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THE MAXIMAL DEGREE IN RANDOM RECURSIVE GRAPHS WITH
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We study a generalisation of the random recursive tree (RRT) model and
its multigraph counterpart, the uniform directed acyclic graph (DAG). Here,
vertices are equipped with a random vertex-weight representing initial inho-
mogeneities in the network, so that a new vertex connects to one of the old
vertices with a probability that is proportional to their vertex-weight. We first
identify the asymptotic degree distribution of a uniformly chosen vertex for
a general vertex-weight distribution. For the maximal degree, we distinguish
several classes that lead to different behaviour: For bounded vertex-weights
we obtain results for the maximal degree that are similar to those observed
for RRTs and DAGs. If the vertex-weights have unbounded support, then the
maximal degree has to satisfy the right balance between having a high vertex-
weight and being born early.

For vertex-weights in the Fréchet maximum domain of attraction the first-
order behaviour of the maximal degree is random, while for those in the Gum-
bel maximum domain of attraction the leading order is deterministic. Surpris-
ingly, in the latter case, the second order is random when considering vertices
in a compact window in the optimal region, while it becomes deterministic
when considering all vertices.
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1. Introduction. A random recursive graph with random weights (WRG) is a family of
growing random graphs that combine features of an inhomogeneous random graph, such as
e.g. the Chung-Lu model, with random weights with those of a dynamical model that gener-
alizes the classical model of random recursive trees. In the WRG model, we assign to every
vertex a random, independent, non-negative vertex-weight and at each step of the evolution
a new vertex is introduced to the graph and connected to a predecessor with probability pro-
portional to the predecessor’s vertex-weight.

Similar to an inhomogeneous random graph, the random vertex-weight can be thought
of as modelling the naturally inhomogeneous attractiveness of each vertex in the network.
Unlike for the inhomogeneous random graph, which is a static model, we are also interested
in describing the growth of the network.

If the weights are taken to be deterministic and the same for every vertex, then the model
reduces to the classical random recursive tree (RTT) or its multigraph counterpart known as
the uniform directed acyclic graph (DAG or uniform DAG). The latter was introduced by
Devroye and Lu in [9] and allows for an incoming vertex to connect to k predecessors. The
original RRT was first introduced by Na and Rapoport in 1970 [23] and has since attracted
a wealth of interest, uncovering the behaviour of many of its properties, including, among
others: the number of leaves, profile of the tree, height of the tree, vertex degrees and the size
of sub-trees. [27] and the more recent [10] provide good surveys on the topic.

Another important reference point for us are preferential attachment models, which are
dynamic models where vertices are also not chosen uniformly, but instead are chosen with
probability proportional to their degree. For a review of the recent literature, see [30].

In this paper, the main question is to understand the influence of the random weights,
which can be thought of as a random environment, on the well-known dynamics of the RRT.
As a first step, we analyse the asymptotic degree distribution which we obtain as the limit
distribution of a uniformly chosen vertex. In the random graph literature it is folklore that the
tail behaviour of the degree distribution determines many of the features of the model, such
as the asymptotics of the largest degree or typical distances.

For the RRT is known, see e.g. the recent work of Addario-Berry and Eslava [1], that
the degree distribution decays like 2−(k+1). In contrast, preferential attachment models are
famous for producing power law tails. In our case, the random weights produce a variety
of tail behaviour that interpolates between these extremes. In the case of bounded weights,
the tails correspond up to first order to the RRT. However, in the unbounded case when
the weights have stretched exponential tails, which we call the Gumbel case, the degree
distribution also has stretched exponential tails (although with a different exponent as the
vertex-weight distribution). If the weights have power law tails, which we call the Fréchet
case, then the degree distribution has the same tails as the weights.

The second statistics we consider is the asymptotic behaviour of the largest degree. Under-
standing the largest degree can tell us, for example, about the existence of hubs, i.e. vertices
of very large degree that are known to play an important role in the connectivity structure of
random graphs, see e.g. the book of Van der Hofstad for a great overview on random graphs
and their connections to real-world networks [30]. By comparing to the i.i.d. case, we could
expect that the tail of the degree distribution predicts the asymptotic behaviour of the largest
degree. We confirm this conjecture on the level of the first order growth and show the follow-
ing results for the three regimes discussed above: for bounded weights the system behaves
similarly to a RRT and grows logarithmically, whereas for unbounded weights that are in the
domain of attraction of a Gumbel distribution the maximal degree grows faster. Finally, in the
case when the weights are in the domain of attraction of a Fréchet distribution, the leading
asymptotics of the maximal degree is random and we identify the limit as a functional of a
Poisson point process.
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For Gumbel weights, in contrast to the Fréchet case, the first-order growth of the degrees
is deterministic and by comparison to the case of the maximum of i.i.d. weights, it would be
natural to conjecture that the second order is random. We confirm this observation for two
special sub-cases of Gumbel weights. However, this result is only true when we consider a
compact window in the region of indices that should correspond to the index that realises the
maximum degree. Finally, we identify the true second order and, somewhat surprisingly, it
is also deterministic. This behaviour comes from the fact that we have to consider a much
larger optimal window than initially suspected.

Finally, we address the question regarding the location of the currently fittest vertex (i.e.
that attains the maximum degree). For classical preferential attachment models it is known,
see e.g. [30], that there is persistence: in other words there is a vertex that after some time
becomes the most powerful (largest) vertex and then remains so forever. However, in real-
world networks it seems natural to allow newly incoming vertices to become so powerful that
they can compete with old vertices. It is known that for the WRG there is never persistence
and we establish the asymptotics of the location of the maximum in the Gumbel and Fréchet
case (and see the recent work of the first author [18] for the case of bounded weights).

Our results recover and extend results on the degree distribution of RRTs and WRTs as
well as the maximum degree in RRTs. Degree distributions in RRTs have been studied in
[12, 20, 22] and [23]; a very general class of weighted growing trees has been studied by Iyer
in [16]. However, the results discussed so far only consider trees, so that unlike in our work
DAGs (in both the weighted and the non-weighted case) are not included.

Another type of weighted recursive trees was originally introduced by Borovkov and
Vatutin in [5, 6], where the vertex-weights have a specific product-form, and in a general
form by Hiesmayr and Işlak in [15] (general in the sense that the weights need not have the
product form as in [5] and [6]). Recent work on weighted recursive trees includes the work of
Mailler and Uribe Bravo [21], Sénizergues [26] and Pain and Sénizergues [24] where the pro-
file and height of the tree are analysed as well as vertex degrees, together with [16], in which
degree distributions of many weighted growing tree models are studied and the weighted
recursive tree is a particular example.

Szymański [28] was the first to obtain results on the growth rate of the maximum degree
in RRTs, which were later extended by Devroye and Lu [9], after which finer properties of
high degrees were analysed by Goh and Schmutz [13] and Addario-Berry and Eslava [1].
Recently, Banerjee and Bhamidi [3] studied the occurrence of persistence in growing random
networks and they include results describing the growth rate of the location of the maximum
degree in RRTs. In WRTs, the behaviour of degrees and the maximum degree has received
attention from Sénizergues in [26], where the vertex-weights satisfy a more general product-
form compared to [5, 6].

A related dynamical model that also allows to produce degree distributions with a variety
of tail behaviour is the preferential attachment model with a general attachment function
analysed by Dereich and Mörters [7]. In their case, assuming that the probability to connect to
a vertex of degree n is proportional to ≈ nα, the model exhibits persistence if α ∈ (1/2,1] and
no persistence for α ∈ (0,1/2). In the latter case, the authors also give precise asymptotics
for the location of the maximum. This contrasts with our results, where even for the heavier
tailed case we do not have persistence, even though if for α ∈ (0,1) their degree distributions
exhibit stretched exponential decay.

Our methods are related to the analysis of the preferential attachment with additive fitness
carried out by the authors in [19]. For these preferential attachment models, the attachment
probabilities are proportional to the degree plus a random weight (fitness). In these models,
we distinguish three different regimes: first of all a weak disorder regime, where the prefer-
ential attachment mechanism dominates (and there is persistence). This is closely related to
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the work of Sénizergues [26], which in turn corresponds to a WRT where the partial sums
of the weights is at most of order nγ for γ ∈ (0,1). Moreover, in [19] we identify a strong
and extreme disorder regime where the influence of the random weights takes over, which
appears when the distribution of the weights is sufficiently heavy-tailed. For WRGs there
is no preferential attachment component for the vertex-weights to compete with so that the
influence of the random weights is more immediate and already appears for less heavy-tailed
weights.

Our results for the degree distribution follow by adjusting the proofs in [19], as at least
on the level of degree distributions the WRG model is essentially a simpler model compared
to the PAF models, but the asymptotic analysis is new. The results for the maximum degree
in the case of bounded weights follow with similar techniques as developed by Devroye and
Lu [9], which can be extended to WRGs. The main contribution of this paper is to understand
the first and second order asymptotics of the maximal degree in the case when the weights are
unbounded and satisfy suitable regularity assumptions. For unbounded weights, the system
is driven by the competition between the benefit of being an old vertex and so having time
to accumulate a high degree and the benefit of being a young vertex with a large weight.
To understand the first-order growth rate (as well as the second order when considering a
compact window), we show concentration of the degrees around the conditional means (when
conditioning on the weights) and then in a second step analyse the conditional mean degree
using extreme value theory in the case of random fluctuations (similarly as in [19]). However,
as the weights have a more immediate impact, the results become more dependent on the
exact distribution of weights chosen and thus require more intricate calculations. Finally, to
obtain the true second-order asymptotics in the Weibull case, we can no longer rely on the
elegant tools of convergence to Poisson processes from extreme value theory and instead
have to carefully keep track of errors made in the corresponding approximations.

Notation. Throughout the paper we use the following notation: we let N := {1,2, . . .} be
the natural numbers, set N0 := {0,1, . . .} to include zero and let [t] := {i ∈N : i≤ t} for any
t≥ 1. For x, y ∈R, we let ⌈x⌉ := inf{n ∈ Z : n≥ x} and ⌊x⌋ := sup{n ∈ Z : n≤ x} and let
x∨ y := max{x, y} and x∧ y := min{x, y}. Moreover, for sequences (an)n∈N and (bn)n∈N
we say that an = o(bn), an ∼ bn, an =O(bn) if limn→∞ an/bn = 0, limn→∞ an/bn = 1 and
if there exist constants C > 0, n0 ∈ N such that an ≤ Cbn for all n ≥ n0, respectively. For
random variables X, (Xn)n∈N we denote Xn

d−→X,Xn
P−→X and Xn

a.s.−→X for conver-
gence in distribution, probability and almost sure convergence of Xn to X , respectively. Also,
we write Xn = oP(1) if Xn

P−→ 0. Throughout, we denote by (Wi)i∈N i.d.d. random vari-
ables and use the conditional probability measure PW (·) := P( · |(Wi)i∈N) and conditional
expectation EW [·] := E [ · |(Wi)i∈N].

2. Definitions and main results. The Weighted Recursive Graph (WRG) model is a
growing random graph model that is a generalisation of the random recursive tree (RRT) and
the uniform directed acyclic graph (DAG) models in which vertices are assigned (random)
weights and new vertices connect with existing vertices with a probability proportional to the
vertex-weights.

We define the WRG model as follows:

DEFINITION 2.1 (Weighted Recursive Graph). Let (Wi)i≥1 be a sequence of i.i.d. copies
of a non-negative random variable W such that P(W > 0) = 1, let m ∈N and set

Sn :=

n∑
i=1

Wi.

We construct the Weighted Recursive Graph as follows:
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1) Initialise the graph with a single vertex 1, denoted as the root, and assign to the root a
vertex-weight W1. Denote this graph by G1.

2) For n≥ 1, introduce a new vertex n+ 1 and assign to it the vertex-weight Wn+1 and m
half-edges. Conditionally on Gn, independently connect each half-edge to some i ∈ [n]
with probability Wi/Sn. Denote the resulting graph by Gn+1.

We will treat Gn as a directed graph, where edges are directed from new vertices towards old
vertices.

REMARK 2.2. (i) Note that the edge connection probabilities remain the same if we
multiply each weight by the same constant. In particular, if convenient, we may without
loss of generality assume for vertex-weight distributions with bounded support, i.e. x0 :=
sup{x ∈R |P(W ≤ x)< 1}<∞, that x0 = 1. Alternatively, and we will do this in particular
for distributions with unbounded support and finite mean, i.e. x0 =∞ and E [W ] <∞, we
can assume that E [W ] = 1.

(ii) It is possible to extend the definition of the WRG such that the out-degree is random
and the results presented in this paper still hold. Namely, we can allow that vertex n+1 con-
nects to every vertex i ∈ [n] independently with probability Wi/Sn. At the start of sections
dedicated to proving the results we present below, we discuss why the results hold for the
random out-degree model as well.

To formulate our results we need to assume that the tail of the distribution of the weights
is sufficiently regular, allowing us to control their extreme value behaviour. To this end, we
draw on classical results from extreme value theory. Consider a sequence (Wi)i∈N of i.i.d.
random variables with distribution function F . Suppose there exist a distribution function G
and sequences (an)n∈N and (bn)n∈N, an > 0, bn ∈R, such that for any continuity point x ∈R
of G,

(2.1) lim
n→∞

F (anx+ bn)
n =G(x).

Observe that (2.1) is equivalent to

(2.2)
maxi∈[n]Wi − bn

an

d−→X,

where X is a random variable with distribution function G. The Fischer-Tipett-Gnedenko
theorem, see e.g. [25, Proposition 0.3], says that then G belongs, up to translation and scal-
ing, to one of three families of distribution functions, parametrised by a parameter α> 0:

(i) Weibull: G(x) = exp(−(−x)α) if x < 0 and G(x) = 1 otherwise.
(ii) Gumbel: G(x) = exp(− exp(x) for x ∈R.
(iii) Fréchet: G(x) = exp(−x−α) if x > 0 and G(x) = 0 otherwise.

Here, α is known as the exponent of the distribution. If a sequence of i.i.d. random vari-
ables satisfies (2.1), we say that these random variables belong to (or their distribution func-
tion belongs to) the maximum domain of attraction (MDA) of one of the three cases.

Typical examples that belong to each of the three MDAs are:

(i) Weibull MDA: random variables with bounded support and polynomially decaying tails,
e.g. beta random variables.

(ii) Gumbel MDA: random variables with either bounded or unbounded support and expo-
nentially decaying tails, e.g. exponential or log-normal random variables.
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(iii) Fréchet MDA: random variables with unbounded support and polynomially decaying
tails, e.g. Cauchy random variables.

We refer to [25] for a more formal characterisation of the domains of attraction and more
in-depth information about extreme value theory. These results motivate the following as-
sumptions:

ASSUMPTION 2.3 (Vertex-weight distributions). The vertex-weights W, (Wi)i∈N satisfy
one of the following conditions:

(Bounded) The vertex-weights are almost surely bounded, i.e.

x0 := sup{x ∈R |P(W ≤ x)< 1}<∞.

Without loss of generality, we can assume that x0 = 1.
Within this class, we can further identify vertex-weight distributions that belong to the
Weibull MDA and Gumbel MDA.

(Gumbel) The vertex-weights follow a distribution that belongs to the Gumbel MDA such
that x0 =∞. Without loss of generality, E [W ] = 1. This implies that there exist sequences
(an)n∈N and (bn)n∈N such that (2.1) (or, equivalently, (2.2)) is satisfied with G as in case
(ii).
Within this class, we further distinguish the following three sub-classes:
(SV) bn ∼ ℓ(logn) where ℓ is an increasing function that is slowly-varying at infinity, i.e.

limx→∞ ℓ(cx)/ℓ(x) = 1 for all c > 0.
(RV) There exist a, c1, τ > 0, and b ∈R such that

P(W ≥ x)∼ axbe−(x/c1)
τ

as x→∞.

(RaV) There exist a, c1 > 0, b ∈R, and τ > 1 such that

P(W ≥ x)∼ a(logx)be−(log(x)/c1)
τ

as x→∞.

(Fréchet) The vertex-weights follow a distribution that belongs to the Fréchet MDA. With-
out loss of generality, E [W ] = 1 (given that E [W ] < ∞ is satisfied). This implies that
there exists a non-negative function ℓ that is slowly-varying at infinity and some α > 1,
such that

P(W ≥ x) = ℓ(x)x−(α−1).

Moreover, if we let un := sup{t ∈ R : P(W ≥ t) ≥ 1/n}, then (2.1) (or, equiva-
lently, (2.2)) is satisfied with bn = 0, an = un.

REMARK 2.4. Note that [29] shows (with a slight error in the paper in that the loga term
below is a log τ in [29]) that if the weight distribution satisfies the assumption (RV), then we
can choose

(2.3) an = c2(logn)
1/τ−1, bn = c1(logn)

1/τ + an((b/τ) log logn+ b log c1 + loga),

for the same constants as above and c2 := c1/τ . Moreover, in the (RaV) sub-case, we can
choose
(2.4)
an = c2(logn)

1/τ−1 exp(c1(logn)
1/τ + c2(logn)

1/τ−1((b/τ) log logn+ b log c1 + loga)),

bn = exp(c1(logn)
1/τ + c2(logn)

1/τ−1((b/τ) log logn+ b log c1 + loga)).
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In particular, the three sub-cases in the (Gumbel) case, (SV), (RV), and (RaV), can
be distinguished as bn = g(logn), with g a slowly-varying, regularly-varying and rapidly-
varying function at infinity, respectively. Note that in all cases, bn itself is slowly vary-
ing at infinity. In the (RV) sub-case, we very often use the asymptotic equivalence for
bn, that is, bn ∼ c1(logn)

1/τ . Moreover, in the (RaV) sub-case, we can think of bn as
exp((logn)1/τ ℓ(logn)) and an as c2(logn)1/τ−1bn.

Furthermore, the (RV) sub-case contains (stretched and compressed) exponential distribu-
tions, e.g. the gamma distribution. The (RaV) sub-case contains log-compressed exponential
distributions, e.g. the log-normal distribution.

Finally, despite the fact that the sequences an and bn are indexed by integer values, we
sometimes will, for ease of writing, abuse notation and index them by non-integer values
such as nγ with γ ∈ (0,1). As the examples in (2.3) and (2.4) are continuous if we replace n
by t ∈ (0,∞), we can extend their definitions correspondingly.

We now present the results for the degree distribution and the maximum degree in the
WRG model. In comparison to the preferential attachment with additive fitness (PAF) models
as studied in [19], vertex-weights with a distribution with a ‘thin’ tail, i.e. distributions with
exponentially decaying tails or bounded support, now can also exert their influence on the
behaviour of the system.

Throughout, we write

Zn(i) := in-degree of vertex i in Gn.

We prefer to work with the in-degree as it then is easier to (in principle) generalize our
methods to graphs with random out-degree. Obviously, if the out-degree is fixed, we can
recover the results for the degree from our results for Zn(i).

2.1. Degree distribution. The first result deals with the degree distribution of the WRG
model. Let us first introduce the following measures and quantities:

Γn :=
1

n

n∑
i=1

Zn(i)δWi
, Γ(k)

n :=
1

n

n∑
i=1

1{Zn(i)=k}δWi
, pn(k) := Γ(k)

n ([0,∞)),

where δ is a Dirac measure, and which correspond to the empirical weight distribution of
a vertex sampled weighted by its in-degree, then the joint empirical vertex-weight and in-
degree distribution and finally the empirical degree distribution. We can then formulate the
following theorem:

THEOREM 2.5 (Degree distribution in WRGs). Consider the WRG model in Defini-
tion 2.1 and suppose that the vertex-weights have finite mean and denote their distribution
by µ. Then, almost surely, for any k ∈N0, as n→∞,

(2.5) Γn → Γ, Γ(k)
n → Γ(k), and pn(k)→ p(k),

where the first two statements hold with respect to the weak⋆ topology and the limits are given
as

(2.6) Γ(dx) :=
xm

E [W ]
µ(dx), Γ(k)(dx) =

E [W ]/m

E [W ]/m+ x

(
x

E [W ]/m+ x

)k

µ(dx),

and

(2.7) p(k) =

∫ ∞
0

E [W ]/m

E [W ]/m+ x

(
x

E [W ]/m+ x

)k

µ(dx).
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Finally, let the vertex-weight distribution be a power law as in the (Fréchet) case of As-
sumption 2.3 with α ∈ (1,2), such that there exists an xl > 0 with µ(xl,∞) = 1, i.e. the
vertex-weights are bounded away from zero almost surely. Let Un be a uniformly at random
selected vertex in Gn, let ε > 0 and let En := {Zn(Un) = 0}. Then, for all n sufficiently large,

(2.8) P(En)≥ 1−Cn−((2−α)∧(α−1))/α+ε,

for some constant C > 0.

An important question regarding the degree distribution p(k), as in (2.7), is its asymptotic
behaviour as k→∞. As it turns out, the answer depends on the particular choice of the dis-
tribution of the random variable W . Before we present a theorem dedicated to the asymptotic
behaviour of the limiting degree distribution p(k), we first introduce the following general
lemma, which will allows us to distinguish several different cases for bounded weights.

LEMMA 2.6. Let W be a non-negative random variable such that x0 := sup{x > 0 :
P(W ≤ x) < 1} < ∞. Then, the distribution of W belongs to the Weibull (resp. Gumbel)
MDA if and only if (x0 −W )−1 is a non-negative random variable with a distribution with
unbounded support that belongs to the Fréchet (resp. Gumbel) MDA.

We are now ready to present the results on the asymptotics of p(k).

THEOREM 2.7 (Asymptotic behaviour of p(k)). Consider the WRG with vertex-weights
(Wi)i∈N, i.i.d. copies of a non-negative random variable W such that E [W ]<∞. We con-
sider the different cases with respect to the vertex-weights as in Assumption 2.3.

(Bounded) Let θm := 1 + E [W ]/m and recall that x0 = sup{x > 0 : P(W ≤ x)< 1}<
∞. When W belongs to the Weibull MDA with parameter α> 1, for all k >m/E [W ],

(2.9) L(k)k−(α−1)θ−km ≤ p(k)≤ L(k)k−(α−1)θ−km ,

where L,L are slowly varying at infinity.
When W belongs to the Gumbel MDA,
(i) If (1−W )−1 satisfies the (RV) sub-case with parameter τ > 0, then for γ := 1/(τ +

1),

(2.10) p(k) = exp
(
− (1 + o(1))

τγ

1− γ

((1− θ−1m )k

c1

)1−γ)
θ−km .

(ii) If (1−W )−1 satisfies the (RaV) sub-case with parameter τ > 1,

(2.11) p(k) = exp
(
−
( logk

c1

)τ(
1−τ(τ −1)

log logk

logk
+

Kτ,c1,θm

logk
(1+o(1))

))
θ−km ,

where Kτ,c1,θm := τ log(ecτ1(1− θ−1m )/τ).
Finally, when W has an atom at x0, i.e. q0 = P(W = x0)> 0, then

(2.12) p(k) = q0(1− θ−1m )θ−km (1 + o(1)).

(Gumbel) If W satisfies the (RV) sub-case with parameter τ , then for γ := 1/(τ + 1),

(2.13) p(k) = exp
(
− τγ

1− γ

( k

c1m

)1−γ
(1 + o(1))

)
.

If W satisfies the (RaV) sub-case with parameter τ > 1,
(2.14)

p(k) = k−1 exp
(
−
( log(k/m)

c1

)τ(
1−τ(τ−1)

log log(k/m)

log(k/m)
+

Kτ,c1

log(k/m)
(1+o(1))

))
,

where Kτ,c1 := τ log(ecτ1/τ).
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(Fréchet) When α> 2,

(2.15) ℓ(k)k−α ≤ p(k)≤ ℓ(k)k−α,

where ℓ, ℓ are slowly varying at infinity.

REMARK 2.8 (Finer asymptotics when W has an atom at x0). In the case that W has an
atom at x0, i.e. q0 = P(W = x0)> 0, then the proof immediately gives a more precise version
of (2.12) under additional assumptions. If there exists an s ∈ (0,1) such that P(W ∈ (s,1)) =
0,

(2.16) p(k) = q0(1− θ−1m )θ−km

(
1 +O

(
exp(−(1− θ−1m )(1− s)k)

))
.

Otherwise, for any positive sequence (sk)k∈N such that sk ↑ 1, we have that
(2.17)

p(k) = q0(1− θ−1m )θ−km

(
1 +O

(
max{exp(−(1− θ−1m )(1− sk)k),P(W ∈ (sk,1))}

))
.

2.2. Maximum degree. The asymptotic behaviour of the degree distribution p(k) in The-
orem 2.7 allows for a non-rigorous estimation of the size of the maximum degree in Gn. As
is the case for the degree distribution, the behaviour of the maximum degree in the WRG
model is highly dependent on the underlying distribution of the vertex-weights as well, and
on a heuristic level one would expect the size of the maximum degree, say dn, to be such that∑

k≥dn
p(k)≈ 1/n. The following theorem makes this heuristic statement precise and states

the first-order growth rate of the maximum degree for three different classes of vertex-weight
distributions. In all classes, we find, up to the leading order in the asymptotic expression of
p(k), that

∑
k≥dn

p(k) ≈ 1/n is satisfied when considering the asymptotic expressions in
Theorem 2.7. In most cases, we can also identify the order of the label or location of the
vertex that attains the maximum degree, which tells us when the vertices with largest degree
are introduced to the graph. Throughout, we set

(2.18) In := inf{i ∈ [n] :Zn(i)≥Zn(j) for all j ∈ [n]}.

2.2.1. Bounded case.

THEOREM 2.9 (Maximum degree in WRGs, (Bounded) case). Consider the WRG
model as in Definition 2.1 and assume the vertex-weights satisfy the (Bounded) case. Let
θm := 1 +E [W ]/m. Then,

maxi∈[n]Zn(i)

logn

a.s.−→ 1

log θm
.

In [11], Eslava and the authors of this article obtain, under additional assumptions and
only in the tree case (i.e. m= 1), higher-order asymptotic behaviour of the maximum degree
and of near-maximum degree vertices.

A result we have been unable to prove, is the convergence of the location of the maximum
degree in the WRG when the vertex-weights are almost surely bounded, which improves and
extends the result proved in [3] for the random recursive tree.

CONJECTURE 2.10 (Location of the maximum degree in WRGs with bounded weights).
Consider the WRG model as in Definition 2.1 and assume the vertex-weights satisfy
the (Bounded) case. Let θm := 1 +E [W ]/m and recall In from (2.18). Then,

log In
logn

a.s.−→ 1− θm − 1

θm log(θm)
.

Since the first appearance of this article, this result has been proved by the first author
in [18, Theorem 2.3]. With more precise assumptions on the distribution of the vertex-
weights, higher-order behaviour of the labels of high-degree vertices is obtained as well.
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2.2.2. Fréchet case. Our next result considers the case when the weights satisfy
the (Fréchet) assumption. In this case, it is classical that the first order of the maximum
of n i.i.d. weights is random. The next theorem states that this also applies to the maximum
degree in this case. However, the normalizations and limits are different due to the non-trivial
competition, where older vertices can achieve a higher degree because they have been in
the system for longer, while younger vertices have the chance to have a big vertex-weight
corresponding to a local maximum.

