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Closing the ODE-SDE gap in score-based diffusion
models through the Fokker–Planck equation

Teo Deveney†, Jan Stanczuk‡, Lisa Maria Kreusser†,
Chris Budd† and Carola-Bibiane Schönlieb‡

Abstract

Score-based diffusion models have emerged as one of the most promising frame-
works for deep generative modelling, due to their state-of-the art performance in many
generation tasks while relying on mathematical foundations such as stochastic differ-
ential equations (SDEs) and ordinary differential equations (ODEs). Empirically, it
has been reported that ODE based samples are inferior to SDE based samples. In
this paper we rigorously describe the range of dynamics and approximations that arise
when training score-based diffusion models, including the true SDE dynamics, the neu-
ral approximations, the various approximate particle dynamics that result, as well as
their associated Fokker–Planck equations and the neural network approximations of
these Fokker–Planck equations. We systematically analyse the difference between the
ODE and SDE dynamics of score-based diffusion models, and link it to an associated
Fokker–Planck equation. We derive a theoretical upper bound on the Wasserstein 2-
distance between the ODE- and SDE-induced distributions in terms of a Fokker–Planck
residual. We also show numerically that conventional score-based diffusion models can
exhibit significant differences between ODE- and SDE-induced distributions which we
demonstrate using explicit comparisons. Moreover, we show numerically that reducing
the Fokker–Planck residual by adding it as an additional regularisation term leads to
closing the gap between ODE- and SDE-induced distributions. Our experiments suggest
that this regularisation can improve the distribution generated by the ODE, however
that this can come at the cost of degraded SDE sample quality.

1 Introduction

Score-based [Hyv05] and diffusion-based [Soh+15] generative models have recently been re-
vived and improved, in [SE19] and [HJA20]. In [Son+21b], both frameworks have been unified
into a single continuous-time approach based on stochastic differential equations and called
score-based diffusion models. These approaches have received a lot of attention, achieving
state-of-the-art performance in likelihood estimation [Son+21b] and unconditional image gen-
eration [DN21]. Recently another wave of interest has been sparked by publication of two
state-of-the-art text-to-image generation models: Stable Diffusion [Rom+22] and DALL·E
[Ram+22].

In addition to achieving impressive performance in both image generation and likelihood
estimation, score-based diffusion models do not suffer from training instabilities or mode col-
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lapse common in other approaches to deep generative modelling [DN21; Son+21b]. Moreover,
their time complexity in high-resolutions is much better than that of auto-regressive models
[DN21]. This makes score-based diffusion models very attractive avenue for the future of deep
generative modelling.

Score-based diffusion models convert data into noise through a diffusion process governed
by a stochastic differential equation (SDE). Generating new data points is achieved by sam-
pling noise particles and simulating a reverse-time dynamics of this diffusion process, driven by
an equation known as the reverse SDE. The reverse SDE has a closed-form expression which
depends solely on the time-dependent gradient field (the so-called score) of the logarithm of
the perturbed data distribution.

In addition to the aforementioned stochastic dynamics, diffusion models can facilitate
deterministic dynamics, which are controlled by a probability flow ordinary differential equa-
tion (ODE). This ODE framework offers a deterministic method for sampling from a diffusion
model and plays a pivotal role in the computation of likelihoods. Using the Fréchet inception
distance (FID) score which is a metric used to assess the quality of images created by genera-
tive models, the authors in [Son+21b] report the FID scores on image generation tasks using
different sampling methods. They demonstrate that the FID scores of the ODE-based sam-
pler are lower than those of SDE-based sampler, implying that the ODE-based sampler has
inferior performance compared to the stochastic counterpart [Son+21b]. However, no explicit
comparisons of ODE and SDE samples is provided. This raises questions about the validity
of the likelihood computations and the theoretical reasons for the discrepancy between SDE-
and ODE-induced distributions.

In this paper, we will analyse the theoretical underpinnings of score-based diffusion models
and show that the discrepancy can be explained through a mean-field perspective on diffusion
models.

Our contributions: We rigorously describe the range of dynamics and approximations
that arise when training score-based diffusion model, including the forward SDE dynamics,
the neural approximations, the various approximate particle dynamics, as well as the associ-
ated mean-field equations and the neural network approximations of the mean-field equations.
We systematically analyse the difference between ODE and SDE dynamics of score-based dif-
fusion models and link it to an associated Fokker–Planck equation. We derive a theoretical
upper bound on the Wasserstein 2-distance between the ODE- and SDE-induced distributions
in terms of a Fokker–Planck residual. We show numerically that conventional score-based dif-
fusion models can exhibit significant differences between SDE- and ODE-induced distributions
which we demonstrate using explicit comparisons. Moreover, we show numerically that train-
ing score-based diffusion models with an additional Fokker–Planck regularisation term leads
to closing the gap between SDE and ODE distributions. In our experiments we show that this
can improve the distribution generated by the ODE sampler, though it can have a negative
impact on SDE samples.

1.1 Related work

The deterministic ODE dynamics for score-based diffusion models were introduced in [Son+21b],
where the authors show that under a perfect score approximation the SDE and ODE dis-
tributions coincide and derive a method for computing the likelihoods based on the ODE
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formulation. In the same work, the authors report that empirically under imperfect score ap-
proximation the ODE sampler exhibits inferior performance. This empirical finding highlights
the necessity for a more rigorous theoretical investigation into this phenomenon.

In [Son+21a], the authors derive an upper-bond on the Kullback–Leibler divergence be-
tween the SDE-induced model distribution and the target data-generating distribution in
terms of the score-matching objective that is minimised to train score-based diffusion mod-
els. However, they also point out that the same bound does not hold for the ODE-induced
distribution.

This issue is further explored in [Lu+22], where the authors introduce a new equality
which can be used for bounds of the Kullback–Leibler divergence between the ODE-induced
distribution and the data-generating distribution. Their findings reveal that the conventional
score matching objective, typically employed in score-based diffusion models, fails to ade-
quately control the error in the ODE distribution. To address this, the authors propose a
novel training scheme that optimises an upper bound on the Kullback–Leibler divergence
based on higher orders of the score-matching error.

The authors in [Lai+23] relate the Kullback–Leibler divergence between the ODE-induced
distribution and the data-generating distribution to the error in the Fokker–Planck equation
associated with the diffusion process. The authors derive the PDE obeyed by the score of
the forward diffusion process and call this the score-Fokker–Planck equation. By further
bounding the upper bound derived in [Lu+22], they demonstrate that the residual of the
score-Fokker–Planck equation can control the ODE sample error up to some additive constant,
and therefore minimising the score-Fokker–Planck residual reduces an upper bound on the
log-likelihood of the probability flow ODE. In principle their results can be used to quantify
the discrepancy between ODE- and SDE-induced distributions by relating each to the data
generating distribution. However, additional convergence of the score matching objective
to zero is required to establish convergence between these distributions. Furthermore, they
develop a numerical regularisation scheme for score-based diffusion models that facilitates the
minimisation of the score-Fokker–Planck residual.

Our work also considers the Fokker–Planck equation underlying the diffusion dynamics,
and therefore shares some similarities with that of [Lai+23]. However, our analysis has been
conducted independently using a different theoretical toolbox, and accordingly reveals differ-
ent insights. First and foremost, our focus is on quantifying the discrepancy between the ODE
and SDE distributions, rather than the distance between the ODE and the data-generating
distribution. We postulate that this is a more relevant quantity to examine since the proba-
bility flow ODE is derived through a reformulation of the underlying Fokker–Planck equation.
We derive bounds on the ODE-SDE discrepancy in terms of a Fokker–Planck residual that do
not contain any additive constants, nor do they rely on the value of the score-matching ob-
jective. This is significant, as our numerical experiments suggest that in practice that trying
to enforce agreement with the underlying Fokker–Planck equation adversely affects the score
matching objective, which makes the concurrent minimisation of these terms unrealistic for a
fixed network architecture. Secondly, our analysis is done in terms of Wasserstein 2-distance
rather than Kullback–Leibler divergence, and as such is a distinct mathematical approach.
We postulate that in this context the Wasserstein distance is a more desirable quantity than
Kullback–Leibler divergence, because the results remain meaningful even for mutually sin-
gular distributions. Such scenario could arise if the data distribution is supported on a low
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dimensional sub-manifold and SDE and ODE distributions approximate different manifolds
which do not align perfectly. For a detailed discussion on the issues of the Kullback–Leibler
divergence in relation to distributions supported on sub-manifolds, we refer to [AB17] and
[ACB17]. Thirdly, our analysis is based on a Fokker–Planck equation formulated for the
log-density function as opposed to the score function, and we refer to this log-density as a
potential. Consequently, in our numerical experiments, we employ the potential parameteri-
sation, rather than the conventional score-parameterisation of the neural network. The choice
of the potential parameterisation does not only allow us to introduce a regularisation term
that minimises the residual of the log-density Fokker–Planck equation, but also ensures that
the resulting score approximation is a conservative vector field. This is a desirable property,
since the ground truth solution is a gradient field. However, as demonstrated in our numer-
ical analysis, the conventional parameterisation often results in score approximations with a
non-zero curl. The potential parameterisation and conservation property of the vector fields
obtained by score parameterisation has also been explored in [SH21]. While the potential
parameterisation is the focus of our work, we remark that it is simple to adapt our theory to
the score parameterisation setting and attain analogous bounds in terms of a score-Fokker–
Planck residual similar to the one considered in [Lai+23]. A sketch of this reasoning is also
provided.

