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Abstract—Sharing up-to-date information about the surround-
ing measured by On-Board Units (OBUs) and Roadside Units
(RSUs) is crucial in accomplishing traffic efficiency and pedes-
trians safety towards Intelligent Transportation Systems (ITS).
Transferring measured data demands ≥ 10Gbit/s transfer rate
and ≥ 1GHz bandwidth though the data is lost due to unusual
data transfer size and impaired line of sight (LOS) propagation.
Most existing models concentrated on resource optimization in-
stead of measured data optimization. Subsequently, RSU-LiDARs
have become increasingly popular in addressing object detec-
tion, mapping and resource optimization issues of Edge-based
Software-Defined Vehicular Orchestration (ESDVO). In this re-
gard, we design a two-step data-driven optimization approach
called Object-aware Multi-criteria Decision-Making (OMDM)
approach. First, the surroundings-measured data by RSUs and
OBUs is processed by cropping object-enabled frames using YoLo
and FRCNN at RSU. The cropped data likely share over the
environment based on the RSU Computation-Communication
method. Second, selecting the potential vehicle/device is treated as
an NP-hard problem that shares information over the network
for effective path trajectory and stores the cosine data at the
fog server for end-user accessibility. In addition, we use a non-
linear programming multi-tenancy heuristic method to improve
resource utilization rates based on device preference predictions
(Like detection accuracy and bounding box tracking) which
elaborately concentrate in future work. The simulation results
agree with the targeted effectiveness of our approach, i.e.,
mAP(≥ 71%) with processing delay (≤ 3.5 × 106 bits/slot), and
transfer delay (≤ 38ms). Our simulation results indicate that
our approach is highly effective.

Index Terms—Edge computing, RSU selection, Cyber-physical
systems, object detection, path trajectory, Multi-criteria Decision-
Making method.

I. INTRODUCTION

IN INDUSTRY 4.0, vehicles currently rely on human inter-
vention up to some extent, there is ongoing development

towards a fully automated vehicle system design through the
use of novel artificial intelligence-inspired edge computing
systems for automobile industry. The main objective of these
autonomous vehicle (AV) systems is to identify objects [1],
localize them, and segment them [2], which can be achieved
through the integration of artificial intelligence and com-
puter vision mechanisms based on edge computing. Subse-
quently, the Internet of Things (IoT) and Cyber-Physical Sys-

tems (CPS) infrastructure have become feasible platforms for
fog/edge systems, which enable the processing and computing
of sensor data at the data generation source, a crucial aspect of
autonomous vehicle systems. Accurate measurement of infor-
mation quality from edge-based Software-Defined Vehicular
Orchestration (ESDVO) is essential for ensuring vehicle and
pedestrian safety in Intelligent Transportation Systems (ITS).
Edge orchestration facilitates the use of various modalities
such as Lidars, vision cameras, and radars. However, the
processing capabilities of edge devices are limited, making it
impossible for them to process the collected data and respond
to environmental requirements.

A. Motivation:

Ensuring vehicle safety through timely obstacle detection
is important, but identifying road conditions, pedestrians, and
curves can further enhance safety, security, and fuel economy.
However, there exist specific challenges to achieving this
objective.

1) Due to their limited resources, OBUs are unable to
identify road conditions, pedestrians, and curves, which
can result in blind spots caused by occlusion issues.

2) Sharing information between vehicles and infrastructure
remains a challenge due to coverage issues arising from
joint communication and computation problems caused
by the high mobility of vehicles and UAVs.

3) The classification of measured data affects resource
usage, computation time, and detection accuracy. RSUs,
being static, only require a one-time removal of back-
ground infrastructure, whereas OBUs such as vehicles
and UAVs need attention for every timestamp.