THEOREM 2.11 (Maximum degree in WRGs, (Fréchet) case). Consider the WRG
model as in Definition 2.1 and assume the vertex-weights satisfy the (Fréchet) case. Recall
In from (2.18) and let Π be a Poisson point process (PPP) on (0,1)× (0,∞) with intensity
measure ν(dt,dx) := dt× (α− 1)x−αdx. Then, when α> 2,

(2.19) (max
i∈[n]

Zn(i)/un, In/n)
d−→ (m max

(t,f)∈Π
f log(1/t), Iα),

where mmax(t,f)∈Π f log(1/t) and Iα are independent, with Iα
d
= e−Wα and Wα a Γ(α,1)

random variable, and where mmax(t,f)∈Π f log(1/t) has a Fréchet distribution with shape
parameter α− 1 and scale parameter mΓ(α)1/(α−1). Finally, when α ∈ (1,2),

(2.20) (max
i∈[n]

Zn(i)/n, In/n)
d−→ (Z, I),

for some random variable I with values in (0,1) and where

Z =m max
(t,f)∈Π

f

∫ 1

t

(∫
(0,1)×(0,∞)

g1{u≤s} dΠ(u, g)

)−1
ds.

REMARK 2.12. (i) The result in (2.20) is equivalent to the behaviour of the preferen-
tial attachment models with infinite mean power-law fitness random variables, as presented
in [19]. Here, the influence of the fitness (vertex-weights) overpowers the preferential attach-
ment mechanism so that the preferential attachment graph behaves like a weighted recursive
graph.

(ii) The result in (2.19) can actually be extended to hold joint for the K largest degrees
and their locations as well, for any K ∈N. The limits (Z(K), I

(K)
α ) of the Kth largest degree

and its location are independent, I(K)
α

d
= e−W

(K)
α , where the (W

(K)
α )K∈N are i.i.d. Γ(α,1)

random variables, and

P
(
Z(K) ≤ x

)
=

K−1∑
i=0

1

i!
(Γ(α)(x/m)−(α−1))i exp(−Γ(α)(x/m)−(α−1)).

2.2.3. Gumbel case. In the (Gumbel) case, we expect by comparing to the maximum of
i.i.d. weights that the first order of the maximal degree is deterministic, which is confirmed
by our next result.

THEOREM 2.13 (Maximum degree in WRGs, (Gumbel) case). Consider the WRG
model as in Definition 2.1 and assume the vertex-weights satisfy the (Gumbel) case. Re-
call In from (2.18). For sub-case (SV),

(2.21)
(
max
i∈[n]

Zn(i)

mbn logn
,
log In
logn

)
P−→ (1,0).
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For sub-case (RV), let γ := 1/(τ + 1). Then,

(2.22)
(
max
i∈[n]

Zn(i)

m(1− γ)bnγ logn
,
log In
logn

)
a.s.−→ (1, γ).

Finally, for sub-case (RaV), let tn := exp(−τ logn/ log(bn)). Then,

(2.23)
(
max
i∈[n]

Zn(i)

mbtnn log(1/tn)
,
log In
logn

)
P−→ (1,1).

REMARK 2.14. (i) We conjecture that the convergence in (2.21) can be strengthened
to almost sure convergence. This is readily checked for particular vertex-weight distri-
butions that satisfy the (Gumbel)-(SV) sub-case, e.g. W := logW ′, where W ′ satisfies
the (Gumbel)-(RV) sub-case.

(ii) In (2.22) and (2.23) the rescaling of the maximum degree can be interpreted as m(1−
γ)c1γ

1/τ (logn)1+1/τ and me−1c−12 (logn)1−1/τ exp
(
c1(logn)

1/τ
)
, respectively, since the

lower order terms of bn as in (2.3) and (2.4) can be ignored when considering only the first-
order behaviour of the maximum degree. As a result, it should be possible to weaken the as-
sumptions on the tail-distribution in the (Gumbel)-(RV) and (Gumbel)-(RaV) sub-cases to
P(W ≥ x) = exp

(
− (x/c1)

τ (1+ o(1))
)

and P(W ≥ x) = exp
(
− (log(x)/c1)

τ (1+ o(1))
)
,

respectively, such that the results in (2.22) and (2.23) still hold.

For the maximum of i.i.d. random variables satisfying the (Gumbel) case, it is also clas-
sical that the second order term is random, as in (2.2). A natural conjecture would be that the
same is true for this model. Our next result shows that if we consider the indices in a compact
window around the maximal one (as identified in Theorem 2.13), then this is indeed true.

To formulate our results, we introduce the following notation: For 0 < s < t < ∞, γ ∈
(0,1) and a strictly positive function f , define

(2.24)
Cn(γ, s, t, f) := {i ∈ [n] : sf(n)nγ ≤ i≤ tf(n)nγ},

In(γ, s, t, f) := inf{i ∈Cn(γ, s, t, f) :Zn(i)≥Zn(j) for all j ∈Cn(γ, s, t, f)}.

We abuse notation to also write Cn(1, s, t, tn) and In(1, s, t, tn) when we deal with vertices
i such that stnn≤ i≤ ttnn for some sequence (tn)n∈N. We then present the following theo-
rem:

THEOREM 2.15 (Random second-order asymptotics in the (Gumbel) case). In the
same setting as in Theorem 2.13, we further assume that the vertex-weights fall into the
sub-case (RV). Let γ := 1/(τ + 1) and let ℓ be a strictly positive function such that
limn→∞ log(ℓ(n))2/ logn= ζ0 for some ζ0 ∈ [0,∞). Furthermore, let Π be a Poisson point
process (PPP) on (0,∞)×R with intensity measure ν(dt,dx) := dt× e−xdx. Then, when
τ ∈ (0,1),

(2.25)

(
max

i∈Cn(γ,s,t,ℓ)

Zn(i)−m(1− γ)bnγ logn

m(1− γ)anγ logn
,
In(γ, s, t, ℓ)

ℓ(n)nγ

)
d−→
(

max
(v,w)∈Π
v∈[s,t]

w− log v− ζ0(τ + 1)2

2τ
, eU
)
,

where U ∼Unif(log s, log t) and the maximum over the PPP follows a Gumbel distribution
with location parameter log log(t/s)− ζ0(τ + 1)2/2τ .



12

Finally, let us assume that the vertex-weights fall into the sub-class (RaV) and let
tn := exp(−τ logn/ log(bn)). Then, for any 0< s< t <∞ and with Π and U as above,
(2.26)(

max
i∈Cn(1,s,t,tn)

Zn(i)−mbtnn log(1/tn)

matnn log(1/tn)
,
In(1, s, t, tn)

tnn

)
d−→
(

max
(v,w)∈Π
v∈[s,t]

w− log v, eU
)
,

where now the maximum follows a Gumbel distribution with location parameter log log(t/s).

REMARK 2.16 (The vertex with largest degree for (Gumbel) weights). The restriction
to τ ∈ (0,1) in (2.25) comes from the fact our result only looks at the fluctuations coming
from the random weights and indeed the same statement is true for all τ > 0 when looking at
the conditional expected degrees (conditioned on the random weights), see Proposition 5.4
later on. By a central limit theorem-type argument we would expect that the fluctuations of
the degree around its conditional mean are of the order square root of its variance (which is
comparable to its mean and so of order (logn)(1/τ+1)/2), therefore if τ > 1 this term would be
larger than the fluctuations coming from the random weights (which are of order (logn)1/τ )
and so we would expect a different scaling limit.

A standard Poisson process calculation (for more details see Section 3) shows that the limit
random variables describing the second-order growth of the near-maximal degree in Theo-
rem 2.15 become infinite if we let s ↓ 0 and t→∞. This phenomenon indicates that we need
to consider a much larger window of indices to capture the true second-order asymptotics
of the maximal degree over the full set of indices. This fact also shows that the competition
between the advantages of older vertices compared to vertices with high weight is very finely
balanced. The following result captures the resulting effect on the second-order asymptotics,
which surprisingly are no longer random.

.

THEOREM 2.17 (Precise second-order asymptotics in the (Gumbel) case). In the same
setting as in Theorem 2.13, we first assume that the vertex-weights fall into the sub-case (RV)
and let γ := 1/(τ + 1). For τ ∈ (0,1],

(2.27) max
i∈[n]

Zn(i)−m(1− γ)bnγ logn

m(1− γ)anγ logn log logn

P−→ 1

2
.

Now assume that the vertex-weights fall into the sub-class (RaV) and let
tn := exp(−τ logn/ log(bn)). If τ ∈ (1,3],

(2.28) max
i∈[n]

Zn(i)−mbtnn log(1/tn)

matnn log(1/tn) log logn

P−→ 1

2

(
1− 1

τ

)
,

whilst for τ > 3,

max
i∈[n]

Zn(i)−mbtnn log(1/tn)

matnn log(1/tn)(logn)
1−3/τ

P−→−τ(τ − 1)2

2c31
.

REMARK 2.18. Although the result in (2.25) only holds for τ ∈ (0,1), the result in (2.27)
turns out to hold for τ = 1 as well. This slight deviation is due to the fact that the additional
log logn term allows us to prove concentration of the maximum degree around the maximum
conditional mean degree, which cannot be done with the second-order rescaling in (2.25)
when τ = 1.
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As mentioned above in Remark 2.16, the problem of capturing the second-order fluc-
tuations in the (Gumbel)-(RV) case when τ > 1 and for lighter tailed weights (including
bounded weights) requires different techniques and is currently on-going research, see [11]
and [18].

REMARK 2.19 (More general model formulation). As in [19], it is possible to prove
some of the results for a more general class of models. More specifically, the results in Theo-
rems 2.5 and 2.11 hold for a growing network that satisfies the following conditions as well:
let ∆Zn(i) :=Zn+1(i)−Zn(i). For all n ∈N:

(A1) EW [∆Zn(i)] =Wi/Sn1{i∈[n]}.
(A2) For all k ∈N, there exists a Ck > 0 such that

EW

[ k−1∏
j=0

(∆Zn(i)− j)
]
≤CkEW [∆Zn(i)].

(A3) supi=1,...,n n
∣∣PW (∆Zn(i) = 1)−EW [∆Zn(i)]

∣∣ a.s.−→ 0.
(A4) Conditionally on (Wi)i∈N, {∆Zn(i)}i∈[n] is negatively quadrant dependent in the

sense that for any i ̸= j and k, l ∈ Z+,

PW (∆Zn(i)≤ k,∆Zn(j)≤ l)≤ PW (∆Zn(i)≤ k)PW (∆Zn(j)≤ l) .

If we further assume that ∆Zn(i) ∈ {0,1} then all the results presented in this paper hold as
well.

Outline of the paper
In Section 3 we provide a short overview and explain the intuitive idea of the results. We
then prove Theorems 2.5 and 2.7 in Section 4. In Section 5, we state and prove several
propositions regarding the maximum conditional mean degree. We then discuss under which
scaling the maximum degree concentrates around the maximum conditional expected de-
gree in Section 6. Finally, we use these results in Section 7 to prove the main results, Theo-
rems 2.9, 2.11, 2.13, 2.15 and 2.17.

3. Overview of the proofs. First, since the proof of Theorem 2.5 heavily relies on the
proof of Theorem 2.4 in [19], we refer to [19, Section 3] for an overview of its proof. The
same holds for Theorem 2.9, which follows the same strategy as the proof of Theorem 2 in [9]
but where we need to take extra care because of the random weights. Finally, the proof of
Theorem 2.7 is mainly computational in nature and we therefore do not include an overview
in this section.

Here, we provide an intuitive idea of the proof of Theorems 2.11 and 2.13 regarding first-
order scaling limits of the maximum degree, as well as Theorems 2.15 and 2.17 regarding
second-order scaling limits. In the first two theorems, the main idea consists of two ingre-
dients: We first consider the asymptotics of the conditional expected degree EW [Zn(i)] of a
vertex i ∈ [n], where we condition on the weights (Wi)i∈[n]. Then in a second step, we show
that the degrees concentrate around their conditional expected values.

More precisely for the concentration argument, we show that

(3.1) |max
i∈[n]

Zn(i)−max
i∈[n]

EW [Zn(i)]|/gn
P−→ 0,

for some suitable sequence (gn)n∈N such that gn diverges with n. What sequence gn is suffi-
cient depends on the different vertex-weight distribution cases, as outlined in Assumption 2.3.
For completeness, gn =mbn logn, gn =m(1− γ)bnγ logn, gn =mbtnn log(1/tn), gn = un
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and gn = n for the (Gumbel)-(SV), (Gumbel)-(RV), (Gumbel)-(RaV) sub-cases and
the (Fréchet) case with α > 2 and α ∈ (1,2), respectively. (3.1) follows by applying stan-
dard large deviation bounds to |Zn(i) − EW [Zn(i)]| for all i ∈ [n], as in Proposition 6.1.
We can also construct a concentration argument when gn is equivalent to the second-order
growth rate of the maximum as in Theorems 2.15 and 2.17, however in this case a more
careful analysis of the different terms in the large deviation bounds is required.

The bulk of the argument for our results is to show that the conditional expected degree
behaves as we claim in the main results. For the first-order asymptotics as in Theorem 2.13,
we have

max
i∈[n]

EW [Zn(i)]

gn

P−→ 1,

with gn as described above for the (SV), (RV) and (RaV) sub-cases, whereas in 2.11 we
have

max
i∈[n]

EW [Zn(i)]

un

d−→m max
(t,f)∈Π

f log(1/t),

max
i∈[n]

EW [Zn(i)]

n

d−→m max
(t,f)∈Π

f

∫ 1

t

(∫
(0,1)×(0,∞)

g1{u≤s}dΠ(u, g)

)−1
ds,

depending on whether α > 2 or α ∈ (0,1). Together with (3.1), the results in Theorems 2.11
and 2.13 follow. For the (Gumbel)-(RV) sub-case (and probably the (Gumbel)-(SV) sub-
case, too), the result can be strengthened to almost sure convergence.

Let us delve a bit more into why the maximum conditional mean in-degree has the limits
as claimed above. We stress that, as stated in Remark 2.2, E [W ] = 1 for the cases we discuss
here. It is clear from the definition of the model that

EW [Zn(i)] =mWi

n−1∑
j=i

1/Sj ≈mWi log(n/i),

for any i ∈ [n]. Let us start with the (Gumbel)-(RV) sub-case, where we recall that γ :=
1/(1 + τ). If we set

Πn :=
∑
i≥1

δ(i/n,(Wi−bn)/an),

where δ is a Dirac measure, then classical extreme value theory tells us that (see e.g. [25]),

(3.2) Πn
d−→Π,

where Π is a Poisson point process on (0,∞)×R with intensity measure ν(dt,dx) := dt×
e−xdx. Then, if we consider i= tℓ(n)nγ and (Wi− bℓ(n)nγ )/aℓ(n)nγ = f where ℓ is a strictly
positive function such that log(ℓ(n))2/ logn converges, it follows that
(3.3)
EW [Zn(i)]≈mWi log(n/i) =m(bℓ(n)nγ + aℓ(n)nγf) log(1/(tn1−γℓ(n)))

≈mc1γ
1/τ (1− γ)(logn)1/τ+1 +mc2γ

1/τ−1(f(1− γ)− τγ log t)(logn)1/τ

≈m(1− γ)bnγ logn+m(1− γ)anγ logn(f − log t),

when using that an = c2(logn)
1/τ−1 and bn ∼ c1(logn)

1/τ , using a Taylor approximation
and leaving out all lower order terms. This yields the first-order behaviour of the maximum
conditional mean in-degree as well as its location nγ(1+o(1)). This is proved rigorously in
Proposition 5.4.
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For the (SV) sub-case, as in Proposition 5.2, a similar approach as in (3.3) can be applied,
though we set i= tnβ , (Wi− bnβ)/anβ = f for any β ∈ (0,1). We divide the right-hand side
of (3.3) by bn logn and observe that bnβ = ℓ(log(nβ)) = ℓ(β logn), so that it follows that
bnβ/bn converges to 1 with n for any fixed β ∈ (0,1) since ℓ is slowly varying at infinity.
Then, the constant in front of the leading term is decreasing in β, so that taking the limit
β ↓ 0 yields the required result.

Then, for the (RaV) sub-case, as in Proposition 5.7, we realise that the location of the
maximum should grow faster than nγ for any γ ∈ (0,1), as the tails of these distribution are
heavier than those of any distribution in the (RV) sub-case. By a similar argument as for
the (SV) sub-case and using that now bnβ/bn converges to 0 with n, one might want to set
β = 1, that is, the location of the maximum degree is of order n. However, this would imply
that the growth rate of the maximum expected degree should be bn. This is not the case,
however, since for any t ∈ (0,1), approximately,

max
i∈[n]

EW [Zn(i)]/bn ≥ (max
i∈[tn]

Wi/btn) log(1/t)btn/bn.

Since btn/bn converges to 1 for t fixed (bn is slowly varying) and the maximum converges to
1 in probability, letting t tend to 0 shows scaling by just bn is insufficient. To find the correct
behaviour, we need to let t tend to zero with n, i.e. t= tn, such that btnn/bn has a non-trivial
limit (not 0 or 1). The sequence that satisfies this requirement is tn = exp(−τ logn/ log(bn)).
This suggests that the location of the maximum degree is tnn and that the maximum degree
grows as btnn log(1/tn).

The second-order growth rate for the (RaV) sub-case, as in Theorem 2.15, is obtained in a
similar way as in (3.3), where we now consider i= stnn and (Wi− btnn)/atnn = f for some
(s, f) ∈ (0,∞)×R. This yields

EW [Zn(i)]≈mWi log(n/i) =m(btnn + atnnf) log(1/stn)

=mbtnn log(1/tn) + (matnn log(1/tn)f −mbtnn log s) +matnnf log(1/s).

Here, the first order again appears in the first term on the right-hand side, and the second order
can be obtained by realising that btnn/(atnn log(1/tn))→ 1 as n tends to infinity. A similar
approach using the weak convergence of Πn to Π as in (3.2) allows us to obtain the required
limits. For the results of the (RV) sub-case in Theorem 2.15, we take a more in-depth look
at the approximation in (3.3). First, when subtracting the first term on the right-hand side
and dividing by m(1− γ)anγ logn, we are left with exactly the functional which is used in
the maximum over the Poisson point process in (2.25). When combining this with the weak
convergence of Πn to Π the desired result follows. To understand how the additional term
in (2.25) arises, we include an extra lower order term in the approximation in (3.3). That is,

EW [Zn(i)]≈mc1γ
1/τ (1− γ)(logn)1/τ+1 +mc2γ

1/τ−1(f(1− γ)− τγ log t)(logn)1/τ

−mc1
γ1/τ

1− γ

1 + τ

2
(logn)1/τ−1 log(ℓ(n))2.

Hence, the requirement that limn→∞ log(ℓ(n))2/ logn= ζ0 ensures that the last term on the
right-hand side does not grow faster than (logn)1/τ . Also, when divided by the second-order
growth rate m(1 − γ)anγ logn, the last term converges to −(1 + τ)2ζ0/(2τ), exactly the
additional term found in (2.25).

Somewhat surprising is that for both the (RV) and (RaV) sub-cases, when we consider not
a compact window around the optimal index but instead all i ∈ [n], we find that the second-
order correction as suggested above is insufficient, as can be observed in (2.27) and (2.28)
in Theorem 2.17. The reason this behaviour is observed, informally, is that we can move
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away even further from what one would expect to be the optimal window, i.e. ℓ(n)nγ for
ℓ that do not grow or decay ‘too quickly’ in the (RV) sub-case and tnn in the (RaV) sub-
case, and find higher degrees. As we have observed above, when setting s = 0, t = ∞ in
the limit in (2.25), which would mimic considering all i ∈ [n] rather than the indices in a
compact window around nγ , we obtain sup(v,w)∈Πw− log v (when we would set ζ0 = 0). It
is readily checked that integrating the intensity measure ν over R+ × R yields an infinitely
large rate. Hence, sup(v,w)∈Πw − log v =∞ almost surely, so that the second-order scaling
(1− γ)anγ logn is insufficient when considering all i ∈ [n].

A more insightful argument is the following: consider the PPP limit as in (2.25) (with
ζ0 = 0) and (2.26). Its distribution depends only on the ratio t/s. Thus, for any integer j ∈N
such that j = o(

√
logn),

max
ej−1nγ≤i≤ejnγ

Zn(i)−m(1− γ)bnγ logn

m(1− γ)anγ logn

d−→ Λj ,

where the (Λj)j∈N are i.i.d. standard Gumbel random variables (where the location parameter
equals 0). Their independence follows from the independence property of the PPP. Now, as
the Gumbel distribution satisfies the (Gumbel)-(RV) sub-case with τ = 1, c1 = 1, b= 0, we
can argue that, for any η > 0 and x ∈R,

P
(

max
nγ≤i≤e(logn)1/2−η

nγ

Zn(i)−m(1− γ)bnγ logn

m(1− γ)anγ logn
≤ x(1/2− η) log logn

)
= P

(
max

1≤j≤(logn)1/2−η
max

ej−1nγ≤i≤ejnγ

Zn(i)−m(1− γ)bnγ logn

m(1− γ)anγ logn
≤ x(1/2− η) log logn

)
≈ P

(
max

1≤j≤(logn)1/2−η
Λj ≤ x(1/2− η) log logn

)
= P(Λ1 ≤ x(1/2− η) log logn)(logn)

1/2−η

= exp(−(logn)1/2−η exp(−x(1/2− η) log logn)),

which has limit 1 (resp. 0) if x > 1 (resp. x < 1). Then, as we can choose η arbitrarily close
to 0, the result in (2.27) follows. Here it is essential that j = o(

√
logn) to obtain the correct

limit. Note that making the approximation ≈ in the above argument rigorous is the highly
non-trivial part of the argument. The reason is that we cannot rely on the elegant theory of
convergence to a Poisson point processes, but have to explicitly control the errors made in
this approximation.

A similar reasoning can be applied for the (Gumbel)-(RaV) when τ ∈ (1,3], where now
j = o((logn)(1−1/τ)/2) needs to be satisfied. When τ > 3, more care needs to be taken of
lower-order terms that appear in the double exponent, yielding a different scaling.

For Theorem 2.11, a similar approach can be used. We now set

Πn :=

n∑
i=1

δ(i/n,Wi/un),

where again Πn ⇒Π, with Π a Poisson point process on (0,1)× (0,∞) with intensity mea-
sure ν(dt,dx) := dt× (α− 1)x−αdx. Now considering i= tn,Wi = fun, yields

EW [Zn(i)/un]≈m
Wi

un
log(n/i) =mf log(1/t),

which is the functional in the maximum in (2.19). Again, combining this with the weak
convergence of Πn yields the result. Finally, the heuristic idea for (2.20) is contained in [19,
Section 3] as well, since the rescaled maximum degree in the preferential attachment model
with additive fitness studied there has the same distributional limit when α ∈ (1,2).
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4. The limiting degree sequence of weighted recursive graphs. In this section we
prove Theorems 2.5 and 2.7. For more in-depth details regarding this entire proof, we refer
to the similar proof in [19, Theorem 2.4], on which this proof is based. We first state a result
which is crucial for the proof of the former:

LEMMA 4.1 (Lemma 3.1, [8]). Let (Xn)n≥0 be a non-negative stochastic process. Sup-
pose that

Xn+1 −Xn ≤ 1

n+ 1
(An −BnXn) + (Rn+1 −Rn)

holds almost surely, where

• (An)n≥0 and (Bn)n≥0 are almost surely convergence stochastic processes with determin-
istic limits A,B > 0, respectively.

• (Rn)n≥0 is an almost surely convergent stochastic process.

Then, almost surely,

limsup
n→∞

Xn ≤ A

B
.

If instead, a lower bound applies to Xn+1 −Xn, we can bound lim infn→∞Xn from below
by A/B almost surely.

PROOF OF THEOREM 2.5. We first prove (2.5)- (2.7), for which we can, without loss of
generality, assume that E [W ] = 1 as E [W ]<∞ is satisfied. It then follows that Sn/n

a.s.−→
1. We let 0 ≤ f < f ′ < ∞, F = [0,∞), and set In := {i ∈ [n] : Wi ∈ (f, f ′]} and Xn :=
Γn((f, f

′]) = 1
n

∑
i∈In Zn(i). By expressing E [Xn+1 | Gn] in terms of Xn and the vertex-

weights, we can obtain the bounds

Xn+1 −Xn ≥ 1

n+ 1

(
−Xn +

In
n

mf

Sn/n

)
+ (Rn+1 −Rn),

Xn+1 −Xn ≤ 1

n+ 1

(
−Xn +

In
n

mf ′

Sn/n

)
+ (Rn+1 −Rn),

where Rn+1−Rn :=Xn+1−E [Xn+1 | Gn]. Using the law of large numbers and Lemma 4.1,
this results in the upper and lower bound,

lim inf
n→∞

Xn ≥mfµ((f, f ′]), limsup
n→∞

Xn ≤mf ′µ((f, f ′]),

almost surely, if we assume that Rn converges almost surely. We show this assumption holds
at the end of the proof. We now take a countable subset F⊂ [0,∞), such that F is dense and
for each f ∈ F, µ({f}) = 0. It follows that there exists an almost sure event Ω0 on which both
bounds hold for any pair f, f ′ ∈ F such that f < f ′. Then, take an arbitrary set open set U
and approximate U from below by sequence of sets (Uj)j∈N, where each Uj is a finite union
of intervals (f, f ′], with f, f ′ ∈ F. Then, for any j ∈N, a Riemann approximation yields

lim inf
n→∞

Γn(U)≥ lim inf
n→∞

Γn(Um)≥ Γ(Um), on Ω0.

The monotone convergence theorem thus implies that lim infn→∞Γn(U) ≥ Γ(U) almost
surely. A similar argument for any closed set C yields limsupn→∞Γn(C) ≤ Γ(C). The
Portmenteau lemma finally provides us with the almost surely convergence in the weak∗

topology.
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In the remainder of the proof, we let Xn := Γ
(k)
n ((f, f ′]) = 1

n

∑
i∈In 1{Zn(i)=k} and use

a proof by induction. So, we assume that Γ(j)
n converges almost surely to Γ(j) in the weak∗

topology. By expressing E [Xn+1 | Gn] in terms of Xn and the vertex-weights, we can obtain
a lower bound

Xn+1 −Xn ≥ 1

n+ 1
(An −B′nXn) + (R′n+1 −R′n),

where An,B
′
n almost surely converge to

A :=m

∫
(f,f ′]

x Γ(k−1)(dx), B′ :=
1/m+ f ′

1/m
,

respectively, and where R′n+1−R′n :=Xn+1−E [Xn+1 | Gn] (we again show the convergence
of R′n for each k ∈ N0 at the end of the proof). With a similar approach, an upper bound on
the recursion Xn+1 −Xn can be obtained with sequences An,Bn that converge to A and B,
respectively, with B = 1+mf . Now, applying Lemma 4.1 yields

lim inf
n→∞

Xn ≥ A

B′
=

1

1/m+ f ′

∫
(f,f ′]

x Γ(k−1)(dx),

limsup
n→∞

Xn ≤ A

B
=

1

1/m+ f

∫
(f,f ′]

x Γ(k−1)(dx).

The same argument as used for Γn then yields

Γ(k)(dx) =
( x

x+ 1/m

)k
Γ(0)(dx).

