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A sparse optimization approach to infinite infimal convolution

regularization

Kristian Bredies∗ Marcello Carioni† Martin Holler ‡ Yury Korolev§

Carola-Bibiane Schönlieb¶

Abstract

In this paper we introduce the class of infinite infimal convolution functionals and apply
these functionals to the regularization of ill-posed inverse problems. The proposed regularization
involves an infimal convolution of a continuously parametrized family of convex, positively one-
homogeneous functionals defined on a common Banach space X. We show that, under mild
assumptions, this functional admits an equivalent convex lifting in the space of measures with
values in X. This reformulation allows us to prove well-posedness of a Tikhonov regularized
inverse problem and opens the door to a sparse analysis of the solutions. In the case of finite-
dimensional measurements we prove a representer theorem, showing that there exists a solution of
the inverse problem that is sparse, in the sense that it can be represented as a linear combination
of the extremal points of the ball of the lifted infinite infimal convolution functional. Then, we
design a generalized conditional gradient method for computing solutions of the inverse problem
without relying on an a priori discretization of the parameter space and of the Banach space X.
The iterates are constructed as linear combinations of the extremal points of the lifted infinite
infimal convolution functional. We prove a sublinear rate of convergence for our algorithm and
apply it to denoising of signals and images using, as regularizer, infinite infimal convolutions of
fractional-Laplacian-type operators with adaptive orders of smoothness and anisotropies.
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1 Introduction

The infimal convolution of two convex functions f1, f2 : X → (−∞,+∞] is a classical convexity-
preserving operation defined as follows

(f1�f2)(x) = inf
x1+x2=x

f1(x1) + f2(x2) . (1.1)

Many optimization problems can be formulated using this notion: not only in economics, where
infimal convolutions are related to the so-called Pareto optimality [31, 47, 50], but also in other fields
such as engineering, physics, social sciences, and mechanics [4]. More recently, infimal convolutions
of convex functionals have been used to regularize inverse problems with applications to image and
signal processing. One of the first successful approaches in this direction has been proposed in [22]
in the context of image denoising. It is well-known that reconstructions obtained using variational
models that penalize the L1-norm of the gradient of the image, such as the ROF model [42], achieve
good performances to reconstruct sharp edges, but exhibit artifacts in the smooth regions of the
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image (the so-called staircasing effect). On the other hand, higher-order regularizers tend to smooth
out the edges but perform better in the regions where a small gradient is expected. Following these
considerations, the authors in [22] introduced a regularizer defined as the infimal convolution of a
first and a second order functional as follows

R(v) = inf
v1+v2=v

α

∫
Ω
|∇v1| dx+ β

∫
Ω
|∇(∇v2)| dx , (1.2)

where α, β > 0 are fixed parameters, with the goal of automatically selecting the regions of the
image where it is convenient to apply a first order regularizer and the regions where the second
order regularizer is more suitable. In the following years, further regularizers defined as the infimal
convolution of functionals were introduced, achieving striking results in solving inverse problems.
Combinations of higher-order functionals were explored improving on the work of [22], see [8, 23,
45], and spatio-temporal infimal convolutions were used for solving dynamic inverse problems [32,
44]. Other more recent examples can be found in [14, 17–20, 29, 30, 35].

In this work we focus on a generalization of the infimal convolution functional that is per-
formed on an infinite (and even uncountable) collection of convex, non-negative, positively one-
homogeneous, and coercive functionals J(·, s) defined on a common dual Banach space X and
parametrized by an index s ∈ S, where S is a compact set in the Euclidean space. We additionally
suppose that J is lower semicontinuous in X × S, where X is endowed with the weak* topology.
Given a positive measure σ ∈M+(S) that models which convex functional is “active” in the infimal
convolution, we define the operator R : X ×M+(S)→ [0,∞] as follows

R(v, σ) := inf

{∫
S
J(u(s), s) dσ(s) : u ∈ L1((S, σ);X) with

∫
S
u(s) dσ(s) = v

}
,

where X is a given Banach space and L1((S, σ);X) is the Bochner space of L1 functions defined on
(S, σ) with values in X. Following [41], we call R the infinite infimal convolution functional to stress
the fact that we are allowing for an infinite family of convex functionals continuously parametrized
by s ∈ S and we search for the optimal decomposition of v with respect to σ, i.e.,

∫
S u(s) dσ(s) = v,

among all u ∈ L1((S, σ);X). We remark that, since each J(·, s) is positively one-homogeneous, if σ
is chosen as a finite sum of Dirac deltas concentrated in the points s1, . . . , sN ∈ S, then R(v, σ) is
the standard infimal convolution of the functionals J(·, s1), . . . , J(·, sN ). Our aim is to use R(v, σ)
as a regularizer for inverse problems Av = f , where A : X → Y is a linear measurement operator
and f ∈ Y is the observation. In particular, we solve the Tikhonov regularized problem

inf
v∈X,

σ∈M+(S)

1

2
‖Av − f‖2Y + αR(v, σ) , (1.3)

where α > 0 is a positive parameter. Note that in (1.3) we are simultaneously optimizing over
v ∈ X and σ ∈ M+(S). In this way, (1.3) is automatically selecting the best combination of
functionals J(·, s) that optimally regularizes the reconstruction of a given measurement f . Our
setting is presented in more detail in Section 2.

We start our analysis by proving well-posedness of (1.3), which is done in Section 3. Compared
to the classical infimal convolution functional, this is not straightforward. Indeed, since the Bochner
space L1((S, σ);X) does not admit a predual and the functionals J(·, s) are only assumed to be
coercive, standard methods based on the Banach–Alaoglu theorem cannot be applied. To circumvent
this obstacle we leverage the positive one-homogeneity of J(·, s) to construct a convex lifting of the
infinite infimal convolution functional to the space of Radon measures with values in X, denoted
byM(S;X). Formally, such convex lifting is obtained by setting µ = uσ ∈M(S;X) defined as the
Bochner integration of u ∈ L1((S, σ);X) against the measure σ ∈ M+(S). We define the convex
lifting of the functional Fσ(u) :=

∫
S J(u(s), s) dσ(s) as F̂ :M(S;X)→ [0,+∞] defined by

F̂ (µ) =

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s) , (1.4)
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where |µ| ∈ M+(S) is the variation (measure) of µ ∈M(S;X) defined for every Borel set E ⊂ S as

|µ|(E) = sup

{
n∑
i=1

‖µ(Ai)‖X : n ∈ N, (Ai)
n
i=1 partition of E

}

and µ
|µ| ∈ L1((S, σ);X) is the density of µ with respect to |µ| defined by the relation µ(E) =∫

E
µ
|µ|(s) d|µ|(s) for every Borel set E ⊂ S. We then rewrite the lifted inverse problem as

inf
µ∈M(S;X)

1

2
‖Aµ(S)− f‖2Y + αF̂ (µ) . (1.5)

Relying on the positive one-homogeneity of J(·, s) we show that (1.5) and (1.3) are equivalent.
Moreover, after proving that F̂ is coercive and weakly-* lower semicontinuous, we obtain the well-
posedness of (1.5) and (1.3) using standard arguments of calculus of variations.

The convex lifting of the infinite infimal convolution functional is not only useful to show well-
posedness of the original problem, but it also sheds light on the sparsity properties of the regularized
inverse problem. The key observation is that the extremal points of the unit ball of F̂ , denoted by
B, can be characterized as follows:

• If 0 ∈ Ext(Bs) for each s ∈ S, then Ext(B) = {vδs : s ∈ S, v ∈ Ext(Bs)}.

• If there exists s ∈ S such that 0 /∈ Ext(Bs), then Ext(B) = {vδs : s ∈ S, v ∈ Ext(Bs) r {0}},

where Bs is the unit ball of J(·, s) and Ext(Bs) is the set of its extremal points. As shown in [10] and
[7], the extremal points of the unit ball of the regularizer provide information on the sparse structure
of the minimizers. In particular, such extremal points are precisely the atoms used to represent
sparse solutions in case of finite-dimensional data. Such results are called representer theorems
and have recently become relevant in the context of inverse problems [7, 10], optimization [49], and
machine learning [6, 48]. Relying on the result of [10] and the characterization of the extremal points
of the lifted regularizer, we prove a representer theorem for inverse problems regularized with the
infimal convolution functional in Section 4. In particular, we show that if the data is Q-dimensional
for Q ∈ N, then a solution (v∗, σ∗) of (1.3) can be written as follows

v∗ =
M∑
i=1

λivi , σ∗ =
∑

s∈{si: i=1,...,M}

∥∥∥∥ ∑
j∈{1,...,M : sj=s}

λjvj

∥∥∥∥
X

δs , (1.6)

where λi > 0, si ∈ S, vi ∈ Ext(Bsi), and M ≤ Q.
In Section 5 we leverage the knowledge of the atoms of the lifted regularization functional to

design a generalized conditional gradient method for solving (1.3). Generalized conditional gradient
methods (GCG) are infinite-dimensional generalizations of the classical Frank–Wolfe algorithms [28].
In the context of inverse problems they have been used to design algorithms that do not require
an a priori discretization of the domain X (also called off-the-grid algorithms), since optimization
steps are performed by inserting iteratively suitably chosen elements of X. Some applications of
generalized conditional gradient methods to inverse problems can be found, for example, in [15,
16]. More recently, GCG methods have been studied as sparse optimization algorithms in infinite-
dimensional spaces. Indeed, it has been shown that it is possible to construct the kth iterate of a
GCG method as the following sparse element

uk =

Nk∑
i=1

λki u
k
i ,

where Nk ∈ N, λki > 0 and uki are extremal points of the unit ball of the convex regularizer.
Such observation has proved useful, for example, in solving super-resolution problems in the space
of measures [9, 27, 39] and in dynamic inverse problems with regularized with optimal transport

4



energies [12, 26]. In this paper we use the characterization of the extremal points of the unit ball of
F̂ given in Section 3 to design a GCG for the lifted problem (1.5). We follow the general procedure
described in [13] and adapt the results of [13] to prove sublinear convergence of the GCG algorithm.
Moreover, we use the equivalence of (1.3) and (1.5) to rewrite the GCG algorithm for (1.5) as
a converging algorithm for the inverse problem regularized with the infinite infimal convolution
functional (1.3) with the same rate of convergence.

Finally, in Section 6 we provide examples of signal and image denoising problems regularized
with an infinite infimal convolution functional, where we apply our generalized conditional gradient
method. First we consider the task of denoising a signal using infimal convolutions of L2-norms of
fractional-Laplacian-type operators with adaptive order s ∈ [0, 1]. We refer to [3, 5] for examples of
applications of fractional-Laplacian regularizers to image denoising. We construct the regularizer
in such a way that the infimal convolution is learning the predominant frequencies of the data and
is assigning a lower-order regularization to them. As a second application we consider denoising
images using infinite infimal convolutions of L2-norms of anisotropic fractional-Laplacian-type op-
erators. Here the anisotropy direction is regulated by a parameter s ∈ [0, π] providing the direction
(cos(s), sin(s)) ∈ S1. The infinite infimal convolution regularizer learns the directions of higher
oscillation of the noisy image f and applies a lower regularization in such directions. In this way
the natural anisotropy of the data is preserved and the noise that is supposed to be isotropic is
removed. Directional regularizers that are aware of dominant anisotropy directions in the image
were proposed in [29, 32, 34, 37, 38]. While the model in [34] is limited to one dominant direction
that is fixed a priori by the user, [29, 32] incorporate multiple directions of anisotropy in same spirit
as the present paper, in the sense that they use an infimal convolution of multiple functionals, each
with one dominant direction of anisotropy. But also in those works the bias toward a finite, user-
defined number of directions remains. In [37, 38] the anisotropy is encoded in a space-dependent
tensor that it is either estimated a priori or optimized in the algorithm by an alternating procedure.
In contrast, our model is able to automatically select a distribution of directions and does not re-
quire a discretization of the parameter space; the set of directions is optimized together with the
reconstruction through a provably convergent algorithm.

Outline of the main contributions:

i) We introduce the infinite infimal convolution functional as a regularizer to solve ill-posed
inverse problems defined in a Banach space X.

ii) Under mild assumptions that are suitable for sparse regularization we prove well-posedness of
the regularized inverse problem by constructing a convex lifting to the space of measures with
values in X.

iii) We use the convex lifting to gain insights into the structure of sparse solutions by proving a
representer theorem in case of finite-dimensional data.

iv) We propose a generalized conditional gradient method for solving the regularized problem,
relying on the sparse structure of the iterate, and prove a sublinear rate of convergence.

v) We demonstrate the performance of our model and the generalized conditional gradient
method on several denoising problems using the infimal convolution of L2-norms of fractional-
Laplacian-type operators.

2 The infinite infimal convolution functional

In this section we define the regularizer studied in this paper and state the corresponding regularized
inverse problem.
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2.1 Infinite infimal convolution

Let X be a separable Banach space that admits a predual X∗. Let Y be a separable Hilbert space
and A : X → Y be a weak*-weak continuous operator (that is, A is the adjoint of some linear
bounded operator A∗ : Y → X∗). Let d ∈ N and S ⊂ Rd be a non-empty compact set. We consider
a proper Borel-measurable functional J : X × S → [0,+∞] satisfying the following assumptions:

(H1) J(·, s) is proper, convex, and positively one-homogeneous for every s ∈ S. Note that by
positively one-homogeneous we mean that J(λv, s) = λJ(v, s) for every λ ≥ 0, v ∈ X and
s ∈ S.

(H2) J is sequentially lower semicontinuous in X×S, where X is endowed with the weak* topology.

(H3) There exists a constant C > 0 such that

‖v‖X ≤ CJ(v, s) (2.1)

for all v ∈ X and for every s ∈ S.

Remark 2.1. Note that since X is separable, its predual X∗ is separable as well. Moreover, thanks
to Theorem A.4, X has the Radon–Nikodým-property, see Definition A.3.

Denote by M+(S) the space of finite positive Radon measures on S. Given σ ∈ M+(S) we
define Fσ : L1((S, σ);X)→ [0,∞] as follows

Fσ(u) :=

∫
S
J(u(s), s) dσ(s) , (2.2)

where L1((S, σ);X) is the standard Bochner space of L1-functions with values in the Banach space
X, cf. Section A.1. Note that the map s 7→ J(u(s), s) is σ-measurable for every σ ∈ M+(S) and
every u ∈ L1((S, σ);X), due to the measurability of J and the fact that σ is a Radon measure.

We are now ready to introduce the infinite infimal convolution functional.

Definition 2.2 (Infinite infimal convolution). The functional R : X ×M+(S)→ [0,∞] given by

R(v, σ) := inf

{
Fσ(u) : u ∈ L1((S, σ);X) with

∫
S
u(s) dσ(s) = v

}
(2.3)

is called the infinite infimal convolution of the functionals J(·, s) over s ∈ S. The constraint∫
S u(s) dσ(s) = v is defined as a Bochner integral.

In what follows we define for every σ ∈ M+(S) an operator Iσ : L1((S, σ);X) → X as the
integration of u ∈ L1((S, σ);X) against σ

Iσu :=

∫
S
u(s) dσ(s) .

With this notation we can rewrite the infinite infimal convolution functional equivalently as

R(v, σ) = inf
u∈L1((S,σ);X)

∫
S
J(u(s), s) dσ(s) + 1{v}(Iσu) , (2.4)

where we denote by 1A : X → [0,∞] the indicator function of the Borel set A ⊂ X.