To address these challenges, we have developed AI-RSU-
LiDARs that strategically address object detection, mapping,
and resource optimization difficulties in Edge-based Software-
Defined Vehicular Orchestration (ESDVO). Suppose Lidar and
radar measure data at 20FPS, which can be visualized in
3D projection, and Stereocamera measures data at 30FPS,
which can be visualized in 2D projection (as shown in Fig. 1).
Sharing such a vast amount of raw data is wasteful of network
resources. To address this issue, we propose to eliminate
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Fig. 1: Data fusion and compression challenges on cloud-assisted Vehicle Edge-Orchestration

unimportant data leads and reduce the size (approximately
16 FPS) for efficient sharing and processing at both RSU and
OBU that returns minimized computation and communication
overhead of the orchestration.
Automated RSUs share critical object data, including road
conditions, pedestrians, vehicles, and curbs, over a network
that enhances the functionality of the ITS network. For in-
stance, OBU-shared information can improve scene perception
by accurately localizing objects, as demonstrated by simulation
results [3], [4]. However, spatial relationship mapping and
real-time object detection can be challenging due to limited
coverage range, obstacles, and increased computation over-
head. Nevertheless, V2X coordination has several advantages,
such as

1) Compared to single-sensor vehicle data analysis, RSU-
based scene perception has a better field of view (FOV)
for better scene understanding.

2) In the case of RSUs, spatial calibration filtering only
needs to be performed once since they are statically
deployed on the roadside, making it advantageous for
industrial applications.

The goal of this paper is to address communication and scene
perception challenges and establish a research baseline for
future scholars. The main contributions are outlined below:

1) Design a two-step data-driven optimization approach
called Object-aware Multi-criteria Decision-Making
(OMDM) adaptive fusion approach for optimizing the
bandwidth and network latency issue related to raw
measured data upload.

2) Design a data compression strategy by deploying the
YOLO algorithm for object detection of surroundings
and crop the frames based on the object presence of each
timestamp, which helps to optimize the use of storage

resources.
3) Selecting the potential vehicle/device is treated as an

NP-hard problem for sharing essential information over
the network for effective path trajectory and storing
the cosine data, which is crucial for cloud-assisted
applications such as training deep learning models and
scene construction.

The manuscript continues as Section II briefly explains re-
lated work. Section III describes the proposed system and
its mathematical model and algorithm in detail. Section IV,
evaluates the investigation outcomes, section V concludes the
manuscript, and Section VI describes the feature work.

II. RELATED WORK

As discussed in section I, the limitations can be over-
come by adopting an automated V2X approach. In the V2X
environment, object detection and tracking challenges can
be addressed comprehensively through augmented sensing,
and real-time information accuracy is crucial for achieving
vehicle safety and fuel economy. However, there are still some
challenges related to real-time deployment issues that need to
be addressed, as outlined in [5].

A. RSU-based data-processing for bandwidth and network
latency optimization

RSUs are crucial for meeting the requirements of ITS,
and RSU-BEV technology helps to address issues related to
occlusions, obstacles, and network coverage. Combining data
from multiple vehicle sensors can resolve far-away object
detection issues, as demonstrated in [6]. Cloud-assisted vision
functions have been developed to manage traffic and monitor
infrastructure continuously, and the authors of [7] have ex-
plored the use of digital twin technology for 3D visualization.
Another uplooking imperative technique is the digital twin to



scale up the ITS service reliability ratio. An additional benefit
RSU is sharing the leveraged measures data over the network
helps enhance the response time of the environment [6], [7].
An automated RSU-based framework is developed using an
ON/OFF strategy to control traffic signals along with reducing
energy usage [8]. Software Defined Networking (SDN) is an
efficient paradigm for resolving joint computation and com-
munication issues by incorporating multi-programming data-
driven methods. To the best of the author’s knowledge, SDN
has been developed and deployed for vehicular frameworks,
which has garnered significant attention from scholars and
researchers. SDN has proven to be a valuable platform for
measuring and localizing sensor data coordinates, processing
vision data, and sharing data via routing methods for the V2X
environment, as demonstrated in [9].

B. Object Detection Strategies

There are two main strategies for object detection: conven-
tional techniques and deep learning techniques. Conventional
techniques involve several steps such as feature extraction,
segmentation, background filtering, object clustering, and clas-
sification. On the other hand, deep learning techniques use
automated feature extraction and rely on massive amounts of
data for the classification process, specifically for detecting
vehicles.