With minor adjustments, it also follows that

Γ(0)(dx) =
1/m

x+ 1/m
µ(dx),

from which (2.5), (2.6) and (2.7) follow.
It thus remains to prove the convergence of Rn and R′n. First,

Rn+1 −Rn =
1

n+ 1

∑
i∈In

(Zn+1(i)−E [Zn+1(i) | Gn])

=
1

n+ 1

∑
i∈In

(∆Zn(i)−E [∆Zn(i) | Gn]),

where ∆Zn(i) :=Zn+1(i)−Zn(i). Then, we can bound

E
[
(Rn+1 −Rn)

2 | Gn

]
=

1

(n+ 1)2
E
[(∑

i∈In

(∆Zn(i)−E [∆Zn(i) | Gn])
)2 ∣∣∣∣Gn

]

≤ 1

(n+ 1)2

∑
i∈In

Var(∆Zn(i) | Gn).

Here, the second step follows from the negative quadrant dependence of the random variables
(∆Zn(i))i∈[n], in the sense that for any distinct i, j ∈ [n] and any k, ℓ ∈N0,

P(∆Zn(i)≥ k,∆Zn(j)≥ ℓ | Gn)≤ P(∆Zn(i)≥ k | Gn)P(∆Zn(j)≥ ℓ | Gn) .

As the ∆Zn(i) are the outcome of a multinomial experiment (conditionally on the vertex-
weights, in particular conditionally on Gn) this property directly follows from [17, Section
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3.1]. When we consider the model with random out-degree, we note that all the ∆Zn(i)
are independent indicator random variables, so that the negative quadrant dependence also
applies.

It thus remains to bound the conditional variance of ∆Zn(i) from above. As ∆Zn(i) is
a sum of m i.i.d. indicator random variables, its variance is at most m times its mean, for
each i ∈ [n]. Since

∑n
i=1E [∆Zn(i)] =m, we obtain the upper bound (m/(n+ 1))2, which

is summable almost surely. As this implies that the quadratic variation of the martingale
Rn+1 −Rn is bounded, it follows that Rn converges almost surely.

We now prove the almost sure convergence of R′n. For k ≥ 1,

R′n+1 −R′n =
1

n+ 1

∑
i∈In

(
1{Zn+1(i)=k} − P(Zn+1(i) = k | Gn)

)
=∆M (1)

n −∆M (2)
n ,

where ∆M
(i)
n is a martingale difference, i.e. ∆M

(i)
n =M

(i)
n+1 −M

(i)
n , i ∈ {1,2}, and

(4.1)

∆M (1)
n =

1

n+ 1

(∑
i∈In

1{Zn(i)<k,Zn+1(i)≥k} −E
[∑
i∈In

1{Zn(i)<k,Zn+1(i)≥k}

∣∣∣∣Gn

])
,

∆M (2)
n =

1

n+ 1

(∑
i∈In

1{Zn(i)≤k,Zn+1(i)>k} −E
[∑
i∈In

1{Zn(i)≤k,Zn+1(i)>k}

∣∣∣∣Gn

])
.

Here, we use that

1{Zn+1(i)=k} = 1{Zn+1(i)=k,Zn(i)≤k} = 1{Zn+1(i)≥k,Zn(i)≤k} − 1{Zn+1(i)>k,Zn(i)≤k}

= 1{Zn(i)=k} + 1{Zn+1(i)≥k,Zn(i)<k} − 1{Zn+1(i)>k,Zn(i)≤k}.

We note that, as the indicators in M
(1)
n ,M

(2)
n only differ by one index k, it is sufficient to

prove the summability of the conditional second moment of ∆M
(2)
n for all fixed k ≥ 1. So,

we write

E
[
(∆M (2)

n )2
∣∣∣Gn

]
=

1

(n+ 1)2
E
[(∑

i∈In

(
1{Zn(i)≤k,Zn+1(i)>k} − P(Zn(i)≤ k,Zn+1(i)> k|Gn)

))2∣∣∣∣Gn

]
.

Using the negative quadrant dependence of the random variables (∆Zn(i))i∈[n], we can
bound this from above by,

1

(n+ 1)2

∑
i∈In

E
[(
1{Zn(i)≤k,Zn+1(i)>k} − P(Zn(i)≤ k,Zn+1(i)> k | Gn)

)2 ∣∣∣Gn

]
≤ 1

(n+ 1)2

∑
i∈In

1{Zn(i)≤k}P(∆Zn(i)≥ 1 | Gn)

≤ 1

(n+ 1)2

n∑
i=1

E [∆Zn(i) | Gn] =
m

(n+ 1)2
,

where we use Markov’s inequality in the penultimate step and use that the (expected) incre-
ments of all in-degrees is exactly m. Hence, the final statement is summable almost surely,
which proves the almost sure convergence of R′n. For k = 0, we can write R′n+1 −R′n as

∆M (1)
n +∆M (2)

n + (1{Wn+1∈(f,f ′]} − µ((f, f ′]))/(n+ 1),
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where ∆M
(1)
n = 0 and ∆M

(2)
n is as in (4.1) with k = 0. We already proved the summability

of the second conditional moment of M (2)
n which follows for k = 0 as well, and the last term

has a second conditional moment bounded by µ((f, f ′])/(n+ 1)2, which is summable too.
This proves the almost sure convergence of R′n for all k ∈N0.

We conclude by proving (2.8) for m = 1 (the proof for m> 1 follows analogously). Let
β ∈ (0, (2− α)/(α− 1)∧ 1). We then obtain from a union bound that
(4.2)

P
(
Ec

n ∩ {WUn
≤ nβ}

)
≤ 1

n

n−1∑
j=1

j∑
k=1

nβE
[
(1/Sj)1{Wk≤nβ}

]
≤Cnβ−1

n−1∑
j=1

jE [1/Mj ] ,

where we bound Sj from below by the maximum vertex-weight Mj := maxi∈[j]Wi and
C > 0 is a constant. We can then bound the expected value of 1/Mj by

E [1/Mj ]≤ P
(
Mj ≤ j1/(α−1)−ε

)
/xl + j−1/(α−1)+ε.

For j large, say j > j0 ∈N, we can bound the probability on the right-hand side from above
by

P
(
Mj ≤ j1/(α−1)−ε

)
≤ exp(−j(α−1)ε/2),

which leads to the bound

E [1/Mj ]≤ 1{j≤j0}/xl + 1{j>j0}(1 + 1/xl)j
−1/(α−1)+ε.

We then use this in (4.2) to obtain

P
(
Ec

n ∩ {WUn
≤ nβ}

)
≤ C̃nβ−((2−α)/(α−1)∧1)+ε,

for a constant C̃ > 0. Combining this with P
(
WUn

≥ nβ
)
= ℓ(nβ)n−β/(α−1) ≤ n−β/(α−1)+ε

for n sufficiently large, by [4, Proposition 1.3.6 (v)], yields

P(En)≥ P
(
WUn

≤ nβ
)
− P
(
Ec

n ∩ {WUn
≤ nβ}

)
≥ 1− n−β(α−1)+ε − C̃nβ−((2−α)/(α−1)∧1)+ε.

Taking C = 1+ C̃ and choosing the optimal value of β, namely β = ((2−α)/(α(α− 1)))∧
(1/α), yields the desired result and concludes the proof.

Prior to proving Theorem 2.7, we prove Lemma 2.6 as stated in Section 2, and introduce
some general bounds on p(k).

PROOF OF LEMMA 2.6. Without loss of generality, we can set x0 = 1. The claim relating
the Weibull and Fréchet maximum domains of attractions follows directly from [25, Propo-
sitions 1.11 and 1.13] and the fact that P(W ≥ 1− 1/x) = P

(
(1−W )−1 ≥ x

)
.

By [25, Corollary 1.7], the random variable W belongs to the Gumbel MDA if and only
if there exist a z0 < 1 and measurable functions c, g, f satisfying limx→1 c(x) = ĉ > 0 and
limx→1 g(x) = 1 such that

P(W ≥ x) = c(x) exp
(
−
∫ x

z0

g(t)

f(t)
dt
)
, z0 < x< 1,

with f , known as the auxiliary function, being absolutely continuous, f > 0 on (z0,1) and
limx→1 f

′(x) = 0. We are required to find a z̃0 < x̃0 and measurable functions c̃, g̃, f̃ with
the same properties for the random variable (1−W )−1 to prove one direction.
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First, we readily have that x̃0 = sup{x > 0 : P
(
(1−W )−1 ≤ x

)
< 1}=∞, so that (1−

W )−1 has unbounded support. Then, take z̃0 = (1− z0)
−1 and note that z̃0 <∞ as z0 < 1.

For any x > z̃0,

P
(
(1−W )−1 ≥ x

)
= P(W ≥ 1− 1/x) = c(1− 1/x) exp

(
−
∫ x

z̃0

g(1− 1/u)

f(1− 1/u)
u−2 du

)
,

via a variable transformation u = (1 − t)−1. We thus set c̃(x) := c(1 − 1/x), g̃(x) :=

g(1− 1/x), and f̃(x) := f(1− 1/x)x2. It follows that f̃ is absolutely continuous and strictly
positive on (z̃0,∞). Moreover,

lim
x→∞

c̃(x) = lim
x→∞

c(1− 1/x) = lim
u↑1

c(u) = ĉ, lim
x→∞

g̃(x) = lim
u↑1

g(u) = 1,

and

f̃ ′(x) =−f ′(1−1/x)+2xf(1−1/x) =−f ′(1−1/x)+2(1− (1−1/x))−1f(1−1/x).

Hence, using the result from [25, Lemma 1.2] that limu↑1(1− u)−1f(u) = 0, we find that

lim
x→∞

f̃ ′(x) =− lim
u↑1

f ′(u) + 2 lim
u↑1

(1− u)−1f(u) = 0,

so that all the conditions of [25, Corollary 1.7] are satisfied for the tail distribution of (1−
W )−1.

For the other direction, we use the other result of [25, Lemma 1.2], which states that
limu→∞ u−1f(u) = 0 when f is an auxiliary function for an unbounded distribution belong-
ing to the Gumbel MDA. With similar steps as above, the required result then follows as
well.

LEMMA 4.2. For any weight distribution that belongs to the (Bounded) case and for
any non-negative sequence (sk)k∈N such that sk ↑ 1, when k is sufficiently large,

(4.3)
p(k)≤ exp(−(1− θ−1m )(1− sk)k)θ

−k
m + (1− θ−1m )θ−km P(W ≥ sk) ,

p(k)≥ exp(−(1− θ−1m )k/tk)θ
−k
m P(W ≥ 1− 1/tk) (1 + o(1)),

where tk = (1− sk)
−1, and where the lower bound only holds if

√
k = o(tk) (otherwise the

1 + o(1) term is to be included in the exponent).
For any weight distribution that has unbounded support and for any non-negative se-

quence (sk)k∈N such that sk diverges with k such that sk ≤ k/m for all k ∈ N sufficiently
large,

(4.4)

p(k)≤ 1

sk

(
exp

(
− k

msk
+

k

(msk)2

)
+ P(W ≥ sk)

)
,

p(k)≥
(
1− 1

msk

)k ∫ ∞
sk

1

1 +mx
µ(dx).

PROOF. We first prove (4.3). We know from Theorem 2.5, with µ the distribution of W ,
that

(4.5) p(k) =

∫ ∞
0

E [W ]/m

E [W ]/m+ x

( x

E [W ]/m+ x

)k
µ(dx),

for any choice of vertex-weights W such that E [W ]<∞. We recall that E [W ]/m= θm−1.
It is straightforward to check that the integrand in (4.5) is unimodal and maximised at x =
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E [W ]k/m. Thus, for k >m/E [W ], the integrand is increasing and maximal at x= 1. This
directly yields, for some non-negative sequence (sk)k∈N such that sk ↑ 1,

p(k)≤
∫ sk

0

( sk
θm − 1 + sk

)k
µ(dx) +

∫ 1

sk

θm − 1

θm
θ−km µ(dx)

≤
( θmsk
θm − 1 + sk

)k
θ−km +

θm − 1

θm
θ−km P(W ≥ sk)

≤ exp(−(1− θ−1m )(1− sk)k)θ
−k
m + (1− θ−1m )θ−km P(W ≥ sk) .

For a lower bound, we again split the integral at sk, but only keep the second integral. This
yields

p(k)≥ (1− θ−1m )
(
1− (θm − 1)(1− sk)

θm − 1 + sk

)k
θ−km P(W ≥ sk) .

We now bound the second term from below by setting sk = 1− 1/tk and by writing(
1− (θm − 1)/tk

θm − 1/tk

)k
= exp

(
k log

(
1− (θm − 1)/tk

θm − 1/tk

))
= exp(−(1− θ−1m )k/tk)(1+ o(1)),

provided that
√
k = o(tk) (otherwise include the (1+o(1)) in the exponent) so that we arrive

at

p(k)≥ (1− θ−1m ) exp(−(1− θ−1m )k/tk)θ
−k
m P(W ≥ 1− 1/tk) (1 + o(1)).

For the proof of (4.4), we have that x0 =∞ and we can now assume, without loss of gener-
ality, that E [W ] = 1. Hence, the expression in (4.5) simplifies to

p(k) =

∫ ∞
0

1

1 +mx

( mx

1 +mx

)k
µ(dx)

=

∫ sk

0

1

1 +mx

( mx

1 +mx

)k
µ(dx) +

∫ ∞
sk

1

1 +mx

( mx

1 +mx

)k
µ(dx).

For the first integral, we notice that the integrand is unimodal and maximised in x = k/m.
Since sk ≤ k/m, we can bound the integral from above by substituting x = k/m in the
integrand. By observing that (1 + mx)−1 ≤ 1/x ≤ 1/sk for x ∈ (sk,∞) and that x 7→
mx/(1 +mx) is increasing in x and bounded from above by one, we thus obtain

p(k)≤ 1

sk

(( msk
1 +msk

)k
+ P(W ≥ sk)

)
≤ 1

sk

(
exp

(
− k

msk
+

k

(msk)2

)
+ P(W ≥ sk)

)
.

For a lower bound, we omit the integral over (0, sk) an instead note that mx/(1 +mx) ≥
msk/(1 +msk) for x≥ sk. This yields

p(k)≥
( msk
1 +msk

)k ∫ ∞
sk

1

1 +mx
µ(dx)≥

(
1− 1

msk

)k ∫ ∞
sk

1

1 +mx
µ(dx),

which completes the proof.

We now prove Theorem 2.7. To aid the reader, we split the proof into several parts, based
on the different cases presented in Theorem 2.7.

PROOF OF THEOREM 2.7, (Bounded) CASE, WEIBULL MDA. We prove (2.9). Since
W belongs to the Weibull MDA (with x0 = 1), (1−W )−1 belongs to the Fréchet MDA by
Lemma 2.6, so that

(4.6) P(W ≥ 1− 1/x) = P
(
(1−W )−1 ≥ x

)
= ℓ(x)x−(α−1),
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for some slowly-varying function ℓ and α> 1. Thus, with the upper bound in (4.3) we obtain

p(k)≤
[
exp

(
− (1− θ−1m )k/tk

)
+ (1− θ−1m )ℓ(tk) exp(−(α− 1) log tk)

]
θ−km ,

where we recall that tk = (1− sk)
−1 and diverges with k. We balance the two terms in the

square brackets by setting tk = (1− θ−1m )k/((α− 1) logk). This yields

p(k)≤
(
k−(α−1) + (1− θ−1m )2−α(α− 1)α−1 log(k)α−1ℓ(tk)k

−(α−1))θ−km

= L(k)k−(α−1)θ−km ,

where L(k) := 1 + (1− θ−1m )2−α(α− 1)α−1 log(k)α−1ℓ(tk). As tk is regularly varying and
ℓ is slowly varying, ℓ(tk) is slowly varying by [4, Proposition 1.5.7.(ii)].

For a lower bound we use the lower bound in (4.3) combined with (4.6) and set tk = k to
obtain

p(k)≥ L(k)k−(α−1)θ−km ,

where L(k) := (1− θ−1m )e−(1−θ
−1
m )ℓ(k), which concludes the proof.

PROOF OF THEOREM 2.7, (Bounded)-(RV) SUB-CASE, GUMBEL MDA. We use an
improved version of the upper bound in (4.3) to prove (2.10). Recall that γ = 1/(τ+1). Then,
we define sequences tk,j := djc

1−γ
1 ((1− θ−1m )k)γ , j ∈ [J ] for constants d1 < d2 < . . . < dJ

and some J ∈N that we will choose at the end. We also write f(x) := ((θm − 1)/(θm − 1+
x))(x/(θm − 1 + x))k for simplicity. Then, we bound

(4.7) p(k)≤
∫ 1−1/tk,1

0
f(x)µ(dx) +

J−1∑
j=1

∫ 1−1/tk,j+1

1−1/tk,j

f(x)µ(dx) +

∫ 1

1−1/tk,J

f(x)µ(dx).

As (1−W )−1 satisfies the (RV) sub-case, it follows that

P(W ≥ 1− 1/tk,j) = P
(
(1−W )−1 ≥ tk,j

)
= (1+ o(1))atbk,je

−(tk,j/c1)τ

= (1+ o(1))atbk,j exp
(
− dτj

((1− θ−1m )k

c1

)1−γ)
.

Also using that f(x) is increasing on [0,1] when k > 1/(θm − 1) allows us to bound p(k)
from above even further by

f(1− 1/tk,1) +

J−1∑
j=1

f(1− 1/tk,j+1)P(W ≥ 1− 1/tk,j) + f(1)P(W ≥ 1− 1/tk,J)

≤ (θm − 1)θ−(k+1)
m

[(
1− 1

tk,1

)k(
1− 1

θmtk,1

)−(k+1)

+

J−1∑
j=1

(
1− 1

tk,j+1

)k(
1− 1

θmtk,j+1

)−(k+1)
atbk,j exp

(
− dτj

((1− θ−1m )k

c1

)1−γ)

+ atbk,J exp
(
− dτJ

((1− θ−1m )k

c1

)1−γ)]
(1 + o(1))
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≤ (1− θ−1m )θ−km

[
exp

(
− 1

d1

((1− θ−1m )k

c1

)1−γ)
+

J−1∑
j=1

atbk,j exp
(
−
(
d−1j+1 + dτj

)((1− θ−1m )k

c1

)1−γ)

+ atbk,J exp
(
− dτJ

((1− θ−1m )k

c1

)1−γ)]
(1 + o(1)).

Note that the function g(t) = t−1+ tτ has a minimum at d∗ = τ−γ . Now, we choose d1 < d∗

such that 1/d1 > g(d∗) = τγ/(1 − γ) and similarly d∞ such that dτ∞ > g(d∗). Given any
ε > 0, we can now choose J sufficiently large such that for all d, d′ ∈ [d1, d

∗] with |d− d′| ≤
(d∞ − d1)/J , we have that |dτ − (d′)τ | < ε. Finally, we define dj = d1 +

j
J (d∞ − d1) for

j = 2, . . . , J . In particular, it follows that for any j = 1, . . . , J − 1,

d−1j+1 + dτj > d−1j+1 + dτj+1 − ε≥ g(d∗)− ε= τγ/(1− γ)− ε.

Substituting this into the bound for p(k) and using that tbk,j = dbjc
(1−γ)b
1 (1−θm)γbkγb ≤Ckγb

uniformly in j ∈ [J ] for some constant C > 0, we arrive at

(4.8)

p(k)≤ (1− θ−1m )θ−km exp
(
−
( τγ

1− γ
− ε
)((1− θ−1m )k

c1

)1−γ)(
1 +

J∑
j=1

aCkγb
)

≤ exp
(
−
( τγ

1− γ
− 2ε

)((1− θ−1m )k

c1

)1−γ)
θ−km ,

where the last inequality holds for k large enough.
For a lower bound, we use the lower bound in (4.3) with tk = c1−γ1 ((1− θ−1m )k/τ)γ . We

thus obtain

p(k)≥ (1−θbγ−1m )τ−γbc
b(1−γ)
1 kγb exp

(
− (τγ+τγ−1)

((1− θ−1m )k

c1

)1−γ
(1+o(1))

)
θ−km .

As
√
k = o(tk) is not guaranteed for all values of τ > 0, we include the 1 + o(1) in the

exponent, so that

p(k)≥ exp
(
− τγ

1− γ

((1− θ−1m )k

c1

)1−γ
(1 + o(1))

)
θ−km ,

which together with (4.8) yields (2.10) and concludes the proof.

PROOF OF THEOREM 2.7, (Bounded)-(RaV) SUB-CASE, GUMBEL MDA. We apply
a similar approach as in the proof of (2.10) to prove (2.11). Again, we choose a sequence
tk,1 < . . . < tk,J with J = J(k) to be determined later. We set tk,j = (dJ−j+1)

−1(1 −
θ−1m )k(logk)−(τ−1) for a sequence d1 < d2 < . . . < dJ to be fixed later on, but such that
d1 is bounded in k and log(dJ) = o(logk). Then, by the same steps as in between (4.7)
and (4.8), but now using that (1−W )−1 satisfies the (RaV) sub-case, we obtain

(4.9)

p(k)≤ (1− θ−1m )θ−km

[
exp

(
− dJ(logk)

τ−1
)
+ a(log tk,J)

b exp(−(log(tk,J)/c1)
τ )

+

J−1∑
j=1

a(log tk,j)
b exp

(
− dJ−j(logk)

τ−1 − (log(tk,j)/c1)
τ
)]

(1 + o(1)).



THE MAXIMAL DEGREE IN RANDOM RECURSIVE GRAPHS WITH RANDOM WEIGHTS 25

Now, we use that by a Taylor expansion

(log tk,j/c1)
τ ≥

( logk
c1

)τ(
1− τ(τ − 1)

log logk

logk

)
− τ

cτ1
log
( dJ−j+1

1− θ−1m

)
(logk)τ−1.

Hence, we obtain that there exists a constant C > 0 such that

(4.10)

p(k)≤Cθ−km (logk)b∨0
[
exp

(
− dJ(logk)

τ−1
)

+ exp
(
−
( logk

c1

)τ(
1− τ(τ − 1)

log logk

logk

))
×
( J−1∑

j=1

exp
(
−
(
dJ−j −

τ

cτ1
log
( dJ−j+1

1− θ−1m

))
(logk)τ−1

)
+ exp

( τ

cτ1
log
( d1

1− θ−1m

)
(logk)τ−1

))]
.

We will eventually choose dJ such that dJ ≥ c−τ1 logk, so that we can neglect the first term.
Secondly, we notice that the function f(x) = x−τc−τ1 log(x/(1−θ−1m )) is minimised at x∗ =
τc−τ1 , so we choose d1 small enough such that τc−τ1 (log(d1))< f(x∗) = τc−τ1 log(ecτ1(1−
θ−1m )/τ). Therefore, we can neglect the first term and the term outside the sum and can
concentrate on the sum itself and so need to estimate

(4.11)
J−1∑
j=1

exp
(
−
(
dj −

τ

cτ1
log
( dj+1

1− θ−1m

))
(logk)τ−1

)
.

Let d∞ be big enough such that τc−τ1 log(d/(1− θ−1m )) ≤ d/2 for all d ≥ d∞ and also big
enough such that d∞ ≥ 2(f(x∗) + 1). Given ε > 0, let J ′ be such that J ′ ≥ ε−1(d∞ − d1)
(note that J ′ does not depend on k). Then define dj = d1+(j/J ′)(d∞−d1) for j = 1, . . . , J ′.
Moreover, choose dj = d∞ + (j − J ′) for j ≥ J ′ + 1. Finally, choose J such that dJ−1 ≤
(logk)/(c1)

τ ≤ dJ . We split the sum in (4.11) into summands smaller and bigger than J ′ and
first consider

J ′−1∑
j=1

exp
(
−
(
dj −

τ

cτ1
log
( dj+1

1− θ−1m

))
(logk)τ−1

)

≤
J ′−1∑
j=1

exp
(
−
(
dj+1 −

τ

cτ1
log
( dj+1

1− θ−1m

)
− ε
)
(logk)τ−1

)
≤ J ′ exp

(
− (f(x∗)− ε

)
(logk)τ−1

)
.
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Now, for the second sum we obtain by the assumptions on dj ,

J−1∑
j=J ′

exp
(
−
(
dj −

τ

cτ1
log
( dj+1

1− θ−1m

))
(logk)τ−1

)

≤
J−1∑
j=J ′

exp
(
− (dj − dj+1/2)(logk)

τ−1
)

≤
J−1∑
j=J ′

exp
(
−
(1
2
(d∞ + (j − J ′))− 1

2

)
(logk)τ−1

)

≤ exp
(
− 1

2
(d∞ − 1)(logk)τ−1

) ∞∑
j=0

exp
(
− j/2(logk)τ−1

)
By assumption, we have that (d∞ − 1)/2≥ f(x∗), so that combining the two last estimates
with (4.10), we obtain that there exists a constant C1 > 0 such that
(4.12)

p(k)≤C1θ
−k
m (logk)b∨0 exp

(
−
( logk

c1

)τ(
1−τ(τ−1)

log logk

logk

)
−(logk)τ−1(f(x∗)−ε)

)
,

which gives the required bound as we recall that f(x∗) = τc−τ1 log(ecτ1(1− θ−1m )/τ).
For a lower bound, we set tk = (1− θ−1m )k/(x∗(logk)τ−1), where x∗ = τc−τ1 as before.

Then, we use the lower bound in (4.3) to find

p(k)≥ (1− θ−1m )a log(tk)
b exp(−(1− θ−1m )k/tk − (log(tk)/c1)

τ )θ−km (1 + o(1))

≥C2 log(k)
b exp

(
−
( logk

c1

)τ(
1− τ(τ − 1)

log logk

logk

)
− (x∗ − τc−τ1 log(x∗/(1− θ−1m )))(logk)τ−1(1 + o(1))

)
θ−km ,

for some constant C2 > 0, which proves the lower bound in (2.11) since we recall that
f(x∗) = τc−τ1 log(ecτ1(1− θ−1m )/τ) and which concludes the proof.

PROOF OF THEOREM 2.7, (Bounded) CASE, ATOM AT ONE. We aim to prove (2.16)
and (2.17) and assume without loss of generality that x0 = 1. As q0 = P(W = 1) > 0, we
immediately obtain the lower bound

p(k)≥ q0(1− θ−1m )θ−km ,

for both cases. For an upper bound, let us first assume there exists an s ∈ (0,1) such that
P(W ∈ (s,1)) = 0. Then, the upper bound in (4.3) yields

p(k)≤ exp(−(1− θ−1m )(1− s)k)θ−km + (1− θ−1m )θ−km µ((s,1])

= q0(1− θ−1m )θ−km

(
1 +O

(
exp(−(1− θ−1m )(1− s)k)

))
,

which proves (2.16). To conclude the proof of (2.17), let (sk)k∈N be any positive sequence
such that sk ↑ 1. Then, µ((sk,1)) vanishes as k →∞ by the continuity of probability mea-
sures. As a result, again using the upper bound in (4.3),

p(k)≤ exp(−(1− θ−1m )(1− sk)k)θ
−k
m + (1− θ−1m )θ−km µ((sk,1])

= q0(1− θ−1m )θ−km

(
1 +O

(
exp(−(1− θ−1m )(1− sk)k)∨ µ((sk,1))

))
,

as required, which concludes the proof.
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PROOF OF THEOREM 2.7, (Gumbel)-(RV) SUB-CASE. We prove (2.13), and use an
improved upper bound compared to (4.4), similar to the proof of the (Gumbel)-(RV) sub-
case in the (Bounded) setting. As in (4.7), writing f(x) = (mx)k(1 + mx)−(k+1) and
taking sequences sk,j , k, j ∈ N such that sk,j ≤ sk,j+1 and sk,j ≤ k/m (so that f(sk,j) is
increasing in j) for all j ∈N and k large,
(4.13)

p(k)≤
∫ sk,1

0
f(x)µ(dx) +

J−1∑
j=1

∫ sk,j+1

sk,j

f(x)µ(dx) +

∫ ∞
sk,J

f(x)µ(dx)

≤ f(sk,1) +

J−1∑
j=1

f(sk,j+1)P(W ≥ sk,j) + P(W ≥ sk,J)

≤ 1

sk,1
exp

(
− k

msk,1
+

k

(msk,1)2

)
+

J−1∑
j=1

1

sk,j+1
exp

(
− k

msk,j+1
+

k

(msk,j+1)2

)
asbk,j exp

(
− (sk,j/c1)

τ
)
(1 + o(1))

+ asb−1k,J exp
(
− (sk,J/c1)

τ
)
(1 + o(1)),

where J ≥ 2 is some large integer. We then set sk,j = djc
1−γ
1 (k/m)γ for some constants

d1 < d2 < . . . < dJ (so that sk,j ≤ sk,j+1 and sk,j ≤ k/m holds for all j ∈ N and all k
large) and note that this bound is similar to the one developed in the proof of the upper
bound in (2.10), but with 1− θ−1m replaced by 1/m, some additional lower order terms in the
exponents and different constants. We can thus use the same approach to conclude that for
any fixed ε > 0, we can take J large enough such that we obtain the upper bound
(4.14)

p(k)≤ exp
(
− (1− ε)

τγ

1− γ

( k

c1m

)1−γ)( mγ

d1c
1−γ
1 kγ

+ ac
(b−1)(1−γ)
1 m−(b−1)γk(b−1)γ

J−1∑
j=1

dbjd
−1
j+1 + adb−1J c

(1−γ)(b−1)
1 m−γ(b−1)kγ(b−1)

)
≤ exp

(
− (1− 2ε)

τγ

1− γ

( k

c1m

)1−γ)
.