1.2 Outline

In Section 2, we describe the broad range of dynamics and approximations that arise when
training a score-based diffusion model. Our main theoretical result on the ODE-SDE gap
in score-based diffusion models is proven in Section 3 where we derive an upper bound on
the Wasserstein 2-distance between the ODE- and SDE-induced distributions in terms of a
Fokker–Planck residual. In Section 4 we provide numerical evidence showing explicitly that
conventional score-based diffusion models can exhibit significant differences between SDE-
and ODE-induced distributions. Moreover we show here that reducing the Fokker–Planck
residual by adding it as an additional regularisation term indeed leads to closing the gap
between SDE and ODE distributions.

2 Score-based diffusion models

2.1 Assumptions and notation

We will work in the time domain t ∈ [0, T ] for some T > 0 and spatial domain x ∈ Ω ⊂ Rd.
For two vectors a, b ∈ Rd we denote their inner product a · b := aT b, with associated norm
∥a∥2 := (a · a)1/2. For a function h : Ω → Rn we denote the L2-norm over some domain

Ω ⊂ Rd as ∥h∥L2(Ω) :=
(∫

Ω
∥h(x)∥22dx

)1/2
. We denote by ∇ the (spatial) gradient and by ∇2

the diffusion. For two probability measures p, q on Ω, we denote their Wasserstein 2-distance
by W2(p, q).

Let (Ω,F,P) be a probability space, and let Ft ⊂ F be the natural filtration (the increasing
family of sub-σ-algebras containing information at times [0, t]). As is convention, we denote
by Wt ∈ Rd a Brownian motion at time t with values in Rd adapted to the filtration Ft.
Conversely, let F̄t ⊂ F denote a reverse filtration (the decreasing family of sub-σ-algebras
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containing information at times [t, T ]). We denote by W̄t ∈ Rd a Brownian motion at time
t with values in Rd adapted to F̄t. Under suitable assumptions, stochastic differential equa-
tions (SDEs) driven by Wt are adapted to Ft, and SDEs driven by W̄t are adapted to F̄t.
Throughout we will refer to the former as forward SDEs, and the latter as reverse SDEs
even though both SDEs will initially be formulated using the forward time variable t. When
dealing with SDEs and their mean-field limit we will distinguish between evolution equations
running forward and backwards in time by introducing the reverse time variable τ = T − t to
specify that the corresponding dynamics are in reverse time. We will denote the SDE dynam-
ics parameterised with the forward and reverse time variables t and τ = T − t by xt and x̄τ ,
respectively, with x̄τ = x̄T−t = xt = xT−τ . For any function h : Rd × [0, T ] → R, we introduce
h̄ : Rd × [0, T ] → R by h̄(·, τ) = h(·, T − τ) for all τ ∈ [0, T ]. Further, let probability densities
p0, π on Rd be given and we denote the associated log-densities by u0 = log p0, uT = log π on
Rd. Throughout the paper, we make the following regularity assumptions:

Assumptions 1. Let T > 0 and let f ∈ C∞(Rd × [0, T ];Rd) such that ∥f(x, t)∥2 ≤ Kf (1 +
∥x∥2) for some Kf > 0. Assume that g ∈ C∞([0, T ];R) and there is 0 < m < M < ∞ such
that m ≤ g(t) ≤ M for all t ∈ [0, T ]. We assume that Ω ⊂ Rd is a bounded domain with
∂Ω ∈ C∞. For neural approximations we assume smooth activation functions, so that neural
potential models uθ : Rd × [0, T ] → R are in C∞(Rd × [0, T ];R) throughout, and neural score
models sθ : Rd × [0, T ] → Rd are in C∞(Rd × [0, T ];Rd). Moreover we assume that there are
Ku, Ks > 0 such that ∥∇uθ(x, t)∥2 ≤ Ku(1 + ∥x∥2) and ∥sθ(x, t)∥2 ≤ Ks(1 + ∥x∥2). Finally,
we assume that the second moments of p0 and π are finite, and that π ∈ C∞(Rd;R).

2.2 Particle dynamics

We introduce the forward SDE as

dxt = f(xt, t)dt+ g(t)dWt, (1)

equipped with some initial distribution p0 for x0. In generative modelling settings, this initial
distribution p0 represents the underlying target distribution from which the data was sampled.
In (1), Wt denotes the value of a Brownian motion adapted to Ft, and therefore xt is also
adapted to Ft. We denote the associated marginal density of samples from (1) at time t by
p(·, t) with p0 = p(·, 0). Note that (1) has a unique t-continuous solution by Assumptions 1.

In [And82], the author shows that the process in (1) can be written as an SDE measurable
with respect to the reverse filtration F̄t. We refer to this SDE as the reverse SDE and it is
given by

dxt = (f(xt, t)− g2(t)∇ log p(xt, t))dt+ g(t)dW̄t, (2)

where W̄t is a Brownian motion adapted to F̄t at time t. Intuitively one can think of W̄t

as the backwards evolution of Brownian motion with known terminal state, and (2) as the
backwards evolution of (1). Accordingly, if the terminal distribution for xT is set to p(·, T ),
then the trajectories of (2) share the same distribution as (1) for any time t ∈ [0, T ]. As
shown in [Son+21b], a reformulation of the Fokker–Planck equations allows us to derive the
probability flow ODE of the forward SDE (1). This is given by

dxt

dt
= f(xt, t)−

1

2
g2(t)∇ log p(xt, t), (3)
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equipped with initial distribution p0 for x0 or, equivalently, terminal distribution p(·, T ) for
xT . The trajectories initialised from p0 evolve forward in time according to (3) and also have
marginal distribution p(·, t) at time t. Similarly, the trajectories with terminal condition xT

sampled from p(·, T ) have marginal distribution p(·, t) at time t. Therefore we have that the
associated densities to (1), (2) and (3) are all given by p(·, t) at any time t ∈ [0, T ].

2.3 Neural approximation

For generative tasks, practitioners assume p(·, T ) to be equal to a given prior distribution π
and simulate equations (2) or (3) to generate samples from p0. Typically, π approximates
p(·, T ) and is an easy to sample from distribution that contains no information of p0, such
as a Gaussian distribution with fixed mean and variance. However, solving equations (2)
or (3) requires knowledge of the (Stein) score function ∇ log p(xt, t) ∈ Rd for any xt, which
is not known in general and must be approximated from data. Therefore a neural network
sθ(xt, t) ∈ Rd with model parameters θ is trained to approximate the score function from the
data by minimising the weighted score matching objective

LSM(θ, sθ, λ) := Et∼U(0,T )
xt∼p(xt,t)

[λ(t) ∥∇log p(xt, t)− sθ(xt, t)∥22] (4)

where λ : [0, T ] −→ R+ is a positive weighting function.
LSM in (4) cannot be minimised directly since we do not have access to the ground truth

score ∇log p(xt, t). Therefore, in practice, a different objective has to be used [Hyv05; Vin11;
Son+21b]. In [Son+21b], the weighted denoising score-matching objective is considered,
which is defined as

LDSM(θ, sθ, λ) := Et∼U(0,T )
x0∼p0(x0)
xt∼p(xt,t|x0,0)

[λ(t) ∥∇log p(xt, t|x0, 0)− sθ(xt, t)∥22]. (5)

The difference between (4) and (5) is the replacement of the unknown ground truth score
∇log p(xt, t) by the score of the perturbation kernel ∇ log p(xt, t|x0, 0) which can be deter-
mined analytically for many choices of forward SDEs. Note that for a fixed function λ,
objective (5) is equal to objective (4) up to an additive constant, which does not depend on
the model parameters θ. The reader can refer to [Vin11] for the proof.

The choice of the weighting function λ is important because it determines the quality of
score-matching in different diffusion scales. A principled choice for the weighting function is
λ(t) = g(t)2. This weighting function is called the likelihood weighting function.

Remark. The choice λ(t) = g2(t) ensures that (5) together with the Kullback– Leibler diver-
gence DKL from the true terminal distribution p(·, T ) to the given prior distribution π yields
an upper bound on the Kullback–Leibler divergence from the target distribution p(·, 0) to the
model distribution pSDE

θ (·, 0). Here, pSDE
θ (·, 0) refers to the distribution of samples obtained

by simulating a neural approximation of particle dynamics (2), which we introduce in (7).
More precisely, it holds that

DKL(p(·, 0) ∥ pSDE
θ (·, 0)) ≤ DKL(p(·, T ) ∥ π(·)) + T

2
LSM(θ, sθ, g

2).
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Other weighting functions also yielded very good results [Kin+21] for particular choices of
forward SDEs. However, there are no theoretical guarantees that alternative weightings would
yield good results for arbitrary choices of forward SDEs.

