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Abstract

The aim of this article is to extend the scope of the theory of regularity structures in order
to deal with a large class of singular SPDEs of the form

0,u=Lu+F(ul,

where the differential operator £ fails to be elliptic. This is achieved by interpreting the
base space R? as a non-trivial homogeneous Lie group G such that the differential oper-
ator 0; — £ becomes a translation invariant hypoelliptic operator on G. Prime examples
are the kinetic Fokker-Planck operator 8; — A, — v- Vx and heat-type operators associ-
ated to sub-Laplacians. As an application of the developed framework, we solve a class
of parabolic Anderson type equations

du=)Y Xru+u(-c)
i

on the compact quotient of an arbitrary Carnot group.

Keywords: Regularity structures, homogeneous Lie groups, hypoelliptic operators, stochastic
partial differential equations.
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1 INTRODUCTION

The theory of regularity structures, [Hail4], provides a framework for the study of subcritical
stochastic partial differential equations (SPDEs) of the form

o;u—Lu=Fu!l), (1.

when the operator £ is uniformly elliptic. This article extends the theory of regularity struc-
tures in order to solve equations where the differential operator stems from a large class of hy-
poelliptic operators. This is achieved by building on the fundamental idea of Folland [Fol75]
to reinterpret the differential operator in question as a differential operator on a homoge-
neous Lie group and extending the theory of regularity structures to these non-commutative
spaces.

The treatment of singular SPDE via the theory of regularity structures can be divided into
two parts, an analytic step and an algebraic and stochastic step.



1. The first, analytic step, is to introduce the notions of a regularity structure, models and
modelled distributions; generalised Taylor expansions of both functions and distribu-
tions. Given this set-up, sufficient analytic tools are then developed to allow for the
study of abstract, fixed-point equations in the spaces of modelled distributions. Cru-
cially, a reconstruction operator maps modelled distributions to genuine distributions
(or functions) on the underlying domain. For the case of constant coefficient, hypoel-
liptic equations on compact quotients of Euclidean domains, this aspect of the theory
was already worked out in full generality in [Hail4].

2. The second step, which was carried out in a case by case basis in [Hail4], was then
fully automated in the subsequent works [CH16, BHZ19, BCCH21]. In [BHZ19] the au-
thors construct concrete (equation-dependent) regularity structures and models to-
gether with a large enough renormalisation group. Then, in [BCCH21], the question
of how this renormalisation group acts on the SPDE in question was answered. Con-
vergence of renormalised models for an extremely large class of noises, known as the
BPHZ theorem, was proved in [CH16].

In much of the above work translation invariance on R, of both the equation and the driving
noise, plays a major role. In this paper we will instead work with equations that are translation
invariant with respect to a homogeneous Lie group G (Euclidean spaces being special case).

The bulk of this this paper is dedicated to implementing the first analytic part of the theory
in the case when the underlying space is a general (non-Abelian) homogeneous Lie group,
the second step is then carried out for a specific class of equations. While many of the key
ideas from [Hail4] carry over to our setting, we encounter a number of significant devia-
tions from the arguments presented therein. The main cause of these deviations are the non-
commutative structure of the base space and the fact that the notion of Taylor expansion, a
crucial element of the theory, heavily depends on the underlying group structure. While this
article aims at being relatively self-contained, we focus mainly on these required deviations
from [Hail4] and do not reproduce arguments which carry over directly.

The central motivation for this extension to homogeneous Lie groups is to allow for the
study of singular SPDE with linear part given by a hypoelliptic operator, which may fail to
be uniformly parabolic. Two motivating examples are the heat operator associated to the
sub-Laplacian on the Heisenberg group and the kinetic Fokker-Planck operator on R x R?",

u(t,x,y,z)Hatu—(Ax+Ay+(x2+y2)Az)u and u(t,x,v)—0;u—Ayu—v-Vyu. (1.2)

We will carry these two operators and their associated homogeneous Lie groups, throughout
the paper as working examples of the theory. In the final sections we develop a full solution
theory for Anderson type equations associated to sub-Laplacians on general stratified Lie
groups (Carnot groups), of which the Heisenberg group is a well-studied example.

More generally, however, the analytic results of this paper apply to any differential operator,
£ on R?"1, such that the following combination of results by Folland applies to £ := 8, — £,
with respect to some homogeneous Lie group structure on R?.

Theorem 1.1 ([Fol75, Thm. 2.1 & Cor. 2.8]). Let G be a homogeneous Lie group of homoge-
neous dimension |s| and £ be a left-translation invariant (with respect to G), homogeneous



differential operator of degree § € (0, |s|) on G, such that £ and its adjoint £* are both hypoel-
liptic. Then there exists a unique homogeneous distribution K, of order —|s| such that for any
distribution, ¢ € D' (G)

Llp*=K)= (L)« K=q.

where the convolution is with respect to the given Lie structure.

Referring to SectionZlfor a more thorough discussion of homogeneous Lie groups and their
properties, we recall here that a differential operator © on R is called hypoelliptic, if for every
open subset Q c R? one has that,

DuUeC®Q)=>ucC®Q).

The following celebrated result of Hormander (almost) entirely classifies the family of second
order hypoelliptic operators.

Theorem 1.2 ([H667, Thm. 1.1]). Letr < d and{X;}}_, be a collection of first order differential
operators (i.e. vector fields) on R% and recursively define V, = span{X; : i =0,...,1}, Vpi1 =
Vo ULV, W] : VeV, W e V,}. If a differential operator can be written in the form,

,
D= X?+Xp+c, (1.3)
i=1

for some c € R, and there exists an N = 1 such that dim(Vy) = d at every pointin Q < R% then
® is hypoelliptic on Q.

Remark 1.3. By Froebenious’s theorem, [Fro77], if the condition of Theorem[I.2]fails in some
open set then © is not hypoelliptic on that set. However, the statement is not truly sharp;
for example the Grushin operator 82, — vd, is hypoelliptic, while the conditions of Theo-
rem are violated on sets intersecting {v = 0}. On the other hand this type of exception
cannot occur if the sections V; are continuous, since in this case it can be shown that the
map X — lgimV,(x)=q} 1S upper semi-continuous.

While Hérmander’s theorem gives an almost sharp characterisation of second order, hy-
poelliptic, operators it does not say much about fine properties of the fundamental solution.
For example, it gives no direct route to a refined regularity theory for hypoelliptic equations.
This observation highlights the contribution of Folland’s theorem (Theorem[I.I); since trans-
lation invariance allows access to many additional tools in the Euclidean setting, such as
harmonic analysis and singular integral methods. Viewing the class of translation invariant
operators satisfying Folland’s theorem as analogous to constant coefficient, elliptic operators
on R4 a programme was successfully carried out in the works [FS74a} [FS74b) [Fol75} RS76], es-
tablishing a full LP regularity theory for general, smooth coefficient, hypoelliptic operators.
We refer to [Bral4), Ch. 3] for a concise introduction to this programme.

1.1 RELATED LITERATURE

Non-translation invariant and non-uniformly elliptic SPDEs have been well-studied in the
classical, i.e. non-singular, regime and we do not attempt to present this large literature here.



We refer to standard texts such as [DPZ14, [LR17, DKM™09, PR07] for a general overview and
references to more specific works contained therein. However, in the more specialised set-
ting of semi-linear SPDEs on homogeneous Lie groups, we mention the works [TV99, [TV02,
PT10] which treat both hypoelliptic and parabolic SPDEs on some classes of Lie groups and
sub-Riemannian manifolds. A solution theory for conservative SPDEs based on the kinetic
Fokker-Planck equation (see Section[4.4) in the It6 case was developed in [FFPV17]. Using
the theory of paracontrolled calculus this was extended to the singular regime in [HZZZ21].
The kinetic Fokker-Plank operator and its associated homogeneous Lie group fall into the
analytic framework developed in this paper, however, we postpone a concrete application of
this theory towards a kinetic Anderson type equation to a future work. Recently, in [BOTW22],
an Anderson type equation on the Heisenberg group with white in time and coloured in space
noise was studied using It6 calculus techniques, up the to the full sub-critical regime of the
noise regularity. We treat a closely related problem in the final sections of this paper. A fuller
discussion of the similarities and differences between the results of [BOTW22] and those of
our approach is postponed to Remark[6.7}

Singular SPDEs with non-translation invariant, but uniformly parabolic or elliptic linear
part, have also been considered, especially using the recently developed pathwise techniques
of [Hail4} [GIP15,[0SSW21]. Some of these works are discussed in more detail in Section [L.3]
below. Quasilinear SPDEs have been studied using regularity structures, rough path based
methods and paracontrolled distribution theory, see [GH19b,[(OW19,[BM22]. Recently, an ap-
proach inspired by the theory of regularity structures, but technically distinct, has been devel-
oped in [OSSW21}[LOT21], [LO22]. SPDEs on domains with boundaries have been treated us-
ing both regularity structures and paracontrolled distribution based methods, [Lab19,(GH19a),
CvZ21},IGH21]. Finally, a number of works have considered parabolic, singular SPDEs on Rie-
mannian manifolds; a paracontrolled approach using the spectral decomposition associated
to the Laplace-Beltrami operator has been developed in [BB16} [BB19, [Ant22]. An approach
via regularity structures has been applied to the 2d parabolic Anderson equation on a Rie-
mannian manifold in [DDD19], while [BB21] develops some aspects of the general algebraic
structure required to treat non-translation invariant, uniformly parabolic equations. Finally,
the upcoming work [HSa| gives a comprehensive extension of regularity structures to sin-
gular SPDEs on Riemannian manifolds, with only the renormalisation of suitable stochastic
objects left to be done by hand.

1.2 A MOTIVATING CLASS OF EXAMPLES

In this paper we restrict ourselves to linear operators satisfying the criteria of Theorem [Tl
and use the Anderson equation as a main motivating example, although we stress that our
main analytic results apply in the full generality treated by [Hail4]. The parabolic Anderson
model

oru=Au—ué, uli=g=uy, (1.4)

on R, xR? describes the conditional, expected density of particles, where each particle moves
according to an independent Brownian motion and branches at a rate proportional to the
random environment ¢, see [Kon16,/(CM94]. Rigorously, this description is derived by discrete
approximations and it is well known that in the case ¢ is a spatial white noise, when d = 2 and



d = 3 one needs to recentre the potential in order to obtain a non-trivial limit as the discreti-

sation is removed, [Hail4} [HL15} [HL18, [GIP15]. We point out that if the environment is also

allowed to depend on time and is for example, white in time, then martingale methods can

be used instead to develop a probabilistic solution theory, see [Wal86, Dal99, Dal01,Chel5].
If one replaces the Brownian motions with a general diffusion,

r .
dx, =v2 ) X;(x)dwy,

i=1

where the vector fields satisfy Hormander’s rank condition (Theorem[L.2), then, formally the
conditional expected density of particles is described by the hypoelliptic Anderson equation,

;
6tu—Qu:=6tu—ZXi2u=u§. (1.5)
i=1

When realisations of the environment are sufficiently singular then a pathwise solution the-
ory for is expected to require renormalisation. Since the vector fields {X;}}_, satisfy Hor-
mander’s condition, the operator £ is smoothing and therefore in principle, an extension of
the theory of regularity structures should be applicable to find a renormalised, pathwise, so-
lution theory for (L5). In Section [6l we apply the analytic tools developed in the paper to
demonstrate such an extension to the case where £ is the sub-Laplacian on a compact quo-
tient of stratified Lie group (Carnot group).

We show a result analogous to those of [Hail4,[HL18], finding a notion of renormalised so-
lution to (L.B), when ¢ is a coloured periodic noise on a stratified Lie group. More precisely,
we show that when ¢ is replaced with a mollified, recentred noise ¢, — ¢, for (specific) di-
verging constants {c¢}¢c(0,1), solutions u, to converge in probability to a unique limit
independent of the specific choice of mollification-scheme. We stress that this result does
not cover the full subcritical regime of (IL5). The treatment of this full regime would require
an analogue of the BPHZ theorem on homogeneous Lie groups, see [CH16), HSb].

A notable example of a stratified Lie group is the Heisenberg group, H" = R?" x R, see Sec-
tion2Z.4.Tlfor a description. In this case the collection of left-translation invariant vector fields,
which generate the associated Lie algebra are,

Ai(x,),2) =0y, + ¥i0z, Bi(x,y,2) =0y, —x;0,, fori=1,...,n.

It is readily checked that the collections {Ai,B,-};?zl are left-translation invariant with respect
to the group action described in Section[2Z.4.Tland that one has C(x, y, z) := [A;, B;] = —28, for
alli =1,...,n. The associated sub-Laplacian is the linear differential operator,

n
Su=Y (A2+BIu,
i=1

naturally extended to a heat type operator as in and (L3, c.f. Section[d.4.1]for further
discussion. A phenomenon of interest for Anderson equations is that of localisation, the con-
centration of the solution at large times, taking arbitrarily large values on islands of arbitrarily
small size, [CM94}[K&n16]. Since one expects the geometry of the underlying domain to have



effect on the emergence of this phenomenon, as also noted in [BOTW22] and since pathwise
approaches to the parabolic Anderson model have proved fruitful in studying finer proper-
ties of solutions, see e.g. [AC15,HL15,HL18,|GUZ19| Lab19, BDM22], it is our hope that the
tools developed herein may prove useful in analysing similar equations on more complex
domains. The solution theory exposited in Section [6l applies to precisely this example on a
compact quotient of the Heisenberg group.

1.3 OPEN PROBLEMS AND WIDER CONTEXT

As discussed above, translation invariant (and for example) parabolic operators on Euclidean
domains serve as a starting point from which non-translation invariant parabolic problems
on Euclidean domains as well as parabolic problems on Riemannian manifolds can be stud-
ied. A somewhat parallel progression holds starting from translation invariant operators on
homogeneous Lie groups, moving to general Hormander operators as well as heat type equa-
tions on sub-Riemannian manifolds, see [Bral4]. This parallel progression in PDE analysis
leads one to ask, how far the theory of regularity structures can be extended in these direc-
tions. The table below gives a schematic presentation of the progress so far, presents some
open problems and places this work within the context of the study of subcritical parabolic-
type SPDEs. The two rows describe the two parallel progressions outlined above in the con-
text of regularity structures.

Translation invariant Non-translation operators on | On Riemannian manifolds

operators on R4 R4

The works [Hail4, BHZ19, Mostly understood: analytic In [DDD19] 2d-PAM is treated.

BCCH21}|CH16] present a step in [Hail4]; aspects of A general account in

general and complete picture. | renormalisation addressedin | forthcoming work [HSal.
[BB21].

Translation invariant General Hérmander On sub-Riemannian

operators on homogeneous operators manifolds

Lie groups

Analytic theory covered in this | Open problem A Open problem B

work. Renormalisation and

convergence by hand.

Each problem in the second row is closely related to its equivalent problem in the first row,
we discuss the posed open problems in a little more detail.

* Open Problem A is expected to be more involved than its counterpart in the Euclidean
setting; going from translation invariant operators to non-translation invariant oper-
ators by local approximations. In the case of general Hérmander operators, the un-
derlying Lie group structure would in general vary from point to point. An interesting
application would be the study of general hypoelliptic Anderson models (L5) where
the underling particles perform a general diffusion with generator of the form (L.3), c.f.
Theorem|[L.2

* Open Problem B is motivated by the fact that analogous to the tangent space being an
appropriate local approximations of a Riemannian manifold, the non-holonomic tan-
gent space is an appropriate local approximations of a sub-Riemannian manifold and



each fibre of the non-holonomic tangent space is a stratified Lie group, c.f. [ABB20].
Note that in view of Remark [I.3]the difficulties in Problem B are expected to be some-
what complementary to those of Problem A.

NOTATION: Given a € R we let [a] := max{r € Z : r < a} denote the integer part of a. We
often write < to mean that an inequality holds up to multiplication by a constant which may
change from line to line but is uniform over any stated quantities. In general we reserve the
notation D for the usual derivative on Euclidean space, and X, Y for elements of a Lie algebra
thought of as vector fields on the associated Lie group, see Section[2l We will use | - | to denote
the size of various quantities; elements of a Lie group, the Haar measure of subsets of the
group, the homogeneity of members of the structure space in a regularity structure, traces
of linear maps and the absolute value function on R etc. The meaning will usually be clear
from the context but in cases where it is not we will make sure to specify in the text. For
integrals we will use the standard notation, dx, for integration against the Haar measure on a
given homogeneous, Lie group, see Proposition 2.1 Throughout most of the article we take
an intrinsic point of view and do not equip the homogeneous Lie group with an explicit chart.

STRUCTURE OF THE PAPER: We begin with a discussion of analysis on homogeneous Lie
groups sufficient for our purpose, Section[2l The most important result in this section is The-
orem 2Z.I3lwhich provides us with an intrinsic version of Taylor’s theorem on homogeneous
Lie groups and will be used frequently throughout. Section Bl contains the bulk of the paper
and establishes an extension to the analytic aspects of regularity structures to the setting of
homogeneous Lie groups. In Section[@we demonstrate the application of this general theory
to semi-linear evolution equations of the type discussed in the introduction and provide an
example fixed point theorem for such generalised multiplicative stochastic heat equations.
We note that there is no difficulty in extending the general fixed point theorem of [Hail4] to
our setting, we only specialise to aid the clarity of presentation. Finally, in Sections[3 and [6]
we the construct suitable regularity structures for our specialised setting and demonstrate
a solution theory for Anderson-type equations associated to sub-Laplacians on quotients of
stratified Lie groups. The very last sections draw heavily on the notation and arguments of
[Hail4,[HP15| BHZ19], which carry over to homogeneous Lie Groups to some extent.
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2 ANALYSIS ON HOMOGENEOUS LIE GROUPS

We collect some basic facts on homogeneous Lie groups and smooth function on them. Let
g be a Lie algebra and G be the unique, up to Lie algebra isomorphism, corresponding sim-
ply connected Lie group. We write [-,-] for its Lie bracket and inductively set, gg) = g and
9 = [8(n-1),9]. Recalling the exponential map exp : g — G, we have the Baker—Campbell-
Hausdorff formula

exp(X)exp(Y) =exp(H(X,Y)), (2.1)

where H is given by H(X,Y) = X + Y + %[X, Y] + ... with the remaining terms consisting of
higher order iterated commutators of X and Y; crucially H is universal, i.e. it does not depend
on the underlying Lie algebra.