For a lower bound we set sk = c1−γ1 (k/(τm))γ and use the lower bound in (4.4) to obtain for
any ε ∈ (0, τ),

(4.15)

p(k)≥
(
1− (c1m)−(1−γ)(k/τ)−γ

)k ∫ ∞
sk

1

1 +mx
µ(dx)

≥ exp(−(c1m)−(1−γ)τγk1−γ(1 + o(1)))
1

m+ 1

∫ s1−τ+ε
k

sk

x−1 µ(dx),

We use that for any ε ∈ (0, τ) and all k sufficiently large,

(sk + s1−τ+ε
k )b = sbk(1 + o(1)),

(sk + s1−τ+ε
k

c1

)τ
≤ (sk/c1)

τ + 2τsεk/c
τ
1 ,
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so that P
(
W ≥ sk + s1−τ+ε

k

)
= o(P(W ≥ sk)). As a result we can bound the integral

in (4.15) from below by∫ sk+s1−τ+ε
k

sk

x−1µ(dx)≥ 1 + o(1)

sk
P(W ≥ sk) = (a+ o(1))sb−1k e−(sk/c1)

τ

= e−τ
γ−1(k/(c1m))1−γ(1+o(1)).

Using this in (4.15), we arrive at

p(k)≥ 1

m+ 1
exp

(
− (c1m)−(1−γ)τγk1−γ(1 + o(1))− τγ−1(k/(c1m))1−γ(1 + o(1))

)
= exp

(
− τγ

1− γ
(k/(c1m))1−γ(1 + o(1))

)
.

Combined with (4.14) this proves (2.13) and concludes the proof.

PROOF OF THEOREM 2.7, (Gumbel)-(RaV) SUB-CASE. For the (RaV) sub-case, we
use a similar approach as for the proof of the (RV) sub-case in the (Bounded) setting. For
j = 1, . . . , J , we set sk,j = d−1J−j+1(k/m)(log(k/m))−(τ−1) for a sequence d1 < d2 < . . . <

dJ and J to be determined later on, such that d1 is bounded in k and logdJ = o(logk).
Additionally, we use that the weights satisfy the (RaV) sub-case and use (4.13) to obtain

p(k)≤
[ 1

sk,1
exp

(
− k

msk,1
+

k

(msk,1)2

)
+

J−1∑
j=1

1

sk,j+1
exp

(
− k

msk,j+1
+

k

(msk,j+1)2

)
a(log sk,j)

b exp
(
− (log(sk,j)/c1)

τ
)

+ as−1k,J log s
b
k,J exp

(
− (log(sk,J)/c1)

τ
)]

(1 + o(1))

=
[
dJ

m log(k)τ−1

k
exp

(
− dJ(log(k/m))τ−1 + o(1)

)
+

J−1∑
j=1

adJ−j
m log(k)b+τ−1

k
exp

(
− dJ−j(log(k/m))τ−1 − (log(sk,j)/c1)

τ + o(1)
)

+ ad1
m log(k)b+τ−1

k
exp

(
− (log(sk,J/c1))

τ
)]

(1 + o(1)).

We find that determining the optimal value of the d1, . . . , dJ follows a similar approach as in
the case when (1−W )−1 satisfies the (RaV) sub-case in (4.9)- (4.12) (but with k replaced
with k/m in the exponent and 1− θ−1m omitted). As a result, we obtain for any ε > 0,
(4.16)

p(k)≤ k−1 exp
(
−
( log(k/m)

c1

)τ(
1− τ(τ − 1)

log log(k/m)

log(k/m)
+

τ log(ecτ1/τ)− ε

log(k/m)

))
.

For a lower bound on p(k) we set sk = cτ1τ
−1(k/m)(log(k/m))−(τ−1). As sk/

√
k diverges,

it follows that we can improve the lower bound in (4.4) to find for some small constant C > 0,
(4.17)

p(k)≥C exp(−k/(msk))

∫ ∞
sk

1

1 +mx
µ(dx)≥Cm exp(−k/(msk))

∫ 2sk

sk

x−1µ(dx),

for some constant Cm > 0. Now, since τ > 1, when k is large,

(log(2sk)/c1)
τ ≤ (log(sk)/c1)

τ + 2τc−τ1 log 2(log sk)
τ−1,
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so that P(W ≥ 2sk) = o(P(W ≥ sk)). We can thus bound (4.17) from below by

Cm exp(−k/(msk))(2sk)
−1P(W ≥ sk) (1 + o(1))

≥C2s
−1
k (log sk)

b exp(−(log(sk)/c1)
τ − k/(msk)),

for some constant C2 > 0. Using the precise value of sk and a Taylor expansion of (log sk)τ

yields

p(k)≥C2k
−1 exp

(
−
( logk

c1

)τ(
1− τ(τ − 1)

log logk

logk
+

τ log(ecτ1/τ)

logk
(1 + o(1))

))
.

Combined with (4.16) this proves (2.14) and concludes the proof.

PROOF OF THEOREM 2.7, (Fréchet) CASE. We prove (2.15). First, let us set sk =
k/(m(α−1+ε) logk) for some ε > 0 (note sk ≤ k/m). Then, using the upper bound in (4.4)
we bound p(k) from above by

p(k)≤m(α− 1 + ε)
logk

k

(
k−(α−1+ε)(1 + o(1)) + ℓ(sk)(m(α− 1 + ε) logk)α−1k−(α−1)

)
= o(k−α) +L(k)k−α,

where L(k) := (m(α − 1 + ε) logk)αℓ(k/(m(α − 1 + ε) logk)) is slowly varying by [4,
Proposition 1.5.7 (ii)]. The required upper bound is obtained by taking ℓ(k) := (1 + ε)L(k).

To conclude the proof, we construct a lower bound for p(k). We set sk = k/m and use the
improved lower bound for p(k) as in the first line of (4.17) to obtain

p(k)≥ C

e

∫ ∞
k/m

1

1 +mx
µ(dx)≥ Cm

e(1 + 2k)
(P(W ≥ k/m)− P(W ≥ 2k/m))

=
Cm

3e
k−1ℓ(k/m)(k/m)−(α−1)

(
1− ℓ(2k/m)

ℓ(k/m)
2−(α−1)

)
.

As ℓ is slowly-varying at infinity, is follows that the last term can be bounded from below by
a constant, as the fraction converges to one, and that ℓ(k/m)≥ ℓ(k)/2, when k is large. As a
result,

p(k)≥C2ℓ(k)k
−α =: ℓ(k)k−α,

where C2 > 0 is a suitable constant.

5. The maximum conditional mean degree in WRGs. It turns out that the analysis
of the maximum degree of WRGs can be carried out via the maximum of the conditional
mean degrees under certain assumptions on the vertex-weight distribution. To this end, we
formulate several propositions to describe the behaviour of the maximum conditional mean
degree when the vertex-weights satisfy the different conditions in Assumption 2.3. Let us
first introduce an important quantity, namely the location of the maximum conditional mean
degree,

Ĩn := inf{i ∈ [n] : EW [Zn(i)]≥ EW [Zn(j)] for all j ∈ [n]}.

Furthermore, it is important to note that, as Zn(i) is a sum of indicator random variables for
any i ∈ [n], its conditional mean equals

EW [Zn(i)] =mWi

n−1∑
j=i

1

Sj
,
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where we recall that Sj =
∑j

ℓ=1Wℓ. This is also true when we work with the model with a
random out-degree, as discussed in Remark 2.2(ii), so that all the results in the upcoming
propositions also hold for this model by setting m= 1.

Another important result that we use throughout the proofs of the propositions is the fol-
lowing lemma. We note that the conditions in the lemma are satisfied for all cases in As-
sumption 2.3 such that E [W ] < ∞. A similar result (under a different condition) can be
found in [2, Theorem 1].

LEMMA 5.1. Let W1,W2, . . . be i.i.d. non-negative random variables such that Wi > 0
a.s. and E

[
W 1+ε

]
< ∞ for some ε > 0. Moreover, we assume that E [Wi] = 1 and write

Sn =
∑n

i=1Wi. Then, there exists an almost surely finite random variable Y such that

(5.1)
n−1∑
j=1

1

Sj
− logn

a.s.−→ Y.

PROOF. We first write

(5.2)
n−1∑
j=1

1

Sj
− logn=

n−1∑
j=1

j − Sj

jSj
+

n−1∑
j=1

1

j
− logn=:

n−1∑
j=1

j − Sj

jSj
+En,

where En is deterministic and converges to the Euler-Mascheroni constant. Therefore, it suf-
fices to show that the first sum on the right-hand side is almost surely absolutely convergent.

By the strong law of large numbers and since E [Wi] = 1, there exists a (random) J such
that Sj >

1
2j for all j ≥ J almost surely. So, we can bound almost surely,

n−1∑
j=1

|j − Sj |
jSj

≤
J−1∑
j=1

|j − Sj |
jSj

+ 2

n−1∑
j=J

|j − Sj |
j2

.

The first term is finite almost surely since each Wi > 0 a.s. We now claim that the second
term has a finite mean. Namely,

E

n−1∑
j=J

|j − Sj |
j2

≤
∞∑
j=1

1

j2
E
[
|j − Sj |1+ε

]1/(1+ε) ≤
∞∑
j=1

cε
j2

j1/(1+ε),

which is summable, where cε > 0 is a constant and where we use a Zygmund-Marcinkiewicz
bound, see [14, Corollary 8.2] in the last step. Therefore, the sum on the right-hand side
in (5.2) is almost surely (absolutely) convergent, which completes the proof.

In the upcoming subsections, we state and prove several propositions related to the maxi-
mum conditional mean degree in WRGs, based on the different conditions in Assumption 2.3.
We note that it suffices to state the proofs of the results below for m= 1 only, as the expected
degrees scale linearly with m.

5.1. Maximum conditional mean degree, (Gumbel)-(SV) sub-case.

PROPOSITION 5.2 (Max expected degree, (Gumbel)-(SV)). Consider the WRG model
as in Definition 2.1 and suppose the vertex-weights satisfy the (Gumbel)-(SV) sub-case in
Assumption 2.3. Then,

(5.3)
(
max
i∈[n]

EW [Zn(i)]

mbn logn
,
log Ĩn
logn

)
P−→ (1,0).
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PROOF. Let β ∈ (0,1). It follows that

max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn logn
≥ max

i∈[n1−β ]

Wi
∑n−1

j=⌈n1−β⌉ 1/Sj

bn logn
= max

i∈[n1−β ]

Wi

bn1−β

∑n−1
j=⌈n1−β⌉ 1/Sj

logn

bn1−β

bn
.

We then note that bn1−β/bn = ℓ((1 − β) logn)/ℓ(logn) → 1 as n tends to infinity, since ℓ
is slowly varying at infinity. Furthermore, the maximum on the right-hand side tends to 1 in
probability and the fraction in the middle converges to β almost surely by (5.1). Thus, with
high probability,

(5.4) max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn logn
≥ β,

where we note that we can choose β arbitrarily close to 1. Similarly, we obtain an upper
bound by setting the range of the sum from 1 to n− 1. Since maxi∈[n]Wi/bn converges to
one in probability, combining this lower bound with (5.1) yields that, wit high probability

max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn logn
≤ 1 + η,

for any η > 0. Together with (5.4) this yields the first part of (5.3). Now, for the second part,
let ε > 0, and let us write, for η < ε,

En :=

{
max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn logn
≥ 1− η

}
,

which holds with high probability by the above. Then,

P

(
log Ĩn
logn

> ε

)
= P

({ log Ĩn
logn

> ε
}
∩En

)
+ P(Ec

n)

≤ P

(
max
i>nε

Wi
∑n−1

j=i 1/Sj

bn logn
≥ 1− η

)
+ P(Ec

n) .

Clearly, the second probability on the right-hand side tends to zero with n. What remains
to show is that the same holds for the first probability. Via a simple upper bound, where we
substitute j = ⌊nε⌋ for j = i in the summation, we immediately obtain

P

(
max
i>nε

Wi
∑n−1

j=⌊nε⌋ 1/Sj

bn logn
≥ 1− η

)
→ 0,

as the maximum over the fitness values scaled by bn tends to one in probability, and the sum
scaled by logn converges to 1− ε almost surely, so that the product of the two converges to
1− ε < 1− η in probability, and so the result follows.

5.2. Maximum conditional mean degree, (Gumbel)-(RV) sub-case. Before we turn our
attention to the maximum conditional mean in-degree in the WRG model for the (Gumbel)-
(RV) sub-case, we first inspect the behaviour of maxima of i.i.d. vertex-weights in this class
in the following lemma.

LEMMA 5.3 (Almost sure convergence of rescaled maximum vertex-weight). Let
(Wi)i∈N be i.i.d. random variables that satisfy the (Gumbel)-(RV) sub-case in Assump-
tion 2.3. Then,

max
i∈[n]

Wi

bn

a.s.−→ 1.
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PROOF. A particular case, when c1 = a = 1, b = 0, τ ∈ (0,1] and the asymptotic equiva-
lence is replaced with an equality, follows directly from [31][Lemma 4.1] when we set d= 1
in this lemma. The lemma provides an almost sure lower and upper bound for the maximum
of n i.i.d. random variables with a distribution as described. The leading order term in these
bounds is asymptotically equal to bn, from which the statement of the lemma follows.

We observe that Lemma 4.1 in [31] can be extended to hold for any τ > 1 as well, in which
case only lower order terms may need to be adjusted slightly, so that the leading order terms
are still asymptotically equivalent to bn. Thus, it remains to show that for any τ > 0, we can
extend the case c1 = a= 1, b= 0 to any c1, a > 0, b ∈R.

To that end, let (Wi)i∈N be i.i.d. copies of a random variable W with a tail distribution as in
the (Gumbel)-(RV) sub-case. This implies that there exists a function ℓ such that ℓ(x)→ 1
as x→∞, and

P(W ≥ x) = ℓ(x)axbe−(x/c1)
τ

.

Then, let (Xi)i∈N be i.i.d. copies of a random variable X with a tail distribution as in
the (Gumbel)-(RV) sub-case, with ℓ ≡ 1, a = c1 = 1, b = 0, which are also independent
of the Wi. As follows from the above,

(5.5) max
i∈[n]

Xi

bn

a.s.−→ 1.

Let us write bn(X), bn(W ) to distinguish between the respective first-order growth-rate se-
quences of X and W , respectively. Define the functions f,h : R→ R as f(x) := x(c−τ1 −
(b logx+ loga)/xτ )1/τ and h(x) := (f(x)τ − log(ℓ(x)))1/τ . Then, we can write

P(W ≥ x) = ℓ(x)axb exp
(
−
(
x
c1

)τ)
= ℓ(x) exp(−f(x)τ ) = exp(−h(x)τ ) = P(X ≥ h(x)) .

Hence, W d
= h←(X), where h← is the generalised inverse of h, defined as h←(x) := inf{y ∈

R : h(y)≥ x}, x ∈R. We can write h as

h(x) = f(x)
(
1− log(ℓ(x))

f(x)τ

)1/τ
= x
(
c−τ1 − b logx+ loga

xτ

)1/τ(
1− log(ℓ(x))

(x/c1)τ − (b logx+ loga)

)1/τ
=: xL(x).

Note that L(x)→ 1/c1 as x tends to infinity, so that h is regularly varying at infinity with
exponent 1. [4, Theorem 1.5.12] then provides a slowly-varying function L̃ such that

(5.6) lim
x→∞

L̃(x)L(xL̃(x)) = 1,

which implies that h←(x) ∼ L̃(x)x and that L̃(x) converges to c1. Since h← is increasing,
we obtain

max
i∈[n]

Wi

bn(W )
=

h←(maxi∈[n]Xi)

L̃(maxi∈[n]Xi)maxi∈[n]Xi

maxi∈[n]Xi

bn(X)

bn(X)

bn(W )
L̃(max

i∈[n]
Xi)

a.s.−→ 1,

since the maximum over Xi tends to infinity with n almost surely, bn(X)/bn(W ) ∼ 1/c1,
by (5.5) and (5.6) and the continuous mapping theorem.

With this lemma at hand, we now investigate the maximum conditional mean in-degree of
the WRG when the vertex-weights satisfy the (Gumbel)-(RV) sub-case. We state and prove
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three propositions which consider the maximum expected degree’s first order, the second or-
der in a small window around the expected index that attains the maximum expected degree,
and the entire second order, respectively.

PROPOSITION 5.4 (Max expected degree, first order, (Gumbel)-(RV)). Consider the
WRG model as in Definition 2.1 and suppose the vertex-weights satisfy the (Gumbel)-(RV)
sub-case in Assumption 2.3. Let γ := 1/(τ + 1). Then,

(5.7)
(
max
i∈[n]

EW [Zn(i)]

m(1− γ)bnγ logn
,
log Ĩn
logn

)
a.s.−→ (1, γ).

PROOF. We start by proving the first-order growth rate of the maximum. We can immedi-
ately construct the lower bound

(5.8)
maxi∈[n]Wi

∑n−1
j=i 1/Sj

(1− γ)bnγ logn
≥

maxi∈[nγ ]Wi
∑n−1

j=nγ 1/Sj

(1− γ)bnγ logn
,

and the right-hand side converges almost surely to 1 by (5.1) and Lemma 5.3. For an upper
bound, we first define the sequence (ε̃k)k∈Z+

as

(5.9) ε̃k =
γ

2

(
1−

( 1− γ

1− (γ − ε̃k−1)

)τ)
+

1

2
ε̃k−1, k ≥ 1, ε̃0 = γ.

This sequence is defined in such a way that it is decreasing and tends to zero with k, and that
the maximum over indices i such that nγ−ε̃k−1 ≤ i≤ nγ−ε̃k is almost surely bounded away
from 1: For any k ≥ 1, we obtain the upper bound

(5.10)

max
i∈[nγ−ε̃k ]

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ logn
= max

1≤j≤k
max

nγ−ε̃j−1≤i≤nγ−ε̃j

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ logn

≤ max
1≤j≤k

max
i∈[nγ−ε̃j ]

Wi

bnγ−ε̃j

∑n−1
j=nγ−ε̃j−1

1/Sj

(1− γ) logn

bnγ−ε̃j

bnγ

,

which, using the asymptotics of bn, (5.1) and Lemma 5.3 converges almost surely to

(5.11) ck := max
1≤j≤k

1− (γ − ε̃j−1)

1− γ

(γ − ε̃j
γ

)1/τ
,

which is strictly smaller than one by the choice of the sequence (ε̃k)k≥0. Now, by writing,
for some η > 0 to be specified later,

En :=

{
max
i∈[n]

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ logn
≥ 1− η

}
,

which holds almost surely for all n large by (5.8), we obtain, for any ε > 0,{ log Ĩn
logn

< γ − ε
}
⊆
{{ log Ĩn

logn
< γ − ε

}
∩En

}
∪Ec

n

⊆
{

max
i<nγ−ε

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ logn
≥ 1− η

}
∪Ec

n.

The second event in the union on the right-hand side holds for finitely many n only, almost
surely. For the first event in the union, we use (5.10) for a fixed k large enough such that
ε̃k < ε to obtain

(5.12)
{

max
i<nγ−ε

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ logn
≥ 1− η

}
⊆
{

max
i<nγ−ε̃k

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ logn
≥ 1− η

}
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If we then choose η small enough such that

ck = max
1≤j≤k

2−1/τ
((1− (γ − ε̃j−1))

τ (γ − ε̃j−1)

(1− γ)τγ
+ 1
)1/τ

= 2−1/τ
((1− (γ − ε̃k−1))

τ (γ − ε̃k−1)

(1− γ)τγ
+ 1
)1/τ

< 1− η,

which is possible due to the fact that the expression on the left of the second line is increasing
to 1 in k, we find that the event on the right-hand side of (5.12) holds for finitely many
n only. Thus, almost surely, the event {log(Ĩn)/ logn < γ − ε} holds for finitely many n
only, irrespective of the value of ε. With a similar argument, and using a sequence (εk)k∈Z+

,
defined as

εk =
1− γ

2

(
1−

(γ + εk−1
γ

)−1/τ)
+

1

2
εk−1, k ≥ 1, ε0 = 1− γ,

we find that the maximum is not obtained at nγ+ε ≤ i ≤ n for any ε > 0 almost surely as
well, which proves the second part of (5.7). This also allows for a tighter upper bound of the
maximum. On the event that the maximum is obtained at an index i such that nγ−ε ≤ i ≤
nγ+ε,

maxi∈[n]Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ logn
= max

nγ−ε≤i≤nγ+ε

Wi
∑n−1

j=i 1/Sj

(1− γ)bnγ logn

≤ max
i∈[nγ+ε]

Wi

bnγ+ε

∑n−1
j=nγ−ε 1/Sj

(1− γ) logn

bnγ+ε

bnγ

,

which, again using the asymptotics of bn, (5.1) and Lemma 5.3 converges almost surely to
(1 + ε/(1− γ))(1 + ε/γ)1/τ . This upper bound decreases to 1 as ε tends to zero, so that the
upper bound can be chosen arbitrarily close to 1 by choosing ε sufficiently small. Hence, the
left-hand side exceeds 1 + δ, for any δ > 0, only finitely many times. As the event on which
this upper bound is constructed holds almost surely eventually for all n, for any fixed ε > 0,
the first part of (5.7) follows and which concludes the proof.

The previous proposition shows that the size of the maximum conditional mean degree is
roughly m(1− γ)bnγ logn and attained at a vertex with label of the order nγ+o(1). The next
proposition studies the second-order growth rate of the maximum degree in a small window
around nγ .

PROPOSITION 5.5 (Max expected degree, partial second order, (Gumbel)-(RV)). Con-
sider the
same conditions as Proposition 5.4. Moreover, recall the sets Cn from (2.24), let ℓ be a strictly
positive function such that limn→∞ log(ℓ(n))2/ logn = ζ0 for some ζ0 ∈ [0,∞), and let Π
be a Poisson point process on (0,∞)×R with intensity measure ν(dt,dx) := dt× e−xdx.
Then, for any 0< s< t <∞,

(5.13) max
i∈Cn(γ,s,t,ℓ)

EW [Zn(i)]−m(1− γ)bnγ logn

m(1− γ)anγ logn

d−→ max
(v,w)∈Π
v∈(s,t)

w− log v− ζ0(τ + 1)2

2τ
.
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PROOF. For ease of writing, we omit the arguments and write Cn :=Cn(β, s, t, ℓ). We use
results from extreme value theory regarding the convergence of particular point processes to
obtain the results. Let us define the point process

Πn :=

n∑
i=1

δ(i/n,(Wi−bn)/an).

By [25], when the Wi are i.i.d. random variables in the Gumbel maximum domain of at-
traction (which is the case for the (Gumbel)-(RV) sub-case), then the weak limit of Πn is
Π, a PPP on (0,∞)× (−∞,∞] with intensity measure ν(dt,dx) = dt× e−xdx. Here, we
understand the topology on (−∞,∞] such that sets of the form [a,∞] for a ∈R are compact
and we are crucially using that the measure e−xdx is finite on these compact sets.

Rather than considering the time-scale n and all i ∈ [n], we consider the time-scale ℓ(n)nγ

and i ∈ Cn, and show that the rescaled conditional expected in-degrees can be written as a
continuous functional of the point process Πℓ(n)nγ with vanishing error terms. Thus, we write

Wi
∑n−1

j=i 1/Sj − bℓ(n)nγ log(n1−γ/ℓ(n))

aℓ(n)nγ log(n1−γ/ℓ(n))
=

Wi − bℓ(n)nγ

aℓ(n)nγ

∑n−1
j=i 1/Sj

log(n1−γ/ℓ(n))
− log

( i

ℓ(n)nγ

)
+

bℓ(n)nγ

aℓ(n)nγ log(n1−γ/ℓ(n))

(n−1∑
j=i

1

Sj
− log

(n
i

))
−
( bℓ(n)nγ

aℓ(n)nγ log(n1−γ/ℓ(n))
− 1
)
log(i/ℓ(n)nγ).

We then let, for 0< s< t <∞, f ∈R,

C̃n(f) := {i ∈Cn : (Wi − bℓ(n)nγ )/aℓ(n)nγ ≥ f}.

Then, for Cn (as well as C̃n(f),

(5.14)

∣∣∣∣max
i∈Cn

Wi
∑n−1

j=i 1/Sj − bℓ(n)nγ log(n1−γ/ℓ(n))

aℓ(n)nγ log(n1−γ/ℓ(n))

−max
i∈Cn

(
(Wi − bℓ(n)nγ )

∑n−1
j=i 1/Sj

aℓ(n)nγ log(n1−γ/ℓ(n))
− log

( i

ℓ(n)nγ

))∣∣∣∣
≤

bℓ(n)nγ

aℓ(n)nγ log(n1−γ/ℓ(n))
max
i∈Cn

∣∣∣n−1∑
j=i

1/Sj − log(n/i)
∣∣∣

+
∣∣∣ bℓ(n)nγ

aℓ(n)nγ log(n1−γ/ℓ(n))
− 1
∣∣∣max
i∈Cn

| log(i/ℓ(n)nγ)|.

