heads are used by the Transformer to capture distinct
relationships in the input. Each head learns different, linear projections of the input embeddings
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into Q, K , and V . The output vectors are later mapped to produce an output vector. These
parallel attention heads allow the model to focus on separate characteristics within the input
Vaswani et al. (2017). The attention heads are “stacked" in the Transformer, creating a
model architecture described by (Vaswani et al., 2017, p.4) as "multi-head attention" in which
multiple attention layers are parallelised:

Figure 2.2: Multi-head Attention

(Vaswani et al., 2017, p. 4)

Vaswani et al. (2017) (p. 3) thus define the full Transformer model architecture as follows:

Figure 2.3: Architecture of the Transformer

In NLP, the effects of the Transformer have been formidable, with multiple prominent large
language models (LLMs) pre-trained on significant amounts of training tokens derived utilising
this architecture. In 2018, Google’s Devlin et al. (2019) proposed the BERT architecture,
which facilitated bi-directionality of the self-attention mechanism whilst using masked language
modelling (MLM) to generate tokens which disrupt input, directing the model’s attention
to these tokens in order to increase model performance Devlin et al. (2019). BERT and
its numerous subsequent iterations have attained state-of-the-art scores on evalution metric
benchmarks including GLUE, BLEU, and F1 Score on a variety of NLU tasks, and is widely
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used in multiple NLP subfields such as machine translation and question answering Devlin
et al. (2019).

Open AI’s family of Generative Pretrained Transformer (GPT) models initially proposed in
2019 also employ the Transformer architecture by employing a significant increase in the
number of parameters and training data used Radford et al. (2019). The autoregressive GPT
models, which are pre-trained on massive textual corpora and then fine-tuned on separate
downstream tasks to maximise performance, have gained notoriety through the release of
ChatGPT, an AI chatbot which operates on the GPT 3.5 and 4.0 foundation models Radford
et al. (2019) OpenAI (2022) Brown et al. (2020). ChatGPT has elicited a range of reactions
from researchers, consumers, and governments alike due to its successful ability to mimic
human-written text, despite some of its shortcomings including hallucination and incorrect
assertions Lee (2023). OpenAI researchers have also claimed that their models are able to
obtain state-of-the-art performance on multiple few-shot tasks, i.e. on tasks for which the
model was not explicitly trained Brown et al. (2020), though Espejel et al. (2023) identified that
GPT 4.0 does not perform well in a zero-shot setting in several areas including mathematical
problem-solving and common sense reasoning.

2.4 LLMs and progression

As illustrated above, a significant trend towards employing the Transformer architecture in
the construction of LLMs which attain superior results in the NLP field has been observed
since Vaswani et al. (2017)’s initial proposition Tay et al. (2020). Issues arise surrounding the
pre-training and deployment of LLMs, which often comprise millions or billions of parameters,
require datasets which constitute billions of words, and are compute-hungry due to processing
billions of tokens during the pre-training phase Sharir, Peleg and Shoham (2020). The total
financial costs of pre-training LLMs derive primarily from: Large computational costs during
“several weeks of pre-training with thousands of GPUs" (Zhang et al., 2021, p.1); large storage
costs of these huge models, which necessitate the employment of cloud computing providers;
and requirements for sophisticated equipment used during inference Zhang et al. (2021).

Strubell, Ganesh and McCallum (2019) calculated the fiscal cost and CO2 emissions (lbs) of
training several LLMs including BERT, NAS So, Liang and Le (2019), and GPT-2 during a 6
month period, identifying a maximum cost of USD 3.2 million for cloud compute costs alone,
and a maximum CO2 emission of 620,000 lbs due to the necessity to run these models utilising
electricity - often generated using fossil fuels. In 2019, the average per capita CO2 emission for
UK inhabitants was 11464 lbs Climate Watch and GHG Emissions (2020). Training of these
models alone for a sum GPU time of 9998 days was estimated to cost USD 9870 in electricity
charges (Strubell, Ganesh and McCallum, 2019, p. 3648). Sharir, Peleg and Shoham (2020)
acknowledge that, while changes to model architecture and training schemes can effectuate
smaller changes in the cost of LLM floating-point operations, the general trend surrounding
the cost of these models’ operations appears to be increasing overall. Strubell, Ganesh
and McCallum (2019) also point out that academic researchers in the field are significantly
constrained by the costs associated with training LLMs, contrasting with industry researchers
who are often not constrained in the same way.

Furthermore, LLMs require significant amounts of data, and are often being trained in an
unsupervised manner of large corpora of data collated from one of the largest sources of
human-written text in history - the internet. During initial training of its GPT 3.0 model,
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OpenAI identified that the model produced such “toxic" Perrigo (2023) output when trained
on unlabelled data from the internet, that manual data annotators had to be employed before
the model could be made available to the public. Developers and operators of multiple
Transformer-based LLMs and other neural architectures, which utilised proprietary data collated
from the internet, have also subsequently been subject to copyright lawsuits as a result Vincent
(2023) Shang (2023) Claburn (2023). Acquisition of labelled training corpora suitable for
models which require significant resources is thus incredibly difficult to obtain due to data
quality, copyright, and privacy considerations.

Thus, the training of Transformer-based and other neural architectures particularly for the
research community necessitates a move towards models which are less computationally and
fiscally expensive, perpetuate fewer existing biases from training data, and do not infringe on
the intellectual property of individuals through the data used. Stanford University’s Taori et al.
(2023) recently proposed Alpaca 7B, a fine-tuned version of Meta’s LLaMa LLM Touvron
et al. (2023) which reportedly only cost USD 600 to train due to fewer parameters whilst
attaining relatively impressive results. Alpaca 7B’s development symbolises a necessary move
towards creating sustainable models for the academic community which are trainable using
fewer resources in order to better study the behaviour and limitations of such models. There is
a necessity for academicians to be able to conduct research in the field, which has seen great
progress due to “industry access to large-scale compute" (Strubell, Ganesh and McCallum,
2019, p.3649), without being bound by financial resource limitations.

2.4.1 ELECTRA

ELECTRA, introduced by Clark et al. (2020) in the paper ELECTRA: Pre-training Text
Encoders as Discriminators Rather Than Generators, proposed a novel pre-training and training
approach to MLM. Clark et al. considered that BERT’s MLM approach, in which ∼15% of
the input tokens to the model were masked, only allowed for the model to correctly learn
15% of each input sequence’s tokens whilst incurring "substantial compute cost" (Clark et al.,
2020, p. 1). The ELECTRA model emulates a General Adversarial Network (GAN) neural
architecture by pre-training a small generator which corrupts input tokens through the creation
of synthetic examples, then utilises a discriminator network during pre-training in order to train
the model to distinguish between false and positive tokens, a process described as "replaced
token detection" (Clark et al., 2020, p. 1).

The base ELECTRA model utilises the same model architecture and most hyperparameters
as BERT, and, when trained on a similar amount of steps, "substantially outperforms"(Clark
et al., 2020, p.6) BERT-Base and its more complex iteration BERT-Large on benchmarks
including the GLUE NLU benchmark and the SQuAD question-answering benchmark. The
ELECTRA-Large model also performs comparably on the same benchmarks to BERT state-of-
the-art iteration RoBERTa "despite having fewer parameters and using 1/4 of the compute
for training" (Clark et al., 2020, p.2-7). Clark et al. consider that these results demonstrate
that training LLMs in this way is more computationally and parameter efficient than previous
existing approaches Clark et al. (2020).

2.4.2 Why ELECTRA?

The task of sarcasm subcategory classification is inherently difficult, particularly considering
that there tends to be overlap or hierarchical relationships between labels within the Semeval
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dataset Du et al. (2022). The three top-scoring teams for the Semeval 2022 Task 6 utilised
iterations of the BERT architecture, and attained impressive results. ELECTRA however has
been described as a "supercharged" Briggs (2021) version of BERT, and attained comparable
and superior results to BERT and its variants whilst using less compute at the time of its
release Clark et al. (2020).

Choosing ELECTRA for the task of multi-class sarcasm subcategory classification therefore
stems from a number of strengths and advantages inherent to the model, which are anticipated
to be beneficial for this task:

1. Performance Efficiency: ELECTRA has been proven to delivery comparable if not
superior performance to BERT and its iterations whilst using significantly less computa-
tional resources Clark et al. (2020). ELECTRA’s adversarial training approach utilising
a smaller generator “increases the relative per-step costs"(Sharir, Peleg and Shoham,
2020, p.3) of floating-point operations whilst ultimately requiring fewer steps, thus
decreasing the overall financial and compute cost when training. Though financial cost
for simply fine-tuning an existing model is not entirely relevant to its application in this
project, performance efficiency is a key benefit considering the resource constraints often
associated with pre-trained LLM model training.

2. Replaced Token Detection and Learning: ELECTRA’s replaced token detection
approach enables the model to learn from the entire input sequence, unlike BERT
which learns from only 15% of the masked tokens in a sentence Clark et al. (2020).
It is considered likely therefore that ELECTRA’s capacity for learning in this instance
could potentially lead to greater encapsulation of subtleties and nuances in sarcasm
subcategories which other models may miss.