Similarly to the model distribution pSDE
θ (·, 0) of the neural approximation of the parti-

cle dynamics (2), one can also consider the distribution of samples pODE
θ (·, 0) obtained by

simulating the neural approximation of particle dynamics (3) and we will formally introduce
pODE
θ (·, 0) in Section 2.4. A bound of the Kullback–Leibler divergence from the target distri-
bution p(·, 0) to the model distribution pODE

θ (·, 0) has been derived in [Lu+22] and is given
by

DKL(p(·, 0) ∥ pODE
θ (·, 0)) = DKL(p(·, T ) ∥ π(·)) + T

2
LSM(θ, sθ, g

2) +
T

2
LDiff (θ, sθ, g

2),

where

LDiff (θ, sθ, λ)

:= Et∼U(0,T )
xt∼p(xt,t)

[
λ(t) (∇ log p(x, t)− sθ(x, t))

T (
∇ log pODE

θ (x, t)− sθ(x, t)
)]

dt.

Upper bounds for LDiff (θ, sθ, g
2) have been derived in [Lu+22; Lai+23], and training schemes

based on minimising these upper bounds have been proposed.

Most implementations of neural score approximations parameterise the time-dependent
score vector field directly with a neural network sθ : Ω × [0, T ] −→ Rd on some bounded
domain Ω. Our experiments illustrated in Figure 1 show that such approximation results in a
vector field, which is not conservative and therefore cannot be a gradient field of any function.
Since we know a priori that the target vector field∇ log p is a gradient field, instead of learning
sθ, we consider a neural network ϕθ ∈ C∞(Ω× [0, T ];R) such that ϕθ(x, t) approximates the
log-density log p(x, t) for any (x, t) ∈ Ω × [0, T ] up to some normalising constant. In other
words there exists a (time-dependent) normalising constant Zt ∈ R such that

pθ(x, t) = exp(ϕθ(x, t)− logZt)

is a probability distribution. We write uθ = log pθ for the induced log-density and we call the
function ϕθ(x, t) a potential model. During training the induced approximate score∇ϕθ(x, t) =
∇uθ(x, t) ≈ ∇ log p(x, t) is computed by back-propagation through ϕθ with respect to the
input x. This results in a score approximation that is provably a conservative vector field.
Moreover, it enables us to calculate the time derivative of the approximate log-density (up to
normalisation) as ∂tuθ(x, t) ≈ ∂t log p(x, t) by back-propagation through ϕθ with respect to t.
This will prove crucial later, when we introduce and evaluate a log-Fokker–Planck residual
for uθ in Section 2.6.

2.4 Approximate particle dynamics

The above neural approximations uθ = log pθ ∈ C∞(Ω×[0, T ];R) induce approximate versions
of (2) and its deterministic flow (3). For ease of notation, we introduce the approximated
reverse drift,

fSDE
θ (x, t) = f(x, t)− g2(t)∇uθ(x, t), (6)
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(a) Samples from the concentric circles model (b) Curl of the concentric circles model

Figure 1: Samples and Euclidean norm of the curl of a trained (non-potential) score model
(i.e. ∥∇ × sθ(0, x)∥2). Clearly, the score model sθ(0, x) is not a conservative vector field.

obtained by substituting the potential model into the drift of (2). Note that by the as-
sumed properties of f, g, uθ in Assumptions 1, it follows that fSDE

θ ∈ C∞(Rd× [0, T ];Rd) and
∥fSDE

θ (x, t)∥2 ≤ (Kf +M2Ku)(1+∥x∥2). Using the approximated reverse drift (6), we obtain
the reverse approximate SDE

dxt = fSDE
θ (xt, t)dt+ g(t)dW̄t, (7)

which can be regarded as an approximation of (2). Here xt is adapted to the reverse time
filtration F̄t and by Assumptions 1, (7) has a unique t-continuous solution. We denote the
marginal density of xt satisfying (7) by pSDE

θ (·, t) at time t, and equip it with some terminal
distribution π of xT at time T , i.e., pSDE

θ (·, T ) = π, where π is chosen to be a Gaussian
approximation of p(·, T ). Thus the reverse flow of probability pSDE

θ induced by (7) may be
close to p depending on the accuracy of the potential model. Applying the result of [And82]
to write (7) as a process measurable with respect to Ft, we arrive at the forward approximate
SDE, given by

dxt =
[
fSDE
θ (xt, t) + g2(t)∇ log pSDE

θ (xt, t)
]
dt+ g(t)dWt, (8)

where x0 is drawn from pSDE
θ (·, 0). The associated probability flow ODE of the approximate

SDE (in forward time) is

dxt

dt
= fSDE

θ (xt, t) +
1

2
g2(t)∇ log pSDE

θ (xt, t), (9)

where x0 is drawn from pSDE
θ (·, 0). Note that the associated densities to (7), (8) and (9) are

all given by pSDE
θ (·, t) for t ∈ [0, T ].

Finally, we introduce an approximation of the probability flow ODE (3) by approximating
log p in (3) by a neural network uθ. This yields the approximate probability flow ODE (in
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forward time), given by

dxt

dt
= f(xt, t)−

1

2
g2(t)∇uθ(xt, t)),

or alternatively,

dxt

dt
= fODE

θ (xt, t), (10)

using the approximate forward drift

fODE
θ (xt, t) = f(xt, t)−

1

2
g2(t)∇uθ(xt, t), (11)

where fODE
θ ∈ C∞(Rd× [0, T ];Rd). Here xT distributed according to π the associated density

is denoted by pODE
θ (·, t) for t ∈ [0, T ].

In summary, the original formulations (1), (2) and (3) all have density p, the approxima-
tions (7), (8) and (9) obtained by approximating the reverse SDE (2) all have density pSDE

θ

and the approximation of the probability flow ODE (3) has density pODE
θ . Moreover, there

is a density pθ = exp(uθ) implied directly by the neural approximation to log-density. In
general, we have that p ̸= pθ ̸= pSDE

θ ̸= pODE
θ .

For the majority of our calculations and numerics it is more convenient to work with
logarithms of densities rather than the densities themselves. For each density p, we denote
the associated log-density by u and refer to u as log-density or potential. That is u(x, t) =
log p(x, t), uSDE

θ (x, t) = log pSDE
θ (x, t), uODE

θ (x, t) = log pODE
θ (x, t), and uθ(x, t) = log pθ(x, t)

for all (x, t) ∈ Ω× [0, T ].
In addition to considering the dynamics in forward time, we can also introduce the dy-

namics in reverse time. We denote the reverse time dynamics by x̄τ for τ ∈ [0, T ] satisfying
x̄τ = xT−τ which implies that x̄T = x0 and x̄0 = xT for the initial and terminal conditions.

As we have a terminal condition xT for (7) and (7) is stated in forward time, the corre-
sponding parameterisation in reverse time can be useful for obtaining samples satisfying (7).
It is given by

dx̄τ = −f̄SDE
θ (x̄τ , τ)dt− ḡ(τ)dWτ , (12)

where we use the notation from Section 2.1 and the reverse time variable τ = T − t. We equip
(12) with initial condition x̄0 which is sampled from π and we denote the distribution of x̄τ at
time τ by p̄SDE

θ (·, τ). Note that p̄SDE
θ (·, τ) = pSDE

θ (·, T − τ) for τ ∈ [0, T ] with p̄SDE
θ (·, 0) = π.

This implies that we can sample a particle from the target distribution pSDE
θ (·, 0) by sampling

x̄0 from π and solving (12) until time τ = T , for instance with the Euler-Maruyama scheme.
Similarly the ODE dynamics (10) can be written using the reverse time variable τ as

dx̄τ

dτ
= −f̄ODE

θ (x̄τ , τ). (13)

To sample from the approximate target distribution pODE
θ (·, 0) = p̄ODE

θ (·, T ), sample an initial
condition x̄0 from p̄ODE

θ (·, 0) = π, and simulate (13) forward in time.
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2.5 Mean-field equations

The mean-field equations describe the evolution of the densities subject to some initial or
terminal condition. For the forward SDE (1) the density p obeys the forward Fokker–Planck
equation

∂p

∂t
(x, t) +∇ · (f(x, t)p(x, t))− 1

2
g2(t)∇2p(x, t) = 0 (14)

on Rd × [0, T ], equipped with the initial data p0 on the full space Rd. For our analysis, we
restrict ourselves to a bounded domain Ω ⊂ Rd with ∂Ω ∈ C∞. For considering (14) on Ω,
we equip (14) with positive Dirichlet boundary conditions. Let pB : ∂Ω × [0, T ] → R denote
a positive function which is equal to p : Rd → R on ∂Ω. Note that we can assume without
loss of generality that p is positive on ∂Ω. This yields the forward Fokker–Planck equation
(14) on the domain Ω with initial data p0 restricted to Ω and Dirichlet boundary conditions
pB on ∂Ω× [0, T ]. In addition, we set uB = log pB on ∂Ω× [0, T ].

