
Data-Driven and Physics-Informed
Wind Prediction in Offshore Wind

Farms

Thesis submitted to the University of Nottingham for the degree of
Doctor of Philosophy, March 2023.

Basem Elshafei

20223460

Supervised by

Donald Giddings
Atanas Popov
Xuerui Mao

Signature

Date / /



Abstract

Wind resource assessments have become a very critical topic in the con-

struction of wind farms. The potential of a location providing electricity

can be assessed using measurements by lidars or masts, which are a source

of high-fidelity data, but are expensive and scarce in space and time, par-

ticularly for offshore sites. Contrarily, numerical simulations use software

such as the Weather Research and Forecasting model to generate tem-

porally and spatially continuous data with relatively low-fidelity. A wind

speed time series generated using either method is considered as signal with

non-stationarity and non-linear characteristics. Therefore, pre-processing

of signals using signal decomposition is proposed for dealing with uncer-

tainty in wind data. However, due to the high frequency modes of the

decomposed signals, single model decomposition is no longer sufficient to

obtain accurate results, and secondary decomposition models are employed.

Processed signals are then fed into a constructed forecasting model, which

consists of relationship learning algorithms. Finally, parameters of the

learning process are optimized to make optimal predictions.

In this work fusion of data is tested by employing machine learning al-

gorithms to forecast wind speed data. Three models are proposed, two

that consider data fusion of data from different sources, and one that only

uses simulation data, used as control model to assess the significance on
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performance, when using different sources of wind speed data of different

fidelities. The numerical and measured wind speeds along the west coast

of Denmark are used to evaluate the methods.

The first model, combines the merit of measurements and simulations for

the assessment of offshore wind, following a two-step hybrid model. Firstly,

a temporal data fusion of data using multi-fidelity Gaussian process regres-

sion is employed, which combines the intermittent measurements and the

continuous simulation data of the onshore location. Results are then prop-

agated from one onshore location to an offshore location, following a spatial

data fusion of data using a non-linear autoregression with external input.

The proposed data fusion technique using gappy onshore measurements

results in accurate offshore wind resource assessment within a 2% margin

error.

The second model proposes a hybrid approach which combines the merit of

two decomposition algorithms, namely complete ensemble model decompo-

sition with adaptive noise, and empirical wavelet transform. The wavelet

transform approach is employed to further decompose the high frequency

signal from the model decomposition algorithm, thus reducing forecast-

ing complexity. Then, an improved bidirectional long-short term memory

neural network is optimised using the grey wolf optimization algorithm to

forecast all the decomposed signals. Results are then compared to lidar

measurements to assess performance of models with only numerical sim-

ulations as input data. It is shown that forecasting models that consider

multiple sources of data with different fidelities performs more efficiently

when compared to the lidar measurements. Therefore, the presence of

higher fidelity data, though scarce and limited, promises enhanced assess-

ment of wind resources.
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The third model proposes a hybrid approach that investigates using mul-

tiple data points for wind speed prediction both in spatial and temporal

domains simultaneously. Firstly, the measurements and numerical datasets

are fed onto a sparse matrix, where the columns represent the spatial lidar

and WRF points, and the rows represent the time steps. Entries of the ma-

trix reflect the wind speed at a given time and location, contrarily, empty

entries reflect a time step where data is not observed. A non-linear proba-

bilistic matrix factorization using Gaussian process model is used to train

and test for matrix completion, which fills the missing data with predic-

tions. The proposed data fusion model, using gappy measurements, results

in accurate wind resource assessment with matrix completion results of

higher accuracy than industrial and academic models, with 58% and 40%

improvements, respectively.
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Chapter 1

Introduction

1.1 Background

A major global challenge is climate change, which scientific evidence over

the past decades proved related to human activity [1]. Unprecedented

records of average sea surface temperatures were reported in the past 60

years, with continuous global sea levels rising and sea ice levels receding

[2]. Since the industrial revolution, the increased consumption in fossil

fuels has resulted in increased release of CO2 and other green house gases

in the atmosphere. As a result, the world is currently observing drastic

natural disasters in every corner of the planet, and if nothing is done to

reverse the release of greenhouse gases, more significant disasters will be

observed, through extreme weather changes, and food and water supplies,

causing significant impact on human life. It is impossible to fully predict

the trajectory of consequences of climate change due to current electricity

generation procedures, but a cut to reduce the harmful emissions is critical

to reduce the impacts [3].
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1.1. BACKGROUND

Historically, electricity is generated in central plants in locations near the

available resources and industrial areas, and is then transported to cus-

tomers and areas of need through distribution and transmission networks.

An important advantage of wind energy is the feasibility of building wind

farms at various locations, thousands of wind farms are being installed at

various locations, changing the traditional centralised systems to a more

broad and distributed power generation one [4]. Another factor that heav-

ily defines electricity is its highly perishable commodity, as electricity must

be used simultaneously as it is being generated. The fact electricity can not

be easily stored directly makes it obligatory to maintain balance between

power generation and consumption at all grids at any time. Through fore-

casting the capacity and capability of a wind farm location, and assessment

of the wind resource, generated electricity can be linked to the surrounding

demand, where power supply follows the demand required. In a relative

manner, wind energy varies from other energy sources as it can not be

scheduled and is merely controlled by the stochastic nature of wind. Thus,

wind power generation must be managed where turbines are allowed to

operate to generate enough electricity to meet foreseeable demands.

The aforementioned consequences and fear of continued damage to the

planet have promoted the replacement of fossil fuels with renewable sources

of energy for electricity generation. A strong interest is now visible in the

renewable resources, with wind and solar leading the way. Renewable en-

ergy is on course to break global records, with unprecedented growth in

capacity additions, to seek the advantages of energy security and climate

benefits. Specifically, wind is becoming the major pillar of electricity gener-

ation in Europe, with estimated 35% of Europe’s grid power coming from

clean, renewable wind farms. Being one of the fastest growing energies,

wind energy is becoming very economically viable, causing reductions in
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1.1. BACKGROUND

operation costs. With further utilization in the wind power generation in-

dustry, the cost of electricity generation is approaching the conventional

energy, giving it the ability to compete with traditional power plants [5].

However, a major challenge arises when integrating wind power into the

grid, which is the intermittent nature of wind that makes it not possible

to control the output power generated by the wind farms [6]. As wind

can not be scheduled or delivered when required, wind power generation is

considered a stochastic source of energy. This stochastic behaviour of the

wind increases the complexity of regulating the power system and reserves

standards that allow for stability and reliability [7]. It is therefore critical

to to manage the intermittency of wind as it has greater impact on the

security and impact of the grid, and market economies. In [8], the study

presents that a variability or uncertainty of 20% in wind, would have a

significant increase on the operating costs such as the commitment cost.

The variability and uncertainty of wind make it hard to control the output

power, and hence the costs. Therefore, more power system regulations

are required to ensure stability and no additional costs. The most effective

solution is to estimate the production of output power from operating wind

farms. Wind power is controlled by multiple factors, of which wind speed

is the most important. Hence, estimation of future wind power can be

generated from wind speed forecasting. Once reliable forecasts of wind

speeds are generated for future time horizons, utilization of wind power

and electricity generation are obtained, thereby, electricity variability and

uncertainty can be relieved [9].
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1.2. RESEARCH MOTIVATION

1.2 Research Motivation

Due to the high stochasticity and low predictability of wind, wind energy

is considered an intermittent source of energy [10]. This nature of wind

influences the stability and safety of the large scale grid integrated power

systems. Additionally, wind power is affected by distribution losses and

transmission [11]. Therefore, for higher penetration of this source of en-

ergy, scheduling, management and optimisation are challenges that should

be addressed. A number of suggestions can be considered to decrease the

uncertainty in power systems, which include wind power forecasting [12].

Operators need to forecast future values of the energy, as wind power can

not be controlled. In addition, since the output power from a wind farm’s

turbine and the wind speed have a cubic relation, simple speed forecast

errors can lead to large cubic errors in output wind power. Therefore, ac-

curate and consistent forecasts of wind speed, are crucial for reliable wind

farms and electricity grids, the result is wind power being integrated into

the dispatch and scheduling systems of different scales for decision making

[13]. Subsequently, the regulation of wind systems is promoted and the

operational efficiency of the industry is enhanced, which lead to reduced

operating costs and enhanced competitiveness of wind power. The study of

wind speed forecasting began immediately with the innovation of generat-

ing power from wind, as it has been a challenging yet essential requirement

for the investments in more wind farms. The literature for wind speed fore-

casting techniques present major improvements being recorded, as different

models and techniques are more appropriate for different applications and

use cases where there exists different circumstances.

The demand on wind farms and wind power continues to rise as the need

for more renewable energy increases [14]. Besides providing smoother in-
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1.2. RESEARCH MOTIVATION

tegration of wind energy to the electricity system, wind power or speed

forecasting provides additional benefits that make wind energy more vi-

able in a cost effective manner. For example, specific to the UK, wind

power forecasting limits the impact of excessive use of wind power in the

grid, by scheduling the generation units effectively to meet the demand.

In addition, the amount of electricity considered of excess capacity could

be set to ensure a continued reliability of delivery of electricity. Addition-

ally, with monitored power capacity generated from wind farms, operators

have the capability to compete in the market and meet changing demands

through planning ahead, which returns more investments and trust in the

wind energy sector [15].

This research aims to develop multiple models for enhanced accuracy of

wind speed predictions. Short-term wind speed forecasting is the main

targeted time horizon of the developed models. Forecasts for this time

horizon are typically acquired by modelling the trends and patterns of re-

cent past measurements of the wind speed using numerical and statistical

models. In the next chapter, numerous models are described and discussed

with comparison to their merits and limitations for different applications.

However, data fusion of wind speed measurements, where the observations

are generated using different techniques as input, is under-developed and

promises several benefits. The fusion of instrument measurements with

numerically simulated data encourage more precise and rich predictions

that are more accurate than simulations and continuously available at any

given spatial and temporal point of observation at reduced cost with the

addition of a trivial computational cost. In addition, pre-processing of the

wind speed time series and taking into account additional side information

such as magnitudes and derivatives of the wind speed time series is often

overlooked. Moreover, the addition of spatial techniques captured hidden
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1.3. THESIS AIMS AND OBJECTIVES

spatial correlations that is shown to improve the accuracy of predictions.

Furthermore, by studying different techniques of pre-processing, forecast-

ing and optimizing the prediction models, along with providing additional

sources of data generated using different techniques, it is demonstrated that

there is a wide availability and scope for significant improvements in the

short-term wind speed forecasting field.

However, wind speed forecasting does not provide direct solutions to the

wind power sector challenges, they are instead used as a major contributing

factor to the various decision making processes to integrating the wind

power sector to the power generation market in a cost-effective and more

reliable way. Therefore, improving the quality of predictions is set as a

priority in wind energy research.

1.3 Thesis aims and objectives

1.3.1 Aims

The aim of this thesis is to use surrounding onshore measurements and

offshore simulations to estimate accurate continuous offshore data without

sending expensive equipment offshore. A range of combinations of signal

processing, non-linear algorithms and neural networks are investigated to

assess the influence of pre-processing time-series and multivariate data fu-

sion and to further enhance the accuracy level of wind speed forecasts.
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1.3. THESIS AIMS AND OBJECTIVES

1.3.2 Objectives

1) Investigate the merits of data fusion on wind speed time-series predic-

tions, by combining high-fidelity yet intermittent measurements from in-

strumental equipment, such as Light Detection And Ranging (Lidar) with

low-fidelity but continuous Numerical Weather Prediction (NWP) simula-

tions such as Weather Research Forecast (WRF).

2) Develop hybrid prediction models that consider additional side informa-

tion often overlooked, such as wind speed magnitudes and derivatives.

3) Investigate the influence of pre-processing time-series using signal pro-

cessing techniques, such as Empirical Wavelet Transform (EWT) on accu-

racy of wind speed predictions.

4) Reduce the cost of offshore wind resource assessment by investigating

correlation between wind speeds at onshore and offshore locations, then

carrying predictions from onshore to offshore locations depending on data

fusion of simulations and onshore measurements without sending measuring

instruments offshore.

5) Investigate the merits of employing deep machine learning models and

the effect of tuning their hyper-parameters on accuracy of predictions by

developing a novel model and assessing the predictions against statistical

and persistence model results.

6) Investigate an advanced forecasting model with combined pre-processing

of data and optimization algorithm using simulation and compare results

with models that use both lidar observations and WRF simulations.

7) Develop a three dimensional space-space-time model that captures spa-

tial and temporal features of wind speed at a wind farm location that
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1.4. THE NOVELTY OF THIS RESEARCH

correlates latent spatial and temporal features to a single dimension.

1.4 The novelty of this research

1.4.1 Contribution

• A model of wind evaluation in offshore wind farms established through a

data-based and physics-informed approach, where results are compared to

previous industrial and academic standards.

• Develop a novel algorithm to merge limited measured data and continu-

ous simulation results, then propagate predictions from onshore to offshore

sites.

• Develop a novel hybrid wind speed forecasting model, using a preprocess-

ing algorithm, a forecasting algorithm, and an optimization model using

advanced hyper-tuned recurrent neural networks.

• Develop a recommender system for spatio-temporal data fusion of several

spatial points and several time steps to estimate missing data in a space-

time dimension.

1.4.2 Outline of the dissertation

This thesis consists of 6 chapters. This chapter provided an overview of the

background of the work, followed by the challenges in the field, suggested

solutions, significance and motivation of the research, aims and objectives

of the research, and finally the structure of the thesis.

Chapter 2 aims to provide an extensive review of the literature related to
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1.4. THE NOVELTY OF THIS RESEARCH

the concepts of the research, starting with the state-of-the-art in the power

forecasting field. It discusses the basis of the forecasting problem, the

nature of wind power forecasting, types of predictions, and the most recent

wind forecasting methods. This is followed by an assessment of previous

models and the novelty and contributions they provided.

In Chapter 3, a presentation of the first novel hybrid model is provided.

This model investigates data fusion of multi-fidelity data, pre-processing of

time-series using Empirical Wavelet Transform (EWT), and the addition of

side information such as magnitudes and derivatives of the wind speed time-

series. Furthermore, it assesses the use of onshore lidar measurements in

addition to offshore simulations to produce a continuous offshore time-series

that is more accurate than simulations and less scarce than measurements.

Chapter 4 aims to assess the significance of data fusion by proposing a

hybrid model that uses a secondary decomposition model to pre-process

the data. The generated sub-series are then fed into an optimized neural

network to generate predictions. The performance of the proposed model

is assessed and compared to the results from models in Chapter 3.

In Chapter 5, the use of a recommender system is demonstrated to build a

model that relates the latent features of wind speed in both space and time.

This model takes into consideration pre-processed data and several further

distant lidars for the prediction of wind speed. It generates predictions at

multiple locations and time steps in a single iteration.

Chapter 6 summarizes the research conducted with a recapitulation of what

has been achieved. It provides an overall discussion of the findings, explores

the research implications and limitations, and offers suggestions and scope

for future work.
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Chapter 2

State-of-the-art in Wind

Power Forecasting

This section aims to give a brief overview of the current research results

in the field of wind power forecasting. The main objective of this chapter

is to introduce the different aspects that establish wind power forecasting

and demonstrate different research paths that have been explored. Thus,

this chapter, can be regarded as a short summary of the base knowledge

that this thesis was built on. The illustrations made will help contribute

to a better understanding of the methods and approaches presented in this

work.

Wind power forecasting is traced back to the early 1980s, it was perceived

as a key element in operating wind power plants. Of the very first at-

tempts, a discussion group at the pacific Northwest Laboratory carried

out tests to clarify the importance and advantages of short term predic-

tions to the electricity industry. The conclusion indicated that following

a sufficiently reliable forecast can have three primary applications: weekly

forecasts (daily rates) of winds for maintenance scheduling; daily forecasts
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(hourly rates) of wind levels are factored into the load scheduling strategy;

and hourly forecasts of likely winds for dispatching decisions [16]. Another

good example of early wind forecasting is [17] where a wind turbine power

curve and wind speed forecasts were used to understand how wind can

contribute to the future of energy networks. At this early stage, it was

recognised that ”once a wind power generator is supplying power to an

energy system, a method of forecasting wind power a few hours in advance

is required to ensure efficient utilization of the power.” Over the follow-

ing 40 years, the research and development area in this sector expanded

drastically, most significantly since the 2000s, due to recent and continued

increase in wind power demand around the world.

Hence, wind forecast has been regarded as a high priority research area,

where the running costs and reliability of the implemented systems are the

main targets of improvement. Wind power plays a pivotal part in global

energy production as it is clean, emission-free, and relatively cheap in the

production cost; however, the nature of wind is stochastic and intermit-

tent, making economic scheduling and dispatching, and planning the unit

commitment very challenging. Here comes the paramount demand for ad-

vanced wind forecasting techniques over broader time horizons.

The basis of the forecasting problem will be outlined in section 1, while

section 2 will discuss 2D interval predictions for a time series with differ-

ent time horizons and the difference between point predictions, interval

predictions and probabilistic predictions. Section 3, addresses the differ-

ent classifications of wind speed forecasting. Additionally, section 4 will

give a brief summary of the pre-processing approaches used in wind speed

forecasting followed by a summary of the wide range of wind forecasting

methods such as: persistence, statistical methods, machine learning meth-

ods, physical models and hybrid models in section 5. Then, in section 6, a
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2.1. BASIS OF THE FORECASTING PROBLEM

discussion on the different algorithms used in optimizing forecasting mod-

els is provided. Finally, section 7 concludes the current state of wind speed

predictions and provides a brief overview of where the advances in this field

are required.

2.1 Basis of the Forecasting Problem

2.1.1 Basic concepts

Wind, or in other words, the air flow around us, is more than just wind par-

ticles. It can be divided into three subcategories: mean wind, turbulence

and air waves. The three categories can occur both separately or infused

onto each other (super-imposed). The movement of moisture, heat and

momentum quantities is dominated by mean wind horizontally and turbu-

lence vertically. Multiple highly complex processes exist in the atmosphere,

which drive many observable phenomena, thus exists theories, which de-

scribes it extensively with complexity. The behaviour of the atmosphere is

governed by seven variables as functions of both time and space: tempera-

ture, pressure, moisture, density, two horizontal velocity components, and

a vertical velocity component. Additionally, these variables are governed

by seven equations: the first law of thermodynamics, the equations of state,

the continuity equations for mass and water substance and three compo-

nents of Newton’s second law [18]. The mentioned equations of motion

contain both space and time derivatives and require initial and boundary

conditions for their solution. Since motion in the atmosphere is considered

relatively slow, (velocities are considerably lower compared with the veloc-

ity of light); the Galilean/Newtonian paradigm of classical physics could be

applied, where instantaneous propagation of interactions is assumed and
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2.1. BASIS OF THE FORECASTING PROBLEM

the concepts of absolute time and absolute space are embodied. However,

the complete set of equations is too complex for an analytical solution,

hence, in the meteorological field, i.e numerical weather prediction models,

the equations are simplified with utilization of the parameterizations and

approximations.

Turbulence

A critical weather phenomenon and one that is significantly unpredictable

is turbulence. The generation of turbulence originates due to forces at the

ground, where fractional drag on the flowing air develops wind shears caus-

ing irregularity in motion of air particles. As a result of irregular motions

of the air, vertical currents and irregular swirls of motion called eddies are

created. The eddies of a turbulence can be of different sizes, super-imposed

on each other, and influence the degree of stability of the air, where tur-

bulence can be classed as light, moderate, severe or extreme. In severe or

extreme turbulence, the eddies are as large as hundreds of kilometers in

diameter, and may last for months to years. They are very intense and

may cause structural damage. Other moderate and light turbulence cases

consist of smaller eddies, i.e the swirls of leaves or wavy motions, and are

in the order of few millimeters and may last for a matter of seconds [19].

The scales of motion in the atmosphere influence the application of the

aforementioned equations of motion, as the range varies for large eddies

of thousands of kilometers down to small ones of millimeters, the direct

application of equations is impractical. As it would require millimeter

spatial and second fractions of a second temporal resolution observations,

which is not possible. A cut-off scale where the influence of turbulence is

treated statistically can be selected based on the application. For numerical
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2.1. BASIS OF THE FORECASTING PROBLEM

weather prediction model applications, the cut-off is on the order of 10 to

100 kilometers, while other applications such as boundary layer models, or

large eddy simulation models, the cut-off drops significantly to be in the

order of a few hundred meters [18].

The boundary layer and vertical profiles

Figure 2.1: Illustration of the boundary layer w.r.t time and height [20].

Figure 2.1 captures the layers and characteristics of the boundary-layer

over a high-pressure region of land during the day. There are three main

layers in this well-defined structure of a boundary layer: the stable layer,

the residual layer, and the mixed layer. At the bottom of the boundary

layer, exists the surface layer, which is a region where turbulence varies by

less that 10% of the total magnitude. For the mixed layer, the turbulence

is generated by driven convection and wind shear coming from the top of

this layer. In addition, the less turbulent air at the top also mixes down

with the mixed layer, increasing the layer’s height. The stable layer acts

as a lid to the rising thermals on top of the mixed layer, where the abso-

lute temperature increases with height. Moreover, around sunset time, the

turbulence intensity reduces in the well mixed layer, where the mean state
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2.1. BASIS OF THE FORECASTING PROBLEM

variables form the initial variables of the residual layer. At night, the con-

tact between the residual layer and the ground, converts the residual layer

into a stable boundary layer, which is characterised by weak turbulence

and stable air [20].

Turbulence is what causes the movement of atmospheric constituents, so

accurate parametrizations of their vertical profiles dependent on turbu-

lence intensity are essential for closure methods in governing equations. As

a result of atmospheric stability, which determines vertical mixing within

the layer, there can be significant variations in wind speed with respect

to height. Large differences in atmospheric state at different heights cause

low wind speeds close to the ground and high wind speeds above. Low

wind speeds across all vertical layers are required to maintain atmospheric

stability because the shear between these wind speed layers causes turbu-

lence. Increasing turbulence, on the other hand, improves vertical mixing

and lessens the dependence of atmospheric state on height [21].

Wind speed predictions are significantly affected by changes in boundary

layer turbulence. By introducing vertical variations in wind speed and al-

tering the overall wind profile, turbulence speeds up the mixing process. It

results in wind shear, which alters speed and direction as altitude changes.

Microscale variability is another aspect of turbulence that is introduced,

and it affects regional flow patterns and turbulence intensity. Turbulence

changes have an impact on the vertical extent and structure of the bound-

ary layer by altering the distribution and vertical profiles of wind speed.

Taking into account atmospheric stability, surface characteristics, and other

pertinent factors, turbulence parameterizations must be incorporated for

precise wind speed prediction. To verify and improve wind speed predic-

tions, especially when there is turbulence, measurements from meteoro-

logical instruments, such as anemometers or remote sensing devices, are
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2.1. BASIS OF THE FORECASTING PROBLEM

frequently used.

2.1.2 Nature of wind power generation

After briefly describing the nature of wind, an introduction on how energy

can be generated from it is covered. Wind farms use wind turbines to

capture the wind and convert kinetic energy into electric energy, in other

words, power. The wind speed directly regulates and controls the amount

of power the turbine produces.

The power curve is given by the following power equation:

P =
1

2
ρπR2v3Cp (2.1)

where ρ is the air density, R is the radius of the rotor, v is for velocity

of the wind speed, and since it is impossible to extract energy from the

moving air without dissipation, Cp is the Betz’s limit, equivalent to 16/27

(approx. 0.593). In practice, the efficacy rate reaches 0.52 - 0.55, but after

taking into consideration the mechanical and electrical losses in the gear

and generator, the rate drops to 0.46- 0.5 [22].

As previously stated, wind is the motion of particles that comprise the

atmosphere, hence, the speed of wind can be measured by calculating the

speed of the particles. However, this is not possible in practice, as it is very

difficult to measure particles per second interacting with a wind turbine

rotor blade. As interest is only in the power that could be generated, the

speed seen by the rotor becomes our only concern. Wind speed can be

measured by cup anemometers, a device present at most weather stations

that is robust and cheap, which was used to generate most of the historic
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2.1. BASIS OF THE FORECASTING PROBLEM

data sets of wind speeds. But this device suffers delays in responding to

changes in wind speed and have a higher precision in measuring increases

in the wind speed compared with decreases, which results in over-estimated

wind speeds. Other devices such as Light Detection And Ranging (Lidar)

and sonic anemometers are more accurate but come at an expensive price

and unavailability in space and time domains [22].

Figure 2.2: Wind power - speed curve [23].