To detect vehicles, a clustering algorithm is utilized to
segment the point cloud into clusters, and features are used
to classify each cluster. However, the accuracy of the classifi-
cation results depends on the precision of the clustering, which
can be affected by incorrect clustering. In the past, a rule-based
segmentation was recommended for scene understanding [10],
but for RSU LiDAR, the point cloud is processed using
the density-based spatial clustering method (DBSCAN) to
eliminate background points. Nevertheless, this method does
not work effectively with non-uniform data [11]. Therefore, an
effective clustering strategy is crucial for integrating modelling
graphs on the point cloud to filter out background points [12].
The excess points were processed using a triangulation-based
clustering technique after completing background filtering as
stated in [13]. Vehicle and non-vehicle moving points were
separated and assembled using the Euclidean cluster algorithm
in [14], followed by classification using the SVM algorithm.
However, parameter collection remains a challenge in cluster-
ing algorithms during rush hour traffic scenes.

C. Preliminaries: ROS and OpenC2X

For our simulation, the RSU framework is developed using
the Robot Operating System (ROS) with RYU, a popular SDN
environment for automated vehicles. RYU is designed to con-
trol traffic by creating an adaptive routing policy for sharing
information based on environmental changes. ROS, along with
its plethora of updated versions, provides a customized plat-
form for sensing and communication facilities. OpenC2X [15]
is an open-source tool for vehicular networking which we have
used for testing the network reliability. Additionally, MATLAB
simulation links serve as the second simulation platform for

effective performance analysis. With these improvements, the
extended work is currently being drafted.

III. PROPOSED APPROACH

In our proposed network, 3-OBUs (i.e, j = 1, · · · ,m = 3)
and 4-RSUs (i.e, i = 1, · · · , k = 4) are deployed in a certain 1
km/h road length. The 2D coordinates of RSUs are aware, but
the OBUs are unaware since they are enabled with mobility
mode. Total m number of OBU’s and k number of RSU’s
communicate each other within a transmission range. Fig. 2
illustrates 4-RSUs with 200 meters average equal distance
between two RSUs since the road length is 1KM .

A. RSU Computation and Communication
We aim to select potentially resource-rich RSUs for

sharing significant data to avoid latency and reduce the
communication-computation overhead ratio. In this regard, we
derived sharing policy based on the size of the bandwidth of
the service. Note: we treated each scene measurement as a
service and denoted as s = 1, 2, · · · , N . The policy is tuned
based on queue time and delay for more information please re-
fer to our previous contributions [16]–[20]. In our simulations,
the queue waiting is infinite when the RSU video processing
ratio and service arrival ratio from OBU remain the same. We
considered both latency and queue length parameters while
formulating the policy, and those values range should be low.
Choosing the jth RSU based on minimised communication
and computation delay (υi)

υi
min

= υcom
i + υcmp

i (1)

Where υcom
i indicates communication delay for sharing

cropped data over the network and it is calculated as follows

υcom
i =

k∑
i=1

(1−Oτ
s ) υ

cmp
i +

k∑
i=1

ϖτ
s,i × αi

φilog2

(
1+(Gi×ζi,i+1

t )
φi×(ζA)2

)
(2)

Here, ζi is energy usage for sharing the data, Gi is channel
gain, ζA is channel amplification power, and Oτ

s indicates the
place of service execution. The default value is equal to 0 when
it performs on the current RSU; otherwise, offload the video
cropping service to another RSU. The computation delay is
calculated as follows

υcmp
i =

k∑
i=1

Oτ
s ×ϖi × CPI × τ (3)

CPI stands for CPU cycles per instruction or Million Instruc-
tions Per Second (MIPS)

B. Object-aware Data-frame Cropping
We create a matrix in our data processing module that

includes data collected from all vehicles connected with the
relative RSU, as well as a time stamp. This is done for effective
analysis, as shown below.