Remark 2.3. One can see that if we choose σ =
∑N

i=1 δsi and S = {s1, . . . , sN}, where N ∈ N is
fixed, the regularizer R(v, σ) becomes the infimal convolution of the N functionals v 7→ J(v, si) for
i = 1, . . . , N .

6



2.2 Tikhonov regularized inverse problems

For a given noisy measurement f ∈ Y we are interested in inverse problems of the form

Av = f (2.5)

where A : X → Y is a linear continuous operator.
In this paper we propose to solve (2.5) by setting up a Tikhonov problem regularized with the

infinite infimal convolution functional. First, for a fixed σ ∈ M+(S) we define the variational
problem

inf
v∈X

1

2
‖Av − f‖2Y + αR(v, σ) , (2.6)

where α > 0 is a positive parameter. Since we are interested in optimizing (2.6) also over
σ ∈ M+(S), in order to find the best combination of functionals J(·, s) for s ∈ S that opti-
mally regularizes the reconstruction of a given measurement f , we additional minimize (2.6) with
respect to σ ∈M+(S) obtaining the following Tikhonov problem

inf
v∈X,

σ∈M+(S)

1

2
‖Av − f‖2Y + αR(v, σ) . (2.7)

Note that, using the definition of R(v, σ), we can rewrite (2.7) as

inf
σ∈M+(S),

u∈L1((S,σ);X)

1

2
‖AIσu− f‖2Y + α

∫
S
J(u(s), s) dσ(s) . (2.8)

Clearly, (2.7) and (2.8) have the same infimum. Moreover, it is easy to check that if (u, σ) is a
minimizer for (2.8), then (Iσu, σ) is a minimizer for (2.7). Conversely, if (v, σ) is a minimizer for
(2.7) and the infimum in (2.4) is achieved at u ∈ L1((S, σ);X), then (u, σ) is a minimizer for (2.8).
It is our goal in the next section to show that these minima are indeed attained.

The lack of a predual of the space L1((S, µ);X) and the relatively weak coercivity assumption
(H3) do not allow one to show existence of minimizers for the infinite infimal convolution R(v, σ)
as in [41]. A possible solution is to assume that ‖v‖pX ≤ CJ(v, s) for every s ∈ S, v ∈ X and
p > 1. However, such additional assumption imposes a severe restriction on the class of regularizers
one can consider, excluding, for example, sparsity-promoting regularizers. Our approach relies on
the positive one-homogeneity of the functions v 7→ J(v, s) for each s ∈ S (Assumption (H1)) and a
lifting procedure to a space of X-valued measures over S. This yields a convex relaxation of (2.8) for
which we can prove existence of minimizers. We also show that this implies existence of minimizers
in (2.7) and (2.8).

3 Convex lifting

Since R(v, σ) is not jointly convex in v, σ, the problem (2.7) is not convex. In this section we
consider its convexification by lifting it to the space of X-valued Radon measures M(S;X). We
collect necessary background on vector-valued measures in Appendix A.

3.1 Convex lifting of the regularizer

We first introduce a convex lifting of the map (u, σ) 7→ Fσ(u) defined in (2.2) to M(S;X). We
define F̂ :M(S;X)→ [0,+∞] as follows

F̂ (µ) =

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s) , (3.1)

where |µ| ∈ M+(S) is the variation measure of µ as defined in (A.3). Note that Remark 2.1 ensures
the validity of the Radon–Nikodým property for X. Therefore, for every µ ∈ M(S;X) the density
µ
|µ| exists and belongs to L1((S, µ|µ|);X), cf. Definition A.3.
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Proposition 3.1. The functional F̂ : M(S;X) → [0,+∞] is convex, positively one-homogeneous
and coercive, i.e., there exists C > 0 such that

F̂ (µ) ≥ C‖µ‖M , (3.2)

for all µ ∈ M(S;X). Moreover, given µ, ν ∈ M(S;X) such that |µ| and |ν| are mutually singular
we have that

F̂ (µ+ ν) = F̂ (µ) + F̂ (ν) . (3.3)

Proof. We start with the second statement. Let µ, ν ∈ M(S;X) be such that |µ| and |ν| are
mutually singular. By mutual singularity, there exists a Borel set A ⊂ S such that |ν|(A) = 0 and
|µ|(S r A) = 0. We now show that µ+ν

|µ+ν| = µ
|µ| holds |µ|-a.e. in A. For every E ⊂ A Borel we

observe that ∫
E

µ+ ν

|µ+ ν|
(s) d|µ+ ν|(s) = µ(E) + ν(E) = µ(E) =

∫
E

µ

|µ|
(s) d|µ|(s) (3.4)

and

|µ+ ν|(E) = sup

{
n∑
i=1

‖µ(Ai)‖X : n ∈ N, (Ai)
n
i=1 partition of E

}
= |µ|(E) . (3.5)

From (3.4) and (3.5) and Corollary 5 in [25] we conclude that µ+ν
|µ+ν| = µ

|µ| for |µ|-a.e. in A. Similarly,

it can be shown that µ+ν
|µ+ν| = ν

|ν| for |ν|-a.e. in S rA. So,

F̂ (µ+ ν) =

∫
S
J

(
µ+ ν

|µ+ ν|
(s), s

)
d|µ+ ν|(s)

=

∫
A
J

(
µ+ ν

|µ+ ν|
(s), s

)
d|µ+ ν|(s) +

∫
SrA

J

(
µ+ ν

|µ+ ν|
(s), s

)
d|µ+ ν|(s)

=

∫
A
J

(
µ

|µ|
(s), s

)
d|µ|(s) +

∫
SrA

J

(
ν

|ν|
(s), s

)
d|ν|(s) = F̂ (µ) + F̂ (ν) ,

proving (3.3).
Now, it is clear that F̂ is positively one-homogeneous. Indeed, by the definition of F̂ one

immediately sees that F̂ (0) = 0. Moreover, for every λ > 0, Proposition A.2 yields that
λµ

|λµ|
(s) =

µ

|µ|
(s) for |µ| − a.e. s ∈ S and hence,

F̂ (λµ) =

∫
S
J

(
µ

|µ|
(s), s

)
d(|λµ|)(s) = λF̂ (µ) .

Since F̂ is positively one-homogeneous, convexity is equivalent to subadditivity, i.e., it is enough to
show that F̂ (µ+ ν) ≤ F̂ (µ) + F̂ (ν) for all µ, ν ∈M(S;X). Let µ, ν ∈M(S;X) be arbitrary. First
note that

µ+ ν

|µ|+ |ν|
(s) =

µ+ ν

|µ+ ν|
(s)
|µ+ ν|
|µ|+ |ν|

(s) for (|µ|+ |ν|)− a.e. s ∈ S , (3.6)

where all densities are well-defined since X has the Radon–Nikodým property, cf. Remark 2.1.
Indeed, since |µ+ ν| = |µ+ν|

|µ|+|ν|(|µ|+ |ν|) by Radon–Nikodým property, we have that∫
E

µ+ ν

|µ|+ |ν|
(s)d(|µ|+ |ν|)(s) = (µ+ ν)(E) =

∫
E

µ+ ν

|µ+ ν|
(s) d(|µ+ ν|)(s)

=

∫
E

µ+ ν

|µ+ ν|
(s)
|µ+ ν|
|µ|+ |ν|

(s) d(|µ|+ |ν|)(s)
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for every E ⊂ S Borel, showing (3.6) thanks to [25, Corollary 5]. Similarly, it also holds that

µ

|µ|+ |ν|
(s) =

µ

|µ|
(s)

|µ|
|µ|+ |ν|

(s) for (|µ|+ |ν|)− a.e. s ∈ S , (3.7)

ν

|µ|+ |ν|
(s) =

ν

|ν|
(s)

|ν|
|µ|+ |ν|

(s) for (|µ|+ |ν|)− a.e. s ∈ S , (3.8)

µ+ ν

|µ|+ |ν|
(s) =

µ

|µ|+ |ν|
(s) +

ν

|µ|+ |ν|
(s) for (|µ|+ |ν|)− a.e. s ∈ S . (3.9)

Therefore,

F̂ (µ+ ν) =

∫
S
J

(
µ+ ν

|µ+ ν|
(s), s

)
d|µ+ ν|(s) =

∫
S
J

(
µ+ ν

|µ+ ν|
(s), s

)
|µ+ ν|
|µ|+ |ν|

(s) d(|µ|+ |ν|)(s)

=

∫
S
J

(
µ+ ν

|µ|+ |ν|
(s), s

)
d(|µ|+ |ν|)(s)

≤
∫
S
J

(
µ

|µ|+ |ν|
(s), s

)
d(|µ|+ |ν|)(s) +

∫
S
J

(
ν

|µ|+ |ν|
(s), s

)
d(|µ|+ |ν|)(s)

=

∫
S
J

(
µ

|µ|
(s), s

)
|µ|

|µ|+ |ν|
(s) d(|µ|+ |ν|)(s) +

∫
S
J

(
ν

|ν|
(s), s

)
|ν|

|µ|+ |ν|
(s) d(|µ|+ |ν|)(s)

= F̂ (µ) + F̂ (ν) ,

where in the second equality we applied Radon–Nikodým’s theorem and in the third equality we used
(3.6) and the positive one-homogeneity of J(·, s), noting that |µ+ν|

|µ|+|ν| is non-negative for (|µ|+ |ν|)-
a.e. s ∈ S; additionally, in the first inequality we used the subadditivity of J(·, s) and (3.9), and
in fourth equality we used (3.7), (3.8) and the positive one-homogeneity of J(·, s), noting that both
|µ|
|µ|+|ν| and |ν|

|µ|+|ν| are non-negative for (|µ| + |ν|)-a.e. s ∈ S; finally the last equality follows again
from Radon–Nikodým’s theorem.

To show coercivity (3.2), we use Assumption (H3) and Proposition A.2, and obtain

F̂ (µ) =

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s) ≥

∫
S

1

C

∥∥∥∥ µ|µ|(s)
∥∥∥∥
X

d|µ|(s) =
1

C
‖µ‖M ,

where C is the constant from Assumption (H3).

Next we establish weak* lower semicontinuity of the functional F̂ : M(S;X) → [0,+∞]. We
remind the reader that the weak* topology on the space M(S;X) is understood in the sense of
duality with C(S;X∗), see Theorem A.6. The proof uses the same techniques as in the proof of the
classical Reshetnyak semicontinuity theorem, see [40] and [1, Theorem 2.38], adapted to measures
with values in Banach spaces. The same result is proven in [21, Theorem 8.2.2] for a separable and
reflexive space X. For completeness, we provide a complete proof.

Theorem 3.2. The functional F̂ is weakly-* sequentially lower semicontinuous in M(S;X).

Proof. Let µn
∗
⇀ µ in M(S;X), i.e., for any ϕ ∈ C(S;X∗),

〈µn, ϕ〉 → 〈µ, ϕ〉 .

By the Radon–Nikodým theorem, there exists a sequence {un}n of Borel measurable functions such
that un ∈ L1((S, |µn|);X) and an element u ∈ L1((S, |µ|);X) such that µn = un|µn| for all n and
µ = u|µ|. By Proposition A.2 we can always assume that ‖un(s)‖X = 1 for |µn|-almost every s ∈ S.
Since weakly-* convergent sequences are bounded, we have supn ‖µn‖M <∞.

Denote by BX := {u ∈ X : ‖u‖X ≤ 1} the unit ball in X. By the Banach–Alaoglu theorem, BX
is weakly-* compact and thanks to the separability of X, the weak* topology is metrizable. Since S
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is compact, the metric space BX ×S (where BX is endowed with the metric that metrizes its weak*
topology) is compact and therefore separable. Let the sequence {νn}n inM(BX ×S) be defined as∫

BX×S
ϕ(x, s) dνn(x, s) =

∫
S
ϕ(un(s), s) d|µn|(s) ∀ϕ ∈ C(BX × S) . (3.10)

Since, using (3.10), we have that supn ‖νn‖M = supn ‖µn‖M <∞, the sequence {νn}n is bounded
and therefore contains a weakly-* converging subsequence (which we do not relabel)

νn
∗
⇀ ν ∈M(BX × S) .

Let π : X × S → S be the projection on S. Then we have π#ν
n = |µn| and |µn| ∗⇀ π#ν by the

continuity of the push-forward with respect to weak* convergence. Moreover, defining λ := π#ν
and applying [1, Proposition 1.62], we get that λ ≥ |µ|. Applying the disintegration theorem for
measures defined on metric spaces (see for example [11, Theorem A.4]), there exists a Borel family
of measures {νs}s∈S in M(BX) such that for every f ∈ L1(BX × S, ν)∫

BX×S
f(x, s) dν(x, s) =

∫
S

∫
BX

f(x, s) dνs(x) dλ(s) . (3.11)

We now analyze the barycenter of νs in BX for every s ∈ S, that is

bar(νs) :=

∫
BX

x dνs(x) ,

where the previous integral is well-defined as a Bochner integral since the identity map is continuous
on the separable metric space BX and hence, is in L1(BX , νs) for every s ∈ S.

Let us define f : (x, s) 7→ 〈ψ(s), x〉 ∈ C(BX × S), where ψ ∈ C(S;X∗). Using (3.11) and

standard properties of the Bochner integral we get the following equality for the sequences νn
∗
⇀ ν

and µn
∗
⇀ µ :∫
S
〈ψ(s),

∫
BX

x dνs(x)〉 dλ(s) =

∫
S

∫
BX

〈ψ(s), x〉 dνs(x) dλ(s) =

∫
BX×S

〈ψ(s), x〉 dν(x, s)

= lim
n→+∞

∫
BX×S

〈ψ(s), x〉 dνn(x, s) = lim
n→+∞

∫
S
〈ψ(s), un(s)〉 d|µn|(s)

= lim
n→+∞

∫
S
ψ(s) dµn(s) =

∫
S
ψ(s) dµ(s) =

∫
S
ψ(s)u(s)

|µ|
λ

(s) dλ(s) .

In particular, it holds that

bar(νs) = u(s)
|µ|
λ

(s) for λ− a.e. s ∈ S . (3.12)

Therefore, by [11, Proposition A.3] (see also [2, Section 5.1.7]) and the lower semicontinuity of J on
BX × S (see Assumption (H2)) we have

lim inf
n→+∞

∫
S
J(un(s), s) d|µn|(s) = lim inf

n→+∞

∫
BX×S

J(x, s) dνn(x, s) ≥
∫
BX×S

J(x, s) dν(x, s)

=

∫
S

∫
BX

J(x, s) dνs(x) dλ(s) ≥
∫
S
J

(
u(s)
|µ|
λ

(s), s

)
dλ(s) =

∫
S
J(u(s), s) d|µ|(s) ,

where we used (3.11), (3.12), Jensen’s inequality (see Assumption (H1)). The proof is complete.

We conclude the section showing that F̂ (µ) coincides with
∫
S J(u(s), s) dσ(s) when computed

on measures µ ∈ M(S;X) of the form µ(E) =
∫
E u(s) dσ(s) for E ⊂ S Borel, where σ ∈ M+(S)

and u ∈ L1((S, σ);X).
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Lemma 3.3. Let σ ∈ M+(S) and u ∈ L1((S, σ);X). Then, for µ ∈ M(S;X) defined as µ(E) =∫
E u(s) dσ(s), E ⊂ S Borel, it holds that

F̂ (µ) =

∫
S
J(u(s), s) dσ(s) . (3.13)

Proof. Using Proposition A.2, the fact that ‖u‖X 6= 0 |µ|-a.e., and the positive one-homogeneity of
J(·, s) for every s ∈ S (see Assumption (H1)), we get

F̂ (µ) =

∫
S
J

(
u(s)

‖u(s)‖X
, s

)
‖u(s)‖X dσ(s) =

∫
S
J(u(s), s) dσ(s)

as we wanted to prove.