3. Discriminatory Approach: ELECTRA’s discriminatory approach to MLM focuses
on generating “high quality" (Clark et al., 2020, p. 10) false samples through the
generator which can therefore aid the model’s discriminator to more efficiently distinguish
between true and false inputs. This approach is designed to help the model understand
context more effectively than BERT’s MLM approach. As previously mentioned, context
is significant when training models to identify ironic speech and sarcasm, and thus
ELECTRA’s contextual capabilities are expected to provide an advantage for the task.

4. Previous successful applications: ELECTRA’s impressive performance in tasks similar
to multi-class sarcasm subcategory classification - including binary sarcasm detection in
English Nigam and Shaheen (2022) and Arabic Abu Farha and Magdy (2021) and general
sentiment analysis B et al. (2023) - suggests that the model will also be successful when
applied to this task.

5. Building on existing research: To date, there does not appear to be research
conducted assessing ELECTRA’s efficacy when applied to the task of either binary
multi-label sarcasm subcategory classification as proposed by Abu Farha et al. (2022),
or multi-class sarcasm subcategory classification. Thus, it is hoped that this study could
contribute to the task at hand whilst also understanding the potential applications of
ELECTRA in novel areas.



Chapter 3

Methodology

3.1 System diagram

The methodology outlined within this section primarily centers around the decisions for
implementing an initial model - the ELECTRA Classifier - for general sarcasm detection, and a
secondary model - the Custom ELECTRA Classifier - for the downstream task of multi-class
classification. The models implemented during this project include a base ELECTRA model
which is partially fine-tuned to generalise on sarcastic data with a binary classification head
attached. This model is then saved and loaded in to the second class, after which the
classification head is discarded and replaced with a multi-class classification head to be trained.
Figure 3.1 (below) provides an illustration of the training workflow, where the ELECTRA base
model (in blue) represents the binary sarcasm detection model, and the resultant fine-tuned
ELECTRA model (in pink) represents the multi-class classification model:

Figure 3.1: Fine-tuning ELECTRA for Sarcasm Subcategory Classification

13
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3.1.1 Multi-label vs multi-class

The implementation of the ELECTRA Classifier raised questions surrounding its applicability
for a multi-label classification task. Multi-label classification, the primary aim for participants
in Semeval Subtask B, aims to classify samples which may belong to more than one class
in a range of classes. The Semeval datasets were created for employment in a multi-label
classification task, and as such each positive sample can be classified as one or more of the
sarcastic subcategories. For example, the sentence:

“42.90% of adulthood is just refilling your Brita pitcher"

In Abu Farha et al. (2022)’s training dataset is identified as an instance of both irony and
overstatement, with a label list of 0,1,0,0,1,0. Multi-class classification however aims to
predict a single label for each sample from a range of classes, and was the primary aim for
the Custom ELECTRA Classifier. This design decision was made due to the overlapping
relationships identified between data samples, where a high proportion of the under-represented
subcategories such as understatement, overstatement, and satire were also labelled as ‘sarcasm’
or ‘irony’, which could prevent a model fine-tuned on sarcastic data from attaining superior
results.

3.2 Data

Two datasets were used for the task: a general sarcasm detection dataset comprised of sarcastic
and non-sarcastic news headlines in order to partially fine-tune the ELECTRA base model to
generalise on sarcastic data, and the prerequisite dataset compiled by the Semeval 2022 Task
6 organisers Abu Farha et al. (2022). This section will provide an overview of both datasets
and evaluate their suitability for each task.

3.2.1 Primary project dataset: Semeval 2022 Subtask B

As previously mentioned, the Semeval 2022 Task 6 was split into three tasks: binary sarcasm
detection, binary multi-label classification for subcategory classification, and sarcasm determi-
nation from a sarcastic text and its non-sarcastic rephrase. Subtask B - the task on which
this project is based - provided labelled English language training and test data. The training
dataset comprises a total of 3468 samples, 867 of which are sarcastic and 2601 of which are
non-sarcastic, while the test dataset comprises a total of 1400 samples, 201 of which are
sarcastic and 1199 of which are non-sarcastic. Data was collated by Abu Farha et al. (2022)
from the authors of tweets who were asked to provide examples of three non-sarcastic tweets
and one sarcastic tweet published from their account. Trained data annotaters were subse-
quently employed to provide the subcategory labels for each sarcastic data sample. According
to Abu Farha et al. (2022) the following definitions were assigned to the English language data
samples for each subcategory:

“1. Sarcasm: contradicts the state of affairs, is directed towards an addressee,
and expresses a critical attitude; 2. Irony: contradicts the state of affairs, may
or may not be directed towards an addressee, but if it is, is not obviously critical
towards that addressee; 3. Satire: is directed towards and addressee whom it
appears to support, but underneath it express disagreement, mocking, contempt,
or derogation; 4. Understatement: does not contradict the state of affairs, but
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undermines its weight; 5. Overstatement: does not contradict the state of affairs,
but assigns unrealistically high weight to it; 6. Rhetorical question: a question
with an implicated answer that contradicts the state of affairs.” (Abu Farha et al.,
2022, p. 804)

There are unequal class distributions within the Semeval Task 6 datasets, primarily deriving
from the larger proportion of non-sarcastic to sarcastic samples, thus the non-sarcastic samples
were removed from both the training and testing datasets during preprocessing. The initial
phase of the project attempted to implement an ELECTRA classifier utilising only the base
model with this dataset, and identified that the model itself routinely produced null predictions
on several classes in the test dataset, illustrating bias towards the sarcasm and non-sarcastic
samples.

Previous applications of Semeval dataset

The class imbalance due to unequal class distributions in the Semeval dataset elicited several
different approaches by teams participating in the task to mitigate it and attain superior
results or improve generalisation. These approaches included ensemble learning approaches,
adversarial training through data mutation, and fine-tuning models for each subcategory’s
downstream task Du et al. (2022) El Mahdaouy et al. (2022) Abu Farha et al. (2022). One of
these teams identified that there appears to be an "apparent hierarachical relationship" (Du
et al., 2022, p. 817) between the subcategories, with sarcasm and irony representing primary
labels, and the remaining classes representing secondary labels.

3.2.2 Data preprocessing for the Semeval dataset

The quality of any data produced by a model is dependent upon the quality of the data inputted
to that model. As such, the data preprocessing stage is significant to ensure that the dataset
integrity is preserved whilst also ensuring that the model can draw out contextual meanings
from the data. To this end, the data preprocessing techniques used were implemented to
ensure the least possible fragmentation of the existing data. The Semeval dataset comprised
of individuals’ tweets, and so functions were implemented in order to remove any user twitter
handles to preserve anonymity, replacing these with "account_name"; remove urls which were
replaced with "http"; and remove contractions such as "isn’t", replacing these with the full
words. The column containing a sarcastic sentence’s non-sarcastic rephrase was removed,
along with a column entitled ‘sarcastic’ used primarily for the Semeval Subtask A (binary
sarcasm detection), which was not present in the test dataset outlined for the task. The
Semeval training dataset comprises a total of 3468 samples, 867 of which are examples of
sarcastic text (i.e. any of sarcasm, irony, satire, understatement, overstatement, and rhetorical
question) and 2601 of which are non-sarcastic. The non-sarcastic samples are removed from
the dataset in order to help the model identify particular instances of sarcastic subcategories.

Additionally, during implementation for the multi-class task, several issues with the Semeval
datasets were identified which were remedied by the following data preprocessing techniques:

Removing overlap

As (Du et al., 2022, p. 817) identified, there is indeed an "hierarchical relationship" between
the positive values for ‘Sarcasm’ and ‘Irony’ and the remainder of the subcategories (satire,
overstatement, understatement, rhetorical question). Initial implementation experimented with
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preserving all positive value instances of sarcasm, irony, and the minority subcategories as they
are found in the Semeval dataset. However, closer analysis of the training dataset before the
training/validation split identified that the subcategories overlap with the ‘Sarcasm’ and ‘Irony’
subcategories in the following ways:

Table 3.1: Overlap between ‘Sarcasm’ class and subcategories:

Label Num Samples Overlap with ‘Sarcasm’ Percentage
Satire 25 21 84%
Irony 155 1 0.65%
Overstatement 40 31 76%
Understatement 10 6 60%
Rhetorical Question 101 86 85%
Total 331 145 43.8%

Table 3.2: Overlap between ‘Irony’ class and subcategories:

Label Num Samples Overlap with ‘Irony’ Percentage
Satire 25 4 16%
Overstatement 40 9 23%
Understatement 10 4 40%
Rhetorical Question 101 15 14%
Total 176 32 18%

When approaching this task as a multi-class problem as opposed to a multi-label problem,
it is important that samples do not overlap between classes as a model training on a small
dataset is unable to distinguish the difference between instances of the minority classes and the
majority classes of sarcasm and irony, meaning that during testing it will default to predicting
the majority-represented class. Therefore, it was decided that removing all positive values
within the sarcasm and irony columns which intersected with positive values in any of the
minority columns in the training dataset could help the model to identify these samples better.