Proposition 2.1 ([FS82, Prop. 1.2]). Assume that g is nilpotent, i.e. g, = 0 for some n € N.
Then, the exponential map is a diffeomorphism and

e through this identification of g with G, the map
GxG3(x,y)—xyeG
becomes a polynomial map (between vector spaces).

e the pull-back to G of the Lebesgue measure on g is a bi-invariant Haar measure on G.

Definition 2.1. Adilation ong isagroup of algebra automorphisms{D;} ¢ of the formD, X = exp(logr -5) X
with s : g — g being a diagonalisable linear operator with 1 as its smallest eigenvalue.

Remark 2.2. The requirement that the smallest eigenvalue of s be 1 is purely cosmetic. Oth-
erwise, denoting the smallest eigenvalue by s1, one can work with the new operator § = 5115.

Remark 2.3. For a € R, denote by W, c g the eigenspace of s with eigenvalue a. Thus for
X € W,, Y € W, one has the condition

D,[X,Y]=[D, X,D, Y] = r*P[X,Y]

which in particular implies [W,, W] € W,,;, and since W, = {0} fora < 1

gHcPWa.
azj
In particular, if g admits a family of dilations, it is nilpotent. The converse is not necessarily
true.

Definition 2.2. A homogeneous Lie group G is a simply connected, connected Lie group where
its Lie algebra g is endowed with a family of dilations {D;},~q. For r > 0, we define the group
automorphism

X—=r-x:= expODroexp_1 X.

A homogeneous norm on G is a continuous function |- | : G — [0,00) satisfying the following
properties forallxe G, r eR



1. |x| =0 ifand only if x = e, the neutral element,
2 1xl=1x7",
3. [r-x|=rlxl|.

The homogeneous norm naturally induces a topology generated by the open sets and in
turn a Borel o-algebra. From now on, we will always assume that G is equipped with this
topology and o-algebra. Furthermore, given a homogeneous group G we denote by {X j};.i:1 €
g a basis of eigenvectors of s with eigenvalues 1 =s; <s, < ... <54 and such that

5Xj=5ij. (2.2)

Given a measurable subset E c G we write |E| for its Haar measure which we assume to be
normalized such that the set B; =: {x € G : |x| < 1} has measure 1, c.f. Proposition 21l In
integrals we use the standard notation dx. We define |s| := trace(s) as the homogeneous di-
mension of G, since for any measurable subset E c G and r > 0, one has

Ir-El=r"|E].
We also define balls of radius r > 0,
B (x):={yeG: [x yl<r}.

The topology induced by these balls agrees with the topology of G as a Lie group, see [FR16,
Sec. 3.1.6]. Note that due to the non-commutativity of G, in general |x~'y| # |yx~!. We
consistently work with the following choice a semi-metric on the group,

do(x, ) :=1x"yl =1y 'xl.

For £ c G we write R:= {z€G : dg(z, ) := infyegly_lzl < 1} for the 1-fattening of R.

Remark 2.4. A function f : G — R is called homogeneous of degree A € R, if f(r-x) = r* f(x)
for all x € G. One can show, c.f. [FS82, Prop. 1.5 & Prop. 1.6], that for any homogeneous norm
on G there exists y > 0 such that

e [xyl<svy(xl+|y]) forany x,y€G
* ||xyl—|x|| = yly| for any x, y € G such that | y| < %le .
Furthermore all homogeneous norms are mutually equivalent and we may always choose a
homogeneous norm that is smooth away from e € G, [FR16), Sec. 3.1.6].
2.1 DERIVATIVES AND POLYNOMIALS

We identify g with the left invariant vector fields g; on G and write gg for the right invariant
vector fields. We write X; for the the basis elements as in (2.2) seen as elements of g; and Y;
for the basis of gy satisfying Y;|. = X;l. . Thus we can write

Xjf(y)=0:f(yexp(tXj)li=o and Y;f(y)=0;f(exp(tY))y)l=0

10



for any smooth function f € C*(G).

A map P:G — Ris called a polynomial if Poexp: g — R is a polynomial on g Let {; be
the basis dual to the basis X; of g. We setn; = ;o exp~ !, which maps G to R. Note that
n = (1n1,...,ng) forms a global coordinate system@ and furthermore any polynomial map on G
can be written in terms of coefficients a; € R as

pP= ZamI
I

with the sum runningover a finite subset of N% and where for a multi-index I = (i1, ..., ig) € N
we write ! = ny -...-172’. Define d(I) =Y js;ij and |I| =} i, we call max{d(I) : aj # 0} the
homogeneous degree and max{|I| : a; # 0} the isotropic degree of P. For a > 0, we denote
by P, the space of polynomials of homogeneous degree strictly less than a and define A =
{d(D eR : IeN%. [} We can rewrite the group law on G explicitly in terms of n = (11, ...,04).

Proposition 2.5. For j € {1,...,d} and multi-indices I, ] s.t. d(I) +d(]) = 5j, there exist con-
stants CJI.'] > 0 such that the following formula holds,

nj(xy)=n;x)+n;(y) + Y cn'on’ ).
1,]J#0, d([)+d(]):5j

Proof. By the Baker—-Campbell-Hausdorff formula (Z.I) one has

njxy) =n;@+n;0+ Y Cnfan’y).
1477122

By setting either x = e or y = e, we find that C]I.’] =0if I =0 or J = 0. Since furthermore
n;j((rx)(ry)) = r®n;(xy) the claim follows. O

Remark 2.6. Proposition 2.5l implies that for s; <2 one has n;(xy) = n;(x) +n;(y) while for
sj=2onehas;(xy) =1;(X) +17;()) + Temsi=1 C M0M1())

Remark 2.7. Tt is also noteworthy to realise that Proposition [2.5limplies that P, is invariant
under right and left-translations. (This is not true if one replaces homogeneous degree by
isotropic degree, except if G is abelian or a = 0).

Remark 2.8. If follows from Proposition [2.5]that one can write

n®xy) =" +n* () + > cn'on’ ),
I,J#0, d()+d())=d(K)

where the constants CIIé] can be written in terms of the constants C]I.’] .

Recall that the space of polynomial functions on g is canonically isomorphic to @,,(g*)®s"

the symmetric tensor product.

where ® denotes

2Qccasionally we use the corresponding notation % .
1
3We point out a possibly counter-intuitive quirk of our definition; for k € A the set Pj. does not contain polyno-

mials of degree k but only those of degree less than k.
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Lemma2.9. Fori,jell,...,d},

Xmj=oij+ > C¢n', (2.3)
1#£0, d(I):Ej—Ei

where e; denotes the multi-index (0,...,0,1,0,...,0) with the 1 being in the i -th slot.

Proof. This follows directly from Proposition 2.5} applying X; to the function

y—njxy),

evaluating at y = 0 and using the fact that X;|y = % lo- O

Proposition 2.10 ([FS82, Prop. 1.26]). One has X; = ¥. Pj (%) where

b |1 k=]
ik= 0 l'fskSBj,k;éj

and Pj i is a homogeneous polynomial of degree sy — s if s > s; . The analogous statement
holds for the vector fields Y,

For a multi-index I = (iy,...,i4) € N4 we introduce the notation X! = Xli1 ...Xciid. Note that the
order of the composition matters since g is not in general Abelian. It is a well known fact that
any left invariant differential operator on G can (uniquely) be written as a linear combination
of {X'} ;cna. The next proposition follows as a direct consequence.

Proposition 2.11 ([FS82, Prop. 1.30]). The following maps from P, — RYI™Pa qgre linear iso-
morphisms.

Lop= {(%)Ip(e)}d(nm '

2. P"_’{XIP(e)}d(D<ar
3. P"_’{YIP(e)}d(I)<a)
The same holds replacing e € G with any other point x € G.

Definition 2.3. For a smooth function f : G — R, a point x € G and a € (0,00), we define the
left Taylor polynomial of homogeneous degree (less than) a of f at x to be the unique polyno-
mial P¢[f] € P, such that x! P4[fl(e) = le(x) for all I such that d(I) < a. The right Taylor
Polynomial can be defined similarly, replacing X' by Y.

Remark 2.12. One observes that for I € N? and a > d(I) one has that
XTPLf1 =Py OIX )

for all f € C*®(G). Indeed, this follows from the fact that for any d(J) < a — d(I) one has
X7 (XTP21f1)(e) = X! (X! f)(x), since X’ X! can be written as a linear combination of {XX} x)<4.

12



Theorem 2.13 (Taylor’s Theorem). Foreach a =0 and every f € C®(G) it holds that

fxy) =PLfIy) = Y fG X'f(x2)Q'(y,d2),

[Il<lal+1,d(D)za

where for each multi-index I and y € G the measure Q'(y, -) is supported on Bgiay(e) for
some B > 0 depending only on G and satisfies [, |Q' (y,dz)| < |y|9D.

Remark 2.14. Note that, while it is very useful to have a rather explicit form of the reminder in
order establish Schauder estimates in Section[3.5} there is a more common version of Taylor’s
Theorem on homogeneous groups, c.f. [FS82] Thm. 1.37], which states that the remainder
satisfies the estimate

FEN-PUAWISa X P sup X f(xa)l 2.4)
|I<lal+1,d(D=a lzl=Bla+1]y|

and which follows as a trivial consequence of Theorem .13l Furthermore the analogous
claim for the right Taylor polynomial, (Pg){[f], holds. In this case the analogue of (2.4) reads

FOD-CRUAMISe Y 9 sup  1Y'f(z0l. -
|I|<[al+1,d(D)=a lzl=Bla+1]y|

Remark 2.15. If we define P$[f1(y) := P4[f1(x~'y), then it follows that

f-Plfly) = X' f(x2)Q (x7 1y, dz)

[I1<[al+1,d(D=a’C

and in particular that

FO=-PLAIWMISa Y. 1x7 'y sup X' fx2)l.

|I|<[a)+1 lz|=Clx~1y|
dD=a

In the particular case when f is compactly supported, one can rewrite this for the rescaled

function f4(x) = Mls‘ f(A-x) as

A P Se Y, ARy D sup  xT £(2)] (2.6)
|Il<[al+1 z€G
dD=a
,Sa,f Z A_(“+5)_|5||x_1y|“+5 ’
6=0

where the sum over § runs over some finite subset of (0, co).

Remark 2.16. Given f € C*(G), if we define F € C*°(G x G) by setting F(y,z) = f(z_ly), we
find that
PLIF(-, 21(y) =Poi [fl1(z7y).

Remark 2.17. For any p € P, one has

PLipl) = pWy).

13



Remark 2.18. In the proof of Theorem 2.I3] given below, we use the following elementary
observations

e The map
D:R" -G,
(t1, .0 ) — exp(11 X7) - ... - €xp (£, X))

is a diffeomorphism. To see this note that it is clearly a local diffeomorphism since one
has

D®|y: TRy ~R% — TGy~ g
i

Then since,
DIty ., ) =1 - D(, . ty)

itis seen to be a global diffeomorphism.
* Setting for t € R4,
d
Itls = It1M5
i=1

one finds that there exists some = (G) > 0 such that

1
Blrls S1o) < Bltls 2.7)

uniformly over € R%.

* By repeated use of the commutator, for any I,/ € N% and i € N there exist coefficients
Ai,y.1 such that
X X' =Y Nigax! (2.8)
T

and one has A; j; = 0 whenever d(J) + d; #d(I) .

e Ifac A, then m, := max{|I| : d(I) < a} = [a] where [a] denotes the integer part of a.
This follows from the fact that d(I) < a implies m, < [a] and since ([al, 0, ...,0) is in the
set over which the maximum is taken.

Proof of Theorem[2I3. Define for i € {1,...,d} the following measure on R with support on
By, ©
QCi(t,ds)=[[64,(dsj)- Lo,y (dsi) [ So(ds))

j<i Jj>i

and define Q% (y, ) = @, Qei (@1 (), -) to be the push-forward measure. First we show that,

n
fay-fo=) G(Xl-fxxz)Qef (y,dz). (2.9)
i=1

14



Indeed one can write for y = y1y»... y4, where y; = exp(t; X;) and ¢ = (ty,..., tg) = ot »
fan-fx) = Z f&yr-.yioiyd) = fxy1..yi-1)

=Z A asf(xyl...y,-_lexp(sX,-))ls:srds’
i=1

d t;
Z | (Xif)(xyr...yi—1exp(sX;))ds
~

d
y fR (X ) (x®() G (1, )
=1JR"

d
=) G,(Xl-fxxz)Qe" (y,dz).
i=1

Using the fact that @ is a diffeomorphism one easily checks that that Q% (y, dz) is supported
on Bg)y(0) where f is as in [2.7), and satisfies f@ Q% |(y,dz) < Iyld", thus we have proved the
theorem in the special case a € (0,1], also known as mean-value theorem. We turn to the
proofin the general case.

Claim 2.19. Set g(y) = f(xy) — P2[f1(y), we note that X’ g(0) = 0 for d(J) < a while X’ g(y) =
X/ f(xy) for d(J) = a. We shall prove that for any multi-index J it holds that one can write

X/g(y = f X fx2)QM (y,d2),
|I|<[a]+1 d(I)>a

where the measures Q"7 (x,) satisfy the following properties

* Q" (x,") is supported on Bgmu),,(0) € G where m(J) =minfm eN: a—m < d(J)},
¢ f@lQUI(x. dy) <|x|dD-d0

We shall prove by induction on m € {1,..., [al}, that for multi-indices J satisfying a — m <
d(J) = a the claim holds.

¢ The case m =1 follows from 2.8) and (2.9),

d
Xgy=x"gy-x'g0) =} f@, (X; X' 8)(2)Q° (y,d2)

n

= Y o MiX'9@Q% (y,dz)
=196 1 d(D)=d())+s;

= fX f(xz)Q”(y,dz)

|I|<[a]+ld

f i (X P (x2)Q% (y,d2)
Gy, d(I) d()+s;

The properties of Q"7 (y,dz) follow from the corresponding properties of Q% (y,dz),
completing the case m = 1.

15



* Suppose the claim holds for m — 1. Then by the same argument as above

n
Xgy=Y Y ik [G XX g)(x2)Q% (y,d2)

i=1d(K)=d(J)+s;
= > Ai gk f (XX g)(x2)Q% (y,d2)
LK:d(K)=d(J)+s;<a G
+ > Ai gk f@ XX (x2)Q% (y,d2).

i,K:dK)=d()+s;=a

We can apply the induction hypothesis to the terms in the first sum, since d(K) = d(J) +
s;=2d(J)+1=a—-(m-1) and find

xXg)(x2) = f X' F(x2)Q"X(2,d2)
|I|<[u]+1d
and therefore
X'gy = Y f (XX g)(x2)Q% (y,dz)
i, K:d(K)=d(J)+s;<a?®
+ > Ai gk f (XX g)(x2)Q% (y,d=)
i,K:dK)=d(H)+s;=a
= 3 Aig K ffx f(x2)Q"(z,d2)Q% (y,dz)
i,K:d(K)=d()+s;<a |I|<k+1 d(l
+ > /1;',],1([(XKg)(xz)Qe"(y,dZ)-
i, K:dK)=d()+s;i=a
= > Ai gk fXIf(xZ)( "K% Q%) (y,d2)
i,K:d(K)=d()+s;<a |I|<k+1 d(l
+ > AijK f (XKg)(xZ)Qe"(y,dz)

i,K:dK)=d()+s;=a

- f X' f(x2)Q" (y,dz)

|I|<[a]+1 d(D=a’6

where QI J is defined such that the last line holds true. Concerning the measures QI J( ),
we note that

1. supp QI'](J/, J)c Bﬁm(])|y| since

supp (QI,K % Qei (v, )) c Bﬁm(mﬂlyl

as supp Q"X (y,) < By (0) and supp Q°(y, dz) < By (0).
2. [o1QM (3,91 < 1x|4D=dD) gince

[ 10 s @einan = [10M1mdz) - [ 10102 S 1 D-10 .y

This completes the proof. O
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2.2 DISTRIBUTIONS AND CONVOLUTION

We define D(G) := C°(G) to be the space of compactly supported smooth functions on G
equipped with the natural Fréchet topology. The space of distributions on G is given by the
dual D' (G) of D(G) and for ¢ € D'(G) and ¢ € D(G) we either write (¢, ¢) or &(¢p) for the canon-
ical pairing. Given r € R we introduce the following useful space of test functions

%f(x): {q)ecg"’(BA(x)) : |XI(b|S VI:d(I)Sr} .

Asl+d(D

We will often use the shorthand B, := %} (e) . Given ¢ € D(G) we extensively use the following
notations,

Yo= o[+
¢z '_;LISI(P 1 X " 2)|.
Recalling that we use the notation dx for the Haar measure on G we define the norms,

(Je If(x)lpdx)”p, for1< p<oo,

esssup g lf(X), p=oc.

Ifller = {
By left and right translation invariance of the Haar measure, for f € L!(G) it holds that

ff(yx)dy=ff(xy)dy=ff(y)dy=ff(y‘l)dy.
G G G G

See the discussion after [FR16, Thm. 1.1.1].
Remark 2.20. From the scaling properties of D it follows that

B} ={p} :peBlo)}.

One defines the convolution of two functions ¢,y : G — R as

w9 = [ g ady = [wixy Hemdy. 2.10)

Note that in general ¢ * ¢p(x) # ¢ * w(x) but still many of the usual inequalities hold, in par-
ticular the Young inequity, c.f. [FS82| Prop. 1.18]. One can write

w9 = [ g, ody.