Once the wind speed time-series is measured or estimated, a wind turbine

power curve can interpolate the output power. The power curve describes

the direct dependency between speed and power, since power is the cube of

speed. The amount of power generated by the turbine depends on multiple

considerations: the generator, installed power electronics of the turbine,

power of the air flow, and the efficiency of the conversion process. Despite

that, most power curves are very similar, as they are governed by the same

laws of physics. The power curve of a modern, variable speed turbine can

be split into four distinctive parts: 1) Below cut-in speed: wind speed is

too low to operate turbine and no power is produced, 2) Between cut-

in and rated speed: speed reaches cut-in value and power productions

starts, 3) Rated to cut-off speed: a constant power production dependent
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2.2. 2D-INTERVAL PREDICTIONS FOR TIME SERIES

on the turbine’s rated value, and 4) Above cut-off speed: no production

occurs as turbine is switched off for safety, to prevent any damages to the

rotating parts. For the wind between the cut-in and cut-off speeds, the

physics of the energy conversion process can explain the variation in power

production. However, uncertainty exists within the curve, as the conversion

process is affected by multiple external factors, including the blade erosion,

mechanical wear and quality of the measured wind. In addition, the curve

drawn in Figure 2.2 is for an idealised situation, typically produced by

a manufacturer, where the turbine was not exposed to any turbulence,

obstacles, or abnormal air pressures. The reality of air behaviour is much

more complex due to more external factors such as shadowing effect, terrain

and topography of the wind farm which all have significant implications and

influence on the curve [23].

2.2 2D-Interval Predictions for Time Series

2.2.1 Time series

In prediction, it is of great importance to understand the characteristics of

the dependent variables, and the different scales at which the prediction

process could be tackled. In wind speed predictions and specifically for our

application, the effect of spatial and temporal parameters and their scale

is considered of significant importance. Wind speed may be estimated at a

specific given moment of time, or averaged over a time-period (10 minute

and 1 hour intervals), the spatial coordination of the point of interest such

as height, longitude and latitude, all have a considerable influence on the

predictability of the resulting time-series. In a time-series, the notion of

order (time of observation) distinguishes the analysis and relates the pro-
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vided variable (X) data points (value at time t: xt) to one another in a

sequence of measurements collected at a constant time interval (t) [24].

X = xt, xt+1, xt+2, ...|t ∈ N (2.2)

Once patterns in the time-series are identified and correlated, underlying

phenomena with respect to the variable of interest are explained, and miss-

ing values or future values of the time-series can be found (interpolation

and extrapolation forecasting).

Adapting and adjusting the spatial and temporal scales helps accomplish

the variety of industrial interests in wind speed prediction. Figure 2.3 pro-

vides the forecast time horizons along their common temporal resolutions

and their industrial use (informed decisions).

Figure 2.3: Time horizons for wind speed forecasting.

The prediction horizons discussed in Table 2.1 are a paramount factor in

the choice of the forecasting technique. The proper classification of the pre-

diction horizon is specially important for various operating systems in wind

forecasting applications, such as: electricity market, dispatch and sched-

ules of the economic load, and ancillary support. Once the classification of

the prediction horizon is decided based on the application type, the most

accurate and applicable method of forecasting can then be selected. Due
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Table 2.1: Categorization of forecasting methods based on prediction hori-
zon [25].

Forecast Hori-
zon

Resolution In-
terest

Ultra-short
term

< 1 Minute Seconds Turbine control
and load track-
ing in real-time.

Very-short
term

< 1 Hour 10 Minutes

Short term 1-48 Hours 30 Minutes, 1
Hour

Load dispatch
planning

Medium term 1-10 Days 1 Hour, 3 Hours Utilized for
energy trad-
ing and power
system manage-
ment

Long-term Months-Years Days-Months Guide optimal
maintenance
scheduling

to their accuracy and robustness, short-term and medium-term predictions

are the most engaged methods in the literature. To have accurate fore-

casting of future values, it is important to evaluate the performance of the

method at sites with different atmospheric conditions.

In the very short-term prediction horizon methods, the future predictions

of values is in the span of few seconds to half an hour. This method is

used extensively in market clearing and regulatory actions. Methods of

this criterion include the spatial correlation method [26], and the artificial

neural network-Markov chain model [27], where predictions are made for 1-

second ahead and 7.5-seconds ahead, respectively. Moreover, the Bayesian

structural break model [28], and data mining approach [29] can forecast pre-

dictions of 1-minute to 1-hour ahead and 10-seconds to 5-minutes ahead,

respectively. In addition to these methods, the use of intelligent machine

learning methods, such as Deep Neural Network (DNN) is rapidly growing

and becoming more approved with recent advances. Another method which

20
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form the core of the very short-term methods include, Support Vector Ma-

chine (SVM), and hybrid methods that combine neural networks with pre-

processing techniques, such as Empirical Wavelet Transform (EWT). The

Decomposition Forecasting Algorithms (DFA), which breaks the time-series

of the targeted variable, wind speed / power, to analyze individual units

and generate a resultant series. One of these decomposition algorithms [30]

broke down / decomposed the time-series into multiple units, then feature

construction is performed at each unit to select the best features for pre-

dictions, which can be carried by the previously mentioned methods, such

as Artificial Neural Network (ANN), Support Vector Machine (SVM) or an

Auto-regressive Moving Average (ARMA) model. In addition, decomposi-

tion techniques are also used for non-stationary and non-linear forecasting

models, i.e [31] which is based on Hilbert-Huang Transform (HHT).

In [32], a neural network was trained with 12 hours previous data (15-

minute time-step) as input, Wavelet Transform (WT) was employed to

decompose the series and the resultant was also fed to the neural net-

work. The model provided predictions for a 3-hour ahead time span. An-

other short-term forecast method involves the Empirical Wavelet Trans-

form (EWT) and Nonlinear Autoregression With External Input (NARX)

to forecast, the result showed full superiority of machine learning and neu-

ral networks compared to other forecasting methods [33]. In [34], the con-

cept of genetic algorithms was used to optimize the input parameters for

and Support Vector Machine (SVM) model with wavelet transform pre-

processing. The results of these predictions showed that the Mean Abso-

lute Percentage Error (MAPE) obtained is around 15% while that with

persistence is 23%.

Contrarily, long-term predictions are also essential for major applications

such as unit commitment decisions and maintenance scheduling. In [35],
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1-day forecasts are obtained by combining the merits of Particle Swarm

Optimisation (PSO) and Adaptive Network Based Fuzzy Interference Sys-

tem (ANFIS), where the PSO algorithm estimates the best parameters for

neuro-fuzzy systems. A different method was approached by [36], where

they used Relevance Vector Machine (RVM)), Wavelet Transform (WT),

and Artificial Bee Colony Optimization (ABCO), the wind time-series is de-

composed into different frequency ranges, and ABCO uses a meta-heuristic

algorithm to estimate the most suitable parameters for the RVM kernel,

which then carries the predictions.

2.2.2 Point Prediction

Figure 2.4: Types of time series prediction, namely (a) point, (b) interval
and (c) 2D interval prediction, respectively. [37]

Point prediction is the simplest yet most common form of forecast in time-

series analysis, they are easy to handle during decision making times. They

target a specific single instant of time and predict the observation at it ex-

clusively. Due to its simplicity, many practitioners favour point predictions,

i.e a non-expert weather forecaster can easily generate, communicate and

interpret weather point forecasts because of point predictions. The ap-

proach for point prediction is mainly mentioned in the time-series analysis,

the previous (past) relations between variable points (i.e xt−1, xt), which

occur at different times, is studied and used to estimate the future unob-

served point (xt+1), where 1 here represents the forecast time horizon one

step ahead of the current time, check Figure 2.4 panel (a) for presentation
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of point prediction.

However, multiple limitations exist for point prediction, which limit its use

with real-world problems. As computer powers are limited, weather grids

are limited too, and hence important local features between two points are

overlooked, which can lead to over or under estimation of wind speed. But

this can be resolved with expensive and highly computational equipment

and models if necessary [37].

When focusing on a single location point, i.e a wind farm, point forecasts

can be issued in an inexpensive way, depending on a linear time-series

and only the local measurements. This was first introduced in 1984, using

Auto-regressive Moving Average (ARMA), where the lead time was be-

tween hours and a few days. Focusing solely on prediction of wind power

at short forecasting horizons, i.e 2 hours, simple Auto-regressive (AR) mod-

els perform very well. Contrarily, auto-regressive models require a fairly

large data set to perform adequate estimations, which is not usually easily

accessible to a new location to construct a wind farm, but is becoming

more and more available these days [38]. In addition, as more approaches

are being developed to predict wind power based on both measurements

and meteorological forecasts, such as neural networks, multi-fidelity gaus-

sian processes and machine learning models, the wealth of data is not a

huge problem. The aforementioned models use Least Squared (LS) and

Maximum Likelihood (ML) approaches, which allow smooth changes in

the parameters of the employed model, also while lowering the computa-

tional expense. This was implemented by [39], where point forecasts for 5

zones of western Denmark were carried. The models had 43 hours ahead

hourly resolution, and resulted in a well-captured pattern for the early lead

times generated from the meteorological forecasts and AR based compo-

nent based on local observational data.
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As point prediction only focuses on the estimation of a single point at spec-

ified time or space horizon, the output is in the form of a single value that

provides no information on the uncertainty around that estimated point

value or confidence bounds. This is a key limitation of point prediction

and is solved by introducing interval prediction.

2.2.3 Interval Prediction

Interval predictions can manage the key limitation of point prediction by

providing an estimate of the likelihood over a range of outcomes, hence

producing an interval supported by upper and lower limits, and a proba-

bility. There comes a variety of forms for this type of prediction: quantile

prediction, can estimate that the wind speed will be exceeding a certain

value for a given horizon with a confidence bound, i.e the wind speed for

the next hour will be between 5-10 meters per second with an 80% con-

fidence in that information. Similarly, an interval prediction will forecast

the probability of an observation occurring within a specified interval. In-

formation regarding the full range of outcome is embodied in a predictive

distribution, which can take either parametric or non-parametric forms, a

more detailed review can be found in Zhang’s technique [37]. But in short,

the aim is to obtain a prediction at time t with a certain confidence of an

interval, given the expected time of the future horizon t + h, lies within a

certain probability.

There is far less scientific research and contributions with respect to in-

terval prediction when compared to point prediction, mainly due to how

economically viable point predictions provide information with ease and

specific targets. In the field of wind power manufacturing, a point predic-

tor can make predictions of the future consumption, contrarily, an interval
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prediction will yield the estimated future consumption and prove lower and

upper confidence limits with probability of data being valid. In addition,

other applications include predictions of connected forecasts, i.e relation

between generated power at different wind farms in the same region. Here,

the inner dependencies between observations are very important and in-

terval prediction will provide the probability and confidence of each link,

where strongly related dependencies can be used to establish the relations

between wind farms in both spatial and temporal structures [40].

In wind predictions, sharp fluctuations and changes in the wind speed can

occur at any given time, this is usually called ramp events. Ramp events

heavily affect the accuracy of the prediction, and are responsible for a large

proportion of errors in the prediction process [41]. It is possible to forecast

the magnitude of a major change, however, the more important factor is

time and when they occur, which is very challenging. The preliminary

results show an increase in the magnitude of ramp events by at least 5

folds by the year 2025.

In addition to sudden changes in wind speed, which are not a rare occur-

rence specifically at offshore sites, other properties of wind vary drastically

in the offshore environment compared with those onshore. Due to diur-

nal heating of the surface and topography effects such as roughness of the

surrounding area, the wind exhibits different atmospheric boundary layer

properties, thus some techniques have been assigned specifically for offshore

predictions. A comparison between onshore and offshore prediction accu-

racy was conducted in [42], which concluded that the complexity of the

terrain of the onshore area, directly correlates to the performance of the

offshore prediction. In which simple smooth terrains yield more accurate

predictions than rough complex onshore sites.
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2.2.4 2D Interval Prediction

Despite point prediction and interval prediction covering an extensive area

in the forecasting of a time-series, it is not sufficient for multiple domains.

In the energy supply sector, it is not only the wind speed at a specific point

that is required, but an estimation of the wind for a time frame supported

by a confidence interval. In other words, it is important to have a clear

estimation of the wind speed for time intervals to estimate the minimum

power output for a time period, this way, wind operators can agree on elec-

tricity and power deals, knowing they can meet their agreements without

unforeseen fluctuations in the output power and that supply and demand

is met. Consequently, a time interval is when predictions occurs between

t +m or t + h + k, where h is the forecasting horizon and k is a measure

of the size of the time interval, together they form a 2D array m, Check

Figure 2.4 panel (c) for a presentation of 2D interval prediction.[37].

2.3 Classification of wind speed forecasting

Figure 2.5: Classification of wind speed forecasting.

In the quest for more precise and accurate wind speed and wind power pre-
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2.3. CLASSIFICATION OF WIND SPEED FORECASTING

dictions, several approaches were proposed and implemented. The different

approaches can be classified into sub-classes according to the standards and

parameters of the forecasting task as per the presented in Figure 2.5.

Relative to the forecasting objectives, forecasting techniques can be further

categorized into two classes: wind turbine and wind farm forecasting. The

wind turbine forecasting techniques aid forecasts for a single wind turbine

[43, 44, 45]. Contrarily, wind farm techniques investigate the wind infor-

mation from several wind turbines and targets wind speed and wind power

forecasts of entire wind farms, hence is more difficult [46-49].

The type of forecast provided also contributes to classifying the wind speed

and wind power models into deterministic and probabilistic models [50].

The former can only provide point predictions, ignoring complexities in

the environment, therefore are often inaccurate with unsatisfactory results

[51-54]. The latter provides more information than point predictions and

can represent uncertainty in terms of prediction intervals [53-55]. Predic-

tion of uncertainty could be either parametric, which assumes the uncer-

tainty can be described by a probability distribution; or non-parametric,

which generate prediction intervals to characterize uncertainty without a

distribution [56]. The most common parametric models are Mean Variance

Estimations (MVE), the delta method, and Gaussian Process (GP) [57].

In the MVE forecasting models, errors obey additive Gaussian distribution

with a varying variance [59]. Alternately, the error in the delta method is

assumed to follow a Gaussian distribution [58]. For non-parametric models,

Lower Upper Bound Estimation (LUBE) [60], which measures the quality

of prediction intervals, and Quantile Regression (QR) [59], which follows

an asymmetric Laplace loss function are amongst the most popular ap-

proaches.
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2.4 Wind data pre-processing

Uncertainty in wind speed and wind power time-series had been dealt with

using several proposed algorithms. Pre-processing of the wind data can

be either using signal decomposing methods or outlier detection methods

[61,62]. In the first approach, signal decomposing methods consider the

series of the wind data to be a signal that can be decomposed to multiple

sub-series. Then, predictions are generated for each sub-series, and results

are aggregated to produce a final forecast for the original wind data series

[63]. Alternately, in some literature [64, 65], signal decomposing is used as

an algorithm to remove noise in the signal, the denoised signal is then fed to

the forecasting models for predictions. The signal decomposing algorithm

is divided into three categories: wavelet-based, mode decomposition-based,

and singular spectrum analysis-based approaches.

The wavelet-based approaches include Wavelet Decomposition (WD) [66],

Wavelet Packet Decomposition (WPD) [67–69], and Empirical Wavelet

Transform (EWT) [70,71]. The mode decomposition-based methods in-

clude Variational Mode Decomposition (VMD) [72,73], Adaptive Varia-

tional Mode Decomposition (AVMD) [74], Optimal Variational Mode De-

composition (OVMD) [75], Empirical Mode Decomposition (EMD) [76],

Ensemble Empirical Mode Decomposition (EEMD) [77], Fast Ensemble

Empirical Mode Decomposition (FEEMD) [67], Complete Empirical Mode

Decomposition (CEEMD) [68], Complete Empirical Mode Decomposition

With Adaptive Noise (CEEMDAN) [79], and Improved Complete Empirical

Mode Decomposition With Adaptive Noise (ICEEMDAN) [80]. Also, Sin-

gular Spectrum Analysis (SSA) [81-83] and Improved Singular Spectrum

Analysis (ISSA) [84] have been employed to process original wind speed

data before forecasting. For wavelet-based approaches, the algorithm de-
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composes the original signal to generate different levels of the wind speed

series, while the other two approaches can only produce sub-series at a sin-

gle level. Moreover, Liu et al. [85] proposed a combined signal processing

method, which combined FEEMD and WPD to process wind speed data.

The latter was employed to decompose the original signal into different

sub-series at different frequencies, while FEEMD was employed to further

decompose the high frequency sub-series. Results from combined signal

processing methods have shown higher efficiency in wind speed forecasting

[85, 86].

The pre-processing phase in the model focuses either on decomposing the

signal or data denoising, but the algorithm processes all the data in the

signal indiscriminately [61]. The decomposed sub-series usually have a

stronger predictability than that of the original signal. However, removing

the noise from a signal can still generate a denoised signal with outliers, for

this reason, outlier detection-based processing methods exist, but they do

not completely remove outliers [62]. In few studies, researchers combined

both pre-processing methods to reduce the uncertainty of the signal.

2.5 Wind Forecasting Methods

Wind speed forecasting methods involve using various techniques to pre-

dict the future wind speed at a particular location. Some common methods

include persistence method, numerical weather prediction or physical mod-

els, statistical models, machine learning algorithms, and hybrid models that

combine multiple techniques, illustrated in Figure 2.6. These methods use

historical wind data, atmospheric conditions, and other relevant data to

make predictions. The accuracy of the forecasts can be affected by factors
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Figure 2.6: Categorization of the different methods for wind forecasting
techniques.

such as the complexity of the terrain, the season, and the time of day.

2.5.1 Persistence method

In meteorology, stating that the weather condition in the near future is

unchanged to the current condition, is called persistence forecasting. The

assumption for this method is that conditions around the wind speed at the

time of forecasting will be constant and unchanged to present ones when the

forecasts are made. The method disregards any changes in the boundary

conditions, and hence spontaneous turbulence effects, thus it is often used

as a standard model for comparisons and bench-marking. Despite that,

persistence models can yield very accurate results, more accurate than

other complex wind forecasting models, when specific parameters are met,

such as a balanced state in the boundary layer with no sudden or abrupt

changes, and when the forecasts are made within the ultra to very short

term forecasts. However, degree of accuracy will deteriorate rapidly as

the time-scale is increased. Hence, the persistence method is mostly used

in electricity utility for ultra-short term time horizons, or as test result

benchmark for newly developing models [87].
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The persistence method is considered the simplest and one of the most

economical wind speed forecasting methods, as it is based on performing

simple linear mathematical equations. If the measured wind speed is vt at

time t, then the change in speed until t+1 is equivalent to the change from

t− 1 to t [87].

2.5.2 Physical models (NWP)

Development of numerical models

Numerical Weather Prediction (NWP) are computer simulations that con-

sider meteorological factors (air pressure, humidity, temperature) and have

been in place since the 1950s. Charney, Fjortoft, and Von Neuman [88],

used a low resolution, highly filtered version of the dynamic equations.

The early models of NWP established consistent low-resolution models, by

relying on the theories of quasi-geostrophic. At that time, it was nearly

impossible to include relevant physical processes, due to lack of knowledge

or computer resources. However, quasi-geostrophic models were very pop-

ular and were mainly used for process studies and hemispheric forecasts

(mostly short range of up to 3 days ahead). The models focused on the

development of mid-latitude weather systems, which were characterized by

large horizontal scales on the order of hundreds of kilometers spatially, days

temporally, and thorough tropospheric structures [88]. As these models

overlooked some external forcing processes, such as the important atmo-

spheric processes (radiation and phase transition) and the evolution of the

temperature on surface, their predictions had very limited capabilities. On

the other hand, modern NWP models form the foundation of most of the

current meteorological forecasts.
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Current models simulate processes occurring in the atmosphere on com-

puters, to estimate the future state from available current states. Assess-

ment of the current state of the atmosphere is called data assimilation,

a paramount process for accurate predictions, which estimates the state

from measurements collected from stations and satellites all over the globe.

This process also validates the measurements and fills in the gaps between

the stations in locations such as oceans, deserts, and big forests. A set of

linearised equations are initialised, which describe the physics of the atmo-

sphere, namely, the Navier-Stokes equation and the ideal gas law (solved

on 3-Dimensional grids). Both the initialization and linearisation steps

of the atmospheric parameters and governing equations, respectively, con-

tribute to a meaningful data assimilation of the atmosphere and accuracy

of predictions [89].

The systems in old NWP models contained relatively simple algorithms.

The model interpolates observations to the grid after a preprocessing step,

where filters and constraints are imposed on the balance between different

fields, which reduces the noise in the initial state. Recently, the initial state

is optimized by variational approaches to assimilate observations along a

time frame in modern NWP models [90]. This is typically appropriate

for remote sensing observations that are becoming very popular. These

observations are updated frequently and are global datasets.

Available data for boundary conditions

Furthermore, direct 3D atmospheric monitoring of observations of the at-

mosphere are only available from radiosonde networks. With addition to

dense surface station networks, the synoptic network is constituted, which

provides worldwide synchronous observations at appointed times. Con-

trarily, these networks are considered heterogeneous in space, as the major
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setback of such models include a wide unavailability of observations at large

areas, such as oceans. This brought major attention to non-synoptic data,

where satellite data became the main source. These are considered to be

large-scale data products, however, other sources of smaller-scale models

are available, such as lightning retrievals and radar images, which have

great potential to be incorporated in NWP [91].

Despite the advanced technologies available and powerful supercomputers

being used for NWP simulations, spatial and temporal resolutions are still

limited. Several NWPs are run in multiple places around the globe, cov-

ering different regions using measurements generated by weather satellites

and radiosondes. The forecast horizons of the weather forecasts are typ-

ically between 7 and 10 days, where the spatial resolution ranges from 3

to 30 kilometers, and the temporal resolution is either 1 or 3 hours. It

is possible to increase the duration of the forecast, however, this results

in a lower resolution result. Moreover, forecasts are usually issued every

6 or 12 hours due to the high computational cost of running NWP [92].

In Europe, multiple countries have national weather service providers that

run NWPs, for example the UK has the Met office, France uses the Meteo,

and Deutscher Wetterdienst, Germany. In addition, the European Cen-

tre For Medium-Range Weather Forecasts (ECMWF), runs many NWPs,

which ranges over days, months, and seasons ahead [93]. Due to the in-

creased demand for high-resolution forecasts, several other organisations

were formed, producing high-resolution data covering different regions (AL-

ADIN, COSMO, HIRLAM) [94]. The final step in NWP is completed by

multivariate statistics. In [95] the 3 dimensional data assimilation system

that takes place at HIRLAM is described. The equations used to simulate

the atmosphere take into account the effect of turbulence and its varia-

tion during the day. A thorough description is given in [96], where they
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described how the boundary conditions are applied and integration of the

model by numerical methods.

Extracting wind power from the models

To derive wind power forecasts from NWPmodels, significant post-processing

is required. The vast research carried out on post-processing of NWP lead

to developments of calibration models, such as Model Output Statistics

(MOS), which calibrates the forecasts at specific locations and variables

when possible [97]. The modelling of wind power conversion process is es-

sential, but can be a significant source of uncertainty. However, NWPs used

for short term predictions provide accurate power estimates [97]. Physical

and statistical modelling approaches should be used simultaneously in wind

power forecasting systems, which is the case for most operating commer-

cial models [98]. Prediktor is a wind power forecasting tool developed by

Landberg and Troen [99], the tool takes NWP estimates of the wind speeds

and directions to adapt them to the local site prior to applying a power

curve model. Throughout the process, statistical improvements could be

achieved through MOS. Another tool was developed at the Technical Uni-

versity Of Denmark (DTU), the Wind Power Prediction Tool (WPPT),

which is managed and operated by an external industrial firm. To discover

the best relation between the NWP predicted wind speeds at the site and

the measured power for each forecast horizon, the WPPT employs adaptive

neural recursive least squares estimation of the parameters of conditional

parametric models [100]. Another model, the Wind Power Management

System (WPMS), employs neural networks for the same task, this tool was

developed in Germany and is currently being used by E.On, RWE and Na-

tional Grid in the United Kingdom. DNV offers a forecasting model called

GH forecaster, which is based on UK met office NWP projections. The tool

converts NWP to local wind speeds using multiple input linear regression
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algorithms [101].

An essential NWP technique is ensemble forecasting, which runs the NWP

simulations multiple times with the estimates of the initial atmosphere con-

ditions modified [102]. The ensembles should ideally be viewed as samples

from a probability distribution function that reflects the uncertainty of the

unperturbed forecast.