This preprocessing technique removed 144 samples from the ‘Sarcasm’ class, and 31 samples
from the ‘Irony’ class which overlapped with the minority classes in the Semeval dataset. It
should be noted that the values of 144 and 31 are slightly different from the values of 176
and 32 identified as total values in Tables 3.1 and 3.2, as each sample may belong to more
than two of the subcategories. No other overlap between samples of the minority classes was
identified, with the exception of 2 samples labelled both ‘Understatement’ and ‘Rhetorical
question’ which were re-labelled as only ‘Understatement’ due to its initial small class sample
size. The Semeval training dataset was then split into training and validation datasets. The
following table illustrates the change in sample sizes following the removal of class overlap in
the training dataset:
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Table 3.3: Semeval training dataset overlap removal

Overlap Value before Value after Difference
Sarcasm 713 569 144
Irony 155 124 31
Rhetorical question 101 99 2
Total 969 792 177

The final class distribution of all classes in the training dataset following removal of overlap is
identified as follows:

Table 3.4: Semeval training dataset values following overlap removal

Label Value
Sarcasm 569
Irony 124
Satire 25
Understatement 10
Overstatement 40
Rhetorical question 99
Total 867

This overlap removal technique was also applied to the test dataset for consistency when
predicting. The test dataset comprises of a total of 1400 samples, 200 of which are sarcastic
(encompassing all subcategories) and 1200 of which are non-sarcastic. The values of the test
dataset prior to and post overlap removal can therefore be defined as follows:

Table 3.5: Semeval test dataset values prior to overlap removal

Label Value
Sarcasm 180
Irony 20
Satire 48
Understatement 1
Overstatement 10
Rhetorical question 11
Total 270
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Table 3.6: Semeval test dataset values following overlap removal

Label Value
Sarcasm 115
Irony 15
Satire 48
Understatement 1
Overstatement 10
Rhetorical question 11
Total 200

Data augmentation

Following implementation of several data augmentation techniques utilising the TextAttack
library Morris et al. (2020)1, the ELECTRA Classifier demonstrated superior results when
identifying some instances of the minority classes represented within the Semeval dataset in
comparison with initial models which were not trained on augmented datasets. These data
augmentation techniques included using TextAttack’s WordSwapExtend, WordSwapRandom-
CharacterInsertion, and WordSwapRandomCharacterDeletion classes, which use an augmenter
to generate a number of synthetic samples proportionate to each class’s representation within
the training dataset. These samples do not alter the meaning of the sentence or underlying
nuances, as they do not use more widespread text augmentation techniques which replace
words with synonyms, swap words, or delete words entirely. The TextAttack augmentation
techniques only alter certain characters within the sample text. Therefore, the semantic and
nuanced meanings behind the words used in each particular context remain unchanged.

3.2.3 Supplementary project data: the News Headlines Dataset

Due to the class imbalance in the Semeval dataset and the ELECTRA base model’s inability
to effectively train on this small, imbalanced dataset, it was hypothesised that using a larger,
open source dataset to aid in the ELECTRA base model’s generalisation on sarcastic versus
non-sarcastic data could be beneficial for results. As such, the supplementary dataset used in
fine-tuning the ELECTRA base model is the News Headlines Dataset for Sarcasm Detection,
produced by Misra and Grover (2021) and Misra (2022) 2. The data in this repository was
collated from the headlines of two news sources, the Onion and the Huffington Post, in order
to help overcome noisy data derived primarily from Twitter-based datasets which had previously
been prevalent in NLP for sarcasm detection Misra (2022). The dataset comprises ∼28000
samples, with approximately half of these samples comprising sarcastic and non-sarcastic
text. The dataset was preserved almost in its entirety, only removing an extra column which
included values for the link to the article from which the headline had been extracted. No data
augmentation was performed on this dataset due to its balanced sample distribution.

1A full list of the extensions and packages used during project implementation can be found in Appendix A
of the report

2Dataset available at: https://rishabhmisra.github.io/publications/
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Evaluation of supplementary data

The News Headlines Dataset utilised in the fine-tuning stage is mostly suitable for generalisation
purposes, as the authors have specifically generated the dataset for the task of sarcasm detection.
However, there are questions raised regarding how a model trained using supervised learning on
a general sarcasm dataset could identify meaningful patterns of sarcasm subcategories which
are otherwise unlabelled. Due to a general unavailability of large corpora of labelled sarcastic
data for sarcasm subcategory detection using supervised learning, this hurdle at present is
insurmountable.

3.3 Tokenization for LLMs

Tokenization is an integral part of training neural architectures in NLP - particularly for LLMs
such as ELECTRA. In the context of NLP, tokenization takes input and splits it into smaller
units of granularity - in the form of characters, words, or sentences - to produce tokens which
can be fed into the neural architecture and mapped into vector space Hugging Face (n.d.c).
Tokenization for machine learning is significant, as it allows the network to understand simple
representations of textual data whilst preserving context and quantifying meanings or word
frequency represented in the data Stanford University (n.d.c). Most machine learning networks
also expect data to be fed into the network as embedding vectors, and thus text tokenization
encodes the textual data as values in this format.

3.3.1 ELECTRA tokenization

Tokenization techniques vary for each model, and it is therefore often necessary to utilise the
tokenizer which has been developed for each specific model to mitigate errors when fine-tuning
these existing models. ELECTRA utilises a tokenizer based on WordPiece, the tokenization
algorithm developed to pre-train BERT which has not been published in open source Hugging
Face (n.d.a). WordPiece tokenization first splits input into words divided by punctuation and
whitespaces, then into subword tokens which "often retain linguistic meaning" Song and Zhou
(2021) Hugging Face (n.d.c). By splitting textual data in this way to preserve subwords from
the data, the tokenization process mitigates the ‘out-of-vocabulary’ problem often previously
encountered when training NLP models, in which a model was unable to process tokens which
it had previously not come across, by splitting the words into identifiable words. The ELECTRA
tokenizer also introduces special tokens to the textual data, including [CLS], [SEP], [UNK],
and [PAD], which denote sentence start, sentence end, unknown tokens, and padding tokens
respectively. Padding tokens are appended to the end of sentence samples in order to ensure
that all sentences are the same length. An example of a WordPiece-tokenized sentence could
therefore be represented as so:

Original sentence:

Cats are unbelievably cool!!

After tokenization:

[‘[CLS]’,‘cat’,‘are’,‘un’,‘##bel’,‘##iev’,‘##ably’,‘cool’, ‘[UNK]’,‘ !’,‘ !’,[PAD],[PAD],[SEP]]

Where ‘##’ denotes that the tokens are subword tokens which have been broken down from a
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larger word, and [UNK] representing a symbol which the tokenizer has not encountered - the
cat emoji. The tokens are then represented as numerical values in the form of unique IDs based
on the model’s vocabulary, following which positional encoding is applied to preserve word
order, ready to be encoded as embedding vectors corresponding to these unique IDs Devlin
et al. (2019) Vaswani et al. (2017). The tokenizer afforded by the ELECTRA pre-trained
model was used for this task, as it is available to use as part of the HuggingFace library 3 from
which the ELECTRA base model was imported. Emojis included in the tweets for the Semeval
datasets remain in the tokenized text, as they often provide information from which important
linguistic and contextual nuances can be derived.

3A full list of the libraries and extensions used in project implementation can be found in Appendix A of
the report.



Chapter 4

Implementation and Testing

4.1 System implementation overview

The models are implemented in a python environment configured in a Docker container on
Windows Subsystem for Linux 2 (WSL 2), running on an NVIDIA RTX 2080 Ti PC. This
implementation decision was made following initial experimentation with cloud computing via
Google Colab, which led to extremely slow training times (∼15 minutes per epoch on the
supplementary dataset). It was therefore decided that accessing the PC’s GPU with NVIDIA’s
CUDA application through WSL 2 and Docker could help ameliorate the slow training times.
This resulted in faster iteration through models and testing. Additionally, a full list of the
extensions and packages utilised during implementation can be found in Appendix A of the
report.