Since limn→∞ log(ℓ(n))/ logn = 0, it immediately follows that bℓ(n)nγ ∼ bnγ , aℓ(n)nγ ∼
anγ , log(n1−γ/ℓ(n)) ∼ (1 − γ) logn, so that the fraction on the third line and the first
term on the fourth line tend to one and zero, respectively. It also follows from (5.1) that∑n−1

j=i 1/Sj − log(n/i) converges almost surely for any fixed i ∈N, so the maximum on the
second line tends to zero almost surely, as the sequence in the absolute value is a Cauchy
sequence almost surely (and all i ∈ Cn tend to infinity with n). Finally, we can bound the
maximum on the last line by max{| log t|, | log s|}, so that the left-hand side converges to
zero almost surely.
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From the convergence of Πn
d−→Π, it follows that(

i/(ℓ(n)nγ),
Wi − bℓ(n)nγ

aℓ(n)nγ

)
i∈C̃n

d−→ (v,w) (v,w)∈Π
v∈[s,t],w≥f

,

on the space of point measures equipped with the vague topology. It is straight-forward to
extend this convergence (using that [s, t]× [f,∞] is a compact set) to show that(

i/(ℓ(n)nγ),
Wi − bℓ(n)nγ

aℓ(n)nγ

,

∑n−1
j=i 1/Sj

log(n1−γ/ℓ(n))

)
i∈C̃n

d−→ (v,w,1) (v,w)∈Π
v∈[s,t],w≥f

,

Hence, the continuous mapping theorem yields

(5.15) max
i∈C̃n

Wi − bℓ(n)nγ

aℓ(n)nγ

∑n−1
j=i 1/Sj

log(n1−γ/ℓ(n))
− log

( i

ℓ(n)nγ

)
d−→ max

(v,w)∈Π
v∈[s,t],w∈[f,f ′]

(
w− log v

)
,

as element-wise multiplication and taking the maximum of a finite number of elements is
a continuous operation (which uses that by [25, Proposition 3.13] vague convergence on a
compact set is the same as pointwise convergence). Now, we intend to show that the same
result holds when considering i ∈Cn, that is, the distributional convergence still holds when
omitting the constraint on the size of the Wi. Let η > 0 be fixed, and for any closed D ⊂R, let
let Dη := {x ∈R | infy∈D |x− y| ≤ η} be its η-enlargement. We define the random variables
and events

Xn,i :=
Wi − bℓ(n)nγ

aℓ(n)nγ

∑n−1
j=i 1/Sj

log(n1−γ/ℓ(n))
− log(i/(ℓ(n)nγ)), i ∈ [n],

En(η) := {|max
i∈Cn

Xn,i − max
i∈C̃n(f)

Xn,i|< η}, An(η) := {max
i∈Cn

Xn,i ∈Dη},

and note that D0 =D by the definition of Dη . Then,

(5.16) P(An(0))≤ P(An(0)∩En(η)) + P(En(η)
c) .

Note that the first probability can be bounded from above by P
(
maxi∈C̃n(f)

Xn,i ∈Dη

)
and

from (5.15) we obtain that

limsup
n→∞

P
(
max
i∈C̃n

Xn,i ∈Dη

)
≤ P

(
max

(v,w)∈Π
v∈[s,t],w≥f

w− log v ∈Dη

)
.

To see that we can remove the restriction that w ≥ f , we note that∣∣∣ max
(v,w)∈Π
v∈[s,t]

(
w− log v

)
− max

(v,w)∈Π
v∈[s,t],w≥f

(
w− log v

)∣∣∣≤max
{
0, max

(v,w)∈Π
v∈[s,t],w≤f

w− log v
}

≤max
{
0, f − log s

}
,

which tends to zero almost surely when f →−∞. Hence, using the above we arrive at

(5.17) lim
η↓0

lim
f→−∞

limsup
n→∞

P
(
max
i∈C̃n

Xn,i ∈Dη

)
≤ P

(
max

(v,w)∈Π
v∈[s,t]

w− log v ∈D
)
.

The fact that we can take the limit η ↓ 0 follows, since the properties of the Poisson point
process imply that the maximum does not hit the boundary of D almost surely.
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What remains is to show that the second probability on the right-hand side of (5.16) tends
to zero. We bound

(5.18)
∣∣∣max
i∈Cn

Xn,i − max
i∈C̃n(f)

Xn,i

∣∣∣≤max
{
0, max

i∈Cn\C̃n(f)
Xn,i

}
.

As we intend to let f go to −∞, we can assume f < 0. Then, as all the terms (Wi −
bℓ(n)nγ )/aℓ(n)nγ are negative when i ∈Cn\C̃n(f), we obtain the upper bound

max

{
0, f

∑n−1
j=tℓ(n)nγ 1/Sj

log(n1−γ/ℓ(n))
− log s

}
a.s.−→max

{
0, f − log s

}
,

as n tends to infinity. Then, as f tends to −∞, the right-hand side tends to zero. So, this
term tends to zero almost surely as n→∞ and then f →−∞. This concludes that the left-
hand side of (5.18) converges to zero in probability, and therefore the second probability on
the right-hand side of (5.16) converges to zero as n → ∞, then f → −∞ for any η > 0.
Combining this with (5.17), we obtain from the Portmanteau lemma

max
i∈Cn(γ,s,t,ℓ(n))

Wi − bℓ(n)nγ

aℓ(n)nγ

∑n−1
j=i 1/Sj

log(n1−γ/ℓ(n))
− log(i/(ℓ(n)nγ))

d−→ max
(v,w)∈Π
v∈[s,t]

w− log v.

Hence, together with (5.14) and Slutsky’s theorem, it follows that

max
i∈Cn(γ,s,t,ℓ(n))

Wi
∑n−1

j=i 1/Sj − bℓ(n)nγ log(n1−γ/ℓ(n))

aℓ(n)nγ log(n1−γ/ℓ(n))

d−→ max
(v,w)∈Π
v∈(s,t)

w− log v,

so that the same results hold for the re-scaled maximum conditional mean degree. What
remains is to show that the same result is obtained when ℓ(n)nγ is replaced with nγ in the
first and second-order rescaling, from which (5.13) follows. To obtain this, we show that

(5.19)

lim
n→∞

(1− γ)anγ logn

aℓ(n)nγ log(n1−γ/ℓ(n))
= 1,

lim
n→∞

bℓ(n)nγ log(n1−γ/ℓ(n))− (1− γ)bnγ logn

(1− γ)anγ logn
=−ζ0(τ + 1)2

2τ
,

after which the convergence to types theorem yields the required result [25, Proposition 0.2].
First, it immediately follows from Remark 2.4 that

aℓ(n)nγ log(n1−γ/ℓ(n))

(1− γ)anγ logn
=
(
1 +

log(ℓ(n))

γ logn

)1/τ−1(
1− log(ℓ(n))

(1− γ) logn

)
→ 1,

since we assume that log(ℓ(n))2/ logn→ ζ0, so that the first condition in (5.19) is satisfied.
Then,

bℓ(n)nγ − bnγ

= c1(γ logn)
1/τ
[(

1 +
log(ℓ(n))

γ logn

)1/τ
− 1
]

+
c1
τ
(γ logn)1/τ−1

[(
1 +

log(ℓ(n))

γ logn

)1/τ−1
− 1
]( b

τ
log(γ logn) + b log c1 + loga

)
+

bc1
τ2

(γ logn)1/τ−1
(
1 +

log(ℓ(n))

γ logn

)1/τ−1
log
(
1 +

log(ℓ(n))

γ logn

)
.
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Also,

bℓ(n)nγ log(ℓ(n)) = c1(γ logn)
1/τ log(ℓ(n))

(
1 +

log(ℓ(n))

γ logn

)1/τ
+

c1
τ
(γ logn)1/τ−1 log(ℓ(n))

(
1 +

log(ℓ(n))

γ logn

)1/τ−1
×
[ b
τ
log(γ logn) + b log c1 +

b

τ
log
(
1 +

log(ℓ(n))

γ logn

)
+ loga

]
.

Using Taylor expansions for the terms containing 1 + log(ℓ(n))/(γ logn) in both these ex-
pressions and combining them, yields

bℓ(n)nγ log(n1−γ/ℓ(n))− bnγ (1− γ) logn

= (bℓ(n)nγ − bnγ )(1− γ) logn− bℓ(n)nγ log(ℓ(n))

= − c1(τ + 1)

2τ
(γ logn)1/τ−1 log(ℓ(n))2 +

c1b

τ
(γ logn)1/τ−1 log(ℓ(n))

− c1

( b
τ
log(γ logn) + b log c1 + loga

)
(γ logn)1/τ−1 log(ℓ(n)) + xn,

where xn consists of lower order terms such that xn = o((logn)1/τ−1 log(ℓ(n))). Thus, we
obtain

bℓ(n)nγ log(n1−γ/ℓ(n))− (1− γ)bnγ logn

(1− γ)anγ logn

∼−((τ + 1) log(ℓ(n)))2

2τ logn
+

b(τ + 1)

τ

log(ℓ(n))

logn

− τ + 1

b

[1
τ
log(γ logn) + log c1 +

loga

b

] log(ℓ(n))
logn

.

Since (log ℓ(n))2/ logn converges to ζ0 ∈ [0,∞), it follows that the second condition
in (5.19) is indeed satisfied, which completes the proof.

Finally, the following proposition identifies the ‘correct’ second-order scaling of the maxi-
mum conditional mean degree when considering all vertices in the graph. Somewhat surpris-
ingly, this scaling is different and, as opposed to Proposition 5.5, the limit is not random but
deterministic.

PROPOSITION 5.6 (Max expected degree, second order, (Gumbel)-(RV)). Under the
same conditions as in Proposition 5.4,

(5.20) max
i∈[n]

EW [Zn(i)]−m(1− γ)bnγ logn

m(1− γ)anγ logn log logn

P−→ 1

2
.

PROOF. We start by observing that it suffices to study maxi∈[n]Wi log(n/i) rather than
maxi∈[n]EW [Zn(i)], since
(5.21)
|maxi∈[n]EW [Zn(i)]−maxi∈[n]Wi log(n/i)|

an logn log logn
≤

maxi∈[n]Wi

an logn log logn

∣∣∣n−1∑
j=i

1/Sj − log(n/i)
∣∣∣

=
1

an logn log logn
max
i∈[n]

Wi|Yn − Yi|,
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where Yn :=
∑n−1

j=1 1/Sj − logn. By (5.1), Yn converges almost surely to Y , which is almost

surely finite as well. Hence, supi∈N Yi is almost surely finite, too. Since maxi∈[n]Wi/bn
a.s.−→

1 by Lemma 5.3 and an logn∼ bn/τ , this yields the upper bound
maxi∈[n]Wi

an logn

|Yn|+ supi∈N |Yi|
log logn

a.s.−→ 0.

It thus suffices to prove that

(5.22) max
i∈[n]

Wi log(n/i)− (1− γ)bnγ logn

(1− γ)anγ logn log logn

P−→ 1

2
.

Therefore, we set for i ∈ [n].

Xn,i :=
Wi log(n/i)− (1− γ)bnγ logn

(1− γ)anγ logn log logn
.

For an upper bound on the maximum of the Xn,i, we consider different ranges of indices i
separately. We will concentrate on the range i≥ nγ , the case i≤ nγ follows by completely
analogous arguments. For a lower bound on the maximum, we will choose a convenient range
of indices.

Let ε ∈ (0,1− γ). First of all, we notice that by the same argument as in the proof of the
first line of (5.7), there exists a constant C < 1 (which is similar to the constant in (5.11))
such that almost surely

max
nγ+ε<i≤n

Wi log(n/i)≤C(1− γ)bnγ logn.

It then follows that the rescaled maximum diverges to −∞ almost surely.
As the next step, we consider the range of nγ ≤ i≤ eknnγ , where kn =

√
logn log logn.

This will turn out to give the main contribution to the maximum of the Xn,i. We now fix
x > 1/2 and let δ > 0. Then,
(5.23)

P
(

max
nγ≤i≤eknnγ

Wi log(n/i)− (1− γ)bnγ logn

(1− γ)anγ logn log logn
≤ x

)

=

eknnγ∏
i=nγ

P
(
Wi ≤

1− γ

1− log i/ logn
(bnγ + anγx log logn)

)

≥ exp

(
− (1 + δ)

eknnγ∑
i=nγ

P
(
W ≥ 1− γ

1− log i/ logn
(bnγ + anγx log logn)

))

≥ exp

(
− (1 + δ)

kn∑
j=1

ejnγ∑
i=ej−1nγ

P
(
W ≥ 1− γ

1− γ − (j − 1)/ logn
(bnγ + anγx log logn)

))
,

where we use that 1− y ≥ e−(1+δ)y for all y sufficiently small and that the tail probability
is decreasing to zero, uniformly in i, in the last two steps. Since the probability is no longer
dependent on i, we can also omit the inner sum and replace it by ⌊ejnγ⌋ − ⌈ej−1nγ⌉ ≤
(e− 1)ej−1nγ . Also using that P(W ≥ y)≤ (1 + δ)ayb exp(−(y/c1)

τ ) for all y sufficiently
large, it follows that for any x ∈R and n sufficiently large we obtain the lower bound
(5.24)

exp

(
− (1 + δ)2a(e− 1)

kn∑
j=1

ej−1nγ
( 1− γ

1− γ − (j − 1)/ logn
(bnγ + anγx log logn)

)b
× exp

(
−
( 1

c1

1− γ

1− γ − (j − 1)/ logn
(bnγ + anγx log logn)

)τ))
.
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We first bound the fraction (1− γ)/(1− γ)− (j − 1)/ logn) from above by 1 + δ if b≥ 0
and from below by 1 if b < 0, which holds uniformly in j for n large, in the outer exponent.
Then, when we combine all other terms that contain j, we find

(5.25) exp
(
(j − 1)−

( (1− γ) logn

(1− γ) logn− (j − 1)

)τ(bnγ + anγx log logn

c1

)τ)
.

Define en := (1−γ) logn. By a Taylor expansion we have that there exists a constant Cτ > 0
such that uniformly for |y| ≤ en/2,

(5.26) 1 + τ
y

en
+

τ(1 + τ)

2

( y

en

)2
≤
( en
en − y

)τ
≤ 1 + τ

y

en
+Cτ

( y

en

)2
.

We will also need that again by a Taylor expansion and the explicit form of an, bn as stated
in Remark 2.4, we have that(bnγ + anγx log logn

c1

)τ
=
(bnγ

c1

)τ(
1 + τ

anγ

bnγ

x log logn(1 + o(1))
)

=
(bnγ

c1

)τ
+ x log logn(1 + o(1)),

and similarly since γ = 1/(1 + τ),

(bnγ/c1)
τ

en
=

1

(1− γ)

lognγ

logn
+O

( log logn
logn

)
=

1

τ
+O

( log logn
logn

)
.

Combining all these estimates, we obtain the following upper bound on (5.25):
(5.27)

exp
(
(j − 1)−

( (1− γ) logn

(1− γ) logn− (j − 1)

)τ(bnγ + anγx log logn

c1

)τ)
≤ exp

(
(j − 1)

−
(
1 + τ

j − 1

en
+

τ(1 + τ)

2

(j − 1

en

)2)(
(bnγ/c1)

τ + x log logn(1 + o(1))
))

= exp
(
− (bnγ/c1)

τ − x(log logn)(1 + o(1))

− (j − 1)O
( log logn

logn

)
− (1 + τ)(j − 1)2

2(1− γ) logn
(1 + o(1))

)
≤ exp

(
− (bnγ/c1)

τ − x(log logn)(1 + o(1)) + o(1)
)
,

where we used in the last step that j ≤ kn = o(log / log logn) and the last term in the expo-
nent is negative. Hence, combining this with (5.23) and (5.24), we obtain

P
(

max
nγ≤i≤eknnγ

Wi log(n/i)− (1− γ)bnγ logn

(1− γ)anγ logn log logn
≤ x

)
≥ exp

(
− (1 + δ)2+b∨0a(e− 1)knn

γ(bnγ )b exp{−(bnγ/c1)
τ − x(log logn)(1 + o(1))

)
= exp

(
− (1 + δ)2+b∨0(e− 1)kn(logn)

−x(1+o(1))
)
,

where we used that nP(W > bn) ∼ anbbne
−(bn/c1)τ ∼ 1 (see e.g. [25, Equation (1.1’)] with

x = 0). Hence, by our choice of kn =
√
logn log logn and x > 1/2, the latter expression

converges to 1 and we have shown that for any η > 0, with high probability,

max
nγ≤i≤eknnγ

Xn,i ≤
1

2
+ η.
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Next, we consider an upper bound on the maximum for the range eknnγ ≤ i≤ nγ+ε, where
ε ∈ (0,1−γ) and kn =

√
logn log logn are as above. Again, we take x ∈R and use the same

idea as in the first step. This time, however, we need to be more careful in the intermediate
step (5.27). For kn ≤ j ≤ ε logn, we obtain an upper bound on the expression in (5.25)

exp
(
(j − 1)−

( (1− γ) logn

(1− γ) logn− (j − 1)

)τ(bnγ + anγx log logn

c1

)τ)
≤ exp

(
− (bnγ/c1)

τ − x(log logn)(1 + o(1))

− (j − 1)O
( log logn

logn

)
− (1 + τ)(j − 1)2

2(1− γ) logn
(1 + o(1))

)
≤ exp

(
− (bnγ/c1)

τ − x(log logn)(1 + o(1)) +C1(j − 1)
log logn

logn
−C2(j − 1)2

1

logn

)
,

for suitable constants C1,C2 > 0. We now note that the right-hand side is decreasing in j as
long as j > (C1)/(2C2) log logn. However, kn ≫ log logn, so that we obtain the following
upper bound on the previous display that holds uniformly for kn ≤ j ≤ ε logn,

exp
(
− (bnγ/c1)

τ − x(log logn)(1 + o(1)) +C1kn
log logn

logn
−C2k

2
n

1

logn

)
.

Using this bound in the same way as before (following the analogous steps as in (5.23)
and (5.24)) we obtain for any x ∈R,

P
(

max
eknnγ≤i≤nγ+ε

Wi log(n/i)− (1− γ)bnγ logn

(1− γ)anγ logn log logn
≤ x

)
≥ exp

(
− (1 + δ)2+b∨0(e− 1)ε(logn)1−x(1+o(1)) exp

(
C1kn

log logn

logn
−C2k

2
n

1

logn

))
Finally, since kn =

√
logn log logn, the right-hand side converges to 1. Therefore, we have

shown that for any x ∈R, with high probability

max
eknnγ≤i≤nγ+ε

Xn,i ≤ x.

In a similar way to the upper bound, we can construct a lower bound on the maximum by
restricting to the indices 1≤ i≤ k′n, where k′n =

√
logn/ log logn. In this case, we consider

x < 1/2 and use k′n instead of kn in the argument above. We omit the (1 + δ) term in (5.23),
bound the probability from below using (1 − δ) rather than (1 + δ), use the upper bound
in (5.26) and obtain thus

P
(

max
nγ≤i≤ek′

nnγ

Wi log(n/i)− (1− γ)bnγ logn

(1− γ)anγ logn log logn
≤ x

)
≤ exp

(
− (1− δ)1+b∧0(e− 1)k′n(logn)

−x(1+o(1)) exp
(
− Cτ

2τ(1− γ)

(k′n)
2

logn
(1 + o(1))

))
.

The latter term converges to zero as x < 1/2 and therefore, we have shown that for any η > 0,
with high probability

max
i∈[n]

Xn,i ≥ max
1≤i≤ek′

nnγ

Xn,i ≥
1

2
− η.

This completes the argument for all nγ ≤ i ≤ n. The argument for 1 ≤ i ≤ nγ works com-
pletely analogously, so that we have shown (5.22), which completes the proof.
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5.3. Maximum conditional mean degree, (Gumbel)-(RaV) sub-case. In this section we
state and prove two propositions that study the behaviour of the maximum conditional mean
in-degree in WRGs, when the vertex-weights satisfy the (Gumbel)-(RaV) sub-case of As-
sumption 2.3. The first provides two results: the first-order asymptotics of the maximum
conditional mean in-degree and the label of the vertex that attains this maximum. Its second
result shows the second-order scaling of the maximum conditional mean in-degree among all
vertices in a small window around tnn, with a random limit. As is the case in Section 5.2,
we see that this second-order scaling is in fact incorrect when we consider the full range of
all vertices, as shown in the second proposition. Here, we also observe a phase transition at
τ = 3, where the second-order scaling changes.

PROPOSITION 5.7 (Max expected degree, first and second order, (Gumbel)-(RaV)).
Consider the WRG model as in Definition 2.1 and suppose the vertex-weights satisfy
the (Gumbel)-(RaV) sub-case in Assumption 2.3 and let tn := exp(−τ logn/ log(bn)).
Then,

(5.28)
(
max
i∈[n]

EW [Zn(i)]

mbtnn log(1/tn)
,
log Ĩn
logn

)
P−→ (1,1).

Moreover, recall Cn from (2.24) and let Π be a Poisson point process on (0,∞) × R with
intensity measure ν(dt,dx) := dt× e−xdx. Then, for any 0< s< t <∞,

(5.29) max
i∈Cn(1,s,t,tn)

EW [Zn(i)]−mbtnn log(1/tn)

matnn log(1/tn)

d−→ max
(v,w)∈Π
v∈(s,t)

w− log v,

PROOF. First, we show that, similar to (5.21),

(5.30)
∣∣∣max
i∈[n]

Wi
∑n−1

j=i 1/Sj

bn
−max

i∈[n]

Wi

bn
log(n/i)

∣∣∣ P−→ 0,

so that in what follows we can work with the rightmost expression in the absolute value rather
than the leftmost. This directly follows from writing the absolute value as∣∣∣max

i∈[n]

Wi
∑n−1

j=i 1/Sj

bn
−max

i∈[n]

Wi

bn
log(n/i)

∣∣∣≤max
i∈[n]

Wi

bn

∣∣∣n−1∑
j=i

1/Sj − log(n/i)
∣∣∣

=max
i∈[n]

Wi

bn
|Yn − Yi|,

where Yn :=
∑n−1

j=1 1/Sj − logn, which converges almost surely by (5.1). We then split the
maximum into two parts to obtain the upper bound, for any γ ∈ (0,1),

max
i∈[nγ ]

Wi

bnγ

(|Yn|+ sup
j≥1

|Yj |)
bnγ

bn
+ max

nγ≤i≤n

Wi

bn
max

nγ≤i≤n
|Yn − Yi|.

The first maximum converges to 1 in probability, the term in the brackets converges almost
surely and the second fraction tends to zero, as we recall from Remark 2.4 that bn = g(logn)
with g a rapidly-varying function at infinity. This implies, for any γ ∈ (0,1), by the definition
of a rapidly-varying function, that bnγ/bn = g(γ logn)/g(logn) converges to zero with n.
Similarly, the second maximum converges to 1 in probability and the third maximum tends
to zero almost surely, as Yn is a Cauchy sequence almost surely. In total, the entire expression
tends to zero in probability.
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For the next part, we define

ℓ(x) := c1 + c2x
−1
( b
τ
logx+ b log c1 + loga

)
.

Then, as we are working in the (Gumbel)-(RaV) sub-case in Assumption 2.3, we can write
bn = exp((logn)1/τ ℓ(logn)).

Using tn we can show that for any fixed r ∈R or r = r(n) that does not grow ‘too quickly’
with n, btrnn/bn ∼ e−r . Namely, uniformly in r = r(n) ≤ C log log(bn) (for any constant
C > 0),

(5.31)

btrnn

bn
= exp

(
(logn)1/τ

((
1 + r

log tn
logn

)1/τ
ℓ
(
logn

(
1 + r

log tn
logn

))
− logn

))
∼ exp

(
(logn)1/τ

(
ℓ
(
logn

(
1 + r

log tn
logn

))
− ℓ(logn)

)
+ (1/τ)r log tn(logn)

1/τ−1ℓ
(
logn

(
1 + r

log tn
logn

)))
,

where we applied a Taylor approximation to (1 + r log tn/ logn)
1/τ , which holds uniformly

in r as long as r = o(logn/ log tn) = o(log bn). It is elementary to show that for such r,
the first term in the exponent on the last line of (5.31) tends to zero. Thus, uniformly in
r ≤C log log(bn),

(5.32)
btrnn

bn
∼ exp

(
− r

ℓ(logn(1 + r log tn/ logn))

ℓ(logn)

)
∼ e−r,

where the last step follows a similar argument to the one used to show that the first term on
the right-hand side of (5.31) tends to zero.

We thus note that by (5.32) and (5.30) it suffices to show that

(5.33) max
i∈[n]

Wi log(n/i)

bn log(1/tn)

P−→ 1/e,

to prove (5.28). We start by providing a lower bound to the left-hand side of (5.33). For some
fixed r > 0, we write

max
i∈[n]

Wi log(n/i)

bn log(1/tn)
≥ max

i∈[trnn]

Wi

btrnn

log(n/(trnn))

log(1/tn)

btrnn

bn
= max

i∈[trnn]

Wi

btrnn
r
btrnn

bn
.

By (5.32), it follows that this lower bound converges in probability to re−r . To maximise this
expression, we choose r = 1 giving the value 1/e as claimed. For an upper bound, we split
the maximum into multiple parts which cover different ranges of indices i. First, for ease of
writing, let us denote

Xn,i :=
Wi log(n/i)

bn log(1/tn)
.

Fix ε > 0, then set N = ⌈2 log log(bn)/ε⌉, and define

r0 = e−1, and ri = r0 + εi for i= 1, . . . ,N.

Then,

(5.34) max
i∈[n]

Xn,i ≤max
{

max
i∈[trNn n]

Xn,i, max
k=1,...,N

max
t
rk
n n<i≤trk−1

n n
Xn,i, max

t
r0
n n<i≤n

Xn,i

}
.
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We now bound each of these three parts separately. We start with the middle term and note
that for k ∈ {1, . . . ,N},

max
t
rk
n n<i≤trk−1

n n
Xn,i = max

t
rk
n n<i≤trk−1

n n

Wi log(n/i)

bn log(1/tn)
≤ rk

btrk−1
n n

bn
max

t
rk
n n<i≤trk−1

n n

Wi

btrk−1
n n

.

If we now define for k = 0, . . . ,N ,

An(k) := max
t
rk+1
n n<i≤trkn n

Wi

btrkn n

,

then, by (5.32), we have that

(5.35)

max
k=1,...,N

max
t
rk
n n<i≤trk−1

n n
Xn,i ≤ (1 + ε) max

k∈[N ]
rke
−rk−1An(k− 1)

≤ (1 + ε) sup
x≥1/e

xe−x+ε max
k∈[N ]

An(k− 1)

= (1 + ε)e−1+ε max
k∈[N ]

An(k− 1),

.

using as before that x 7→ xe−x is maximised at x = 1. Similarly, we can bound the the last
term in (5.34) as

max
t
r0
n n<i≤n

Xn,i ≤ r0 max
t
r0
n n<i≤n

Wi

bn
= e−1An,

where we recall that r0 = 1/e and we set An := maxtr0n n<i≤nWi/bn. Finally, for the first
term in (5.34), we get that
(5.36)

max
i∈[trNn n]

Xn,i ≤
btrNn n

bn

logn

log(1/tn)
max

i∈[trNn n]

Wi

btrNn n

≤ 1 + ε

τ
e−rN log(bn) max

i∈[trNn n]

Wi

btrNn n

= oP(1),

where we use that rN ≥ 2 log log(bn) by definition.
Combining (5.34) with the estimates in (5.35)-(5.36), we obtain

(5.37) max
i∈[n]

Xn,i ≤ (1 + ε)e−1+εmax
{
max
k∈[N ]

An(k− 1),An

}
.

Since ε > 0 is arbitrary, it suffices to show that the maximum on the right-hand side is
bounded by 1 + ε with high probability. As the random variables follow a distribution as
in the (Gumbel)-(RaV) case in Assumption 2.3, we can write using a union bound and
C > 0 large,

P
(
max
i∈[n]

Wi

bn
≥ 1 + ε

)
≤Cn log((1 + ε)bn)

b exp(−(log((1 + ε)bn)/c1)
τ )

=Cn log(bn)
b
(
1 +

log(1 + ε)

log(bn)

)b
exp

(
− (log(bn)/c1)

τ
(
1 +

log(1 + ε)

log(bn)

)τ)
.