We extend convolution to generalised function, i.e. elements of D'(G), by duality in the usual
manner. From now on we will use the notation (ﬁ(z) = (p(z_l), one notes that the following
identities hold

(f,8*Py=(gxf,p)=(f =, 8 2.11)

fxg=8=f 2.12)
yragt=(+P* and W)=y, xo.
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Recalling the notation X I— Xli1 ...X;d for any multi-index I = (iy, ..., ig) € Nd, we introduce the

analogous notation Y! = Ya;"l....Yli1 for the right invariant basis vectors. Note the reversal in
the composition. Since for any right invariant vector field Y and left invariant vector field
X such that X|, = Y|, it holds that (X f,g) = (f,Yg) for f, g € C(G), it follows from the
definition of the convolution that

o Xy =)=y (X!¢),
o Yifyx¢p)=Ty) =9,
« X'y xp=yxY'p.

Definition 2.4. For @ € R we define the space C*(G) of a-Holder continuous distributions to be
those f € D'(G) such for every compact set R < G,

e Ifa<0

1KF oDl
I fllceqwy =sup sup sup &

o < +00
xR PeB_q A€(0,1) A

e Ifa >0, there exists a continuous map G — Pg, x — P, such that

(f = Pr, )] 5
I fllcag) =sup sup sup % +sup | Pxlp, < +o0, (2.13)
XER peB( A1€(0,1) XeR

where| - |p, denotes any norm on the finite dimensional vector space Py .

Furthermore, C(G) denotes the space of continuous functions (note that only the strict inclusion
C(G) € C°(G) holds).

Remark 2.21. We note that as in [Hail4], for a € A the C*(G) spaces do not agree with the
usual notion of continuously a-differentiable functions. This definition, however, is more
canonical in the context of regularity structures, c.f. Theorem[3.12]

The following proposition gives some useful properties that also mirror those of Euclidean
Holder spaces.

Proposition 2.22. Given any real number a € R the following holds
1. C*(G) cCPG) forevery f< a.
2. For any multiindex I the map X' : C*(G) — C*~ 9D (G), f— X!f is well defined.
3. Ifa >0, then any distribution f € C*(G) agreeﬂ with a continuous function.

Note that this proposition in particular implies that C*(G) = Ng>oC*(G).

4As usual, we say a distribution agrees with a continuous functions, if it lies in the image of the canonical em-
bedding C(G) — D' (G).
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Proof. Points [ and 2] follow directly. For Point[3, denote by P, the polynomial in Defini-
tionZ4] we set F = f — P.(-), then for any € B such that [gy = ¢™! > 0 and smooth com-
pactly supported function g we find

— T Ay — 1 A _ T A _
(Fg) = C%_q})(l%g* v = C£1_%<ELg(y)wydy> = C}E})mey)g(y)dy =0,
where in the last step we used that since y — P, is continuous we have
Fyp = =B+ [ (Ba-P@)yi@ dz—o,

as A — 0. Thus we find that the distribution f agrees with the continuous function x — Py (x),
concluding the proof. O

Remark 2.23. Note that by Proposition for @ > 0 and any f € C*(G) we know that X f
agrees with a continuous function whenever d(I) < a. Thus, in particular Definition 2.3] of
Taylor polynomials P§[f] extends to C*(G) > C*°(G).

2.3 DISCRETE SUBGROUPS

Recall that, given a discrete subgroup & c G acting on G (say) on the left, then the quotient
space S:=G/® = {Bx : x € G} is asmooth manifold. Furthermore, the quotient map7:G — S
is a smooth normal covering map , c.f. [Lee13, Thm. 21.29] and the canonical G right action

SxG—S, (Bx,x")— Sxx’

makes it a homogeneous space. We call & a lattice if S = G/® is a compact space. This is
equivalent to S carrying a finite G invariant measure, which we shall denote by d(&x), c.f.
[Rag07, Thm. 2.1]. Throughout this article we assume that every homogeneous Lie group we
work with carries a lattice, the following theorem, [Rag07, Thm. 2.12], gives sufficient condi-
tions for this to be the case, which all our examples satisfy.

Theorem 2.24. Let G be a simply connected nilpotent Lie group and g its Lie algebra. Then, G
admits a lattice if and only if g admits a basis with respect to which the structure constants of
g are rational.

Let us point out that there do exist nilpotent Lie groups that do not admit a basis with re-
spect to which the structure constants are rational, see [Rag07, Rem. 2.14] for an example.

Denote by 7* : C(S) — C(G) the pull-back under . We define a convolution map
#5: CP(S) x C°(G) — C™(8), (f,)— f*s¢

as the unique map, such that the following diagram commutes

C®(S) x CP(G) —>3 C(S)

T* Xidl lﬂ*

C®(G) x CX(G) —— C®(G),
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where convolution on the bottom row is convolution on the group as defined in[2.10l In order
to check that this map is well defined, we use the following terminology. A function f € C*°(G)
is called left & periodic, if for every x € G and n € & it holds that

fx)=f(nx).

Thus, we only need to check that for any ¢ € C°(G) and any left & periodic function f €
C™®(G), the function f * ¢ is left & periodic. Indeed for any n € & and x € G, it holds that

Frpnx) = fG FOSy  nndy = fG Fn 1y wdy = fG Fyy Ddy = fG F0dy.

By duality, one naturally extends the notion of convolution on S to pairs, (&,{) € D'(S) x DL(G),
where DL (G) denotes distributions on G with compact support.

2.4 CONCRETE EXAMPLES

In order to cement ideas we present two concrete examples of non-abelian, homogeneous
Lie groups, both of which are identified with fixed global charts. These will be revisited in
Section 4.4 when we discuss the heat operator on the Heisenberg group and Kolmogorov
type operators.

2.4.1 THE HEISENBERG GROUP
Given n = 1 we equip define the Heisenberg group H" as the set R?"* x R with the group law,
n
%y, Y, ) = x+x y+y, 2+ 2 + ) (xjyi—xiy)|.
i=1

Remark 2.25. Note that one may equally define the complex Heisenberg group on C" x R
equipped with the group law,

n
(w,2)W,2) = (v+ v,z+2 +3) u,a;)
i=1

One sees that these definitions are equivalent after identifying C" with R?".

The origin e = (0,0,0) is clearly the identity and for (x, y,z) € R2" x R one has (x, ¥ z)71 =
(-x,—y,—z). The Lie algebra, b of H" is identified with R?"*! and spanned by the basis of
left-invariant vector fields,

Ai(x,y,2) =0y, +yi0;, Bi(x,y,2) =0y, —x;0,, C(x,y,2)=0,

and equipped with the Lie bracket [A, B] = AB— BA. We observe that for any (x, y, z) € H" and
i=1,...,n,
[A;, Bil(x,y,2) = -2C. (2.14)

We say that a Lie algebra is graded if there exist vector spaces {Wj}i>1 where only finitely
many Wy are non-zero, g = @2":1 Wi and [W;, Wil € Wiy ;.
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Definition 2.5. A homogeneous Lie group G is called stratified (or a Carnot group) if its Lie
algebra is graded and generated by W, .

Due to (2.14), we see that if we equip H" with the dilation map,
A-(x,9,2) := (Ax, Ay, A%2),

then H” becomes a stratified group. Refer to [Bral4) Sec. 3.3.6] for a discussion of generalisa-
tions of this structure.

A simple example of a lattice on the Heisenberg group is the set of integer vectors (a, b, c) €
$H" := 7?" x Z equipped with the group law as defined above. Note that it is not a normal
subgroup and thus the quotient space H"/$" not a group. However, since it is a lattice the
homogeneous space H"/$)" is compact, c.f. Subsection[Z.3]

2.4.2 MATRIX EXPONENTIAL GROUPS

For n =1, let B be a rational n x n block matrix of the form,

0 B 0 - 0
0 0 B, - 0
B=|: i o
0 0 --- 0 B
00 - 0 0

with each B; a p;_1 x p; block matrix of rank p;, where n = pg = p; = --- = py and Zf:o pi=n.
Note that this implies the zero blocks on the diagonal are all p; x p; square matrices. We can
equip R x R” with an associated Lie structure by defining the group law

(t,2)(s,2):= (t+5,2' +exp (SBT) z).

To define the dilation we begin by decomposing according to the structure of the block matrix
B, writing
R"” = RPO x ... x RPn,
Thus the actionof BT on z = (29, ..., 2) € RPOx-..x[RPk is written B'z= (BITZO, Bszl, ...B]Izk_l)
etc. Then we set
A-(t,20,...,25) := (A%, Azp, ..., A2 2.

The origin e = (0,0) is again the identity element and (¢, 27 V= (-t,— exp(— tB")z). The Lie
algebra is spanned by the translation invariant vector fields,

n
Xi(t,2)=0;, fori=1,...,pg and Y(t,2)=0;,—(B2)-V=0,— Y  b;jzi0;,.
i,j:p0+1

This defines the matrix exponential group associated to B and one sees that it is not stratified.
The simplest non-trivial example is to set n = 2 and

01
B=
o of
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so that using the suggestive notation (t, v, x) € R x R x R, the group law becomes,
tLv,x)(s,w,y)=>E+s,v+w,x+y+sv).

The equivalent scaling as above is to set A (¢, x, v) = (A>t, Av,A3x). We refer to [Man97] for
more details and Section [4.4] below for a discussion of natural, second order, hypoelliptic,
linear operators associated to these groups.

3 REGULARITY STRUCTURES AND MODELS

Definition 3.1. A regularity structureis a pairT = (T,G) consisting of the following elements:
1. A graded vector spaceT = @y Tq where
* theindex set A c R is discrete, bounded from below and contains zero,

e each T, is finite dimensional with a fixed norm |- |o. We write Qg : T — Ty for the
canonical projection,

* Ty is isomorphic to R with a distinguished element 1 € Ty, such that 1]y = 1.

The spaceT is called the structure space.

2. A group G of linear operators acting on T, such that for every I € G it holds thatT'|t, is
the identity map and for allt € Ty:

I't—1€ @Tﬁ.

B<a
The group G is called the structure group of T .

Asector is a G invariant subspace V < T and if V # {0} the regularity of the sector V is defined
asminfa € A : VNnTy #{0}}.

We make use of the natural shorthands, T g, T4, T<q, T<q and the projections Q-4 etc.

Definition 3.2. Given a regularity structureT = (T,G) and r € N such thatr > |min Al, a model
forT is a pair M = (I1,1), consisting of

* arealisation map11: R4 — L(T, D' (G)), x— I1,, such that for any compact set R < G one
has ITly,5 := sup e Iy, x < +oo for all y > 0, where

I, A
[ITlly,x:= sup  supsup sup M
(eAn(—o0,y) TE€T; A<1 PpeB, |T|(A(

’

* are-expansionmap? : R4 xR — G, (x, N—Txy, which satisfies the algebraic condition
My =10,
and the analytic condition |||y, := SUDy, yef: [y-1xl<1 ITNlx,y,y < +o0 forally >0, where

Tyl
ITllyyy:= sup  sup sup +ﬁﬁ
(e AN(—o0,y] A3f<(TeT; |y‘1x| |T|(
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Lastly, we denote by M the space of models for T equipped with the semi-norms | M||y,q :=
ITTlly; 8 + 1T lly; 8-

Remark 3.1. In the rest of the article, often without any further comment, we will write

r:=min{neN : n>|minA|} .

3.1 THE POLYNOMIAL REGULARITY STRUCTURE

As an important example we describe the polynomial regularity structure and canonical model
which are crucial in the analysis of singular SPDEs on homogeneous Lie groups. We de-

fine the structure space T to be the symmetric tensor (Hopf) algebra generated by {m}?:l,

which we think of as abstract lifts of the monomials {ni}?:l. For a multi-index I, we write
n':=n} -..-n aswell as 1:=n°. The group G is given by a copy of G acting by

g—(Tem—ni+ Y cnlen +n@1)
1,J#0, d(D+d()=s;

and T gnl =(T gn)I . The canonical polynomial model is defined by setting
,m;(2)=n;x""2

and

Feymp=ni+ > C/n'o7 o’ +n;07 01
1J#0, d(D+d(J)=s;

These maps are extended multiplicatively to all of T. Using Prop. 23lin the third equality,
Ty (2) =y (17 i+ > ci/n' o on’ +n j(y_lx))(Z)
1,J#0, d(D+d())=d;

—nix )+ Y Ci/n'yon’ ') +m;07 )
I,J#0, d(D+d(D=d;

= nj(y_lxx_lz)

=n;(y"'2)

=I1,n;(2).

3.1.1 DERIVATIVES AND ABSTRACT POLYNOMIALS

Next we lift the vector fields X’ to abstract differential operators X’ on T of degree s j» cf.
Definition[3.61given later. We set

ini _ 5. Leipl
X'nl =61+ Y C;n
1#0, d(D=s;-s;

and extend this definition to the whole regularity structure by the Leibniz rule. The two con-
ditions to be an abstract differential operator are checked directly:
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1. Indeed X*: T, — To—s;-
2. By the Leibinz rule the second property is checked by showing that
X'Teyn! =Ty, X'l (3.1)
Note that HxXinj = X,-Hxnj , since

MeXn@ =01+ Y, ¢jn')=6i+ ¥ ey
I£0, d(I)=s5;—5; 1#0, d(D)=5;-5;

and using left invariance of the vector field X; as well as (2.3)

Xillj(2) = (Xim (7' N@ = Xinp =6+ Y e,
1#£0, d(I):Ej—S,'

Thus B.I) follows from the injectivity of the maps I1,.
Remark 3.2. In addition to showing that &’; is an abstract differential operator, we have shown
that it also realizes X; for the polynomial model, see Definition[3.6lin Section[3.4]
3.1.2 ABSTRACT TAYLOR EXPANSIONS

The following operator, which sends a smooth function to its abstract Taylor expansion, will
be used throughout the article.

Definition 3.3. For a > 0 and x € G, we define the family of maps
P¢:CG)—T
whereP%[f] is characterised by the fact thatT1.P¢[f] = P4[f] € P,.

Remark 3.3. Note that the map P¢ is well defined by Remark[2.23]. We shall almost exclusively
use it, when its argument is a smooth function f € C*(G) c C*(G).

Lemma3.4. Let f € C®(G) and a = 0. Then for each multi-index I the coefficient ofn! inP%[f]
is given by a linear combination (depending only on G) of {XX f(X)}aix<a(ry. Furthermore, for
b = a one has

PY(f]= Q<.PlIf]. (3.2)

Proof. We first observe that holds since the polynomial IT, Q- ,P%[ f] satisfies the prop-
erty required in Definition 23] The first part of the lemma follows by combining Proposi-
tion[2Z.ITwith (3.2). O

Lemma 3.5. In the setting of the above lemma one has

|XIHeP§[f] (2)| = |XIPZ[f] @< Z sup |X]/f(x)||z|d(])—d(1) )
dD=d(N<adU)=d()

Proof. Since the coefficient of p/ in P4[ f] is bounded by a universal multiple of sup dgn=d\) 1 x7 fl
by Lemma[B4lthe claim follows using the fact that | XTI.p’ (2)| < 2|4V 4D | O
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The next lemma will be useful when proving Schauder estimates in Section 3.5 since it
allows us to circumvent the issue of having non-explicit Taylor polynomials.

Lemma3.6. Letd >0andPeTs. If, for somee €10,1],
|(X'T1.P)(e)| < 274D
for all I e N? such that & > d(I), then it holds that|P|, <sc €’ “ foralla<sé.

Proof. We observe that P‘; [IT,P] =1, P. Thus, the claim follows directly from LemmaB.4 O

3.2 MODELLED DISTRIBUTIONS

Definition 3.4. Given a regularity structureT = (T,G), a model M = (I1,T') and y € R we define
917\//1 as the space of all continuous maps f : G — Ty, such that for all { € An (—o0,y) the
following bounds hold for every compact set R < G

If () =Ty f(0)]
sup|f(x)|; < +oo, SO =Tyt ‘< too
xeR X,y€R, |y_1x|7—(

o<|y~lx|=1

We define the corresponding semi-norm | - |ly,q on @K/[ by setting,

|f(J/) _rx,yf(x)l(
x|Y—( ’

I flly,q:=supsup|f(x)l; +sup sup
xXeR (<y <y x,y€R, ly~1
o<y 'x|=1

Given two models M = (I1,T), M = (I1,T), two modelled distributions f € 2}, f € @;\;j and a
compact set & < G we define the quantity,

) 1F) = F) =Ty fW +T ) fO

I f; flly,q:=supsup|f(x) - f(x)lc+ sup su e 3.3)
XeR {<y (x,))eR  (<y Iy‘IXIY
0<|y~'x|=1

For the set of modelled distributions taking values in a sector V < T we write @K/[(V) and if the
regularity of the sector is & € A we often use the shorthand .@;’4 - Wewill freely drop the explicit
dependence on the model, image sector and its regularity when the context is clear.

3.2.1 RECONSTRUCTION

Theorem 3.7 (Reconstruction Theorem). Let T = (T,G) be a regularity structure with a =
min A. Then for everyy > 0 and M = (I1,T') € M, there exists a unique, continuous linear
map Ry : @L — C%, called the reconstruction operator associated to M, such that for any
compact R and A € (0,1]

sup [(Rarf =T £, WD Sa AY1F lys By o 1M y;Bon ) > (3.4)
weB,
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uniformly over x € K. Furthermore the map M — R is locally Lipschitz continuous in the
sense that for a second model M = (I1,T) and f € ‘@1)\/71’ forevery A€ (0,1]

sup |(Ras f =R f = e f 00 + T F G0, Wb S A (I3 Fllysa o 100
YeB, (3.5)

1y I = Ty

Remark 3.8. Existence of a reconstruction operator for y < 0 also holds, however, uniqueness
does not. In the case y = 0 the analogous bound to (3.4) contains an additional logarithmic
correction on the right hand side, c.f. [CZ20].

Remark 3.9. It follows from the definition of the reconstruction operator, that if f € & a pisa
modelled distributions with values in a sector V c T of regularity @ = a, then Ry, f € C%. o

In order to prove Theorem B.7lwe require two preliminary results. As in [FH20| Sec. 13.4]
we make the observation that for every N = 0 there exists a p : G — R, smooth and compactly
supported in B;(0) and such that

fnf(x)p(x) dx=0879, 0<d(I)<N, (3.6)

where the § here denotes the Kronecker delta applied componentwise to the multi-index. For
t> 1 we define p (x) := ¢"¥/p(+” - x) as well as,

P = o) 4 p D) oy )

with the convention p" = p™, We then have the following result.