4.2 Data

4.2.1 Analysis of primary dataset

Two datasets are used for the project’s implementation: the Semeval 2022 Subtask B dataset
which includes examples of sarcasm subategories, and the News Headlines Dataset which only
includes examples of sarcastic and non-sarcastic text. The Semeval training dataset comprises
3468 samples, 867 of which are positive instances of sarcastic text (i.e. any of sarcasm,
irony, satire, understatement, overstatement, and rhetorical question) and 2601 of which are
non-sarcastic. The Semeval testing dataset comprises 1400 samples, 200 of which are sarcastic
(encompassing all subcategories) and 1200 of which are non-sarcastic. As previously mentioned,
the non-sarcastic samples are removed from the training and test datasets in order to aid the
model in identification of sarcasm subcategories. As a reminder, Table 4.1 is the distribution
of the test dataset following overlap removal between the classes:

21
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Table 4.1: Semeval Test Dataset Values Following Overlap Removal

Label Value
Sarcasm 115
Irony 15
Satire 48
Understatement 1
Overstatement 10
Rhetorical question 11
Total 200

Initial implementation randomly split the training dataset 80/20 into training and validation
sets. Initial analysis of the Semeval training dataset following this split and prior to the
application of the overlap removal and data augmentation techniques identified the following
class sample distribution throughout:

Table 4.2: Initial Semeval Training, Validation, and Test Dataset Sample Distribution

Values Training Dataset Validation Dataset Test Dataset
Sarcasm 545 168 180
Irony 124 31 20
Satire 20 5 48
Understatement 7 3 1
Overstatement 29 11 10
Rhetorical question 77 24 11
Total 802 242 270

There are proportionally large under-representations of almost all features in an already small
dataset, which made it incredibly difficult for the base model to extract meaningful information
from. Additionally, there was an overlap of 177 samples between the columns labelled ‘Sarcasm’,
‘Irony’, and ‘Rhetorical Question’ with the rest of the minority classes - ‘Satire’, ‘Overstatement’,
and ‘Understatement’ - thus data preprocessing techniques were applied in order to remove this
overlap between the columns. Table 4.3 (below) highlights the training dataset class sample
distribution following the removal of overlap between the classes, and the 80/20 splitting of
the Semeval training dataset into training and validation datasets for a total of 867 samples,
693 of which are training and 174 of which are validation:
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Table 4.3: Semeval Training Dataset Positive Values Following Overlap Removal and Dataset
Split

Label Training Value Validation Value Total
Sarcasm 447 122 569
Irony 106 18 124
Satire 20 5 25
Understatement 7 3 10
Overstatement 31 9 40
Rhetorical question 82 17 99
Total 693 174 867

The negative values of the dataset following the removal of overlap and 80/20 split into
training and validation datasets is also delineated in Table 4.4 (below):

Table 4.4: Semeval Training Dataset Negative Values Following Overlap Removal and Dataset
Split

Label Training value Validation value Total
Sarcasm 246 52 298
Irony 587 157 743
Satire 673 169 842
Understatement 686 171 857
Overstatement 662 165 827
Rhetorical question 611 157 768

Table 4.5 (below) outlines the total class sample distribution for each class in the Semeval
training dataset after the overlap removal techniques have been applied:

Table 4.5: Total Sample Distribution

Label Positive samples Negative samples Total
Sarcasm 569 298 867
Irony 124 743 867
Satire 25 842 867
Understatement 10 857 867
Overstatement 40 827 867
Rhetorical question 99 768 867

The class imbalance within the training and validation datasets led to the hypothesis that
an approach to aid the base model with generalising on sarcastic data samples could be
advantageous to the results produced. Thus, the more imbalanced Semeval dataset is used
in the downstream transfer learning task of sarcasm subcategory classification with a custom
classifier following fine-tuning of the general ELECTRA Classifier with the News Headines
Dataset.
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4.2.2 Analysis of secondary dataset

The supplementary News Headlines Dataset was therefore used for the task of fine-tuning the
ELECTRA base model for generalisation on sarcastic data. This dataset is split into training,
validation, and testing datasets through an 80/10/10% split, and analysis of the datasets
following this split identified the following class sample distribution:

Table 4.6: News Headlines Dataset Training and Validation samples

Values Training Dataset Validation Dataset Test Dataset
Is sarcastic 10905 1350 1379
Is not sarcastic 11990 1512 1483

The News Headlines Dataset is utilised in the first stage of model training - fine-tuning part of
the ELECTRA base model’s layers. The balance between sarcastic and non-sarcastic classes
means that there is no requirement to augment or mutate data, with the base ELECTRA
Classifier converging well on the dataset. The dataset can therefore be used to help the final
2% of the model’s layers to generate task-specific embeddings for sarcasm identification in
text. Utilising a larger, more balanced dataset in this way reduces the requirement to augment
or mutate the Semeval Subtask B dataset, which, when altered through techniques such as
synonym replacement, could lose nuances in the sarcastic text leading to inaccurate data
samples and inferior performance.

Given the class distribution imbalance highlighted in the Semeval dataset, and the risk of
losing important contextual and linguistic nuance in the dataset when using popular NLP data
augmentation or mutation techniques, the decision was made to first partially fine-tune some
of the task-specific embeddings of the base model to generalise on sarcastic data. Results of
training did not show a significant change in performance when unfreezing between 2 and
8% of the model’s top layers, and as such it was decided to only unfreeze the top 2% of the
base model’s layers during training. Following this, the fine-tuned model could then be saved
and re-loaded with a new multi-class classification head in order to use the fine-tuned model
for transfer learning, training the classification head only on the Semeval dataset. Further
information in relation to the decisions behind implementing both models can be found below.

4.3 ELECTRA Classifier

This section will provide an overview of the ELECTRA Classifier, the model trained on the
News Headlines Dataset in order to fine-tune the top 2% of ELECTRA’s base layers, following
the hypothesis that this could aid the model in generalising on sarcastic data.

The ELECTRA Classifier is initialised with none of the base model’s layers unfrozen for an initial
warmup period of 10,000 steps, following which the final 2% of the layers are incrementally
unfrozen. The model is initialised with a base learning rate of 2e-5 using the Rectified Adam
(RAdam) optimizer Liu et al. (2019), and uses the Cosine Annealing with Warmup Restarts
learning rate scheduler Pytorch (n.d.a) to schedule learning rate changes following the initial
10,000 warmup steps. Further information relating to the decision making process surrounding
the warmup period, learning rate scheduler, and RAdam optimizer can be found in section
4.3.2. The model is initialised with a maximum epochs value of 10,000 in order to provide a
higher total value for the number of training steps required for instantiating the learning rate
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scheduler, though the model rarely required more than 100 epochs to achieve convergence on
the training data.

Training and validation loss, accuracy, precision, and recall are logged at each training and
validation step end, with early stopping with a patience of 5 epochs based on the validation
loss implemented as a callback in the trainer.fit() method to prevent overfitting. These metrics
were chosen in order to aid with debugging during the training process, and are not used as an
accurate representation of model performance. Logs are created automatically by the Pytorch
Lightning framework, although there is also a custom Metrics Callback class implemented
in order to track and store all metrics recorded during the training and validation epochs.
Tensorboard logs are also created during each training round, in order to visualise the training
and validation results. Loss is computed using PyTorch’s binary cross entropy loss, which
measures the difference between the model’s predicted value and the expected (true) value.

4.3.1 Fine-tuning

In initial experiments with the ELECTRA base model and the Semeval dataset, the model
yielded F1 Scores inferior to those achieved by previous participants in Semeval Subtask B.
These results led to the hypothesis that fine-tuning the base ELECTRA model to generalise
on sarcastic data before applying this fine-tuned model to the subcategory classification task
could yield better results. This resulted in the approach delineated above in Figure 3.1, where
the model is first partially fine-tuned on a larger dataset before being saved, re-loaded, and
trained with a different classification head.

The initial approach taken was to unfreeze all of the layers of the base ELECTRA model
after 10,000 warmup steps. However, this approach yielded extremely poor results including
overfitting on the validation dataset and resulted in a model which failed to make predictions
when saved, loaded, and trained on the Semeval dataset. Overfitting in this instance resulted
from updating the entirety of the base model’s weights during training, losing valuable contextual
information obtained during the base ELECTRA model’s pre-training phase. Striking a balance
between fine-tuning the model for the general task of sarcasm detection on a moderately-
sized dataset whilst also ensuring its adaptability for the downstream task of subcategory
classification after saving and loading the model was crucial.