Physical models perform superior to other models in the medium and long

time horizons, which made it possible to obtain wind power forecasts us-

ing power curve for wind turbine at given wind speeds. Physical models

can be superior in wind speed forecasting because they are based on the

fundamental physical principles that govern the atmosphere and the be-

havior of wind. These models use equations that describe the dynamics

and thermodynamics of the atmosphere, and they take into account vari-

ous factors that can affect wind speed, such as topography, land use, and

atmospheric conditions. Additionally, physical models can also incorporate

real-time data from weather observations and remote sensing technologies,

which can improve the accuracy of the forecasts. Additionally, physical

models can be used to simulate different scenarios and analyze the impact

of various factors on wind speed, which can be useful for planning and

decision-making. However, physical models can be computationally expen-

sive and require a significant amount of data to be accurate. They may also

require specialized expertise to develop and operate. As a result, different

forecasting methods may be more appropriate depending on the specific

application and available resources.
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2.5.3 Statistical methods

The term statistics when used in forecasting, implies the usage of histori-

cal data to ascertain the probability of what might happen in the future.

These are time-series models employed to characterize the linear fluctua-

tion of wind speed at different locations. The process consists of a single

step, where input variables are directly transformed into wind generation,

in a statistical block. For this method, short-term wind forecasting is the

most common category for time horizons [103]. Statistical methods have

three main advantages when used for short-term predictions, which make

it superior to physical methods. Firstly, NWPs require several hours to

produce, additionally, they are issued in 6 and 12 hours; hence, when fore-

casts are issued, recent measurements that should serve as input will be

relatively old. Secondly, the output from NWPs is distributed on spatial

grids with varying resolutions, which might not provide data at points of

interests such as a wind farm. This requires additional spatial interpolation

to allow for forecasts at points of interest, which adds an extra layer of com-

plexity, due to complex and different terrains. Thirdly, for very short-term

forecasts where high temporal resolution of finer than 1 hour are required,

operators will face the same interpolation problem as in the spatial do-

main. In conclusion, to have a strong performing wind forecasting method,

a combination of statistical and physical methods will combine the merits

of both techniques. The statistical method will power the predictions for

the first few hours, then a smooth transition to physical models for the long

time horizons. Wind power forecasting can be approached in two ways, ei-

ther forecasting the wind power directly, or to forecast the wind speed with

direction and combining it with a turbine power curve model [103].

The statistical block computes statistical linear and nonlinear models that
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can be of different types. Among these are combinations of machine learn-

ing methods, such as Neural Networks (NN), Support Vector Machine

(SVM) and kernel regression, and time-series models such as: AR, MA,

ARMA, ARIMA, ARMAX and Fractionally Integrated Auto-regressive

Moving Average (FARIMA) as described in the following. The Auto-

regressive (AR) time-series models use previous time-step observations as

input to a regression equation, which in return outputs a forecast for the

next time-step. Contrarily, Moving Average (MA) depends on past errors

for forecasting. Furthermore, Auto-regressive Exogenous Moving Average

(ARMAX), is a non linear model, which captures uncertainties in the time-

series associated with the stochastic nature of wind. The time-series models

only take past values from the foretasted variable as inputs, simultaneously,

they can also use past values of other related variables to improve the fore-

cast accuracy. These models can outperform the persistence method in

the very short and short time horizon between 3-6 hours by 15-20% [104].

However, greater time horizons would require NWPs as input data. The

problem can be looked at from two approaches, a univariate approach and

a multivariate one:

Yt = β1Yt−1 + β2Yt−2 + ..+ β0Y0 + ϵt (2.3)

this model only uses past values of the predicted variable, where ϵt is white

noise.

For the multivariate model, past and present values of other variables can

be used:

Y1(t) = β1(11)Yt−1 + β1(12)Yt−2 + ..+ ϵt (2.4)
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Y2(t) = β2(21)Yt−1 + β2(22)Yt−2 + ..+ ϵt (2.5)

where, β1(11) and β2(21) are coefficients for both variables and ϵt(1) and

ϵt(2) are white noise (error terms). The function is expressed in past values

of the forecast variable, and past and present explanatory variables t.

The wind is commonly represented as an AR process, with the resulting

forecast being a linear combination of previous data. However, a tradi-

tional AR process has zero mean and is homoscedastic, which opposes the

nature of the wind speed. As a result, the wind speed time series must

be completely altered or the AR model must be adjusted to match these

needs. Wind time series are also non-stationary, which means that their

statistical features fluctuate with time.

An improved statistical model is ARMA [105], which consists of combining

the merits of autoregression with parameter p and moving average with

parameter q, hence modelling the trends in the time-series. The com-

bined models form the the final approach ARMA with combined parame-

ters (p, q), here the parameters represent the lag between present and past

values of the predicted variable. ARMA can be mathematically expressed

as:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + ϵt (2.6)

yt = c+ ϵt + θ1ϵt−1 + θ2ϵt−2 + ...+ θqϵt−q (2.7)
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yt = c+ ϵt + θ1ϵt−1 + θ2ϵt−2 + θqϵt−q + ϕ1yt−1 + ϕ2yt−2 + ϕpyt−p (2.8)

where p is the order, c is a constant and, ϵ is noise, and top line is the

autoregressive model of order p and the second line is for the moving average

model of order q. The combined parameters of the two preliminary models

form the ARMA full equation seen in the third line. The model is usually

assessed by calculating the error matrices such as, Root Mean Square Error

(RMSE), Residual Squared (R2), Mean Absolute Error (MAE), or the Mean

Absolute Percentage Error (MAPE).

However, a great limitation exists, as a constant variance is still assumed

in the ARMA model, which means they are only applied to stationary

data with single mean value [105]. Thus, another model Auto-regressive

Integrated Moving Average (ARIMA) [106], aims to eliminate the non-

stationary part of the time-series (diurnal, meteorological, and seasonal

variations) by using an initial differencing step, which introduces parameter

d, a difference operator. The mathematical expression for ARIMA (p, d, q)

is:

yt = c+ ϕ1yt−1 + ..+ ϕpyt−p + θ1ϵt−1 + ..+ θqϵt−q + ϵt (2.9)

where ϕ and θ are the coefficients of AR and MA. ARIMA is successful at

outperforming ARMA for non-stationary data, the literature supports that

ARIMA is often used as the benchmark for newly developed models, rather

than ARMA. In [107], a fractional variant of ARIMA is introduced, f -

ARIMA, where the fractional property is a differencing parameter. Results

show that it outperforms the persistence method by at least 42%.
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2.5.4 Machine learning methods

As wind flow has a complex non-linear nature, which depends on multiple

atmospheric parameters such as pressure and humidity, several applications

of machine learning algorithms for time-series forecasting were conducted

to further improve the precision and accuracy of wind speed predictions.

Machine Learning is a major section of a much larger subject called Artifi-

cial Intelligence. The intuition behind machine learning is to either classify,

predict, cluster, or recognize a pattern. The learning occurs when the model

is provided with labelled input and targeted output, once the model estab-

lishes a connection between the inputs and outputs, the training process is

completed and testing may start by providing new inputs to estimate the

desired outputs. This type of forecasting model is superior to traditional

physical and statistical models when the time-series has complex nonlinear

relations [108].

The previous example of machine learning is called supervised learning,

where the inputs are labelled and the algorithm tries to converge for the

best fit classifier, so independent features set X is linked to dependent

distinctive class Y , when an external input is introduced the model can

then identify and classify the data and generate an estimation of which

class the input data belongs to. The second type of machine learning

is unsupervised learning, in this type, input data is unlabelled and the

algorithm relies on itself to learn the data and build the classifier, which

occurs based on catching similarities between the input sets .

To have a robust and accurate machine learning algorithm, large historical

data of the wind speed must be highly available to train supervised ma-

chine learning regression models. Regression models to work with numbers,

where the input is a time-series of continuous measurements of variables.
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The desired output from regression models is an estimation of the value at

unobserved points in the times-series or future forecasts [108]. Common

regression supervised models include K-nearest neighbors, decision trees,

random forests, Support Vector Regression (SVR), extreme learning ma-

chine, and Neural Networks (NN).

However, the most common machine learning approach for wind speed pre-

dictions is neural networks, also known as deep learning, where the intuition

behind the algorithms is to mimic the behaviour of human brain neurons

by having multiple layers consisting of neurons all connected to each other

and a huge amount of possible combinations is tested to generate one with

optimum learning. Deep learning algorithms are extensively used in time-

series forecasting including wind and wind power forecasting applications

[108]. The duration of estimations can range between very-short terms such

as 1 minute and short-terms such as 6 hours. Aghajani and Afshin in [109]

used Multilayered Perceptron (MLP), which is a neural network that has

multiple hidden layers (where the neurons connect to each other and do the

learning), were used along with wavelet transform to predict wind power for

wind farms. The time-series of the wind is pre-processed and broken down

into sub-series using wavelet transform, which is later fed as inputs to train

the neural network. After the training stage, an optimization stage follows,

where learning of the network improves by minimizing the error between

the training input and predicted values. A very common learning approach

is back-propagation, in this approach once the desired value is estimated

and the error is calculated, information flows back from the output layer

to the hidden layers to re-calculate the parameters [110]. An alternative

approach that replaces back-propagation is Levenberg-Marquardt, which

is faster than back-propagation [111]. Results of neural network training

with time-series pre-process by wavelet transform are superior to other ap-
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proaches such as Linear method ARIMA. As powerful as neural networks

can become, they are still considered a ’black box’, as they offer almost

no insights to the learning phase, it is hard to tell why a neural network

performs better than another variant.

Table 2.2: AI-based models

Acronyms Abbreviation Reference

SVM Support Vector Machine [112]
LSSVM Least Squared Support Vector Machine [113]
ELM Extreme Learning Machine, [114]
BPNN Back Propagation Neural Network [115]
MLP Multilayered Perceptron [116]
WNN Wavelet Neural Network, [115]
LSTM Long Short Term Memory [114]
BiLSTM Bidirectional Long Short Term Memory [117]
CNN Convolutional Neural Network, [118]
GRU Gated Recurrent Neural Network [119]
BiGRU Bidirectional Gated Recurrent Neural Net-

work,
[120]

DBN Deep Belief Network [121]
AE Auto Encoder [122]

Deep neural networks have attracted great attention in wind speed fore-

casting due to their superiority in dealing with nonlinear complexes. In

many previous studies, AI-based models outperformed traditional statisti-

cal models in wind speed forecasting. A few machine learning forecasting

models are listed in Table 2.2.

2.5.5 Hybrid models

To improve the performance of algorithms and prediction, multiple ap-

proaches combined the merits of different techniques. Hybrid models are

divided into two types; stacking based, which consider the forecasts of one

or more base models as features and later combined with a high model,

and weight based hybrid strategies, which follow a diversity in choosing

42



2.5. WIND FORECASTING METHODS

the forecasting models. An example of stacking-based hybrid models is

taking the output features from a CNN and feeding them into a LSTM

to extract spatio-temporal features of wind data [123,124]. In [125] and

[126], multiple LSTM were combined to form a stack of neural networks

that makes complete use of spatio-temporal data and multiple meteoro-

logical information, respectively. In [127], forecasts from different LSTMs

were combined and fed into a SVM model to make wind speed predictions.

Alternately, for weight-based hybrid models such as in [116], a combina-

tion of three different base forecasters, namely ARIMA, MLP, and LSTM,

were investigated to forecast wind speed, while an intelligent optimization

algorithm optimized their corresponding combination weights. In [115], an

ensemble of four different NNs (BPNN, Elman, WNN and GRNN), were

combined with certain combination weights, to make wind speed forecasts.

Additionally, two hybrid models (ARIMA-SVM and ARIMA-ANN) were

simultaneously used to extract linear and nonlinear fluctuations in a wind

speed dataset, and outperformed single forecasting models [128]. Another

construction of weight-based models is to use parameters from diverse ho-

mogeneous forecasters. In [127], six LSTM neural networks were used as

base models to forecast wind speed.

A hybrid approach by Liu et al. [129] combined the merits of wavelet

transform and support vector machine to predict short-term wind speed,

which used the genetic algorithm for optimization. Another approach in

[130] demonstrated that using ANN with statistical weight preprocessing

techniques optimized by Bayesian optimization can predict the coefficient

of performance of a Ground Source Heat Pump (GSHP) system. In ad-

dition, other studies concluded that applying optimization methods can

yield better results due to improved selection of model parameters. Among

the commonly used optimization algorithms is the genetic approach, which
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tends to converge faster than other approaches. In [131], Su et al. employed

particle swarm optimization to optimize the parameters of ARIMA along

with Kalman filter for the forecasting process of the wind speed. As afore-

mentioned, hybrid techniques are continuously used to study short-term

wind speed and wind power time-series. The pre-processing techniques,

wavelet transform, empirical wavelet decomposition, and empirical wavelet

transform are good examples of signal processing methods that are used

for studying the stochasticity of the wind time-series. Du et al. [132] used

wavelet decomposition along with ANN and optimized the prediction al-

gorithm using a multi-objective optimization of hyperparameters, results

demonstrated an improved accuracy in predictions and higher reliability

for short-term wind forecasting compared to other benchmarking models

such as hybrid models that disregarded the optimization step, persistence

method, ARIMA and a neural network.

The setting of the model configuration for a hybrid model is a great fac-

tor to enhance the performance, therefore, several intelligent optimization

algorithms have been developed to configure the optimal model configura-

tion. For example, in [133], three wind speed forecasting neural networks,

BPNN, WNN, and GRNN, were tuned using Genetic Algorithm (GA),

Cuckoo Search (CS), and Conjugate Gradient Bat Algorithm (CG-BA),

respectively. In [134], Improved Atomic Search Algorithm (IASA) was

used to select optimal SVM parameters, which outperformed SVM opti-

mized using Particle Swarm Optimisation (PSO), GA and Atomic Search

Algorithm (ASA). In [113], PSO is combined with gravitational search al-

gorithm, resulting in hybrid optimizer PSOGSA, which tuned wind speed

forecasting model LSSVM faster than PSO. In [135], a hybrid LSTM wind

speed forecasting system is optimized using GA, while in [136], the Dif-

ferential Evolution (DE) algorithm was used to balance the complexity of
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LSTM models. The optimal configuration of a BiLSTM neural network was

selected by using Generalized Normal Distribution (GND) for wind speed

forecasting [117]. The mentioned optimization algorithms are considered

single objective algorithms, used to enhance the performance of a forecast-

ing deep neural network, despite observed improvements, they are unable

to perform at high stability. Hence, multi-objective optimization methods

were developed. For instance, the Multi Objective Sine Cosine Algorithm

(MOSCA) optimized a WNN, where results reported stable and accurate

wind speed predictions [137]. In [138], Elman and Volterra filters were opti-

mized using the Multi Objective Cuckoo Search (MOCS) algorithm, while

Multi Objective Grey Wolf Optimization (MOGWO) optimized ELM in

[139].

2.6 Optimization of model configuration

A very important stage of building a wind speed or wind power forecast-

ing model is to configure the model and choose an optimizing algorithm

that appropriately optimizes aspects in the forecasting model. As perfor-

mance of any prediction model is highly influenced by the configuration, it

is critical to employ an intelligent optimizing algorithm that considers con-

figurations such as the architecture and hyper-parameters of the model to

achieve maximum performance. Over the past few decades many optimiz-

ing algorithms have been developed and adopted, which targeted various

aspects of the model [118].

For DNN based forecasting models, model configuration parameters such

as weights, number of hidden layer, batch size, learning rate, and opti-

mizer type are important to determine for optimal performance [117, 140].
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In [141], ELM was employed to estimate the wind power output of wind

turbines, the weights and biases of the model were determined using Ant

Colony Optimization (ACO). In [142], the crisscross optimization algorithm

was adopted to determine the input weights and biases in the hidden layers

of a variant ELM forecasting model. Another approach optimized the out-

put weights of ELM using a Self Adaptive Differential Evolution (SADE)

algorithm for wind power forecasts [143]. Additionally, Improved Hybrid

Grey Wolf Optimizer And Sine Cosine Algorithm (IHGWOSCA) was also

used to optimize ELM in [144]. In [145], short-term forecasts of wind speed

using BPNN, WNN, GRNN, were optimized using GA, CS, and CG-BA,

respectively. Moreover, in [135], GA was employed to optimize a LSTM

neural network, while in [136], to balance the complexity of a LSTM, DE

was used. And in [137], GND was adopted to tune the hyper-parameters

of a BiLSTM. Subsequently, multi-objective optimization algorithms were

adopted in several studies to achieve both strong stability and high ac-

curacy [138]. Algorithms such as MOSCA, MOCS, and MOGWO, were

employed to optimize WNN, Elman, and ELM models, respectively [138-

140].

Optimization models are adopted significantly with weight-based models

to tune the weights of each base model, which has a critical role in the

final accuracy. In [146], GWO, an optimizing algorithm, was employed to

tune the weights of several LSTMs, forecasting different intrinsic modes,

generated by the signal decomposing algorithm ICEEMDAN. Similarly,

GWO was adopted in [77] to determine the weights of a hybrid forecasting

model, which consisted of BPNN, Elman, WNN, and GRNN forecasting

models, for wind speed forecasting. In [147], four ANNs were optimized by

multi-objective bat algorithm to tune the weights of the hybrid forecasting

model. A Multi Objective Multi Universe Optimization (MOMUO) was
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employed in [148] to determine the optimal weights for two base BiLSTM

networks.

Past studies have shown that optimization models are often employed in

wind speed and wind power forecasting models. However, more research is

required for tuning DNN models with intelligent optimization algorithms.

A possible reason for the lack of DNN models with intelligent optimization

algorithms is that the model would require long time to try several different

configurations as DNNs are complex models with numerous parameters.

2.7 Conclusion

Wind speed forecasting is a vital aspect of weather forecasting, especially in

the field of renewable energy. As wind energy becomes a more prominent

source of energy around the world, the accuracy of wind speed forecast-

ing becomes increasingly important for efficient and effective operation of

wind farms. There are various methods for predicting wind speed, and

the choice of method depends on the specific application and available

resources. Numerical Weather Prediction (NWP) models are based on

mathematical models of the atmosphere and use real-time weather obser-

vations and other data to simulate atmospheric conditions and to make

predictions about future weather patterns. These models are highly com-

plex and require significant computational power, but they can be very

accurate with detailed information about weather patterns. Physical mod-

els, on the other hand, are based on fundamental physical principles that

govern the behaviour of wind. These models use equations that describe

the dynamics and thermodynamics of the atmosphere, and take into ac-

count various factors that can affect wind speed, such as topography, land
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Table 2.3: Pros and Cons of Wind Speed Forecasting Methods

Forecasting Method Pros Cons

Persistence model Simple and easy to im-
plement

Limited accuracy and
no adaptation to
changing conditions

Statistical methods Can capture patterns
and trends

Relies on historical
data and may not
account for dynamic
changes

Flexible and adapt-
able to different
datasets and variables

May struggle with
non-linear
relationships and
extreme events

Physical models Based on fundamental
physics principles

Complex and
computationally
intensive

Can capture physical
processes and interac-
tions

Requires accurate
input data and
precise knowledge of
model parameters

Can be tailored to spe-
cific geographical loca-
tions

High computational
requirements and
longer processing
times

Machine learning models Ability to learn from
data patterns

Requires large
amounts of quality
training data and
model complexity

Adaptability to chang-
ing conditions

Prone to overfitting if
not properly
regularized and
validated

Can handle high-
dimensional data

Sensitivity to outliers
and noise in the
training data

Hybrid models Combination of
strengths from differ-
ent methods

Increased complexity
and potential
integration challenges

Improved accuracy
and robustness

May require
additional
computational
resources and
expertise
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use, and atmospheric conditions. Physical models can be computationally

expensive and require a significant amount of data to be accurate, but

they can be highly accurate and provide detailed information about the

underlying physical processes. Statistical models are based on historical

data and use statistical analysis techniques to make predictions about fu-

ture wind speed. They are often simple and easy to implement, but their

accuracy can be limited by changes in the environment or other external

factors. Machine learning algorithms are another popular method for wind

speed forecasting. These models use data-driven techniques to identify pat-

terns in the data and make predictions about future wind speed. Machine

learning models are becoming increasingly sophisticated, and they can be

trained on large amounts of data to improve their accuracy. Overall, wind

speed forecasting is an important tool for a variety of industries that rely

on accurate weather information. The accuracy of wind speed forecasts

can be affected by many factors, including the complexity of the terrain,

the season, and the time of day. Therefore, it is important to choose the

appropriate forecasting method for the specific application and available

resources. Despite the challenges, continued research and development in

wind speed forecasting techniques will undoubtedly help to improve the

efficiency and effectiveness of wind energy systems and that of wind re-

sources assessment prior to wind farm installations. In the recent years,

hybrid models had shown superior performance in comparison with tra-

ditional models, specifically at describing complex relations. Hence, more

hybrid models of different DNNs continue to be widely investigated, where

characteristics of advanced models are combined to accurately forecast the

wind speed and power. However, there is significantly low research on

hybrid models that combine DNNs with physical approaches, this hybrid

combines investigating the air parameters, such as air pressure, tempera-

ture, and humidity using physical models, and characterises the non-linear
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complex behaviours using DNNs to generate powerful forecasts.

Hence, in the following chapters, investigation on combinations of WRF

data and other forecasting models such as neural networks, statistical meth-

ods, and combining them with pre-processing techniques for learning pat-

terns will conducted and multiple models following this scheme will be

developed to test the concepts of propagating predictions both temporally

and spatially for a wind farm location, and how nearby and further dis-

tant wind speeds each affect the accuracy of predictions and model perfor-

mance. The experiments aim to test different combinations of data fusion

and modelling of datasets from different sources such as LiDAR observa-

tions and WRF simulations. Pre-processing of the data will be carried out

using both single and double signal decomposition techniques, comparing

the benefits of a second decomposition method. Additionally, novel al-

gorithms of neural network combinations and optimisation using different

optimisation algorithms will be used to test the merit of multiple optimi-

sation techniques. The algorithms aim to optimise different parameters

in the model and the configuration of the neural networks and prediction

algorithms. Moreover, the work will present a comparison test between

the performance of machine learning models and hybrid models of both

machine learning algorithms, statistical models, and physical models.
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Chapter 3

Offshore Wind Resource

Assessment from Limited

Onshore Measurements

In wind resource assessments, which are critical to the pre-construction of

wind farms, measurements by lidars or masts are a source of high-fidelity

data, but are expensive and scarce in space and time, particularly for off-

shore sites. On the other hand, numerical simulations, using for example

the Weather Research and Forecasting (WRF) model, generate tempo-

rally and spatially continuous data with relatively low-fidelity. A hybrid

approach is proposed here to combine the merit of measurements and sim-

ulations for the assessment of offshore wind. Firstly a temporal data fusion

using deep Multi Fidelity Gaussian Process Regression is performed to

combine the intermittent measurement and the continuous simulation data

at an onshore location. Then a spatial data fusion using a neural network

with Non-linear Autoregression (NAR) and Non-linear Autoregression with

external input (NARX) are conducted to project the wind from onshore to
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offshore. The numerical and measured wind speeds along the west coast

of Denmark are used to evaluate the method. The proposed data fusion

technique using a gappy onshore measurement results in accurate offshore

wind resource assessment within a 2% margin error. This chapter aims to

investigate the first objective, which is to understand and employ the mer-

its of data fusion on wind speed time-series predictions. Additionally, the

experiment will consider the addition of side information, such as velocity

vector components and derivatives of wind speed time series, and how this

addition affects the performance of the forecasting model.

3.1 Introduction and Literature Review

In the past decades, there has been worldwide demand for renewable energy,

leading to a dramatic expansion in all its sectors, with a significant fraction

generated by wind. There are over 230 GW of installed wind capacity in

Europe as of 2020, consisting of 190 GW onshore and 40 GW offshore.

Additionally, Europe intends to further the rise in demand for wind energy

and its capacity by 35% [149]. Before the construction of a wind farm,

it is critical to evaluate the wind speed condition of the location. Since

the power is the cube function of wind speed, minor speed changes can

cause large deviations in the output power. Moreover, the wind varies

both geographically and temporally over a wide range of scales. Therefore,

an accurate assessment of the wind resource for a proposed site is highly

essential and is considered of paramount significance for a wind project to

be successful [150],[151]. The assessment also helps to the selection of wind

turbines and their layouts [152].

Physical wind measuring devices include e.g. lidars, meteorological mast
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towers, Satellite Synthetic Aperture Radars (SARs), and so forth. Those

equipment yield accurate results but are expensive and the data is com-

monly sparse in space and time. For example, the SARs measured wind

is at 10 m above the sea surface with low temporal resolution and only

applies to offshore assessments; lidars measure the Line-Of-Sight (LOS)

velocity by computing the Doppler shift of the signal of an infrared laser

beam based on the movement of aerosols and the output is usually inter-

mittent at a fixed location; buoy systems are expensive and require regular

maintenance, redundant systems for power, measurements, and communi-

cation for the measurement at a given location. On the contrary, numerical

simulations result in wind predictions that cover large geographical areas

and long time horizons continuously, but with relatively low fidelity. The

numerical models include e.g. Weather Research and Forecasting (WRF),

Global Forecast System (GFS), and European Centre for Medium-Range

Weather Forecasts (ECMWF) [153].