Lemma 3.10. Ift> ||p| 1 > 1, then there exists a smooth, compactly supported function "’ =
lim,, oo 0™, where the convergence takes place in D(G) and supp(¢p'’’) € Bee-n for C = =

Proof. First, note that since ||p(m) lzr = llpl and p(m) is supported on a ball of radius v, it

follows from the mean value theorem on G (c.f. with a = 0) that

(m) — =
|f 07" () = f(x)] i=1,..d

fG(f(y)—f(x))p(m)(y_lx)dy < max [1ifllzlple™.

Secondly, since
YIp(n,m) — YI(p(n) % p(n+1,m)) — (YI ) % ,0 (n+1,m) (3.7)

one finds by applying Young’s convolution inequality m-times, c.f. Section[2.2] that
1Yip"™ ™l < 1 Yipllooll oI i7"

and therefore

-1 1) 1)
Ip "™ = p ™ o = p M 5 pt = p D o
,m—1 -
< max ||Y,~p(”’" N=lpllpe™
2_
<IYpl=llplfi™"
_ 1Yol (nanl)
IR
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which is summable in m since we assumed that t > || p[ ;1. Thus we may write,

m—n—1
(n,m) _ (1) (n,m-k) (n,m-1-k)
pM=p"4 Y p -p :
k=0

and it follows that p"»™ converges uniformly as m — +oco. Using (3.7) we obtain convergence
in D(G). It remains to check the support of ¢". For two functions fi, f> such that supp(f;) €

By, one has supp(f * f2) € By, +r,, hence it follows that ¢™ is supported in a ball of radius

0o .-m_ _t
m=n% = = T d

It follows from the definitions that ¢ = p" x """ We set

ﬁ(m,n) = ﬁ(m) 2 M1 o s ﬁ(n)

and using (ZI12) we note that ¢"**V x ™ = "™ and p"™" — @™ in D(G) as m — co.

Lemma 3.11. Lett > 1 and p be as in Lemmal310 Let a > 0 and ¢, : G — R be a sequence of
functions such that for every compact 8 c G there exists a Cg such thatsup ¢ g |, (x)| < Cqe®”
and such that &, = £,.1 * p. Then the sequence &, is Cauchy in ChG) forevery B> a and
the limit & satisfies &, = & x . If furthermore, for some x € G andy > —a one has the bound

|£n(y)| <t (|x_1y|7+0‘ + t—(}/+a)n)

uniformly over n= 0 and y € G such that|x~'y| < 1, then|(¢,why| < AY forallA <1 and ¢ € B,
wherer = —[—al.

Proof. The proof follows along the same steps as that of [FH20, Lem. 13.24], but one has to
be careful since convolution is non-commutative in our setting. Let A € (0,1] and v € B, we
first establish the bound

(= Envt, P S A Prla-hin (3.8)

uniformly over y € 2B;, A € (0,1] and locally uniformly over x € G. First observe the trivial
bound,
KEn = Ene 1, WO < SUP (€0 (D) + 11 COD 941 < (1 +9)CrCe®,
X€e

where C := sup{[y*(x)|dx : ¥ € B,} < +oco . Hence, when A < t™" the bound (3.8) holds
directly.
In the case t™" < A, using (Z.I1) we rewrite

K& =Ene, WO = st * 67 = Ene, WO = e, Wi x0T =y )1,
By Taylor’s theorem and in particular Remark[2.15]

Wi () - Pyl (@) S Y ATy e (3.9)
6>0
where the sum runs over a finite set. It follows from (2.10), Remark[2.8land that we have

Pyl *p"(2) = f Py ilzy e (ndy = f B lwzy e dy =yl ()
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and thus
wix ") - yi0) = Wi - Py« p ™),

which by is bounded uniformly by a multiple of Y559 A=+ ~15le=(+9) and supported
on a ball of radius A + ™" < 2. Using the bound [&,,11| Sq t*" we conclude that

KEner, ks p™ =] S 3 AT dgan < 3 =frla=pn
6>0

where we used t™” < A and without loss of generality assumed that r = § in the last line.
Hence {¢} ;=1 is Cauchy in C ~P(G) and for any test function,

En W) = Enir, W 5 ) = (&, x p ™) = (&, % M),

showing that &, = & * V.
To prove the second claim, for any test function ¥ € °8,, A > 0 and x € G we write,

Euh=Enyh+ Y Ern —Enyd,

k=n

where 7 is chosen so that A € [t="*D +="] and as a consequence

|<£ﬂ)W§>| SA—IsltanfB (lx—1y|y+a+t—(y+a)n) dy’s/l}&atan_'_t—yn S/W-
2(x)

To bound the summands ({441 — ¢, cpi) we proceed as in the proof of the first claim to find
that

k= Eret WD = 1€ ks, wh % 00 =y
= (ks1, (Wt =PLIy)) 5 o))

<Y AT UHOlsl k) f €11 dy
5>0 By (x)

5 Z A—(r+5)—|5|tk(a—r—5) (f |x—1y|y+a dy+t—(y+a)(k+l)/1|5|
6>0 By (x)

< Z (Ay+a—r—5tk(a—r—5) +A—(r+5)t—k(y+r+5))
6>0

where the sum in 6 is again over a finite set. Since r +0 > a the quantity on the left is
summable over k = n and is of order 17, concluding the proof. O

We are now ready to proof Theorem[3.7
Proof of Theorem[3_Z. For m > 0 we first define the operators R"»™ : 9Y — C(G) by setting,
(R™™ F) )= (I f () + ™) () = T, F (), 03™).

We then set, for n < m,
'R(m’")f — R(m,m)f % p~(m—1,n)
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and recalling that @+ x 50" = 3" we find

R(m n)f R(m+1 n)f R(m m)f ~(m—1,n) R(m+1 m+1)f ~(m,n)
— (R(m,m)f_R(m+1,m+1)f* p(m)) % p(m 1,n) .

Using the identity
(F %) (x) = (F ¢y) = fF(y)qu(y)dy,

it follows that
(R f =R £)(x) = [ (RO =R £ 50 (3)p )y
:f(nyf(y)*dl —RITEIED £ 5 ()oY (1) dy
f(( yF ) @D = RIMELIED £ 4 50 (1) oL )y
ff My f )+ "0 =R f)(2)py™ (@) dzpy" " (1) dy
ff Iy f() ¢V =T f(2)+ 9" ) (2)py" (2)dzpi™ " ()dy
=ff<Hyf(y) M. f(2),0" )" (2)dzp{" ™ (y)dy .

Therefore, using the fact that IT, =I1,T,, we have,

Then successively applying the facts that,

1 _
* SUPy, zepm(o) <TIT, Pt < Iy, B-m@t~*"I7l; for 7 € Tg,

c IfN-Tyf@)la S ||f||y;3t_m(y)t(“_7’)m uniformly over |y~ !z| <t

(n,m— 1)” .

* llpx < 1 uniformly over m > n =0,

we establish the bound,

1 _
IR f R £l ooy ST, I FIL, 507

uniformly over m = n = 0, where £ denotes the two fattening of the set 8. It follows directly
from the definition and properties of a model that we also have the bound,

IR £l ooy S T, 71 F1l 50", (3.10)

where @ = min A. It follows that RU"»™ f converges uniformly on compacts as m — oo to
R f which also satisfies the bound(@.I0). Since it also holds that for every m = n+1,

R(m’n)f — R(m'm)f " ﬁ(m—l,n) - R(m’m)f * p~(m Ln+1) ‘5(11) - R(m’n+l)f " ﬁ(n)
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we find that
R(n)f — R(n+l)f « 5

Therefore we may apply Lemma[B.I1lto see that there exists a limit R f :=lim,, .o, R’ f .

With validity of the limit established we now turn to show the bounds (3.4) and (3.5); this
requires us to keep more careful track of the underlying sets in the proof. We begin with (3.4),
first noting that if we define fy(y) :=T';,xf(x) then one has R £ =TI, f(x) * " so that
(3.4) can be written as the claim that for all A € (0,1],

sup [(R(f = o WD Sa A1 F Iy By o 1Ty By ) - (3.11)
weB,

Using that |(f — f)(2)la < ||f||},;3‘z_1xl(x)Iz_lxly_a for x, z € R, it follows that for all y € By (x)
one has

(R (f = f) )] = KT, (F () = fe (9D, @)
= (I, (f (1) =T,y f(00), @)

- -1 —
Sy 1 lyBee iy Y vy a7

asasy
Sy, 1 FllysBeen nt & Uyl +el@ 0y, (3.12)
where C(v) := ﬁ is as in Lemma [3.I0l Given n > ny(A) sufficiently larger, we have a uni-
form bound Ct™" < A. By the convergence of R"™ in the first exponent, it follows that R "
satisfies the same bound and so inspecting the proof of the second half of Lemma[3.1T] in par-
ticular noticing that we integrate the above estimate over y € B) (x), we conclude that 3.1T)

holds for the limit R.
Using the obvious notation we can also rewrite (3.5) as

slgn KR(f = £ =R = F D S A (1F5 Fllys By o 1M ysBor 0+ 1 F lysBonco 1TE = Ty, 0 )
YEDm

uniformly over A € (0,1]. This is seen very similarly to (3.1I) but using this time that for n
large enough,

IR (f = f) =R (f = f )l
= Iy (f () = T,y F00) = Ty (F() = Ty ), 01
= Iy (f (1) = Ty 00 = F ) + Ty FQ0) + (0 = 1) (F0) = Ty F ), 0§

5 = 5 —any 1Y@
S (Mygn 1 F5 Fllyizan + 1T =Ty o0l fllyimagn) Y. vy~ xl’ .

a<sa<y

It remains to show that the reconstruction map is unique for y > 0 and that R f is indeed an
element of CZ. This is done exactly as in [Hail4} Sec. 3]. O
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3.2.2 FUNCTIONS AS MODELLED DISTRIBUTIONS

Let 7 = (T,G) be the polynomial regularity structure equipped with the polynomial model.
We show that in this setting the reconstruction theorem and its inverse map Taylor polyno-
mials to Holder functions and vice versa.

Theorem 3.12. Fory > 0 the reconstruction operator is an isomorphism between 27 (G) and
CY(G). In particular the inverse of the reconstruction map is given by

C"©) > f()—Pl,|[fle 27 G),
whereP? is defined in Definition[3.3

Proof. Given a modelled distribution in 27 and since we are working with the polynomial
regularity structure equipped with its canonical model, it follows directly from the bound
satisfied by the image of the reconstruction operator, i.e. Equation(3.4), and the definition of
CY in (Z.I3) that the reconstruction operator is a map 27 (G) — CY(G). Continuity also follows
from (3.4) and by linearity.

To see the other direction recall that given a Holder continuous distribution f € C¥(G) by
Proposition Z22the {X! f}am<y are actually functions and, in particular, that P, =1l xPEZ] [fl.
Therefore, for A = [x~! Ve

I (B (/1= T P ) )| = KBy = oy + (= By S AY (3.13)

uniformly in y € %,. On the other hand, writing P [f] - l“x,yP[yY] [f1=Xaw<ycx,yn’, we find
that

LY A-T, PV Muh= Y o Da'wh= Y o na'eh= Y &, 19Pnn'w).
d<y d<y d(<y

Using that Py is a finite dimensional vector space and the surjectivity of the linear map

C(Bi(e) — RI™Pr e W)} an<y

we find that

> Icfc’yl)td(l) Sysup | ) cfc’yldmﬂenl(w) . (3.14)
d(h<y YeEB, |d(I)<y

Together, 3:13) and G.I4) imply that that |cf | S A7~¢(), we may then apply Lemma[Z.§ to
see that PEY)] [fle DY O

3.2.3 LOCAL RECONSTRUCTION

We will require the following further refinement of the reconstruction theorem which is an
analogue in our case of [Hail4} Prop. 7.2].
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Proposition 3.13. In the setting of Theorem[3.1 one has the improved bound,

If(2) =Tz fWNle
sup |(Rf - f) WM S AV ys,0  Sup  sup L
yeB,y, ¥, z€supp(yl) €<y ly~lz|"

, (3.15)

as well as, given a second model M(I1,T) and a modelled distribution f € .@}\;{, the analogous
bound, that for every A € (0,1],

sup (Rt f ~ Ryl =T f 0+ Tl F, 0 S AT (15 Fllyssupptrty 1Tl co
weB,, (3.16)

1 Dyt y = Tl o)
foranyx e G andany A € (0,1].

Proof. Since the right hand side of (3.I5) is linear in f, as in [Hail4] we may assume it to be
equal to 1. We use the functions p™ and ¢ from SectionB.2.Iland recall that they satisfy

9" V() = fB p" VWP wdy, @ = fB p" Vw0 dw
r—n+l —n+l

in particular since [ o™ (x)dx = 1 we have [ (p(y”)(-) dy = 1 for all n = 0. Define, for fixed 7,
the sets

Ap= {ye G : supp((pg,”)) nsupp(y?) # (Z)} cG

which by definition is contained B}, ¢ (x) with C = ﬁ as in Lemma[3.10] as well as a (mea-
surable) function

Tn:lAp— supp(wi)

such that 7 ,(y) € supp(cpg,”)) N supp(wﬁ) forevery y € A,,.
Next, let

Ry = f (RS =Tl ) f n (1)) @i dy

= Rfwd = [ Mo forat ey,

It follows that for ng = min{n eN : t~" < A}, one has

(Rf - f(x)whH-R,

= U;\ (fo(x) _Hnn(y)f(”n(y)))(W§<P;)dJ’ SAY 3.17)
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as well as for n > ny
R,_1—-Ry :fA Hnn,l(y)f(”n—l(y))(W§¢;_l)dy_fA Hnn(z)f(”n(z))(ilfi(Pg)dZ
n-1 n

:fA Iy, o f @Tp-1(1) (U’if

_ fA My, 0 f (T(2) oM dz

p(”‘“(ww(y"lldW)dy

—n+l

[ [ g e onwlelldydw
r—n+l n-1

—ﬁ\ Hnn(z)f(ﬂn(z))(W§(pZ)dz

n

=fB p(n_l)(W)fA H”n—l (zw“)f(”n—l(Zw_l))(Wi(P(zn))dZdw
r—n+l n-1

—ﬁ\ Hnn(z)f(ﬂn(z))(W§(pZ)dz

= fB () fA (Hnn_l(zw-l)f(nn_l(zw*l)) - Hnn(z)f(nn(z)))(wiq)'g)dzdw.
r—n+l n
Since |7, (2) ' 7m,-1(zw™ 1| = Ct™" and for 7 € Ty such that |7] < 1
M, T (@Rl S A,
we find that

dz <t 1"

fA |, ey f 01 (20™) = T, ) (7 (2) W h )
and thus conclude
Ry — Ryl S v

A similar argument gives |R,| — 0 as n — oo which combined with (3.I7) concludes the proof
of 3.I5). The proof of the analogous bound, (3.16), follows in a similar manner. O

3.3 SINGULAR MODELLED DISTRIBUTIONS

As in [Hail4] we will eventually be concerned with solutions to SPDEs that take values in
spaces of modelled distributions with permissible singularities in some regions of the do-
main. Our main example will be modelled distributions on space-time domains that are al-
lowed to be discontinuous at {¢ = 0}, see Section[4l However, as in [Hail4] we build the notion
of singular modelled distributions allowing for singularities on more general sets, generalisa-
tions of which have been used in [GH19a|[GH21] to study singular equations with boundary
conditions.

We fix a homogeneous sub-Lie group P c G with associated Lie algebra for which we write
p < g. The assumption that P be a homogeneous sub-Lie group means that the the scaling
map § restricts to a map 5 := sl : p — p which is diagonalisable. We fix a decomposition
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g = p @ p° such that p° is also invariant under s and define the homogeneous dimension of P
and its complement, P¢ := exp(p°) as,

|5 := trace(s|y) and |m|= trace(s|pc) . (3.18)
Furthermore, we set
|xlp:=1Adg(x,P)=1Ainf{ze P:|x'zl}, |x,ylp:=IxIp Alylp.

Note that since P is closed (being the image under exp of a linear subspace of g), one sees
easily that the infimum above is actually a minimum. Given & c G we define the set

Rp:={(x,y) € (B\P)* : x#yand |x 'yl <|x,ylp}.
That is Rp contains all the points in R that are closer to each other than they are to P.

Definition 3.5 (Singular Modelled Distributions). Given a regularity structure] and a sub-
group P as above, for anyy >0,neR and maps f : G\ P — T, we set

F@le |f (0l
o [[f]] y ;R = Sup Sup :
g—()/\o PR eRp c<y IXIZ_(

||f||%n;§1: sup sup
x€R\P <y |x|

Then given a model M = (I1,T") as well as a sector V, the space .@;‘;'/[(V) consists of all functions
f:G\ P — V. such that for every compact set R G,

1f(xX) =Ty, f(W
£l o= 1F s+ sup sup————=—C < oo
VIR v ey (<y |y~ 1x|” qxd/'?)y

For two models M = (11,T'), M = (I1),T) and two modelled distributions f € .@;X’,,, fe .@;'1?;[ we
also set, ’

- - 1f () = F0) =Ty f)+Tay fFW¢
; a=If=flyng+ sup su .
Ilf f”|7""ﬁ I~ Flyms (x,y)fﬁp C<Iy) =Ll 1Y

If V is a sector of regularity a € A, where appropriate we will use the shorthand .@g,’z M=
.@g’]el(V) and we will drop the dependence on the model when the context is clear.

Remark 3.14. We refer to [Hail4] for more intuition regarding the definition of these spaces
and their properties - all of which carry over to our setting. In particular [Hail4, Rem. 6.4]
discusses the relationship between the spaces .@;’" and 27.