Therefore, the revised approach taken was to only unfreeze the top ∼ 2-8% of the base
model’s layers. These top Transformer layers, which perform self-attention and feed-forward
operations, typically produce task-specific contextual embeddings from information learned
during pre-training and can therefore be partially adapted for a new specific task. The current
implementation gradually unfreezes only the top 2% of ELECTRA’s base layers after 10,000
warmup steps. The modification of unfreezing 2% instead of a maximum of 8% of the base
model’s layers yielded a modest increase in performance of 0.01%. The gradual unfreezing of
the top 2% of ELECTRA’s layers is defined as so:

Listing 4.1: Gradual Unfreezing of ELECTRA’s layers

de f un f r e e z e_nex t_ laye r ( s e l f ) :
num_params = l e n ( l i s t ( s e l f . model . e l e c t r a . pa ramete r s ( ) ) )
f r e e z e_ i d x = i n t ( num_params ∗ 0 . 98 )
un f r e e z e_ idx = s e l f . c u r r en t_un f r e e z e_ idx
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i f s e l f . c u r r en t_un f r e e z e_ idx >= 0 and s e l f . c u r r en t_un f r e e z e_ idx
>= f r e e z e_ i d x :
param = l i s t ( s e l f . model . e l e c t r a . pa ramete r s ( ) ) [ un f r e e z e_ idx ]
param . r e qu i r e s_g r ad = True
p r i n t ( f " un f r o z e ␣ l a y e r ␣ i d x ␣{ s e l f . c u r r en t_un f r e e z e_ idx ␣−␣1}" )
s e l f . c u r r en t_un f r e e z e_ idx −= s e l f . un f r e e z e_s t ep

4.3.2 Scheduling learning rates

The scheduling of learning rates is functionality afforded by multiple deep learning frameworks,
and allows the learning rate to be adapted at certain points during training based on certain
conditions. In this instance it was decided that utilising a learning rate scheduler which could
affect changes in the learning rate during training after a period of 10,000 warmup steps could
be beneficial. Implementation experimented with several learning rate schedulers, including
Hugging Face’s get_cosine_schedule_with_warmup and get_linear_schedule_with_warmup,
both of which produce variations in learning rates during and after the warmup step period.
Cosine Annealing with Warm Restarts (CAWR) is a PyTorch learning rate scheduler Pytorch
(n.d.a). CAWR periodically decreases a relatively large learning rate to a lower rate value
following a cosine curve Loshchilov and Hutter (2016). CAWR simulates a restart of the
optimization process by restarting the learning rate, increasing it back to its initial value and
providing a chance to escape local minima Loshchilov and Hutter (2016).

The RAdam optimizer Liu et al. (2019) initially proposed in 2019, was chosen in tandem with
CAWR due to its ability to handle large variances in adaptive learning rates and optimize
convergence. Initial training runs indicated that convergence on the training and validation data
was normally being reached at ∼10,000 steps with the News Headlines Dataset. Therefore, it
was hypothesised that keeping the learning rate at a consistently small number during this
period would allow the model to extract more information from the data during these steps,
following which the learning rate could be adapted per step. Configuring the learning rate,
optimizer, and learning rate scheduler in this way provides substantive conditions for the model
to extract more information from the News Headlines Dataset during and after the warmup
steps implemented, in order to help the model better generalise to sarcasm detection and
facilitate downstream transfer learning.

4.3.3 Evaluation metrics

As previously mentioned, several metrics are logged during training, validation, and testing
of the ELECTRA Classifier, in order to debug issues when they arose while evaluating the
model’s performance from a range of perspectives. As such, loss, accuracy, precision, and
recall are logged during each of the model’s training and validation steps, while only F1 Score
and accuracy are logged during the test and predict steps. Evaluation metrics were used during
the partial fine-tuning phase primarily to ensure that the model was deriving information from
the dataset, but were not used as a measure of success in the project implementation.

Accuracy, whilst not always entirely useful for gauging a model’s performance on certain tasks,
provides a valuable insight into whether the model is learning any meaningful representations
from the data. Precision and Recall are key components for calculating a model’s F1 Score,
and so being able to see these results during training aided when identifying issues with the
learning rate or how the data had been pre-processed. Validation loss, logged at each batch,
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step, and epoch end, is monitored during training, and is the metric monitored for signalling
early stopping to prevent overfitting. Accuracy is perhaps a superfluous addition to logging in
the test and predict steps, as this evaluation metric holds no bearing on the F1 Score, but was
useful to include for reference nonetheless.

4.4 Custom ELECTRA Classifier

This section provides an overview of the second model, the Custom ELECTRA Classifier, and
its iterations, which were implemented to be trained and evaluated on the smaller Semeval
dataset.

Implementation experimented with two iterations of the Custom ELECTRA Classifier. The first,
Custom-ELECTRA, is the module for training a 6-class classification head for each subcategory
defined in the dataset: Sarcasm, irony, satire, understatement, overstatement, and rhetorical
question. The second, Aggregate-ELECTRA, is a similar module, but which only has a 3-class
classification head for separate subcategories defined during experimentation and created from
the dataset in its totality: Sarcasm, not sarcastic, and other - which encapsulates all of the
minority classes into one class. Both models are a saved and re-loaded version of the base
ELECTRA Classifier, which is automatically saved to a checkpoint following model training
and testing. Following re-loading, the existing model’s binary classification head is discarded
and a new multi-class classification head is appended. These models are initialised with none
of the fine-tuned models layers unfrozen.

Consideration was given to the creation of a small neural network built on top of the ELECTRA
Classifier and before the Custom ELECTRA Classifier’s classification head. However, when
training and testing on the smaller dataset this led to inferior results. As a result of this failed
implementation, it was decided that increasing the size of the model to use with the smaller
Semeval dataset would not aid in increasing model performance.

Similarly to the ELECTRA Classifier, training and validation loss, precision, and recall are
logged at each training and validation step end for both models. Early stopping with a patience
of 5 epochs based on validation loss is implemented as a callback in the trainer.fit() method to
prevent overfitting, particularly on a smaller dataset. There is also a custom Metrics Callback
class implemented in order to track and store all metrics during training and validation epochs,
while Tensorboard logs are also created for data visualisation and debugging. The models are
initialised with a maximum epoch value of 1000, though they did not require more than 30
epochs to train before stopping when early stopping conditions were met.

4.4.1 Learning rates

The Custom-ELECTRA model for 6-class classification is initialised with a base learning rate of
5e-6. The learning rate is particularly small due to the class imbalance previously highlighted
in the Semeval dataset, and uses the RAdam optimizer similarly to the ELECTRA Classifier
with a weight decay of 0.01 to help prevent overfitting. Iterations utilising a higher learning
rate (between 1e-3 and 5e-4) yielded poor performance with no decrease in output loss after
around 5 epochs.

The Aggregate-ELECTRA model for 3-class classification is initialised with a base learning
rate of 5e-4, for similar reasons to those outlined above, though the learning rate is higher as
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this yielded better performance. A learning rate scheduler based on PyTorch’s OneCycleLR
Pytorch (n.d.b) is implemented for Aggregate-ELECTRA which adjusts the learning rate each
step between a maximum value of 2 times the instantiated learning rate (5e-4) and a minimum
value lower than the instantiated learning rate, in a strategy which has been proven to aid
fast convergence on training data Smith and Topin (2018). This learning rate scheduler
was initially applied to the Custom-ELECTRA (6-Class) model, but yielded a decrease in
performance. Therefore, the learning rate scheduler with a slightly higher learning rate is
initialised in Aggregate-ELECTRA, which led to a modest performance increase in this model
for the 3-class task.

4.4.2 Evaluation Metrics

In order to ensure that this research was able to be contextualised in line with other results
obtained by teams participating in the Semeval Subtask B, the macro F1 Score of the model’s
predictions over all classes was used as the primary evaluation metric for this task. The macro
F1 Score is calculated as follows:

F1 =
1

n

n∑
c=1

(F c
1 ), (4.1)

"where F c
1 represents the F1 score for the cth category and n is the number of

categories." (Abu Farha et al., 2022, p. 806)

The macro F1 Score is the harmonic mean of precision and recall, where precision is the ratio
of true positive predictions to the total number of positive predictions and recall is the ratio of
true positive predictions to the total number of actual positive instances. F1 Score is therefore
defined as follows:

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

, (4.2)

Korstanje (2021)

where:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(4.3)

Korstanje (2021)

Macro F1 Score is calculated in the Custom ELECTRA Classifier instance by computing the
F1 Score for each class separately then taking the average of each of these values, meaning
that equal weight is given to each class. Thus, precision, recall, class F1 Score, and macro
F1 Score are all logged at each step and epoch during training, testing, and prediction, along
with loss to measure model performance. The Custom-ELECTRA Classifiers are instantiated
with a weighted categorical cross entropy loss function based on the proportions of the classes
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represented in order to direct the models’ attention to under-represented classes in the data.
Categorical cross entropy is defined as follows:

Li = −log(
e fyi∑
j

e fj
), (4.4)

Stanford University (n.d.a)

Or equivalently:

Li = −fyi + log
∑
j

e fj (4.5)

Stanford University (n.d.a)

Where fj is the jth element of the class score vector f and Li denotes the full loss across
the dataset Stanford University (n.d.a). The softmax function, applied as part of PyTorch’s
categorical cross entropy loss function in order to obtain predictions across all classes between
the values of 0 and 1, is defined as follows:

fj(z) =
ezj∑
k ezk

(4.6)

Stanford University (n.d.a)

The weights in the loss function ensure that the model is penalized more heavily for confidently
asserting incorrect predictions when predicting on the majority class(es). The weights, which
are the number of samples per class, are therefore passed to PyTorch’s CrossEntropy function,
and implementation of a weighted loss function displayed a small improvement in results when
predicting across all classes.