3.2 Convex lifting of the variational problem

We are now ready to lift the problem (2.7) (and therefore also (2.8)) to the space of X-valued
measures M(S;X). Consider

inf
µ∈M(S;X)

1

2
‖Aµ(S)− f‖2Y + α

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s) . (3.14)

The following result shows the equivalence between the Tikhonov regularized inverse problem
(2.8) and the lifted problem (3.14).

Proposition 3.4. Problems (2.8) and (3.14) have the same infimum. Moreover, if the pair (ū, σ̄)
minimizes (2.8), then µ̄ defined as

µ̄(E) =

∫
E
ū(s) dσ̄(s) (3.15)

is a minimizer for (3.14). Conversely, if µ̄ is a minimizer for (3.14), then the pair
(
µ̄
|µ̄| , |µ̄|

)
is a

minimizer for (2.8) and (µ̄(S), |µ̄|) is a minimizer for (2.7).

Proof. Denote by (ū, σ̄) a pair minimizing (2.8) and define µ̄ ∈ M(S;X) as in (3.15). Given
µ ∈M(S;X), since X satisfies the Radon–Nikodým property, we have

µ(E) =

∫
E

µ

|µ|
(s) d|µ|(s) , (3.16)

so that I|µ| µ|µ| = µ(S). Therefore, using Lemma 3.3 and optimality we have

1

2
‖Aµ(S)− f‖2Y + α

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s)

=
1

2

∥∥∥∥AI|µ| µ|µ| − f
∥∥∥∥2

Y

+ α

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s)

≥ 1

2
‖AIσ̄ū− f‖2Y + α

∫
S
J(ū(s), s) dσ̄(s)

=
1

2
‖Aµ̄(S)− f‖2Y + α

∫
S
J

(
µ̄

|µ̄|
(s), s

)
d|µ̄|(s) ,

implying that µ̄ ∈M(S;X) as in (3.15) is a minimizer of (3.14).
Conversely, let µ̄ be a minimizer for (3.14). Consider σ ∈ M+(S) and u ∈ L1((S, σ);X), and

define the measure µ ∈ M(S;X) as µ(E) :=
∫
E u(s) dσ(s) for every Borel subset E ⊂ S. Setting

(ū, σ̄) =
(
µ̄
|µ̄| , |µ̄|

)
, it holds true that

µ̄(S) =

∫
S

µ̄

|µ̄|
(s) d|µ̄|(s) =

∫
S
ū(s) dσ̄(s)

11



and we have, again using Lemma 3.3 and optimality,

1

2
‖AIσu− f‖2 + α

∫
S
J(u(s), s) dσ(s) =

1

2
‖Aµ(S)− f‖2Y + α

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s)

≥ 1

2
‖Aµ̄(S)− f‖2Y + α

∫
S
J

(
µ̄

|µ̄|
(s), s

)
d|µ̄|(s)

=
1

2
‖AIσ̄ū− f‖2Y + α

∫
S
J(ū(s), s) dσ̄(s) ,

implying that
(
µ̄
|µ̄| , |µ̄|

)
is a minimizer for (2.8) and therefore the pair (I|µ̄| µ̄|µ̄| , |µ̄|) = (µ̄(S), |µ̄|) is a

minimizer for (2.7).
Finally, we show that (2.8) and (3.14) have the same infimum. Given any µ ∈ M(S;X) define

σ̃ := |µ| ∈ M+(S) and ũ := µ
|µ| ∈ L

1((S, σ̃);X). Then, with similar computations to the first part
of the proof, we have that

inf
σ∈M+(S),

u∈L1((S,σ);X)

1

2
‖AIσu− f‖2Y + α

∫
S
J(u(s), s) dσ(s) ≤ 1

2
‖AIσ̃ũ− f‖2 + α

∫
S
J(ũ(s), s) dσ̃(s)

=
1

2
‖Aµ(S)− f‖2Y + α

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s) ,

implying that the infimum of (2.8) is less or equal than the infimum of (3.14). Similarly, given any
σ ∈M+(S) and u ∈ L1((S, σ);X), and defining µ̃ := uσ ∈M(S;X) there holds

inf
µ∈M(S;X)

1

2
‖Aµ(S)− f‖2Y + α

∫
S
J

(
µ

|µ|
, s

)
d|µ|(s) ≤ 1

2
‖Aµ̃(S)− f‖2Y + α

∫
S
J

(
µ̃

|µ̃|
(s), s

)
d|µ̃|(s)

=
1

2
‖AIσu− f‖2Y + α

∫
S
J (u(s), s) dσ(s) ,

implying that the infimum of (3.14) is less or equal than the infimum of (2.8) and thus concluding
the proof.

Remark 3.5. We recall that Problems (2.7) and (2.8) are equivalent as discussed in Section 2.2.
Therefore, Proposition 3.4 implies that (2.7), (2.8) and (3.14) have the same infimum and, given a
minimizer of one of these problems, one can construct explicitly a minimizer of the others. In the
next section we make sure that such minimizers actually exist.

3.3 Existence of minimizers

We are now ready to show that (2.7) and (2.8) admit a minimizer. First we show that the lifted
problem (3.14) admits a solution and then thanks to Proposition 3.4 we immediately infer that (2.8)
and (2.7) admit minimizers as well.

Proposition 3.6. There exists µ ∈M(S;X) that minimizes the lifted problem (3.14).

Proof. Consider a minimizing sequence {µn}n in M(S;X) for (3.14). Then, thanks to Propo-
sition 3.1, the sequence {µn}n is uniformly bounded in total variation. Hence, by the Banach–
Alaoglu theorem and Theorem A.6, there exists µ ∈ M(S;X) such that, up to a subsequence,

µn
∗
⇀ µ. Thanks to the weak*-to-weak continuity of A, applying Remark A.7 and the weak* lower

semicontinuity of F̂ provided by Theorem 3.2, we conclude that µ is a minimizer of (3.14).

Corollary 3.7. There exists a pair (u, σ) with σ ∈ M+(S) and u ∈ L1((S, σ);X) that minimizes
(2.8). Consequently, the pair (Iσu, σ) ∈ X ×M+(S) minimizes (2.7).

Proof. The proof follows directly from Proposition 3.4 and Proposition 3.6.
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3.4 Extremal points of the lifted regularizer

We conclude this section by characterizing the set of extremal points of the unit ball of αF̂ , that is

B := {µ ∈M(S;X) : αF̂ (µ) ≤ 1} , (3.17)

in terms of the extremal points of

Bs := {v ∈ X : αJ(v, s) ≤ 1} (3.18)

for s ∈ S where we do not highlight the dependence on the parameter α in the definition of the unit
balls. Note that the choice to consider unit ball of αF̂ , instead of F̂ , is made purely for notational
convenience, since the generalized conditional gradient method introduced in [13] is formulated
for composite minimization problems without explicit regularization parameters. This result will
be fundamental in Section 4 to prove a representer theorem for inverse problems regularized with
the infinite infimal convolution functional and in Section 5 to set up a generalized conditional
gradient method for its numerical solution. Note that while this result is specific for infinite infimal
convolution functionals, results concerning the extremal points of unit balls of classical infimal
convolution functionals can be found in [20, 33]

Theorem 3.8. The extremal points of B can be characterized as follows:

• If 0 ∈ Ext(Br) for each r ∈ S, then Ext(B) = {vδr : r ∈ S, v ∈ Ext(Br)}.

• If there exists r ∈ S such that 0 /∈ Ext(Br), then Ext(B) = {vδr : r ∈ S, v ∈ Ext(Br) r {0}}.

Proof. Note that it is enough to prove the statement for α = 1, since, due the positive one-
homogeneity of J(·, s) for every s ∈ S and of F̂ , the general case follows from a scaling argument.
Given r ∈ S and v ∈ Br, notice that |vδr|(E) =

∫
E ‖v(s)‖X dδr(s) = ‖v‖Xδr(E). Therefore, using

the positive one-homogeneity of J , we get

F̂ (vδr) =

∫
S
J(v, s) dδr(s) = J(v, r) ≤ 1 , (3.19)

since v ∈ Br. Thus, vδr ∈ B.
First, we show that Ext(B) ⊂ {vδr : r ∈ S, v ∈ Ext(Br)} and in case there exists r̂ ∈ S such

that 0 /∈ Ext(Br̂) it also holds that Ext(B) ⊂ {vδr : r ∈ S, v ∈ Ext(Br) r {0}}. Note that, given
µ ∈ Ext(B), either F̂ (µ) = 0 or F̂ (µ) = 1, since F̂ is positively one-homogeneous. Suppose that
F̂ (µ) = 0, so that µ = 0 by Proposition 3.1. If 0 ∈ Ext(Br) for each r ∈ S, then we immediately
have that 0 ∈ {vδr : r ∈ S, v ∈ Ext(Br)} as we wanted to prove. Suppose instead that there exists
r̂ ∈ S such that 0 /∈ Ext(Br̂). Then,

0 = λv1 + (1− λ)v2 (3.20)

for v1, v2 ∈ Br̂, v1 6= v2 and 0 < λ < 1. Therefore the convex decomposition 0 = λv1δr̂ + (1−λ)v2δr̂
shows that 0 is not an extremal point of the ball F̂ , since F̂ (viδr̂) = J(vi, r̂) ≤ 1.

Suppose now that F̂ (µ) = 1. Note that, since F̂ (µ) = 1 implies that µ 6= 0, it is enough to show
that µ ∈ {vδr : r ∈ S, v ∈ Ext(Br)}. We start by showing that µ is supported on a singleton. If this
does not hold, then there exists a Borel set A ⊂ S such that 0 < µ(A) < µ(S). Define the constants

C(A) :=

∫
A
J

(
µ

|µ|
(s), s

)
d|µ|(s) and C(S rA) :=

∫
SrA

J

(
µ

|µ|
(s), s

)
d|µ|(s) .

Since J(v, s) ≥ C‖v‖X for each v ∈ X, s ∈ S by (H3), there exists a constant c > 0 such that
C(A) ≥ c|µ|(A) > 0 and C(S r A) ≥ c|µ|(S r A) > 0. Moreover, since F̂ (µ) = 1, it holds that
C(A) + C(S rA) = 1 and in particular, they are both finite. Defining then the measures

µ1 :=
µ A

C(A)
and µ2 :=

µ (S rA)

C(S rA)
,
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we notice that

|µ1| =
|µ| A

C(A)
,

µ1

|µ1|
=

µ

|µ|
|µ1| − a.e. , |µ2| =

|µ| (S rA)

C(S rA)
,

µ2

|µ2|
=

µ

|µ|
|µ2| − a.e. .

In particular, we have that F̂ (µ1) = F̂ (µ2) = 1 and thus

µ = C(A)µ1 + C(S rA)µ2

gives a non-trivial decomposition, which is a contradiction to µ ∈ Ext(B). Therefore, µ is supported
on a singleton and thus, µ = vδr for some v ∈ X and r ∈ S. We now show that v ∈ Ext(Br). If
this does not hold, then there exist 0 < λ < 1 and v1, v2 ∈ Br such that v1 6= v2 and

v = λv1 + (1− λ)v2 . (3.21)

Multiplying the previous equation by δr we obtain that µ = λv1δr+(1−λ)v2δr and, since v1, v2 ∈ Br
and F̂ (viδr) = J(vi, r) ≤ 1 for i = 1, 2, we conclude that µ is not an extremal point of B, which is
a contradiction.

We now show that Ext(B) ⊃ {vδr : r ∈ S, v ∈ Ext(Br) r {0}}. Consider r ∈ S, v ∈
Ext(Br) r {0}, 0 < λ < 1 and µ1, µ2 ∈ B such that

vδr = λµ1 + (1− λ)µ2 . (3.22)

Note that, since v 6= 0 and J(·, r) is coercive (Assumption (H3)) and positively one-homogeneous,
we have J(v, r) = 1, as otherwise v /∈ Ext(Br). Therefore

1 = J(v, r) = F̂ (vδr) = F̂ ([λµ1 + (1− λ)µ2] {r}) + F̂ ([λµ1 + (1− λ)µ2] (S r {r}))
≤ λF̂ (µ1 {r}) + (1− λ)F̂ (µ2 {r}) ≤ 1 , (3.23)

where in the third equality we apply (3.3) in Proposition 3.1, in the first inequality we use that
F̂ (0) = 0 as well as the convexity of F̂ , and in the last inequality we use that F̂ (µj {r}) ≤ F̂ (µj)
for j = 1, 2, that is true due to (3.3), since F̂ ≥ 0. Note now that µj {r} = vjδr with vj ∈ Br
for j = 1, 2, and F̂ (vjδr) = J(vj , r) = 1 for j = 1, 2, since otherwise we would contradict (3.23).
Moreover, thanks to the estimate 1 ≤ F̂ (µj (S r {r})) + F̂ (vjδr) = F̂ (µj) ≤ 1, we deduce that
F̂ (µj (S r {r})) = 0 and thus µj (S r {r}) = 0 for j = 1, 2, due to (3.2) in Proposition 3.1. In
particular, we obtain µj = vjδr for j = 1, 2. Finally, substituting µj = vjδr for j = 1, 2 in (3.22) we
deduce that v = λv1 + (1 − λ)v2, which implies that v1 = v2 = v, due to the extremality of v. We
then conclude that µ1 = µ2, implying that vδr ∈ Ext(B).

We conclude the proof by showing that if 0 ∈ Ext(Br) for every r ∈ S, then 0 ∈ Ext(B). If
0 = λµ1+(1−λ)µ2 with 0 < λ < 1 and µ1, µ2 ∈ B, note that µj � |µ1|+|µ2| for j = 1, 2. Therefore,
applying the Radon–Nikodým property of X, cf. Definition A.3, we have that for j = 1, 2 it holds

1 ≥ F̂ (µj) =

∫
S
J

(
µj
|µj |

(s), s

)
d|µj |(s) =

∫
S
J

(
µj
|µj |

(s), s

)
|µj |

|µ1|+ |µ2|
(s) d(|µ1|+ |µ2|)(s)

=

∫
S
J

(
µj

|µ1|+ |µ2|
(s), s

)
d(|µ1|+ |µ2|)(s) ,

where we have also used the positive one-homogeneity of J(·, s) and (3.7), (3.8) with µ1 = µ and

µ2 = ν. In particular, J
(

µj
|µ1|+|µ2|(s), s

)
< +∞ for (|µ1|+ |µ2|)-a.e. s ∈ S and j = 1, 2. Now, from

the convex decomposition 0 = λµ1 + (1− λ)µ2, by applying the Radon–Nikodým property of X we

have that 0 =
(
λ µ1

|µ1|+|µ2| + (1− λ) µ2

|µ1|+|µ2|

)
(|µ1|+ |µ2|) and thus

0 = λ
µ1

|µ1|+ |µ2|
(r) + (1− λ)

µ2

|µ1|+ |µ2|
(r) for (|µ1|+ |µ2|)− a.e. r ∈ S . (3.24)
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Define c(r) = J
(

µ1

|µ1|+|µ2|(r), r
)

+J
(

µ2

|µ1|+|µ2|(r), r
)
<∞ for (|µ1|+|µ2|)-a.e. r ∈ S. By Assumption

(H3), it holds that c(r) > 0 for (|µ1| + |µ2|)-a.e. r ∈ S such that µ1

|µ1|+|µ2|(r) 6= 0 or µ2

|µ1|+|µ2|(r) 6=
0. Therefore, up to setting c(r) equal to an arbitrary positive number on the points such that

µj
|µ1|+|µ2|(r) = 0 for j = 1, 2, we obtain from (3.24) that

0 = λ
1

c(r)

µ1

|µ1|+ |µ2|
(r) + (1− λ)

1

c(r)

µ2

|µ1|+ |µ2|
(r) for (|µ1|+ |µ2|)− a.e. r ∈ S . (3.25)

Thanks to the positive one-homogeneity of J(·, r), we have that 1
c(r)

µj
|µ1|+|µ2|(r) ∈ Br for (|µ1|+ |µ2|)-

a.e. r ∈ S, j = 1, 2. Therefore, since 0 ∈ Ext(Br) for every r ∈ S, it holds that 0 = µ1

|µ1|+|µ2|(r) =
µ2

|µ1|+|µ2|(r) for (|µ1| + |µ2|)-a.e. r ∈ S and thus µj =
µj

|µ1|+|µ2|(|µ1| + |µ2|) = 0 for j = 1, 2 as we
wanted to prove.