Remark 3.15. The family of norms [f], ,.« and the two following lemmas play a role when we
consider fixed-point maps in Section @ below. Their utility is in allowing us to extract small
scaling parameters in terms of the distance to the subgroup. In the semi-linear evolution
equation setting this allows us to obtain fixed points on sufficiently short time intervals.
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Lemma3.16. Let R ¢ G beacompact domain such that for every x € R and X := argmin ¢ p lx~ 1yl
one has that the points X(A- (X~ 'x)) € & for every A € [0,1]. Also let f € .@},"n for somey >0 and
assume that for every { <n the map x — Q. f (x) extends continuously in such a way that for
x € P one has Q; f (x) = 0. Then one has the bound,

[[f]]%n;ﬁ < |||f ||y,n;ﬁ’

where the implied constant depends affinely on |[T|l,,g but is otherwise independent of K. Sim-
ilarly, if f € @g’;j with respect to a different model M = (I1,T) and is such that

lim Q¢ (f () —f(x)=0
for every{ <n. Then one has the bound,

[[f_-ﬂ]%ﬂ;ﬁ 5 |||f;-f|”y,17;ﬁ+ ||r_f||Yiﬁ(|||f|||y,n;ﬁ+ |||f|||y,17;ﬁ) 4

with proportionality constant also depending affinely on |||,z and III_“IIW;.

Proof. The proof follows almost exactly as that of [Hail4, Lem. 6.5]. For completeness we
provide a sketched proof of the first inequality, the second follows analogously.

Firstly, note that for x € G such that dg(x, P) = 1 or for { = n both bounds follow directly
from the definitions. Hence we restrict our attention to x € f such that dg(x,P) < 1 and
{ <. We define a recursive sequence by setting xo := X, X0 := % = argmin,p|x"'z| and
Xn 1= Xoo (27 (x5 X0)). One has |x, xool = 1277 - (x5 x0)| = 27" | x7 ) x| as well as

1 ] g 127 Gl + 127D - (i )] = 2 "(5)|xo;xo|.

So using that we can write 27" ngO1 Xol| = Ix;Ixool we find
x5, Xne1l S 1%, Yool = 27" x5, X0l = 27" dg (x, P) = 27" | x| p. (3.19)

The main difference in the proofis to apply (3.19) in place of [Hail4} Equation (6.4)], then the
rest of the proof adapts closely. One uses (3.I9) together with the definition of || f|]|, .4, to
show that for any { € A,

1 e = Ty, F Ol S 1 £l 2™ 16157

To see this, note that for m = 7 it trivially holds and so for | f(x)|,, <ga |x|;’,_m, we proceed by
reverse induction, assuming that the required bound holds for all m > { and then show that
it also holds for {. Applying the triangle inequality, the inductive hypothesis, the properties
of I and (3.19) we find, as in the proof of [Hail4, Lem. 6.5], that

| o) = Fan)le S 2001517,

where the constant depends affinely on ||T'l|y,s. Then, using the assumption that Q¢ f(x) =0
for all { <n and x € P and applying the above inequality we find,

F e =100 = Fole < X 1 Genen) = F e Sl ¢ Y 8700,

n>0 n=0

Using that A is locally finite we may complete the induction which finishes the proof of the
first inequality. The proof of the second follows as in [Hail4, Lem. 6.5]. O
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Lemma 3.17. Lety > 0, x € (0,1) and assume f, f satisfy the assumptions of Lemma[3.16.
Then, for every compact 8 c G, one has

|||f;f|”(l—1<)y,n;ﬁ§ [[f_f]];,n;ﬁ(|||f”|y,n;ﬁ+ |||f|||y,n;ﬁ)l_1<-

Proof. Follows by a direct adaptation of the proof of [Hail4, 6.6]. One need only replace R?
there by G here. O

3.3.1 RECONSTRUCTION THEOREM FOR SINGULAR MODELLED DISTRIBUTIONS

Since the reconstruction is purely local, it follows from our earlier proof that for any singular
modelled distribution, f € 2", there exists a unique element R f € S'(G\ P), i.e. in the dual
of smooth functions compactly supported away from P, such that,

(Rf-TLf(x),why <A,

for all x ¢ P and A <« dg(x, P). However, we show below that under appropriate assumptions
there exists a natural extension of R f to an actual distribution on G with regularity CZ.

Proposition 3.18 (Singular Reconstruction). Let f € .@g’n(V), Y >0andn<vy. Then, provided
a A1 > —m, wherem is the scaled dimension of the complement of the singular hyperplane
defined by B.18), there exists a unique distribution R f € Cf/\" such that (Rf)(p) = (ﬁf) ()
for any smooth test function compactly supported away from P. If f and f are given with
respect to two models M and M then, for any compact 8, it holds that

IRmf =Ry fllcamny S ||| £ f|||y,n;f€ + || M M|||y;ﬁv
where the constant depends on semi-norms of f, f and Z, Z on £.

We provide the proof of Proposition [3.18at the end of this section, let us first make some
preparatory observations. Recalling the decomposition g = p @ p° defined at the start of the
subsection, we define the projections 7. : g — p and 7y, : g — p. Then using the decomposi-
tion X = XP + X € p@ p, we define the map

D:g—G, P(X)=exp(XP)exp(X°). (3.20)
Similarly to RemarkZI8lone sees that @ is a global diffeomorphism. We then define the map
Np:G—Ry,  x— |exp(mco® ' (0)] (3.21)

and observe the following properties.

* For x € G one has that Np(x) = 0 if and only if x € P . This follows from the fact that
P =exp(p).

e For x € G and 6 > 0 one has the identity
Np(85-x) = 6Np(x) . (3.22)
Indeed, writing x = ®(X), we have

Np(6-x) =|exp(me(Ds X)) = lexp(Ds (X)) =16 -exp(m (X)) = S Np(x) .
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* Forany x € Gand y € P one has
Np(yx) = Np(x). (3.23)

This follows from the observation that, writing x = ®(X) and y = ®(Y) = exp(Y) one
finds that yx = exp(H(Y, X*)) exp(X¢) where H was defined in @.I). Identity (3.23) then
follows from the fact that H(Y, X) € p.

e The map Np is Lipschitz continuous on G and it follows from Remark 2.4] that Np is
smooth on G\ P.

¢ There exists a constant C > 0 such thatforall xe G
CNp(x) <dg(x,P). (3.24)

In a neighbourhood of the origin this follows directly from the fact that Np is Lipschitz
continuous. Homogeneity of N, (given by (3.22) above) and of the distance function
x— dg(x, P) then shows that this constant is in fact uniform on all of G.

e Forallxe G
dg(x,P) < Np(x) . (3.25)

Indeed, write x = ®(X) = exp(XP) exp(X¢) and note that

d(x,P) < |lexp(XP) " x| = |exp(X©)| = Np(x) .

Proof of Proposition[3.18 The proof is analogous to that of [Hail4, Lem.6.9], the only ele-
ment that does not adapt ad verbatim, is the construction of the partition of unity ¢, ,. We
therefore present an alternative construction of a partition of unity on G, which satisfies all
the required conditions.

First let ¢ : Ry — [0,1] be a smooth compactly, supported function such that supp(¢) =
[1/2,2] and with the property that for all r e R,

Y pR"n=1.

ne”Z

Secondly, let 3 c P be a lattice (see Section[2Z.3) and let ¢ be smooth, compactly supported,
such that

Y py=1 (3.26)
yed

for all x in the %-fattening of P c G, where C is the constant in (3.24)and (3.25). For y € 3 we
then set

¢y (x) := p(CNp(x0))Py(x) ,

where the constant C is as in (3.24). To conclude, we then set for every n =0, y€ 3 and x € G,

Gy (X) 1= Py (2" x).
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By using (3.22) and (3.23), it directly follows that ¢y,  (x) = (¢1,¢) (y‘1(2” -x)). Since ¢, . has
compact support and is such that for all x € supp(¢;,.), one has dg(x,P) = CNp(x) = 1/2, it
only remains to check that {¢p5,,} ez, ye3 is in fact a partition of unity. Indeed let x € G, then

Y. bny= )Y @CNp@"-x)P,2"-x)=) @2"CNp(x)) Y ¢,2"-x) =1,
nez,ye3 nez,ye3 nez Yy€3
N
=1 given d(x,P)leZ*'”1

where we used (3.26) in the last equality. The remainder of the proof of [Hail4) Lem. 6.9] then
adapts ad verbatim by also also making use of Proposition[3.13l O

Remark 3.19. If the model M is smooth, i.e. [1,7 € C®(G) for every T € T, one finds exactly as
in [Hail4) Rem. 3.15] that for any modelled distribution f € 27 with y > 0 one has the identity
Rumf(x) = (I f(x) (x) (and in particular Ry f is a continuous function).

3.4 LOCAL OPERATIONS

To handle SPDEs using regularity structures we require suitable extensions to modelled dis-
tributions of standard local operations such as differentiation, multiplication and composi-
tion with smooth functions. These extensions adapt easily from [Hail4], thus for brevity we
provide them directly for singular modelled distributions.

3.4.1 DIFFERENTIATION OF SINGULAR MODELLED DISTRIBUTIONS

Definition 3.6. Given a sector V of a regularity structure] = (T,G), a linear operatoro:V — T
defines an abstract differential operator of homogeneous degree (3, if

* foranya€ Vy itholdsda€T, g,

e foranyaeV andT €G, one hasTda =0T a.
We say 0 realizes £ for the model M = (I1,T) if

e foranyacV and x € G, one has110a = L£1lxa.

The following proposition is an immediate consequence of the definitions and the unique-
ness of the singular reconstruction operator.

Proposition 3.20. In the setting of Definition[3.8 let f € 2" (V) for somey > n, then of €

.@g_ﬁ p, Furthermore, if the sector V has regularity a and it holds that y > f as well as
aAn>pf—m, thenonehasRof =LRf.

Proof. For thefirst claim one may directly adapt the proofs of [Hail4, Prop. 5.28 & Prop. 6.15].
The second claim follows by applying the Proposition[3.18]to gg—ﬁvﬂ—ﬁ’ 0
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Remark 3.21. We note that any left invariant differential operator £ of homogeneous degree
B on G is of the form
£= Y aX',
d(D=p

for some I € N, Thus, in order to lift such an £, it suffices to lift each of the differential
operators {X,-}?:1 to abstract differential operators.

Remark 3.22. Recall that in Section[3.I.Tlwe lifted the differential operators X; crucially using
the additional structure of the polynomial regularity structure. This is by no means the only
lift, though certainly the most canonical one. One observes that it is always possible to extend
aregularity structure and a model such that it carries some lift of a given differential operator.

3.4.2 MULTIPLICATION AND COMPOSITION WITH SMOOTH FUNCTIONS

We recall the notion of a product on a regularity structure.

Definition 3.7. Given a regularity structureT = (T,G) and two sectors V,W c T, a continuous
bilinear map
*:(V,W)—=T, (a,b)—axb

defines a product if
* onehasa*beTy, g foreverya, e Aandac Ty, beTg,
e T'(axb) =Ta)x (Tb) foreveryT € G and for everyacV,be W .

We say that a sector V is stable under the product if VxV < V. Given a product x and any
Y € R, we introduce the truncated product *y, which is given by the composition of * with the
projections ontoT.,.

We show that the product of two singular modelled distributions is again a singular mod-
elled distribution with possibly new regularity and singularity parameters.

Proposition 3.23. Let P be a hyperplane as described above and f, € .@;1’"1 (V1) and f> €
@gz’"z(Vz) for two sectors Vi, Vs, of respective regularities a1, ax € A and let x be a product
on(Vi, Vo). Then f = fixy f2 € .@(’;_’g with

a=a1+az, yY={y1+a)A(y2+ar), n=m+a))Am+ai))Am+n2).

Here %, is the projection of x ontoT<,.
Furthermore, for products between modelled distributions as above but on differing models,
writing f = f1 xy f> and g = g1 *y g2 we have the bound,

173 8llly i < W F15 &1l o+ s 82l i+ 0T =Tl
uniformly over any compact set R c G.

Proof. One may directly adapt the proofs of [Hail4, Th. 4.7] and [Hail4} Prop. 6.12], recalling
that the homogeneous distance satisfies a triangle inequality with a constant, c.f. Remark2.4]
O
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We define the composition of modelled distributions with smooth functions as in [Hail4].
Given a € V, a function-like sector, we decompose a = al + @ with a € T~y and a = (1, a).
Further, let { > 0 be the smallest non-zero value such that V; # 0 so that we actually have
ae TE(.

Given a smooth function F : R" — R, for some 7 = 1, and a function-like sector V which is
stable under some product *y, We lift F to a function I:“Y : V" — V by the formula,

k
Fy(a):= ;%!Qoma*v", (3.27)
where we used the isomorphism Ty ~ R for each component of a = (a,...,a;) € V", aswell as
the notation d; = a; — Qpa;. Here the sum runs over all possible multi-indices and we extend
the product x in a natural way for vectorial arguments and multi-index powers.

We make the same observation as in [Hail4} Sec. 4.2], that although the sum in looks
infinite, since { > 0 we have a*** € T >klc and so only finitely many terms of the sum are
non-zero. In the following proposition we naturally extend the definition of a modelled dis-
tribution and associated norms componentwise.

Proposition 3.24. Let P be as above, ¥y > 0 and f = (f1,...,fn) € .@};'n(V”) be a collection of
modelled distributions for some function-like sector V which is stable under the product x. Let
furthermore F € C*°(R";R), then, provided n € [0,v], the modelled distribution

E(NHx):6—V,

with F(f) defined as in B27), belongs to .@;’"(V). Furthermore, the map 13} : @g’"(V) -
.@g’n(V) is locally Lipschitz continuous in any of the semi-norms || - II%W; and ||| - |||W,;ﬁ.
Furthermore, the analogous Lipschitz bound holds when working with two models.

Proof. One may follow ad verbatim the proof of [Hail4} Prop. 6.13], as well as [HP15} Prop. 3.11]
for the last sentence, since all Taylor expansions are carried out in Euclidean space. O

3.5 CONVOLUTION WITH SINGULAR KERNELS

In this section we describe how to lift the action of singular kernels onto the regularity struc-
ture. While most arguments adapt from [Hail4] some care has to be taken due to the fact
that convolutions are not commutative and we do not have an explicit formula for Taylor ex-
pansions. This latter issue is circumvented using Lemma [3.6]which allows us to reduce our
analysis to similar expressions as appear in [Hail4]. The examples we have in mind are the
singular part of Greens functions of left invariant differential operators satisfying the follow-
ing assumption.

Assumption 3.25. The kernel K : G\ {e} — R can be decomposed as

K(x) =) Kupx) (3.28)

neN

where the smooth functions K,, are supported on By-» and
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e foreachle N4 there exists a constant C(I) > 0, uniform in n € N such that

sup | XK, (x)| < C(1)2sl-p+din,

xeG

* for any multi-indices I, ] € N4 there exists a constant C(1,]) > 0 uniform in n € N such
that,

‘ f n' X Kx)dx|<cd,n2-r",
G

* there exists an integer r, such that
f n'()K(x)dx=0
G

for all multi-indices I € N4 with scaled degreed(I) <r.

Remark 3.26. We note that all of the analysis in the remainder of this section also applies
to kernels of the form K : (G \ {e})? — R satisfying an analogue of [Hail4) Ass. 5.1 & Ass. 5.4]
adapted to our setting. Although Assumption [3.25]is somewhat less general we choose to
work with it for two reasons; firstly it is simpler to verify and secondly it highlights the role that
translation invariance plays in our applications. Lemma[4.4lwhich is an amalgam of [Hail4}
Lem. 5.5 & Lem. 7.7] in our setting, shows that fundamental solutions of left-translation in-
variant, homogeneous linear operators can always be decomposed into a compactly support
part satisfying Assumption [3.25]and a sufficiently well-behaved remainder.

Remark 3.27. Although we work explicitly with the one-parameter kernels of Assumption
it will sometimes convenient in the proofs below to define K (x,y) := K(y~'x) and use
the notation K(f)(x) := f K(x,y)f(y»)dy = f * K(x). Note that under this convention, for any
left-translation invariant vector field X, one has (XK)(f) = X(Kf).

From now on we shall exclusively work with regularity structures 7 models M satisfying
the following assumption.

Assumption 3.28. Foreach a€ A, the vector spaceT, coincides with the linear span of abstract
monomialsn' with d(I) = a and the model M € M restricted to the polynomial sector T =
@D aea Ta, is the canonical polynomial model.

We point out that the assumption K annihilates polynomials causes no real restriction on
the type of kernels since the result [Hail4, Lem. 5.5] adapts in a straightforward manner to
our setting, see also Lemma[4.4] below. We point out that this assumption is convenient but
not crucial for the theory, c.f. [HSa]. In the remainder of this subsection we show how the
action of kernels of this type are lifted onto the regularity structure and act on modelled dis-
tributions. Given a y € Rn A we write K, for this lift; it corresponds to K in the sense that for
fea”

RK,f=K(Rf) (3.29)

and in that it satisfies an appropriate version of the classical Schauder estimates.
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Definition 3.8. Given a sector V, amap I : V — T is called an abstract integration map of
order 3 > 0 if it satisfies the following properties:

1. Foreachae A, 1:V,— Tatp whereTa+ﬁ :={0} fora+p ¢ A.
2. It annihilates polynomials, that is 1 : TNV - {0}.
3. ForeachteT, TeG: ZT-TT)(1)eT.

Assume that the kernel K satisfies Assumption B.25lfor some > 0. We associate to K the
map 7 :R% — L(T, T) which for every 7 € T, is given by

Jw1:= Y PY (11,7« k), (3.30)

where the last sum is seen to converge absolutely by first observing that by Assumption [3.25]
foranyt e T,

| X (e * Kp) ()] = 1Tt * X1 Ky (0] = T 7 (X Ky (x, )| S 27 @+h=di)
and then using Lemma[3.4l

Definition 3.9. Given a regularity structure] equipped with an Integration mapZ, a kernel K
and a model M = (I1,T"), we say the model M realises K forZ if for eacht € Ty and each x € G,

IM,7Z7t = K(I,t) - 11,7 (x)T.
Now we can define the lift of the kernel K, namely for f € 27 (V) we set:

Ky fx):=Zf(x)+T(x)f(x) + Ny f(x),

where

Wy P =Y PLP(Rf -T1f(0)) * Ky,)

where the last sum converges by the same argument as for 7 (x)7.