The density pSDE
θ of the approximate SDE (7) also satisfies a forward Fokker–Planck equa-

tion, which can be derived by writing the Fokker–Planck equation for the forward dynamics
(8) of pSDE

θ with appropriate terminal distribution. This gives the approximate Fokker–Planck
equation (in forward time)

∂pSDE
θ

∂t
(x, t) +∇ · (fSDE

θ (x, t)pSDE
θ (x, t)) +

1

2
g2(t)∇2(pSDE

θ (x, t)) = 0 (15)

on Rd × [0, T ], equipped with the terminal condition π from Assumptions 1 on the full space
Rd, i.e., pSDE

θ (x, T ) = π(x) for all x ∈ Rd, where π is typically specified as a Gaussian
approximation of p(·, T ). For considering (15) on a bounded domain Ω, we introduce positive
Dirichlet boundary conditions. Let pSDE

B : ∂Ω× [0, T ] → R denote a positive function which
is equal to pSDE

θ : Rd → R on ∂Ω. We obtain the approximate Fokker–Planck equation (15)
on the domain Ω with initial data p0 restricted to Ω and Dirichlet boundary conditions pSDE

B

on ∂Ω× [0, T ]. We set uSDE
B = log pSDE

B on ∂Ω× [0, T ].
Note that for pSDE

θ , we always assume a fixed terminal condition at time T when consid-
ering (15) in t (or an initial condition when considering the evolution in reverse time τ) as
pSDE
θ describes the flow of probability backwards from a Gaussian approximation π of p(x, T )
to some approximation of p0. Notice that (14) and (15) are of a similar form, apart from the
different signs of the diffusion terms.

In addition to considering Fokker–Planck equations for the densities, one can also intro-
duce log-Fokker–Planck equations for the potential. For the density p satisfying the forward
Fokker–Planck equation (14) for the forward SDE (1) and the associated potential u = log p
we introduce the forward log-Fokker–Planck equation (in forward time) as

∂u

∂t
(x, t) +∇ · f(x, t) +∇u(x, t) · f(x, t)− 1

2
g2(t)∥∇u(x, t)∥22 −

1

2
g2(t)∇2u(x, t) = 0 (16)

on Rd × [0, T ]. On the domain Ω, we equip (14) with initial data u0 restricted to Ω and
boundary conditions uB on ∂Ω× [0, T ].
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For pSDE
θ solving (15) in forward time, the log-density uSDE

θ = log pSDE
θ satisfies the

approximate log-Fokker–Planck equation (in forward time) given by

∂uSDE
θ

∂t
(x, t) +∇ · fSDE

θ (x, t) +∇uSDE
θ (x, t) · fSDE

θ (x, t)

+
1

2
g2(t)∥∇uSDE

θ (x, t)∥22 +
1

2
g2(t)∇2uSDE

θ (x, t) = 0

(17)

on Rd × [0, T ]. On the domain Ω, we equip (17) with terminal data uT restricted to Ω and
boundary conditions uSDE

B on ∂Ω× [0, T ].
Similarly to the the mean-field equations for the SDE dynamics, we can also consider

mean-field equations for the ODE dynamics. The deterministic ODE dynamics (10) can be
viewed as a continuous normalising flow and can be leveraged to compute data likelihood
[Son+21b]. By applying the change of variables formula to the associated continuity equation
we obtain

∂uODE
θ

∂t
(xt, t) = −∇ · fODE

θ (xt, t)

for the desired quantity uODE
θ (xt, t) = log pODE

θ (xt, t). We equip pODE
θ with the terminal

condition π, implying that the unknown term log pODE
θ (xT , T ) is given by the prior log-

likelihood log π(xT ).

2.6 Physics-informed neural networks for mean-field equations

Physics informed neural networks (PINN) are deep learning models that approximate the
solution to a PDE with some given boundary and initial conditions by substituting a neural
network into these equations and minimising the differential and boundary operator resid-
uals in some norm. In the case of the approximate Fokker–Planck equation (15) and the
approximate log-Fokker–Planck equation (17), training a PINN would amount to reducing
the associated residual.

In the following, we restrict ourselves to a bounded domain Ω ⊂ Rd with ∂Ω ∈ C∞. For
the approximate Fokker–Planck equation (15), we consider a neural network with network
parameters θ which is trained to determine a density pθ so that pθ satisfies positive Dirichlet
boundary conditions pSDE

B , terminal condition pθ(·, T ) = π and minimises some appropriate
residual. Note that for an approximate solution pθ of (15), we obtain that

∂pθ
∂t

(x, t) +∇ · (fSDE
θ (x, t)pθ(x, t)) +

1

2
g2(t)∇2(pθ(x, t))

=
∂pθ
∂t

(x, t) +∇ · (f(x, t)pθ(x, t)− g2(t)∇ log pθ(x, t)pθ(x, t)) +
1

2
g2(t)∇2(pθ(x, t))

=
∂pθ
∂t

(x, t) +∇ · (f(x, t)pθ(x, t))− g2(t)∇2pθ(x, t) +
1

2
g2(t)∇2(pθ(x, t))

=
∂pθ
∂t

(x, t) +∇ · (f(x, t)pθ(x, t))−
1

2
g2(t)∇2(pθ(x, t))

on Ω × [0, T ]. This demonstrates that the residual for the forward Fokker–Planck equation
(14) is equivalent to the residual for the approximate Fokker–Planck equation (15), and so
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reducing the residual for the forward Fokker–Planck equation (14) of the forward SDE (1) is
equivalent to reducing the residual of the approximate Fokker–Planck equation (15) of the
approximate reverse SDE (7). Hence, we define the residual of the Fokker–Planck equation
for the approximate reverse SDE (7) for any t ∈ [0, T ) as

R(θ, pθ, t) = V (T − t)−1

∫ T

t

∥∥∥∥∂pθ∂s
(·, s) +∇ · (f(·, s)pθ(·, s))−

1

2
g2(s)∇2(pθ(·, s))

∥∥∥∥2

L2(Ω)

ds,

(18)

where V (r) := rVol(Ω) is the volume of [T − r, T ]× Ω. We refer to R as the Fokker–Planck
residual.

For deriving the residual corresponding to the approximate log-Fokker–Planck equation
(17), we consider a neural network with network parameters θ which is trained to determine
uθ approximating the solution to (17). Note that uθ satisfies

∂uθ

∂t
(x, t) +∇ · fSDE

θ (x, t) +∇uθ(x, t) · fSDE
θ (x, t) +

1

2
g2(t)∥∇uθ(x, t)∥22 +

1

2
g2(t)∇2uθ(x, t)

=
∂uθ

∂t
(x, t) +∇ · (f(x, t)− g2(t)∇uθ(x, t)) +∇uθ(x, t) · (f(x, t)− g2(t)∇uθ(x, t))

+
1

2
g2(t)∥∇uθ(x, t)∥22 +

1

2
g2(t)∇2uθ(x, t)

=
∂uθ

∂t
(x, t) +∇ · f(x, t) +∇uθ(x, t) · f(x, t)−

1

2
g2(t)∥∇uθ(x, t)∥22 −

1

2
g2(t)∇2uθ(x, t)

(19)

on Ω× [0, T ]. This implies that residual of the approximate log-Fokker–Planck equation (17)
for the approximate reverse SDE (7) is equal to the residual of the forward log-Fokker–Planck
equation (16) for the forward SDE (1). Hence, we define the log-Fokker–Planck residual
corresponding to (17) as

R̃(θ, uθ, t) = V (T − t)−1

∫ T

t

∥∥∥∥∂uθ

∂s
(·, s) +∇ · f(·, s) +∇uθ(·, s) · f(·, s)

−1

2
g2(s)∥∇uθ(·, s)∥22 −

1

2
g2(s)∇2uθ(x, s)

∥∥∥∥2

L2(Ω)

ds

(20)

for t ∈ [0, T ). These residuals quantify how well our approximations pθ, uθ agree with the
true solutions pSDE

θ , uSDE
θ to the approximate Fokker–Planck equations. Next we show how

the values attained by these residuals defines an upper bound on the ODE-SDE discrepency.

3 Theoretical results on the ODE-SDE gap

In this section, we investigate the gap between the ODE- and SDE-induced distributions in
terms of Fokker–Planck equations. More precisely, we derive bounds related to the approxi-
mate log-Fokker–Planck equation (17) in Section 3.1, and in Section 3.2 we outline how this
theory applies to the associated potential model. In Section 3.3 we provide a sketch of how
to derive analogous bounds in terms of the approximate score-Fokker–Planck equation, thus
addressing the common score parameterisation.
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3.1 The ODE-SDE gap for the approximate Fokker–Planck equa-
tion

We present some theoretical results showing that, at a fixed time t ∈ [0, T ], pSDE
θ (·, t) satisfy-

ing the approximate Fokker–Planck equation (15) converges to the density pODE
θ (·, t) of the

approximate probability flow ODE (10) with respect to the Wasserstein 2-distance W2 as the
log-Fokker–Planck residual R̃(θ, uθ, t) in (20) goes to zero. More specifically we prove:

Theorem 1. Let t ∈ [0, T ) and δ > 0 be given, let Ω ⊂ Rd be a bounded domain with
∂Ω ∈ C∞, and assume that Assumptions 1 hold. Assume that the neural network uθ ∈
C∞(Ω × [0, T ]) is determined such that R̃(θ, uθ, t) in (20) satisfies R̃(θ, uθ, t) < δ, and the
terminal condition uT = log π restricted to Ω and Dirichlet boundary conditions uSDE

B on
∂Ω× [0, T ]. Assume that pSDE

θ satisfies (15) on Ω with terminal condition π restricted to Ω
and Dirichlet boundary conditions pSDE

B on ∂Ω × [0, T ], with uSDE
θ = log pSDE

θ . Further, let
pODE
θ be the probability density associated with (10) with terminal condition π restricted to Ω.
Then, W2(p

ODE
θ (·, t), pSDE

θ (·, t)) < Cδ for some constant C > 0 independent of δ.