4 A representer theorem for the infinite infimal convolution func-
tional

In this section we analyze sparse solutions for inverse problems regularized with the infinite infimal
convolution functional introduced in Section 2.2, namely

inf
v∈X,

σ∈M+(S)

1

2
‖Av − f‖2Y + αR(v, σ) , (4.1)

where we used the same notations as in Section 2.2.
Sparse solutions of infinite dimensional inverse problems regularized with convex functionals

have been recently studied in [7, 10, 49]. In particular, it has been shown that in a general inverse
problem, the extremal points of the ball of the convex regularizer can be seen as the atoms of the
problem, in analogy with more standard sparsity promoting regularizers, such as the `1 norm in a
finite dimensional setting and the total variation norm for Radon measures. This sentence can be
justified by proving so-called representer theorems that, in case of finite-dimensional measurements,
ensure the existence of a solution that is representable as a finite linear combination of the mentioned
extremal points. In the next theorem, we take advantage of the characterization of extremal points
for the ball of the lifted regularizer, see Theorem 3.8, and we use the results in [10] to prove a
representer theorem for (4.1) assuming finite-dimensional measurements. In particular, we apply
the results in [10] to the lifted problem (3.14) and then, thanks to the equivalence of (3.14) with
(4.1), we deduce the representer theorem for (4.1). Note that, in order to apply the results in [10],
we need to additionally assume that J(·, s) are seminorms for every s ∈ S. However, we believe
that it would be possible to remove this assumption by applying the results in [7].

Theorem 4.1. Assume that J(λv, s) = |λ|J(v, s) for every λ ∈ R, v ∈ X and s ∈ S. Suppose
that the measurement space Y is finite-dimensional with dim(Y ) = Q ∈ N and that coni({Av : v ∈⋃
s∈S domJ(·, s)}) = Y , where coni(C) denotes the conical hull of the set C. Then, there exists

(v∗, σ∗) ∈ X ×M+(S) that minimizes (2.7) such that

v∗ =
M∑
i=1

λivi , σ∗ =
∑

s∈{si: i=1,...,M}

∥∥∥∥ ∑
j∈{1,...,M : sj=s}

λjvj

∥∥∥∥
X

δs , (4.2)

where M ≤ Q, si ∈ S, vi ∈ Ext(Bsi) r {0} and λi > 0 for every i = 1, . . . ,M .

Proof. We rewrite (4.1) in M(S;X) according to (3.14)

inf
µ∈M(S;X)

1

2
‖Kµ− f‖2Y + α

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s) , (4.3)
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where K := A ◦ T and Tµ := µ(S). Note that K : M(S;X) → Y is a linear operator and
it is weak*-to-strong continuous. Indeed, K is weak*-to-weak continuous by Remark A.7, and
weak topology and strong topology on Y coincide by the finite dimensionality of Y . Note that
F̂ (λµ) = |λ|F̂ (µ) for every µ ∈M(S;X) and λ ∈ R. Indeed, for every λ 6= 0, Proposition A.2 yields

that
λµ

|λµ|
(s) = sign(λ)

µ

|µ|
(s) for |µ|-a.e. s ∈ S and hence, using that J(λv, s) = |λ|J(v, s) for every

λ ∈ R, v ∈ X and s ∈ S, we have

F̂ (λµ) =

∫
S
J

(
sign(λ)

µ

|µ|
(s), s

)
d(|λµ|)(s) = |λ|F̂ (µ) .

Therefore, Proposition 3.1 and Theorem 3.2 imply that F̂ is a lower semicontinuous seminorm on
M(S;X) equipped with the weak* topology. Moreover, Proposition 3.1 and the Banach–Alaoglu
theorem (see also Theorem A.6) imply that the sublevel set of F̂ are compact in the weak* topology
of M(S;X).

We now show that K(domF̂ ) = Y . Note that it is enough to prove that Y ⊂ K(domF̂ ) =
A(T (domF̂ )). Given y ∈ Y , using that coni({Av : v ∈

⋃
s∈S domJ(·, s)}) = Y , we can write y

as y = Av for v =
∑N

j=1 cjvsj with N ∈ N, sj ∈ S, vsj ∈ domJ(·, sj) and cj ≥ 0. Define then

µ =
∑N

j=1 cjvsjδsj ∈ M(S;X) and note that µ ∈ dom(F̂ ), since by (3.3) in Proposition 3.1, the
convexity and the positive one-homogeneity of J(·, s), we have

F̂ (µ) = F̂

 N∑
j=1

cjvsjδsj

 ≤ N∑
j=1

cjJ(vsj , sj) <∞ . (4.4)

We then conclude that y ∈ A(T (domF̂ )) by observing that Tµ = v.
Therefore, we can apply the representer theorem [10, Theorem 3.3] to ensure the existence of a

minimizer µ∗ ∈M(S;X) of (4.3) that can be written as

µ∗ =
M ′∑
i=1

λiµi , (4.5)

where M ′ ≤ Q, λi > 0 and µi ∈ Ext({µ ∈ M(S;X) : F̂ (µ) ≤ 1}) for i = 1, . . . ,M ′. Using
Theorem 3.8, we infer that there exist si ∈ S and vi ∈ Ext(Bsi) such that µi = viδsi , so that, by
removing from the linear combination (4.5) the measures µi that are equal to zero and possibly
rearranging the indices, we obtain that

µ∗ =

M∑
i=1

λiviδsi , (4.6)

where M ≤ M ′, si ∈ S and vi ∈ Ext(Bsi) r {0}. Finally, applying Proposition 3.4 we deduce that
the pair (v∗, σ∗) ∈ X ×M+(S) defined as

v∗ =

M∑
i=1

λivi , σ∗ =
∑

s∈{si: i=1,...,M}

∥∥∥∥ ∑
j∈{1,...,M : sj=s}

λjvj

∥∥∥∥
X

δs

is a minimizer of (4.1) as required.

5 A generalized conditional gradient method

In this section we will describe how to solve the lifted inverse problem defined in (3.14) by a general-
ized conditional gradient method. As a consequence of the equivalence provided by Proposition 3.4,
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we will then be able to derive a conditional gradient method for (2.7) and (2.8). We recall that the
lifted inverse problem consists in minimizing the following functional:

Gα(µ) =
1

2
‖Aµ(S)− f‖2Y + αF̂ (µ) , (5.1)

where

F̂ (µ) =

∫
S
J

(
µ

|µ|
(s), s

)
d|µ|(s) .

As already done in Section 4, denoting by T : M(S;X) → X the linear operator defined as
Tµ := µ(S), we rewrite (5.1) equivalently as

Gα(µ) =
1

2
‖Kµ− f‖2Y + αF̂ (µ) , (5.2)

where K := A◦T . Note again that K is weak*-to-weak continuous by Remark A.7. The pre-adjoint
of the linear operator T :M(S;X)→ X can be characterized as follows.

Lemma 5.1. The pre-adjoint of the linear operator T is T∗ : X∗ → C(S;X∗) is given by

(T∗v∗)(s) = v∗ ∀s ∈ S, ∀v∗ ∈ X∗ . (5.3)

Proof. For every µ ∈M(S;X) and v∗ ∈ X∗ there holds

〈(s 7→ v∗), µ〉M = 〈v∗, µ(S)〉(X∗,X) = 〈v∗, Tµ〉(X∗,X) , (5.4)

showing (5.3). Notice that the first equality in (5.4) follows from the definition of the integral with
respect to the vector measure µ.

5.1 Description of the algorithm

A generalized conditional gradient algorithm for minimizing Gα is based on the construction of a
sparse iterate µk ∈M(S;X) given by the linear combination of extremal points of B, i.e.,

µk =

Nk∑
i=1

cki µ
k
i , (5.5)

where Nk ∈ N, cki > 0 and µki ∈ Ext(B) pairwise distinct, for every i. At each iterate k ∈ N,
the algorithm performs two steps: the insertion step and the weights optimization step. In the
insertion step a suitable extremal point of B, denoted by µkNk+1, is chosen in such a way that it

minimizes a variational problem obtained from (5.1) by linearizing the fidelity term 1
2‖Kµ− f‖

2
Y in

the previous iterate µk. In the weights optimization step the coefficients of the conical combination[∑Nk
i=1 c

k
i µ

k
i

]
+ cµkNk+1 are optimized with respect to Gα. The next iterate is then constructed by

µk+1 =

[
Nk∑
i=1

ĉki µ
k
i

]
+ ĉkNk+1µ

k
Nk+1 ,

where (ĉk1, . . . , ĉ
k
Nk
, ĉkNk+1) ∈ (0,+∞)Nk+1 is the solution of the weights optimization step. In the

following part of this section we will provide more details on the insertion step and the coefficient
optimization step for our problem. Then, we will formulate the generalized conditional gradient
algorithm for the lifted inverse problem, see Algorithm 1, and we discuss how to equivalently refor-
mulate this algorithm to compute minimizers of (2.7) and (2.8), see Algorithm 2.
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5.1.1 Insertion step

Given a sparse iterate µk ∈ M(S;X) that is a conical combination of extremal points of B as in
(5.5), we define the dual variable associated to the k-th iteration pk ∈ C(S;X∗) as

pk = −K∗(Kµk − f) . (5.6)

Such dual variable pk represents the negative derivative of the fidelity term in of Gα defined in (5.2)
computed at the point µk. We then find the new extremal point of B by solving the linearized
problem defined as follows.

Definition 5.2. With pk as in (5.6) we define the linearized problem in µk ∈M(S;X) as

max
µ∈Ext(B)

〈pk, µ〉 . (5.7)

Note that the linearized problem in Definition 5.2 is, in our setting, equivalent to the linearization
of the objective function in a standard Frank–Wolfe algorithm [28]:

max
µ∈B
〈pk, µ〉 . (5.8)

Indeed, a simple convexity argument shows that it is always possible to find a maximizer of (5.8)
in the set of extremal points of B; see for example [13, Lemma 3.1]. As a consequence, thanks to
Proposition 3.1 and Theorem 3.2, the problem (5.7) admits a solution.

Rephrasing the insertion step as in Definition 5.2 allows to constrain the iterate of our conditional
gradient method to be a linear combination of the extremal points of B, highlighting the sparsity pro-
moting structure of the regularizer. As a consequence, we can choose µkNk+1 ∈ arg maxµ∈Ext(B)〈pk, µ〉
to be the new extremal point added to the linear combination (5.5).

5.1.2 Weights optimization step

In the insertion step we have selected the new extremal point µkNk+1 ∈ arg maxµ∈Ext(B)〈pk, µ〉 to

add to the iterate µk. The goal of the optimization step is to optimize the coefficients of the sparse

conical combination
[∑Nk

i=1 c
k
i µ

k
i

]
+ cµkNk+1 with respect to the energy Gα:

arg min
ci∈R

Nk+1
+

1

2

∥∥∥∥∥
Nk+1∑
i=1

ciKµ
k
i − f

∥∥∥∥∥
2

Y

+ αF̂

(
Nk+1∑
i=1

ciµ
k
i

)
. (5.9)

In practice (see [13, Section 3] for more details), it is enough to optimize the following upper bound
of (5.9):

ĉk ∈ arg min
ci∈R

Nk+1
+

1

2

∥∥∥∥∥
Nk+1∑
i=1

ciKµ
k
i − f

∥∥∥∥∥
2

Y

+ α

Nk+1∑
i=1

ciF̂ (µki ) , (5.10)

where the bound F̂
(∑Nk+1

i=1 ciµ
k
i

)
≤
∑Nk+1

i=1 ciF̂ (µki ) is ensured by the convexity and the positive

one-homogeneity of F̂ . Note that, since F̂ is positively one-homogeneous, we have F̂ (µki ) ∈ {0, 1}.
Therefore, (3.2) in Theorem 3.1 implies that, if all inserted extremal points are different from zero,
then the insertion step can be rewritten as

ĉk ∈ arg min
ci∈R

Nk+1
+

1

2

∥∥∥∥∥
Nk+1∑
i=1

ciKµ
k
i − f

∥∥∥∥∥
2

Y

+ α

Nk+1∑
i=1

ci . (5.11)

Since we cannot exclude that all inserted extremal points are different from zero at all iterations, we
will employ the optimization problem in (5.9). However, we refer to Remark 5.4, where we discuss
in details how and when the insertion of null extremal points can be avoided.
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Remark 5.3. We point out that (5.10) can be a strict upper bound for (5.9) depending on the
choice of the functionals J(·, s). To demonstrate this, take µk =

∑Nk+1
i=1 cki µ

k
i , where Nk ∈ N, cki > 0

and µki ∈ Ext(B) pairwise distinct, for every i. Thanks to Theorem 3.8, it holds that µki = vki δski
where ski ∈ S and vki ∈ Ext(Bski

) for i = 1, . . . , Nk + 1. Using Proposition 3.1, we can write

F̂

(
Nk+1∑
i=1

ciµ
k
i

)
= F̂

( ∑
s∈{ski :i=1,...,Nk+1}

( ∑
j∈{1,...,Nk+1: skj=s}

cjv
k
j

)
δs

)

=
∑

s∈{ski :i=1,...,Nk+1}

J

( ∑
j∈{1,...,Nk+1: skj=s}

cjv
k
j , s

)
. (5.12)

In particular, (5.12) shows that if for every s ∈ S the functional J(·, s) is linear on conical combi-
nations of elements in Ext(Bs), then (5.10) is equivalent to (5.9). However, this is in general not
true even for simple examples such as J(v, s) = ‖v‖L2 .

Thanks to the linearity of K, the optimization in (5.10) is a convex quadratic problem in RNk+1
+

and therefore can be solved efficiently with standard solvers. We then construct the next iterate
µk+1 ∈ M(S;X) as µk+1 =

∑Nk+1
i=1 ĉki µ

k
i , where ĉki are the optimal weights determined as in (5.9).

Algorithm 1 summarizes these steps.