Remark 3.29. Given a kernel K satisfying Assumption a regularity structure and model
satisfying Assumption it turns out that one can always extend the regularity structure
and model to be equipped with an integration map Z realizing the kernel K. This is the con-
tent of the extension theorem found as [Hail4, Thm. 5.14], which holds in our setting as well.
While we do not reproduce the whole proof since it is a straightforward adaptation of the
original one, we present the main steps below, see Lemmas [3.31] and[3.33] so that the
interested reader will easily be able to fill in the remaining details.

The next theorem which is an analogue of [Hail4, Thm. 5.12], confirms that Ky does indeed
correspond to K in the sense of (3.29) and satisfies the desired Schauder estimates.
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Theorem 3.30. Lety e R\ A and > 0 be such thaty+ ¢ A, let K:G\ {e} — R be a kernel
satisfying Assumption[3.25 for r =y + B, let T = (T, G) be a regularity structure and M = (I1,T’)
be a model satisfying Assumption[3.28 Furthermore assume that T is equipped with an ab-
stract integration operator and M realises K forL. Then for any sector V of regularity a € A the

operator Ky is a continuous linear map from .@L(V) to @2; Jrf;) o Satisfying the identity
REyf=K(R/f),

forall f e .@K/](V). Furthermore, if we denote by M = (I1,T'), M = (I1,T) two admissible models

and by KC,,, respectively ICY the associated operators, one has the bound

Iy £y Fllyspin Sc I f Flllyz + 1001005+ 1T =Tl 5
where the implicit constant depends on the norms of M, M and f € .@K/I(V) and f € .@Z;I(V).

The fact that the next lemma ([Hail4, Lem. 5.16]) still holds in our setting is the underlying
reason that all proofs extend in a rather straight forward manner from [Hail4] and one does
not require a more involved notion of abstract integration map, which is for example the case
on general Riemannian manifolds c.f.[HSal.

Lemma 3.31. In the setting of Theorem[3.30 one has the identity
LayZ+T ) =Z+T )y

forallx,y€G.

Proof. The proof consists of unravelling the Definitions and using the fact that the map II, is
injective when restricted to polynomials, exactly as in [Hail4]. O

We introduce the following quantity; for I e N”,a > 0,neNand x, y,z € G, set

kP (2) = XKy (3, 2) - PP IXT K (L 21 (9) = X (K (-, 2 - P2 PR, 21) () (8.31)

nxy

where the second equality follows from Remark[Z.12] Here we reiterate that we are using the
notation K(x, y) := K( y_lx) where K satisfies Assumption[3.25] Taylor’s theorem and Remark
2.I5then yield that

Ky, (2) = X/ (X{Kp)(x2,20Q (x 'y, d?2) . (3.32)

IIIS[a]+1,d(Dza+ﬁ—d(I)L
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As in [Hail4] the motivation for defining these quantities comes from the identity
I (Z7) () = K1) () — N J ()T ()
=2 f (Mer (K (3 ) = By P K L ()b (y) dy

= Z f (Mt (K (3, ) = PE P ()2 (K, D (1)) b () dy
= Z f (M7 (Kn(y, ) — (x7) (ﬁjjﬁ [Kn (1) () dy
=3 [ (K ) =P K N ) dy

= ; f L7 (Kys, ) o) dy

where we use the subscript in (I147)2 (K, (-,+)) to clarify that this denotes the function w —
1,7 (K, (w,-)) and the analogous subscript for P 11K (-, )1(y) to clarify that one expands in the
first coordinate. The next Lemma collects the results of [Hail4, Lem. 5.18, Lemma 5.19], the
proofs of which adapt ad verbatim.

Lemma 3.32. Leta € Aandt €T, and assumea + f ¢ A, then the following bound holds

Ty DK S Il By L+ 1T a,By00) Y 20" 1y~ xlOFaHA=dD (3.33)
5>0

where the sum over 8 runs over a finite set of positive real numbers. The same bound holds for
|(T1,T) (K,Iljgy) |, as well as the analogue bound on the difference of two models.
Furthermore one has the bound

5

as well as the analogous bound for the difference of two models, where all these bounds hold
uniformly over x€ G, A€ (0,1] and ¢p € B,

fG (L) (KR )or (1) dy | S AP I ;8,00 A + 1T a3, 0) » (3.34)

As in [Hail4] we introduce for x, y € G the following operator
Txy: =T Xy =Ty y T (y) (3.35)
Lemma 3.33. Under the assumptions of Theorem[3.30 one has for each a€ A, T € T,
| T,y Tla S Mg, By (1 + 1T g, By )|y~ X1 %P4 1]

uniformly in x, y € G satisfying x € B1(y). Again, the analogous bound holds for the difference
of two models holds as well.

Proof. First we write Jx,y = ¥, Jy., where each J;), is defined by replacing K by only one
summand K, in the definition of J,,. Observe thatsince Jy', 7 € Teas g it suffices by Lemmal[3.6]
to show that

pi () :=e(TeyT)(Y) € Pasp

44



satisfies
Y1 p™M @)l S Mg,y A+ 1T g, B, ) 1y~ x| P4 D)z (3.36)
n

We treat the cases |y~'x| < 27" and |y~!x| > 27" separately. In the case |y~ x| < 27", using
the definitions of the polynomial regularity structure, we find

P =T, D (7 2) =T (J), D) (2)

and thus
'pie=X"0,.77,0)(x) .

Using the analogous notation 7" (x) for the operator consisting only of one summand in
(330D, we find

M J" 0T xy1(2) = Y My (T"(0)Qy Ty yT) (2)

Y<a
= Y mPLP(11,0,T. 1), K, )1(2)
Y=a
= Y PIP(11,Q, Ty 1), Kn(,)1(2)
Y=a
=y;anx9yrx,yr(1>y P11 ()
= @) (PP K, (D) = Y 0Ty (B 1K, 1 = BL K, 1) 2)
r=a
= BYP 1M, 1)2Kn (-, )1(2) — Y QT 7 (B P 1K, 91~ B P KG (1) (2)
Y<a

and
LT, T ()1(2) = T ()1(2) = By P10, 102K, (, )] (2)
Byt By 101, 70K, ]| (2

(1,7, (B3 P 1K, )| @),

=P,

~a+p

=P,

where in the third equality we used the fact that 13;”[3 acts as the identity map on polynomial
functions of degree less then a + 8. Therefore,

pra) = (K ) =Py U1 | @)= 3 110Qy Ty 7 (B 1K, 1 = PLP G 1) 2)
J o y<as ~ -
::P?J(f 2) :=pfg(x‘lz)

Using the general formula Xl(f)“ [fHx) = XI(P“ [fN(e) = le(x) for d(I) < a we find that

X' ppyte) = X! |2 (K ) = B 1K 1) | ) = @ m a3

and so by Lemma([3.32]we find that
Yo xX'pr@I Sy tx et P A

n:ly-lx|s2—n
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Concerning pf g , since one has the identity

Py (7 2) = —BL P I, Q) Ty y 102 K, )1 (2) + B P I Q) Ty 102K ()] (2)
we find that XIpZ'g/(e) =0unless d(I) € [y + B, a + B), in which case

le?g(e) = Hnynyyr(XllKn(x, ')) .

Thus,

1 y -1 —Y - —d(I -1 —d(I
Yoo xX'pters Yy xle et hdgy <yl et hrdDg

n:ly lx|<2n n:|ylx|<27"

where we used that the case d(I) =y + 8 does not arise as by Assumption[3.28]
we have y + 8 ¢ A. This concludes the case |y~ x| >27".
To treat the case |y~'x| > 27", one writes

prz) =) M J"(x)(QyTxy7)(x2) — Ly, T " ()T (x2)
S g N g |
=7 (2) =:q",(2)

and using the fact that y + 8 ¢ A one finds

[T, Qy Ty (X{Kn(x,))|, ifdD<y+p,

X" (e)l =
1 0, otherwise,

which is bounded uniformly over |y~ x| < 1 by a constant multiple of |y~ x|* Y2~ +f=dD)
Concerning q;',, we find that

dr2(2) =TTy T" (N7 (x2) =T, T "())7(x2) = P;jﬁ[(HyT)an(-. Ny x2))

and therefore by Lemma[3.5]

X'gfels Y sup 11,7 (X Ky (32 )| 1y~ 040
d(D<d(NH=a+pdU)=d()
SJ Z Sup 2—n(zx+,5—d(]))|y—1x|d(])—d([)|_[|

d(h=d(N<a+pdUN=d()
< Z g—nla+f-d()) |y—1x|d(n—d(1) 7] .
d(D=d()<a+p

Since p; =Y y<a qz ly + qﬁz one obtains (3.36) by summing over {neN : |y~lx|>27"}. O
Proof of Theorem[3.30. First, we need to check that for a € A it holds that
Iy £ () =Ty Ky FDla Sy xlVHh4, (3.37)

For a ¢ A this bound follows from Lemma [3.33]and properties of modelled distributions by
an ad verbatim adaptation of the same argument in the proof of [Hail4, Thm. 5.12]. The only
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place, where the proof [Hail4, Thm. 5.12] does not adapt directly is when showing the bound
for a € A. As in the proof of Lemma [3.33lwe use Lemma 3.6 to circumvent the difficulty of
not having explicit Taylor expansions in our setting. The rest of the proof adapts almost ad
verbatim.

We first note that the polynomial part of ICy f (x) — Ty, KC, f(y) is given by

P =Ty Ny F() =Ny F(0) + T (1) Ty f() = £ () (3.38)
=P =:P ) =P ’

and thus, in order to prove (3.37) for the polynomial part it suffices by Lemma [3.6] to show
that for any d(I) <y + 8, p(e) :=I1. P satisfies

X pe)| < |y Ly tPmdD (3.39)

Using we define the analogous decompositions 7 =Y., 7" and N}, = ¥ nJ\/y” and simi-
larly write P =Y ,_o P", etc.

As usual we use different strategies for small and large scales, starting with the case 27" <
Iy_lxl. In this case we separately estimate p;(e) :=II.P; for i € {1,2,3} .

* Noting that

pl(2) =y Ty y Ny f () (x2) =TT, N, f (1) (x2) = P;jﬁ [(Rf =T, f)2(Kn())] (v ' x2),

we find by Lemma[3.5]
X'plels ¥ sup |(Rf—Hyf(y))(X{'Kn(y,.))'|y—1x|d(n—d(1)
d(=d(N<y+pdU)=d0)
< Z sup 2—n(}/+ﬁ—d(]’)) |y—1x|d(ﬂ—d(l)

~ d(D=d()<y+pdUJ)=d())
< Z 2—n(Y+,3—d(D) |y—1x|d(])—d(1) .
d(D=d()<y+p

* Regarding pJ we find that X' pJ(e) = (Rf - I f(x)) (X{Kn(x,")) and thus by the Re-
construction, see Theorem[3.7]
X pgie) S 2 nrhmain,

e Lastly, for p”, using the definition of 7 (x) and properties of models and modelled dis-
tributions we find

BHOIE Y |(Mx Q5 Ty, f(y) — F(0)(X{K(x,)]
6eA: d(I)-p<b<y
< Z |y—1x|Y—62_n(ﬁ+6—d(I)) .

6eA: d(I)-p<b<y
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Therefore summing over 27" < |y~!x|, since f+6 ¢ A forany§ € Aand f+7 ¢ A, we find

3
Yoo ix'ptels Y Y IxX'plel Sy txrtPrad

n:27n<|y x| n: 27n<|y-lx|i=1
Next we turn to the case 27" > |y~! x|; here a computation analogous to the one preceding
[Hail4, Eq. (5.48)] gives

XIphe) =, f-RAOKE N~ Y (MeQr Ty f) — F0)(X{Kn(x,))  (3.40)
(<d()-P

which can be bounded exactly the way it is done there.
Finally, one may follow the concluding steps of the proof of [Hail4) Thm. 5.12], finding that
for any ¢ € B,

(I (Cy £(0) - KRP)@h) = f (Mef ) = RF) (KL )y

and thus one obtains the identity R, f = K(R f).
The proof of the difference bound follows by similar steps as to those presented here and
applied in the proof of [Hail4]. O

3.6 SCHAUDER ESTIMATES FOR SINGULAR MODELLED DISTRIBUTIONS

Since our main application will be to semi-linear evolution equations we will often require
a Schauder estimate for modelled distributions with permissible singularities near a given
subgroup P c G, as in SectionB3.3]on singular modelled distributions.

Proposition 3.34. In the setting of Section|3.3 and Theorem[3.30, given a sector V of regularity
a € A, the operator Ky is well defined on .@g’n(V) forn <y provided thaty >0 andnAa > —|m|.

Furthermore, ify+ ¢ A andn+p ¢ A, one has Ky f € .@;Jrﬁ’(nm)w continuity bound

|||ICYf;IC}’]E|||y+ﬁ,(n/\oc)+ﬁ;5<2fS |||f;f|||y,n;ﬁ +IT~ l:[”y;ﬁ +IT _flly;ﬁ (3.41)

over any compact set & c G and admissible models, where the implicit constant is uniform in
the semi-norms ofM,M and f € .@;’]\U/I(V), fe .@;’&(V) on R.

Proof. The proof follows exactly along the same lines as the one of [Hail4} Prop. 6.16], where
as in the proof of Theorem[3.30/the only modification needed is due to the fact that our Taylor
expansions are non explicit. Using the same notation as in the proof of Theorem we
recall

Pi=T Ny f() =Ny F(0) + T () T,y f () = f(2)). (3.42)
—_— Y— ~~ 4
:Ipl :ZPZ :2P3

This time, in order to show that K, f € .@;Jrﬁ na+p , by Lemma 3.6, we are required to show
that for p(e) :=I,P=Y>_ TI.P;,

X p@) S 1y xl PO |, y AT (3.43)

There are three scales, which need separate arguments.
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* Inthe case 27" < |y~ ! x| one proceeds exactly as in the proof of Theorem B30l using the
decomposition p” = Zf.’: P}

¢ In the cases 27" € (Iy_lxl,%lx,ylp) and 27" = %Ix,ylp one uses Equation and
proceeds exactly as in [Hail4] from there onwards.

Again, the proof of the difference bound follows analogously. O

3.7 SYMMETRIES

As in [Hail4} Sec. 3.6], we shall consider modelled distributions which respect certain sym-
metries of G. In this work we will only consider the symmetries of G under the canonical left
action of a discrete subgroup & < G as in Section 2.3 acting by & x G 3 (n, x) — (nx) € G. We
extend this to an action on function ¥ : G — R by pull-back, i.e.

(n* ) () :=y(n~ ' x) =y, ).

For a regularity structure 7 = (T, G) we give the following definition, by analogy with [Hail4,
Def. 3.33] but restricted to this more straightforward setting.

Definition 3.10. Given a discrete sub-group & c G as above, we say that a model M = (I1,T) is
adapted to the action of & if, for every test function, p € C°(G), x€G, 1 € T and n € & one has

(M ?)(n*Y) = (L7) (@) and Tpypy =Ty

A modelled distribution f : G — T is said to be symmetric if f(nx) = f(x) for every x € G and
ned.

The following proposition is an amalgam of [Hail4, Prop. 3.38 & Prop. 5.23].

Proposition 3.35. Let T be a regularity structure, ® c G be a discrete subgroup as above and
M = (IL,T) be adapted to the action of & (according to Definition[3.10). Then, for every mod-
elled distribution f € 97, for somey > 0, symmetric with respect to the action of ®, the follow-
ing hold;

1. Forevery¢ € CX(G) and ne€ ® one has (Rf)(n*¢) = (Rf) ().
2. Forany x€ G andn € & one has (Ky f)(nx) = (KK, f)(x).

Proof. The proof of the first point follows exactly the steps of the proof of [Hail4, Prop. 3.38]
in our simplified setting.

The proof of the second follows similarly along the lines of the proof of [Hail4} Prop. 5.23],
in particular using the assumption that the model is adapted to the action of & and the vector
fields {Xi}?:1 are left-translation invariant. O
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3.8 BOUNDS ON MODELS

We state two results which, as in the Euclidean setting, allow one to reduce the number of
stochastic estimates needed in order to obtain convergence of models to only Il|t_,. The
proof of the next proposition, [Hail4), Prop 3.31], adapts ad verbatim to our setting

Proposition 3.36. LetT = (T,G) be a regularity structure and (I1,T) a model. For a € (0,00)N A,
the action of 11 on T, is fully determined by the action of Il on T, as well as the action of T on
T,. Furthermore, one has the bound

I 7(ph)
supsup sup Sup —————

< T 4 71T M 4. 3
R R
xeR A<1 peB, reT \10p A% Tla « “

as well as the analogous difference bound.
Furthermore, one has the following simple consequence of Lemma[3.3Tland Lemmal[3.33]
Proposition 3.37. Under the assumptions of Theorem(3.30 one has for each a € A\ A, T €T,

and 6 € A one has
ITx,yLTl5+p

sup ﬁ,ﬁ(lﬁL”r”a;ﬁ)”H”a;ﬁ + sup T l.a—o"
x,yeR: |y lxl<1 |T|a_ﬁ|y x| x,yeR: |y lxl<1 |T|a—ﬁ|y x|

|rx,yT|5

Again, the analogous bound for the difference of two models holds as well.

4 APPLICATIONS TO SEMILINEAR EVOLUTION EQUATIONS

In this section we specialize to the setting, when the homogeneous Lie group G has distin-
guished time direction, see Section [4.4] below for illustrative examples. Specifically, assume
we are given decomposition of the Lie algebra g = p°®p where both summands are s-invariant
subspaces and furthermore p° is one dimensional. In line with this decomposition, in this
section we deviate from the convention stated above Equation and reorder the basis of g
so that we always have the time component, i.e. X; € p€, in the first slot. Under this assump-
tion we also fix the basis X = {Xl-}?:2 of p where sX; = s;. We note that P:=exp(p) cGisa
homogeneous subgroup as in[3.3land we recall the notation defined there,

5:=slp, and |5]:=trace(s|p).