4.4.3 6-class classification versus 3-class classification

Initial implementation of Custom-ELECTRA experimented solely with a 6-class classification
head appended to the fine-tuned ELECTRA Classifier. However, following training and testing
on the Semeval dataset, it was identified that during prediction Custom-ELECTRA was
yielding low F1 and macro F1 scores. As such, consideration was given to the possibility
that augmenting and adjusting the Semeval dataset could help the model to obtain better
results and extract further information from the training dataset. Thus the data preprocessing
and augmentation techniques as outlined in the Methodology section were applied to the
Semeval training, validation, and test datasets, in order to help train the model more effectively.
Data augmentation of all classes originally included in the Semeval dataset was applied to
the training dataset only, and table 4.7 (below) outlines the class distribution of the Semeval
training dataset following data augmentation techniques for the 6-class Custom-ELECTRA
Classifier:
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Table 4.7: Semeval training dataset samples (6-class) Custom-ELECTRA

Label Original Value Positive Values Negative Values
Sarcasm 447 2235 8900
Irony 106 2650 8485
Satire 20 1000 10135
Understatement 7 420 10715
Overstatement 31 1550 9585
Rhetorical question 82 3280 7855

3-class classification

Following the application of data preprocessing techniques for the Custom-ELECTRA (6-Class)
Classifier, including the removal of overlap between classes and the minority-represented
subclasses in the training, validation, and test datasets, and data augmentation techniques
applied solely to the training dataset, the results obtained were slightly disappointing.

As illustrated in table 4.7, issues arise when using data augmentation techniques are applied to a
heavily imbalanced dataset such as the one provided for Semeval Subtask B. The heavily under-
represented classes such as satire, understatement, overstatement, and rhetorical question
were augmented by the addition of between 40 and 60 synthetic samples per existing dataset
sample. The augmentation however led to a greater imbalance of data not included in the
class, simply compounding the existing issue of a comparative lack of samples per minority
class despite a greater amount of samples overall. Consideration was therefore given to the
possibility of approaching the task in a different way, by utilising some feature engineering
methods to manipulate the data and create new classes.

First, a majority class of the non-sarcastic samples originally included in the dataset which did
not have their own label was created, and were subsequently assigned the label ‘not_sarcastic’.
Second, the remaining minority classes which were under-represented in the original dataset
(irony, satire, understatement, overstatement, and rhetorical question) were aggregated into
another column which was subsequently assigned the label ‘Other’. The following informa-
tion summarises the methodology behind creating Aggregate-ELECTRA, a 3-class Custom-
ELECTRA Classifier, with only the previous data preprocessing step of removal of sarcasm,
irony, and rhetorical question overlap having already been applied:

Creating a majority class

Initially, a class for the majority values which were included in the dataset was created. That is,
the non-sarcastic values which did not have a class of their own, but comprised the majority of
samples at around 75% of the original training dataset prior to their removal. A new column
labelled ‘not_sarcastic’ was created which extracted all rows where no positive values were
identified for any of the other classes, inverting these negative values as positive to create
a class of non-sarcastic samples. It is important to note that simply inverting the ‘Sarcasm’
values in this instance is insufficient, as then the subcategory samples would be included
both in their individual columns, as well as in the ‘not_sarcastic’ column. The model would
therefore be trained on incorrect data for a multi-class task. This method was applied to the
Semeval training dataset prior to splitting, as well as to the test dataset for consistency. It
should be noted that implementation of the same method (creating a majority class from the
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not sarcastic samples) was applied to the 6-class classifier for experimentation purposes, but
elicited poor task-specific results. Further information can be found in Chapter 5 of the report.

Creating an ‘Other’ class

The second step which was taken was to create a class label ‘Other’ which would allow
all minority values to be aggregated into one class. This was conducted by identifying all
instances where columns of the subcategories excluding ‘Sarcasm’ - irony, satire, understatement,
overstatement, and rhetorical question - held positive values. These values were then aggregated
as one label in the ‘Other’ column, while preserving the text in its original place.

Data augmentation

Following the creation of the ‘not_sarcastic’ and ‘Other’ columns while preserving the ‘Sarcasm’
column, analysis of the training dataset identified the following class sample distribution:

Table 4.8: Aggregate-ELECTRA Semeval Training Dataset Samples Before Augmentation

Label Positive Values Negative Values
Sarcasm 440 2334
Not sarcastic 2106 668
Other 228 2546

In order to ensure that there was a relatively equal sample distribution within the training
dataset, the data augmentation techniques utilising the predefined classes afforded by the
TextAttack library were subsequently applied to the dataset. 20 and 50 synthetic examples
are generated for each sample in the ‘Sarcasm’ and ‘Other’ classes respectively. Following
application of these data augmentation techniques, the class distribution of the Semeval
training dataset is as follows:

Table 4.9: Aggregate-ELECTRA Semeval Training Dataset Samples After Augmentation

Label Positive Values Negative Values
Sarcasm 8800 13506
Not sarcastic 2106 20200
Other 11400 10906



Chapter 5

Results

5.1 Custom ELECTRA Classifier quantitative results

The Custom ELECTRA Classifier, outlined in its totality in section 4.4 of the report, obtained
interesting results during testing. The testing phase of model training is significant as it
allows the researcher to evaluate the model’s performance on previously unseen data. PyTorch
Lightning provides functionality for both testing and predict steps which are implemented as
part of the project, however only the test dataset is able to be used for these steps due to a
lack of further labelled data required for such a specialised task. The test dataset is therefore
implemented in the testing and predict step methods, though only one method is called at a
time in order to prevent the model from memorising the test dataset.

The Custom-ELECTRA (6-Class) Classifier runs for between 15 and 30 epochs, while the
ELECTRA-Aggregate (3-Class) Classifier runs for between 10 and 30 epochs during an average
training cycle. Both models normally terminate training when the early stopping threshold of no
decrease in validation loss after 5 epochs is met. A base ELECTRA model (ELECTRA-no-FT),
implemented using the same data preprocessing, augmentation and loss function techniques
as 6-class Custom-ELECTRA with no layer unfreezing, attains poor results and some null
values when predicting the sarcasm subcategories. During implementation, it was hypothesised
that the complexity of the ELECTRA base model in tandem with the small, fairly imbalanced
Semeval dataset was a partial cause for these null predictions, which prevented the model from
deriving meaningful representations from the dataset and which led to the implementation of
the fine-tuned Custom-ELECTRA classifier. The 6-class Custom-ELECTRA classifier attained
the following results:

32
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Table 5.1: Custom-ELECTRA (6-Class) Classifier Results

Class Test Metric Test Value
Class 0 (sarcasm) F1 0.0523
Class 1 (irony) F1 0.11
Class 2 (satire) F1 0.0498
Class 3 (understatement) F1 0.08
Class 4 (overstatement) F1 0.1162
Class 5 (rhetorical question) F1 0.0640
All classes Macro F1 0.0787
All classes Test loss 0.2033

Table 5.2: Custom-ELECTRA (6-Class) Classifier Results Breakdown

Class True Positives False Positives False Negatives True Negatives
Class 0 (sarcasm) 3 4 112 81
Class 1 (irony) 8 115 7 70
Class 2 (satire) 2 3 47 148
Class 3 (understatement) 1 10 0 189
Class 4 (overstatement) 3 44 7 146
Class 5 (rhetorical question) 2 5 8 185

Implementation experimented with generating synthetic samples per class proportional to the
representation of these samples within the dataset, varying from generation of ∼ 20 to 50
samples per dataset sample, with little difference in performance identified. For reference,
ELECTRA-no-FT attained the following test results on the same dataset:

Table 5.3: ELECTRA-no-FT results without fine-tuning

Class Test Metric Test Value
Class 0 (sarcasm) F1 0.4149
Class 1 (irony) F1 0.0364
Class 2 (satire) F1 0.0279
Class 3 (understatement) F1 0.0
Class 4 (overstatement) F1 0.0
Class 5 (rhetorical question) F1 0.0274
All classes Macro F1 0.0844
All classes Test loss 0.0341
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Table 5.4: ELECTRA-no-FT Results Breakdown

Class True Positives False Positives False Negatives True Negatives
Class 0 (sarcasm) 22 19 93 66
Class 1 (irony) 5 79 10 106
Class 2 (satire) 6 17 43 134
Class 3 (understatement) 0 1 1 198
Class 4 (overstatement) 0 25 8 168
Class 5 (rhetorical question) 6 20 4 170

The 3-Class Aggregate-ELECTRA Classifier, which aggregates the minority classes into one
column and includes a majority class not sarcastic column, attained the following results:

Table 5.5: Aggregate-ELECTRA (3-Class) Classifier Results

Class Test Metric Test Value
Class 0 (sarcasm) F1 0.1088
Class 1 (not sarcastic) F1 0.5282
Class 2 (other) F1 0.0719
All classes Macro F1 0.2363
All classes Test loss 1.4573

Table 5.6: Aggregate-ELECTRA (3-Class) Classifier Results Breakdown

Class True Positives False Positives False Negatives True Negatives
Class 0 (sarcasm) 21 147 108 1124
Class 1 (not_sarcastic) 872 167 328 33
Class 2 (other) 14 180 73 1135

Screenshots of results obtained by the Custom ELECTRA Classifier modules can be found in
Appendix B of the report. The Macro F1 Score for Aggregate-ELECTRA is 0.2363 - the most
superior result attained by any of the models which produced predictions for all classes. The
results also show that the removal of overlap between samples labelled as both sarcastic and
one of the sarcasm subcategories generates less impressive results than were originally attained
during the Semeval Subtask B competition. An explanation for the strong results previously
obtained could be that there exists a clear hierarchical relationship between the primary labels
of sarcasm and irony and those of the subcategories which would elicit biases towards the
dominant classes during inference.