5.1.3 Generalized conditional gradient method for the lifted problem

Algorithm 1 is a generalized conditional gradient method that computes a minimizer of the lifted
inverse problem (5.1). Note that we keep track of the extremal points in the representation of the
iterate µk ∈ M(S;X) in the set Ak. This is useful because during the weight optimization step
some of the optimal ĉki ∈ R+ could be zero. If this is the case we want to remove the corresponding
extremal point from the linear combination. Such operation is performed by removing from Ak+1

the extremal points µki whose corresponding weight ĉki is equal to zero.
It is possible to add a stopping criterion to Algorithm 1 as in [13, Proposition 3.3]. In particular,

we set the algorithm to terminate at the k-th iteration for k ≥ 1 if

max
µ∈Ext(B)

〈pk, µ〉 ≤ 1 (5.13)

or if the newly inserted atom is already among the atoms composing µk, i.e., µkNk+1 ∈ Ak.

Remark 5.4. Note that the stopping criterion (5.13) is met, in particular, if

0 ∈ arg max
µ∈Ext(B)

〈pk, µ〉 . (5.14)

Therefore, for all the iterations k ≥ 1 the algorithm is never inserting 0, since in this case the
algorithm would stop. However, it can happen that µ = 0 is inserted in the first iteration, since
the stopping criterion is not given for k = 0. It is possible to circumvent this issue in several ways.
First, Theorem 3.8 states that 0 /∈ Ext(B) in case there exists s ∈ S such that 0 /∈ Ext(Bs); if this
happens, no workarounds are needed. Second, if we initialize Algorithm 1 with the zero measure,
then p0 = K∗f and thus, 0 ∈ arg maxµ∈Ext(B)〈p0, µ〉 implies that 0 is a minimizer of (5.2) due
to general optimality conditions derived, for example, in [13, Proposition 2.3] and the equivalence
between (5.7) and (5.8) [13, Lemma 3.1]. Third, it is possible to perform an additional weight
optimization step for the initial measure µ0 =

∑N0
i=1 c

0
iµ

0
i , before the first insertion step; in this case

the stopping criterion can be also given for the first iteration k = 0 and the insertion of zero would
cause the algorithm to stop.
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Algorithm 1 Generalized conditional gradient method for the lifted inverse problem

Initialize: µ0 =
∑N0

i=1 c
0
iµ

0
i for µ0

i ∈ Ext(B) r {0} pairwise distinct, c0
i > 0 for i = 1, . . . N0,

A0 = {µ0
1, . . . , µ

0
N0
}

for k = 0, 1, 2 . . . do
pk ← −K∗(Kµk − f)
µkNk+1 ∈ arg maxµ∈Ext(B)〈pk, µ〉
if k ≥ 1, 〈pk, µkNk+1〉 ≤ 1 or µkNk+1 ∈ Ak then

return µk

end if
ĉk ∈ arg min

c∈RNk+1
+

1
2‖
∑Nk+1

i=1 ciKµ
k
i − f‖2Y + α

∑Nk+1
i=1 ciF̂ (µki )

µk+1 ←
∑Nk+1

i=1 ĉki µ
k
i

Ak+1 ← {µki : ĉki > 0}, Nk+1 ← #Ak+1

k ← k + 1
end for
return µk

5.1.4 Generalized conditional gradient method for the infinite infimal convolution
functional

Using the characterization of extremal points of B from Theorem 3.8 together with Lemma 5.1, we
can rewrite Algorithm 1 in the space X ×M+(S) to obtain an implementable reformulation and
an iterate that converges to a minimizer of (2.7), see Section 5.2. By Theorem 3.8 the iterate µk

can be written as

µk =

Nk∑
i=1

cki v
k
i δski

, (5.15)

where Nk ∈ N, cki > 0, ski ∈ S and vki ∈ Ext(Bski
) for i = 1, . . . , Nk.

Remark 5.5. If there exists s ∈ S such that 0 /∈ Ext(Bs), then Theorem 3.8 implies that 0 /∈ Ext(B)
and thus vki belongs to Ext(Bski

) r {0} for i = 1, . . . , Nk.

By applying Lemma 5.1, the dual variable pk ∈ C(S;X∗) defined in (5.6) can be rewritten as

pk(s) = −A∗(ATµk − f) ∀s ∈ S , (5.16)

and thus, applying the definition of T we get

pk(s) = −A∗

(
Nk∑
i=1

ckiAv
k
i − f

)
∀s ∈ S . (5.17)

We choose a new extremal point of B, denoted by vkNk+1δskNk+1
, to be a conical combination (5.15)

that minimizes the linearized problem defined in Definition 5.2. More precisely, using (5.17), the
insertion step can be written as follows

max
µ∈Ext(B)

〈pk, µ〉 = max
(v,s)∈X×S,
v∈Ext(Bs)

〈pk, vδs〉 = max
(v,s)∈X×S,
v∈Ext(Bs)

〈−A∗

(
Nk∑
i=1

ckiAv
k
i − f

)
, v〉 .

Therefore, in the insertion step we seek to solve

(vkNk+1, s
k
Nk+1) ∈ arg max

(v,s)∈X×S,
v∈Ext(Bs)

〈−A∗

(
Nk∑
i=1

ckiAv
k
i − f

)
, v〉 . (5.18)
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The weights optimization step can be also rewritten as the quadratic problem

ĉk ∈ arg min
c∈RNk+1

+

1

2

∥∥∥∥∥
Nk+1∑
i=1

ciAv
k
i − f

∥∥∥∥∥
2

Y

+ α

Nk+1∑
i=1

ciJ(vki , s
k
i ) (5.19)

and the next iterate µk+1 ∈M(S;X) is produced as µk+1 =
∑Nk+1

i=1 ĉki v
k
i δski

.

In order to rewrite Algorithm 1 in X ×M+(S), we define the iterate (vk, σk) ∈ X ×M+(S)
as vk =

∑Nk
i=1 c

k
i v
k
i and σk =

∑
s∈{ski : i=1,...,Nk}

∥∥∑
j∈{1,...,Nk: skj=s} c

k
j v
k
j

∥∥
X
δs. In Algorithm 2 we

summarize the generalized conditional gradient algorithm we use to solve (5.2). Similarly to
Algorithm 1, we keep track of the pairs (vki , s

k
i ) that represent vk and σk by defining the sets

Ξk = {(vk1 , sk1), . . . , (vkNk , s
k
Nk

)}. At each iteration we add the solution of (5.18) to Ξk and, after the

weights optimization step, we remove the pairs (vki , s
k
i ) for which the corresponding weights ĉki are

equal to zero.
Thanks to Proposition 3.4 and Theorem 3.8, the stopping criterion we used in Algorithm 1 can

be reformulated for Algorithm 2 as follows. We set the algorithm to terminate at the k-th iteration,
for k ≥ 1, if

arg max
(v,s)∈X×S,
v∈Ext(Bs)

〈pk, v〉 ≤ 1 . (5.20)

Remark 5.6. If there exists s ∈ S such that 0 /∈ Ext(Bs), then Theorem 3.8 implies that 0 /∈
Ext(B). Thus, the insertion step in (5.18) can be rewritten as

(vkNk+1, s
k
Nk+1) ∈ arg max

(v,s)∈X×S,
v∈Ext(Bs)r{0}

〈−A∗

(
Nk∑
i=1

ckiAv
k
i − f

)
, v〉 (5.21)

and the stopping criterion (5.20) can be rewritten as

arg max
(v,s)∈X×S,

v∈Ext(Bs)r{0}

〈pk, v〉 ≤ 1 . (5.22)

If 0 ∈ Ext(Bs) for every s ∈ S, then the pair (0, s) can be inserted by Algorithm 2 in the first
iteration, since the stopping criterion is not given for k = 0. Following the same arguments of
Remark 5.4, it is possible to avoid the insertion of the pair (0, s) if we initialize Algorithm 2 with
N0 = 0 and Ξ = {}. Indeed, in this case, the insertion of (0, s) for s ∈ S implies that the zero
measure is a solution of (3.14) and thus the pair (0, 0) is a solution of (2.7) by Proposition 3.4. In
case of general initializations v0 =

∑N0
i=1 c

0
i v

0
i and σ0 =

∑
s∈{s0i : i=1,...,N0}

∥∥∑
j∈{1,...,N0: s0j=s}

c0
jv

0
j

∥∥
X
δs

one can resort to a preliminary weight optimization step to extend the stopping criterion to the first
iteration as in Remark 5.4.

In the remaining part of the paper and in the description of the algorithms we will not discuss
anymore the implementation choices necessary to avoid the insertion of the extremal point 0, but
we stress that in some instances it is important to treat this case with care; see for example [12].

5.2 Sublinear convergence

The goal of this section is prove sublinear convergence for the iterates generated by Algorithms 1
and 2. To this end, we define the functional distance associated to the objective functional Gα, see
(5.1), as

rGα(µ) := Gα(µ)− min
µ̃∈M(S;X)

Gα(µ̃) (5.23)
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Algorithm 2 Generalized conditional gradient method for infinite infimal convolutions

Initialize: v0 =
∑N0

i=1 c
0
i v

0
i , σ

0 =
∑

s∈{s0i : i=1,...,N0}
∥∥∑

j∈{1,...,N0: s0j=s}
c0
jv

0
j

∥∥
X
δs

Ξ0 = {(v0
1, s

0
1), . . . , (v0

N0
, s0
N0

)} with (v0
i , s

0
i ) pairwise distinct, c0

i > 0, s0
i ∈ S, v0

i ∈ Ext(Bs0i
)r {0}

for i = 1, . . . , N0.
for k = 0, 1, 2 . . . do

pk ← −A∗
(
Avk − f

)
(vkNk+1, s

k
Nk+1) ∈ arg max(v,s)∈X×S,

v∈Ext(Bs)

〈pk, v〉

if k ≥ 1, 〈pk, vkNk+1〉 ≤ 1 or (vkNk+1, s
k
Nk+1) ∈ Ξk then

return (vk, σk)
end if
(ĉk1, . . . , ĉ

k
Nk+1) ∈ arg min

c∈RNk+1
+

1
2‖
∑Nk+1

i=1 ciAv
k
i − f‖2Y + α

∑Nk+1
i=1 ciJ(vki , s

k
i )

vk+1 ←
∑Nk+1

i=1 ĉki v
k
i , σk+1 ←

∑
s∈{ski : i=1,...,Nk+1}

∥∥∑
j∈{1,...,Nk+1: skj=s} ĉ

k
j v
k
j

∥∥
X
δs

Ξk+1 ←
{

(vki , s
k
i ) ∈ Ξk ∪ {(vkNk+1, s

k
Nk+1)} : ĉki > 0

}
Nk+1 ← #Ξk+1, k ← k + 1

end for
return (vk, σk)

for all µ ∈M(S;X) and the functional distance associated to the original inverse problem (2.7) as

rFα(v, σ) := Fα(v, σ)− min
ṽ∈X,

σ̃∈M+(S)

Fα(ṽ, σ̃) (5.24)

for all v ∈ X and σ ∈M+(S), where

Fα(v, σ) :=
1

2
‖Av − f‖2Y + αR(v, σ) .

The following convergence result for rGα holds.

Theorem 5.7. Suppose that hypotheses (H1), (H2) and (H3) hold. Additionally assume that

(I1) for every sequence {vk}k in X such that there exists suitable σk ∈ M+(S) for which vk ∈
dom(R(·, σk)) and vk

∗
⇀ v, v ∈ X, it holds that limk→+∞Av

k = Av.

Let {µk}k be a sequence generated by Algorithm 1. Then either Algorithm 1 terminates after a finite
number of steps returning a minimizer of Gα, or there exists C > 0 depending only on f such that

rGα(µk) ≤ C

k + 1
, for all k ∈ N . (5.25)

Moreover, each accumulation point µ∗ of {µk}k with respect to the weak* topology of M(S;X) is a

minimizer for Gα. If Gα admits a unique minimizer µ∗, then µk
∗
⇀ µ∗ along the whole sequence.

Proof. The proof of Theorem 5.7 proceeds by specializing [13, Theorem 3.4] in our setting for the
generalized conditional gradient method applied to the functional Gα. We need to verify that the
assumptions (A1), (A2), (A3) provided in Section 2 in [13] hold in our setting. First note that
M(S;X) is a Banach space when equipped with the total variation norm and C(S;X∗) is its
predual (see Theorem A.6). Additionally, the functional F̂ :M(S;X)→ [0,∞] is convex, positively
one-homogeneous, weakly-* lower semicontinuous and coercive in the sense that its sublevel sets
are weakly-* compact (see Proposition 3.1 and Theorem 3.2). This ensures the validity of (A1)
and (A2). It remains to prove that the linear operator K = A ◦ T , where Tµ = µ(S), is weak*-
to-weak continuous and it satisfies assumption (A3) in [13] as a consequence of (I1). Applying
Remark A.7, we immediately deduce that K is weak*-to-weak continuous since A is weak*-to-
weak continuous. Moreover, given a sequence {µn}n in M(S;X) such that µn ∈ dom(F̂ ) we
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have that µn(S) ∈ dom(R(·, |µn|)). Indeed, by the definition of R(µn(S), |µn|) and the fact that
I|µn| µ

n

|µn| = µn(S) we have that R(µn(S), |µn|) ≤ F̂ (µn) < ∞. Therefore, considering a sequence

{µn}n in dom(F̂ ) such that µn
∗
⇀ µ, using Assumption (I1) and recalling Remark A.7, we conclude

that Kµn → Kµ strongly. We can therefore apply Theorem 3.4 in [13] and conclude the proof.

By applying Proposition 3.4 and Theorem 5.7, we can deduce from the previous theorem a
convergence result for Algorithm 2 as follows.

Corollary 5.8. Let

vk =

Nk∑
i=1

cki v
k
i ∈ X , σk =

∑
s∈{ski : i=1,...,Nk}

∥∥∥∥ ∑
j∈{1,...,Nk: skj=s}

ckj v
k
j

∥∥∥∥
X

δs (5.26)

be the iterates generated by Algorithm 2. If Algorithm 2 terminates after a finite number of iterations
returning (v∗, σ∗) ∈ X ×M+(S), then (v∗, σ∗) is a minimizer of Fα. Moreover, there exists C > 0
depending only on f such that

rFα(vk, σk) ≤ C

k + 1
, for all k ∈ N . (5.27)

Proof. If Algorithm 2 terminates after a finite number of steps returning (v∗, σ∗), the proof follows
from Theorem 5.7 by noticing that, given a minimizer for Gα denoted by µ∗ ∈ M(S;X), Proposi-
tion 3.4 ensures that ( µ∗

|µ∗| , |µ
∗|) is a minimizer for (2.8) and thus, (µ∗(S), |µ∗|) is a minimizer for

(2.7). Now note that

Fα(v, σ) ≤ Gα(µ)

for every µ such that µ(S) = v and |µ| = σ. Therefore, applying Proposition 3.4, we deduce that

rFα(vk, σk) ≤ rGα(µk) . (5.28)

An application of Theorem 5.7 concludes the proof.

6 Illustrative applications and numerics

The goal of this section is to provide illustrative examples of inverse problems with infinite infimal
convolution regularization and to show that the generalized conditional gradient method introduced
in Section 5 can be employed to solve them efficiently without discretizing the set S. In Section 6.1
we consider the infimal convolution of fractional-Laplacian-type functionals with different fractional
orders. In Section 6.2 we focus on the infimal convolution of anisotropic fractional-Laplacian-type
regularizers.

All of the experiments in this paper are carried out on Python3 on a MacBook Pro with 8 GB
RAM and an Intel®Core™ i5, Quad-Core, 2.3 GHz.