Proof. We proceed in two steps. Firstly, we show that there exists a constant C̃ > 0 in-
dependent of δ such that ∥uθ(·, τ) − uSDE

θ (·, τ)∥L2(Ω) < C̃δ which allows us to show that∫ τ

0
∥∇uθ(·, s) − ∇uSDE

θ (·, s)∥2L2(Ω)ds < Cδ for the reverse time variable τ = T − t ∈ (0, T ]
where the constant C > 0 is independent of δ. Finally, we prove that

W2(p
ODE
θ (·, t), pSDE

θ (·, t)) < Cδ

for some constant C > 0 independent of δ.
Step I: To prove the first part, assume that uSDE

θ solves (17) on Ω× [0, T ], that is

∂uSDE
θ

∂t
(x, t) +∇ · fSDE

θ (x, t) +∇uSDE
θ (x, t) · fSDE

θ (x, t)

+
1

2
g2(t)∥∇uSDE

θ (x, t)∥22 +
1

2
g2(t)∇2uSDE

θ (x, t) = 0

(21)

for (x, t) ∈ Ω×[0, T ], equipped with terminal data uT restricted to Ω and boundary conditions
uSDE
B on ∂Ω× [0, T ]. Further, assume that uθ satisfies (17) on Ω× [0, T ] with some residual

q, i.e.

∂uθ

∂t
(x, t) +∇ · fSDE

θ (x, t) +∇uθ(x, t) · fSDE
θ (x, t)

+
1

2
g2(t)∥∇uθ(x, t)∥22 +

1

2
g2(t)∇2uθ(x, t) = q(x, t)

(22)

for (x, t) ∈ Ω×[0, T ], equipped with terminal data uT restricted to Ω and boundary conditions
uSDE
B on ∂Ω× [0, T ].
As (21) and (22) are equipped with terminal conditions, it is more natural to work with the

corresponding reverse time equations. Writing the reverse time variable as τ = T − t ∈ [0, T ]
we have

∂ūSDE
θ

∂τ
(x, τ)−∇ · f̄SDE

θ (x, τ)−∇ūSDE
θ (x, τ) · f̄SDE

θ (x, τ)

− 1

2
ḡ2(τ)∥∇ūSDE

θ (x, τ)∥22 −
1

2
ḡ2(τ)∇2ūSDE

θ (x, τ) = 0.

(23)
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and

∂ūθ

∂τ
(x, τ)−∇ · f̄SDE

θ (x, τ)−∇ūθ(x, τ) · f̄SDE
θ (x, τ)

− 1

2
ḡ2(τ)∥∇ūθ(x, τ)∥22 −

1

2
ḡ2(τ)∇2ūθ(x, τ) = q̄(x, τ).

(24)

Note that the log-Fokker–Planck residual (20) is related to q̄(·, τ) for τ = T − t by

R̃(θ, uθ, t) = R̃(θ, uθ, T − τ) = V (τ)−1

∫ T

T−τ

∥q(·, s)∥2L2(Ω)ds = V (τ)−1

∫ τ

0

∥q̄(·, s)∥2L2(Ω)ds

(25)

which follows from (19) and (22). Subtracting (23) for ūSDE
θ from (24) for ūθ yields

∂(ūθ(x, τ)− ūSDE
θ (x, τ))

∂τ
(x, τ)−∇(ūθ(x, τ)− ūSDE

θ (x, τ)) · f̄SDE
θ (x, τ)

− 1

2
ḡ2(τ)(∥∇ūθ(x, τ)∥22 − ∥∇ūSDE

θ (x, τ)∥22)−
1

2
ḡ2(τ)∇2(ūθ − ūSDE

θ )(x, τ) = q̄(x, τ).

We define the error eū = ūθ − ūSDE
θ on Ω × [0, T ]. Note that the boundary and terminal

conditions of ūSDE
θ and ūθ imply that eū(x, 0) = 0 for all x ∈ Ω and that eū has homogeneous

Dirichlet boundary conditions. This allows us to write a PDE for the error eū given by

∂eū
∂τ

(x, τ)−∇eū(x, τ) · f̄SDE
θ (x, τ)− 1

2
ḡ2(τ)(∥∇ūθ(x, τ)∥22 − ∥∇ūSDE

θ (x, τ)∥22)

− 1

2
ḡ2(τ)∇2eū(x, τ) = q̄(x, τ).

Using 1
2
∂e2ū
∂τ

= eū
∂eū
∂τ

we obtain an equation for the squared error e2ū which reads

1

2

∂e2ū
∂τ

(x, τ) = eū(x, τ)∇eū(x, τ) · f̄SDE
θ (x, τ) +

1

2
ḡ2(τ)eū(x, τ)(∥∇ūθ(x, τ)∥22 − ∥∇ūSDE

θ (x, τ)∥22)

+
1

2
ḡ2(τ)eū(x, τ)∇2(eū(x, τ)) + eū(x, τ)q̄(x, τ).

We integrate to get an equation for the L2-error given by

1

2

∂

∂τ
∥eū(·, τ)∥2L2(Ω) =

∫
Ω

eū(x, τ)∇eū(x, τ) · f̄SDE
θ (x, τ)dx

+
1

2
ḡ2(τ)

∫
Ω

eū(x, τ)(∥∇ūθ(x, τ)∥22 − ∥∇ūSDE
θ (x, τ)∥22)dx

+
1

2
ḡ2(τ)

∫
Ω

eū(x, τ)∇2(eū(x, τ))dx+

∫
Ω

eū(x, τ)q̄(x, τ)dx.
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Note that

1

2
ḡ2(τ)

∫
Ω

eū(x, τ)(∥∇ūθ(x, τ)∥22 − ∥∇ūSDE
θ (x, τ)∥22)dx

=
1

2
ḡ2(τ)

∫
Ω

eū(x, τ)(∇ūθ(x, τ) +∇ūSDE
θ (x, τ)) · ∇eū(x, τ)dx

=
1

4
ḡ2(τ)

∫
Ω

(∇ūθ(x, τ) +∇ūSDE
θ (x, τ)) · ∇e2ū(x, τ)dx

= −1

4
ḡ2(τ)

∫
Ω

(∇2ūθ(x, τ) +∇2ūSDE
θ (x, τ))e2ū(x, τ)dx

by integration by parts together with the homogeneous boundary conditions of eū. Using
1
2
∂e2u
∂τ

= eū
∂eū
∂τ

and applying integration by parts again yields

1

2

∂

∂τ
∥eū(·, τ)∥2L2(Ω) = −1

2

∫
Ω

e2ū(x, τ)∇ · f̄SDE
θ (x, τ)dx

− 1

4
ḡ2(τ)

∫
Ω

(∇2ūθ(x, τ) +∇2ūSDE
θ (x, τ))e2ū(x, τ)dx

− 1

2
ḡ2(τ)

∫
Ω

∥∇(eū(x, τ))∥22dx+

∫
Ω

eū(x, τ)q̄(x, τ)dx.

From Lemma 1 and ūθ ∈ C∞(Ω × [0, T ]), it follows that there exists L ∈ R such that
∇2ūθ +∇2ūSDE

θ ≥ L. Then,

1

2

∂

∂τ
∥eū(·, τ)∥2L2(Ω) ≤

1

2
∥∇ · f̄SDE

θ (·, τ)∥L∞(Ω)∥eū(·, τ)∥2L2(Ω) −
1

4
ḡ2(τ)L∥eū(·, τ)∥2L2(Ω)

− 1

2
ḡ2(τ)∥∇(eū(·, τ))∥2L2(Ω) +

1

2ϵ
∥eū(·, τ)∥2L2(Ω) +

ϵ

2
∥q̄(·, τ)∥2L2(Ω),

(26)

which follows from applying Young’s inequality and holds for any ϵ > 0. The Poincaré
inequality K∥eū(·, τ)∥L2(Ω) ≤ ∥∇eū(·, τ)∥L2(Ω) for some constant K > 0 yields

1

2

∂

∂τ
∥eū(·, τ)∥2L2(Ω) ≤

1

2
∥∇ · f̄SDE

θ (·, τ)∥L∞(Ω)∥eū(·, τ)∥2L2(Ω) −
1

4
ḡ2(τ)L∥eū(·, τ)∥2L2(Ω)

− 1

2
ḡ2(τ)K∥eū(·, τ)∥2L2(Ω) +

1

2ϵ
∥eū(·, τ)∥2L2(Ω) +

ϵ

2
∥q̄(·, τ)∥2L2(Ω).