Such a clear complement of physical measurements and numerical infor-

mation suggests data fusion or a hybrid technique to combine the merit of

both. It would be very desirable to extend the information from coastal on-

line vertical lidars for the reconstruction of offshore time series as they are

easier to maintain [154]. This technique can be used to numerically extend

the information from coastal measurements to the offshore time series with

low cost and high accuracy. Such techniques have been widely used in the

prediction of future developments based on various inputs [155]. For exam-

ple, Hu andWang [156] used Empirical Wavelet Transforms (EWT), Partial

Auto-Correlation Function (PACF), and GPR for wind speed assessments.

EWT was employed to extract the meaningful data from the wind speed

series through a customized wavelet filter bank, and PACF provided the

input parameters for the GPR to simulate dynamic features and internal
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uncertainties. An alternative combination, i.e. Auto-Regressive (AR) and

GPR, was followed by Zhang and Wei [154]. AR was employed to cap-

ture the structure of the wind speed series, and GPR to extract the local

structures. As a supplement, Automatic Relevance Determination (ARD)

considered the importance of using different inputs; thus, various types of

covariance functions were combined to comprehend the characteristics of

the data. This hybrid method outperformed others including Support Vec-

tor Machine (SVM), Artificial Neural Network (ANN), and the persistence

approach. Meanwhile, an improved near-surface wind speed prediction ex-

periment, which considered the atmospheric stability using GPR combined

with Numerical Weather Prediction (NWP), for a time horizon of 72 hours,

showed that the consideration of atmospheric stability was able to reduce

the estimated errors, thus improving power predictions [150].

Most recently, the Multi-Fidelity Gaussian Process Regression (MF-GPR)

has been demonstrated to significantly outperform the regular single fi-

delity model. The strategy of MF-GPR is to go beyond the regular AR

kriging scheme and introduce more than one dataset at different fidelity

levels. The first is a high-fidelity, scarce dataset which can be the physi-

cally measured one; the second is a low-fidelity, continuous dataset which

can be generated from numerical simulations. The literature in this area

further discussed various developments; for example, the Deep MF-GPR

with additional datasets, e.g. first and second derivatives, phase-shifted os-

cillations, and different periodicity datasets leading to drastically improved

approximations [159].

Further, wind resource assessments are commonly requested over a long-

time-interval (e.g. a few months or years) and to cover large areas, therefore

requiring spatial-temporal fusion of numerically and physically measured

wind [160]. Apart from the temporal prediction reviewed above, ANNs
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Figure 3.1: Flow chart for spatiotemporal fusion. U1 and U2 represent the
wind speed at an onshore and offshore positions, respectively.

are trained and tested on datasets from two different locations. Cadenas

and Rivera, considered the problem of non-linearity in the time-series us-

ing Nonlinear Auto-Regressive with Exogenous inputs (NARX) [158]. The

method was compared with both the persistence approach and Nonlinear

Auto-Regressive (NAR). The results demonstrated that the NARX model

was the most precise of the three and justified the extra input, suggesting

that it could be suitable for spatial data fusion.

Spatiotemporal models which combine the aforementioned temporal and

spatial fusion, have been widely used in the geostatistics field, where tem-

perature and wind speed were the main variables of concern. In these

models, the temporal extrapolation is performed to predict the values out

of the measured interval at a fixed spatial point [161], followed by spatial

extrapolation to project the estimation to a different point [162]. This se-

quential extrapolation in time and space is developed in the present work

for wind resource assessment. Temporal data fusion of low and high-fidelity

data from simulations and measurements at a given location is performed

using deep MF-GPR, and spatial data fusion using a customised nonlin-

ear autoregressive ANN with exogenous inputs is conducted thereafter. As

illustrated in Figure 3.1, the low fidelity results (e.g from numerical sim-
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ulations) are assumed to be available across a continuous domain X × T ,

where X and T are the spatial and temporal domains, respectively. On

the other hand, high-fidelity results (e.g from the lidar measurements) are

available in a reduced domain Xre × Tre where Xre is a subset of X and

can be discontinuous and Tre is a subset of T and can be discontinuous.

Thereafter, the objective is to combine the low and high-fidelity results to

reach a data fusion on the full domain X × T .

The novelty of this work lies on the development of a hybrid algorithm

for the accurate assessment of offshore wind resources with reduced cost.

It combines the generally continuous but low-fidelity numerical data and

high-fidelity but limited physical measurements. Efforts are also devoted to

pre-processing the time series and taking into account additional informa-

tion not considered in existing methods to lift the accuracy of the fusion.

This algorithm enables the projection of limited onshore measurements to

offshore locations in light of numerical simulations with significantly higher

accuracy than the industry standard approach.

This chapter is organized as follows. In Section 2, details for methods for

the pre-processing technique used to smooth the given wind speed time-

series, the temporal extrapolation using multi-fidelity GPR, and spatial

extrapolation using NARX algorithms. Section 3 describes the case to be

studied and the collection of the high and low fidelity data. Section 4

presents the main results and compare the performance of our methods

against the industrial standard before drawing conclusions in Section 6.
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3.2 Methods for OffshoreWind Resource As-

sessment from Limited Onshore Measure-

ments

3.2.1 Data Preprocessing

EWT is a three-model decomposition algorithm used in forecasting. Sev-

eral studies demonstrated that it could be used to achieve good forecasting

results for non-stationary time series such as wind speed series [156]. EWT

can extract meaningful information from the series by designing appropri-

ate wavelet filter banks. In our work, pre-processing of the WRF time series

generated by ERA-5 can adaptively represent the processed signal by gen-

erating the adaptive wavelet, and then decomposing the signal into a finite

number of modes as per previous literature [156]. The algorithm is based

on identifying and extracting the different intrinsic modes of a time-series

by relying on robust pre-processing for peak detection, and then performing

spectrum segmentation based on detecting maxima to construct a corre-

sponding wavelet filter bank.

The WRF series that are pre-processed using EWT are 1) the WRF series

in Hybrid (3) of the Multi-fidelity GPR for the most onshore point in Figure

5.4, panel (c) , 2) the WRF series for the 36 points generated by the dual-

Doppler scans performed using the algorithm of Hybrid (3) in Figure 5.5

and 3) the WRF series of the second most onshore point in the temporal

data fusion part of the spatiotemporal data fusion section.

The process can be divided into five steps [156]:

1. Extending the signal.
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2. Fourier transforms.

3. Extracting boundaries.

4. Building a filter bank.

5. Extracting the sub band.

The original wind speed signal had considerable high-frequency fluctua-

tions. The three-level decomposition attained by the EWT algorithm de-

scribes the wind speed series in a meaningful way. Three uncorrelated filter

modes are extracted from the wind speed series and a residual is also ob-

tained from the extraction. The reconstructed wind speed series shows a

significant decrease in fluctuations and will be served as input to the third

GPR model.

3.2.2 Temporal data fusion

This section introduces the algorithms for temporal data fusion by combin-

ing the low-fidelity continuous time series and the high-fidelity intermittent

one. The prototype of the Gaussian process regression is briefly introduced

and then multi-fidelity GPR is presented. The use of different co-variance

functions such as constant, linear, squared exponential, Matern and ratio-

nal quadratic, defines the method of prediction for the Gaussian process.

Gaussian Process Regression (GPR)

GPR is a non-parametric, stochastic process that follows the Bayesian ap-

proach for regression, working well on small data sets and having the abil-

ity to provide uncertainty measurements on predictions. Predictions are

58



3.2. METHODS FOR OFFSHORE WIND RESOURCE ASSESSMENT
FROM LIMITED ONSHORE MEASUREMENTS

derived using a probability distribution over all possible values of a time-

series using prior functions w of training points f at observed points t, and

targeted values f ∗ at unobserved points t∗ are calculated from a predictive

distribution, p(f ∗|t∗, f, t), by considering all possible predictions using their

calculated posterior distribution [165]:

p (f ∗|t∗, f, t) =

∫
p (f ∗|t∗, w) p (w|f, t) dw. (3.1)

To trace the integration process of equation (3.1), all terms of the equation

are assumed Gaussian. The prior function defines the Gaussian distribution

[165]:

f(t) ∼ GP (m, k(t, t′)), (3.2)

where m is the mean function, which represents the trend of the function,

and the covariance function (kernel), k(t, t′), represents the dependence of

the structure, defined by the hyperparameters [163].

Multi-fidelity Gaussian Process Regression

This section discusses advanced temporal data fusion using data with mul-

tiple fidelities to enhance the accuracy of prediction. The data sets are

obtained using different techniques mathematically, the multi-fidelity tech-

nique considers the high-fidelity model as a function of two variables (t, s)

and then uses the low-fidelity data as the s variable [165]:

fh(t) = g(t, f1(t)), (3.3)

where in the present work fh(t) and fl(t) are the high-fidelity lidar mea-

surements and low fidelity WRF simulations, respectively. Such non-linear
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auto-regressive Gaussian process (NARGP) has been observed to produce

highly accurate prediction when fh(t) is non-linearly dependent on fl(t),

and GPR is then performed in a two-dimensional space.

To implement this, the co-kriging model is adopted, which uses multivariate

functions with respect to different levels of fidelities to reflect different

accuracies. The additional data set is later introduced to the Gaussian

distribution and the terms of the first data set (t, s) and the second data

set (t′, s′) are added, while the mean function is zero, through [165]:

f(t) ∼ GP (m, k((t, s), (t′, s′))). (3.4)

Merging of two or more sets that are approximately linearly dependent by

scaling and shifting parameters is approached by Kennedy and O’Hagan

[164]. However, due to the presence of nonlinear dependencies generally

between the datasets, the quality of results degraded as a major issue for

linear data fusion algorithms. To overcome and resolve the nonlinear de-

pendencies, space-dependent scaling factor ρ(x) [165] or alternatively, deep

multi-fidelity GP [166] is introduced. Yet the improvement brings further

optimizations of additional hyperparameters. Here the NARGP algorithm,

an implicit automatic relevance determination (ARD) weight, is employed

in the extended space, parameterized by t and s, which counts as a differ-

ent scaling of the existing hyperparameters for each dimension in the kernel

[167].

Additionally, the formulation can be extended through functions of the

low-fidelity data set. The high-fidelity data can be further considered as

a function t, fl(t) and the derivatives of fl(t), exploiting that fl(t) has a

60



3.2. METHODS FOR OFFSHORE WIND RESOURCE ASSESSMENT
FROM LIMITED ONSHORE MEASUREMENTS

(a)
MultilayerNetwork

(b)

MultilayerNetwork

Figure 3.2: (a) Architecture of the NAR (nonlinear autoregressive) model
with a multi layer perceptron. (b) Framework for NARX model with an
exogenous variable x as the input. q past values of x and y are considered
for the prediction of y(t+ 1).

similar trend with fh(t) [165]:

fh(t) = g(t, fl(t), f
1
l (t), ...f

i
l (t)), (3.5)

where f i
l (t) is the i-th derivative of the low fidelity data.

3.2.3 Spatial extrapolation

As aforementioned the target is to predict offshore wind indirectly from

onshore measured wind. Therefore apart from the temporal fusion algo-

rithms presented above, a spatial extrapolation is required. Here a time

series neural network is adopted to link the wind speed at the two points

using a single variable nonlinear network NAR along with NARX to have

a fair performance comparison. In practice, low-fidelity WRF data will

be used to train the network and onshore hybrid solution (obtained by

temporal fusion) is served as input to estimate the offshore wind.
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Nonlinear Autoregression (NAR)

The NAR model is most suitable for time-series predictions where the main

source of training data is only past values of the time series itself, and this

process is called feedback delays. The network is trained in an open loop,

which uses the real target values as a response. Following, the network

becomes a closed-loop, and the predicted values are used as new response

inputs to the network. The framework of this model is seen in Figure

3.2(a), a multi-layer network where the left hand side is the past delayed

input values y(t−1), y(t−2), and y(t−p) is used to obtain the independent

variable y(t). Optimisation of the network aims to reduce the number of

synapses (weights) and neurons, and subsequently reducing the complexity

of the network, and maintaining the generalisation capabilities.

Nonlinear Autoregression with External Input (NARX)

NARX is a dynamically guided type of recurrent ANN containing one or

more feedback loops. The loops can be either local or regional, and the use

of regional loops enables a significant reduction of memory requirements.

Recurrent networks are being used for two main functional tasks: first, for

associative memory tasks and second, for input-output mapping networks.

The applications of input-output mapping networks include modelling and

signal predictions for time-series [157].

Meanwhile, different models of NARX networks are comprised of the same

structure and thus have a reasonable cost from a computational point of

view. The previous argument allows a NARX network to gain degrees

of freedom when it includes a time-frame forecast. Input data in subse-

quent periods compared to a feed-forward network, allowing the synthesis
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of information from exogenous variables and less inclusion of their remains,

reducing the number of parameters to be calculated.

Learning in NARX networks is more efficient and effective than in other

neural networks since it has a better descending gradient, which leads to

faster convergence and better generalisation than other networks. The

model predicts a series y(t) given specific past values of y(t) and an addi-

tional input series x(t) as shown in Figure 2(b), where the NARX architec-

ture is explained. The model has only one input, the exogenous variable

x(t), providing feed forward to a q delayed memory neurons, and one out-

put, y(t + 1), which is the value of the predicted variable one step ahead.

In summary, the input is one step behind the output with respect to time.

Hence, the output can provide feedback to the network through the de-

layed memory neurons, which in turn makes up the input neural layer of a

multi-layer network. Dynamically, this is expressed by[158]:

y(n+ 1) = F (y(n), y(n− q + 1), u(n), u(n− q + 1)), (3.6)

where q is the total number of delayed memory neurons, the output y(n+1)

is the predicted value representing the one step ahead variable and F is a

nonlinear function.

The learning algorithm for the NARX network is based on the performance

function used in the training of ANN, which is the mean squared error

(MSE). NARX neurons are sigmoid and the performance function is derived

to include a mean squared weight function with a performance ratio. As a

result, the performance function operates under smaller weights and biases,

thus causing the network response to be much smoother and less likely to

over fit.
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As it was proven essential to have at least two-thirds of the data for train-

ing, the training, validation, and test divisions, are partitioned to meet 60

percent training, 20 percent validation, and 20 percent testing, respectively.

10 hidden neurons are constructed with 2 delays, and adopted the Bayesian

regularisation as the training algorithm trades off more computational costs

for better accuracy [158].

3.3 Case description

To test the methods, a case associated with the RUNE project is considered,

which was a near-shore experiment conducted at the west coast of Denmark

(see Figure 3.3 (b)). The surrounding area is nearly flat coastal farmland

and moving northwards from position 1 to 3, the sand embankment sepa-

rating the North Sea and the grasslands transforms into cliffs covered by

grass. In this work, dual-Doppler scans performed nearly perpendicular to

the coast from about 5 km offshore to 2 km onshore are used. These scans

are performed by synchronising measurements from two scanning lidars,

which are modified versions of WLS200S Leosphere units, one located at

position 1 and the other at position 3. Here, the dual-Doppler scans per-

formed at 50 m above mean sea level (amsl) during the period 2015-12-08

to 2016-02-17. Due to filtering of high noise/low signal strength and system

availability, only 114 10-min are available at all the dual-Doppler positions

shown as black markers in Figure 3.3 (a). Further details with regards to

the experimental campaign and the instrumentation can be found in [168].

Here a numerical experiment, which was part of a number of numerical

simulations performed using the WRF model v3.6 to supplement the mea-
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(a)

northings
(km)

eastings (km)

(b)

Figure 3.3: (a) RUNE experimental area. Positions of the lidars are shown
in red square markers and the dual-Doppler scans in black and red dot
markers. The colour bar indicates the terrain elevation in meters above
mean sea level. (b) The location of the RUNE experiment (black rectangle)
in Denmark.

surements of RUNE [170]. This particular experiment was setup with 4

nested domains, the outermost covering northwestern Europe and a 2-km

horizontal resolution innermost domain covering the west coast of Den-

mark. Spectral nudging to the ERA5 reanalysis is used in the upper model

levels of the outermost domain. The simulation had 8 vertical levels within

the first 100 m and instantaneous output was produced every 10 min. The

experiment also used the Mellor-Yamada Janjic planetery boundary layer

scheme, a sea surface temperature product from the Danish Meteorological

Institute [169], and the CORINE land cover description. An illustration

of the low fidelity WRF simulation data set of the most onshore point can

be seen in Figure 3.4(a), while Figure 3.4(b) shows the high fidelity lidar

measurements for the same point.
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(a)

U(m/s)

t(hours)

(b)
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Figure 3.4: (a) Low-fidelity data from numerical simulation (WRF) at the
most onshore point.(b) High-fidelity data from the dual-Doppler lidar setup
at the most onshore point, (see Figure 3.3 a).

3.4 Results and Discussion

3.4.1 Temporal data fusion

The different data sets at the furthest onshore point of the dual-Doppler line

are merged by applying MF-GPR. The performances of the three models

are optimized, through the hyperparameters, by applying 30 iterations of

basis and kernel function combinations, including: Zero, Linear, Constant

and Matern 5/2 and 3/2; Rational Quadratic, squared Exponential, etc.

Firstly, the original model is explored, represented as Hybrid (1), where

the input information is low and high-fidelity data sets. Then, introducing

additional information sets, which are functions of the low fidelity data

set (first and second derivatives) can enhance the accuracy of predictions,

hence Hybrid (2). The third model, Hybrid (3), involved pre-processing of

the training set using the EWT reconstruction algorithm, the regenerated

first and second derivative sets of the low fidelity data, and finally the

North and East decomposed wind speed vector components. A higher

drop in RMSE is noted from the Original WRF data.
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(a)

U(m/s)
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(b)
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(c)
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(d)
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(e)

Error (m/s)
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Figure 3.5: (a), (b) and (c) represent temporal data fusion results for
Hybrids (1), (2) and (3), respectively. (d) Cut-off panel for Hybrid (3)
from 500 to 600 hours of the experiment and (e) Error in all three hybrid
models against 114 lidar measurements.
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Table 3.1 shows the RMSE for the best performing GPRs for the three

hybrid models and WRF data using the lidar data as the ground truth, for

each model as well as their respective basis and kernel function configura-

tion. It can be seen that the third model outperformed the other two in

terms of RMSE superbly.

Figure 3.5(a), (b) and (c) show the time series of the results from the three

hybrid models, respectively. Hybrid (1) showed a 9% decrease in RMSE

from WRF data, in Hybrid (2) the RMSE is reduced by about 18%, and fi-

nally Hybrid (3) showed the largest drop compared to other hybrid models,

about 31%. Besides, panel (d) reflected a cut off to the interval between

the hours 500-600 since the start of the experiment, with an 80% confidence

interval, showing a better visualization of the performance. Thus, carrying

a sensitivity analysis to test the different approaches and additional fea-

tures, it is concluded that the addition of data from different data sources

adds 9% improvement. The addition of input information leads to more

improvement of 10%, and the pre-processing of signals results in further

improvement of 14%.

Finally, panel (e) presents the deviation error between the provided high-

fidelity time series of 114 points with their predicted counterparts by the

hybrid techniques. It can be seen that for some points, Hybrids (1) and (2)

outperform each other with deviations ranging from 6 to 2 m/s. On the

other hand, the performance of Hybrid (3) outperformed the other two at

almost all measured points with the deviation capped at 2 m/s and mean

deviation 0.6 m/s. These results substantiate that increasing the number

of additional sets and pre-processing the data enhanced the accuracy of the

Gaussian process [165].

Furthermore, the work also compared the three algorithms developed for
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Table 3.1: Configurations and accuracy of the GPR models.

Model Basis and Kernel functions RMSE [m/s]

WRF - 1.24
Hybrid (1) Zero, Matern 5/2 1.15
Hybrid (2) Constant, Rational quadratic 1.01
Hybrid (3) Zero, Matern 3/2 0.86

RMSE (m/s)

eastings (m)

Figure 3.6: RMSE curve across Windgrapher and all three hybrid models
for all 36 dual-Doppler points.

multi-fidelity GPR with a high standard industrial software. The focus is

on comparing the accuracy of predictions generated by the proposed algo-

rithm in Hybrid (3) with respect to current leading industrial standards, to

test the performance of the algorithm with respect to different geographic

conditions. On a separate iteration, temporal data fusion is conducted us-

ing all 3 Hybrid methods and the software from Windgrapher, which is the

leading industrial software for importing, visualizing, and analysing wind

resource data. Windgrapher follows the Measure-Correlate-Predict (MCP)

algorithm including Linear Least Squares (LLS), the method is on corre-

lating target and reference speed data based on the linear least squares

procedure. The RMSEs for each of the 36 dual-Doppler points using all 3

hybrid methods and the industrial software are shown in Figure 3.6.

In Figure 3.6,a comparison of the results from the three Hybrid techniques
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to Windgrapher by calculating the RMSE of results across all 36 dual-

Doppler positions from the furthest offshore point to the most onshore

one. On average, Hybrids (1), (2), and (3) are able to perform 12%, 14%,

and 60%, respectively, more accurately than the industrial software. In

addition, the hybrid methods showed a higher consistency in predictions

that occurred offshore, where the industrial software had a relatively poor

performance. Moreover, the highest RMSE for the hybrid methods is ob-

served at 446 km eastings, where the transition from offshore to onshore

takes place. Meanwhile, the industrial software not affected and the per-

formance of the predictions is consistent in this region.

3.4.2 Spatial data fusion

The spatial data fusion aimed to project the onshore measurements to

offshore locations in light of numerical simulations, to reduce the cost of

direct offshore measurements. The first and last offshore and onshore points

in the 36 dual-Doppler line are considered as an example. An ANN was

trained using the low-fidelity WRF data at both points, and it configured

the winds’ relation at both points. The network is later tested on the high-

fidelity lidar data of the onshore point and generated high fidelity wind

speed results for the offshore point [163].

For the NARX model, eleven simulations are performed varying the number

of past values (delays) for the entry variables from 1 to 10, and the number

of hidden neurons from 3 to 21. The MSE of the test data set is used

to assess the performance of the network, the configuration with the best

performance is employed. The same number of simulations are carried for

the NAR model; similarly, the past values varied from 1 to 10 and the

hidden neurons from 3 to 15 and the configuration with the lowest MSE is
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selected.

Table 3.2 shows the configuration and performance of NAR and NARX

for the training of the network. The highest performing NAR and NARX

configurations consisted of 3 delays, 15 neurons, and 4 delays, 12 neurons,

respectively, which implied that the latter required less statistic training.

Despite hiring a lower number of neurons, the NARX network required less

computation time to outperform the NAR network by 12%.

Figure 3.7(a) shows the results from testing the NARX network, the low-

fidelity WRF data and high-fidelity lidar measurements of the most offshore

point. Predicted values from the network are more accurate than the low-

fidelity data, where the RMSE is reduced from 1.23 m/s to 1.17 m/s. For

a zoomed-up visualization of results, the data-rich high-fidelity section at

hours 500-600 is shown in Figure 3.7(b).

Table 3.2: Configurations of the NARX and NAR Networks with the Best
Performance.

Model Delays and Neurons Time steps MSE (×10−2)

NAR 3, 15 Training (6176) 1.352
Validation (2058)

Test (2058) 1.559

NARX 4, 12 Training (6176) 1.241
Validation (2058)

Test (2058) 1.188

3.4.3 Spatio-temporal extrapolation

In this section, temporal and spatial data fusion using 1331 10 minute lidar

measurements are combined. The aim is to use the intermittent measure-

ment at the second most onshore point to estimate the wind at the most

offshore point by exploiting the numerical data.
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(a)

U(m/s)
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(b)

t(hours)

Figure 3.7: (a) Spatial data fusion results for the offshore point. (b) Close-
up of spatially predicted data and high and low-fidelity data for validation.

(a)

U(m/s)

t(hours)

(b)

t(hours)

Figure 3.8: (a) Response for Spatio-temporal data fusion. (b) Close-up of
the final spatiotemporal results ranging from hours: 3400-4000.

Temporal data fusion is performed following the same technique as Hybrid

(3) of MF-GPR, which used the reconstructed set from the EWT algorithm

for pre-processing and five predictors for the GPR algorithm: low-fidelity

WRF data, first and second derivatives, North and East vector components

of the wind speed set of the onshore point. Again, 30-iterations are used

to optimize the hyperparameters, varying the basis and kernel functions to

achieve a configuration with an RMSE of 0.84 m/s.