6.1 Learning the orders of 1-dimensional fractional Laplacians in an
infinite infimal convolution

In this section we apply our setting to an inverse problem regularized by the infimal convolution
of fractional-Laplacian-type operators. We refer to Appendix B for basic definitions and results
regarding L2-periodic functions and fractional-Laplacian-type operators needed in this section. Our
goal is to define an infinite infimal convolution of functionals that regularizes a given observation by
penalizing combinations of fractional order derivatives, where the orders themselves are learnt and
depend on the frequencies of the observation. The higher the frequency of the observation, the lower
the order of the regularization applied to that frequency. We use this regularizer to denoise periodic
signals. The goal of this example is to assess the performance of our regularization functional in a
simple setting and to see how the optimization procedure takes advantage of sparsity in the space
of parameters.
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6.1.1 Setting

We denote by T 1 the 1-dimensional torus and consider S = [0, 1] and X = L2
◦(T

1) endowed with the
L2-norm. Here, L2

◦(T
1) denotes the space of L2-functions on T 1 with zero mean, see Appendix B.1.

Notice that X is a Hilbert space, being a closed subset of L2(T 1), and therefore self-dual by the
Riesz representation theorem. We define the functional J : L2

◦(T
1)× [0, 1]→ [0,+∞] as follows

J(v, s) :=


1

sη

√∑
m∈Z
|m|4s|v̂(m)|2 if s > 0,

0 if v = 0, s = 0,
+∞ otherwise,

(6.1)

where η > 0 is a fixed parameter. The infinite infimal convolution of the functionals J(·, s) has the
desired effect of penalizing lower regularity. Indeed, due to the factor 1/sη in the definition of J , a
higher smoothness in the observation receives a lower weight in the regularization.

Remark 6.1. We remark that if s > 0 and v ∈ H2s(T 1), then J(v, s) = 1
sη

1√
2π
‖(−∆s)v‖L2(T 1) is

the rescaled L2-norm of the s-fractional Laplacian (see Remark B.4).

We consider the following regularizer given by an infinite infimal convolution of J(·, s)

R(v, σ) = inf
u∈L1((S,σ);L2

◦(T 1))

∫ 1

0
J(u(s), s) dσ(s) + 1{v}(Iσu)

and the corresponding denoising problem

inf
v∈L2

◦(T
1),

σ∈M+(S)

1

2
‖v − f‖2L2(T 1) + αR(v, σ) , (6.2)

where f ∈ L2(T 1) is a given observation and α > 0. We now verify that this problem satisfies the
assumptions made in Section 2.2.

Lemma 6.2. The functional J defined in (6.1) satisfies (H1), (H2) and (H3) in Section 2.2.

Proof. Assumption (H1) is straightforward from the definition of J(v, s) in (6.1). Let us show
Assumption (H2). Let {(vn, sn)}n be a sequence in L2

◦(T
1)× [0, 1] such that vn ⇀ v in L2

◦(T
1) and

sn → s. Without loss of generality we can assume that

lim inf
n→+∞

J(vn, sn) = lim
n→+∞

J(vn, sn) <∞ . (6.3)

In particular, for all but finitely many n either sn > 0 or (vn, sn) = (0, 0). Since, if (vn, sn) = (0, 0)
for all but finitely many the statement is clear, we can suppose without loss of generality that sn > 0
for every n. Note that limn→+∞ |m|2sn v̂n(m) = |m|2sv̂(m) for every m ∈ Z. Indeed, for every m ∈ Z
it holds

lim
n→+∞

|m|2sn v̂n(m) = lim
n→+∞

|m|2sn
2π

∫ 2π

0
e−imxvn(x) dx =

|m|2s

2π

∫ 2π

0
e−imxv(x) dx = |m|2sv̂(m) .

Therefore, if s > 0, by Fatou’s Lemma we have

lim inf
n→+∞

J(vn, sn) = lim inf
n→+∞

1

sηn

√∑
m∈Z
|m|4sn |v̂n(m)|2 ≥ 1

sη

√∑
m∈Z
|m|4s|v̂(m)|2 = J(v, s) .

In the case that s = 0, (6.3) implies

0 ≤ lim
n→+∞

√∑
m∈Z
|m|4sn |v̂n(m)|2 ≤

(
sup
n∈N

J(vn, sn)

)(
lim

n→+∞
sηn

)
= 0 ,
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and consequently limn→+∞
∑

m∈Z |v̂n(m)|2 = 0. Since vn ⇀ v we infer that v = 0 and J(v, s) = 0,
showing that lim infn→+∞ J(vn, sn) ≥ J(v, s).

Finally, let us verify Assumption (H3). If s > 0 and v ∈ H2s(T 1), then

J(v, s) =
1

sη
1√
2π
‖(−∆s)v‖L2(T 1) ≥

1√
2π
‖v‖L2(T 1) , (6.4)

thanks to Remark B.4 and the Poincaré inequality in Theorem B.5. If instead v ∈ L2(T 1)rH2s(T 1)
or s = 0, the inequality J(v, s) ≥ 1√

2π
‖v‖L2(T 1) is immediate from the definition of J(v, s).

6.1.2 The generalized conditional gradient method

We now design a generalized conditional gradient method to solve (6.2) following the general pro-
cedure outlined in Section 5. Define Bs = {v ∈ L2

◦(T
1) : αJ(v, s) ≤ 1}. Lemma B.6 with the choice

f(m) = α2|m|4s provides the following characterization of the extremal points of Bs:

Ext(Bs) =

v ∈ L2(T 1) : α
1

sη

√∑
m∈Z
|m|4s|v̂(m)|2 = 1

 ,

where, in particular, we observe that 0 /∈ Ext(Bs) for s ∈ [0, 1], cf. Remark 5.4. Therefore, given
an iterate µk =

∑Nk
i=1 c

k
i v
k
i δski

for Nk ∈ N, cki > 0, vki ∈ Ext(Bs) and ski ∈ [0, 1], the insertion step in

(5.18) amounts to solving

arg max
s∈S,

v∈L2
◦(T

1)

〈
f −

Nk∑
i=1

cki v
k
i , v
〉
L2(T 1)

+ 1{ α
sη

√∑
m∈Z |m|4s|v̂(m)|2=1}(v) . (6.5)

The following lemma provides an explicit formula for the inserted v ∈ L2
◦(T

1) for a fixed s ∈ [0, 1].

Lemma 6.3. Given w ∈ L2
◦(T

1) and s ∈ [0, 1], consider the variational problem

max
v∈L2

◦(T 1)
〈w, v〉L2(T 1) + 1{ α

sη

√∑
m∈Z |m|4s|v̂(m)|2=1}(v) . (6.6)

A solution of (6.6) can be computed as

v∗(x) =
1

A

∑
m∈Z\{0}

|m|−4sŵ(m)eim·x, (6.7)

where A = α
sη

√∑
m∈Z\{0} |m|−4s|ŵ(m)|2.

Proof. First note that existence of a minimizer for (6.6) follows by specializing the arguments of
Section 5.1.1 where a general insertion step is discussed. Since w ∈ L2

◦(T
1), we can represent w and

every v ∈ L2
◦(T

1) as

w(x) =
∑

m∈Z\{0}

ŵ(m)eim·x , v(x) =
∑

m∈Z\{0}

v̂(m)eim·x . (6.8)

Therefore, with Plancherel’s formula (B.7), the variational problem (6.6) can be rewritten equiva-
lently in the Fourier domain as

arg max
v̂∈`2(Z)

〈ŵ, v̂〉`2(Z) s.t.
α2

s2η

∑
m∈Z
|m|4s|v̂(m)|2 = 1 . (6.9)

By the substitutions

w̃(m) = ŵ(m)
sη

α
|m|−2s ∀m ∈ Z \ {0} and w̃(0) = 0 , (6.10)
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ṽ(m) = v̂(m)
α

sη
|m|2s ∀m ∈ Z , (6.11)

we can rewrite (6.9) as arg maxṽ∈`2(Z)〈w̃, ṽ〉`2(Z) under the constraint ‖ṽ(m)‖`2(Z) = 1 that has the
unique solution ṽ∗(m) = w̃(m)/‖w̃‖`2(Z). Therefore, by using (6.10), (6.11) and the inverse Fourier
transform, a simple computation leads to (6.7).

In Algorithm 3 we rewrite the generalized conditional gradient method specialized for (6.2). We
initialize the algorithm with a tuple of pairs in X × S denoted by Ξ0 = {(v0

1, s
0
1), . . . , (v0

N0
, s0
N0

)}
where N0 ∈ N, s0

i ∈ S and v0
i ∈ Ext(Bs0i

), and a tuple of positive weights (c0
1, . . . , c

0
N0

). In the
insertion step at the k-th iteration of the algorithm, the newly inserted atom is computed by first
applying Lemma 6.3 with w = f −

∑Nk
i=1 c

k
i v
k
i to find the optimal solution for a fixed s ∈ [0, 1],

denoted by vkNk+1(s). Then, vkNk+1(s) is optimized with respect to s by solving

max
s∈[0,1]

〈pk, vkNk+1(s)〉 . (6.12)

We remark that the computation of (6.12) is performed using a Python implementation of a basin-
hopping–type algorithm whose performance is good enough to compute arg maxs∈[0,1]〈pk, vkNk+1(s)〉
efficiently and with satisfactory accuracy.

Algorithm 3 Generalized conditional gradient method for the infinite infimal convolution of frac-
tional Laplacians with adaptive order

Initialize: v0 =
∑N0

i=1 c
0
i v

0
i , σ

0 =
∑

s∈{s0i : i=1,...,N0}
∥∥∑

j∈{1,...,N0: s0j=s}
c0
jv

0
j

∥∥
X
δs

Ξ0 = {(v0
1, s

0
1), . . . , (v0

N0
, s0
N0

)} with (v0
i , s

0
i ) pairwise distinct, c0

i > 0, s0
i ∈ S, v0

i ∈ Ext(Bs0i
) for

i = 1, . . . , N0.
for k = 0, 1, 2 . . . do

pk ← f −
∑Nk

i=1 c
k
i v
k
i

vkNk+1(s)(x) = sη

α
√∑

m∈Z\{0} |m|−4s|p̂k(m)|2
∑

m∈Z\{0} |m|−4sp̂k(m)eim·x

skNk+1 ∈ arg maxs∈[0,1]〈pk, vkNk+1(s)〉
vkNk+1 ← vkNk+1(skNk+1)

if k ≥ 1, 〈pk, vkNk+1〉 ≤ 1 or (vkNk+1, s
k
Nk+1) ∈ Ξk then

return (vk, σk)
end if
(ĉk1, . . . , ĉ

k
Nk+1) ∈ arg min

c∈RNk+1
+

1
2‖
∑Nk+1

i=1 civ
k
i − f‖2L2(T 1) + α

∑Nk+1
i=1 ci

vk+1 ←
∑Nk+1

i=1 ĉki v
k
i , σk+1 ←

∑
s∈{ski : i=1,...,Nk+1}

∥∥∑
j∈{1,...,Nk+1: skj=s} ĉ

k
j v
k
j

∥∥
X
δs

Ξk+1 ←
{

(vki , s
k
i ) ∈ Ξk ∪ {(vkNk+1, s

k
Nk+1)} : ĉki > 0

}
Nk+1 ← #Ξk+1, k ← k + 1

end for
return (vk, σk)

6.1.3 Numerical experiments

Consider a signal constructed in the following way. Define

v(x) =
1

2π

∑
m∈Z\{0}

v̂(m)eim·x , (6.13)

where v̂(m) is such that v̂(3) = v̂(−3) = 8, v̂(20) = v̂(−20) = 2 and v̂(m) = 0 otherwise. We then
construct the data f by corrupting v with Gaussian noise of standard deviation 7 ·10−2. In the defi-
nition of J and in the inverse problem in (6.2) we make the parameter choices, η = 2, α = 1.5 ·10−3,

and we initialize Algorithm 3 with c0 = 1 and Ξ0 = {( v0

J(1,v0)
, 1)}, where v0(x) = 3

√
2
π cos(3x).
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Figure 1 shows the reconstruction obtained by Algorithm 3 and Figure 2 shows the orders s ∈ [0, 1]
selected by the conditional gradient method and a convergence graph where we plot an approxi-
mation of the residual rFα (5.24) at each iteration in logarithmic scale. More precisely, denoting
by (vk, σk) = (

∑Nk
i=1 c

k
i v
k
i ,
∑

s∈{ski : i=1,...,Nk}
∥∥∑

j∈{1,...,Nk: skj=s} c
k
j v
k
j

∥∥
X
δs) the iterate generated by

Algorithm 3 and by (vk̄, σk̄) the output, we plot the approximate residual r̂Fα(µk) defined as

r̂Fα(µk) =
1

2
‖vk − f‖2L2(T 1) + α

Nk∑
i=1

cki J(vki , s
k
i )−

1

2
‖vk̄ − f‖2L2(T 1) − α

Nk̄∑
i=1

ck̄i J(vk̄i , s
k̄
i ) . (6.14)

Compared to (5.24) we approximate the minimum of (6.2) by the energy of the last iterate (vk̄, σk̄).
Moreover, we replace the infinite infimal convolutions R(vk, σk) and R(vk̄, σk̄) by the upper bounds∑Nk

i=1 c
k
i J(vki , s

k
i ) and

∑Nk̄
i=1 c

k̄
i J(vk̄i , s

k̄
i ). This is justified, since [13, Theorem 4.4] guarantees that

1
2‖v

k − f‖2Y + α
∑Nk

i=1 c
k
i J(vki , s

k
i ) well approximates (6.2) if k is big enough.
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Figure 1: From left to right: the ground truth v; the data f , i.e., the ground truth v corrupted by Gaussian
noise; the reconstruction v∗ provided by Algorithm 3.

Note that the obtained reconstruction resembles a Laplacian regularization of a noisy signal and
it is hard to give a clear interpretation on the optimal orders s ∈ [0, 1] selected by our algorithm. We
stress however that the goal of this first example is solely to illustrate the main features of our general
algorithm and demonstrate numerically the expected sublinear convergence of the residuals. We
also note that in this example the rate of convergence appears to be linear, at least asymptotically.
This has to be expected [13], but the theoretical verification of this behaviour is outside of the scope
of this work.
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Figure 2: On the left: the measure σk̄ ∈ M+(S) obtained in output by Algorithm 3; its support consists of
the orders s ∈ [0, 1] selected by Algorithm 3. On the right: a convergence graph, showing the approximate
residual r̂Fα (6.14) computed at each iteration.
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6.2 Learning the anisotropies of fractional Laplacians in an infinite
infimal convolution

In this section we design an infinite infimal convolution-type regularizer that is based on a variant
of the anisotropic fractional Laplacian. The anisotropy is determined by a parameter s ∈ [0, π]
providing the direction (cos(s), sin(s)) ∈ S1. We construct an infinite infimal convolution regularizer
that automatically selects the directions of higher oscillation of the noisy image f and applies a lower
regularization in such directions. In this way, the regularizer learns how to preserve the anisotropy
of the data and removes the noise that is assumed to be isotropic.

6.2.1 Setting

We denote by T 2 the 2-dimensional torus and consider S = [0, π] and X = L2(T 2) endowed with
the L2-norm. We define the operator J : L2(T 2)× [0, π]→ [0,+∞] as follows

J(v, s) :=

√∑
m∈Z2

(|m · (cos(s), sin(s))|+ ζ|m|+ ω)4γ |v̂(m)|2 , (6.15)

where γ ∈ [0, 1], ζ ≥ 0 and ω > 0 are fixed parameters.