Integration in time yields

∥eū(·, τ)∥2L2(Ω) ≤∥eū(·, 0)∥2L2(Ω) + ϵ

∫ τ

0

∥q̄(·, s)∥2L2(Ω)ds

+

∫ τ

0

(
∥∇ · f̄SDE

θ (·, s)∥L∞(Ω) −
1

2
ḡ2(s)(2K + L) +

1

ϵ

)
∥eū(·, s)∥2L2(Ω)ds,

where the term ∥eū(·, 0)∥2L2(Ω) vanishes due to the zero initial condition of eū. For ϵ sufficiently
small, the bracketed term in the last integral is positive. Therefore, we can apply Gronwall’s
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inequality to get

∥eū(·, τ)∥2L2(Ω)

≤ ϵ

∫ τ

0

∥q̄(·, s)∥2L2(Ω)ds exp

(∫ τ

0

(
∥∇ · f̄SDE

θ (·, s)∥L∞(Ω) −
1

2
ḡ2(s)(2K + L) +

1

ϵ

)
ds

)
.

(27)

Using (25) and the fact that g is bounded, this proves that ∥eū(·, τ)∥2L2(Ω) < Cδ for some
constant C > 0 independent of δ and τ , but dependent on T and ϵ.

Next, we deduce that
∫ τ

0
∥∇eū(·, s)∥2L2(Ω)ds < Cδ for some C > 0 independent of δ. Note

that (26) implies

min
s∈[0,τ ]

{ḡ2(s)}
∫ τ

0

∥∇eū(·, s)∥2L2(Ω)ds ≤ ϵ

∫ τ

0

∥q̄(·, s)∥2L2(Ω)ds− ∥eū(·, τ)∥2L2(Ω)

+

∫ τ

0

(
∥∇ · f̄SDE

θ (·, s)∥L∞(Ω) −
1

2
ḡ2(s)L+

1

ϵ

)
∥eū(·, s)∥2L2(Ω)ds. (28)

It follows from (27) that for any s ∈ [0, τ ] we have ∥eū(·, s)∥2L2(Ω) < Cδ. Since g has

a positive lower bound by Assumptions 1 and
∫ τ

0
∥q̄(·, s)∥2L2(Ω)ds < δ by (25), this yields∫ τ

0
∥∇eū(·, s)∥2L2(Ω)ds < Cδ for some C > 0 independent of δ.

Step II: Finally, we prove that W2(p
ODE
θ (·, t), pSDE

θ (·, t)) < Cδ. As eū = ūθ− ūSDE
θ in reverse

time τ , we have eu = uθ−uSDE
θ in forward time t = T−τ with ∇eu = ∇uθ−∇uSDE

θ . Starting
from the probability flow ODE of the approximate SDE (9) and the approximate drifts fSDE

θ

in (6) and fODE
θ in (11), we obtain in forward time

dxt

dt
= fSDE

θ (xt, t) +
1

2
g2(t)∇uSDE

θ (xt, t)

= f(xt, t)− g2(t)∇uθ(xt, t) +
1

2
g2(t)(∇uθ(xt, t)−∇eu(xt, t))

= f(xt, t)−
1

2
g2(t)∇uθ(xt, t)−

1

2
g2(t)∇eu(xt, t)

= fODE
θ (xt, t)−

1

2
g2(t)∇eu(xt, t).

This implies that trajectories traced out by particles obeying (9) with density pSDE
θ are close

to particles obeying (10) with density pODE
θ provided the error ∇eu is small. The densities

pSDE
θ and pODE

θ induced by the probability flow ODEs (9), (10) are associated with p̄SDE
θ and

p̄ODE
θ in reverse time with the corresponding probability flows in reverse time given by

dx̄τ

dτ
= −f̄ODE

θ (x̄τ , τ) +
1

2
ḡ2(τ)∇eū(x̄τ , τ) (29)

and

dx̄τ

dτ
= −f̄ODE

θ (x̄τ , τ), (30)
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respectively. Applying a change of variables to continuity equations associated with (30) and
(29) yields

dūODE
θ (x̄τ , τ)

dτ
= ∇ · f̄ODE

θ (x̄τ , τ)

and

dūSDE
θ (x̄τ , τ)

dτ
= ∇ · f̄ODE

θ (x̄τ , τ)−
1

2
ḡ2(τ)∇2eū(x̄τ , τ)

for ūODE
θ = log p̄ODE

θ and ūSDE
θ = log p̄SDE

θ , respectively. Using d log p̄
dτ

= 1
p̄
dp̄
dτ

for density p̄, we
obtain

dp̄ODE
θ (x̄τ , τ)

dτ
= p̄ODE

θ (x̄τ , τ)∇ · f̄ODE
θ (x̄τ , τ)

and

dp̄SDE
θ (x̄τ , τ)

dτ
= p̄SDE

θ (x̄τ , τ)∇ · f̄ODE
θ (x̄τ , τ)−

1

2
ḡ2(τ)p̄SDE

θ (x̄τ , τ)∇2eū(x̄τ , τ),

respectively. Then, the error ē = p̄SDE
θ − p̄ODE

θ between p̄SDE
θ and p̄ODE

θ satisfies

dē(x̄τ , τ)

dτ
= ē(x̄τ , τ)∇ · f̄ODE

θ (x̄τ , τ)−
1

2
ḡ2(τ)p̄SDE

θ (x̄τ , τ)∇2eū(x̄τ , τ),

equipped with the initial condition ē(·, 0) = 0 as p̄SDE
θ and p̄ODE

θ satisfy the same initial
conditions.

Since Ω is a compact set, convergence in the Wasserstein-2 distance W2 between two
measures is equivalent to the convergence in the dual Sobolev space H−1 of H1 = W 1,2. For
ϕ ∈ H1(Ω) with ∥ϕ∥H1(Ω) ≤ 1, we have

d

dτ

∫
Ω

ϕ(x)ē(x, τ)dx

=

∫
Ω

ϕ(x)
dē(x, τ)

dτ
dx

=

∫
Ω

ϕ(x)ē(x, τ)∇ · f̄ODE
θ (x, τ)dx− 1

2
ḡ2(τ)

∫
Ω

ϕ(x)p̄SDE
θ (x, τ)∇2eū(x, τ)dx.

Integrating with respect to τ yields∫
Ω

ϕ(x)ē(x, τ)dx =

∫
Ω

ϕ(x)ē(x, 0)dx+

∫ τ

0

∫
Ω

ϕ(x)∇ · f̄ODE
θ (x, s)ē(x, s)dxds

− 1

2

∫ τ

0

ḡ2(s)

∫
Ω

ϕ(x)p̄SDE
θ (x, s)∇2eū(x, s)dxds.
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As ē(·, 0) = 0, this yields∣∣∣∣∫
Ω

ϕ(x)ē(x, τ)dx

∣∣∣∣
≤

∫ τ

0

(∣∣∣∣∫
Ω

ϕ(x)ē(x, s)∇ · f̄ODE
θ (x, s)dx

∣∣∣∣+ 1

2
ḡ2(s)

∣∣∣∣∫
Ω

p̄SDE
θ (x, s)ϕ(x)∇2eū(x, s)dx

∣∣∣∣) ds

≤
∫ τ

0

∥∥∇ · f̄ODE
θ (·, s)

∥∥
L∞(Ω)

∣∣∣∣∫
Ω

ϕ(x)ē(x, s)dx

∣∣∣∣ ds
+

1

2

∫ τ

0

ḡ2(s)
∥∥p̄SDE

θ (·, s)
∥∥
L∞(Ω)

∣∣∣∣∫
Ω

∇ϕ(x) · ∇eū(x, s)dx

∣∣∣∣ ds
≤

∫ τ

0

∥∥∇ · f̄ODE
θ (·, s)

∥∥
L∞(Ω)

∣∣∣∣∫
Ω

ϕ(x)ē(x, s)dx

∣∣∣∣ ds
+

1

2

∫ τ

0

ḡ2(s)
∥∥p̄SDE

θ (·, s)
∥∥
L∞(Ω)

∥∇ϕ∥L2(Ω)∥∇eū(·, s)∥L2(Ω)ds.