We now use the expression of bn as in the (Gumbel)-(RaV) case in Assumption 2.3 to obtain
the upper bound

C̃ log(bn)
b exp

(
logn

(
1−

(
1 +

(b/τ) log logn+ b log c1 + log τ

τ logn

)τ(
1 +

log(1 + ε)

log(bn)

)τ))
,

where C̃ > 0 is a suitable constant. Using a Taylor approximation on the terms in the expo-
nent and using the asymptotics of log(bn), we find an upper bound

(5.38) K1(logn)
b/τ exp(−K2(logn)

1−1/τ ),
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for some constants K1,K2 > 0 and n sufficiently large. Note that this expression tends to
zero as τ > 1. Now, we aim to apply this bound to the maximum in (5.37). First, a union
bound yields

P
(
max

{
max
k∈[N ]

An(k− 1),An

}
≥ 1 + ε

)
≤

N−1∑
k=0

P
(

max
i∈[trkn n]

Wi

btrkn n

≥ 1 + ε
)

+ P
(
max
i∈[n]

Wi

bn
≥ 1 + ε

)
.

The last term tends to zero with n. For the sum we use (5.38) and note that this upper bound
tends to zero slowest for k =N − 1, so that we obtain the upper bound

N−1∑
k=0

P
(

max
i∈[trkn n]

Wi/btrkn n ≥ 1 + ε
)
≤NK1 log(t

rN−1
n n)b/τ exp(−K2 log(t

rN−1
n n)1−1/τ )

≤K3 log log(bn)(logn)
b/τ exp(−K4(logn)

1−1/τ ),

for some constants K3,K4, since rN−1 =O(log log(bn)), which again tends to zero with n
as τ > 1.

Finally, we prove the convergence of log(Ĩn)/ logn. Let η ∈ (0,1). Then, the event

En :=

{
max
i∈[n]

EW [Zn(i)]

btnn log(1/tn)
≥ η

}
holds with high probability by the above. Using this and (5.30) yields, for ε > 0,

P
( log Ĩn
logn

< 1− ε
)
≤ P

({ log Ĩn
logn

< 1− ε
}
∩En

)
+ P(Ec

n)

≤ P
(

max
i<n1−ε

Wi log(n/i)

btnn log(1/tn)
≥ η
)
+ o(1).

The probability on the right-hand side can be bounded from above by

(5.39) P
(

max
i≤n1−ε

Wi

bn1−ε

bn1−ε log(bn)

btnn
≥ τη

)
.

Now,
bn1−ε log(bn)

btnn
∼ exp

(
1 + (logn)1/τ ℓ(logn)

(
(1− ε)1/τ

ℓ((1− ε) logn)

ℓ(logn)
− 1
))

log(bn),

which, since ℓ is a slowly-varying function at infinity and (1− ε)1/τ < 1, tends to zero with
n. As the maximum in (5.39) tends to 1 in probability, we obtain that the probability in (5.39)
tends to zero with n.

To prove (5.29) we use a similar argument as in the proof of Proposition 5.4, as distribu-
tions satisfying the (Gumbel)-(RaV) sub-case also fall in the Gumbel MDA. Namely, we
can write

Wi
∑n−1

j=i 1/Sj − btnn log(1/tn)

atnn log(1/tn)
=

Wi − btnn
atnn

∑n−1
j=i 1/Sj

log(1/tn)
− log

( i

tnn

)
+

btnn
atnn log(1/tn)

(n−1∑
j=i

1/Sj − log(n/i)
)

−
( btnn
atnn log(1/tn)

− 1
)
log
( i

tnn

)
,
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so that
(5.40)∣∣∣∣max
i∈Cn

Wi
∑n−1

j=i 1/Sj − btnn log(1/tn)

atnn log(1/tn)
−max

i∈Cn

(Wi − btnn
atnn

∑n−1
j=i 1/Sj

log(1/tn)
− log

( i

tnn

))∣∣∣∣
≤ btnn

atnn log(1/tn)
max
i∈Cn

∣∣∣∣n−1∑
j=i

1/Sj − log(n/i)

∣∣∣∣+ ∣∣∣ btnn
atnn log(1/tn)

− 1
∣∣∣max
i∈Cn

∣∣∣ log( i

tnn

)∣∣∣,
where we omit the arguments of Cn(1, s, t, tn) for brevity. We now note that, in the (RaV)
sub-case, an := c2(logn)

1/τ−1bn, which yields
btnn

atnn log(1/tn)
=
(
c2 log(tnn)

1/τ−1 log(1/tn)
)−1

∼
(
c2(logn)

1/τ−1 τ logn

log(bn)

)−1
∼
( c1
ℓ(logn)

)−1
,

which converges to 1 as n tends to infinity. Here, we use that c1 = c2τ , and that log(bn) =
(logn)1/τ ℓ(logn), with limx→∞ ℓ(x) = c1. It follows, with a similar argument as in the proof
of Proposition 5.4, that the right-hand side of (5.40) converges to zero almost surely. Now,
the rest of the proof of (5.29) follows the exact same approach as the proof of Proposition 5.5.

PROPOSITION 5.8 (Max expected degree, second order, (Gumbel)-(RaV)). Consider
the same conditions as in Proposition 5.7. When τ ∈ (1,3],

max
i∈[n]

EW [Zn(i)]−mbtnn log(1/tn)

matnn log(1/tn) log logn

P−→ 1

2

(
1− 1

τ

)
,

whilst for τ > 3,

max
i∈[n]

EW [Zn(i)]−mbtnn log(1/tn)

matnn log(1/tn)(logn)
1−3/τ

P−→−τ(τ − 1)2

2c31
.

PROOF. With a similar argument as in the proof of Proposition 5.7,it suffices to prove
the result for maxi∈[n]Wi log(n/i) instead of maxi∈[n]EW [Zn(i)]. The general approach is
similar to the proof of (5.20) in Proposition 5.4, though the details differ. We first consider
the case τ ∈ (1,3] and then tend to the case τ > 3. In both cases, we prove a lower and upper
bound. Moreover, for the lower bound we need only consider indices ekntnn≤ i≤ tnn for a
particular choice of kn.

Fix τ ∈ (1,3], x ∈R and let kn :=
√

(τ − 1)/c1
√

(logn)1−1/τ log logn. We bound

(5.41)

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log logn
≤ x

)

=

ekn tnn∏
i=tnn

(
1− P

(
W ≥ log(1/tn)

log(n/i)
(btnn + atnnx log logn)

))

≤ exp

(
−

ekn tnn∑
i=tnn

P
(
W ≥ log(1/tn)

log(n/i)
(btnn + atnn log logn)

))

≤ exp

(
−

kn∑
j=1

ejtnn∑
i=ej−1tnn

P
(
W ≥ log(1/tn)

log(1/tn)− j
(btnn + atnnx log logn)

))
.
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We then obtain an upper bound by bounding the probability from below. So, for δ > 0 small
and n large, we arrive at the upper bound
(5.42)

exp

(
− (1− δ)a(e− 1)

kn∑
j=1

ej−1tnn
(
log
( log(1/tn)

log(1/tn)− j
(btnn + atnnx log logn)

))b
× exp

(
−
(
log
( log(1/tn)

log(1/tn)− j
(btnn + atnnx log logn)

)
/c1

)τ))
.

As log(1/tn)/(log(1/tn)− j) = 1+ o(1) uniformly in j, we can write the inner exponent as

−
(
log
( log(1/tn)

log(1/tn)− j
(btnn + atnnx log logn)

)
/c1

)τ
= −

(
− log

(
1− j

log(1/tn)

)
/c1 + log(btnn + atnnx log logn)/c1

)τ
= −

( ∞∑
ℓ=1

1

ℓc1

( j

log(1/tn)

)ℓ
+ log(tnn)

1/τ +
1

τ
log(tnn)

1/τ−1 log
(
a(c1(log tnn)

1/τ )b
)

+

∞∑
ℓ=1

(−1)ℓ−1
1

ℓc1

(
c2 log(tnn)

1/τ−1x log logn
)ℓ)τ

= − log(tnn)

(
1 +

∞∑
ℓ=1

1

ℓc1

( j

log(1/tn)

)ℓ
log(tnn)

−1/τ

+
1

τ
log(tnn)

−1 log
(
a(c1(log tnn)

1/τ )b
)

+

∞∑
ℓ=1

(−1)ℓ−1
1

ℓc1

(
c2 log(tnn)

1/τ−1x log logn
)ℓ
log(tnn)

−1/τ
)τ

= − log(tnn)− log
(
a(c1(log tnn)

1/τ )b
)
− x log logn− log(tnn)

1−1/τ

c2 log(1/tn)
j

− log(tnn)
1−1/τ

2c2 log(1/tn)2
j2(1 + o(1)) + o(1).(5.43)

Now, for ℓ ∈ {1,2},

1

ℓc2

( j

log(1/tn)

)ℓ
log(tnn)

1−1/τ

=
jℓ

ℓc2
cℓ2(logn)

−(ℓ−1)(1−1/τ)
(
1 +

log tn
logn

)1−1/τ( log(bn)

c1(logn)1/τ

)ℓ
=

jℓ

ℓc2
cℓ2(logn)

−(ℓ−1)(1−1/τ)
(
1− τ − 1

log(bn)
(1 +O((logn)−1/τ ))

)
×
(
1 +

1

τ
(logn)−1 log

(
a(c1(logn)

1/τ )b
))ℓ

,
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where the last two terms are both (1 + O((logn)−1/τ )). So, the right-hand side of (5.43)
equals

(5.44)
− log(tnn)− log

(
a(c1(log tnn)

1/τ )b
)
− x log logn− j2

2
c2(logn)

−(1−1/τ)

− j
(
1 +

1

τ
(logn)−1 log

(
a(c1(logn)

1/τ )b
)
− τ − 1

log(bn)

)
+ o(1),

uniformly in j ∈ [kn], where we note that the final o(1) term vanishes uniformly in j since
τ ∈ (1,3]. Using this in (5.42), we arrive at

(5.45)

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log logn
≤ x

)

≤ exp
(
− (1− δ)(1− 1/e)

kn∑
j=1

(logn)−x(1 + o(1)) exp
(
enj − dnj

2
))

,

where

en :=
τ − 1

log(bn)
− 1

τ
(logn)−1 log

(
a(c1(logn)

1/τ )b
)
, dn :=

c2

2(logn)1−1/τ
.

The expression enj − dnj
2 is increasing for j ≤ en/(2dn) = o(kn), so we bound the sum

from below by
kn∑
j=1

eenj−dnj2 ≥ exp
(
e2n/(4dn)

)∫ kn

0
exp

(
− dn

(
y− en

2dn

)2)
dy

= exp
(
e2n/(4dn)

)
σn

√
2π

∫ kn

0

1

σn
√
2π

exp
(
− 1

2

(y− µn

σn

)2)
dy

= exp
(
e2n/(4dn)

)
σn

√
2πP(Xn ∈ (0, kn)) ,

where µn := en/(2dn), σn := 1/
√
2dn, and Xn ∼N (µn, σ

2
n) is a normal random variable. If

we let Z ∼N (0,1) be a standard normal, we can write the last line as

(5.46) exp
(
e2n/(4dn)

)
σn

√
2πP

(
Z ∈

(
− µn

σn
,
kn − µn

σn

))
.

It is clear that for τ ≤ 3,

(5.47)

e2n
4dn

=
τ(τ − 1)2

2c31
(logn)1−3/τ (1 + o(1)),

kn − µn

σn
=
√

(1− 1/τ) log logn,

µn

σn
=

√
τ(τ − 1)2

c31
(logn)(1−3/τ)/2(1 + o(1)).

It thus follows that, when τ ∈ (1,3], the probability as well as the exponential term in (5.46)
converge to a constant. So, for some K > 0, we bound the expression in (5.46) from above
by K(logn)(1−1/τ)/2. Using this in (5.45) finally yields the lower bound

exp
(
− (1− δ)(1− 1/e)(logn)(1−1/τ)/2−x(1 + o(1))

)
,

which converges to zero for any x < (1− 1/τ)/2. We thus arrive at, with high probability,

max
i∈[n]

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log logn
≥ 1

2

(
1− 1

τ

)
+ η,
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for any η > 0.
To prove a matching upper bound, we split the set [n] into four parts: the indices 1 ≤

i≤ e−kntnn, e
−kntnn≤ i≤ tnn, tnn≤ i≤ ekntnn and ekntnn≤ i≤ n. We prove an upper

bound for all four ranges of indices, a union bound then concludes the proof. The proof for
the first two ranges of indices is analogous to the proof for the latter two, so we focus on
the latter two. Let us start with the range tnn≤ i≤ ekntnn. We can use the same approach
as above, though with minor adaptations. First, using that 1 − y ≥ exp(−(1 + δ)y) for y
sufficiently small and δ > 0 fixed, we obtain

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log logn
≤ x

)

≥ exp

(
− (1 + δ)

kn∑
j=1

ejtnn∑
i=ej−1tnn

P
(
W ≥ log(1/tn)

log(1/tn)− (j − 1)
(btnn + atnnx log logn)

))
.

We then bound the probability from above and use the same Taylor expansions to obtain a
lower bound of the same form as (5.42). We bound the sum over j from above by

kn∑
j=1

een(j−1)−dn(j−1)2 ≤ exp
(
e2n/(4dn)

)
σn

√
2πP(Xn ∈ (0, kn)) ,

where dn, en, µn, σn and Xn are as above. With a similar argument, we obtain an upper bound

K̃(logn)(1−1/τ)/2,

for some appropriate constant K̃ > 0. We thus obtain

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log logn
≤ x

)
≥ e(−(1+δ)2(e−1)(logn)(1−1/τ)/2−x),

which converges to one for any x > (1− 1/τ)/2.
To prove an upper bound for the range ekntnn≤ i≤ n, a slight adaptation is required. We

write,

P
(

max
ekn tnn≤i≤n

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn) log logn
≤ x

)

≥ exp

(
− (1 + δ)

log(1/tn)−kn∑
j=1

ej+kn tnn∑
i=ej−1+kn tnn

P
(
W ≥ log(1/tn)(btnn + atnnx log logn)

log(1/tn)− (j − 1 + kn)

))
,

and bound the probability from above by

(1 + δ)a
(
log
( log(1/tn)

log(1/tn)− (j − 1 + kn)
(btnn + atnnx log logn)

))b
× exp

(
−
(
log
( log(1/tn)

log(1/tn)− (j − 1 + kn)
(btnn + atnnx log logn)

)
/c1

)τ)
.

Since the fraction log(1/tn)/(log(1/tn)− (j − 1 + kn)) is no longer 1 + o(1) uniformly in
j, we treat this term somewhat differently. We write the exponent as

−(log(btnn)/c1)
τ − x log logn(1 + o(1))

+
1

c2
log(tnn)

1−1/τ log
(
1− j − 1 + kn

log(1/tn)

)(
1 +O

( log logn
logn

))
.
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Then using that as before tnna(log(btnn))b exp
(
−(btnn/c1)

τ
)
∼ 1, this yields a lower bound

(5.48)

exp
(
− (1 + δ)2(e− 1)

log(1/tn)−kn∑
j=1

(logn)−x(1+o(1))(1 + o(1))

× exp
(
j − 1 + kn +

1

c2
log(tnn)

1−1/τ log
(
1− j − 1 + kn

log(1/tn)

)(
1 +O

( log logn
logn

))))
.

The mapping x 7→ x+ fn log(1−x/gn), x < gn, for some sequences fn, gn, is maximised at
x= gn − fn. In this case, with fn := c−12 log(tnn)

1−1/τ and gn = log(1/tn), it follows that
gn − fn = τ(τ − 1)c−21 (logn)1−2/τ (1 + o(1)). Since (logn)1−2/τ = o(kn) when τ ∈ (1,3],
as (1− 1/τ)/2 ≥ 1− 2/τ for τ ∈ (1,3], it follows that the inner exponent is largest when
j = 1. This yields the lower bound

exp
(
− (1− δ)2(e− 1) log(1/tn)(logn)

−x(1+o(1))(1 + o(1))

× exp
((

−K1
kn

τ logn
log logn+

(τ − 1)kn
log bn

− 1

2

k2n
log(1/tn)

)(
1 +O

( log logn
logn

))))
,

for some small constant K1 > 0. The first two terms in the inner exponent are negli-
gible (compared to the last term) by the choice of kn. The last term equals −((1 −
1/τ)/2) log logn(1 + o(1)), so that we finally obtain the lower bound

exp
(
−K2(logn)

(1−1/τ)/2−x(1+o(1))
)
,

for some sufficiently large K2 > 0. It thus follows that for any x > (1− 1/τ)/2 the lower
bound converges to one. Together with the result for the range of indices tnn≤ i≤ ekntnn
(and a similar result for 1≤ i≤ tnn, with analogous proofs), the upper bound then follows,
and finishes the proof for the case τ ∈ (1,3].

When τ > 3, we set kn := (τ(τ − 1)/c21)(logn)
1−2/τ . For a lower bound on the max-

imum, we again consider the indices tnn ≤ i ≤ ekntnn. The steps in (5.41)- (5.46) are
still valid when replacing log logn with (logn)1−3/τ . The only minor differences are that
en/dn ∼ kn rather than o(kn) and that the o(1) term in (5.44) needs to be replaced by
O
(√

log logn(logn)1−5/τ
)
, though this changes nothing for the rest of the argument. The

second quantity in (5.47) does change, however. We now find that (kn − µn)/σn = o(1). As
a result, the probability in (5.46) still converges to a constant, but now the exponential term
diverges. We thus obtain the lower bound

P
(

max
tnn≤i≤ekn tnn

Wi log(n/i)− btnn log(1/tn)

atnn log(1/tn)(logn)
1−3/τ ≤ x

)
≤ exp

(
− (1− δ)(1− 1/e)(logn)(1−1/τ)/2(1 + o(1))

× exp
((τ(τ − 1)2

2c31
+ x
)
(logn)1−3/τ (1 + o(1)) +O

(√
log logn(logn)1−5/τ

)))
,

which converges to zero for any x >−τ(τ − 1)2/(2c31).
To prove an upper bound, we adjust the arguments for the τ ∈ (1,3] case. Again, we

substitute (logn)1−3/τ for log logn. The lower bound on the probability for indices tnn ≤
i ≤ ekntnn remains valid, which yields lower bound that converges to zero for any x <
−τ(τ − 1)2/(2c31).

For the range ekntnn≤ i≤ n, we find that the expression in (5.48) still holds (again when
substituting (logn)1−3/τ for log logn). However, we improve on the accuracy of (5.48) by
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including more terms of the Taylor expansion. This yields, for an appropriate constant K3 >
0,

exp
(
−K3

log(1/tn)−kn∑
j=1

exp
(
j − 1 + kn +

1

c2
log(tnn)

1−1/τ log
(
1− j − 1 + kn

log(1/tn)

)
+

τ(τ − 1)

2c21
log(tnn)

1−2/τ
(
log
(
1− j − 1 + kn

log(1/tn)

))2
(1 + o(1)) + x(logn)1−3/τ

))
.

As is the case when τ ∈ (1,3], the inner exponent is largest when j = 1, yielding the lower
bound

exp
(
−K3 log(1/tn) exp

(
kn +

1

c2
log(tnn)

1−1/τ log
(
1− kn

log(1/tn)

)
(1 + o(1))

+ x(logn)1−3/τ +O
(
(logn)1−4/τ

)))
.

Now, applying a Taylor expansion to the logarithmic term, we can write the inner exponent
as

kn −
log(tnn)

1−1/τ

c2 log(1/tn)
kn −

log(tnn)
1−1/τ

2c2 log(1/tn)2
k2n + x(logn)1−3/τ +O

(
(logn)1−4/τ

)
=

τ(τ − 1)2

2c31
(logn)1−3/τ + x(logn)1−3/τ +O

(
(logn)1−4/τ

)
.

Concluding, we obtain the lower bound

exp
(
−K3 log(1/tn) exp

(τ(τ − 1)2

2c31
(logn)1−3/τ +x(logn)1−3/τ +O

(
(logn)1−4/τ

)))
,

so that we obtain a limit of one when choosing any x <−τ(τ − 1)2/(2c31), which concludes
the proof.

5.4. Maximum conditional mean degree, (Fréchet) case. In this final sub-section we
study the maximum conditional mean degree when the vertex-weights satisfy the (Fréchet)
case of Assumption 2.3.

PROPOSITION 5.9. Consider the WRG model as in Definition 2.1 and suppose the vertex-
weights satisfy the (Fréchet) case in Assumption 2.3. Let Π be a PPP on (0,1)× (0,∞) with
intensity measure ν(dt,dx) := dt× (α− 1)x−αdx, x > 0. When α> 2,

max
i∈[n]

EW [Zn(i)/un]
d−→m max

(t,f)∈Π
f log(1/t),

and when α ∈ (1,2),

max
i∈[n]

EW [Zn(i)/n]
d−→m max

(t,f)∈Π
f

∫ 1

t

(∫
(0,1)×(0,∞)

g1{u≤s} dΠ(u, g)

)−1
ds.

PROOF. First, let α> 2. We first claim that

(5.49)
∣∣∣∣max
i∈[n]

EW [Zn(i)/un]−mmax
i∈[n]

Wi log(n/i)

un

∣∣∣∣ P−→ 0.
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The claim’s proof follows a similar structure as that of (5.30). Let us define the point process

Πn :=

n∑
i=1

δ(i/n,Wi/un).

By [25], when the Wi are i.i.d. random variables in the Fréchet maximum domain of at-
traction with parameter α − 1, then Π is the weak limit of Πn. Since Wi log(n/i)/un is a
continuous mapping of (i/n,Wi/un) and since taking the maximum is a continuous mapping
too, it follows that

max
i∈[n]

Wi log(n/i)

un

d−→ max
(t,f)∈Π

f log(1/t),

which, together with (5.49), yields the desired result. We now consider α ∈ (1,2). Note that

max
i∈[n]

EW [Zn(i)/n] =mmax
i∈[n]

Wi

n

n−1∑
j=i

1

Sj
.

The distributional convergence of the maximum on the right-hand side to the desired limit is
proved in [19, Proposition 5.1], which concludes the proof.

6. Concentration of the maximum degree. In this section we provide an important step
to prove Theorems 2.11, 2.13, 2.15 and 2.17: we discuss the concentration of the maximum
degree around the maximum conditional mean degree, the behaviour of which is discussed in
the previous section. To this end, we present two propositions, that determine concentration
under different scalings.

PROPOSITION 6.1 (Concentration of degrees, first-order scaling). Consider the WRG
model as in Definition 2.1 and recall the vertex-weight conditions as in Assumption 2.3.
When the vertex-weights satisfy the (Gumbel)-(SV) sub-case, for any η > 0,

(6.1) lim
n→∞

P
(
max
i∈[n]

∣∣Zn(i)−EW [Zn(i)]
∣∣≥ ηbn logn

)
= 0.

When the vertex-weights satisfy the (Gumbel)-(RV) sub-case,

(6.2) max
i∈[n]

∣∣Zn(i)−EW [Zn(i)]
∣∣/bn logn P−a.s.−→ 0.

Furthermore, when the vertex-weights satisfy the (Gumbel)-(RaV) sub-case, let
tn := exp(−τ logn/ log(bn)). Then, for any η > 0,

(6.3) lim
n→∞

P
(
max
i∈[n]

∣∣Zn(i)−EW [Zn(i)]
∣∣≥ ηatnn log(1/tn)

)
= 0.

Now suppose the vertex-weights satisfy the (Fréchet) case. When α> 2, for any η > 0,

(6.4) lim
n→∞

P
(
max
i∈[n]

∣∣Zn(i)−EW [Zn(i)]
∣∣> ηun

)
= 0.

Similarly, when α ∈ (1,2), for any η > 0,

(6.5) lim
n→∞

P
(
max
i∈[n]

∣∣Zn(i)−EW [Zn(i)]
∣∣> ηn

)
= 0.
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REMARK 6.2. The results of Proposition 6.1 directly imply the concentration of the max-
imum degree due to the reversed triangle inequality for the supremum norm. That is, for any
In ⊆ [n], ∣∣max

i∈In
Zn(i)−max

i∈In
EW [Zn(i)]

∣∣≤max
i∈In

∣∣Zn(i)−EW [Zn(i)]
∣∣.

PROOF. We provide a proof for m = 1, as the proof for m> 1 follows analogously. We
start by proving the results in which the degrees are scaled by the first-order growth rate and
the convergence is in probability, as in (6.1), (6.3), (6.4) and (6.5). By using a large deviation
bound for a sum of independent Bernoulli random variables, see e.g. [30, Theorem 2.21], we
obtain

(6.6)

PW

(∣∣Zn(i)−EW [Zn(i)]
∣∣≥ gn

)
≤ 2exp

(
− g2n

2(EW [Zn(i)] + gn)

)
≤ 2exp

(
− g2n

2(maxi∈[n]EW [Zn(i)] + gn)

)
,

for any non-negative sequence (gn)n∈N. We start by considering (6.1), so that gn = ηbn logn.
Hence, the fraction on the right-hand side is gnBn for some random variable Bn that con-
verges in probability to some positive constant (see Propositions 5.2). Using a union bound
then yields

(6.7)
PW

(
max
i∈[n]

|Zn(i)−EW [Zn(i)]| ≥ gn

)
≤

n∑
i=1

2exp(−gnBn)

= 2exp(logn(1− (gn/ logn)Bn)),

As gn/ logn= ηbn diverges with n, it follows that this expression tends to zero in probability.
For (6.3), we can also use (6.6) with gn = ηatnn log(1/tn) and we can write

g2n
2(maxi∈[n]EW [Zn(i)] + gn)

=
(ηatnn log(1/tn))

2

2btnn log(1/tn)(maxi∈[n]EW [Zn(i)]/(btnn log(1/tn)) + ηatnn/btnn)

=
η2

2

a2tnn log(1/tn)

btnn
Bn,

where Bn converges in probability to a positive constant (see the proof of Proposition 5.7
and use the definition of an and bn in Remark 2.4). Since bn/btnn → e (again see the proof
of Proposition 5.7) and by the definition of an and bn in the (Gumbel)-(RaV) sub-case, it
follows that the right-hand side is at least Cbn(logn)

1/τ−1 with high probability, for some
small constant C > 0. Replacing gn with Cbn(logn)

1/τ−1, which grows faster than logn,
in (6.7) then yields the desired result. Finally, for (6.4) and (6.5), the same approach is valid
with gn = un and gn = n, respectively, though Bn now converges in distribution to some
random variable (see Proposition 5.9). Still, it follows that 1−η2(gn/ logn)Bn < 0 with high
probability, so that the right-hand side of (6.7) still converges to zero in probability. Then,
in all the above cases, using the dominated convergence theorem yields (6.1), (6.3), (6.4)
and (6.5).
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We now turn to the almost sure result for the (Gumbel)-(RV) sub-case, as in (6.2). Similar
to (6.7), we write for any η > 0,

PW

(
max
i∈[n]

|Zn(i)−EW [Zn(i)]| ≥ ηgn

)
≤ 2exp

(
logn− η2g2n

2(maxi∈[n]EW [Zn(i)] + ηgn)

)
,

where gn = bn logn. By Proposition 5.4, we can almost surely bound this from above by

2exp(logn− η2Cbn logn)≤ 2exp
(
− 1

2
η2Cbn logn

)
,

for some sufficiently small constant C > 0 and when n is at least N ∈ N, for some random
N . Thus, we can conclude that this upper bound is almost surely summable in n, as bn tends
to infinity with n. Since η is arbitrary, the PW -almost sure convergence to 0 is established.
Then, since

P
(
∀η > 0 ∃N ∈N ∀n≥N : max

i∈[n]
|Zn(i)−EW [Zn(i)]|< ηgn

)
= E

[
PW

(
∀η > 0 ∃N ∈N ∀n≥N : max

i∈[n]
|Zn(i)−EW [Zn(i)]|< ηgn

)]
= E [1] = 1,

the P-almost sure convergence follows as well and which concludes the proof.