Remark 6.4. The parameter ω > 0 in the definition of J is essential for ensuring the coer-
civity of J at frequencies m ∈ Z2 such that m · (cos(s), sin(s)) = 0. Since the penalization√∑

m∈Z2(ζ|m|)4γ |v̂(m)|2 for ζ > 0 models isotropic regularization of a specific rate, the corre-
sponding term in J can therefore be useful to denoise images that exhibit isotropic behavior in
some regions. If ζ is large then our regularizer acts similarly to a standard fractional Laplacian of
order γ, since the anisotropic part is negligible. Further variants of (6.15) are possible. For example,
one could allow for different orders of smoothness in a direction and its orthogonal, by considering
the penalization√∑

m∈Z2

(|m · (cos(s), sin(s))|4γ1 + |m · (− sin(s), cos(s))|4γ2 + ω) |v̂(m)|2

for γ1 > γ2 > 0.

We consider the following regularizer given by the infinite infimal convolution of J(·, s):

R(v, σ) = inf
u∈L1((S,σ);L2(T 2))

∫ π

0
J(u(s), s) dσ(s) + 1{v}(Iσu) , (6.16)

and the corresponding denoising problem

inf
v∈L2(T 2),
σ∈M+(S)

1

2
‖v − f‖2L2(T 2) + αR(v, σ) , (6.17)

where f ∈ L2(T 2) is a given measurement.
We verify that this problem satisfies the assumptions made in Section 2.2.

Lemma 6.5. The functional J defined in (6.15) satisfies (H1), (H2) and (H3) in Section 2.2.

Proof. Assumption (H1) is straightforward from the definition of J . Assumption (H2) can be
proven similarly to Lemma 6.3 using Fatou’s lemma. Assumption (H3) follows immediately from
the definition of J since ω > 0.
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6.2.2 The generalized conditional gradient method

We now describe a generalized conditional gradient method to solve (6.17), following the general
procedure outlined in Section 5. For Bs = {v ∈ L2(T 2) : αJ(v, s) ≤ 1}, Lemma B.7 with the choice
f(m) = α2(|m · (cos(s), sin(s))|+ζ|m|+ω)4γ provides the following characterization of the extremal
points of Bs:

Ext(Bs) =

v ∈ L2(T 2) : α

√∑
m∈Z2

(|m · (cos(s), sin(s))|+ ζ|m|+ ω)4γ |v̂(m)|2 = 1

 , (6.18)

where, in particular, we observe that 0 /∈ Ext(Bs) for s ∈ [0, π], cf. Remark 5.4. Therefore, given
an iterate µk =

∑Nk
i=1 c

k
i v
k
i δski

with Nk ∈ N, cki > 0, ski ∈ [0, π] and vki ∈ Ext(Bs) as in (6.18), the

insertion step in (5.18) becomes

arg max
s∈[0,π],
v∈L2(T 2)

〈
f −

Nk∑
i=1

cki v
k
i , v
〉
L2(T 2)

+ 1{α
√∑

m∈Z2 (|m·(cos(s),sin(s))|+ζ|m|+ω)4γ |v̂(m)|2=1}(v) . (6.19)

The following lemma gives an explicit formula for the inserted v ∈ H2γ(T 2) for a fixed s ∈ [0, π].

Lemma 6.6. Given w ∈ L2(T 2) and s ∈ [0, π] consider the variational problem

max
v∈L2(T 2)

〈w, v〉L2(T 2) + 1{α
√∑

m∈Z2 (|m·(cos(s),sin(s))|+ζ|m|+ω)4γ |v̂(m)|2=1}(v) . (6.20)

A solution of (6.20) can be computed as

v∗(x) =
1

A

∑
m∈Z2

(|m · (cos(s), sin(s))|+ ζ|m|+ ω)−4γŵ(m)eim·x (6.21)

where

A = α

√∑
m∈Z2

(|m · (cos(s), sin(s))|+ ζ|m|+ ω)−4γ |ŵ(m)|2 . (6.22)

Proof. Since the proof is similar to that of Lemma 6.3 we omit it.

In Algorithm 4 we rewrite the generalized conditional gradient method specialized to (6.17). We
initialize the algorithm with a tuple of pairs in X × S denoted by Ξ0 = {(v0

1, s
0
1), . . . , (v0

N0
, s0
N0

)}
where N0 ∈ N, s0

i ∈ S and v0
i ∈ Ext(Bs0i

), and a tuple of positive weights (c0
1, . . . , c

0
N0

). In the
insertion step at the k-th iteration of the algorithm, the newly inserted atom is computed by first
applying Lemma 6.6 to find the optimal solution for a fixed s ∈ [0, π], denoted by vkNk+1(s). Then,

similarly to Section 6.1, vkNk+1(s) is optimized with respect to s by solving

arg max
s∈[0,π]

〈pk, vkNk+1(s)〉 . (6.23)

Similarly to Section 6.1, we remark that the computation of (6.23) is performed using a Python
implementation of a basin-hopping–type algorithm whose performance is good enough to compute
arg maxs∈[0,π]〈pk, vkNk+1(s)〉 efficiently and with satisfactory accuracy.

6.2.3 Numerical experiments

In this section we present several numerical examples of the applications of Algorithm 4 for denoising
images with high frequencies in certain directions. We show that the regularizer is able to learn
such directions and preserve the related frequencies in the reconstruction. For each example we
plot the output measure σk̄ ∈M+(S) that is supported on the s ∈ [0, π] selected by our algorithm.
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Algorithm 4 Generalized conditional gradient method for infinite infimal convolution of fractional
Laplacians with adaptive anisotropies

Initialize: v0 =
∑N0

i=1 c
0
i v

0
i , σ

0 =
∑

s∈{s0i : i=1,...,N0}
∥∥∑

j∈{1,...,N0: s0j=s}
c0
jv

0
j

∥∥
X
δs

Ξ0 = {(v0
1, s

0
1), . . . , (v0

N0
, s0
N0

)} with (v0
i , s

0
i ) pairwise distinct, c0

i > 0, s0
i ∈ S, v0

i ∈ Ext(Bs0i
) for

i = 1, . . . , N0.
for k = 0, 1, 2 . . . do

pk ← f −
∑Nk

i=1 c
k
i v
k
i

vkNk+1(s)(x) = α−1√∑
m∈Z2

|p̂k(m)|2
(|m·(cos(s),sin(s))|+ζ|m|+ω)4γ

∑
m∈Z2

p̂k(m)
(|m·(cos(s),sin(s))|+ζ|m|+ω)4γ e

im·x

skNk+1 ∈ arg maxs∈[0,π]〈pk, vkNk+1(s)〉
vkNk+1 ← vkNk+1(skNk+1)

if k ≥ 1, 〈pk, vkNk+1〉 ≤ 1 or (vkNk+1, s
k
Nk+1) ∈ Ξk then

return (vk, σk)
end if
(ĉ1, . . . , ĉNk+1) ∈ arg min

c∈RNk+1
+

1
2‖
∑Nk+1

i=1 civ
k
i − f‖2L2(T 2) + α

∑Nk+1
i=1 ci

vk+1 ←
∑Nk+1

i=1 ĉiv
k
i , σk+1 ←

∑
s∈{ski : i=1,...,Nk+1}

∥∥∑
j∈{1,...,Nk+1: skj=s} ĉ

k
j v
k
j

∥∥
X
δs

Ξk+1 ←
{

(vki , s
k
i ) ∈ Ξk ∪ {(vkNk+1, s

k
Nk+1)} : ĉki > 0

}
Nk+1 ← #Ξk+1, k ← k + 1

end for
return (vk, σk)

Note that the points s = 0 and s = π correspond to the same direction (cos(s), sin(s)), and thus
they should be identified. Moreover, similarly to the numerical experiments in Section 6.1.3, we plot
an approximation of the residual rFα (5.24) at each iteration in logarithmic scale. More precisely,
denoting by (vk, σk) = (

∑Nk
i=1 c

k
i v
k
i ,
∑

s∈{ski : i=1,...,Nk+1}
∥∥∑

j∈{1,...,Nk+1: skj=s} ĉ
k
j v
k
j

∥∥
X
δs) the iterate

generated by Algorithm 4 and by (vk̄, σk̄) the output, we plot the approximate residual r̂Fα(µk)
defined as in (6.14). We refer to the discussion in Section 6.1.3 as a justification for this choice. In
all examples we observe a convergence rate that is at least sublinear, as ensured by Theorem 5.7.

In the first example we aim to denoise a black-and-white grid of size 128× 128 that is corrupted
with Gaussian noise with standard deviation 0.3, see Figure 3. In the definition of J in (6.15) we
set α = 5.5, γ = 0.25, ω = 10−3, and ζ = 10−3. We compare the reconstruction obtained by
our algorithm with a reconstruction produced using as regularizer the L2-norm of the 1

4 -fractional
Laplacian. We observe that our method reconstructs sharper edges. This is because our functional
reduces the amount of regularization in the directions of the anisotropies of the image.

Figure 3: From left to right: ground truth; data f , i.e., ground truth corrupted by Gaussian noise; recon-
struction obtained with our algorithm; reconstruction obtained with 1

4 -fractional Laplacian regularization.

In Figure 4 we show the output measure σk̄ ∈M+(S) supported on the angles s ∈ [0, π] selected
by our algorithm and we plot the decay of the approximate residual r̂Fα according to (6.14). We see
that the selected angles concentrate around 0, π

2 and π which are the most evident anisotropies of the
image. Note again that the points s = 0 and s = π correspond to the same direction (cos(s), sin(s)),
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Figure 4: On the left: the measure σk̄ ∈ M+(S) obtained in output by Algorithm 4; its support consists of
the directions of the dominant anisotropies of the image s ∈ [0, π] selected by Algorithm 4. On the right: a
convergence graph, showing the approximate residual r̂Fα

according to (6.14) computed at each iteration.

and thus they should be identified. We also observe that due to the imperfect anisotropy of the grid,
the optimal σ ∈M+(S) also has significant mass at π

4 and 3
4π. The convergence plot illustrates the

sublinear convergence of our algorithm.
In the second example we denoise a more complicated black-and-white geometric pattern cor-

rupted by Gaussian noise with standard deviation equal to 0.3, see Figure 5. In the definition of
J in (6.15) we set α = 5.5, γ = 0.25, ω = 10−3, and ζ = 10−3. Similarly to the first example,
we observe that our method reconstructs sharper edges thanks to its adaptivity. In Figure 5 we
show the directions selected by the algorithm and the convergence plot of the approximate residual
(5.24). In this example the selected s ∈ [0, π] cluster around the values 1

4π and 3
4π that represent the

anisotropies of the original image. The approximate convergence rate r̂Fα appears again sublinear.

Figure 5: From left to right: the ground truth; the data f , i.e., the ground truth corrupted by Gaussian
noise; the reconstruction obtained with our algorithm.
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Figure 6: On the left: the measure σk̄ ∈ M+(S) obtained in output by Algorithm 4; its support consists of
the directions of the dominant anisotropies of the image s ∈ [0, π] selected by Algorithm 4. On the right: a
convergence graph, showing the approximate residual r̂Fα

according to (6.14) computed at each iteration.
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In the last experiment we denoise a 253 × 253 grayscale image of a bamboo fence corrupted by
Gaussian noise with standard deviation 0.2, see Figure 7. In the definition of J in (6.15) we set
α = 6.5, γ = 0.25, ω = 10−3, and ζ = 5 · 10−3. Similarly to previous examples, we observe that our
method reconstructs sharper edges. For this experiment we compare the reconstructions obtained
by our method with classical model-based denoising methods. Firstly, we consider methods that do
not impose preferred directions of regularization on the image: Total Variation (TV) [42] and Total
Generalized Variation (TGV) [8], see Figure 8.

Figure 7: From left to right: ground truth; data f , i.e., ground truth corrupted by Gaussian noise with
standard deviation 0.2 (PSNR = 14.0); reconstruction obtained with our algorithm (PSNR = 25.8).

Figure 8: Comparison with classical denoising regularizers. From left to right: TV (PSNR = 23.8), TGV
(PSNR = 24.7), Directional TV (PSNR = 26.8), and Directional TGV (PSNR = 28.2)

Our method outperforms them in terms of the PSNR and visual quality. Secondly, we compare
our method to approaches that are aware of preferred directions in the image: directional TV
[34] and directional TGV [34]. In this case, we achieve slightly worse performance in terms of
PSNR and visual quality. This is due to the fact that TV and TGV regularization produce better
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Figure 9: On the left: the measure σk̄ ∈ M+(S) obtained in output by Algorithm 4; its support consists of
the directions of the dominant anisotropies of the image s ∈ [0, π] selected by Algorithm 4. On the right: a
convergence graph, showing the approximate residual r̂Fα according to (6.14) computed at each iteration.

reconstructions than the (isotropic) fractional Laplacian when the ground truths exhibit piecewise
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constant behavior [5]. Therefore, for images like the bamboo fence, we cannot expect to outperform
directional TV and directional TGV. However, we remark that, in contrast to [34] our method is
able to select automatically the directions of the anisotropies of the image that are encoded into
the output measure σ ∈ M+(S). Figure 9 shows the directions selected by our algorithm and the
convergence plot of the residual. As expected, the selected s ∈ [0, π] concentrate around π

4 and we
again observe a sublinear convergence rate for the residual.

7 Conclusions

We introduced the infinite infimal convolution operator for the regularization of ill-posed in-
verse problems. Such operator is constructed through an infimal convolution of a continuously
parametrized family of convex, positively one-homogeneous and coercive functionals and the regu-
larization depends on a Radon measure defined on the set of parameters S that prescribes which
functionals are active in the infimal convolution. The variational problem is then formulated with
respect to both the measure σ in S and the reconstruction is obtained by the integration operation
v =

∫
S u(s) dσ(s). Using the positive one-homogeneity of each functional in the infimal convolution,

we proposed a convex lifting of the problem in the space of measures with values in Banach space,
which allows us to prove well-posedness. Moreover, since this reformulation leads to a convex opti-
mization problem in the space of Radon measures, we could analyze the sparsity of solutions, obtain
a representer theorem and propose a generalized conditional gradient method to compute the min-
imizers. This allows us to exploit sparsity both in the parameters space and in the reconstruction
domain. Finally, we applied the model and the generalized conditional gradient method to several
illustrative examples involving fractional-Laplacian-type regularizers.

The analysis of other types of regularizers (not of fractional-Laplacian type) is left to future work.
Successful design of a generalized conditional gradient method relies on the possibility to solve the
insertion step (5.18) in a fast an accurate way for a given s ∈ S. This is true for the fractional
Laplacian (see Lemma 6.3 and Lemma 6.6); however, in case on more complicated regularizers, such
as directional BV-norms and directional total generalized variations, the resolution of the insertion
step could be impractical already for two-dimensional domains and high resolution images. Since
there are no general recipes for solving (5.18) efficiently, the feasibility of Algorithm 2 and strategies
of solving it need to be studied case-by-case.
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A Measures with values in Banach spaces

In this section we give the necessary definitions and results about measures with values in Banach
spaces that are needed in this paper and we formulate them in our setting. We refer to [25, 43] to
a more detailed overview about the existing theory.