Applying Gronwall’s inequality to this, we obtain the estimate∣∣∣∣∫
Ω

ϕ(x)ē(x, τ)dx

∣∣∣∣
≤ 1

2

∫ τ

0

ḡ2(s)
∥∥p̄SDE

θ (·, s)
∥∥
L∞(Ω)

∥∇ϕ∥L2(Ω)∥∇eū(·, s)∥L2(Ω)ds

exp

(∫ τ

0

∥∥∇ · f̄ODE
θ (·, s)

∥∥
L∞(Ω)

ds

)
≤ C

∫ τ

0

∥∥p̄SDE
θ (·, s)

∥∥
L∞(Ω)

∥∇eū(·, s)∥L2(Ω)ds

for some constant C > 0 depending on f̄ODE
θ , ḡ and T . The uniform boundedness of

p̄SDE
θ implies that

∣∣∫
Ω
ϕ(x)ē(x, τ)dx

∣∣ < Cδ. Note that
∣∣∫

Ω
ϕ(x)ē(x, τ)dx

∣∣ goes to zero as∫ τ

0
∥∇eū(·, s)∥L2(Ω)ds goes to zero. We have shown therefore that ē = p̄SDE

θ − p̄ODE
θ vanishes

in H−1 as
∫ τ

0
∥∇eu(·, s)∥L2ds goes to zero and therefore it follows that the 2-Wasserstein

distance between pSDE
θ and pODE

θ goes to zero.

3.2 The ODE-SDE gap for the potential model associated with the
approximate Fokker–Planck equation

A key benefit of score-based models is that scores are agnostic to multiplicative scaling of
the underlying density, implying known normalising constants are not required for their im-
plementation. So far we have defined the log-Fokker–Planck equation (17) as the process
governing the logarithm of the density pSDE

θ , and thus have implicitly assumed that uθ ap-
proximates the logarithm of a normalised density. In practice, controlling the integral of
a neural approximation is nontrivial, and so we apply an unnormalised network ϕθ as the
potential model. If we assume uθ as applied above is an approximate potential such that
exp(uθ) is a normalised density, then we can relate this to ϕθ by introducing a (potentially
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time-varying) normalising constant Zt for exp(ϕθ(·, t)). This gives the relation

ϕθ(x, t) = uθ(x, t) + logZt.

The bounds on the ODE-SDE gap in Theorem 1 also hold in this setting, as outlined in the
remark below.

Remark. If R̃(θ, ϕθ, t) < δ, then W2(p
ODE
θ (·, t), pSDE

θ (·, t)) < Cδ for some C > 0 independent
of δ (under the assumptions of Theorem 1). Indeed,

uθ(x, t) = uSDE
θ (x, t) + eu(x, t)

by the definition of eu, thus implying

ϕθ(x, t) = uSDE
θ (x, t) + eu(x, t) + logZt

= uSDE
θ (x, t) + logZT + (eu(x, t)− logZT + logZt)

= uSDE
θ (x, t) + logZT + ẽu(x, t),

where we have set

ẽu(x, t) = eu(x, t)− logZT + logZt

= ϕθ(x, t)− uSDE
θ (x, t)− logZT

as the error between ϕθ and uSDE
θ + logZT . Since uSDE

θ is a solution of (17), it follows that
uSDE
θ + logZT is also a solution of (17). Following similar arguments as in (28), we deduce

that∫ T

t

∥∇uSDE
θ (·, s)−∇ϕθ(·, s)∥2L2(Ω)ds =

∫ T

t

∥∇uSDE
θ (·, s) +∇ logZT −∇ϕθ(·, s)∥2L2(Ω)ds

=

∫ T

t

∥∇ẽu(·, s)∥2L2(Ω)ds

< Cδ

for some C > 0 independent of δ. Thus, W2(p
ODE
θ (·, t), pSDE

θ (·, t)) < Cδ follows by applying
the steps in the proof of Theorem 1 with ϕθ substituted in place of uθ.

3.3 The ODE-SDE gap for the approximate score-Fokker–Planck
equation

In this work we primarily focus on the underlying mean-field behaviour observed in score-based
diffusion models and thus our focus has been on the potential parameterisation discussed so
far. However, in most practical implementations, a score parameterisation is adopted due to
computational efficiency, given by sθ(x, t) ≈ ∇u(x, t) = ∇ log p(x, t) for the density p and
the log-density u of the forward SDE (1). The the score parameterisation is linked to the
score-Fokker–Planck equation, see e.g. [Lai+23]. To ensure applicability of our results to this
case, we argue in this section that the bounds on the ODE-SDE gap in Theorem 1 also hold
for the score parameterisation.
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A Score-Fokker–Planck equation can be derived by taking the gradient of the associated
log-Fokker–Planck equation. In order to derive an analogous result to Theorem 1 we are
interested in the score-Fokker–Planck equation of the approximate SDE with log-Fokker–
Planck equation (17). Taking the gradient of (17) and setting sSDE

θ (x, t) = ∇uSDE
θ (x, t) ∈ Rd

yields the approximate score-Fokker–Planck equation

∂sSDE
θ

∂t
(x, t) +∇(∇ · fSDE

θ (x, t)) + (∇sSDE
θ (x, t))fSDE

θ (x, t) + (∇fSDE
θ (x, t))sSDE

θ (x, t)

+ g2(t)(∇sSDE
θ (x, t))sSDE

θ (x, t) +
1

2
g2(t)∇(∇ · sSDE

θ (x, t)) = 0.

(31)

Here we use analogous notation to the potential case so that sSDE
θ (x, t) is the true score

associated with the approximate reverse SDE (7) and is linked with the density pSDE
θ via

sSDE
θ = ∇ log pSDE

θ . Similarly, we also introduce the score sODE
θ (x, t) = ∇uODE

θ (x, t) =
∇ log pODE

θ (x, t) ∈ Rd associated with the approximate probability flow ODE (10).
Let sθ(x, t) denote a score model approximating ∇ log p(x, t). Following an analogous

calculation to (19), the residual corresponding to the approximate score-Fokker–Planck equa-
tion (31) can be written as the residual of a score-Fokker–Planck equation and we define the
score-Fokker–Planck residual by:

Rs(θ, sθ, t) = V (T − t)−1

∫ T

t

∥∥∥∥∂sθ∂r
(·, r) +∇(∇ · f(·, r)) + (∇sθ(·, r))f(·, r)

+(∇f(·, r))sθ(·, r)− g2(r)(∇sθ(·, r))sθ(·, r)−
1

2
g2(r)∇(∇ · sθ(·, r))

∥∥∥∥2

L2(Ω)

dr.

(32)

We can now state analogous result to Theorem 1 for the approximate score-Fokker–Planck
equation: If Rs(θ, sθ, t) < δ, then W2(p

ODE
θ (·, t), pSDE

θ (·, t)) < Cδ for some C > 0 independent
of δ (under the assumptions of Theorem 1). This result can be derived by applying analogous
Steps I and II in the proof of Theorem 1 and generalising them to vector-valued functions as
appropriate. More precisely, Step I of the proof has to be generalised to vector-valued solutions
sSDE
θ of (31) as opposed to the scalar solution uSDE

θ of (17), but due to the similarity of the
equations this step can be done analogously. Step II follows as in the proof of Theorem 1.
Due to the similarity of the proofs, the detailed proof is omitted here.

4 Numerical experiments

To demonstrate our analytical results numerically and ensure visual interpretability, we imple-
ment several diffusion models in R2 that attain a range of log-Fokker–Planck residual values
(20) using various datasets. For the forward SDE, we choose f(x, t) = −x and g(t) = 1,
resulting in the simple Ornstein–Uhlenbeck process

dxt = −xtdt+ dWt.

Following (16), the associated log-Fokker–Planck equation is given by

∂u(x, t)

∂t
= 2 + x · ∇u(x, t) +

1

2
∥∇u(x, t)∥22 +

1

2
∇2u(x, t).
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In our experiments we take three different data distributions and train a neural network to
minimise the loss function

L(θ, wR) := LDSM(θ,∇ϕθ, λ) + wRR̃(θ, ϕθ, 0).

for differing values of wR where LDSM and R̃ are defined in (5) and (20), respectively, and λ
is set according to the likelihood weighting. Note that for our specific setting, we have

R̃(θ, ϕθ, t) = Es∼U(t,T )
x∼U(Ω)

[(
∂u(x, s)

∂t
− 2− x · ∇u(x, s)− 1

2
∥∇u(x, s)∥22 −

1

2
∇2u(x, s)

)2
]
,

Therefore both the denoising score matching objective LDSM(θ,∇ϕθ, λ) and the log-Fokker–
Planck residual R̃(θ, ϕθ, 0) are approximated using Monte Carlo estimation. We set T = 10
and the likelihood weighting implies λ(t) = 1 for t ∈ [0, T ]. Note that we do not add terms
that enforce boundary conditions in space or time, since the denoising score matching objec-
tive (5) already encourages consistency with these conditions (up to a multiplicative constant
proportional to the underlying density). We generate samples from pSDE

θ (·, 0) and pODE
θ (·, 0)

using Euler-Maruyama and Euler discretisations of the reverse approximate SDE (7) and the
reverse approximate probability flow ODE (9), respectively. To validate our results we gener-
ate 3 million samples from each distribution. Due to computational constraints these samples
are then discretised onto a 64 × 64 grid. When computing the Wasserstein distances to the
target distribution and producing visualisations, we will consider the discretised distributions.
Figure 2 shows the target distributions for our experiments.

Figure 2: Our three examples include a Gaussian mixture, a non-Gaussian but smooth con-
centric circles distribution, and a discontinuous checkerboard distribution.