Ui,j =

MAC1, Time-stamp, RSU1, SS1

· · · · · · · · · · · ·
MACj , Time-stamp, RSUi, SSj

 (4)
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Fig. 2: Sharing the measured data that RSU has processed over a network

Where MAC refers to the OBU address, the time-stamp refers
to the time of the received data to the RSU-1 with determined
signal strength. Further, the data is classified as RSU and
OBU at the data center for effective storage and retrieval
purposes. The matrix also helps to reduce the search time and
background reduction process. Let us assume that each RSU
measures data at 10 Mbps, which circulates throughout the
network. In this case, we can calculate the overall required
bandwidth ratio as follows:

φi =
k∑

i=1

m∑
j=1

Γ∑
τ=1

ϖτ
i × kτi (5)

According to the network size, we currently have 4 RSUs
where ϖτ

i represents the measured data size of a single RSU
at time τ . The overall bandwidth requirement is calculated as:

φi = 10Mbps× 4 = 40Mbps

However, sharing, processing, and storing 40 Mbps of single
time-stamp data from one RSU is not cost-effective and can
cause inadequate latency and wastage of network resources in
lightweight environments. To address this issue, we design a

soft computing method based on data-centric parameters to
crop unnecessary data. The YOLO algorithm is applied to
identify objects in each frame.

φι
i =

k∑
i=1

m∑
j=1

Γ∑
τ=1

ϖτ
i · ϕi · ζτi · ω ·

(
1 +Kτ

i,j

)
(6)

In this problem, we refer to the object-based cropped data
size as ϖτ

i , the average number of objects detected per frame
as ϕi, and the ratio between the number of frames per second
of cropped and measured data as ζτi . The measured data
FPS may differ depending on the sensor used, with cameras
typically having a higher FPS ratio compared to Lidar and
radar. We also refer to the cropped image size as ω per
detection per frame. To aid in understanding, we present the
following problem.

Let’s assume that the length of the road is 1 kilometer with
[45-60 kph] speed, and approximately 4 RSUs are required
if a distance of 200 meters is considered between two RSUs.
The measured data size is 10 Mbps with a resolution of 1080p
and a frame rate of 30fps. The probability of object detection



per frame is 0.5, and the cropped data size as per the detection
of objects has a frame rate of 16 fps. The initial cropped size
ratio is ω = 1/100. Given data is

kτi = 4, ω = 1/100, ϖτ
i = 10Mbps

ζτi 1 = 16/30, ϕi = 0.5

The expected required brand-width is φι
i = 132.5Kbps.

Algorithm 1: Computation-Communication Strategy
input : RSU set k, service set n, OBU set m
output: Choosing right RSU

1 Let initialize υcom
i ̸= 0, υcmp

i ̸= 0, ϖi ̸= 0, φi ̸= 0,
ϕi ̸= 0, ζτi ̸= 0

2 while k ̸= 0 do
3 for s = 1 to length(m) do
4 # Delay Analysis #
5 Calculate υcom

i using Eq. 4;
6 Calculate υcmp

i using Eq. 5;
7 Update the probability of overall delay

υi ← υcom
i + υcmp

i ;
8 if υi ≥ 0.5 then
9 Calculate the probability of waiting for

service queue length;

10 Update δτi ←
n−1∑
s=1

δτs ;

11 if δτi ≥ 0.4 then
12 Choose current ith RSU from global

manager pool set;
13 end
14 else
15 Select the second RSU from the list and

send data to the distributed cloud for
storage;

16 end
17 end
18 else
19 Go to step-2, measure environment

response;
20 end
21 end
22 end

In our proposed environment, we treat each RSU as an
agent and define it with a set of characteristics, such as
the count of MIPS, transmission power, channel frequency,
bandwidth, coverage range, service time, and average number
of connecting OBUs. The aim of Algorithm 1 is to select
the potential RSU for sharing cropped information. In Line-
1, we initialize the required parameters, which are RSU-
centric measurements. Then, in Line-2, we check each RSU
with its defined characteristics, and in Line-3, we check each
scene video clip that has been listed and cropped after the
deployment of the YOLO algorithm [21]. Lines 4-7 assess the
computation and communication delay and their probabilities.
The final probability helps to decide on the selection of the

RSU with the highest probability of sharing the data, as can be
observed from Lines 8-12. If the whole process is not likely,
then we select the second most eligible RSU. Otherwise, we
repeat step 2 to measure the environment reward and response.