A.1 Lp-functions with values in Banach spaces

Let d ∈ N and X be a Banach space. Given a non-empty compact set S ⊂ Rd, µ ∈M+(S) a Radon
measure on S and p ∈ [1,∞) we denote by Lp((S, µ);X) the space of Lp functions with values in
X defined as

Lp((S, µ);X) =

{
u : S → X measurable :

∫
S
‖u(s)‖pX dµ(s) <∞

}
, (A.1)

where we say that a function u : S → X is measurable if it is the µ-a.e. limit of a sequence of simple
functions; see [43, Section 2.3] for more details. Note also that each u ∈ Lp((S, µ);X) is integrable
in the sense of Bochner. It is well-known that the space Lp((S, µ);X) is a Banach space with the
norm

‖u‖Lp((S,µ);X) =

(∫
S
‖u(s)‖pX dµ(s)

)1/p

.

A.2 Definition and Radon–Nikodým property

We will consider finite Radon measures defined in the compact set S ⊂ Rd with values in X that is
the dual of a separable Banach space X∗ and we denote this set asM(S;X). The formal definition
is similar to the classical notion of measure with values in R. Denoting by Σ the Borel σ-algebra of
S a function µ : Σ→ X is a Borel measure if

i) µ(∅) = 0

ii) For any countable family (Ei)
∞
i=1, of pairwise disjoint Borel sets we have that

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei), (A.2)

where the limit in (A.2) is taken with respect to the strong topology of X.

The classical definition of variation can be easily extended to measures with values in Banach spaces.
Given a Borel measure µ and E ∈ Σ we define

|µ|(E) = sup

{
n∑
i=1

‖µ(Ai)‖X : n ∈ N, (Ai)
n
i=1 partition of E

}
. (A.3)

We denote by M(S;X) the set of Borel measures with finite variation and we call their elements
Radon measures. It can be shown that for µ ∈ M(S;X), |µ| belongs to the set of finite positive
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Borel measuresM+(S) [25, Proposition 9] andM(S;X) is a Banach space with the total variation
norm defined as ‖µ‖M(S;X) = |µ|(S) for every µ ∈ M(S;X). We remark that every µ ∈ M(S;X)
is regular, in the sense that |µ| is regular in the classical sense, being a finite positive Borel measure
defined on a compact set in Rd. Moreover, for every M(S;X) we have µ � |µ| in the sense that
for every Borel set E ⊂ S such that |µ|(E) = 0 it holds that µ(E) = 0.

Remark A.1. We point out that the total variation norm defined above can be replaced by the
total semi-variation [25] to endow the space M(S;X) with an alternative Banach space structure.
As we consider the integral of strongly measurable functions with respect to measures in M(S;X)
the natural norm to be considered is the total variation norm. We refer to [25, 43] for the definition
of the total semi-variation and the corresponding theory of weak integration.

In the next proposition we deal with vector measures constructed as

µ(E) =

∫
E
u(s) dσ(s) , (A.4)

for all E ⊂ S Borel, where σ ∈ M+(S) and u ∈ L1((S, σ);X). Note that the integral above is
defined as the Bochner integral of u ∈ L1((S, σ);X). Following the notation for classical measures,
given µ ∈M(S;X) defined as in (A.4) we write µ = uσ. Moreover, we call u the density of µ with

respect to ν and we denote it by u =
µ

σ
. Note that u is unique σ almost everywhere due to [25,

Corollary 5].

Proposition A.2. Let Σ be the Borel σ-algebra of S, σ ∈ M+(S) and u ∈ L1((S, σ);X). Then,
the map µ : Σ→ X defined in (A.4) belongs to M(S;X) and its variation is given by

|µ|(E) =

∫
E
‖u(s)‖X dσ(s) (A.5)

for every E ⊂ S measurable set. In particular, ‖u(s)‖X > 0 for |µ|-a.e. s ∈ S. Moreover, µ � |µ|
and for every E ⊂ S measurable,

µ(E) =

∫
E
û(s) d|µ|(s) , (A.6)

where û ∈ L1((S, |µ|);X) is defined as û(s) = u(s)
‖u(s)‖X for |µ|-a.e. s ∈ S.

Proof. First the verification that µ belongs toM(S;X) is straightforward and (A.5) follows directly
from Proposition 5.4 in [43]. Notice that by the properties of the Bochner integral we have the
following inequality

‖µ(E)‖X ≤
∫
E
‖u(s)‖X dσ(s) = |µ|(E) (A.7)

implying that µ� |µ|. We now show (A.6). Indeed, thanks to (A.5) we first notice that ‖u(s)‖X > 0
for |µ| − a.e. s ∈ S. Thus, for every measurable set E there holds∫

E

u(s)

‖u(s)‖X
d|µ|(s) =

∫
E
u(s) dσ(s) = µ(E) ,

as we wanted to prove.

An important property for measures with values in a Banach space X is the validity of the
Radon–Nikodým theorem.

Definition A.3 (Radon–Nikodým property). The Banach space X has the Radon–Nikodým prop-
erty if for every set Ω, every σ-algebra Σ on Ω and every measure µ : Σ→ R of bounded variation
such that µ� σ for σ : Σ→ R a finite positive measure, there exists u ∈ L1((Ω, σ);X) such that

µ(E) =

∫
E
u(s) dσ(s) for every E ∈ Σ. (A.8)
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The Radon–Nikodým property is true for separable dual Banach spaces due to the classical
Dunford–Pettis theorem, see Theorem 1 [25, p. III.3].

Theorem A.4 (Dunford–Pettis). Separable dual Banach spaces have the Radon–Nikodým property.

We conclude this section with the Lebesgue decomposition theorem adapted to measures with
values in Banach spaces [25, Theorem 9].

Theorem A.5 (Lebesgue decomposition theorem). Given µ ∈ M(S;X) and σ ∈ M+(S), there
exist unique µa, µs ∈M(S;X) such that

• µa � σ,

• ϕ ◦ µs ∈M(S) and σ are mutually singular for every ϕ ∈ X∗,

• µ = µa + µs.

Additionally, |µ| = |µa|+ |µs|, and |µs| and σ are mutually singular.

A.3 Duality theory

Define the space C(S;X) to be the set of continuous functions on S with values in X endowed with
the norm topology given by

‖T‖C(S;X) := sup
s∈S
‖T (s)‖X (A.9)

for T ∈ C(S;X). Here we are interested in the identification of C(S;X)∗ with the space of vector
measures M(S;X∗), if S is a non-empty compact set of Rd. This is a classical result due to Singer
[46] that we state here for the reader’s convenience. See also, for instance, [36] or [25, Section
6.5]. Note that since S is non-empty and compact, the spaceM(S;X∗) coincides with the space of
regular X∗-valued Borel measures of finite total variation.

Theorem A.6. Let S be a compact Hausdorff space and X a Banach space. Then, there exists an
isometric isomorphism T between M(S;X∗) and C(S;X)∗ such that

T (µ)(f) =

∫
S
f dµ, for every µ ∈M(S,X∗), f ∈ C(S;X)

and

‖µ‖M(S,X∗) = ‖T (µ)‖C(S,X)∗ = sup
‖f‖C(S;X)≤1

∫
S
f dµ , for every µ ∈M(S,X∗) .

In light of Theorem A.6 we say that a sequence of regular X∗-valued vector measures on S
denoted by {µn}n weakly* converges to µ if

lim
n→+∞

∫
S
f dµn =

∫
S
f dµ for every f ∈ C(S;X) . (A.10)

We also have the following remark.

Remark A.7. Theorem A.6 and the definition of weak* convergence in (A.10) imply that the
total variation norm of a regular X∗-valued Borel measure on S is weakly-* lower semicontinuous.
Moreover choosing f(s) = v ∈ X in (A.10) we obtain that

lim
n→+∞

〈µn(S), v〉 = lim
n→+∞

∫
S
v dµn =

∫
S
v dµ = 〈µ(S), v〉

for every v ∈ X, implying that µn(S) converges weakly* to µ(S).
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B Fractional-Laplacian-type operators

In this section of the appendix we recall basic results and definitions about fractional Sobolev spaces,
fractional Laplacian operators as well as necessary functional analytic tools required in the paper.
We also consider the energies obtained as the L2-norm of fractional-Laplacian-type and characterize
the extremal points of their balls. For more details about fractional Sobolev spaces and fractional
Laplacians we refer to [24].

B.1 Periodic L2-functions

For q ∈ N we denote by T q the (2π)-periodic torus defined by a quotient procedure as (R/2πZ)q.
We denote by L2(T q) the set of L2 functions on T q defined as

L2(T q) =

{
v : T q → R measurable :

∫
T q
|v(x)|2 dx <∞

}
. (B.1)

We identify the space L2(T q) with the space of equivalence classes of [0, 2π)q-periodic functions
v : Rq → R such that ∫

(0,2π)q
|v(x)|2 dx <∞ . (B.2)

We endow L2(T q) with a Hilbert structure by means of the scalar product

〈v, w〉L2(T q) =

∫
(0,2π)q

v(x)w(x) dx for v, w ∈ L2(T q) (B.3)

inducing the norm

‖v‖L2(T q) =

√∫
(0,2π)q

|v(x)|2 dx . (B.4)

The space L2(T q) is a separable Hilbert space and its predual is L2(T q) itself. We also introduce
the L2-periodic functions with zero mean, defined as

L2
◦(T

q) =

{
u ∈ L2(T q) :

∫
(0,2π)q

v(x) dx = 0

}
. (B.5)

Notice that L2
◦(T

q) is a closed subspace of L2(T q). Therefore, L2
◦(T

q) is a separable Hilbert space
as well.

B.2 Fourier series of periodic L2-functions

For m ∈ Zq we define the m-th Fourier coefficient of v ∈ L2(T q) as

Fv(m) = v̂(m) =
1

(2π)q

∫
(0,2π)q

v(x)e−ix·m dx . (B.6)

It is standard to show that for every v ∈ L2(T q) the Fourier series
∑

m∈Zq v̂(m)eix·m converges to
v in L2(T q) and we write v(x) =

∑
m∈Zq v̂(m)eix·m. Moreover, Parseval’s theorem holds for every

v, w ∈ L2(T q), i.e.,
〈v, w〉L2(T q) = (2π)q〈v̂, ŵ〉`2(Zq) . (B.7)

B.3 Periodic fractional Sobolev functions

We now define fractional Sobolev functions on the periodic domain T q for q ∈ N.
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Definition B.1 (Fractional Sobolev functions on periodic domains). Given a function v : T q → R
and s ≥ 0, we say that v ∈ Hs(T q) if v ∈ L2(T q) and

[v]2Hs(T q) :=
∑
m∈Zq

|m|2s|v̂(m)|2 <∞ . (B.8)

The space Hs(T q) is a Hilbert space with the scalar product defined as

〈v, w〉Hs(T q) = 〈v, w〉L2(T q) +
∑
m∈Zq

|m|2sv̂(m)ŵ(m) (B.9)

inducing a norm defined as ‖v‖Hs(T q) =
√
‖v‖2

L2(T q)
+ [v]2Hs(T q).

Remark B.2. Notice that for s = 0 the space Hs(T q) is isomorphic to L2(T q) and ‖v‖H0(T q) =√
1 + (2π)−q‖v‖L2(T q) for every v ∈ L2(T q).

B.4 The fractional Laplacian

We define the fractional Laplacian in periodic domains as follows.

Definition B.3 (Fractional Laplacian). Given v ∈ H2s(T q) and s ∈ (0, 1] we define the fractional
Laplacian of v as

(−∆s)v(x) =
∑
m∈Zq

|m|2sv̂(m)eix·m . (B.10)

Remark B.4. According to the previous definitions it is easy to check that (−∆s)v ∈ L2(T q) with

‖(−∆s)v‖L2(T q) = (2π)q/2[v]H2s(T q) . (B.11)

Using Parseval’s theorem it is easy to show that the following version of the Poincaré inequality
holds.

Theorem B.5 (Poincaré inequality). For every 0 ≤ s ≤ 1 there holds

‖v‖L2(T q) ≤ ‖(−∆s)v‖L2(T q) (B.12)

for every v ∈ H2s(T q) with zero mean.

B.5 Extremal points of L2-balls of fractional-Laplacian-type operators

In this paper we will consider L2-norms of fractional-Laplacian-type operators. This section is
devoted to characterize the extremal points of their L2 balls. Let f : Zq → [0,∞) be a function
such that

i) For every m 6= 0 it holds that f(m) > 0.

We consider the convex, positively one-homogeneous functional Jf : L2(T q)→ [0,∞) defined as

Jf (v) :=

√∑
m∈Zq

f(m)|v̂(m)|2 . (B.13)

We now characterize the extremal points of the unit ball of Jf in L2
◦(T

q).

Lemma B.6. Consider the set B = {v ∈ L2
◦(T

q) : Jf (v) ≤ 1}. We have that

Ext(B) =
{
v ∈ L2

◦(T
q) : Jf (v) = 1

}
. (B.14)
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Proof. First note that Jf (v) > 0 whenever v 6= 0 thanks to Assumption i) of f . Setting

B =
{
v ∈ L2

◦(T
q) : Jf (v) = 1

}
, (B.15)

we want to prove that Ext(B) = B. We first proceed to prove the inclusion B ⊂ Ext(B). Given
v ∈ B consider the convex combination

v = λv1 + (1− λ)v2 (B.16)

with λ ∈ (0, 1) and v1, v2 ∈ B. Applying the functional Jf to both sides of (B.16), using the
convexity of Jf and that v1, v2 ∈ B we obtain that λJf (v1) + (1 − λ)Jf (v2) = 1 implying that
Jf (v1) = Jf (v2) = 1. Therefore, from (B.16) we get

1 =λ2
∑
m∈Zq

f(m)|v̂1(m)|2 + (1− λ)2
∑
m∈Zq

f(m)|v̂2(m)|2 + 2λ(1− λ)Re
∑
m∈Zq

f(m)v̂1(m)v̂2(m)

implying, since λ 6= 0 and λ 6= 1, that

Re
∑
m∈Zq

f(m)v̂1(m)v̂2(m) = 1 .

Recalling that Jf (v1) = Jf (v2) = 1, a simple contradiction argument that uses the sharpness of
Cauchy-Schwarz inequality shows that v̂1(m) = v̂2(m) for every m ∈ Zq. In particular, v1 = v2 = v
implying that v is an extremal point for B.

Conversely, let us show that Ext(B) ⊂ B. Suppose that such inclusion does not hold true.
Then, there exists v ∈ Ext(B) such that Jf (v) 6= 1. In particular, since v ∈ B, there exists ε > 0
such that Jf (v) < 1− ε. Consider w ∈ L2

◦(T
q) \ {0} such that Jf (w) ≤ ε

2 . Notice that such w exists
since dom Jf 6= {0} and Jf is positively one-homogeneous. Consider then the convex combination

v =
1

2
(v + w) +

1

2
(v − w) . (B.17)

Since w 6= 0, we immediately have that v + w 6= v − w. Moreover

Jf (v ± w) ≤ Jf (v) + Jf (w) < 1 , (B.18)

showing that v is not an extremal point.

If f is strictly positive, then we can characterize the extremal points of Jf in L2(T q) as follows.

Lemma B.7. Suppose that f satisfies

i’) For every m ∈ Zq it holds that f(m) > 0.

Then given the set B̃ = {v ∈ L2(T q) : Jf (v) ≤ 1} we have that

Ext(B̃) =
{
v ∈ L2(T q) : Jf (v) = 1

}
. (B.19)

Since the proof follows closely the one of Lemma B.6 we omit it.
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