In particular we have |s| = s; + |5|. From now on we identify the Lie group G with R x P under
the diffeomorphism
RxP—-G, (fx)— xexp(tXy).

and we shall often use the notation z = (¢, x) € R x P = G. Let us collect some useful facts;

* Under this identification we see that R x {e} € G is a homogeneous subgroup.
* The scaling map behaves as expected, in that for any z = (¢,x) e Gand 6 > 0
5-(t,x)=(6"1,6-x),

where § - x is understood to be the restriction of the dilation to P.
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 The map ® from (3.20) is related to our decomposition here, in that for any X* € p and
t€ R, we have ®(XP + 1X;) = (1,exp(XP)).
* Recall the map Np: G — R, defined by (3.2I). There exists a constant ¢’ > 0 such that
1
Np(t,x) = c'|t|*1. In particular, by (3.24) and (3.25) there exist a constant ¢ > 0 such that
forany (t,x) € G
1 1
Eltlfw <d((t,x),P) <c|t|]* . 4.1)

A core assumption for the remainder of this section will be that of non-anticipativity.

Assumption 4.1. We say that G : G\ {e} — R is non-anticipative if for any (t, x), (s,y) € G one
has G((s,y)~'(t, x)) = 0 whenever s > t.

We will also require an assumption of prescribed homogeneity on the kernel, with respect
to the dilation map.

Assumption 4.2. Foro € R, we say that that G: G\ {e} — R is smoothly o -homogeneous if it is
smooth and for any z€ G\ {e} and 1 >0,

GA-2) =A°G(z).
We now have the following analogue of [Hail4) Lem. 7.4].

Lemma 4.3. Given G:G\{e} — R satisfying Assumption[4]and AssumptionlZ2 with o = —|5],
then there exists a smooth function G:P—Rsuch that for all (t, x) € G with t >0,

G(t,x) = t‘%é(r‘ﬁ -x). 4.2)

For every multi-index I e N%~! and every n > 0 there exists a constant C > 0 such that uniformly
over x€ G,
IX'G)l=C+Ix™) " 4.3)

Proof. The proof follows exactly the same steps of [Hail4}, Lem. 7.4] after replacing the usual
derivatives there with the vector fields X = {X;}%_,. O

Lemma4.4. Let G:G\{e} — R satisfy Assumptiond 1l and Assumptionld2 with o = —|5|. Then,
for any r > 0, there exist smooth functions K : G\ {e} — R and K_; : G — R, both satisfying
Assumptionl4.1 and such that G = K+ K_; and

* K is compactly and satisfies Assumption[3.23 with § = s,.

e K_1:G— R is globally smooth and such that X'K_ € L (R; L' (P)) for any I € N.

loc

Proof. The proof readily adapts from [Hail4, Lem. 5.5 & Lem. 7.7] with the only real change
being to skip the last step in the proof of [Hail4, Lem. 7.7] and instead using Faa di Bruno’s
formula along with (£.3) to obtain the claimed integrabillity of K_;. O

Remark 4.5. Note that more careful analysis yields improved bounds on K_;, however, K_; €

Ly (R; L' (P)) suffices for our purposes.
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4.1 SHORT TIME BEHAVIOUR OF KERNEL CONVOLUTIONS

Together, the following two results show, in our setting, that the lift of the kernel applied to a
modelled distribution, f, can be controlled on sets of the form Or :={z€ G : d(z,P) < T} only
using information about f on the same set. Note that using (4.I) there exists a constant ¢ > 0
such that [0,cT] x P c Or. Hence, the corresponding notion of local solutions, described in
Section[4.3] corresponds to the usual one.

First, we introduce some final pieces of notation, let R* : R x P — R be a map such that for
all x € P one has R*(t,x) =1 for t > 0 and R*(¢,x) = 0 for ¢ < 0. From now on we shall also
use subspaces of the previously introduced Holder spaces (Definition [2.4), modelled distri-
butions (Definition B.4) and singular modelled distributions (Definition B.3) writing, for ex-
ample

C* G <C*®), Da<Dar Dop<Dop
where we allow the set £ in the relevant definitions to be any closed subset £ € Ot for some
T > 0 (in particular £ is not necessarily compact). We shall often write the corresponding
semi-norms for example as

Il - ”a;OTﬂﬁy Il “ly;OTﬂﬁy I |||y;17;OTmﬁ »

where in particular we allow R = Or.
With these notions at hand the proof of the next theorem adapts directly from the proof of
[Hail4, Thm. 7.1].

Theorem 4.6. Lety >0, T be a regularity structure and M := (II,T") and M = (I1,T) models
and K : G\ {e} — R a non-anticipative kernel (see Assumptionl[4.1) such that the assumptions of
Theorem[3.30 are satisfied for some 3 > 0 and a sector V of regularity « > —s,. Then, for every
T €(0,11, andn > —s; and forx > 0 small enough

|||,CYR+f|||y+[)’,(n/\a)+[)’—K;OT S TK/sl |”f|”y,n;0»,v (4.4)

|||’CYR+f;’CYR+f|||y+[)’,(n/\a)+ﬁ—K;OT 5 TK/sl (”'f;f”'}/,ﬂ}OT + |||M;M”|y;02) : (4.5)

The constant in the first bound depends only on IIIM lly;0,, while in the second it may also de-
pend on |||f|||y,n;OT v |||f|||y,17;OT and ”|M|”Y202 v |||M|||y;02‘

Proof. The proof follows almost ad verbatim the proof of [Hail4, Thm. 7.1], only using our
modified definition of the sets O :={z€ G : dg(z, P) < T}. O

Remark 4.7. In fact, given any closed set R c G the bounds (@.4) and (4.5) both hold if Or is
replaced on the left hand side by Or n & and on the right hand side by O n &. However, we
will not make use of this fact in this article.

While Theorem treats the lift of the singular part of the kernel the following lemma
shows that the application of the smooth remainder can be lifted into the polynomial regu-
larity structure in a similar manner.
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Lemma 4.8. Let K_; : G — R be a smooth, non-anticipative kernel on G, such that for any
1eN? the functions X' K_,(t, -) are bounded in L' (P), locally uniformly in t € R. Then, under
the assumptions of Theorem[4.6 one has the bound

|||PE/,) [K—IRMR+f]|

sy ST o,

as well as the analogous difference bound

H’P(y')[K_IRMRJrf];P(Y-) [K—IRMR+f]’

< . f ny

ooy ST Fll o, + sl o)
Proof. The argument adapts mutatis mutandis form the proof of [Hail4, Lem. 7.3], replacing
the compact support assumption therein by the integrability property of K_;. O

4.2 INITIAL CONDITIONS

We will only consider evolution equations on domains without boundary so that our only
boundary data is the initial condition and proceed as in [Hail4} Sec. 7.2].

Lemma 4.9. Let uy € C*(P) such that ||ugllcepy < 0o and T = (T,G) be a regularity structure
containing the polynomial regularity structure over G and let G be a kernel satisfying Assump-
tionsld 1l and[4.2 We set for t #0

Gug)(t, x) := ffT RG((O’ 7Nt 1) uo(y) dy,

where we used the suggestive but only formal notation if a < 0. Then, for everyy > 0 the map
P(Y.) [G(up)] : G\ P — T belongs to .@07;'3 for everyy > (a AO) and furthermore, for any T >0, one
has
1
|||P(')[G(u0)]my,n;OT < 0o.

Proof. We first decompose the kernel as in Lemma4.4land write
G(up)(t, x) = K(uo) (¢, x) + K_1(uo) (¢, x) .

For the summands of K(up)(t, x), one can argue as in the proof of [Hail4, Lem. 7.5] or as in
Section[3.5] The desired bound for K_; (1) (¢, x) follows exactly as in Lemmal[4.8l O

4.3 AN EXAMPLE FIXED POINT THEOREM

At this point, we have all ingredients at hand to straightforwardly see that the very general
fixed point Theorem [Hail4, Theorem 7.8] as well as the other parts of [Hail4l Section 7.3]
adapt to the setting of homogeneous Lie Groups. For the sake of conciseness and with the
primary example of Anderson-type models in mind, we refrain from presenting this material
in all generality and instead show an example fixed point theorem. This result covers Ander-
son type equations, such as the one treated in Section[6l Recall here the notation introduced
at the start of this section, in particular the identity |s| = §; +|5].
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Theorem 4.10. Leta € (—5,,0], y > —a, n+a > —s; and G : G\ {e} — R be a kernel satisfy-
ing Assumptions[4.1 and[4.2 with o = —|s| and the decomposition G = K + K_, as in Lemma
Furthermore, let T = (T,G) be a regularity structure containing the polynomial regularity
structure, equipped with an abstract integration operator L of order s\ and containing an el-
ement = € Ty, where a = min A. Then, given a model M = (I1,T') which realises K for T and
satisfies the assumptions of Theorem[3.30 along with any v € 93:’; , the map

Mz 90"~ 20" U~ KRNUE)+P [K R (UD)] +v, (4.6)

is well-defined and there exists a unique fixed point for some T > 0.

Furthermore, if 11,2 and v are & -periodic and the model is adapted to the action of & on the
group (as defined in Section[3.4), then the unique fixed point is as well.

Crucially, the solution map depends continuously on the model.

Remark 4.11. Note that using that the abstract mild equation given by islinear in U, the
local time of existence T > 0 can be chosen independ of the initial condition. Thus, given
suitable bounds on the model over a suitably large set of the form {z € G : d(z,P) < T + 1}, by
restarting the equation one obtains existence of a fixed point for arbitrary T > 0. We refer to
[HL18, Theorem 5.2] for details.

Remark 4.12. In practice we will usually take v = PY[G(up)] so that by Lemma [4.9] the con-
dition v € .@g; 'g is satisfied provided ug € C"(P), where 1+ a > —s;. The notation X’ and K_;
is carried over from Section Bland Section [} in particular £ is the lift of K, the compactly
supported, singular part of the fundamental solution, see Theorem [4.6land K_; the smooth
remainder, see Lemmal4.8l

Proof sketch of Theorem[410 The proofis a straightforward adaptation of the proof of [Hail4)}
Theorem 7.8] and follows by applying Proposition[3.23] Theorem[4.6land Lemmal[4.8]to show
that the map M., has a unique fixed point in .@g ! for some T > 0. Since a = min A, the
modelled distribution x — = is an element of .@;’}; for any y > 0. Assuming U € .@g;'g by
Proposition B.23lone therefore has,

- Y+a,n+a
U=¢€ ‘@a;P .

So by using the singular Schauder estimate, Proposition[3.34] along with the assumption (n+

a) A a > —s1, one has
- y+a+B,(n+a)Aa)+p
KWUE) e ‘@(a+ﬁ)/\O;P .

Then, we see that

Yy+a+pB>y, n<n+a+f and (a@+B)A0>0.
@y+a+[)’,((n+a)/\a)+[)’
(a+B)NO;P
mapping on .@;’Z By comparing M., U and M., U for U, U € .@g 1" one then shows that
M, is a contraction for sufficiently small T > 0.
From the steps outlined above one furthermore obtains the the claims of &-periodicity and
the continuous dependence of the solution on the model. O

Hence, one finds — .@g, " which concludes the proof that Mr;, is a self-
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4.4 CONCRETE EXAMPLES OF DIFFERENTIAL OPERATORS AND KERNELS

The theory developed in the proceeding sections provides the analytic framework to treat
singular SPDEs using the tools of regularity structures where the linear part of the equation is
given by an operator £ satisfying the assumptions of Folland’s theorem, Theorem[LTl In this
section we present a non-exhaustive list of homogeneous Lie groups and linear differential
operators, £, to which our results apply. Generically, these equations are of the form,

Lu=0,u—Lu=FuXu,...,8), ul=o=uo,

where ¢ is a suitable noise, the non-linearity is linear in the noise and only depends on lower
order derivatives of u than are contained in £ which satisfies the assumptions of Theorem[L.T]
c.f. [Fol75].

Setting 1

P is a stratified Lie Group (see Definition[2.5) with a basis {X; l”i . of Wy, generating the
Lie Algebra. We equip G := R x P with the trivial homogeneous Lie Group structure

GxG3((t,x), ', x))— @+t xx)

with the extended scaling A-(t, x) = (A%t, A-x). The heat type operator associated to the
sub-Laplacian

m
Szat—ZXiz.
i=1

satisfies the assumptions of Theorem[L.1l and it follows from [Fol75, Thm. 3.1 & Prop. 3.3]
that £ is non-anticipative. We shall discuss a notable example of the setting, that of the
heat operator on the Heisenberg group, below.

Setting 2 A generalisation of the above setting is to take P a homogeneous Lie Group and equip

Setting 3

G := R x P with the same structure as above, but this time define the scaling 1 - (¢, x) =
(A%4¢t, A x) for g = 2 and an integer. A natural class of operators is given by

,QQZO[_Q(le---,Xm) ’

where Q is a polynomial of homogeneous degree 2q and such that £, and £*Q are hy-
poelliptic and £ is non-anticipative, see [Hail4}, Eq. 7.8]. A notable example is the heat
type operator associated to the bi-sub-Laplacian on a stratified Group.

The homogeneous Lie Group G =R x P is equipped with a non-trivial Lie group struc-
ture. In this case we look at differential operators of the form,

’QZXO_Q(XI)---er) .

where X, = 0, + X, and the operators £, £* satisfy the criteria of Folland’s theorem
and £ is non-anticipative. Examples are parabolic/restricted Hérmander operators,
c.f. [Hail6, Def. 1.1] or [Bel95, Ch. 3] and the kinetic Fokker-Planck operator fits into
this setting.
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4.4.1 HEAT OPERATOR ON THE HEISENBERG GROUP

In the context of[Setting 1] and [Setting 2| we recall that the Heisenberg group, H"”, defined in
Section[24] is a stratified Lie group. Identifying H" = R?" x R we recall that

Ai(x,y,2) =0y, +yi0;, Bi(x,y,2) =0y, —x;0,, C(x,y,2)=0,
are left-translation invariant vector fields. It is readily checked that the operator
n
£=0,-) (A2+B?),
i=1
is homogeneous with respect to the scaling,
A-(t,x,9,2) := (A1, Ax, Ay, A*2),

Applying [Fol75, Thm. 2.1] there exists a unique, fundamental solution K : H"” — R associated
to £ which is smooth away from e and satisfies the assumptions of Lemmal4.4] As aresult our
framework allows for the study of semi-linear evolution equations of the form,

0;u—Lu=F(u,Au,...,Ayu,Biu,...,Byu,é), uli=g= up.

4.4.2 MATRIX EXPONENTIAL GROUPS AND KOLMOGOROV TYPE OPERATORS

A wide class of operators fitting into[Setting 3|above are the Kolmogorov (or K-type) operators
on R x R” for n = 1. The group structure is a matrix exponential group, as defined in Section
[2.4] Given two, rational, n x n block matrices,

0 By O 0

Ao 0 0 0 B 0
A=t .o B=lo S
0O --- 0 0 0 --- 0 B

o o0 - 0 0

with Ay constant, positive definite and of rank g < n and each B; a p;_1 x p; block matrix of
rank p;, where g = pg = p1 =+ = p and Zle pi = n. Then the linear operator, defined for
u:RxR" — R by

Lu(t,z)=0;u(t,z) —V-(AVu(t,z))+ Bz-Vu(t, z),
satisfies Hormander’s condition. Equipping R x R” with the matrix exponential group struc-
ture associated to B (and defined in Section [2.4) it is readily checked that £ satisfies the as-

sumptions of Theorem[L1l In fact, there is an explicit formula for the fundamental solution.
We first let

1 t
C(t):= ;f exp(—sB')Aexp(—sB)ds
0

and then using the same notation for the effective spatial dimension, |5| := Zf:O(Zi +1p;,

( 1 )1’2 ( C(r)-lz-z)
K(t,z2) = — exp|l———|.
(am)ntisl det C(r) 4t
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The kinetic Fokker-Plank operator falls into this class. Consider the domain R x R*?, with
variables (¢, x, v) and set, as block matrices,

(g O (0 14
A‘(o o)’ B_(o 0)'

Lu(t,v,x)=0;u(t,v,x)—Ayu(t,v,x)—v-Vyu(t,v,x).

Then the associated operator is

and the fundamental solution in fact has the explicit form,

2V3 (_ﬁ_3|x+%t|2)

K LX) = ————
( ) d(4m)d r2d+1 4t 13

See [IK64} Sec. 7] for a derivation in the case d = 1 and [Man97] in the general case.

5 A REGULARITY STRUCTURE FOR ANDERSON EQUATIONS

In this section we present a brief construction of a sufficiently rich regularity structure 7 =
(T, G) in order to solve abstract fixed point equations of the form

U=ZWU=)+Uy, (5.1)

as treated by Theorem where Z denotes the abstract part of the lift of a 2 regularising
kernel as in Section[3.5] = is the lift of a noise of regularity @ and U, is the polynomial part of
U. In order for the equation to be subcritical one needs to impose & > —2 and thus it follows
from the previous discussions that we can look for a fixed point in a space @g for y < 2. Thus
we only need to incorporate abstract polynomials n; with s; < 2 into our regularity structure
and since one has the following identities in this case

ni(xy) =n;(x) +n:(y), PLIfI() = f(x) + Y ni()Xif(x) (5.2)
i:5;<y
one can work with essentially a truncated version algebraic framework as on the abelian
group R? developed in [BHZ19]. Therefore, in the remainder of this short section, we freely
use notations and definitions from [BHZ19], often without further explanation.
We define two edge types £ = {t,Z} and declare |[t| = 2 and |Z| = @ and as well as a scaling
in the sense of [BHZ19] s = (s1,...,5,), where n = max{i < d :s; < 2}. E Motivated by (G.I) we
define the naive (normal) rule, c.f. [BHZ19} Def. 5.7]

R = {(t,5),1®),(E),0, RE ={0} (5.3)

and consider its completion PR constructed in [BHZ19, Prop. 5.21] (note that this second
step is only necessary if @ < —3/2). We denote by 7 and 7.2%, 7 c T** the corresponding
spaces constructed in [BHZ19, Def. 5.26, Def. 5.29, Def. 6.22] and summarise some important
properties of these spaces.