Following, a NARX neural network is trained using the low-fidelity WRF
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data of both the second most onshore and most offshore points with 3

delays and 12 hidden neurons. The network is later tested on the time series

generated from the temporal section using MF-GPR and the performance

of the network is estimated at an MSE of 1.12 ×10−2.

Figure 3.8(a) shows the final curve of the spatial-temporal data fusion

process, high-fidelity lidar data (hidden in the assessment), and 80% pre-

diction intervals. In addition, Figure 3.8(b) is a cut-off to show the region

with the richest lidar data, the results are satisfactory, as it achieved an ac-

curate result with an RMSE 1.23 m/s impersonating the high-fidelity data

of the most offshore point without discontinuity or using expensive lidars

offshore. These results outperformed the WRF simulation at the offshore

location where the RMSE is 1.46 m/s.

3.5 Conclusions

In this work, data fusion of numerical model results from WRF simulations

(low fidelity) continuous in space and time with lidar measurements (high

fidelity) sparse in space and time is performed to obtain spatial-temporal

extrapolation suitable for the assessment of offshore wind. The RUNE

experiment performed dual-Doppler scans which generated 114 10-minute

measurements over three months, used in spatial-only and temporal-only

data fusion. Then, 1331 10-minute measurements are used in the spa-

tiotemporal experiment. Simultaneously, numerical simulations performed

using the WRF model v3.6 generated an instantaneous output every 10

minutes for the same period of 3 months.

For time-domain data fusion, the model is able to represent the high-fidelity

data at unobserved regions and periods by exploiting the low-fidelity data
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and its functions. The addition of extra information datasets (derivatives

and wind speed vector components) and pre-processing showed an improve-

ment in the prediction performance in terms of RMSE, with a 30% average

drop compared to other models that ignored them. Similarly, for the spa-

tial fusion part of the experiment, adding extra information datasets to

the NARX neural network showed improved results compared to the single

input model NAR. The data from the network had a lower MSE for assess-

ing offshore data, which could avoid sending expensive equipment offshore,

hence reducing the cost of offshore wind resource assessment.

Following data fusion in both space and time, the models have been re-run

at the observed optimized levels in each method. Data from the second

most onshore point underwent Hybrid (3) MF-GPR for time-domain fusion,

and the continuous time series output has been used along with data from

the offshore point for space domain fusion. Finally, the spatial-temporal

data fusion resulted in accurate offshore wind resource assessment within

a 2% margin error for wind speed.

There are two major limitations in this experiment that could be addressed

in future research. First, the experiment focused on data obtained from

the RUNE experiment, which included only 1331 measured points from

lidar equipment equivalent to 220 hours of measured data, scattered across

the entire 3 months period of the experiment, which means a lot of weeks

did not have high-fidelity data. Contrarily, the WRF simulation covered

the entire duration with almost 10,500 points. The limited access to high-

quality data is a result of low availability of lidars mainly due to the harsh

weather conditions offshore that often damage the equipment. The rareness

of lidar data can influence the GPR, which makes it harder to notice trends

and create meaningful observations.
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Second, the most onshore and offshore points of the 36 dual-Doppler are

selected for the experiment, however, due to the low resolution of WRF (2

Km), the selection of corresponding WRF points is based on choosing the

closest WRF point, which at utmost closeness is a few meters far off the

lidar point, reducing the accuracy of predictions.

Different adaptations, tests, and improvements have been left for the fu-

ture. Future work concerns further development to the multi-fidelity data

fusion algorithm, by introducing additional sources of data generated by

different equipment or software. An example of this is the use of a sec-

ond WRF simulation with different resolutions and features. Nevertheless,

concerning the results for one point-based prediction, 3-dimensional area

predictions with respect to time by performing data fusion of multiple lidar

measurements at different locations with full grid WRF simulation results

can be performed.

The results from this chapter clearly illustrate a benefit in merging wind

speed datasets generated using different sources. The temporal fusion is ca-

pable of combining the merit of continuous data generation from the WRF

simulation and high accuracy from the high-fidelity lidar observations, pro-

viding a continuous accurate time-series of wind speed predictions. Addi-

tionally, the spatial propagation of data from onshore to offshore locations,

successfully delivers the objective to avoid sending expensive lidar equip-

ment to offshore locations.

In the following chapter, a hybrid forecasting model consisting of secondary

decomposition pre-processing algorithm, a prediction deep neural network,

and an optimization algorithm will be demonstrated. The majority of lit-

erature is focused on training models with a single source of data, usually

numerical simulations due to their availability and low cost, however they
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are considered as a low-fidelity source of data, which should be fused with

lidar measurements to improve their accuracy. The proposed hybrid fore-

casting model is a novel algorithm, trained using only simulation data.

Final results are compared to the lidar measurements and the overall per-

formance is assessed with the model from this chapter to have a visualized

performance comparison of the models that only train on simulations with

multivariate models that consider both simulations and a higher-fidelity

data source (lidar measurements).
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Chapter 4

Hybrid Deep Neural Networks

for Wind Speed Forecasting

Wind resource assessments are critical to the pre-construction of wind

farms. For efficient exploitation of wind power, accurate and reliable wind

speed forecasting are necessary. A wind speed time series is considered

a signal with non-stationarity and non-linear characteristics. Therefore,

pre-processing of signals using signal decomposition is proposed to im-

prove accuracy of forecasts. However, due to the high frequency modes

of the signal, single model decomposition models are no longer sufficient

to obtain accurate results. Hybrid models are being developed to combine

merits of signal decomposition approaches. A hybrid approach is proposed

here to combine the merit of model decomposition using Complete Empiri-

cal Mode Decomposition With Adaptive Noise (CEEMDAN), and wavelet

transform using Empirical Wavelet Transform (EWT). EWT is employed

to further decompose the high frequency signal from CEEMDAN, thus re-

ducing forecasting complexity. Then, an improved Bidirectional Long Short

Term Memory (BiLSTM) with Grey Wolf optimizer (GWO) algorithm is
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applied to forecast all of the decomposed Intrinsic Modal Functions (IMF)

and modes. The numerical wind speeds (WRF) along the west coast of

Denmark are used to evaluate the method. The results are then compared

to lidar measurements to assess if numerical simulations are sufficient to

obtain accurate forecasts when compared to a high-fidelity data source. Fi-

nally, results are also compared to a forecasting method that employs data

fusion, merging lidar measurements and numerical simulations to a model

to investigate the benefit of data fusion of different sources of data with

different fidelities. It is shown that despite the proposed hybrid model per-

forming efficiently in mimicking the numerical simulation, the performance

is rather poor when compared to the lidar measurements, concluding that

models utilizing fusion of different sources of data generate more accurate

predictions.

4.1 Introduction

With rapid economic development and continuous rise in standards of liv-

ing, the human demand for energy has been significantly increasing. Addi-

tionally, the use of fossil fuels such as coal, oil and natural gas have resulted

in huge amounts of greenhouse gases in the atmosphere, damaging the en-

vironment and rising the global temperature, leading to global warming.

Alternately, investments in renewable energy have significantly increased

and have been receiving more attention lately. Wind energy has the sec-

ond largest potential after solar energy and has received extensive global

attention. The Global Wind Report 2021 has published that 93 GW of

new wind energy was built and installed in 2020, showing a growth of 53%

compared to 2019, bringing the total capacity of wind energy installed to

743 GW, a 14.3% compared to its previous year[171].
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Wind energy generation has been a major component of the smart grid and

has a significant role in the supply and management of electricity. How-

ever, wind energy is an intermittent source of energy due to the stochastic

and low predictability nature of wind, which has a great influence on the

stability and safety of the grid-integrated wind power systems [6]. To solve

the resulting scheduling, management, and optimization challenges, accu-

rate forecasting of future wind energy values is of paramount importance

[8]. Forecasting of wind energy also contributes to solving other issues in

the wind energy sector such as reducing operating costs and enhancing

the competitiveness of wind energy. Therefore, wind forecasting is a key

technology in integrating wind energy for existing different scale electricity

grids. To produce wind energy forecasts, literature suggests two techniques,

first, wind power is directly predicted from historic wind power data, how-

ever, this is not usually available when the forecasts are used to assess the

wind resources of a new location. The second technique is to forecast wind

speed first then produce wind power forecasts based on wind power curves.

Scholars have paid both methodologies significant attention, however, for

this work, the focus was on wind speed predictions as the main aim is to

provide wind resource assessments for potential wind farm locations based

on available wind speed data [7].

In the past decade, numerous approaches were proposed and implemented

to forecast wind speed. With different forecasting time horizons, models

can be grouped and categorised to serve different challenges. Time horizons

range from very short-term predictions (few seconds to 30 minutes ahead)

to long-term predictions (1 day to 1 week or more ahead). Subsequently,

forecasting models are grouped under four groups based on the modelling

theory followed, which include physical models, statistical models, machine

learning based models, and hybrid models. In models that follow the phys-
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ical approach, models such as numerical weather predictions and weather

research forecasting take into consideration meteorological factors such air

pressure, humidity, and temperature. The literature proposes that physical

approaches had most accurate performance when forecasting wind speeds

in long-term forecasting. Contrarily, traditional statistical models include

Auto-regressive Moving Average (ARMA) and its variant models, which fo-

cus merely on characterizing the linear relationships in a time series. These

models had generally showed superior performance in the very short-term

time range [172].

On a different perspective, scientists are harnessing the advances in ma-

chine learning by employing AI-based models in wind speed forecasting

[108]. Different types of neural networks such as long short-term [114], and

convolutional [118] are receiving extensive attention due to their superior

capability in capturing and dealing with non-linearity in datasets. Sev-

eral studies showed that machine learning based models were superior in

performance to statistical models [111]. Moreover, following the success

of employing machine learning models in wind speed forecasting, many

studies suggested combining different algorithms to characterize different

aspects of wind speed fluctuation. For example, Convolutional Neural Net-

work (CNN) were used to capture spatial features of a wind speed dataset,

results were then fed into a Long Short Term Memory (LSTM) neural

network to generate temporal features. Together, a combination of both

neural networks proposed a hybrid forecasting model, CNN-LSTM, which

captures spatio-temporal features, making full use of space-time informa-

tion in the dataset [124].

Furthermore, outside the choice of predictor models, the performance of

forecasting approaches was seen to be significantly enhanced by first pre-

processing the data used, then setting the model configuration using in-
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telligent optimization algorithms that provide optimal parameters for the

predictor model [70]. For the former, wind data pre-processing considers

the wind speed time series as a signal that can be decomposed into differ-

ent sub-series and predicted results of all sub-series were then aggregated

to produce a forecast of the original time series [71]. Signal processing

methods are used as denoising algorithms that generate decomposed sub-

series with removed noise more suitable for training forecasting models.

From the available approaches in signal pre-processing, wavelet-based ap-

proaches can decompose the original wind speed series into different levels.

Contrarily, other approaches can only produce all sub-series at one level.

Wavelet-based approaches include algorithms such as Wavelet Decompo-

sition (WD), EWT, and Empirical Mode Decomposition (EMD). In ad-

dition to employing a signal decomposition algorithm, hybrid approaches

were proposed to combine merits of different algorithms [70]. A secondary

decomposition approach considers more than one signal decomposition al-

gorithm and have shown improvements for wind speed forecasting. On

the optimization side, intelligent optimization algorithms are employed to

provide optimal hyperparameters for the forecasting model. For machine

learning based forecasting models, model configuration hyper-parameters

include, but are not limited to, weights, batch size, learning rate, and num-

ber of hidden layers. Examples of optimization algorithms include grey

wolf optimizer, multi-objective bat algorithm, and multi-objective multi-

universe optimization [134, 138, 139].

4.1.1 Motivation and contribution of this work

In recent years, several wind speed forecasting models have been pro-

posed and published. The literature on hybrid models for predicting wind
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speed contains more than 250 articles testing different combinations of

approaches, where the majority provide more accurate forecasts and en-

hanced performance relative to previous work. However, the majority of

studies conducted experiments on a single source of data generated using

simulations for its wide availability and relatively low cost. However, data

generated using simulations is considered of relatively low fidelity and de-

spite achieving high accuracy, results are rarely compared to other sources

of data such as lidar observations or mast measurements. Therefore, this

work investigated a hybrid approach that employed CEEMDAN and EWT

algorithms for data processing, BiLSTM neural networks for the prediction

model, and GWO to optimize the weights of the BiLSTM networks using

WRF simulation data. Prediction results are then compared to lidar obser-

vations to accurately assess the performance of the model when compared

to high-fidelity wind speed data. The main objective of the work is to

demonstrate the importance and added value of data fusion between high-

fidelity data generated using lidars and low-fidelity data from simulations

for the assessment of wind resources.

(1) Original wind speed time series is pre-processed using Complete Em-

pirical Mode Decomposition With Adaptive Noise (CEEMDAN) and the

signal is decomposed into several Intrinsic Modal Functions (IMF).

(2) Since IMF1 is very unsystematic and is the signal with the highest

frequency amongst all IMFs generated by CEEMDAN, Empirical Wavelet

Transform (EWT) is employed for double decomposition, to further reduce

the noise and increase the forecasting accuracy.

(3) The decomposed IMFs generated using CEEMDAN and modes by EWT

excluding IMF1 are fed into Bidirectional Long Short Term Memory (BiL-

STM) to predict the signals.
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(4) An optimisation phase using Grey Wolf optimizer (GWO) is assigned

to provide the optimum weights for each IMF and mode output from the

BiLSTM models.

(5) Then results are aggregated to generate the final signal forecast.

(6) Final predicted signal is compared with results from data fusion mod-

els to demonstrate the importance of using multiple sources of data with

different fidelities.

4.2 Methods for Hybrid Deep Neural Net-

works for Wind Speed Forecasting

In the methodology section, pre-processing of signals using a CEEMDAN

model is covered in Section 4.2.1, which reduces fluctuations in time-series,

by decomposing the original signal into different sub-series. Subsequently,

in section 4.2.2, a special type of recurrent neural networks, LSTM is cov-

ered to then introduce BiLSTM, which provides both past and future data

to train the model. A general overview of Grey Wolf Optimizer is intro-

duced in section 4.2.3, which is an optimization algorithm that works to

provide the most appropriate parameters for the forecasting model. This

section is based on implementing a hybrid forecasting model for estimation

of missing data from simulation data.
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Figure 4.1: Stages of building a forecasting model, which include collection
of data, pre-processing the signals, training a forecasting model with opti-
mized hyper-parameters from optimization algorithm

4.2.1 Data Pre-processing (Complete Ensemble Em-

pirical Mode Decomposition with Adaptive Noise):

For this chapter, data will be pre-processed using two wavelet-based ap-

proaches, complete ensemble empirical mode decomposition with adap-

tive noise (CEEMDAN) and empirical wavelet transform (EWT). Wavelet-

based approaches are pre-processing algorithms that can decompose the

original wind speed time-series into different intrinsic levels, which gives

it an advantage over other pre-processing algorithms. Additionally, sig-

nal processing approaches process the entire dataset indiscriminately and

hence are usually used for two purposes, data decomposition and data de-

noising. Combined pre-processing algorithms have shown higher efficiency

for wind speed forecasting. In most cases, the data time series is decom-

posed into different sub series with various frequencies. Then, the higher

frequency sub series is further decomposed using a different algorithm to

catch in-depth trends in the dataset. The predictability of the decomposed

sub series is found to be stronger than that of the original series as it con-

tains less noise, hence will generate more accurate forecasts of each level of

the original dataset [173]. Results from a study which combined Wavelet

Packet Decomposition (WPD) with Fast Ensemble Empirical Mode De-

composition (FEEMD) has shown that forecasts from hybrid pre-process

data is far more accurate than a single signal processing approach [174].
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Figure 4.2: Pre-processing of original signal using CEEMDAN to decom-
pose signal into multiple sub-series.

Therefore, further studies investigated combining different approaches and

several studies have developed secondary decomposition algorithms with

accurate results, some of the developed algorithms are summarized in Table

4.1. For this work, CEEMDAN will generate different frequency intrinsic

mode functions and the high frequency level is later further decomposed

by EWT to reduce prediction complexity.

In [175], Huang et al. developed the empirical mode decomposition tech-

nique, an adaptive data analysis method that deals with both non-linearity

and non-stationarity in signals. The aim of EMD is to decompose complex

signals into a finite number of IMF based on the signal’s local characteris-

85



4.2. METHODS FOR HYBRID DEEP NEURAL NETWORKS FOR
WIND SPEED FORECASTING

Table 4.1: Existing Secondary decomposition algorithms.

Article Secondary Decomposition
Method

Mi et al. Wavelet Packet Decomposition
(WPD) +EMD

Wu and Xiao EWT + Singular Spectrum Anal-
ysis (SSA)

Moreno ET al. Variational Mode Decomposition
(VMD) + SSA

Peng et al. CEEMDAN + VMD
Lie et al. EEMD + WPD

tics. The IMFs comply with two conditions: (a) the entire data set contains

extremes and zeros that are either equal or differ by one unit, and (b) the

mean value defined by the local minima and local maxima is zero at any

point of the defined envelope. The EMD process of the original signal can

be defined as follows:

n(t) =
m∑
k=1

imfm(t) + rm(t) (4.1)

Where n(t) represents the non-linearity or non-stationarity in the signal,

imfm(t) is the m-th IMF of the signal, and rm(t) is the residual.

Later, to overcome the drawback of mode mixing in EMD, a noise-assisted

analysis of the data, EEMD, was proposed by Wu and Huang [176]. In

Ensemble Empirical Mode Decomposition (EEMD), the true IMF compo-

nents are identified based on the mean of an ensemble of trials, hence the

noise-added signals of EMD are decomposed by white noise incorporated

into the original signal, providing a uniform reference scale, facilitating the

EMD process, and helping extract the IMFs. The white noise is finally can-

celled due to averaging of the ensemble. However, as each trial adds white

noise to the decomposition result, the added white Gaussian noise signal
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after a finite number of iterations results in a reconstruction error that may

not be eliminated, and the accuracy of the forecasts will be affected. It is

possible to decrease the reconstruction error by increasing the number of

iterations at a high computational cost. Contrarily, a complete EEMD with

adaptive noise, CEEMDAN, was developed by Torres et al. [177] providing

three main advantages: (a) a noise coefficient value to control the noise

level at each decomposition, (b) complete and noise-free reconstruction of

signal, and (3) less trials are required compared to other approaches. The

decomposition process of CEEMDAN is as follows:

Step 1: A number of noise-added series is generated:

ni(t) = n(t) + p0w
i(t) (4.2)

where n(t) denotes the original signal, wi(t)(t = 1, ..., I) denotes differ-

ent white Gaussian noise with N(0, 1) and p0 is a noise coefficient which

controls the signal-to-noise ratio.

Step 2: Decompose each of the generated noise using EMD to get the cor-

responding first modes IMF i
1(t). Then calculate the first mode of CEEM-

DAN by averaging all modes:

IMF i
1(t) =

1

I

I∑
i=1

IMF i
1(t) (4.3)

Step 3: Calculate residual r1(t) = n(t) − IMF i
1(t) and decompose the

noise-added residual r1(t) + p1E1(w
i(t)) to obtain the second mode:

IMF i
2(t) =

1

I

I∑
i=1

E1(r1(t) + p1E1(w
i(t))) (4.4)
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where E1(•) is a function to produce the first mode of EMD.

Step 4: Process is repeated to obtain the following modes until the residual

component does not have at least two extreme values.

Figure 4.3: Flowchart of the proposed forecasting model.

4.2.2 Recurrent Neural Network (RNN):

Through a circular internal outline feedback connection that enables the

use of past information, Recurrent Neural Network (RNN), a member of

the neural network family, solves the long-term dependence of time series.

Therefore, they provide a reliable and robust solution for processing time

series data with variable time periods. Despite their suitability for process-

ing time series with variable time lengths, RNNs have a major drawback,

where the gradient tends to disappear for long time series and the neural

network starts suffering from short-term memory [178].

Long-short Term Memory (LSTM):

In 1998, Hechreiter et al. [179] proposed the concept of LSTMs to over-

come this drawback. As a special variant of RNNS, LSTMs propose a

gating mechanism, which gives the traditional RNN the ability to store or
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Figure 4.4: General architecture of RNN and LSTM. In RNN, the network
maintains information over time in the working memory. However, LSTM
networks add a long term memory for temporal changes, which allows them
to solve the vanishing gradient problem in a regular RNN.

forget temporal state information. A classic LSTM is composed of a cell,

an input gate, an output gate, and a forget gate. The cell stores informa-

tion over arbitrary time intervals, while the memory block in the network

which consists of the gates regulates the information flow into and out of

the cell. Specifically, the forget gate determines the information to be re-

tained from the past memory cell, the input gate determines the part of the

information to be updated, and the output gate determines the information

to exported from the memory block. Hence, LSTM holds the advantage of

using additional long-term memory to remember past information, which

is why they are widely used in wind speed forecasting and enhancing the

accuracy of time series predictions. Being one of the most suitable ap-

proaches for time series predictions, many researchers have used LSTM to

obtain deterministic or probabilistic wind speed forecasts. In [180], LSTM

generated deterministic forecasts by producing prediction intervals using

a beta distribution tuned for the counterpart forecasting error. In [181],

an LSTM-based model was developed to generate day-ahead hourly wind

speed forecasts by designing a multi-scale network that integrated infor-

mation for each temporal scale. The status update process which forms
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the structure of a memory block in an LSTM is shown in Figure 4.4 and a

detailed implementation of the corresponding gates is as follows:

Input gate it = σ(wi · [xt, ht−1 + bi])

Output Gate ot = σ(wo · [xt, ht−1] + bo)

Forget Gate ft = σ(wf · [xt, ht−1] + bf )

Cell state ct = ct−1 ∗ ft + (tanh(wc · [xt, ht−1] + bc)) ∗ it−1

Hidden state ht = tanh(ct−1) ∗ ot

Where c represents a cell state, h(t− 1) is the hidden state, W represents

the weight matrices, b represents the biases, which are not time-dependent,

additionally, the activation function for the three gates is the hyperbolic

tangent function tanh(.), and the activation function of the state update is

the logistic sigmoid function sigma(.), which are defined as follows:

σ(x) = 1
(1+e−x)

tanh(x) = (ex−e−x)
(ex+e−x)

The above equations are all computed for one-time step, implying that

this set of equations are recomputed for every next time step. Moreover,

as weight and biases are time-independent, they remain constant in every

iteration for the set of equations in each time step.

Bidirectional Long-short term memory (BiLSTM):

A major advantage for bidirectional LSTM is that they process sequential

data in both forward and backward directions, where forecasting is not

only dependent on past information but also future data in the time series.
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Figure 4.5: Flowchart of the architecture of BiLSTM.

With two separate hidden layers, the output is aggregated to produce a final

output for predictions. The structure of a BiLSTM neural network is shown

Figure 4.5. However, BiLSTM is relatively a new and advanced predictions

model in the field of wind speed forecasting, hence its competitiveness

has not been comprehensively demonstrated. In [182], performance of an

LSTM was compared to a BiLSTM, with different epoch and unit values,

the results showed that BiLSTM has an advantage to perform better due

to the additional future information passed to the network for predicting.

In [183], an ensemble of BiLSTM models as base predictors, generated

predictions more accurate than that from other ensembles of deep neural

networks. Additionally, in [184], BiLSTM was used to extract features

from a time series, then extracted features are fed into another BiLSTM

to obtain wind speed predictions. The results from the proposed model

showed 39% improvements in terms of the coverage width compared with

traditional models. Finally, in [185] different BiLSTM models are utilized

to predict wind speed time series in different sub-clusters produced by k-

means clustering, a machine learning approach which groups similar data

points into k numbered clusters and makes predictions based on information

from information from all points in the cluster.
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4.2.3 Optimization algorithm (GreyWolf Optimizer):

GWO is adopted to determine the optimal forecasting weights for com-

bining the Complete Empirical Mode Decomposition With Adaptive Noise

(CEEMDAN) decomposed signals. GWO is an optimization approach that

aids deciding weights for the forecasting models. The algorithm is based on

a swarm intelligence-based computation technique, where the leave-one-out

strategy was developed to integrate the individual models [186].