Proposition 6.1 provides concentration of the in-degrees around the conditional mean in-
degrees under the first-order scaling (with the exception of (6.3)) of the maximum conditional
mean degree (see the propositions in Section 5). In the following proposition, we provide a
stronger result for the (Gumbel)-(RV) sub-case. Here, with a more precise and detailed
proof, we can also prove concentration under the second-order scaling.

PROPOSITION 6.3 (Concentration of degrees, second-order scaling). Consider the WRG
model as in Definition 2.1 and recall the vertex-weight conditions as in Assumption 2.3. When
the vertex-weights satisfy the (Gumbel)-(RV) sub-case, for any τ ∈ (0,1] and η > 0,

(6.8) lim
n→∞

P
(∣∣max

i∈[n]
Zn(i)−max

i∈[n]
EW [Zn(i)]

∣∣≥ ηan logn log logn

)
= 0.

Also, let ℓ be a strictly positive function such that limn→∞ log(ℓ(n))2/ logn = ζ0 for some
ζ0 ∈ [0,∞). Recall Cn(γ, s, t, ℓ) from (2.24). Then, for any 0 < s < t < ∞, τ ∈ (0,1) and
η > 0,

(6.9) lim
n→∞

P
(∣∣ max

i∈Cn(γ,s,t,ℓ)
Zn(i)− max

i∈Cn(γ,s,t,ℓ)
EW [Zn(i)]

∣∣≥ ηan logn

)
= 0.

PROOF. We start by proving (6.8). We first aim to show that

(6.10) PW

(
max
i∈[n]

Zn(i)≥max
i∈[n]

EW [Zn(i)] + ηan logn log logn

)
P−→ 0.

We provide a proof for the case that τ ∈ (0,3/4), after which we develop a more involved
proof for all τ ∈ (0,1] which builds on the initial proof.

Let τ ∈ (0,3/4). We use a union bound for (6.10) and split the sum into two sets, defined
as

C1
n := {i ∈ [n] :Wi < (1−

√
εn)bi}, C2

n := {i ∈ [n] :Wi ≥ (1−
√
εn)bi},
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where εn = (logn)−c, for some c ∈ (0,2) to be determined later on. The size of C2
n can be

controlled well enough, so that a precise union bound can be applied to this part. For the
other set, we claim that with high probability,

(6.11) C1
n ⊆ {i ∈ [n] : EW [Zn(i)]≤ (1−

√
εn)max

i∈[n]
EW [Zn(i)]}=: C̃1

n.

The idea we apply later is that, on the event {C1
n ⊆ C̃1

n} (in the sense that we consider only
ω ∈ {C1

n ⊆ C̃1
n}), for each i ∈C1

n we are able to manipulate terms in the probability in (6.10)
to such an extent that we obtain an improved large deviation bound and can then show this
part converges to zero in probability as well. However, we first focus on proving the the
inclusion in (6.11) holds with high probability.

Take i ∈C1
n. Then,

EW [Zn(i)] =Wi

n−1∑
j=i

1

Sj
≤ (1−

√
εn)bi log(n/i)

(
1 +

|Yn − Yi|
log(n/i)

)
,

where Yn :=
∑n−1

j=1 1/Sj − logn. Furthermore, by Proposition 5.6, (5.20), with high proba-
bility

max
i∈[n]

EW [Zn(i)]≥ (1− γ)bnγ logn
(
1 +

1/2− η

1− γ

log logn

logn

)
,

for any fixed η > 0. If thus suffices to show that when i ∈C1
n, then with high probability

(6.12) bi log(n/i)
(
1 +

|Yn − Yi|
log(n/i)

)
≤ (1− γ)bnγ logn

(
1 +

1/2− η

1− γ

log logn

logn

)
is satisfied for some η > 0. We show a stronger statement, namely that (6.12) holds with high
probability for any i ∈ [n]. We recall from (5.1) that Yn converges almost surely. In particular,
we have that, with high probability, maxi∈[n] Yi ≤ (log logn)1/2 and maxlog logn≤i≤n |Yi −
Yn| converges to 0 in probability. Note first that for i≤ (log logn),

bi log(n/i)
(
1 +

|Yn − Yi|
log(n/i)

)
≤ (1− γ)bnγ logn

(
1 +

1/2− η

1− γ

log logn

logn

)
.

Next we consider log logn ≤ i ≤ nγ−ε or i ≥ nγ+ε for some ε > 0. We get that with high
probability

bi log(n/i)
(
1 +

|Yn − Yi|
log(n/i)

)
≤C(1− γ)bnγ logn,

for some C ∈ (0,1), as follows from the proof of Proposition 5.4 ((5.11) to be more precise),
so that (6.12) is satisfied. It remains to prove that (6.12) is satisfied with high probability
when i= nγkn, where kn is sub-polynomial, in the sense that | logkn|/ logn→ 0. First, as
before, with high probability

1 +
|Yn − Yi|
log(n/i)

≤ 1 + η
log log(nγ)

logn
,

for any constant η > 0. Moreover, by Remark 2.4, for any η > 0,

(1− γ)bnγ logn≥ c1(1− γ) logn log(nγ)1/τ
(
1 +

(b/τ − η) log log(nγ)

(1− γ) logn

)
,
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for all n large. Finally, for n large,

bi log(n/i) = c1(1− γ) logn log(nγ)1/τ
(
1 +

(b/τ) log log(nγkn) + b log c1 + log τ

(1− γ) logn

)
×
(
1− logkn

(1− γ) logn

)(
1 +

logkn
γ logn

)1/τ
≤ c1(1− γ) logn log(nγ)1/τ

(
1 +

(b/τ) log log(nγ±η)

(1− γ) logn

)
≤ c1(1− γ) logn log(nγ)1/τ

(
1 +

(b/τ + η) log log(nγ)

(1− γ) logn

)
as (1− x/(1− γ))(1 + x/γ)1/τ ≤ 1 for x ∈ [0,1− γ] and where the ± sign depends on the
sign of b. Combining all of the above, we find for n large and with high probability,

bi log(n/i)
(
1 +

|Yn − Yi|
log(n/i)

)
≤ c1(1− γ) logn log(nγ)1/τ

(
1 +

(b/τ + η) log log(nγ)

(1− γ) logn

)(
1 + η

log log(nγ)

logn

)
≤ c1(1− γ) logn log(nγ)1/τ

(
1 +

(b/τ + η

1− γ
+ 2η

) log log(nγ)

logn

)
,

and

(1− γ)bnγ logn
(
1 +

1/2− η

1− γ

log logn

logn

)
≥ c1(1− γ) logn log(nγ)1/τ

(
1 +

(b/τ − η

1− γ
+

1/2− η

1− γ
− η
) log log(nγ)

logn

)
,

so that (6.12) is established with high probability for all i ∈ [n − 1], in particular for all
i ∈C1

n, when η is sufficiently small.
As a second step, we control the size of C2

n. First, we fix an η > 0 and set I =
max{I1, I2, I3}, where I1, I2, I3 ∈N are such that

P(W ≥ (1−
√
εn)bi)≤ (1 + η)a((1−

√
εn)bi)

b exp(−((1−
√
εn)bi/c1)

τ ), i≥ I1,

P(W ≥ bi)≥ (1− η)abbi exp(−(bi/c1)
τ ), i≥ I2,

P(W ≥ bi)≤ (1 + η)/i, i≥ I3.

We note that I is well-defined, as bi is (eventually) increasing in i and diverges with i and as
bi is such that limi→∞ P(W ≥ bi) i= 1. We then arrive at

E
[
|C2

n|
]
=

n∑
i=1

P(W ≥ (1−
√
εn)bi)

≤ I +

n∑
i=I

(1 + η)a((1−
√
εn)bi)

b exp(−((1−
√
εn)bi/c1)

τ ).
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By writing (1−√
εn)

τ = 1− τ
√
εn(1+ o(1)), and as we can bound (1−√

εn)
b from above

by some sufficiently large constant C which depends only on b, we obtain

E
[
|C2

n|
]
≤ I + (1+ η)C

n∑
i=I

abbi exp(−(bi/c1)
τ ) exp(τ

√
εn(bi/c1)

τ (1 + o(1)))

≤ I + (1+ η)2(1− η)−1C exp(τ
√
εn(bn/c1)

τ (1 + o(1)))

n∑
i=I

i−1

≤ I + (1+ η)2(1− η)−1C exp(τ
√
εn logn(1 + o(1))) logn

= I + (1+ η)2(1− η)−1C exp(τ
√
εn logn(1 + o(1))).

Since
√
εn logn= (logn)1−c/2 and c ∈ (0,2), it follows by Markov’s inequality that for any

C3 > τ ,

(6.13) |C2
n| exp(−C3(logn)

1−c/2)
P−→ 0.

We are now ready to prove (6.10). We use the above and (6.11) to obtain

PW

(
max
i∈[n]

Zn(i)≥max
i∈[n]

EW [Zn(i)] + ηan logn log logn
)

≤ PW

({
max
i∈[n]

Zn(i)≥max
i∈[n]

EW [Zn(i)] + ηan logn log logn
}
∩ {C1

n ⊆ C̃1
n}
)

+ P
(
C1
n ̸⊆ C̃1

n

)
≤
∑
i∈C1

n

PW

(
{Zn(i)≥max

i∈[n]
EW [Zn(i)] + ηan logn log logn} ∩ {C1

n ⊆ C̃1
n}
)

+
∑
i∈C2

n

PW

(
Zn(i)≥max

i∈[n]
EW [Zn(i)] + ηan logn log logn

)
+ P
(
C1
n ̸⊆ C̃1

n

)
.

As established above, the third probability converges to zero with n. For the first probability
we use that on {C1

n ⊆ C̃1
n}, EW [Zn(i)]≤ (1−√

εn)maxi∈[n]EW [Zn(i)], and for the second
probability we use that maxi∈[n]EW [Zn(i)] ≥ EW [Zn(i)] for any i ∈ [n] to find the upper
bound

(6.14)

∑
i∈C1

n

PW

(
Zn(i)−EW [Zn(i)]≥

√
εnmax

i∈[n]
EW [Zn(i)] + ηan logn log logn

)
+
∑
i∈C2

n

PW (Zn(i)−EW [Zn(i)]≥ ηan logn log logn) + o(1).

Now, applying a large deviation bound to (6.14) yields

(6.15)

∑
i∈C1

n

exp
(
−

(
√
εnmaxi∈[n]EW [Zn(i)] + ηan logn log logn)

2

2(EW [Zn(i)] +
√
εnmaxi∈[n]EW [Zn(i)] + ηan logn log logn)

)

+
∑
i∈C2

n

exp
(
− (ηan logn log logn)

2

2(EW [Zn(i)] + ηan logn log logn)

)
+ o(1).

In both exponents we bound the conditional mean in the denominator by the maximum con-
ditional mean. This yields the upper bound

n exp(−εnbn lognAn) + |C2
n| exp

(
− η2a2n logn(log logn)

2

2bn
Bn

)
,
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where both An,Bn converge in probability to positive constants. We now set c < 1/τ to
ensure that εnbn diverges, so that the first term converges to zero in probability. Thus, c <
(1/τ)∧ 2 is required. We can write the second term as

|C2
n| exp(−C3(logn)

1−c/2) exp(C3(logn)
1−c/2 − (logn)1/τ−1(log logn)2B̃n),

where B̃n converges in probability to a positive constant. Now, by (6.13), the product of
the first two terms converges to zero in probability and the last term converges to zero in
probability when 1− c/2< 1/τ − 1, or c > 4− 2/τ . We thus find that (6.10) is established
when we can find a c ∈ (0,2) such that 4− 2/τ < c < 1/τ , which holds for all τ ∈ (0,3/4).

We now extend this approach so that the desired result in (6.10) can be achieved for all
τ ∈ (0,1]. To this end, we define the sequence (pk)k∈N as pk := (3/4)pk−1+1/(4cτ), k ≥ 1,
and p0 = 1/2. We solve the recursion to obtain

(6.16) pk =
1

cτ
−
( 1

cτ
− 1

2

)(3
4

)k
,

from which it immediately follows that pk is increasing when c < (1/τ) ∧ 2. Moreover, we
can rewrite the recursion as pk = pk−1/2 + (pk−1/2 + 1/(2cτ))/2, so that

(6.17) pk ∈ (pk−1, pk−1/2 + 1/(2cτ)), k ≥ 1.

We also define, for some K ∈N0 to be specified later, the sets

C1
n := {i ∈ [n] :Wi < (1− εp0

n )bi},

Ck
n := {i ∈ [n] :Wi ∈ [(1− εpk−1

n )bi, (1− εpk
n )bi)}, k ∈ {2, . . . ,K},

C̃k
n := {i ∈ [n] : EW [Zn(i)]≤ (1− εpk

n )max
i∈[n]

EW [Zn(i)]}, k ∈ [K],

CK+1
n := {i ∈ [n] :Wi ≥ (1− εpK

n )bi}.

By the same argument as provided above, it follows that with high probability Ck
n ⊆ C̃k

n for
each k ∈N. Similar to the approach for τ ∈ (0,3/4) we can then bound
(6.18)

PW

(
max
i∈[n]

Zn(i)≥max
i∈[n]

EW [Zn(i)] + ηan logn log logn
)

≤
∑
i∈C1

n

PW

(
Zn(i)−EW [Zn(i)]≥ εp0

n max
i∈[n]

EW [Zn(i)] + ηan logn log logn
)

+

K∑
k=2

∑
i∈Ck

n

PW

(
Zn(i)−EW [Zn(i)]≥ εpk

n max
i∈[n]

EW [Zn(i)] + ηan logn log logn
)

+
∑

i∈CK+1
n

PW

(
Zn(i)−EW [Zn(i)]≥ ηan logn log logn

)
+ P

(
K⋃
k=1

{Ck
n ̸⊆ C̃k

n}

)
.

We do not include the sum over i ∈ C1
n in the double sum, as the upper bound we use is

slightly different for these terms. The last term converges to zero by using a union bound,
as established above and since K is fixed. As in the simplified proof for τ ∈ (0,3/4) where
K = 1, we require cpk < 1 for all k ∈ {0,1, . . . ,K}, so that ηan logn log logn is negligible
compared to εpk

n maxi∈[n]EW [Zn(i)]. Since pk is increasing, cpK < 1 suffices. Using (6.16)
yields that K cannot be too large, i.e. we need

(6.19)
(3
4

)K
>

1

c

(1
τ
− 1
)( 1

cτ
− 1

2

)−1
.
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We now again apply a large deviation bound as in (6.15). Furthermore, with an equivalent
approach that led to (6.13), we find with high probability an upper bound for (6.18) of the
form

(6.20)
n exp(−ε2p0

n bn lognA0,n) +

K∑
k=1

C exp(Ck(logn)
1−cpk−1 − η2ε2pk

n bn lognAk,n)

+C exp
(
CK+1(logn)

1−cpK − η2
a2n logn(log logn)

2

bn
AK+1,n

)
+ o(1),

where C,C1, . . . ,CK+1 > 0 are suitable constants and the Ak,n are random variables which
converge in probability to some strictly positive constants Ak, k ∈ {0,1, . . . ,K+1}. In order
for all these terms to converge to zero in probability, the following conditions need to be met:
(6.21)
1/τ − 2p0c > 0, 1− cpk−1 <−2cpk + 1/τ + 1, k ∈ [K], 1− cpK ≤ 1/τ − 1.

Since p0 = 1/2, it follows that c < (1/τ) ∧ 2 still needs to be satisfied. By the bounds on
pk in (6.17) the second condition is satisfied and the final condition holds when pK ≥ (2−
1/τ)/c, or (3

4

)K
≤ 2

1

c

(1
τ
− 1
)( 1

cτ
− 1

2

)−1
.

Together with (6.19) this yields

1

c

(1
τ
− 1
)( 1

cτ
− 1

2

)−1
<
(3
4

)K
≤ 2

c

(1
τ
− 1
)( 1

cτ
− 1

2

)−1
.

Since the ratio of the lower and upper bound is exactly 2, such a K ∈ N0 can always be
found, as long as

1

c

(1
τ
− 1
)( 1

cτ
− 1

2

)−1
< 1,

which is satisfied for any τ ∈ (0,1) when c < 2. It thus follows that (6.10) holds for all
τ ∈ (0,1). When τ = 1, the condition pK ≥ (2 − 1/τ)/c simplifies to pK ≥ 1/c, which
cannot hold together with the condition pK < 1/c for any K ∈N. However, when τ = 1, the
limit of pK is 1/c (as K tends to infinity), so that we let K tend to infinity with n. Therefore,
we repeat the same arguments, but now take K = K(n) = ⌈1/| log(3/4)|(log log logn −
log log log logn)⌉. We then need to check the following things:

(i) The conditions on pk and c are met.
(ii) The final probability in (6.18) converges to zero in probability with n.
(iii) All terms in (6.20) individually converge to zero with n, as well as when summing
them all together.

The first two conditions in (6.21) still need to be satisfied, and this is the case when K grows
with n as well. Furthermore, as τ = 1, pk < 1/c is satisfied for all k ∈N, establishing (i).

For (ii), we observe that by (6.12),

P
( K⋃

k=1

{Ck
n ̸⊆ C̃k

n}
)

≤ P

(
n−1⋃
i=1

{
bi log(n/i)

(
1 +

|Yn − Yi|
log(n/i)

)
> (1− γ)bnγ logn

(
1 +

1/2− η

τ

log logn

logn

)})
,
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for some small η > 0, and the decay of this probability to zero has been established at the
start of this proof.

Finally, for (iii), we check the convergence of the terms in (6.20). The first term clearly
still converges to zero in probability. Then, for each term in the sum we note that the constants
Ck can all be chosen such that Ck < τ + δ for all k ∈ [K + 1] and any δ > 0. Similarly,
the random terms Ak,n, which converge in probability to positive constants Ak, can also be
shown to be bounded away from zero uniformly in k. This yields that we need only consider
the rate of divergence of the remaining terms. We write,

(logn)1−cpk−1 = (logn)(2−c)(2/3)(3/4)
k

= exp
(2
3
(2− c) exp(k log(3/4) + log log logn)

)
,

ε2pk
n bn logn∼ (logn)(2−c)(3/4)

k

= exp((2− c) exp(k log(3/4) + log log logn)),

where we recall that τ = 1 and thus the expression of pk is simplified. We note that both terms
diverge with n for each k ∈ [K] by the choice of K and since log(3/4)>−1. Moreover, the
latter term is dominant for every k ∈ [K], so that each term in the sum in (6.20) tends to
zero in probability. An upper bound for the entire sum is established when setting pk−1 =
pK−1, pk = pK and bounding (with high probability) Ck < τ + δ and Ak,n > δ, for some
small δ > 0 uniformly in k. We then obtain the upper bound

C exp
(
logK − η2δ(log logn)3(2−c)/4(1 + o(1))

)
,

which converges to zero as logK is negligible compared to the double logarithmic term.
Now, for the final term in (6.20), we write as before,

(logn)1−cpK = exp((1− c/2) exp(K log(3/4) + log log logn))

≤ exp((1− c/2) log log logn), and

(log logn)2 = exp(2 log log logn),

so that the latter term dominates the former, which yields the desired result.
What remains is to show that

(6.22) PW

(
max
i∈[n]

Zn(i)≤max
i∈[n]

EW [Zn(i)]− ηan logn log logn

)
P−→ 0

holds for any τ ∈ (0,1] and η > 0. We note that the event in the brackets occurs when

Zn(i)≤max
i∈[n]

EW [Zn(i)]− ηan logn log logn ∀i ∈ [n],

so that we obtain an upper bound if the inequality holds for i= Ĩn (recall that Ĩn := inf{i ∈
[n] : EW [Zn(i)]≥ EW [Zn(j)] for all j ∈ [n]}). Hence,

PW

(
max
i∈[n]

Zn(i)≤max
i∈[n]

EW [Zn(i)]− ηan logn log logn
)

≤ PW

(
Zn(Ĩn)≤max

i∈[n]
EW [Zn(i)]− ηan logn log logn

)
.
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Since Ĩn is determined by W1, . . . ,Wn, it follows that maxi∈[n]EW [Zn(i)] = EW [Zn(Ĩn)].
Thus,

PW

(
Zn(Ĩn)≤max

i∈[n]
EW [Zn(i)]− ηan logn log logn

)
≤ PW

(∣∣Zn(Ĩn)−EW [Zn(Ĩn)]
∣∣≥ ηan logn log logn

)
≤ Var(Zn(Ĩn) | (Wi)i∈N)

(ηan logn log logn)2

≤
maxi∈[n]EW [Zn(i)]

bn logn

bn
η2a2n logn(log logn)

2
,

which converges to zero almost surely, as the first fraction on the right-hand side converges
to a positive constant almost surely and the second fraction converges to zero, since τ ∈
(0,1]. Therefore, (6.22) holds and combining this with (6.10) and the dominated convergence
theorem concludes the proof of (6.8).

Finally, (6.9) can be proved in a similar way as (6.8), though the case τ = 1 no longer
holds due to the absence of the log logn term.

7. Proof of the main theorems. We now prove the main results, Theorems 2.9, 2.11,
2.13, 2.15 and 2.17. We split the proof of Theorem 2.9 into three parts, to aid the reader.
In all cases, the proof also holds for the model with a random out-degree as discussed in
Remark 2.2(ii) by setting m= 1, as in this model the in-degree can still be written as a sum
of indicators.

Before we prove Theorem 2.9, we state an adaptation of [9, Lemma 1]:

LEMMA 7.1. Let An,i := {Zn(i)≥ an} for some sequence (an)n∈N. Then,

PW

(
n⋃

i=1

An,i

)
≤

n∑
i=1

PW (An,i) , PW

(
n⋃

i=1

An,i

)
≥

∑n
i=1 PW (An,i)

1 +
∑n

i=1 PW (An,i)
,

and as a result,

PW

(
n⋃

i=1

An,i

)
P/a.s.−→

0, if
∑n

i=1 PW (An,i)
P/a.s.−→ 0,

1, if
∑n

i=1 PW (An,i)
P/a.s.−→ ∞.

PROOF. The result directly follows by applying [9, Lemma 1] to the conditional probabil-
ity measure PW .

Before we prove Theorem 2.9, we obtain a weaker result in the following proposition
which implies convergence in probability of the rescaled maximum degree. The main result
follows by strengthening the estimates from the proof of the proposition and to combine them
with a Borel-Cantelli argument to obtain almost surely convergence.

PROPOSITION 7.2. Consider the WRG model as in Definition 2.1 and assume the vertex-
weights satisfy the (Bounded) case of Assumption 2.3. Recall that θm := 1+E [W ]/m. For
any c > 1/ log θm,

lim
n→∞

P
(
max
i∈[n]

Zn(i)≤ c logn

)
= 1.
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Also, for any c < 1/ log θm,

lim
n→∞

P
(
max
i∈[n]

Zn(i)≥ c logn

)
= 1.

We start by proving this propositions, as the final proof of Theorem 2.9 relies on several
bounds developed in this proof. Which we split the proof into two parts, where we deal with
the upper and lower bound separately. The proofs of the proposition and the final proof all
rely on the proof of [9, Theorem 2], which we adapt to the setting of WRGs.

PROOF OF PROPOSITION 7.2, UPPER BOUND. We set an := c logn, with c > 1/ log θm
and let ε ∈ (0,min{m/E [W ]− c+ c log(cE [W ]/m), cE [W ]/(me2),1/2}). Note that the
first argument of the minimum equals zero when c=m/E [W ] and is positive otherwise. As
θm = 1+E [W ]/m and c > 1/ log θm >m/E [W ], this minimum is strictly positive. We aim
to show that

(7.1)
n∑

i=1

PW (Zn(i)≥ an)
a.s.−→ 0,

which implies via Lemma 7.1 and the dominated convergence theorem that

(7.2) P
(
max
i∈[n]

Zn(i)≥ an

)
→ 0.

Using a Chernoff bound and the fact that Zn(i) is a sum of independent indicator random
variables, we have for any t > 0,

PW (Zn(i)≥ an)≤ e−tan

n−1∏
j=i

(Wi

Sj
et +

(
1− Wi

Sj

))m
≤ e−tan+(et−1)mWi(Hn−Hi),

where Hn :=
∑n−1

j=1 1/Sj . This expression is minimised for t = log(an)− log(mWi(Hn −
Hi)), which yields the upper bound

(7.3) PW (Zn(i)≥ an)≤ ean(1−ui+logui),

with ui =mWi(Hn−Hi)/an. We note that the mapping x 7→ 1−x+ logx is increasing for
x ∈ (0,1). Moreover, by (5.1), mHn/an < 1 holds almost surely for all sufficiently large n
by the choice of c. Then, as we can bound Wi from above by 1 almost surely and (Hn −Hi)
is decreasing in i, we find, almost surely, for n large and uniformly in i,

PW (Zn(i)≥ an)≤ exp(an(1−mHn/an + log(mHn/an))

= exp(c logn(1−m/(cE [W ]) + log(m/(cE [W ])))(1 + o(1)))

= exp(− logn(m/E [W ]− c+ c log(cE [W ]/m))(1 + o(1))).

Thus,
(7.4)∑
i<nε

PW (Zn(i)≥ an)≤ exp(− logn(m/E [W ]− c+ c log(cE [W ]/m)− ε)(1 + o(1))),

which tends to zero almost surely as ε <m/E [W ]− c+ c log(cE [W ]/m). Similarly, again
using that Wi ≤ 1,mHn/an < 1 almost surely for n large,∑
i>n1−ε

PW (Zn(i)≥ an)≤ n exp
(
an

(
1−

m(Hn −H⌈n1−ε⌉)

an
+log

(m(Hn −H⌈n1−ε⌉)

an

))
.
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As Hn −H⌈n1−ε⌉ = ε logn(1 + o(1)) almost surely for n large,

(7.5)

∑
i≥n1−ε

PW (Zn(i)≥ an)≤ n exp
(
c logn

(
1− εm

cE [W ]
+ log

( εm

cE [W ]

))
(1 + o(1))

)
= n−(−c+εm/E[W ]−c log(εm/(cE[W ]))−1)(1+o(1)),

which also tends to zero almost surely since ε < cE [W ]/(me2). It thus remains to prove that

(7.6)
∑

nε≤i<n1−ε

PW (Zn(i)≥ an)
a.s.−→ 0.