We parameterise our potential model ϕθ(x, t) by a fully connected neural network with 2
hidden layers and 80 nodes per layers. We apply softplus activation functions, which have
well defined first and second derivatives as required to evaluate R̃(θ, ϕθ, 0). Each model is
trained for 100,000 iterations using Adam with learning rate decaying from 10−3 down to 10−5.
Figure 3 shows the samples obtained from pSDE

θ (·, 0) and pODE
θ (·, 0) for different weighting

parameters wR.
We see from Figure 3 that if we only optimise LDSM (i.e. for wR = 0) the resulting

pODE
θ (·, 0) is quite different from the true distribution. Notably, areas of high probability
in pODE

θ (·, 0) do coincide with high probability regions of pSDE
θ (·, 0). Therefore in typical

generative modelling scenarios it may be difficult to identify this mischaracterisation of the
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Figure 3: Distributions of pSDE
θ (·, 0) and pODE

θ (·, 0) for weighting parameters wR taking values
in (0, 0.1, 1, 10). The rows indicate which weighting parameter was used, while the columns
indicate whether the displayed distribution is of pSDE

θ (·, 0) or of pODE
θ (·, 0) in the corresponding

experiment. Samples displayed from the ODE and SDE samplers were attained using the same
score model.

data distribution, given that the samples generated from pODE
θ (·, 0) are generally plausible.

Visually, we see that adding a factor of R̃(θ, ϕθ, 0) to the loss function initially results in an
improvement in pODE

θ . This is further justified in Table 2, which shows that the distance
between pODE

θ (·, 0) and p0 reduces for wR = 0.1 and wR = 1 when compared to wR =
0. Increasing wR beyond this further reduces the gap between pODE

θ (·, 0) and pSDE
θ (·, 0) as

demonstrated in Table 1, however this comes at the cost of increasing the distance from both
pODE
θ (·, 0) and pSDE

θ (·, 0) to p0 which can be observed in Tables 2 and 3 for wR = 10. This
can clearly be seen in Figure 3 by the overly smoothed distributions that are attained with
higher wR. Table 3 shows that the quality of pSDE

θ degrades monotonically with increasing wR

which results in the negative correlation between R̃(θ, ϕθ, 0) and LDSM(θ,∇ϕθ, λ) observed
in Figure 4. From this we conclude that the cost of improving pODE

θ is a reduction in the
quality of pSDE

θ . Finally, in Figure 5 we evaluate R̃(θ, ϕθ, 0) for each of our trained models and
visualise the relation between R̃(θ, ϕθ, 0) and the associated W2(p

ODE
θ (·, 0), pSDE

θ (·, 0)) values.
This demonstrates a clear positive correlation supporting our theoretical analysis, where we
proved an upper bound on the Wasserstein 2-distance between the ODE- and SDE-induced
distributions in terms of a Fokker–Planck residual R̃.
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wR Mixture Circles Checkerboard
0.0 0.011599 0.013401 0.027196
0.1 0.003107 0.005283 0.007160
1 0.002901 0.003090 0.003528
10 0.002208 0.001704 0.002104

Table 1: Estimated values of W 2
2 (p

ODE
θ (·, 0), pSDE

θ (·, 0)) for each distribution and differing wR

values.

wR Mixture Circles Checkerboard
0.0 0.010967 0.014354 0.024416
0.1 0.006039 0.007373 0.011386
1 0.005280 0.008280 0.011428
10 0.017225 0.009378 0.033052

Table 2: Estimated values of W 2
2 (p

ODE
θ (·, 0), p0) for each distribution and differing wR values.

wR Mixture Circles Checkerboard
0.0 0.002180 0.002268 0.003681
0.1 0.002940 0.003323 0.005387
1 0.004271 0.004541 0.011552
10 0.015989 0.009097 0.032158

Table 3: Estimated values of W 2
2 (p

SDE
θ (·, 0), p0) for each distribution and differing wR values.
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Figure 4: Comparison of the Fokker–Planck residual values against the denoising score match-
ing loss. We see that the attainment of a low R̃ is correlated with a higher LDSM , thus ex-
plaining the degradation in sample quality for high wR. Here the LDSM have been normalised
by data distribution to eliminate bias specific to each dataset.

Figure 5: Comparison of the Fokker–Planck residual values against the Wasserstein distance
between the ODE and SDE samples.
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5 Conclusions

In this work, we conducted a systematic investigation into the dynamics that arise in score-
based diffusion models. We mainly focused on the differences between the generative densities
pSDE
θ and pODE

θ defined by the reverse approximate SDE and the approximate probability flow
ODE, respectively. Analytically, we proved that the discrepancy between pSDE

θ and pODE
θ

can be bounded by a Fokker–Planck residual in the Wasserstein 2-distance, thus giving a
deeper insight into the connection between the two generative distributions in terms of the
Fokker–Planck dynamics underlying the diffusion process. Numerically, we showed that pSDE

θ

and pODE
θ can differ substantially when the neural network is trained using the standard

score-matching objective. Our numerical experiments also demonstrate that penalising the
loss function by the Fokker–Planck residual indeed leads to closing the gap between the
ODE and the SDE distributions in the Wasserstein 2-distance. Our findings revealed that
imposing this additional constraint within our loss function could improve the quality of
pODE
θ when compared to the ground truth, though in exchange for this we observed concurrent
degradation in the quality of pSDE

θ . The practical implication of these findings is that enforcing
self-consistency through penalisation by the Fokker–Planck residual is unlikely to improve
state-of-the-art generation using stochastic samplers. However, for downstream tasks where
deterministic generation is required (e.g. optimisation-based approaches to inverse problems),
such penalisation could provide a potential avenue to improve sample quality.
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A Lower bound on ∇2uSDE
θ

The proof of Theorem 1 requires a preliminary result on the existence of a lower bound of
∇2uSDE

θ , given by the following lemma.

Lemma 1. Let t ∈ [0, T ], let Ω ⊂ Rd be a bounded domain with ∂Ω ∈ C∞, and assume
that Assumptions 1 hold. Assume that pSDE

θ satisfies (15) on Ω with terminal condition π
restricted to Ω and Dirichlet boundary conditions pSDE

B on ∂Ω× [0, T ], with uSDE
θ = log pSDE

θ .
Then there exists C ∈ R such that ∇2ūSDE

θ ≥ C on Ω× [0, T ] for ūSDE
θ (·, τ) = uSDE

θ (·, T − τ)
for τ ∈ [0, T ].

Proof. By construction uSDE
θ = log pSDE

θ where pSDE
θ solves (15) with terminal condition

pSDE
θ (x, T ) = π and Dirichlet boundary data pSDE

B . Using the reverse time variable τ = T − t,
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we can write the reverse dynamics for p̄SDE
θ (x, τ) as

∂p̄SDE
θ

∂τ
(x, τ) = ∇ · (f̄SDE

θ (x, τ)p̄SDE
θ (x, τ)) +

1

2
ḡ2(τ)∇2(p̄SDE

θ (x, τ))

with initial data p̄SDE
θ (·, 0) = π and Dirichlet boundary conditions p̄SDE

θ (x, τ) = pSDE
B (x, T−τ)

for (x, τ) ∈ ∂Ω× [0, T ]. Under Assumptions 1 on f, g, uθ, we have that p̄
SDE
θ ∈ C∞(Ω× [0, T ])

by [WYW06, Thm. 8.3.4]. Furthermore p̄SDE
θ is strictly positive on Ω. Since p̄SDE

θ ∈ C∞(Ω×
[0, T ]) there exist k1, k2 > 0 such that ∥∇p̄SDE

θ (x, τ)∥2 < k1 and |∇2p̄SDE
θ (x, τ)| < k2 for all

(x, τ) ∈ Ω× [0, T ]. As p̄SDE
θ is strictly positive, there exists k0 > 0 such that p̄SDE

θ (x, τ) > k0
on Ω× [0, T ]. Computing directly from ūSDE

θ = log p̄SDE
θ we obtain that

∇2ūSDE
θ (x, τ) =

p̄SDE
θ (x, τ)∇2p̄SDE

θ (x, τ)− ∥∇p̄SDE
θ (x, τ)∥22

p̄SDE
θ (x, τ)2

=
∇2p̄SDE

θ (x, τ)

p̄SDE
θ (x, τ)

−
∥∥∥∥∇p̄SDE

θ (x, τ)

p̄SDE
θ (x, τ)

∥∥∥∥2

2

.

This results in the bound

|∇2ūSDE
θ (x, τ)| ≤

∣∣∣∣∇2p̄SDE
θ (x, τ)

p̄SDE
θ (x, τ)

∣∣∣∣+ ∥∥∥∥∇p̄SDE
θ (x, τ)

p̄SDE
θ (x, τ)

∥∥∥∥2

2

≤
∣∣∣∣k2k0

∣∣∣∣+ (
k1
k0

)2

which yields the required bound.
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[AB17] Mart́ın Arjovsky and Léon Bottou. “Towards Principled Methods for Training
Generative Adversarial Networks”. In: 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. 2017.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Generative
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