Meta-heuristic optimization algorithms, which are swarm intelligence-based

methods for simulating the hunting behaviour of grey wolves in nature, have

been investigated extensively recently. On one hand, four types of wolves,

alpha (α), beta (β), delta (δ), and omega (ω) are hired to imitate leadership

hierarchy. The nature followed is that omega wolves follow the optimization

process which is guided by the other three wolves. On the other hand, four

main steps followed by grey wolves during hunting, namely, encircling prey,

hunting, attacking prey, and searching for prey are key steps implemented

during the process. The algorithm is categorised as follows:

Social hierarchy:

To mathematically simulate this process, the first three wolves are assigned

to the first three best solution as a, b, c, respectively, while the remaining

solutions - wolves - are assigned to as w. due to the nature of GWO,

solutions a, b, c are employed to guide the optimization process and w will

follow.
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Encircling prey:

The encircling behaviour of wolves can be expressed as:

−→
D = |

−→
C ·

−→
Xp(t)−

−→
X (t)|

−→
X (t+ 1) =

−→
Xp(t)−

−→
A ·

−→
D

Where t represents the current iteration,
−→
A and

−→
C are coefficient vectors,

−→
Xp(t) is the position vector of the prey, and

−→
X (t) represents the position

vector of a grey wolf vector and are calculated as follows:

−→
A = 2−→e · −→r1 −−→e

−→
C = 2−→r2

Where −→e components are linearly decreased from 2 to 0 over the course of

iterations and r1 and r2 are random vectors in [0,1].

Hunting:

Grey wolves have the capability to identify the position and location of

the prey and then encircle it. To mathematically simulate this process of

hunting the prey, the previous statement that wolves a, b, and c are the

optimum solutions and will have a better understanding of the positions

and locations of prey is followed. Subsequently, the fittest three solutions

obtained are assigned and the remaining search agents, including w wolves,

update their positions accordingly. This is mathematically represented as

follows:

−→
Da = |

−→
C1 ·

−→
Xa −

−→
X |,

−→
Db = |

−→
C2 ·

−→
Xb −

−→
X |,

−→
Dc = |

−→
C3 ·

−→
Xc −

−→
X |

−→
X1 =

−→
Xa −

−→
A1(

−→
Da),

−→
X2 =

−→
Xb −

−→
A2(

−→
Db),

−→
X3 =

−→
Xc −

−→
A3(

−→
Dc)
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−→
X (t+ 1) =

−→
X1+

−→
X2+

−→
X3

3

Where
−→
A1,

−→
A1,

−→
A1 are random vectors, and

−→
Xa,

−→
Xb and

−→
Xc represent the

positions of and wolves, respectively.

Attacking prey:

Following, the wolves attack when the movement of the prey stops. To

approach the prey in the mathematical simulation, the value of −→e is re-

duced and the fluctuation range of
−→
A is also decreased with

−→
A . That is

decreasing −→e from 2 to 0, the random value of
−→
A is changed in the interval

[-e, e] during the iterations. Furthermore, the next position of the search

agent could be anywhere between the current position and the position of

the prey, given the value of is in [-1, 1].

4.2.4 Hybrid model: CEEMDAN + EWT + BiL-

STM + GWO

The proposed hybrid CEEMDAN-EWT-BiLSTM-GWO model, which is

based on the hybrid decomposition algorithm and the BiLSTM-GWOmodel,

is demonstrated in Figure 4.6, the main steps of the model are based on the

hybrid decomposition approach and bidirectional LSTM optimized using

GWO. In the first step, the CEEMDAN is used to decompose the original

wind speed time series into a set of IMF each with a different frequency.

The first IMF generated, IMF1, is the most fluctuating and disorderly

signal amongst all outputs and hence is not suitable for forecasting and

would reduce the prediction accuracy. Therefore, another signal decompo-

sition iteration aimed at reducing the fluctuations and noise in that signal

is essential to reduce the forecast difficulty. The EWT can decompose
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Figure 4.6: Architecture of the proposed hybrid model.

high frequency signals such as IMF1 into relatively more steady compo-

nents. Hence, EWT is employed to further decompose the wind speed

signal before feeding signals into the neural networks. In the following

step, predictions on the decomposed signals are generated, including the

modes generated by EWT and IMFs generated by CEEMDAN, excluding

IMF1, using BiLSTMs optimised by GWO. In the last step, all forecasting

results from modes and IMFs are aggregated to obtain the final forecasting

time series.

4.3 Experiments and Analysis

To assess the effectiveness of the proposed combined forecasting model,

experiments using wind speed datasets collected from the Technical Uni-

versity of Denmark (DTU) are used as illustrative examples.
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4.3.1 Data set

To test the proposed model, a case associated with the RUNE project is

considered, which is a near-shore experiment conducted at the west coast

of Denmark. Here, a numerical experiment is used, which is part of a

number of numerical simulations performed using the WRF model v3.6.

This particular experiment was setup with 4 nested domains, the outermost

covering northwestern Europe and a 2-km horizontal resolution innermost

domain covering the west coast of Denmark [168]. Spectral nudging to

the ERA5 reanalysis was used in the upper model levels of the outermost

domain. The simulation has 8 vertical levels within the first 100 m and

instantaneous output was produced every 10 min. The experiment also

used the Mellor-Yamada-Janjic planetary boundary layer scheme, a sea

surface temperature product from the Danish Meteorological Institute, and

the CORINE land cover description [169]. For this experiment, the same 4

WRF simulation points across 2 km horizontal line, 50 m above sea level

are used, which are used in chapter 3, to have a fair comparison with the

model that used data fusion and lidar observations.

4.3.2 Evaluation metrics

Many evaluation metrics are researched and applied to evaluate the effec-

tiveness of different forecasting models. In many studies, no general stan-

dard for performance metrics is followed. The most common error metrics

include mean absolute error (MAE), mean squared error (MSE), and root

mean squared error (RMSE). However, after analysing the results from

multiple studies, it is noticed that some models outperform other models

when the evaluation metric is changed. For example, model (a) can show

better performance than model (b) in an iteration, while performing much
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worse in a different iteration. This could be explained by referring to the

approach of a model, as every iteration tries new parameters and functions

to generate predictions. However, this should not significantly affect the

metric used. Alternately, after investigating the equations for each metric

and comparing the results from different studies, the abnormality is found

to be associated with RMSE and MSE. This is because as models are more

advanced, errors have reduced significantly to less than 1, i.e 0.9, 0.6 and

0.4. In the equations for RMSE and MSE, the error is squared before it

is aggregated to find the mean error, which means that the error is mas-

sively decreased for iterations where performance is high (error less than

1), which is a property of both RMSE and MSE, as they penalise both

high and low errors more than other metrics. Hence, an iteration which

generates forecasts with an error less than 1, when squared, the error will

be smaller compared to using other metrics. Contrarily, when the iteration

generates forecasts with errors greater than 1, when squared, the error will

increase, thus, final mean error is significantly affected.

Table 4.2: Table of different metrics and their equations to calculate the
forecasting error.

Metric Definition Equation

MAE Mean absolute error of D forecasting results 1
D

∑D
i=1 |xi − yi|

MSE Mean squared error of D forecasting results 1
D

∑D
i=1(xi − yi)

2

RMSE Root mse of D forecasting results
√

1
D

∑D
i=1(xi − yi)2

MAE, MSE, and RMSE are used to evaluate the average magnitude be-

tween the predicted result and the original data, to avoid different signs

forecasting errors cancelling each other out. For these metrics, the model

with lowest values is considered of the highest performance. The equations

and definitions for each of the three metrics are given in Table 4.2, where x

and y represent the actual and predicted values, respectively, and D is the

sample size.
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4.4 Results and Discussion

This work proposed a hybrid forecasting model to predict data from a WRF

simulation dataset for 4 points. First, Intrinsic Modal Functions (IMF)s

from pre-processing algorithm Complete Empirical Mode Decomposition

With Adaptive Noise (CEEMDAN) are presented. Then, presented modes

of IMF 1 after second decomposition using Empirical Wavelet Transform

(EWT) to reduce the high frequency in the signal. Following, predicted

signals are aggregated and compared to the original dataset. Second, pre-

dicted signal is compared to lidar observations and predicted signal from

the model in Chapter 3 to investigate and assess the benefits of using data

fusion of lidar observations with WRF simulations.

4.4.1 Pre-processing using CEEMDAN and EWT

To build a forecasting model with high performance, it is critical to fully

analyze and consider the features of the original time series. In this work,

the CEEMDAN approach is first used to decompose the original wind speed

time series to reduce the non stationary and non linear characteristics. As

presented in Figure 4.7, the raw data in addition to the IMFs extracted

from the original wind speed data is shown from highest to lowest frequency.

Results show that each decomposition contains its own characteristics, re-

flecting the different oscillatory nature in the time series provided. For this

experiment, 8 total IMF components are generated, named IMF 1 to IMF

8, with IMF 1 representing the decomposition with the highest frequency,

additionally, IMF 1 has the most detailed information of the original time

series. Contrarily, IMF 8 represents the decomposition with the lowest

frequency, which presents the variational trend of the wind speed series.
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Figure 4.7: Decomposed Intrinsic Modal Functions (IMF) sub-series from
original signal using CEEMDAN.

Forecasting results of the IMFs show good performance, except for IMF 1

due to its high frequency oscillatory nature. Therefore, IMF 1 is concluded

to require additional pre-processing due to its poor predictions performance

in addition to its importance.

Thus, to improve the status of IMF 1, EWT is employed as a secondary

signal decomposition approach to further decompose that signal. The result

is 6 decomposed modes of IMF 1 (shown in Figure 4.8) and all IMFs and

modes, except IMF 1 are then fed into the BiLSTM model for predictions.
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Figure 4.8: Secondary signal decomposition result of IMF 1 using EWT.

Figure 4.9: Prediction result for all three data points, where the orange
line represents the training points and green represents the test points.

Figure 4.10: A close up look of the test points for all three data points.

4.4.2 Predictions using BiLSTM optimized using GWO

Following the pre-processing of the three furthest offshore points from the

WRF simulation using CEEMDAN and EWT, data is fed into Bidirectional

Long Short TermMemory (BiLSTM) neural networks optimised using Grey

Wolf optimizer (GWO) for signal forecasting. The performance of the

model is optimised, through the hyperparameters, by adjusting the weights,
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Figure 4.11: Plots of observed data against predicted data from the pro-
posed model for all three data points.

bias, and number of layers for the neural networks. First, the performance

of the model is explored by hiding 40% of the data, the remaining 60% are

used in training the neural networks. Figure 4.9 and Figure 4.10 show the

prediction results of training and testing the three signals and a close up on

the generated results. The performance of predictions is evaluated using 3

evaluation metrics, MAE, MSE, and RMSE. The values of the evaluation

metrics for the proposed model can be found in Table 4.3 and are 0.4, 0.56,

and 0.75 m/s for the training section of the data and 0.48, 0.79, and 0.88

m/s, respectively. Figure 4.11 shows the observed vs predicted curve for

three data points.

4.4.3 Proposed model compared to lidar observations

and data fusion model

The experiment that is performed earlier revealed that building hybrid

models that employ more than one pre-processing algorithms, combined

with advanced and optimized deep neural networks, is sufficient at forecast-

ing signals of wind speed time series. However, in wind resource assessment,

the objective is not only to predict wind speed data accurately, but to pre-

dict data as close as possible to the actual data that is later measured. For

the majority of experiments, models are trained and tested on simulation
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Table 4.3: Configurations and accuracy of the Gaussian Process Regression
models.

WRF
Point

Metric Value

Point 1 MAE (Training) 0.4
MAE (Test) 0.48
MSE (Training) 0.56
MSE (Test) 0.79
RMSE (Training) 0.75
RMSE (Test) 0.88

Point 2 MAE (Training) 0.41
MAE (Test) 0.49
MSE (Training) 0.55
MSE (Test) 0.76
RMSE (Training) 0.74
RMSE (Test) 0.87

Point 3 MAE (Training) 0.38
MAE (Test) 0.51
MSE (Training) 0.59
MSE (Test) 0.83
RMSE (Training) 0.77
RMSE (Test) 0.91

data, since they are relatively easier and cheaper to obtain. Contrarily,

simulation data is considered of relatively low-fidelity compared to other

wind speed measurement techniques such as lidars, yet delivers continu-

ous streaming data across large spaces for long time periods, which is not

possible with lidars. A possible solution to the scarcity of lidar data and

low-fidelity of simulations is proposed in Chapter 3, where lidar measure-

ments are merged with WRF simulations in a hybrid solution for offshore

wind resource assessment using a data fusion approach. For this chapter

of the thesis, the significant importance of data fusion and having other

sources of wind speed data that are of high-fidelity are demonstrated, by

comparing results from a model trained with only simulation data, and a

model trained with both lidar measurements and simulations (Chapter 3)

of the lidar measurements as they are considered closer to the real values.
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Figure 4.12: Panels (a) and (b) showing predicted signal and close up of the
test data using proposed model (CEEMDAN+EWT)+ BiLSTM + GWO
compared to lidar measurements. Panels (c) and (d) showing predicted
signal and close up of the test data using proposed data fusion model from
chapter 3 against lidar measurements.

Figure 4.12 panels (a) and (b) show results from the CEEMDAN + EWT

+ BiLSTM + GWOmodel proposed in this chapter compared to lidar mea-

surements. Results showed that despite the model performing effectively in

predicting the WRF simulation time series, performance is poor compared

to the high-fidelity lidar measurements, where the average RMSE is 1.36

m/s. Alternately, the model trained with lidar measurements showed sig-

nificant out-performance, where the RMSE is 0.63 m/s, with 53% improve-

ment in performance. In panels (c) and (d) a presentation of the results

from the model proposed in chapter 3, which uses lidar measurements as

additional input information. Results show that the model following data

fusion and using lidar measurements as secondary information outperforms
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models that do not consider lidar data.

4.5 Conclusion

This work performed wind speed data forecasting using a novel hybrid ap-

proach. The proposed model decomposed the wind speed time series using

two pre-processing approaches to reduce high frequency and decrease non-

stationarity and non-linearity in the signal. The obtained IMFs and modes

from CEEMDAN and EWT, respectively, are fed into BiLSTM neural net-

works optimized by a GWO algorithm to predict the final signal of the

wind speed time series. Results from the model show high performance

and accuracy in mimicking the simulated time series (WRF), however, the

simulation data are not a good representation of the actual wind speed

observed, as they are considered of poor quality compared to high-fidelity

data (lidar).

In the field of wind resource assessment, and specifically when predicting

wind speed data, the task is to get better forecasts relative to the high-

fidelity data, as the main objective of the process to estimate the power

generated from the wind turbine or farm. Minor differences in the wind

speed would have significant impact on the estimation of wind power, since

the formula for calculating the output power is the cube of the wind speed.

Thus, a complete dependence on simulations may risk calculating power

values that are far off real values. Contrarily, data fusion of lidar measure-

ments and simulations could provide a solution that combines the merits

of both techniques for the assessment of wind resources.

For the following chapter, a tensor (three dimensional matrix) is employed

to ingest wind speed data in two space and one time dimensions to develop
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a three dimensional space-space-time model that can capture both spatial

and temporal features of wind speed and provide predictions for a full 3D

domain. The model is a multivariate algorithm that will have both WRF

simulations and lidar measurements of the wind speed. Additionally, it

will aim to reduce the number of missing entries in the matrix by finding

lower rank product matrices of the original matrix, then Gaussian process

regression is employed to impute the missing data. Finally, the product of

the complete lower rank matrices is calculated to obtain a full original ma-

trix with no missing entries. The proposed forecasting model will allow for

data fusion of different sources of wind speed data to generate predictions

in multiple dimensions, taking into consideration several neighbouring and

distant lidar and WRF data points.
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Chapter 5

3D Probabilistic Matrix

Factorization

In the pre-construction of wind farms, wind resource assessment is of paramount

importance. Measurements by lidars are considered a source of high-fidelity

data. However, they are expensive and provide an incomplete scarce time-

series in both space and time domains, in particular, high unavailability

for measurements offshore. Contrarily, Weather Research and Forecasting

(WRF) models, with numerical simulations, generate continuous tempo-

ral and spatial data with a relatively low fidelity. A hybrid approach to

combine the merit of measurements and numerical simulations for the as-

sessment of offshore wind is proposed. Unlike other models, which consider

either spatial or temporal extrapolations for point or interval predictions,

this model investigates assessments of large spatial areas at three different

heights with multiple spatial points for the duration of three months, pro-

viding direct plane and site level assessments. Firstly, the measurements

and numerical datasets are fed onto a sparse matrix, where the columns

represent the spatial lidar and WRF points, and the rows represent the
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time steps. Entries of the matrix reflect the wind speed at a given time

and specified location and technique, empty entries reflect unobserved data.

Then, a non-linear probabilistic matrix factorization using Gaussian pro-

cess model is used, to train and test for matrix completion, which fills the

missing data with predictions. The model is optimised with Stochastic

Gradient Descent, to apply Gaussian process without approximate meth-

ods. Additionally, SGD performs well on large sparse matrices, as it scales

linearly with the number of observations. To evaluate the method, nu-

merical and measured wind speed data along the west coast of Denmark

are used. The proposed data fusion technique, using gappy measurements,

resulted in accurate offshore wind resource assessment with matrix comple-

tion results of higher accuracy than industrial and academic models, with

58% and 40% improvements, respectively. The experiment in this chap-

ter is able to reduce the computational cost of forecasting a 3 dimensional

space-space-time wind speed location by reducing the number of iterations

required to predict multiple wind speed time-series and the total number of

wind speed points to predict. Additionally, in the lower rank matrices, the

forecasting model is able to correlate both the spatial and temporal latent

features to a single domain, using both features simultaneously to predict

the wind speed.

5.1 Introduction and Literature Review

Over the past decade, the energy industry has seen great changes due to a

worldwide demand for sustainable energy. Clean energy is recognised as the

pathway for a sustainable future, which lead to a dramatic expansion and

an increase in renewable energy capacity, and a rise in global investments.

In 2019, the global wind power market added 60 GW to its arsenal, the
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second largest wind power annual increase, reaching a total of 743 GW

for both onshore and offshore sites [187]. In 2021, Denmark wind energy

accounted for an estimated 57% of electricity generation, with high shares

also in both Ireland and the UK, 32% and 24.8%, respectively. As of 2020,

the UK has a total set onshore record of 10.2 TWh and offshore of 9.2 TWh

[188]. In addition, Europe intends to increase the demand for wind energy

and its capacity by 35% within the next decade [189].

Evaluating the wind speed condition of a potential location is a critical

early step before the construction of any wind farm. As minimal changes

in speed can drastically have large deviations in the power output [190],

and as the wind varies both geographically and temporally over a wide

range of scales, an accurate wind resource assessment is essential and is

considered of a paramount significance for a successful wind energy project

[191]. Moreover, the assessment provides aid to the selection of wind tur-

bines, their layouts, and for planning a wind project, which wind power

developers use to estimate the future energy production of a wind farm to

meet their demand [192].

Instruments that measure wind can yield accurate observations of the wind

speed but are expensive, and the data is generally sparse in both the space

and time domains. This equipment includes e.g. lidars, which measure the

line-of-sight (LOS) velocity by computing the Doppler shift of the signal

of an infrared laser based on the movement of aerosols. However the lidar

output is usually intermittent with high unavailability at offshore locations.

Also, satellite synthetic aperture radars (SARs) are employed, which mea-

sure wind at 10 m above sea level (ASL) with low temporal resolution and

apply only to offshore measurements. There are also buoy systems, which

are equipped with an array of sensors that measure a number of parameters

with regards to the state of the atmosphere and the water, but they are ex-
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pensive and require regular maintenance. Finally, there are meteorological

masts, which are the traditional way to measure the wind climatology.

Contrarily, numerical weather prediction (NWP) models offer output that

cover large geographical areas and long-time horizons simultaneously and

continuously, but the data is significantly of a lower fidelity. The mod-

els include e.g. Weather Research Forecast (WRF), Global Forecast Sys-

tem (GFS), and European Centre for a Medium-range Weather Forecasts

(ECMWF) [193].

Measurement instruments and numerical simulations complement each other,

which suggests hybrid data fusion techniques to combine their merits. It

is desirable to extend the information from coastal vertical lidars (wind

profilers) for the reconstruction of offshore time series, as they are easier

to maintain [194]. Information can be numerically extended from coastal

measurements to offshore time series at lower cost and higher accuracy,

compared to having complete data dependent on lidars at all the positions.

This technique has been widely used in predictions of future developments

based on various inputs [195]. Further, wind resource assessment is com-

monly requested to cover large areas, over a long-time-interval (e.g. a

few months or years), therefore, recommending spatial-temporal fusion of

physically and numerically measured wind [196].

Missing value estimation is a significant problem in many research areas, in-

cluding recommender systems [197], geostatistics [198], and image restora-

tion [199]. In most cases, the cost of acquiring high fidelity data or re-

peating an experiment, due to low availability, is high, therefore, filling out

missing data is the method of preference [200]. Most missing value estima-

tion approaches include but are not limited to e.g. clustering algorithms

and probabilistic matrix factorization (PMF). Clustering based approaches
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became so popular after performing very well in the recommender system,

which analyse patterns of user interest in products to provide personalised

recommendations by employing a smaller set of highly similar users instead

of the entire database [201-202]. However, matrix factorization techniques

proved to be superior to clustering-based methods because the former al-

lows incorporation of additional information [203]. In its basic form, PMF

factorizes a matrix to find two lower rank matrices such that their dot

product is the original matrix, which minimizes the sum squared difference

of matrix values. The model focuses on data-dense locations in the matrix

and hence provides lower rank matrices with much lower number of missing

cells. After factorizing the partially observed matrix, each row as well as

each column are assigned a latent vector, and the estimation of the missing

cell becomes the inner product of the latent vectors for the corresponding

row and the corresponding column. PMF characterizes both time steps and

spatial points by vectors of factors inferred from point time series patterns.

High correspondence between space and time factors leads to estimation.

These methods are becoming increasingly popular by combining good scal-

ability with predictive accuracy. Different types of input data are placed in

a matrix with one dimension representing space and the other dimension

representing time [204].

In this work, a non-linear probabilistic matrix factorization model is em-

ployed to map both space and time to a joint latent factor space of di-

mensionality F , such that space-time interactions are modelled as inner

products in that space. For large and sparse matrices, stochastic gradient

descent technique is used to optimize the Gaussian process, which suc-

cessfully handles large-scale and sparse machine learning problems, and

the parameters can all be learned using maximum likelihood via the tech-

nique [202]. For a dataset with N spatial points and M time steps, the
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Figure 5.1: Flow chart for 3D spatio-temporal probabilistic matrix factor-
ization for wind resource assessment.

matrix is considered as R ∈ N ×M . The objective is to obtain a lower

rank factorized form of R, R = UTV , where U ∈ RD×N and V ∈ RD×M .

The algorithm focuses on locations in matrix R with dense data to reduce

the number of missing cells in matrices U and V . Predictions can then

be performed on missing entries by estimating (U, V ) from the training

data and computing the resulting approximation to R. This is graphically

demonstrated in Figure 5.1. The results from this model provide direct

predictions of wind speed across multiple spatial points located at three

different planes, representing three different heights, each representing a

different height, and at any given time. Previous forecasting models fo-

cused mainly on predicting the wind speed either spatially, by including

multiple spatial points for a single time-step, which is also known as point

predictions, besides, interval predictions; where the target is to forecast the

wind speed for a specific spatial point for a specified time interval, dealing

with a single wind speed time-series. The multi-fidelity Gaussian model

[209] deals with multivariate data to merge several time-series and make

predictions for the time series of a single spatial point, and then data is fed

to a neural network to predict the time-series for a different spatial point.

The novelty of this work relies on the utilisation and deployment of a

probabilistic matrix factorization model with Gaussian process algorithm
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for the accurate assessment of offshore wind resources with reduced cost

and higher accuracy, testing multiple points both spatially and temporally.

It combines the generally continuous but low-fidelity numerical data and

high-fidelity but limited physical measurements. Efforts are also devoted to

pre-processing the time series and taking into account additional informa-

tion not considered in existing methods to lift the accuracy of the fusion.

This algorithm enables the projection of limited nearshore measurements to

offshore locations in light of numerical simulations and limited lidar mea-

surements with significantly higher accuracy than the industry standard

approach. The application uses tests for the prediction of wind speed in

2 space dimensions across time using multiple lidar, WRF, and processed

data inputs, to deliver a model capable of performing spatial and temporal

predictions in a single step for multiple spatial points at different heights

and locations, feeding 64 lidar points and 20 WRF spatial points along

12,960 time steps. The algorithm considers all neighboring data in the

space and time domains for the prediction of every missing entry.

This chapter is organized as follows. In Section 2, related and previous work

is discussed, where algorithms of missing value estimation are employed. In

Section 3, a demonstration of the methodology for the temporal extrapola-

tion using multi-fidelity GPR, probabilistic matrix factorization, stochas-

tic gradient descent optimizer, and proposed application model, non-linear

matrix factorization with Gaussian process algorithms is discussed. Sec-

tion 4 describes the work case location and the collection of the high and

low fidelity data along with their temporal and spatial distributions. In

Section 5, main results of both experiments conducted are shown and the

performance of our model is compared against the industrial and academic

standards, before drawing conclusions in Section 6.
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5.2 Related Work

In this section, a discussion of the previous methods used to estimate the

parameters of missing data is demonstrated. In addition, machine learning

models and some of their applications in other sectors for data imputation

are stated.