IV. RESULT ANALYSIS

In this section, we present a concise summary of the
proposed system’s performance through a series of simula-
tions. The simulations were conducted using MATLAB on
a 64-bit Ubuntu 20.1 LTS operating system, with hardware
consisting of an Intel Core i7-10700 CPU @ 3.80GHz × 16
and an NVIDIA GeForce RTX3090. To evaluate the system’s
performance, we utilized OpenC2X and ROS and made nec-
essary adjustments to the generated results to demonstrate the
achievement of the stated objectives.

In our designed environment, we considered the presence
of 4 RSUs and 6 OBUs, interconnected via a cellular network
with a backhaul link providing a capacity of 10 Gb. To
assess the system’s performance, we conducted a total of
300 simulation rounds, each consisting of 50 epochs. These
simulations aimed to measure the effectiveness of both the
optimal and superior environments.

For the specific video scene (service) under examination,
the size was expected to be ϖi = 15Mbps. The Central
Processing Unit (CPU) executed 1 cycle per second (CPI),
and the channel energy usage was ζi = 8 × 10−5W . The
lidar device collected data by performing 24 firing cycles per
packet, and the size of each packet was calculated using the
formula:

dp =
1248bytes

24× 55.296µs

The performance analysis of the proposed model utilized
two approaches: the Optimized Service Offloading (OSO) [22]
approach and the Online Scheduling (ONS) [23] approach.
Fig. 3 presents the analysis of data computation concerning
the number of iterations. The sub-figures illustrate the data
computation time in different scenarios, where the k value
scales from 3 to 8. Fig. 3(a) showcases the average data
size (in bits), referred to as the cropped data, which is ready
to be shared over the network. It is evident that the data
size significantly increases from the first iteration, and the
sixth iteration onwards, there is consistency in size. The
proposed algorithm aims to reduce the size through bbox
detection, selecting potential RSUs for consistent frequency,
and minimizing computation-communication overhead. Fig.
3(b) and Fig. 3(c) also illustrate similar objectives as discussed
earlier, but with an increased number of RSUs from 5 to 8,
and an increase in the size of each data packet as the iteration
count rises.

Fig. 4 presents two different analysis reports: Random Mean
Square Error (RMSE) concerning sampling time and Hovering
time concerning collected data size (in Mbytes). Fig. 4(a)
provides a visualization of the signal strength and error ratio
for each RSU, along with a detailed analysis based on state-of-
the-art approaches. The sampling time is expressed in minutes,
and it is observed that the ONS model exhibits an unusual
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Fig. 5: Frame filtering analysis, still far-way objects are not detected as intended

error ratio, while the OSO model performs better than ONS.
However, our proposed model achieves a lower error ratio
compared to both approaches. For instance, with a sampling
time of 40 minutes, the error ratios for ONS, OSO, and our
model are 7.2%, 5.6%, and 2.1% respectively.

Fig. 4(b) illustrates the required hovering time for process-
ing (cropping the frames) the data at the RSU. Our algorithm
crops the data size based on object awareness by validating
each frame. The simple heuristic-based cropping method ef-
fectively filters the frames, but it still relies on the detection
methods. We employed YoLO, which has certain limitations

such as difficulty in detecting small objects and objects that
are far away. However, from a hovering time perspective, the
computing environment demonstrates acceptable processing
time, which varies depending on the number of RSUs.

Fig. 5 showcases the ROS interface and the detection of
objects in each frame. Due to the limitations of the YoLo3
version, some objects may not be identified, as observed
in Fig. 5(b). Additionally, a faraway object (car) was not
detected, as seen in Fig. 5(c).