Additionally, during the project’s testing phase, implementation experimented with a version
of the Custom-ELECTRA (6-class) Classifier which had a ‘not_sarcastic’ class created in a
similar way to Aggregate-ELECTRA. This version of Custom-ELECTRA therefore had 7 classes:
sarcasm, irony, satire, overstatement, understatement, rhetorical question, and not_sarcastic.
This model was implemented in order to assess the classifier’s ability to distinguish between
sarcastic and non-sarcastic samples, while classifying instances of the subcategories, by utilising
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all data available within the Semeval datasets - i.e. preserving the dataset without removing
the non-sarcastic samples. The results of this experiment are highlighted in Table 5.7 (below):

Table 5.7: Custom ELECTRA (7-Class) Classifier Results

Class Test Metric Test Value
Class 0 (not_sarcastic) F1 0.9730
Class 1 (sarcasm) F1 0.8449
Class 2 (irony) F1 0.0
Class 3 (satire) F1 0.0
Class 4 (understatement) F1 0.0
Class 5 (overstatement) F1 0.0
Class 6 (rhetorical question) F1 0.0
All classes Macro F1 0.2597
All classes Test loss 0.1661

5.2 Custom-ELECTRA Classifiers trend description

As illustrated in the above tables, it is clear that, although the base ELECTRA model ELECTRA-
no-FT is able to efficiently predict values for most of the sarcastic subcategories with data
augmentation techniques applied and therefore attains a higher macro F1 score overall, it is
unable to correctly identify instances of two of the most under-represented minority classes of
overstatement and understatement, which comprise only 40 and 10 samples in the original
dataset. The fine-tuned version of ELECTRA implemented in the Custom-ELECTRA (6-
class) Classifier is able to correctly predict a small amount of instances of understatement and
overstatement examples, whilst also attaining superior results for the satire, irony, and rhetorical
question classes which are relatively under-represented in the dataset. It is interesting that the
fine-tuned version of ELECTRA does not perform better than the base model when predicting
the ‘Sarcasm’ class despite being fine-tuned on sarcastic data, though one consideration for
this could be that ELECTRA’s approach to both replaced token detection and discriminatory
MLM aids the model generally in understanding sarcastic context more efficiently, and is thus
able to identify more nuanced samples within the dataset when fine-tuned on general sarcastic
data.

Overall, approaching the task as multi-class as opposed to multi-label as defined in Semeval
Subtask B increased performance across less well-represented subcategories, for which F1
Scores in understatement, overstatement, and satire were generally not consistently identified
by the original participants’ models 1. Although it is important not to quantitatively compare
the results obtained in this study in comparison with those obtained by the original Semeval
Subtask B participants, it is possible that the multi-class approach outlined in this project
elicited more consistent results across all subcategories: Approaching this classification task
as multi-class as opposed to multi-label necessitated a greater inspection of the Semeval
data, which clearly illustrated the overlap between the highest-represented ‘Sarcasm’ and
‘Irony’ classes. Eliminating hierarchical overlap between the labels therefore allowed more
under-represented classes to be given more attention by the model during training.

1A full copy of the results attained by Semeval 2022 participants can be found in Appendix C of the report.
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The experimental 7-Class Custom ELECTRA Classifier results (Table 5.4) highlight that the
creation of a model which is both capable of distinguishing between sarcastic and non-sarcastic
data samples as well as classifying instances of the sarcastic subcategories remains a difficult
task. The non-sarcastic samples in the Semeval dataset comprise a total of 2601 out of 3468
samples, or 75% of the dataset. This experimental implementation highlights that there is a
large bias towards non-sarcastic samples in the original dataset, which elicits seemingly highly
performant results in the 7-Class Classifier in predicting instances of the majority-represented
classes: ‘Sarcasm’ and ‘not_sarcastic’. It could therefore be concluded that, when trained on
the full dataset, these biases have an impact on the representations which models are able to
derive from this dataset, leading to the model defaulting to predictions made in favour of the
majority classes in order to achieve higher scores.

The Aggregate-ELECTRA results attained when aggregating the minority classes into one
column and creating a majority non-sarcastic class represent the highest macro F1 Score
attained by any of the Custom-ELECTRA (6-Class) Classifier, the Aggregate-ELECTRA (3-
Class) Classifier, and ELECTRA-no-FT. This model attains the most superior results when
predicting ‘Sarcasm’, while predicting values for ‘not_sarcastic’ and ‘Other’ relatively well.
The results attained by this model suggest that during classification, the model is able to
distinguish between sarcasm, not sarcastic, and a category which relates to the two relatively
well, strengthening the potential argument for the creation of multiple models trained primarily
for sarcasm detection and subsequently for subcategory classification as a related downstream
task. The comparatively low F1 Score attained for the ‘Other’ category also suggests that
more samples for the under-represented categories are required despite their aggregation into
one class.
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Reflections

6.1 Evaluation

This project sought to assess the ELECTRA model’s efficacy when dealing with the task of
multi-class classification of sarcasm and its subcategories, utilising the dataset afforded by the
Semeval 2022 Subtask B. Initial implementation identified that the ELECTRA base model was
unable to effectively train and predict on the dataset. It was therefore hypothesised that the
creation of a fine-tuned version of the model, trained to generalise on sarcastic data, could aid
in producing a secondary custom model which was able to more successfully predict the class
labels on the dataset.

6.1.1 Model performance

Implementation of a fine-tuned version of ELECTRA trained for the downstream task of sarcasm
subcategory classification resulted in a model which was able to predict values for all classes,
while providing values for the samples least represented in the dataset. Custom-ELECTRA
(6-Class), the fine-tuned version of ELECTRA, compared with the base ELECTRA model
ELECTRA-no-FT, is able to identify more correct samples of the most under-represented
categories: Satire, understatement, and overstatement, though the macro F1 Score overall
is inferior to that obtained by ELECTRA-no-FT. It is possible therefore that ELECTRA’s
discriminatory approach to MLM helps the model to understand more contextual nuances in
under-represented dataset samples when fine-tuned for a particular task.

Although the results obtained do not surpass those obtained by participants in the multi-label
Semeval task, it is interesting to note that the fine-tuning of the ELECTRA base model
appeared to produce some improvement in the ELECTRA model’s consistent categorisation
of minority under-represented classes in the dataset. Without further contextual information
regarding any other ELECTRA models implemented for this particular task, it is not possible
to draw definitive conclusions regarding this model’s results in comparison to other versions.
Due to the increase in model performance following the application of data augmentation
techniques, it is possible that an increase in data samples accurately reflecting a variety of
class instances could lead to an overall increase in ELECTRA’s performance on the task.

37
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6.1.2 Evaluation of overall implementation techniques

The best-scoring participating team in Semeval Subtask B utilised an ensemble learning
approach in which the predictions of multiple models trained on separate, relevant tasks
are averaged to attain superior results Du et al. (2022). The experimental results of the
7-Class Custom ELECTRA Classifier, which displayed the model defaulting to prediction of the
majority classes, suggest that separating the tasks of (A) binary sarcasm detection and (B)
multi-class sarcasm subcategory classification could be beneficial for obtaining superior results.
It is possible therefore that using the fine-tuned version of ELECTRA to identify instances of
sarcasm, combining this using ensemble methods with a separate model to identify instances of
the subcategories of sarcasm, could also lead to superior results. Separating the more prevalent
classes such as sarcasm and not sarcasm into one model, and linking this with another model
for the subcategories could ensure that these models encapsulate more granular linguistic
nuances derived from the data. Additionally, it is possible that creating a smaller trainable
neural network between the fine-tuned ELECTRA base model and the Custom ELECTRA
Classifier classification head could lead to better results due to more layers being trainable,
though initial experimentation with this method did not lead to performance improvements
in this study. The current research endeavoured to focus primarily on the performance of an
unaltered ELECTRA model on the task of multi-class sarcasm subcategory classification.

6.2 Reflections: the Data Problem

As referenced several times throughout the report, the class imbalance and bias within the
Semeval dataset elicited numerous difficulties when trying to train and test the various
ELECTRA iterations outlined. With the most under-represented classes in the dataset of satire,
understatement, and overstatement representing only 25, 40, and 10 samples respectively, it
was necessary for data augmentation techniques to be applied to the dataset in order to aid
the model in extracting valuable semantic information from the data.