SRecall form SectionPlthat s1, s3,..,5,, are the first  eigenvalues of the scaling s in increasing order and that X;
are the corresponding eigenvectors
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Proposition 5.1. The triple {T*, T.%*,T_} have the following algebraic structure.

* The spaces T, T_, T** are graded Hopf algebras with coproduct given by A, and A
respectively.

* The space T * is a right comodule over T.7* .
* The spacesT* and T * are left comodules overT_ .

* These spaces satisfy the co-interaction property, i.e. the following diagram commutes

Trex AY y Tex g Tex
+
Afl \LM(LS)(Z)M)O(A—@A—)
Tex g Jex ido Ay Tex g Tex g Tex
e g yex B0y Texg Terg T

Note that the fact that we can leverage the framework developed in [BHZ19] relies crucially
on the fact that it suffices to include polynomials of degree < 2, which translates into the
algebraic relation A™ (1;) =n;® 1+ 1®n; whenever 5; < 2. In general one would need a mod-
ification A* of the map A* such that A*®;) = X an+aq)=s CJI.'] n! @ /. Furthermore, one
would need a modification A~ of triangle A~ and both modifications, A* and A~, would
depend on the group structure of G, since the form of higher order Taylor polynomials de-
pends crucially on it. To circumvent these considerations we restrict ourselves to working
with the following subspaces.

Let T consists of the span of those basis vectors (trees) T € 7 * where T and its grading | T,
c.f. [BHZ19, Def. 5.3], satisfies the following properties

e itis planted and satisfies |T|+ <y or T = T'=Z where T’ is planted and satisfies | T'|; <7,

* the only polynomial decorations appearing are at the second highest node and of de-
gree <7Y.

Similarly, we set T, c 7.°* to consist of the subalgebra generated by those trees T € T #* satis-
fying
* T+ <y

¢ the only polynomial decorations appearing are at the second highest node and of de-
gree <7.

Observe that Proposition L. still holds with 7-** replaced by 7. and 7" replaced by T. We
define G to be the character group of 7. From now on our regularity structure shall be given
by

T=(1,G6), (5.4)

where G consists of the elements I' € L(T, T) of the form I’ = (id® f)A™ for some f € G,.
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5.1 SMOOTH MODELS

In order to define the models, we have to deviate slightly from [BHZ19]. For i € {1,..., n} we
write 7); instead of X; for abstract polynomials and we declare a map IT: 7 — C®(G) (c.f.
[BHZ19, Def. 6.8]) to be admissible for a smooth function ¢ € C*°(G) and a kernel K as in
Assumption[3.25] if for every x € G

N=E(x) =¢(x), In;(x)=n;(x)

and
77 =Kz, IIZ;7=(X;KI7,

where we write 7 resp. Z; for the operation of attaching an edge of type t, resp. (t,e;) to the
root. For IT an admissible map as above and z € G we recursively define f, € G, and 1, by

fan=- Y '@ HXKdLD)()
d(D<IZH7)]+
Zt(?) =K@ - Y. 7' 'axX K100k,
d(D<|Z(1)|+

and by the analogous expression for Z;7, where i € {1,...,n}, c.f. [BHZ19, Lem. 6.9]. We say
that IT is canonical, if it satisfies II=7 = II=II7 for every 7 such that =7 € 7, and it does not
see the extended decoration, i.e is reduced in the sense of [BHZ19, Def. 6.2.1]. One can check
that for such canonical lifts IT the maps I1, = (M ® f;) A" and I'y, , where y,) = ( file foat
form a model

M=(ILTy). (5.5)

The renormalisation group G- is defined to be the character group of the Hopf algebra 7°*.
We observe that in our case 7°* coincides (as an algebra) with the free algebra spanned by
a family of linear trees. (In the case @ > —3/2, one furthermore has 7°* = 7_ and we list the
trees explicitly in the next section). The group G_ acts on models as follows. For g € G_ let
Rg = (g®id)A™, we set

ME = (T18,1%) = (TIRg, Ty,) . (5.6)
One can check that every element the orbit of a smooth canonical model as in isindeed
a model.

Remark 5.2. Note that in order to show convergence of a family of models M©® = (11, [@)
of the form for the regularity structure 7 = (T, G) for some smooth underlying noises
¢ and a sequence of elements g, € G_, it is sufficient to show convergence of [1¢ IT_, due to
Propositions and[3.37

We emphasise again that this section relied on the the assumption y < 2.
6 THE ANDERSON EQUATION ON STRATIFIED LIE GROUPS

In this section we apply the machinery developed in this article in order to solve a class of
parabolic Anderson type models on a compact quotients of an arbitrary d-dimensional, strat-
ified, Lie groups. Let G be a stratified Lie group (recall Definition Z.5) with Lie algebra g and
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& a lattice subgroup with its canonical left action on G. Recall from Section [2.3]the definition
of the quotient map 7 : G — S = G/®, we shall, without loss of generality assume that there
exists a fundamental domain of this action, K c G, such that e € By(e) c K for some N € N,
large enough@ For m < d, let X;, ..., X, be a basis of Wj, the family of left invariant vector
fields generating g and we write X; = 7, X; for the push-forward vector fields on S. Finally we
recall the notion of convolution *g on S induced by the right action of G on S, as defined in
Section (2.3).

We shall solve equations where the driving noise satisfies the following assumption for
some & > 0.

Assumption 6.1. Fora € (—|s|/2,0), assume that &® is of the form & = Exgeg, whereé denotes a
Gaussian white noisdl on S and cq : G\ {e} — R is a function with bounded support, satisfying
leg ()] < |x|71eHUs12%®) g6 pell as g (x71) = cq () forallxeG.

Remark 6.2. For ¢ satisfying Assumption [6.1] a simple calculation shows that for any ¢,y €
L2(9),

El(S, Y&,y = L(qb *5 €a) (1) (Y * s ca) (x) dx .

In particular, coloured noise where the regularisation is given by a negative fractional power
of the sub-Laplacian fits into our setting, c.f. [BOTW22].

Remark 6.3. The assumption that ¢z (z) = cq(z™') is not crucial, but allow us to reuse com-
putations previously carried out for equations on Euclidean domains in [HP15]. A robust
treatment of similar equations in the Euclidean setting, driven by more general driving noise,
even beyond the Gaussian setting, is given in [CS17]. A similar remark holds for the choice of
mollifier p in Theorem[G.4below.

In the above setting, we have the following theorem.

Theorem 6.4. Fix T > 0 arbitrary and let { be a noise satisfying Assumption 6.1 with & €
(-3/2,-1) andn € (-(2+ @),0). Fore € (0,1), let u. : [0,T] x S — R be the unique solution
to the random PDE

m
Orue = Y Xiue +ue(e—co),  uli=o=uoeC"(S), 6.1)
i=1

where . 1= ¢ x5 pf, for p € CX (B (e)) satisfying p(z) = p(z‘l) and {cs(p)}eco,1) is a family of
(diverging) constants, depending on p and such that |c;| < €272%. Then, there exists a random
functionu:10,T] x S — R, independent of the chosen mollifier, p € CZ° (B (e)), such that

sup  t Nue(t,x)—u(t,x)|—0
(£,0)€[0, T xS

in probability as € — 0.

6This is for example achieved by replacing the homogeneous norm on G with a multiple of itself. We only require
this condition in order to make the integrands in Section[6.I]supported on the fundamental domain K.

7Recalling that S is a measure space, & can be defined as a centred Gaussian field, over L (S) and with covariance
given by the L?(S) inner product.
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Remark 6.5. We point out that the proof of Theorem [6.4] given below modifies mutatis mu-
tandis to the case where the noise is allowed to depend on time. In this case the natural mod-
ification of Assumption [6.1lis to assume that the noise is of the form ¢ = &% cgq, where € is a
space-time white noise on R x S and ¢4 satisfies [cg (£, x)| < (| x| +] t|H2)~lsli2-1+a The only dif-
ference in the proof is to replace all convolutions and integrals over S with convolutions and
integrals over R x S. We point out that this form of noise is not covered by [BOTW22], where
the white in time assumption is required in order to make use of martingale arguments, see
also Remark[6.7/below.

Remark 6.6. The range of & considered in Theorem does not cover the full subcritical
regime of the Anderson equation on a stratified Lie group. Indeed one expects an analogue of
Theorem[6.4lto hold for any & € (-2, 0). The main obstacle is the absence of a BPHZ type the-
orem in the setting of homogeneous Lie groups, see [CH16, HSb] for the corresponding result
on R?. Let us further point out that in order for the Carnot group G to be non-trivial it must
have scaled dimension |s| = 4, hence the sub-critical regime for & is necessarily contained in
Assumption

Remark 6.7. Let us point to the work [BOTW22], where, using It6 calculus methods, the au-
thors construct a solution-theory in the case, when the noise is white in time and coloured in
space, corresponding to the full subcritical regime on the Heisenberg group. This probabilis-
tic notion of solution circumvents the need for explicit renormalisation as in (6.I). Further-
more, their results are obtained on the infinite volume group H", rather than the compact
quotient space that we consider here. We expect that by using weighted modelled distribu-
tions, c.f. [HLI18], together with the techniques developed in [HP15], one can recover the
solution constructed in [BOTW22] together with a Wong-Zakai type theorem in the analogue
of the regime @ € (—3/2,—1), treated by Theorem [6.4] If one is interested in the full subcriti-
cal regime however, this would not just require a suitable BPHZ-type theorem in the setting
of homogeneous Lie groups, but furthermore a systematic way to single out the Itd model
among an (arbitrarily) high dimensional family of models obtained.

Proof of Theorem[6.4 We follow a usual strategy in the theory of regularity structures, show-
ing the equivalent theorem for the pulled back equations on G. For this, we work with the
regularity structure 7 = (T, G) constructed in (5.4) with |Z| = (-3/2, @). Note that since we are
in[Setting I|we can directly apply Theorem[LIlto see that there exists a unique, fundamental
solution G : (R x G) \ (0, ) — R and satisfying the assumptions of Lemmal4.4] so that we have
G = K+ K_; enjoying the properties described therein.

Denote by M© = (I1©), ) the canonical model for 7, satisfying [1¥'Z = ¢, and realising
K for Z. From now on we shall use the common tree notation, with the obvious changes in
interpretation, as defined for example in [HP15, Sec. 4.1], and write

o:=2, A=7E, X=ETE, etc.

Since @ € (—3/2,-1) the rule defined in (5.3) is complete and 7_ coincides (as an algebra)
with the free commutative algebra generated by {o, %, %} Since the noise is Gaussian and

centred, it is sufficient to work with the subgroup G_ c G_ consisting of g € G_ satisfying

g0)=0 = 1 Espan{o, ﬁ} .
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Foreach e € (0,1) we fix g, € G_ to be the character specified by
gg(o\o) = [E[fg (e)K(fg) (e)].

Thus, applying Theorem[4.10} we obtain a solution U : [0, T] x G — T, to the abstract lifted
equation, (&B6), for the model M := M§. Next we show that uf := Ry U actually solves
Equation in several steps.

* First, note that for any z = (¢, x) € [0, T] x G, the abstract solution has the explicit form

Ue(2) = Q@1+ +2)+ Y ul(2m;,

§5;<Yy

since we are working with the expansion up to order y < % In particular [T U, () (z) =
0
U, (z).

¢ We observe that therefore

(Ue 0)(2) = ul(2) (0 + %+ ) + Y ul(zm;o.

5;<Yy
e We also note that 1% (Zs,-q/ ul(z2)n;0) (z) =0 and
1 (12(2)(0+ %+ %)) (2 = wd(2) (MPo(2) + 11 (% +£) (2)) = 1l (D) €. (2) - o)

e Thus, we can conclude using Remark[3.19 that

R e (UE0) = 12(2) (E2(2) — ¢) = (R g0 U) (2) (e (2) — ce) -

Thus it only remains to show is that the family of models M® converges to a limiting model
M, which is the content of Proposition[6.8] stated below. O

Proposition 6.8. The familly of models M© = (I1©),1'¢) constructed in the proof of Theorem[6.4
converges as € — 0.

Proof. Note that by Remark 5.2t is sufficient to show convergence of I1¢) IT., in the model
topology, which follows from a stright-forward adaptation of Kolmogorov’s criterion to mod-
els using the molifiers ¢ constructed in Lemma 310 together with the estimates obtained
in Proposition [6.10l O

Remark 6.9. For a detailed proof of a Kolmogorov type criterion for general models on Eu-
clidean domains, i.e. G = R%, in the spirit above, we refer to [HSb, Appendix BJ.
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6.1 STOCHASTIC ESTIMATES FOR THE RENORMALISED MODEL

In this subsection we obtain convergence the renormalised models. We shall freely use tech-
niques of [Hail4} Sec 10] and as well as graphical notiation similar to that in [HP15, Sec. 5],
with some slight changes in interpretation. For example we write

(Hgs?e)qo)((p/l — i lllll o+ io ’

with the following interpretations;

* The node @ represents the origin, (0, ¢) € R x G while the edge =—> represents integra-
tion against the rescaled test function ¢*.

* The node O represents an instance of the & left periodic white noise on G while the
edge - represents the kernel cg * p.. Note therefore, that when ¢ = 0 our diagrams
will still contain dotted lines, as opposed to [HP15].

* The nodes » represent dummy variables z = (¢, x) € R x G which are to be integrated
out and the edges —— represent integration against the kernel K. A barred arrow
—+— represents a factor of K(t - s,y_lx) - K(—s,y‘l), where (s,y) and (t, x) are the
coordinates of the start and end points of the arrow respectively.

As in [Hail4) Sec. 10.2] and [HP15, Sec. 5.1.1] we will also use the notation WEK 1 to denote
the kernel associated to the k'"-homogeneous Wiener chaos component of I1( ¢7 and sim-
ilarly WEK 1 for the renormalised model. For example, we find that WEDR (s, ¥); X1, X2) =
WUERR((s, y); X1, X2) is given by

WEBs 31, 22) = ffR LCarpe X)) (eax )y x) (K(s =51,y )~ Ki=si,yr D) dsidp.

Proposition 6.10. Fix § > 0 small enough. Then, for every A € (0,1), ¢ € B, and z = (t,x) €
R x G, there exist random variables

(Loh, (LYY,  J(LDeH (6.2)

such that for any p = 1 the following estimates hold uniformly over A,¢ € (0,1)

10) E[I(10) (M1 ] S 47D, 1) E[I(10) (0" - (10 (@M)I? ] S P2 Ara?,
2a) E I(lﬁ(z”%)(cp‘)w] SAper2a-o), 2b) E |(ﬁ<;)%)(<p*)—(ﬁz%)(cp‘)w] < g0 pRr2a-0)
5@) B[ @HIP| SAPea-0, 3p) B[P @Y - (LD (NP | S e arirsa-o,

Proof. Firstly, we note that by translation invariance of the noise it is enough to consider
z = (0, e). Furthermore, since all random variables belong to a finite Wiener chaos, it suffices
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to show these estimates for p = 2, [Hail4} Lem. 10.5]. The first two estimates, and [1b)}
follow readily by Ito’s isometry.

For the next items we recall [Hail4} Lem. 10.14 & 10.18], the natural analogues of which
hold in our setting as well. We can write (with the adaptation of the meaning of the diagrams
described above) the Wiener chaos decomposition of the second symbol as

(1 ) (0" = . o-< . 6.3)

The first summand is the graphical representation of the iterated integral, 12(0/\}(5;2)0\0) (2)
integrated against a test function centred at (0, e) € R x G; see for example the analogous sec-
ond term in [Hail4} Eq. (10.23)]. The second summand is the graphical analogue of the first
term in [Hail4} Eq. (10.23)] given by Io((W(S;O)%) (2)). Next note that by virtually an identical
calculation as in the beginning of the proof of [Hail4, Thm. 10.19] one finds,

KOVEVQ) (2), WEDR)(2))] < 2123+ 42120+ (6.4)
which implies
KOVEDR) (2), WED) (2))] < (12170F + 12129 271222

Together with the simple estimate Io(WE9%)(2))| < |2|°%*+2 this gives[2a)l
Next we turn to show[3a)] First, note that by a similar calculation as for one finds

(OVER) w), WEL) @) S Tw P20 + P 4+29)

Therefore, together with the bound Io((W(S;O)@f)(w))I < |w[**** we find

N . ) _
[E'((Hgg?e)@())o(HEg?e)o))((pxl)' < J203a)

As in [HP15), Sec. 5.3.2] we find

i ----- ¢) i . . \‘o A9
(5, wn=1 o+ it ANTAY

and introduce the notation Q; (s, y) = K (s, ) (cq * p£) *2 (). We see that ¢; = ([, Qz(2) dz, and
define the renormalised kernel ZQ; (s, y) := Q¢(s,¥) — c0(0,e)- Then, as in [HP15} Eq. (5.14)],
using the notation ~ww- for the renormalised kernel, one finds

Lol N N A
(TRAITCTE SE S S S VA
NN N Y
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Similarly,

@ s O .
((ﬁ(é‘) Cﬁ)o(ﬁ(f)) O))((pA) — i _ .." \\'

(0,e) (0,e) .KO \ f

!
% A }/ , (6.5)

The latter two can be bounded by repeatedly using the analogue of [Hail4, Lem. 10.14], while
for the first diagram we use additionally the natural analogue of [Hail4, Lem. 10.16]. This
concludes the proofs of[3a)]and therefore the first column. The bounds on the random vari-
ables in are obtained analogously by replacing ¢ * p, by just ¢q throughout (and appro-
priately interpreting the renormalised kernel, Q;, for € = 0). The approximation bounds
and[3b)|are obtained by standard arguments, replacing each diagram with a finite telescopic
sum of diagrams, where all dotted lines except one either encode convolution with cg * p or
convolution with ¢z and the one remaining dotted line is replaced by ¢z — ¢z * p. and then
applying the analogue of [Hail4, Lem. 10.17]. O
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