Based on available data, Expectation Maximization (EM) and Maximum

Likelihood (ML) are two very common methods of estimating parameters

of missing data. ML approaches the missing value estimation by finding

the underlying probability distribution of the available data. Due to the

sparseness of the dataset, it is imperative that both methods follow an iter-

ative way in estimating the missing values. The first step of the approach

is to estimate the parameters of interest from the available data and the

probable value of the missing data. Following, parameters are recalculated

using the available data along with estimates from the first round, and

new parameters are applied to re-estimate the missing values, and so forth.

This process is repeated until the estimated data has a high correlation

with that of the previous cycle [201]. The aforementioned methods are

more appropriate for uni-modal probability distributions of sample, which

is not the case in data collected from a wind site, and especially for wind

speed. In the case of stochastic intermittent data, a mixture of Gaussian

methods is a more suitable probability distribution method.

In machine learning, factorization-based methods are a well-established

and powerful technique for analysing data for matrix completion. A sig-

nificant amount of research was conducted to achieve careful data pre-

processing, hyperparameters tuning, handling very large, sparse, and imbal-

anced datasets. A probabilistic framework for matrix factorization, PMF,

was presented in [206], which was integrated to a fully Bayesian model

113



5.3. METHODS FOR PROBABILISTIC MATRIX FACTORIZATION

later [196]. The model scales linearly with the number of observations in

the original matrix and performed well on the Netflix dataset, where the

rows represented users, the columns represented the items and the data is

review-based. The model included adaptive prior on the model parameters

and showed how the model capacity can be controlled automatically. Fur-

ther, MF was generalised to a full Bayesian model in [207] and [208], which

incorporated multiple sources of side information and combined multiple

priori estimates for the missing data using real-world drug-target interac-

tion datasets. Additionally, Agathokleous and Tsapatsoulis [201] inspected

the Voting Advice Application (VAA) data from the Cypriot presidential

elections to estimate missing data for the party and candidate recommender

system using several collaborative filtering methods. This work applies the

idea of missing data completion in a matrix, in the wind industry sector.

5.3 Methods for Probabilistic Matrix Fac-

torization

In the methodology section, pre-processing of signals using empirical wavelet

transform (EWT), is covered in Section 5.3.1, which reduces fluctuations

in time-series, by removing unnecessary noise. Subsequently, in section

5.3.2, non-probabilistic matrix factorisation with Gaussian process is cov-

ered. A general overview of probabilistic matrix factorization is introduced,

which focuses on imputation of missing values, optimization with stochas-

tic gradient descent, and combining with the Gaussian approach to have a

non-linear approach are discussed. This section is based on implementing a

Gaussian probability for estimation of missing data in a numerical method

that allows imputation of data in matrices and tensors. The targeted algo-
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rithm allows for wind speed estimations in 3 dimensions, two of which are

in the space domain relative to a third time dimension.

5.3.1 Pre-processing: Empirical Wavelet Transform

Empirical Wavelet Transform (EWT) is an algorithm used to achieve good

forecasting results for non-stationary wind speed time series. The five-

model decomposition algorithm can extract meaningful information from

a given series by designing an appropriate wavelet filter bank. Previous

work is followed, in which a dataset derived from model simulations is pre-

processed by generating the adaptive wavelet and then decomposing the

signal into a finite number of modes. The process starts by identifying and

extracting the different intrinsic modes of the wind time-series, by relying

on robust preprocessing for peak detection. Then, spectrum segmentation

is performed based on the detected maxima, hence constructing a corre-

sponding wavelet filter bank. In this work, the EWT algorithm is used to

preprocess 15 grid points, 5 at three different heights, from a WRF-based

numerical simulation for the comparison model EWT + MF-GPR. The

process consists of five main steps: extending the signal, Fourier trans-

forms, extracting boundaries, building a filter bank, and extracting the

sub band. The five level decomposition attained by the preprocessing algo-

rithm, EWT, is able to describe the signal in a meaningful way with much

less fluctuations, by extracting five uncorrelated filter modes from the wind

speed signal and a residual from the extraction. The reconstructed signal

will be used as additional input for the MF-GPR.
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5.3.2 Non-linear Probabilistic Matrix Factorization

with Gaussian Process

The aforementioned Gaussian process is an excellent method for tempo-

ral data fusion and 1D time-series predictions. However, in geostatistics

and specifically in wind resource assessments, it is necessary to predict

multiple points at different locations, and hence spatial extrapolation is

required along temporal extrapolation. In previous studies [210], neural

networks such as NAR and NARX were trained to connect the time-series

of two spatial points to train data with observed time-steps using WRF

simulations and predict offshore time steps at unobserved ones using li-

dar measurements of the onshore point. However, this work experimented

with 16 spatial points distributed across 4 km range along a three month

time-series at three different heights.

Probabilistic Matrix Factorization PMF

Figure 5.2: Architecture of probabilistic matrix factorization with uncer-
tainties (Left) and byproduct matrices (Right).

In this work, non-linear matrix factorization with Gaussian process is em-

ployed to predict and assess wind speed for 16 different spatial points,
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concurrently, where the learning is done following Stochastic Gradient De-

scent. An N×M real valued matrix with several missing cells is considered,

where N is the number of time-steps and M is the number of lidar points.

The goal of the matrix completion is to predict and fill these missing cells

based on the available data. Two latent matrices are employed: U ∈ RD×N

and V ∈ RD×M , to capture the row and column features of the original ma-

trix R, respectively. PMF favours a probabilistic perspective to solve the

problem from the matrix factorization aspect. Let Ri,j represent the wind

speed of time-step i (time) for lidar point j (space), with column vectors

Ui and Vj representing the time-specific and space-specific latent feature

vectors respectively, the generative algorithmic development process is as

follows [205]:

1. For each row i in R, [i]N1 , generate Ui,: N (0, σ2
UI), where I denotes the

identity matrix.

2. For each column j in R,[j]M1 , generate Vj,: N (0, σ2
V I).

3. For the non-missing cells (i, j), generate Ri,j N (Ui,:V
T
j,: , σ2).

A conditional distribution is defined over the observed wind speeds as:

p(R|U, V, σ2) =
N∏
i

M∏
j

[N (Rij|UT
i Vj, σ

2)]Iij , (5.1)

where N (x|µ, σ2) represents the probability density function of the Gaus-

sian distribution with mean µ, variance σ2, and Iij is the indicator function

that can either be equal to 1 when the matrix cell has a wind speed value

or 0 otherwise. In PMF, matrix R is modelled as a low rank matrix with

noise corruption, where the matrix factorization, U⊤V , is the mean of the

distribution and the noise is Gaussian with variance σ2.Thus, zero mean

spherical Gaussian priors are placed on time and space feature vectors [205]:
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p(U |σ2
U) =

∏N
i=1 N (Ui|0, σ2

UI), p(V |σ2
V ) =

N∏
j=1

N (Vj|0, σ2
V I). (5.2)

The log-posterior distribution over the latent matrices U and V is given by

[205]:

log p(U, V |R, σ2, σ2
U , σ

2
V )

= − 1
2σ2

∑N
i=1

∑M
j=1 Iij(Rij − UiV

T
j )2

− 1
2σ2

U

∑N
i=1 U

T
i Ui − 1

2σ2
V

∑M
j=1 V

T
j Vj

−1
2
(A log σ2 +ND log σ2

U +MD log σ2
V ) + C

, (5.3)

where constant C does not depend on the latent parameters. Ideally, the

marginal likelihood of the model would be calculated, which is how this

model learns, but in practice this is not tractable. Instead, maximum

a posteriori, MAP, inference maximizes the logarithmic likelihood with

respect to U and V , which is equivalent to minimizing the sum of squared

error function with quadratic regularization terms [205]:

E = 1
2

∑N
i=1

∑M
j=1 Iij(Rij − UT

i Vj)
2

+λU

2

∑N
i=1 ∥Ui∥2FRO + λV

2

∑M
j=1 ∥Vi∥2FRO

(5.4)

where λU = αU/α, λV = αV /α, and ∥.∥2FRO denotes the Frobenius norm.

Performing gradient descent in U and V will give a local minimum of the

objective function.

For each column of the latent matrices, U:,d and V:,d, the prior distribution is

a zero-mean Gaussian process, which is a generalization of the multivariate

Gaussian distribution. A Gaussian process GP (m(t), k(t, s) is determined

by a mean function m(t) and a covariance function k(t, t′), contrarily, a

multivariate Gaussian is determined by a mean vector and a covariance

matrix, GP (m(t), k((t, s), (t′, s′))), where the algorithm considers the high-
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fidelity data, fh(t), in the multivariate set as a function of two variables

(t, s), and s is the low-fidelity dataset, f1(t), fh(t) = g(t, fl(t)) [205].

A major drawback is the need for manual complexity control for this train-

ing procedure to allow the model to generalize well, specifically on very

large sparse datasets. Controlling the regularization parameters mentioned

above (λU and λV ), is one way of controlling the complexity of the model,

where the model can be trained by a set of parameter values one setting

of the parameters at a time, and choose the best performing model. How-

ever, this is highly computational and hence very expensive, as it requires

multiple training of models instead of just one. Alternately, priors could

be introduced for the hyperparameters and maximizing the log-posterior

of the model over both hyperparameters and parameters, which will lead

to automatic control of the complexity based on the training data. De-

spite this approach proving beneficial in practice, it is theoretically not

well grounded [205].

A demonstration of the architecture of a PMF is shown in Figure 7.1, where

full matrix R is factorised into matrices U and V with uncertainties and

dimensions D ×N and M ×D, respectively.

With little changes to the notations, PMF is probabilistically equivalent

to Bayesian PCA. The Bayesian treatment provides fully automatic com-

plexity control as model parameters and hyperparameters are integrated.

Considering a matrix of latent variables, X ≡ U⊤ ∈ RN×D, and a map-

ping matrix that goes from the latent space to the space of observed data,

W ≡ V ⊤ ∈ RM×D. Following the new notation, the probabilistic model

can be written in the form [206]:
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p(R|W,X, σ2) =
N∏
I=1

N (ri,:|WXi,:, σ
2I), (5.5)

where Xi, : is the ith column of U, and ri,: represents the column vector

from the ith row of R containing wind speeds of the ith time-step for a

point in space. The previous equation is a multi-output linear regression

from a D dimensional feature matrix V to matrix targets R. Placing a

prior over X gives the following, which can be marginalised later to give

the marginal likelihood used in missing values imputation,

p(X) =
N∏
i=1

D∏
j=1

N (xi,j|0, α−1
x ), (5.6)

Missing values imputation

The method discussed is a Gaussian matrix factorization model with a par-

ticular covariance structure, which means marginalizing is straightforward

in finding the missing values. A Gaussian distribution is considered over

the following parameters: a vector y with mean µ and covariance σ, in the

form y N(µ, σ). An observed subset of y is represented by yi, where i is

an index for the observed values. When marginalizing the missing values,

getting the Gaussian form yi N(µi, σi,i) where µi, and σi,i, represent the

mean vector with the rows for the sum of σ columns associated with the

unobserved elements of the removed y. Hence, for a sparse data matrix,

the likelihood is given by [206]:

p(Y |W,σ2, αx) =
∏N

i=1 N(yi,ji |0, α−1
x Wji,:W

T
ji,: + σ2I) (5.7)

Optimizing with respect to the parameters leads to αx being part of W ,

which leaves the likelihood function associated with PPCA, and hence be-
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comes intractable when marginalizing W . Instead the prior is taken over

W,

p(W ) =
M∏
I=1

D∏
j=1

N (Wi,j|0, α−1
W ), (5.8)

and the marginal likelihood is then in the form

p(Y |X, σ2, αw) =
D∏
j=1

N(yij ,j|0, α−1
w Xij,:X

T
ij,:

+ σ2I). (5.9)

which is the marginal likelihood of a Bayesian linear regression model with

multiple outputs. These equivalences imply that with marginalisation of

either W or X, will eventually lead to optimizing the resulting marginal

likelihood for the remaining matrix and model hyperparameters.

The selection of likelihood is based entirely on the one with fewer param-

eters. In this case there are less columns since they represent the space

domain, rather than the rows that represent the time steps. As using EM

for a large matrix would be highly computationally expensive, it makes

sense to consider SGD, which converges much faster [206].

Stochastic Gradient Descent

Instead of maximizing the likelihood through an EM approach presents the

wind speed for each lidar point one at a time, computing the gradient of the

logarithmic likelihood for the lidar point. The gradients of that point are

then used to update the parameters X, σ2, and αw; then a new lidar point

is presented. If the objective for the previous approach is to maximize the

likelihood, the negative logarithmic likelihood is minimised. For the jth

lidar point this is given by [206]:
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Ej(X) =
Nj

2
log |Cj|+

1

2
(yTij ,jC

−1
j yij ,j) + const., (5.10)

where Cj = α−1
w Xij,:X

T
ij,:

+ σ2I and Nj is the number of time steps with

measured wind speeds. Then compute the gradient with respect to X as

dEj(X)

dXij,:

= −GXij,: . (5.11)

with G = (C−1
j yij ,j y

T
ii,j

,j C
−1
j − C−1

j ). Other gradients with respect to the

other parameters can also be found.

The model Non-Linear PMF via GP-LVMs

A probabilistic matrix factorization with parameters marginalized is con-

sidered a Bayesian multi-output regression model, where optimization oc-

curs with respect to the inputs to the regression [16], which is equivalent

to probabilistic PCA. In addition, it also belongs to a category of models

called Gaussian process latent variable models (GP-LVM). The Gaussian

process with covariance function C = α−1
w XXT + σ2I is a linear model

that can be transferred nonlinear by replacing the inner product matrix,

XXT by a Mercer kernel. Consequently, maximizing over the logarith-

mic likelihood can no longer be attained through an eigenvalue problem;

however, SGD in the manner described above would be straightforward.

The regression model followed can be written in the form of a product of

univariate Gaussian distributions,

p(R|U, V, σ2) =
N∏
i=1

N(yi,:|Wxi,:
, σ2I), (5.12)

where the inner product fj(xi,:) = wT
j,:xi,: represents the mean of each
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Gaussian. A Gaussian process with latent variable models can be recov-

ered by recognising the placed prior distribution directly over the function

through a Gaussian process. A commonly used covariance function that

gives a prior over nonlinear functions is known as the Radial Basis Function

(RBF), covariance,

k(xl,:, xi,:) = αm exp
(
−γm

2
||xl,: − xi,:||2

)
, (5.13)

which can be substituted directly in the likelihood to give a probabilistic

model,

p(R|U, σ2, θ) =
D∏
j=1

N(yij ,j|0, K + σ2I), (5.14)

where parameters of the covariance function are presented in the θ hyper-

parameter.

Predictions

Following learning based on the SGD provides an estimate of the latent

matrices U and V , where for a missing cell, Rn.m, the maximum likelihood

becomes the inner product of the corresponding latent vectors [206].

5.4 Case Description

In this work, probabilistic matrix factorization with Gaussian process is

used for wind speed predictions at multiple points for continuous time. In

particular, given a time-velocity matrix with missing entries, where the

goal is to predict the missing wind speeds at the unobserved time-steps;

by observing both high-fidelity sparse lidar measurements and continuous

simulation output from the WRF model (see Figure 5.4 for time-series plot
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Figure 5.3: (Left) RUNE experimental area (in the rectangle) in western
Denmark. (Right) RUNE coastal experimental area on a digital model of
the surface (UTM32 WGS84, Zone 32V). The positions of the lidars (1
and 3) are shown in squares and of the dual-Doppler scans (36) in black
markers. The scans are taken at three heights, 50, 100 and 150 m ASL.
Colorbars indicated the height in meters ASL [25-26]

of lidar measurements and WRF simulations, and Figures 5.5, and 5.6 for

the distribution of the observations across the experiment period).

In addition, Figure 5.7 demonstrates the correlation between all lidar and

WRF time series, the correlations range from 0.8 to 0.99, indicating high

correlation between all the sets, which reflects that even far points can

be used to influence the prediction of any point in the matrix, and the

strong relation between all the data points. Strong correlation between

the independent features and dependent variable is a strong indication

that accurate estimations could be yielded. Two numerical experiments

are run on the data acquired from the dual-Doppler scans of the RUNE

experiment (see Figure 5.3). The scans were acquired between the period

from December 2015 until March 2016. The dual-Doppler scans (36 in total

per height measured) were performed with two scanning lidars (positions

1 and 3), which were configured to match their scanning patterns at three

heights 50, 100, and 150 m ASL. One ‘virtual line’, i.e. a line perpendicular

to the coast took about 45s.

The dual-Doppler points used are at the far most offshore 4 km range. In
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Figure 5.4: (a) Low-fidelity data from numerical simulation (WRF) at the
most offshore point. (b) High-fidelity data from the dual-Doppler lidar
setup at the most offshore point.

125



5.4. CASE DESCRIPTION

Figure 5.5: (a) Daily box plot for wind speed time-series.(b) Weekly box
plot for wind speed time-series.
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the first experiment, the effect of increasing the observations in the matrix

and varying the lidar points by using three different matrices with different

number of lidar points is evaluated. As for each height, there are about

four to five dual-Doppler positions per km, which is referred to as lidar

points. The 3 matrices available are: Matrix A has the first 2 lidar points

(from the west) per km, which leads to a total of 8 new lidar points; Matrix

B has the same lidar points as matrix A with an additional lidar point (the

following point moving east), hence, 3 lidar points per km leading to a total

of 12 new lidar points; and Matrix C has 4 lidar points per km leading to a

total of 16 lidar points. The first experiment takes place at the 50 meters

height level. The statistics of the datasets for experiment 1 are given in

Table 1, which also shows the division of data for all three matrices A, B

and C with percentage of sparsity in every matrix. Figure 5.6 (a), shows

the number of observations for every week of the experiment and (b) shows

the histogram for the number of observations. For all experiments,the data

is partitioned, 20% of dataset for the validation, 20% for testing and 60%

for training.

For experiment 2, matrix C (16 lidar points) alone is used, but at the

three different heights, (50, 100, and 150 m). For experiment 2, results of

the experiment are compared to those using EWT and GPR, an academic

prediction model for wind forecast predictions, and Windgrapher, a leading

industrial software. However, these techniques are one dimensional interval

prediction techniques, hence can only be applied to one spatial point at a

time and require 16 iterations for comparison with one iteration from the

probabilistic matrix factorization with Gaussian process model.
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Figure 5.6: Histograms of (a) wind speed measurement frequencies; and,
(b) the division of observations by weeks.

Figure 5.7: Correlation between all lidar and WRF points.
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Table 5.1: Statistics of the datasets used in Experiment 1.

A B C

lidar Points 8 12 16
Measurements observed (lidar) 10624 15936 21248
Simulation data (WRF) 56880 56880 56880
Total No. of Cells 739440 966960 1194480
Missing Data (Sparsity) 91% 93% 94%

Table 5.2: Statistics of the datasets used in Experiment 2.

50 m 100 m 150 m

lidar Points 16 16 16
Time-steps 11376 11376 11376
Measurements observed 21248 21248 21248
Measurements per Point 1328 1328 1328
Measurements Density (Sparsity) 11.8% 11.8% 11.8%

5.5 Results and Discussion

Results from both experiment 1 and 2 are discussed and shown in this

section. First, the results from experiment 1, where 3 matrices had different

number of lidars to study the effect of adding lidar observations and empty

cell to the matrix. Then for the second experiment, the results compare

the RMSE for 16 lidar points at 3 different heights using the discussed

non-linear Gaussian probabilistic matrix factorisation using two k factors

(2 and 5), which are compared with an industrial predictions software, an

academic method, and finally the WRF simulation as benchmark.

5.5.1 Experiment 1: One height and different num-

ber of lidar points

Three different datasets for the furthest west offshore distance of 4 km

are used to train three iterations of probabilistic matrix factorization. The

performance of the three models is optimized, through the hyperparameter,
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Figure 5.8: (a) Predicted Time-series and lidar observations.(b) Prediction
points against counter observed measurements.

by applying different learning rates and K-factors. Firstly, exploring the

matrix with 5 WRF points and 2 lidar points per km, with a total of 8 lidar

points, the time steps represent 3 months worth of data. The dimensions

of the matrix are 13 columns and 11,376 rows, represented as model (A).

Then, for model (B), the number of lidar points is increased to 3 per km,

and finally model (C) had 4 lidar points per km. The slight increase in the

number of lidar points helped increase the sparsity of the models from 91%

to 94%. This experiment is employed to test how the algorithm reacts to

different sparsities (density of missing data) and how increasing the number

of lidar data affects the predictions.

Table 5.1 shows the statistics of the datasets used in Experiment 1. All

models had a constant number of WRF data (5 points), while the lidar

data and hence the total number of cells in the matrix varied, resulting in

three different sparsity percentages for models A, B, and C around 91%,

93% and 94%, respectively.

Figure 5.8 panel (a) shows the predicted time series of the first lidar point

and the lidar observations, additionally, panel (b) shows the observed lidar

points against their counterparts from the predicted time series for the 20%

test dataset. Figure 5.9 top panels (a), (b), and (c) shows the time-series
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Figure 5.9: Original matrices of all 3 setups with 2, 3, and 4 lidar points,
A, B, and C, respectively (Top). Final processed matrices for all setups,
A, B, and C, respectively respectively (bottom).
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of the three original matrices with 8, 12, and 16 lidar points, respectively.

Panels (d), (e), and (f) show the 3 result matrices after performing PMF.

The RMSE for each point in the matrix with respect to the 20% hidden test

data within the time-series is measured and compared to the WRF output

and lidar data. The results from all matrices outperform that of the WRF

simulation. The experiment showed that increasing the number of lidar

points, hence the sparsity of the matrix and amount of high accurate data,

does not affect the accuracy of the prediction as the RMSE of the lidar

points is unchanged amongst all points. This is due to the multicollinearity

in the dataset, as all lidar and WRF points are highly correlated, it can be

concluded that using any of the neighbouring points would be beneficial,

despite its distance from the targeted point, and once points are to an

extent linearly correlated, missing data is not a problem.

5.5.2 Experiment 2: 3 different heights for 16 lidar

points

Figure 5.10: Comparison between RMSE results from Windgrapher (A),
EWT + MGPR (B), our tested method NPMF with Gaussian process (k =
5 and k = 2), (c) and (D), respectively, across all 16 grid points for heights
50m (a), 100m (b), and 150m (c).

The second numerical experiment aimed to test how the models perform

at different heights compared to other academic and industrial algorithms.

Three models are trained with 5 WRF points, the number of lidar points
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Figure 5.11: (a) Comparison between RMSE results from WRF data
(Dark blue), Windgrapher (Orange), EWT + MGPR (Green), our current
method NPMF with Gaussian process (k = 5 (Red) and k = 2 (Purple))
for the far east lidar point for each height. (b) Comparison between RMSE
results from WRF data (Dark blue), Windgrapher (Light blue), EWT +
MGPR (Green), NPMF with Gaussian process (k = 5 and k = 2) for the
far west lidar point for each height.

is constant at 4 points per km leading to a total of 16 lidar points in

each matrix. The three different heights of the experiment are 50, 100,

and 150 m. The sparsity of all three models is unchanged at 11.8%, since

this experiment focused on testing how the algorithm works at different

heights, and on different sets of similar data compared to other prediction

algorithms.

Table 5.2 shows the statistics used in Experiment 2. For this iteration, the

total number of lidar points is fixed to 16, and had three different heights,

50, 100, and 150m ASL. All matrices have the same number of missing

cells and lidar/WRF ratio, with a measurement density of 11.8%, 11,376

time-steps equivalent to 79 days, and 238,896 total number of cells per

matrix.

Subsequently, the performance of the Matrix factorization algorithm is eval-

uated against an industrial software, Windgrapher, a leading software for
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importing, visualising and analysing wind resource data. Windgrapher

follows the Measure-Correlate-Predict (MCP) algorithms including Linear

Least Squares; the method is on correlating target and reference speed

data, based in the linear least squares procedure. Another algorithm in the

comparison is the Empirical wavelet Transform (EWT) and Multi-Fidelity

Gaussian Process Regression (MF-GPR). The EWT is used to pre-process

the WRF time-series reducing the spikes and high frequency fluctuations,

which results in a more accurate Gaussian process. Finally, for the PMF

testing, different k numbers, 2 and 5 are used.