6.2.1 Consideration of data augmentation techniques

The research conducted identified that data augmentation techniques applied to the Semeval
dataset had a marked effect on improving results, leading to predictions made on several classes
which had previously been unidentifiable for the model. The choice of utilising the TextAttack
library for data augmentation increased results. TextAttack’s character-based synthetic data
augmentation was identified as the method which would least fragment the existing data, by
only altering characters and thus preserving nuance and semantics in the existing samples.

Consideration was given to the theory that simply augmenting existing class samples in the
dataset - some of which comprise a limited amount of samples - could lead to overfitting
on these particular classes, while preventing the model from being correctly equipped to
handle variations of under-represented subcategories when utilised in a real-life setting. Data
augmentation through character alteration increases the size of the dataset, but does not
necessarily provide the model with a wide variety of samples from which to draw information
and may even introduce biases towards particular sample instances. This approach is therefore
not necessarily the most optimal for training intelligent NLU systems to comprehensively
understand and identify instances of sarcasm and its subcategories. However, due to a lack of
labelled corpora for the task, this hurdle remains insurmountable.
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In addition to character-based data augmentation, consideration was also given to a wide
range of techniques which could also have been implemented in order to improve results,
including using more complex data augmentation techniques such as back translation - in
which target sentences are translated to a foreign language and then translated back into the
original language to diversify dataset samples; or word embedding synonym replacement - in
which synonyms close in meaning to the original word are generated by the word embedding
generation models and used to replace words. However, it was decided that significantly
altering the nuances of already under-represented sentences - many of which are also short in
length - could lead to inferior results.

6.2.2 Data availability conclusions

As such, the highly specialised task of data availability remains a significant issue for NLP and
in particular sarcasm detection. The dataset collated by Abu Farha et al. (2022) is impressive,
and comprises the first of its kind for an aggregate corpora of sarcastic subcategories, however it
has its limitations. Data augmentation, while an important strategy in training and evaluating
neural architectures for the task of sarcasm detection generally, is not effective enough in
equipping these models to identify a wide range of examples of sarcasm and its subcategories.
Therefore, it is recommendable that larger corpora of labelled data should be compiled for
these subcategories in order to effectively train models for the task of sarcasm subcategory
classification in supervised settings.

6.3 Future Work

Implementation of Custom-ELECTRA and its iterations involved a fine-tuned version of the
base ELECTRA model, as instantiated in the ELECTRA Classifier module. The results attained
illustrate that fine-tuning a model for a more general task can aid in increasing performance for
under-represented class samples which include heavy semantic and linguistic nuances. However,
these results are still far from state-of-the-art, and illustrate that significant work can still be
conducted when fine-tuning pre-trained LLMs such as ELECTRA for multi-class classification
of sarcasm subcategories.

To this end, there is room for research to be conducted relating to the improvement of results
attained by LLMs in general, and to establish a superior ELECTRA benchmark specifically
in the task. ELECTRA represents a movement by researchers to develop more lightweight
and computationally efficient LLMs, which can attain comparable or superior results to larger
LLMs such as BERT or GPT. However, it remains to be seen whether ELECTRA can still
outperform these models on more nuanced tasks, possibly due to fewer contextual embeddings
generated by the model during pre-training. It would be interesting to see how an ensemble
learning method utilising several versions of ELECTRA fine-tuned on a variety of sarcastic
speech categories or indeed trained to first identify sarcasm and then identify the subcategories
would perform in comparison to a single model, and whether this approach could attain results
superior to those delineated in this study.

The limitations of the Semeval dataset, primarily relating to biases and under-representation
of nuanced minority classes highlight the urgency for the community to create larger corpora
of labelled data for particular tasks. Although it would be possible to fine-tune several versions
of the ELECTRA model on each of the subcategories outlined within the dataset, questions
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remain surrounding how equipped such a model architecture would be to handle samples
of such subcategories which are not represented in this dataset. There is also room for the
development of more lightweight, targeted models which are trained to attain high results for
particular tasks - as opposed to attempting to develop more LLMs which use huge amounts of
compute - in a more generative approach to creating and studying NLP models for sarcasm
detection.
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Appendix A

Packages and Extensions

Several common machine learning packages and extensions were utilised during research in
order to ensure reproducibility of results and expedite implementation. This section will provide
an overview of the packages and extensions utilised and evaluate their suitability for this task.

A.0.1 Hugging Face

The pre-trained version of ELECTRA used in fine-tuning and transfer learning for the task
was downloaded from the Hugging Face Transformers library. Hugging Face provides an open
source framework to employ pre-trained transformer models, and thus is an optimal choice for
research.

The ELECTRA base model chosen from the Hugging Face library is the ElectraForSequenceClas-
sification class, a version of ELECTRA which has been pre-trained for sequence classification
tasks Hugging Face (n.d.b). Sequence classification encompasses a task in which a category is
predicted based on a sequence of inputs or data over space or time, and is widely used in NLP
for classification of sentences or inputs, including in sentiment analysis. The ElectraForSe-
quenceClassification was deemed to be most applicable to this task due to the relevance of
sequence classification in sentiment analysis.

Evaluation of HuggingFace

The ease of use and integration with common machine learning frameworks such as Pytorch
and Tensorflow afforded by the Hugging Face Transformers library makes it an invaluable
addition for this research. Although all ELECTRA models published by Google Research
are available on the company’s repository, they only provide integration with the Tensorflow
framework which is difficult to use when attempting to save and load fine-tuned pre-trained
models.

A.0.2 Pytorch Lightning

The difficulties with saving and loading fine-tuned pre-trained models using Tensorflow gave
rise to the necessity to use Pytorch and, more specifically, the Pytorch Lightning library. This
library was created for "professional AI researchers" PyTorch Lightning (n.d.) in order to
expedite experimentation and research. Pytorch Lightning ensures that results obtained during
research is reproducible, and was therefore an optimal solution in this project’s implementation.
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Evaluation of Pytorch Lightning

Pytorch Lightning’s inbuilt functionality and streamlined processes facilitated experimentation
and greater iterations through ideas and various implementations during research. The modular
functionality afforded great ease when creating classes for the Electra Classifier (base model
fine tuning) and the Custom Electra Classifier (downstream task model), whilst ensuring that
training iterations could be done quickly. However, the high level of abstraction with which
the library operates made it sometimes difficult to understand what was going on and where,
delaying progress in some areas.

A.0.3 TextAttack

Poor performance in model implementation initially necessitated the creation of synthetic but
similar samples to those included in the Semeval dataset. Thus, the TextAttack library was
employed. TextAttack was initially proposed by Morris et al. (2020) in 2020 as a machine
learning framework to be employed for a variety of use cases such as data augmentation and
adversarial attacks or training. TextAttack’s data augmentation classes allow custom synthetic
data samples to be created per sample which are similar to existing samples in the dataset,
by altering words, characters, or even replacing words with words closely associated in vector
embedding space.

Evaluation of TextAttack

The implementation of TextAttack for this project was invaluable, as it allowed the creation of
synthetic data samples without (A) utilising other LLMs such as GPT and (B) altering the
existing nuances or semantics of the existing - and relatively limited - samples. Conventional
data augmentation techniques such as word replacement, swapping, or removal would have
potentially altered the meaning behind the sentences of under-represented categories, leading
to the model being unable to derive meaningful representations from the data. However, it is
also possible that utilising such data augmentation techniques does not allow for the model to
learn meaningful representations which can apply across a wide variety of real-life samples,
though due to the general lack of specialised data for the task, this remains a challenge in
general for research in this area.



Appendix B

Raw Results Output

B.0.1 Results Screenshots

The following figures provide screenshots of output results for the Custom ELECTRA Classifier
and its iterations which have already been detailed in Chapter 5.

Figure B.1: Custom-ELECTRA (6-Class) Classifier Results

Figure B.2: ELECTRA-no-FT Results

Figure B.3: Aggregate-ELECTRA (3-Class) Results
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Figure B.4: Custom-ELECTRA Classifier (7-class) Results

For reference, the results of the ELECTRA Classifier, the model fine-tuned to generalise on
sarcastic data using the News Headlines Dataset, can also be found below:

Figure B.5: Fine-tuned ELECTRA Classifier Results

B.0.2 Loss Graphs

The following screenshots denote the training and validation loss on the training and validation
dataset for the models:

Figure B.6: Custom-ELECTRA (6-Class)
Classifier Training Loss

Figure B.7: Custom-ELECTRA (6-Class)
Classifier Validation Loss
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Figure B.8: ELECTRA-no-FT Training
Loss

Figure B.9: ELECTRA-no-FT Validation
Loss

Figure B.10: Aggregate-ELECTRA (3-
Class) Training Loss

Figure B.11: Aggregate-ELECTRA (3-
Class) Validation Loss



Appendix C

Semeval 2022 Subtask B Full Results

Figure C.1: Semeval 2022 Subtask B Results (All Participants)

(Abu Farha et al., 2022, p. 814)
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