In this paper, we did not focus on addressing the detection



Model mAP FLOPS (B) Layers FPS
YoLo [21] 0.71 140.69 106 20

FRCNN [24] 0.65 62.94 32 24
Model CAR Truck Persons Buses

YoLo [21] 0.88 0.92 0.89 0.91
FRCNN [24] 0.77 0.85 0.81 0.86

TABLE I: Comparison results for customized dataset

issues, but we plan to address and contribute to them in future
drafts. For our experiments, we utilized our dataset consisting
of short video scenes from Deagu City, Republic of Korea.
Each video clip contained approximately 416 × 416 colour
images with detailed annotations and flags to highlight differ-
ences in the background and frames. The dataset comprised
around 5,900 images of size 12080 × 720. We divided the
dataset into 80% for training and 20% for validation purposes.
A total of 9,000 labels were annotated, covering four major
classes including pedestrians, cars, trucks, and buses.

During the model preprocessing stage, the video clips served
as input to the model. Each frame was filtered, and the result-
ing information was passed to the base learner architecture to
extract features and localize each object in every frame, as
shown in Fig. 5(b) and Fig. 5(c). To evaluate the detection
accuracy, we employed the Intersection Over Union (IOU)
metric. Each bounding box was cross-evaluated to determine
whether the detection was true or false, based on the calculated
IOU value.

IoU =

{
is false for < 0.5
is true for ≥ 0.5

(7)

The achieved results, including the tracking and detection
accuracy of the model, are presented in Table I. The mapping
of floating point operations (FLOPs) with FPS enhanced the
detection accuracy and ratio of true detection. Additionally, we
observed that the concatenation of layer counts did not have
a significant impact on accuracy improvement.

V. CONCLUSION

This paper developed a two-step data-driven optimization
approach called Object-aware Multi-criteria Decision-Making
(OMDM) method for accomplishing traffic efficiency and
pedestrians safety towards Intelligent Transportation Systems
(ITS). We achieved the targeted objectives based on RSU-
LiDARs through Edge-based Software-Defined Vehicular Or-
chestration (ESDVO). The first objective is accomplished by
employing the YoLo algorithm to detect the ground truth
objects and assign bounding boxes to effectively trim the
frames that enabled objects. This process has efficiently pre-
served the storage space and network resources by sharing
truthful cropped data that enhanced the reliability of continu-
ous path trajectories for surveillance. The second objective
is accomplished by leveraging the node-centric parameters
before selecting a potential device over the network that had
played a vital role in mitigating individual processing costs.

This process has been effectively formulated using a non-
deterministic algorithm within the polynomial time. Our sim-
ulation results indicate that our approach is highly effective.
The simulation proved the effectiveness of our approach, i.e.,
mAP(≥ 71%) with processing delay (≤ 3.5 × 106 bits/slot),
and transfer delay (≤ 38ms >).

VI. FUTURE WORK

In addition, a non-linear programming multi-tenancy heuris-
tic method will consider improving resource utilization rates
based on device preference predictions (Like detection accu-
racy and bounding box tracking) which elaborately concentrate
in future work. Few future work challenges

1) The future work will enhance detection accuracy, and
recover the information loss, i.e., free space which is
the projected Field of View (FOV) of the ego vehicle
as illustrated in Fig. 6. One possible way to recover the
free space will be by reconstructing the scene perception
using Bird’s-Eye-View (BEV) models based on RSU-
measured data by mapping angular coordinates, which
will be elaborately concentrated on in the future.

2) Maintain individual index as per the classification of
RSU OBU/UAV measured data for mitigating the ex-
ecution, communication and storage cost.

3) Detected objects may remain repeatedly detected in a
few successive frames. So again filtering those redundant
frames is a mathematically challenging task but there
is the possibility to resolve the issue using Bayesian
theorem or data compression theory.

4) Design a 3D-Perception model for effective reconstruc-
tion of the scene based on BEV and FOV at Edge-RSU.

Fig. 6: Detection challenges include the red boxes failing to
detect at each frame, and the free space behind the green bbox
is likely to reconstruct to formulate the occlusion issues as well
[25].
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