We use the same bound as in (7.3), which holds uniformly in i ∈ [n] and we recall that
ui = mWi(Hn − Hi)/(c logn). In fact, we bound (7.3) from above further by using that
ui ≤ m(Hn − Hi)/(c logn) =: ũi almost surely. Define u : R → R by u(x) := m(1 −
logx/ logn)/(cE [W ]) and ϕ : R → R by ϕ(x) := 1 − x + logx. Then, for nε ≤ i < n1−ε

such that i = nβ+o(1) for some β ∈ [ε,1 − ε] (where the o(1) is independent of β) and
x ∈ [i, i+ 1),

(7.7)

|ϕ(ũi)−ϕ(u(x))| ≤ |ũi − u(x)|+ | log(ũi/u(x))|

=

∣∣∣∣ m

cE [W ]

(
1− logx

logn

)
− m

c logn

n−1∑
j=i

1

Sj

∣∣∣∣+ ∣∣∣∣ log( E [W ]

logn− logx

n−1∑
j=i

1

Sj

)∣∣∣∣.
By (5.1) and since i diverges with n,

∑n−1
j=i 1/Sj − log(n/i)/E [W ] = o(1) almost surely as

n→∞. Applying this to the right-hand side of (7.7) yields

|ϕ(ũi)− ϕ(u(x))| ≤ m

cE [W ]

∣∣∣ logx− log i

logn

∣∣∣+ ∣∣∣ log(1 + logx− log i+ o(1)

logn− logx

)∣∣∣.
Since x ≥ i ≥ nε and |x − i| ≤ 1, we thus obtain that, uniformly in nε ≤ i < n1−ε and
x ∈ [i, i+ 1), |ϕ(ũi)− ϕ(u(x))| = o(1/(nε logn)) almost surely as n→∞. Applying this
to the left-hand side of (7.6) together with (7.3) (using ũi rather than ui), we can bound the
sum from above by

(7.8)

∑
nε≤i<n1−ε

PW (Zn(i)≥ an)≤
∑

nε≤i<n1−ε

eanϕ(ũi)

≤
∑

nε≤i<n1−ε

∫ i+1

i
eanϕ(u(x))+an|ϕ(ũi)−ϕ(u(x))| dx

≤ (1 + o(1))

∫ n1−ε+1

nε

eanϕ(u(x)) dx.

Recall that θm = 1+ E [W ]/m and set θ̃m := 1 +m/E [W ]. Using the variable transforma-
tion w = θ̃m(logn− logx) and Stirling’s formula in the last line yields

(1 + o(1))
n1+c−c log θm

θ̃m(c logn)c logn

∫ (1−ε)θ̃m logn

εθ̃m logn+o(1)
wc logne−w dw ≤ 2n1+c−c log θm

θ̃m(c logn)c logn
Γ(1 + c logn)

∼ 2n1−c log θm

θ̃m

√
2πc logn,

which tends to zero by the choice of c. Hence, combining the above with (7.4) and (7.5)
yields (7.1) and hence (7.2).
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PROOF OF PROPOSITION 7.2, LOWER BOUND. We let an := ⌈c logn⌉, bn := ⌈δ logn⌉
with c ∈ (0,1/ log θm) and δ ∈ (0,1/ log θm − c). For i ∈ N fixed, we couple Zn(i) to a se-
quence of suitable random variables. Let (Pj)j≥2 be independent Poisson random variables
with mean mWi/Sj−1, j ≥ 2. Then, we can couple Zn(i) to the Pj’s to obtain

Zn(i)≥
n∑

j=i+1

Pj1{Pj≤1} =

n∑
j=i+1

Pj −
n∑

j=i+1

Pj1{Pj>1} =:Wn(i)− Yn(i).

By Lemma 7.1 and the inequality

PW (Zn(i)≥ an)≥ PW (Wn(i)≥ an + bn)− PW (Yn(i)≥ bn) ,

it follows that we are required to prove that, for some ε, ξ > 0 sufficiently small,

(7.9)
∑

nε≤i≤n1−ε

Wi≥e−ξ

PW (Wn(i)≥ an + bn)
P−→∞,

∑
nε≤i≤n1−ε

PW (Yn(i)≥ bn)
P−→ 0,

as n tends to infinity, to obtain

PW

(
max
i∈[n]

Zn(i)≥ an

)
P−→ 1.

Using the uniform integrability of the conditional probability measure then yields

lim
n→∞

P
(
max
i∈[n]

Zn(i)≥ an

)
= 1,

which yields the desired result. It thus remains to prove the two claims in (7.9).
We first prove the first claim of (7.9). Note that Wn(i) is a Poisson random variable with

parameter mWi
∑n−1

j=i 1/Sj . We note that by the strong law of large numbers, for some η ∈
(0, e1/(c+δ) − θm),

(7.10) mWi

n−1∑
j=i

1/Sj ≥mWi

n−1∑
j=i

1/(j(E [W ] + η))≥ (mWi/(E [W ] + η)) log(n/i)

for all nε ≤ i≤ n almost surely when n is sufficiently large. We can thus, for n large, con-
clude that Wn(i) stochastically dominates Xn(i), where Xn(i) is a Poisson random variable
with a parameter equal to the right-hand side of (7.10). Then, also using that Wi ≤ 1 almost
surely, it follows that for i≥ nε,

PW (Wn(i)≥ an + bn)≥ PW (Xn(i)≥ an + bn)

≥ PW (Xn(i) = an + bn)

≥
( i

n

)m/(E[W ]+η)
W an+bn

i

((m/(E [W ] + η)) log(n/i))an+bn

(an + bn)!
.

We now sum over all i ∈ [n] such that nε ≤ i≤ n1−ε,Wi ≥ e−ξ for some sufficiently small
ε, ξ > 0. By the lower bound on the vertex-weight, we obtain the further lower bound
(7.11)∑
nε≤i≤n1−ε

Wi≥e−ξ

PW (Wn(i)≥ an + bn)

≥
∑

nε≤i≤n1−ε

1{Wi≥e−ξ}e
−ξ(an+bn)

( i

n

)m/(E[W ]+η) ((m/(E [W ] + η)) log(n/i))an+bn

(an + bn)!

=: Tn.
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We now claim that Tn
P−→∞. This follows from the fact that the mean of Tn diverges, and

that Tn concentrates around the mean. We first show the former statement. Let p = p(ξ) =
P
(
W ≥ e−ξ

)
. Note that, due to the fact that x0 = sup{x ∈R : P(W ≤ x)< 1}= 1, p > 0 for

any ξ > 0. Hence,
(7.12)

E [Tn] = pe−ξ(an+bn)
( m

E [W ] + η

)an+bn 1

(an + bn)!

∑
nε≤i≤n1−ε

( i

n

)m/(E[W ]+η)
log(n/i)an+bn .

Then, in a similar way as in (7.8), and applying a variable transformation t = (1 +
m/(E [W ] + η)) log(n/x),∑
nε≤i≤n1−ε

( i

n

)m/(E[W ]+η)
(log(n/i))an+bn

= (1+ o(1))

∫ n1−ε

nε

(x
n

)m/(E[W ]+η)
log(n/x)an+bn dx

= (1+ o(1))n(an + bn)!
(
1 +

m

E [W ] + η

)−(an+bn+1)
∫ (1−ε)(1+m/(E[W ]+η))

ε(1+m/(E[W ]+η)) logn

e−ttan+bn

(an + bn)!
dt.

We now identify the integral as the probability of the event {Yn ∈ (ε(1 + m/(E [W ] +
η)) logn, (1− ε)(1 +m/(E [W ] + η)) logn)}, where Yn is a sum of an + bn + 1 rate one
exponential random variables. Since an + bn = (1 + o(1))(c+ δ) logn, it follows from the
law of large numbers that this probability equals 1− o(1) when c+ δ ∈ (ε(1 +m/(E [W ] +
η)), (1− ε)(1 +m/(E [W ] + η))), which is the case for ε, η sufficiently small. Thus, com-
bining the above with (7.12), we arrive at

(7.13)
E [Tn]∼ pe−ξ(an+bn)

( m

E [W ] + η

)an+bn(
1 +

m

E [W ] + η

)−(an+bn)+1
n

= p
E [W ] + η

mθm + η
exp(logn(1− (1 + o(1))(c+ δ)(log(θm + η/m) + ξ))).

By the choice of c and δ, the exponent is positive when η and ξ are sufficiently small. What
remains is to show that Tn concentrates around E [Tn]. Using a Chebyshev bound yields for
any ζ > 0 fixed,

(7.14) P(|Tn/E [Tn]− 1| ≥ ζ)≤ Var(Tn)

(ζE [Tn])2
,

so that the result follows if Var(Tn) = o(E [Tn]
2). Since Tn is a sum of weighted, independent

Bernoulli random variables, we readily have

Var(Tn) =
( m

E [W ] + η

)2(an+bn) p(1− p)e−2ξ(an+bn)

((an + bn)!)2

∑
nε≤i≤n1−ε

( i

n

) 2m

(E[W ]+η)

log
(n
i

)2(an+bn)
.

Again writing the sum as an integral over x instead of i, and now using the variable transfor-
mation t= (1+ 2m/(E [W ] + η)) log(n/x), we obtain that the sum equals

(n+ o(n))(2(an+ bn))!
(
1+

2m

E [W ] + η

)−2(an+bn)−1
∫ (1−ε)(1+ 2m

E[W ]+η
) logn

ε(1+ 2m

E[W ]+η
) logn

e−tt2(an+bn)

(2(an + bn))!
dt.

We again interpret the integral as the probability of the event {Ỹn ∈ (ε(1 + 2m/(E [W ] +

η)) logn, (1− ε)(1 + 2m/(E [W ] + η)) logn)}, where Ỹn is a sum of 2(an + bn) rate one
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exponential random variables. Again, for η and ε sufficiently small, this probability is 1−
o(1) by the law of large numbers. Thus, we obtain,

Var(Tn)

= (n+ o(n))
p(1− p)(E [W ] + η)

m(θm + 1) + η
e−2ξ(an+bn) (2(an + bn))!

((an + bn)!)2

(
1 + θm +

η

m

)−2(an+bn)
.

Using Stirling’s approximation for the factorial terms then yields

Var(Tn)∼
p(1− p)(E [W ] + η)

(m(θm + 1) + η)
√

π(an + bn)
elogn+2(an+bn)(log 2−log(1+θm+η/m)−ξ).

Combining this with (7.13), we find that
(7.15)
Var(Tn)

E [Tn]
2 ≤ K√

an + bn
exp

(
logn

(
− 1 + 2(c+ δ)(1 + o(1)) log

(
2

θm + η/m

1 + θm + η/m

)))
,

where K > 0 is a suitable constant. The exponential terms decays with n when

c+ δ <
(
log
(
4
( θm + η/m

1 + θm + η/m

)2))−1
,

which is satisfied for any θm ∈ (1,2] when η is sufficiently small, since c+ δ < 1/ log θm and

log θm > log
(
4
( θm + η/m

1 + θm + η/m

)2)
holds for any θm ∈ (1,2] when η is sufficiently small. Therefore, Tn/E [Tn]

P−→ 1, so that
Tn

P−→∞. This then implies the first statement in (7.9).
We now prove the second statement of (7.9). For a Poisson random variable P with mean

λ, we find that

(7.16) E
[
P1{P>1}

]
= E [P ]− P(P = 1) = λ

(
1− e−λ

)
≤ λ2,

and, for any t ∈R, it follows from [9, Page 8] that

(7.17) E
[
et(P1{P>1}−E[P1{P>1}])

]
≤ eλ

2e2t .

Now, since Yn(i) =
∑n

j=i+1Pj1{Pj>1}, where the Pj’s are independent Poisson random
variables with mean mWi/Sj−1, using an upper bound inspired by (7.10) and using (7.16),
we obtain that almost surely for all n large and i≥ nε,

EW [Yn(i)]≤
m2

(E [W ]− η)2

n−1∑
j=i

1/j2 ≤ m2

(E [W ]− η)2(i− 1)
.

Then, for i ≥ nε and n large enough so that bn(i− 1) ≥ 4(m/(E [W ]− η))2, we write for
any t > 0 using (7.17),

PW (Yn(i)≥ bn)≤ PW (Yn(i)−EW [Yn(i)]≥ bn/2)

≤ e−tbn/2EW [et(Yn(i)−EW [Yn(i)])]

≤ exp(−tbn/2 + e2tm2/((E [W ]− η)2(i− 1))).

This upper bound is smallest for t= log(bn(i− 1)(E [W ]− η)2/(4m2))/2, which yields the
upper bound

exp
(bn
4

(
1− log

(bn(i− 1)(E [W ]− η)2

4m2

)))
=
( 4em2

bn(E [W ]− η)2(i− 1)

)bn/4
≤ n−εbn/4,
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when n is large enough such that bn ≥ 8em2/(E [W ] − η)2 and nε ≤ 2(nε − 1). It then
follows that

(7.18)
∑

nε≤i≤n1−ε

PW (Yn(i)≥ bn)≤ n1−εδ logn/4,

which tends to zero with n almost surely. This yields the second claim in (7.9) and concludes
the proof.

As stated at the start of this section, Proposition 7.2 implies that

max
i∈[n]

Zn(i)/ logn
P−→ 1/ log θm.

It thus remains to strengthen this to almost sure convergence to complete the proof of Theo-
rem 2.9.

PROOF OF THEOREM 2.9. Let kn := ⌈θnm⌉ and set Zn := maxi∈[n]Zn(i). Similar to [9],
we use the bounds

inf
N≤n

Zkn

(n+ 1) log θm
≤ inf

2N≤n

Zn

logn
≤ sup

2N≤n

Zn

logn
≤ sup

N≤n

Zkn+1

n log θm
.

It thus follows that to prove the almost sure convergence of the rescaled maximum degree
Zn/ logn, it suffices to do so for the subsequence Zkn

/ logkn, for which we can obtain
stronger bounds due to the fact that kn grows exponentially in n. To prove the almost sure
convergence of Zkn

/ logn to 1/ log θm, it thus suffices to prove

(7.19) lim inf
n→∞

Zkn

(n+ 1) log θm
≥ 1

log θm
, limsup

n→∞

Zkn+1

n log θm
≤ 1

log θm
,

almost surely, which can be achieved with the bounds used to prove the convergence in
probability in Proposition 7.2. Namely, for the upper bound, using (7.4), (7.5) and (7.8), we
obtain for any c > 1/ log θm, a sufficiently small ξ > 0 and some large constant C > 0,

kn+1∑
i=1

PW

(
Zkn+1

(i)/(n log θm)≥ c
)
≤ 2e−ξn(1+o(1)) + (1+ o(1))C

√
ne−ξn,

which is summable, so it follows from the Borel-Cantelli lemma that the upper bound
in (7.19) holds PW -almost surely. To extend this to P-almost surely, we write
(7.20)

P(Zkn
(i)/(n log θm)≥ c)≤ E [PW (Zkn

(i)/(n log θm)≥ c) |Ckn
(η)] + P

(
Cc
kn
(η)
)
,

where Cn(η) := {Sj ∈ (E [W ]− η,E [W ] + η) for all j ≥ nε} holds for all but finitely many
n almost surely. On the event Ckn

(η), we can obtain a deterministic and summable bound as
demonstrated above. Moreover, since the vertex-weights are bounded, we can obtain expo-
nentially decaying bounds for P

(
Cc
kn
(η)
)
, so that it is summable as well. Hence, the Borel-

Cantelli lemma yields the required result.
Similarly, for the lower bound in (7.19), we have for c < 1/ log θm by Lemma 7.1,

(7.21)

PW (Zkn
/((n+ 1) log θm)< c)≤ 1−

∑kn

i=1 PW (Zkn
(i)≥ c(n+ 1) log θm)

1 +
∑kn

i=1 PW (Zkn
(i)≥ c(n+ 1) log θm)

=
1

1+
∑kn

i=1 PW (Zkn
(i)≥ c(n+ 1) log θm)

.
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We again bound the sum from below by
kn∑
i=1

PW (Zkn
(i)≥ c(n+ 1) log θm)≥

∑
kε
n≤i≤k1−ε

n

Wi≥e−ξ

PW (Wkn
(i)≥ (c+ δ)(n+ 1) log θm)

−
∑

kε
n≤i≤k

1−ε
n

PW (Ykn
(i)≥ δ(n+ 1) log θm) .

First, by the bound in (7.18), we find that

1−
∑

kε
n≤i≤k

1−ε
n

PW (Ykn
(i)≥ δ(n+ 1) log θm)≥ 0,

almost surely for all n large. Then, we bound the sum of tail probabilities of the Wkn
(i) from

below by Tkn
, where we recall the definition of Tn from (7.11). Combining (7.14) and (7.15),

we find that Tkn
≥ E [Tkn

]/2 almost surely for all n large. Together with (7.13) and (7.21),
we thus obtain

PW (Zkn
/((n+ 1) log θm)< c)≤Ce−n log θm(1−(1+o(1))(c+δ)(log(θm+η/m)+ξ)),

for some constant C > 0, which is summable when η and ξ are sufficiently small, so that the
lower bound holds for all but finitely many n PW -almost surely by the Borel-Cantelli lemma.
A similar argument as in (7.20) allows us to extend this to P-almost surely, which concludes
the proof.

PROOF OF THEOREM 2.11. The proof of the convergence of maxi∈[n]Zn(i)/un and
maxi∈[n]Zn(i)/n as in (2.19) and (2.20), respectively, follows directly from Proposition 5.9
combined with (6.4) and (6.5) in Proposition 6.1. The distributional convergence of In/n to
Iα and I as in (2.19) and (2.20), respectively, follows from the following argument. Recall the
Poisson point process Π in the statement of the theorem with intensity measure µ(dt,dx) :=
dt× (α− 1)x−αdx and define for 0≤ a≤ b≤ 1,

Qℓ(a) := max
(t,f)∈Π:t∈(0,a)

f log(1/t), Q(a, b) := max
(t,f)∈Π:t∈(a,b)

f log(1/t),

Qr(b) := max
(t,f)∈Π:t∈(b,1)

f log(1/t),

as well as the events

Mn(a, b) :=
{

max
an<i<bn

Zn(i)/un >
(

max
1≤i≤an

Zn(i)/un ∨ max
bn≤i≤n

Zn(i)/un)
}
,

M(a, b) :=
{
Q(a, b)>Qℓ(a)∨Qr(b)

}
.

Then, from the start of the proof, we have that

P(Iα ∈ (a, b)) = lim
n→∞

P(In/n ∈ (a, b)) = lim
n→∞

P(Mn(a, b)) = P(M(a, b)) .

A similar approach can be used to show the convergence when α ∈ (1,2), as in (2.20). By
the independence property of Poisson point process, it follows that the right-hand side equals
g(a, b)/g(0,1), where g(a, b) :=

∫ b
a log(1/x)

α−1 dx. Using the variable transformation w =
log(1/x),

g(a, b) =

∫ log(1/a)

log(1/b)
wα−1e−w dw

=Γ(α)P(Wα ∈ (log(1/b), log(1/a))) = Γ(α)P
(
e−Wα ∈ (a, b)

)
,
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where Wα is a Γ(α,1) random variable. Thus,

P(Iα ≤ t) =
g(0, t)

g(0,1)
= P

(
e−Wα ≤ t

)
,

and mmax(t,f)∈Π f log(1/t) follows a Fréchet distribution with shape parameter α − 1

and scale parameter mg(0,1)1/(α−1) =mΓ(α)1/(α−1). The joint convergence of In/n and
maxi∈[n]Zn(i)/un follows from the fact that

P
(
In/n ∈ (a, b),max

i∈[n]
Zn(i)/un ≥ x

)
= P

(
Mn(a, b)∩ { max

an<i<bn
Zn(i)/un ≥ x}

)
→ P(M(a, b)∩ {Q(a, b)≥ x})

= P(Q(a, b)>Qℓ(a)∨Qr(b)∨ x) .

Again using the independence property of Poisson point processes, one can show that this
equals the probability that Iα ∈ (a, b), times the probability that mmax(t,f)∈Π f log(1/t) is
at least x, which concludes the proof.

PROOF OF THEOREM 2.13. We only discuss the case m= 1, as the proof for m> 1 fol-
lows analogously. Most of the proof directly follows by combining Propositions 5.2, 5.4,
and 5.7 with Proposition 6.1, (6.1), (6.2), and (6.3). The one statement that remains to be
proved is that log(In)/ logn converges, either in probability or almost surely, depending on
the class of distributions the vertex-weight distribution is in, to some constant. Let us start
with the (Gumbel)-(RV) sub-case, as in (2.22).

We recall the sequence (ε̃k)k∈N0
in (5.9) and note that ε̃k is decreasing and tends to 0 with

k. Now, fix ε > 0 and let k be large enough such that ε̃k < ε. We are required to show that
∞∑
n=1

1{log In/ logn≤γ−ε} <∞, a.s.

First, we note that{ log In
logn

≤ γ − ε
}
⊆
{ log In
logn

≤ γ − ε̃k

}
⊆
{

max
nγ−ε̃k≤i≤n

Zn(i)

(1− γ)bnγ logn
≤ max
i<nγ−ε̃k

Zn(i)

(1− γ)bnγ logn

}
.

Let us denote the event on the right-hand side by An and, for η > 0, define the event

Cn :=
{
max
i∈[n]

|Zn(i)−EW [Zn(i)]| ≤
η

2
(1− γ)bnγ logn

}
.

We then have that An ⊆ (An ∩Cn)∪Cc
n, so that

∞∑
n=1

1{log In/ logn≤γ−ε} ≤
∞∑
n=1

1An
≤
∞∑
n=1

1An
1Cn

+ 1Cc
n
.

We now use the concentration argument used to prove (6.2) in Proposition 6.1. It already
follows from (6.2) that only finitely many of the 1Cc

n
equal 1, so what remains is to show

that, almost surely, only finitely many of the product of indicators equal 1 as well. On Cn,

An ∩Cn ⊆
{

max
nγ−ε̃k≤i≤n

EW [Zn(i)]

(1− γ)bnγ logn
≤ max

i<nγ−ε̃k

EW [Zn(i)]

(1− γ)bnγ logn
+ η
}
.



70

The limsup of the second maximum in the event on the right-hand side is almost surely at
most ck < 1, where ck is the quantity defined in (5.11). Then, we can directly bound the first
maximum from below by

max
nγ−ε̃k≤i≤n

EW [Zn(i)]

(1− γ)bnγ logn
≥ max

nγ−ε̃k≤i≤nγ

EW [Zn(i)]

(1− γ)bnγ logn
≥ max

nγ−εk≤i≤nγ

Wi

bnγ

∑n−1
i=nγ 1/Sj

(1− γ) logn
,

and the lower bound converges almost surely to 1 by (5.1) and Lemma 5.3. Hence, if we take
some δ ∈ (0,1− ck) and set η < δ/3, then almost surely there exists an N ∈N such that for
all n≥N ,

max
i<nγ−ε̃k

EW [Zn(i)]

(1− γ)bnγ logn
< ck + δ/3, max

nγ−ε̃k≤i≤n

EW [Zn(i)]

(1− γ)bnγ logn
> 1− δ/3.

It follows that that the event{
max

nγ−ε̃k≤i≤n

EW [Zn(i)]

(1− γ)bnγ logn
≤ max

i<nγ−ε̃k

EW [Zn(i)]

(1− γ)bnγ logn
+ η
}

almost surely does not hold for all n ≥ N . Thus, for any ε > 0 and for all n large,
log In/ logn≥ γ−ε almost surely. With a similar approach, we can prove that log In/ logn≤
γ + ε, so that the almost sure convergence to γ is established.

For the (Gumbel)-(SV) and (Gumbel)-(RaV) sub-cases, we intend to prove the con-
vergence of log In/ logn to 0 and 1 in probability, respectively. We provide a proof for the
former sub-case, and note that the proof for the latter sub-case follows in a similar way.

Let ε > 0. Then,

(7.22) P(log In/ logn≥ ε) = P(In ≥ nε) = P
(

max
nε≤i≤n

Zn(i)

bn logn
> max

1≤i<nε

Zn(i)

bn logn

)
.

Again, we define the event, for η ∈ (ε/3) small,

Cn :=
{
max
i∈[n]

|Zn(i)−EW [Zn(i)]| ≤ ηbn logn/2
}
,

which holds with high probability due to (6.1). We can then further bound the right-hand side
in (7.22) from above by

(7.23)
P
({

max
nε≤i≤n

Zn(i)

bn logn
> max

1≤i<nε

Zn(i)

bn logn

}
∩Cn

)
+ P(Cc

n)

≤ P
(

max
nε≤i≤n

EW [Zn(i)]

bn logn
> max

1≤i<nε

EW [Zn(i)]

bn logn
− η

)
+ P(Cc

n) .

In a similar way as in the proof of Proposition 5.2, as well as in the proof above for
the (Gumbel)-(RV) sub-case, we can bound the maximum of the conditional mean in-
degrees on the left-hand side from above and the maximum on the right-hand side from
below by random quantities that converge in probability to fixed constants. Namely, for ε > 0
and β ∈ (0, ε/3),

max
nε≤i≤n

EW [Zn(i)]

bn logn
≤ max

nε≤i≤n

Wi
∑n−1

j=nε 1/Sj

bn logn

P−→ 1− ε,

max
1≤i<nε

EW [Zn(i)]

bn logn
− η ≥ max

i∈[nβ ]

Wi
∑n−1

j=nβ 1/Sj

bn logn
− η

P−→ 1− β − η,

so that, with high probability, the first quantity is at most 1− 5ε/6 and the second quantity
is at least 1− (β + η)− ε/6 > 1− 5ε/6 by the choice of β and η. It thus follows that the
first probability on the right-hand side of (7.23) tends to zero with n, and so does the second
probability (Cn holds with high probability), so that the claim follows.



THE MAXIMAL DEGREE IN RANDOM RECURSIVE GRAPHS WITH RANDOM WEIGHTS 71

To conclude, we prove Theorems 2.15 and 2.17:

PROOF OF THEOREM 2.15. We only discuss the case m= 1, as the proof for m> 1 fol-
lows analogously. Let us first deal with the results for the (Gumbel)-(RV) sub-case. The dis-
tributional convergence of the rescaled maximum degree to the correct limit, as in (2.25), and
the convergence result in (2.27), directly follow by combining Proposition 5.4 with Proposi-
tion 6.1, (6.8) and (6.9). The one thing that remains to be proved is: In(γ, s, t, ℓ)/(ℓ(n)nγ)
converges in distribution, jointly with the maximum degree of vertices i ∈ Cn(γ, s, t, ℓ), as
in (2.25).

The distributional convergence of In(γ, s, t, ℓ)/(ℓ(n)nγ), as well as its joint convergence
with the maximum degree of vertices in Cn(γ, s, t, ℓ), follows from the same argument as in
the proof Theorem 2.11, where now

g(a, b) := log(b/a).

For the distribution of the distributional limit Iγ of In(γ, s, t, ℓ)/(ℓ(n)nγ), with x ∈ (s, t),

P(Iγ ∈ (s,x)) =
g(s,x)

g(s, t)
=

log(x/s)

log(t/s)
= P

(
eU ∈ (s,x)

)
,

where U ∼Unif(log s, log t). Finally, for any x ∈R,

P
(

max
(v,w)∈Π
v∈(s,t)

w− log v ≤ x
)
= exp

(
−
∫ t

s

∫ ∞
x+log v

e−w dwdv
)
= exp(−e−(x−log log(t/s))),

which proves that the distributional limits as described in (2.25) and (2.26) have the desired
distributions.

PROOF OF THEOREM 2.17. The proof directly follows by combining Proposition 5.6
with Proposition 6.3, (6.8), and Proposition 5.8 with Proposition 6.1, (6.3).
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