The RMSEs for each of the 16 lidar points are measured at one iteration

from the Matrix using PMF with k= 2 and k= 5, then are compared to

their counterparts using EWT + MF-GPR, and Windgrapher, but after

16 different iterations (as they can predict for a single point at a time

only). Figure 5.10 shows the RMSE for each of the 16 lidar points using

all algorithms tested, where panels (a), (b), and (c) represent heights 50,

100, and 150 m, respectively. On average, the PMF algorithm using k =

2 and k = 5 is able to outperform the other algorithms at all measured

points for all three heights. The RMSE of PMF algorithm is reduced by at

least 65% compared to the industrial software and 40% compared to the

academic algorithm for 50 m ASL. At 100 and 150 m ASL, the RMSEs

are very similar, however, increasing the height reduced the RMSE and

increased the percentage drop in RMSE.

Figure 5.11 panels (a) and (b) show the RMSE of the most and least off-

shore points using all the algorithms followed for all three heights using the

3 algorithms discussed above and the 2 PMF models. The figure demon-

strates the order of algorithms showing the least to most accurate, with

PMF leading for both k numbers. Similarly, the results indicate that by

increasing the height of the measurements more accurate predictions are
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achieved, which is due to higher accuracy in the WRF data.

5.6 Conclusion

In this work, data fusion of lidar measurements sparse in space and time

(high-fidelity) with output from the WRFmodel has been performed, which

is continuous in space and time (low-fidelity), to obtain spatio-temporal

predictions at unobserved space and time points, suitable for offshore wind

resource assessment. During the RUNE experiment dual-Doppler scans

are performed, which resulted in 36 lidar points across 10 km, both off-

shore and onshore, with 1331 measurements. Subsequently, the numerical

simulations performed using the WRF model generated an instantaneous

constant output every 10 min for the same period, resulting in a total of

11,376 data points. In this work, the performance of the algorithm has

been tested on the offshore data at 16 points at 3 different heights, 50, 100,

and 150 meters ASL.

In the first experiment, the number of lidar points per km is varied, to

test the accuracy of the model with less valuable lidar data of sparsity

percentages, which varied between 91%, 93%, and 94%. As aforementioned,

the high-fidelity lidar data is presented at unobserved regions and periods

by exploiting the available data and the low-fidelity WRF simulations. The

addition of more lidar points caused an increase in the sparsity of the

matrix, despite giving more valuable lidar data. The RMSE of predictions

is not affected as it ranged from 0.45 m/s and 0.52 m/s across all three

matrices; in this experiment, only the data at 50 m ASL is used.

Contrarily, the second experiment aimed to test the accuracy of prediction

of the PMF model when the K-factor is varied at 2 and 5, and compare
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the results to an academic model with pre-processing (EWT+ MF-GPR)

and an industrial leading software (Windgrapher). First, 16 lidar points

and 5 WRF points with 11.8% sparsity are used. The results showed that

using a lower K-factor is more accurate and results in improved predictions;

this is observed significantly at lower heights. Additionally, the results for

all models showed that by using data at higher heights results in more

accurate predictions, as the WRF outputs are more accurate at higher

levels at this particular site. Hence, the results for 50 and 150 m had

the highest and lowest RMSEs, respectively. The difference between both

heights is around 0.18 m/s, equivalent to 15% drop in RMSE. Subsequently,

both PMF models with 2 and 5 K-factors are able to outperform both the

industrial and the academic models by at least 65% and 40%, respectively.

Additionally, results from

There are three major limitations in this work, which could be addressed

in future work. First, only data obtained from the RUNE experiment is

addressed, which is a very sparse dataset, including only 1331 measure-

ments for each lidar point equivalent to 220 h of measured data, reflecting

several weeks with no data. Second, due to the low resolution of the WRF

model output (2 km), the generated WRF points are all to the nearest 100

m, which is a considerable distance, as points this far will have significant

variances in the wind speed. Hence, interpolation is necessary to obtain

WRF data at the corresponding lidar points. Third, the starting time for

both data sets generated by WRF and lidar is not constant, where the

WRF data is available a few days earlier. This problem is called a ’cold’

start and is a common issue in matrix completion problems.

Future work may also concern further development to the matrix input

data. Additional datasets such as derivatives and WRF data of a higher

resolution could be a great source of information. This would reduce the
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sparsity of the matrix and improve the Gaussian process, hence the ac-

curacy of predictions. Furthermore, preprocessing of the WRF data with

EWT before processing in the matrix should be tested.

Finally, in this chapter, the experiments have been able to deliver the

objectives of developing a 3 dimensional space-space-time hybrid model

that combines wind speed data generated using different methods, namely

lidar measurements and WRF simulations, to predict wind speed data at a

reduced computational cost. The model is able to provide an accurate and

continuous tensor of wind speed data than WRF simulations and lidars,

respectively.
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Conclusions

This section summarises the work carried out during this thesis project and

lists the findings from the experiments covered and how they supported

solving and achieving the aim and objectives defined. Then, it covers the

challenges encountered in building the wind speed prediction models. Fi-

nally, it provides a discussion on the possible future trends to enhance wind

speed forecasting for wind resource assessment.

6.1 Summarising the models and reflection

on objectives

The utilization of wind speed forecasting is a key solution to overcome the

energy crisis and global pollution. It is very important to have an accurate

estimation of the wind energy generated from wind turbines and integrated

into the power grid. However, as the nature of wind is stochastic and in-

termittent, the stability of the supply is significantly affected, and accurate

forecasting models are required. This thesis investigated various algorithms

138



6.1. SUMMARISING THE MODELS AND REFLECTION ON
OBJECTIVES

and combinations of approaches that hired Deep Neural Network (DNN) to

enhance the accuracy of forecasting models, and to use surrounding onshore

measurements and offshore simulations to estimate a continuous stream of

accurate offshore data without sending expensive equipment offshore. Ad-

ditionally, the concept of using multi-variate data from different sources

with different fidelities and propagation of forecasting results from one lo-

cation to another is investigated. Multiple hybrid models are developed to

perform data fusion of wind speed data and assess wind resources, which

promises to reduce the cost of offshore wind resource assessment by using

onshore data and limited lidar observations on onshore locations.

First, a model comprised of an Empirical Wavelet Transform (EWT) for

pre-processing and a Nonlinear AutoregressionWith External Input (NARX)

forecasting model is used to assess the merits of data fusion by combin-

ing limited lidar observations (high-fidelity) with continuously available

Weather Research Forecast (WRF) simulations (low-fidelity) data. The

model is able to successfully represent the high-fidelity data at unobserved

regions and periods by exploiting the low-fidelity data and its functions

taking additional side information such as wind speed magnitudes, pre-

processed signals of the wind dataset, and derivatives of the low-fidelity

dataset. The resulting time series mimics the lidar observations better

than the WRF simulation with only onshore lidar observations, reducing

the number of lidars required, fulfilling the objective of assessing the sig-

nificance of data fusion of combining different sources of wind data and

reducing of costs for offshore wind resource assessment.

Second, the effect of using data fusion and combining simulations with ob-

servations is investigated to further assess the significance of data fusion,

and how using a high-fidelity data source improves forecasting performance.

An advanced model is proposed, which used a second signal decomposition
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approach to decompose the wind speed signal using two pre-processing ap-

proaches, namely Complete Empirical Mode Decomposition With Adaptive

Noise (CEEMDAN) and EWT, and optimized the forecasting neural net-

work using a Grey Wolf optimizer (GWO) to generate predictions based

on WRF simulations only. Results showed that despite the -MF-GPR with

NARX- model from chapter 3 lacking advanced pre-processing approaches

and intelligent optimization algorithms, it is still able to outperform the

proposed simulation hybrid model, which signified the value of obtaining li-

dar observations and using them as additional input data in the forecasting

models.

Third, a novel model that considers three dimensional data based on matrix

factorization is developed to predict wind speed data in two space dimen-

sions with respect to time, to have predictions in the full 3D space-time

domain, capturing both spatial and temporal features of wind speed at a

wind farm location. The model uses EWT for pre-processing the signals

and both lidar observations and WRF simulations are fed into the matrix to

obtain spatio-temporal predictions at unobserved space and time domains

simultaneously. Results from this model significantly outperformed the

WRF simulations, results from the previous model hybrid models, and a

leading industrial software, successfully delivering a forecasting model that

does not require offshore lidars and can generate predictions in multiple

space-time dimensions, hence reducing the cost of offshore wind resource

assessment.

The three experiments carried out are able to establish a basis for under-

standing the benefits of data merge using advanced hybrid models that

employ pre-processing algorithms, forecasting deep neural networks, and

optimization algorithms. Additionally, during the training of each exper-

iment, the hyper-tuning of the parameters showed major improvements
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with respect to the accuracy of predictions, reflecting the importance of

combining optimization algorithms to forecasting models.

In conclusion, it is important to address the computational cost aspect

of the proposed models. By leveraging the developed models, the need

for offshore deployment of lidars is minimized, resulting in significant cost

reduction. Furthermore, the factorization of the matrix contributes to a de-

crease in missing data cells, further reducing computational requirements.

Although a detailed cost analysis to quantify the monetary difference before

and after implementing these models was not conducted, it is essential to

acknowledge that the proposed models offer a promising solution to reduc-

ing costs associated with offshore wind speed predictions. By clearly artic-

ulating the impact on computational costs and emphasizing the avoidance

of offshore equipment deployment, the thesis demonstrates the potential

for significant economic benefits in wind energy forecasting.

Through this clarification, it becomes evident that the developed models

not only enhance prediction accuracy but also provide tangible advantages

in terms of cost efficiency, supporting the feasibility and practicality of their

implementation in real-world scenarios.

6.2 Challenges and recommendations in wind

speed forecasting

There are three main challenges that are encountered during the conducted

work of this thesis.

(1) Understanding the complex uncertainties in a wind speed time series.
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Due to the intermittent and stochastic nature of wind, the wind speed time

series is considered a signal with a highly complex nature and uncertain-

ties. The high non-stationarity and non-linearity in the wind speed signal

reduces the performance of any prediction model used. Hence, it is very

difficult for regression models to learn the relations and trends between

input features and predicted output. Therefore, it is critical to employ a

pre-processing stage to reduce the complexity of signals before they are fed

into a prediction model. Many pre-processing approaches are employed to

reduce the uncertainties, where the effectiveness of predictions are proven

to improve.

Several pre-processing approaches were investigated and proposed in the

literature, however, the degrees to which the forecasting accuracy is en-

hanced remains different for each approach. It has not been proven that

a single particular approach can outperform others, which explains the va-

riety in wind speed data, where each dataset contains its complexity and

uncertainty. The variance is related to each dataset, and thus, different par-

ticular pre-processing models may be more suitable than others for each

dataset. Therefore, it is recommended to employ hybrid pre-processing ap-

proaches such as CEEMDAN and EWT to benefit from the merit of model

decomposition and wavelet transform in processing the dataset, which is

proven beneficial in the third methodology chapter.

(2) Efficiently finding and extracting useful features in the dataset.

Another important factor in enhancing the performance of predictions is to

accurately select input features of the forecasting model. A major challenge

in producing accurate forecasts is the limited availability of data, it is

essential to have datasets rich in data to avoid unsatisfactory wind speed

forecasting results. An approach to counter the low availability of data
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is to mine for more effective features in the dataset, which supports the

model with explanations to the underlying fluctuations and improvements

to the accuracy of training the model, hence increasing the accuracy and

predictability of the regression model. Classic feature selection approaches

are easy to implement at a low computational cost and provide a selection

criterion for selecting important features from the available candidates.

Contrarily, feature extraction algorithms often can not deal with highly

complex features when the dataset contains data with highly non-linear

characteristics. However, this effective drawback is less critical when the

forecasting model employs a deep neural network, but on the other side, the

computational cost is seen to increase. Another approach in dealing with

low availability of data is to introduce additional information to the dataset

such as first and second derivatives, and vector components of the wind

speed time series, where more relations between the inputs and outputs

can be observed and investigated. This technique is proven beneficial in

the first methodology chapter.

(3) Automatically characterizing the complex relations between input fea-

tures and output wind speed data.

In many recent works, DNNs were employed due to their powerful mod-

elling of complex nonlinear relations, however, their performance is highly

affected by the model configuration determined after several trials and er-

rors based on future wind speed data. Therefore, it is highly computational

and time consuming to assign DNNs with optimal configuration without

knowing the future wind speed data. Therefore, Bidirectional Long Short

Term Memory (BiLSTM) neural networks, which provide the forecasting

model with future data as input, provide a quicker method for models to

reach optimal configurations. Additionally, using optimization algorithms

such as GWO is a good approach to design proper DNN-based models that
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can best describe very complex relations in a dataset.

6.3 Future work in wind speed forecasting

To overcome the aforementioned described challenges, the following four

approaches are proposed in the work, however, future improvements can

be made to further improve the wind speed forecasting accuracy.

(1) Developing novel hybrid pre-processing approaches.

The uncertainties in wind speed datasets have not yet been fully analyzed,

hence, more hybrid pre-processing models should be proposed and imple-

mented to overcome this challenge. This thesis proposed using EWT in

the first section of the methodology, which provided improvements to the

forecasting model. Additionally, within the third methodology section, a

hybrid pre-processing model that consider two different signal processing

approaches are proposed, where CEEMDAN is employed to decompose the

signal into different Intrinsic Modal Functions (IMF)s and the decomposed

signal with highest frequency is further decomposed using EWT to differ-

ent modes. There is an urgent need to continue developing novel models

of pre-processing signals, to sufficiently analyze the uncertainties in wind

data. New models consisting of different kinds of approaches will be suit-

able for dealing with the complex uncertainties.

(2) Increasing the number of input features.

In practice, fluctuations in wind speed data are caused by many factors.

Hence, using topographical and meteorological factors, such as those ob-

tained from WRF simulations, will be useful in precisely describing the

fluctuations in wind speed. Therefore, using models that combine datasets
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from WRF simulations and other sources of data will allow additional fac-

tors and features to be implemented in the algorithms. Additionally, finding

sets that can provide additional side information for the provided datasets,

such as derivatives and vector components, will improve the accuracy of

the model.

(3) Developing novel hybrid forecasting models.

With the case with pre-processing of signals, different forecasting algo-

rithms provide different approaches to tackling relations in a dataset. There-

fore, new hybrid forecasting approaches that combine different deep neural

networks are required to further enhance the accuracy of predictions. For

example, traditional statistical forecasting models, such as Auto-regressive

Integrated Moving Average (ARIMA), can be combined with new opti-

mized and advanced neural networks to better characterize the fluctuations

of a wind speed time series. This methodology will lead to an optimally

combined model that targets forecasting nonlinear signals with different fit-

ting abilities acquired from various forecasting models, to better describe

very complex wind speed fluctuations. Additionally, optimizer algorithms

make it easier to choose the optimal weights for combining different fore-

casting approaches, therefore optimizer algorithms are very critical in the

forecasting process. Intelligent approaches offer optimal configurations of

parameters to combine forecasting models, and hence more attention should

be given to investigating the effect of various optimization approaches and

how their design can be applied to combine various forecasting models.

(4) Testing the developed models on different datasets and variables.

This thesis focused on developing wind speed prediction models using a

specific dataset and considering wind speed as the sole variable, it is im-

portant to acknowledge that further research and testing are required to
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assess the robustness and generalisability of the results. One limitation of

our study lies in the single geographical location used for testing, which may

not adequately represent the diverse range of wind patterns and character-

istics present in different regions. Additionally, by solely considering wind

speed as the predictor variable, other influential factors such as tempera-

ture, humidity, and topography were not taken into account. Therefore,

future work should aim to expand the scope of the study by including mul-

tiple geographic locations and incorporating a broader range of relevant

variables. This will enable a more comprehensive evaluation of the model’s

performance and ensure its applicability across various settings. By ad-

dressing these limitations, we can enhance the robustness and reliability of

wind speed prediction models for practical applications in renewable energy

systems and other related fields.
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Appendix

Figure 7.1: Map of LiDAR positions and technology used to generate the
datasets.
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7.1 Generation of LiDAR Data

7.1.1 Setup of LiDARs

Dual Setup for Koshava (pos. 1) and Sterenn (pos. 3) were configured to

match their scans along three horizontal virtual lines at 50, 100 and 150

m ASL from 5 km west to 4 km east (inland) of position 2 (Figure 4).

They acquired 45 LOSs per virtual line in 45 s, corresponding to horizontal

distances of 200 m between points. Like the PPI scenario in phases 2 and

3, the total scanning time amounted to 145 s, including the 10 s that the

scanner heads need to get back to their starting positions. LOS velocities

were retrieved separately for each point and lidar and, from these, the

horizontal wind speed components were reconstructed over a given period.

To ensure the spatial proximity of two opposite range gates for the dual-

setup reconstruction, 89 and 91 range gates were acquired per LOS and

per system for phases 2 and 3, respectively.

In order to include all acceptable range-gate combinations, a collocating

algorithm filtered out data that did not fulfil a certain distance threshold.

During phase 2, the range-gate positions were not well collocated in the

x-direction (i.e., west–east), and therefore, the threshold in the x-direction

was set to 51 m. For the y (north–south) and z (vertical) directions and

during phase 3, the threshold was 10 m. The reconstruction algorithm was

applied to the 10, 30 and 60-min averaged LOS velocities of both systems,

after filtering out data that did not fulfil the CNR threshold (26.5 dB).

Reconstructed points situated near the coast using the dual setup cannot

be well established. This is due to errors introduced by the very small

beam crossing angles.
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7.1.2 Setup of WRF

WRF (Weather Research and Forecasting) simulations of wind speed are

generated using numerical weather prediction models. These models utilize

mathematical equations and computational algorithms to simulate the be-

havior and evolution of atmospheric variables, including wind speed. Here’s

a general overview of the process:

Model Configuration: The WRF model requires initial conditions, bound-

ary conditions, and various configuration settings. Initial conditions include

atmospheric variables such as temperature, humidity, pressure, and wind

speed at a specific starting time. Boundary conditions provide information

at the model’s outer boundaries to account for the influence of surrounding

areas. Configuration settings specify model parameters, grid resolution,

physics options, and other model-specific choices.

Grid Setup: The model domain is divided into a grid system consisting

of multiple grid points. Each grid point represents a specific location in

the atmosphere, and the resolution determines the spacing between grid

points. The WRF model supports various grid types, such as Cartesian,

latitude-longitude, and rotated pole grids.

Numerical Integration: The model’s equations, including the fundamental

equations of fluid dynamics and thermodynamics, are solved numerically to

simulate atmospheric processes. These equations describe the conservation

of mass, momentum, energy, and other relevant variables. The numerical

integration process advances the atmospheric state in time, considering the

interactions between neighboring grid points and accounting for physical

processes like advection, diffusion, and parameterized physics.

Initialization and Time Stepping: The model uses the initial conditions to
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set the starting state of the atmosphere. It then progresses through time

in discrete steps, known as time steps. During each time step, the model

calculates the changes in atmospheric variables based on the computed ten-

dencies and the selected time step size. The model iteratively updates the

state of the atmosphere by repeatedly applying the numerical integration

process.

Parameterizations: To account for processes that occur at scales smaller

than the model’s grid resolution, parameterizations are used. These param-

eterizations represent sub-grid-scale phenomena such as turbulence, convec-

tion, radiation, and surface interactions. Parameterization schemes include

the Mellor-Yamada-Janjic turbulence scheme, the Kain-Fritsch convection

scheme, the Rapid Radiative Transfer Model (RRTM) for radiation, and

others. These schemes provide estimates of wind speed changes due to

these small-scale processes.

Output and Visualization: Once the simulation is complete, the model

generates output files containing the simulated atmospheric variables, in-

cluding wind speed. These output files can be analyzed and visualized

using post-processing tools to understand the simulated wind patterns,

variations, and their relationship to other meteorological variables.

Following are the equations used in the generation of the WRF simulation:

1. Conservation of Mass (Continuity equation):

∂ρ

∂t
+∇ · (ρu) = 0

This equation represents the conservation of mass, where ρ is the air density,

t is time, u is the three-dimensional wind vector (u, v, w), and ∇· denotes

the divergence operator.
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2. Conservation of Momentum (Navier-Stokes equations):

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ + ρg + F

∂(ρv)

∂t
+∇ · (ρvu) = −∇p+∇ · τ + ρg + F

∂(ρw)

∂t
+∇ · (ρwu) = −∇p+∇ · τ + ρg + F

These equations represent the conservation of momentum in the x, y, and

z directions, respectively. p is the pressure, τ is the stress tensor, g is

the acceleration due to gravity, and F represents external forces (such as

friction and Coriolis force).

3. Thermodynamic Energy Equation:

∂(ρθ)

∂t
+∇ · (ρθu) = −∇ · (ρvθ′) +∇ · (K∇θ) +Q

This equation describes the conservation of potential temperature (θ), which

is a measure of the temperature normalized by pressure. θ′ represents per-

turbations from the mean potential temperature, K is the thermal diffu-

sivity, and Q represents heat sources/sinks.

4. Radiative Transfer Equation:

∂I

∂t
+ u · ∇I = εB − κI

This equation represents the radiative transfer equation, where I is the

radiation intensity, u is the wind vector, ε is the emission coefficient, B is

the blackbody radiation, and κ is the absorption coefficient. This equation

governs the transfer of energy due to radiation in the atmosphere.

5. Turbulence Parameterization Equations: Various sub-grid-scale parame-

terizations are used to represent turbulent processes. Examples include the
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Reynolds-Averaged Navier-Stokes (RANS) equations, the TKE (Turbulent

Kinetic Energy) equation, and the vertical mixing schemes

152



Bibliography

[1] Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y.,

Zhu, D., Yang, G., Tian, J., Kang, X., Piao, S., Ouyang, H., Xiang, W.,

Luo, Z., Jiang, H., Song, X., Zhang, Y., Yu, G., Zhao, X., Gong, P., Yao,

T. and Wu, J. (2013), The impacts of climate change and human activities

on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Change

Biol, 19: 2940-2955. https://doi.org/10.1111/gcb.12277.

[2] R.M. Errera, S. Yvon-Lewis, J.D. Kessler, L. Campbell, Responses of

the dinoflagellate Karenia brevis to climate change: CO2 and sea surface

temperatures, Harmful Algae, Volume 37, 2014, Pages 110-116, ISSN 1568-

9883, https://doi.org/10.1016/j.hal.2014.05.012.

[3] T Tokioka, Climate changes predicted by climate models for the increase

of greenhouse gases, Progress in Nuclear Energy, Volume 29, Supplement,

1995, Pages 151-158, ISSN 0149-1970, https://doi.org/10.1016/0149

-1970(95)00038-L.

[4] Gail Rajgor, Building wind farms: Part five: the precarious construction

phase needs careful preparation, Renewable Energy Focus, Volume 12, Issue

6, 2011, Pages 28-32, ISSN 1755-0084, https://doi.org/10.1016/S175

5-0084(11)70150-8.

[5] C. Hiroux, M. Saguan, Large-scale wind power in European electricity

markets: Time for revisiting support schemes and market designs?, Energy

153

 https://doi.org/10.1111/gcb.12277
https://doi.org/10.1016/j.hal.2014.05.012
https://doi.org/10.1016/0149-1970(95)00038-L
https://doi.org/10.1016/0149-1970(95)00038-L
https://doi.org/10.1016/S1755-0084(11)70150-8
https://doi.org/10.1016/S1755-0084(11)70150-8


Policy, Volume 38, Issue 7, 2010, Pages 3135-3145, ISSN 0301-4215, https:

//doi.org/10.1016/j.enpol.2009.07.030.

[6] Jian Chen, Yu Zhang, Zhongyun Xu, Chun Li, Flow characteristics

analysis and power comparison for two novel types of vertically staggered

wind farms, Energy, Volume 263, Part E, 2023, 126141, ISSN 0360-5442,

https://doi.org/10.1016/j.energy.2022.126141.

[7] Lars Ødegaard Bentsen, Narada Dilp Warakagoda, Roy Stenbro, Paal

Engelstad, Spatio-temporal wind speed forecasting using graph networks

and novel Transformer architectures, Applied Energy, Volume 333, 2023,

120565, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2022.

120565.

[8] Yixiang Ma, Lean Yu, Guoxing Zhang, Short-term wind power fore-

casting with an intermittency-trait-driven methodology, Renewable Energy,

Volume 198, 2022, Pages 872-883, ISSN 0960-1481, https://doi.org/10

.1016/j.renene.2022.08.079.

[9] Yangyang Li, Tao Zhang, Xintao Deng, Biao Liu, Jugang Ma, Fuyuan

Yang, Minggao Ouyang, Active pressure and flow rate control of alkaline

water electrolyzer based on wind power prediction and 100% energy utiliza-

tion in off-grid wind-hydrogen coupling system, Applied Energy, Volume

328, 2022, 120172, ISSN 0306-2619, https://doi.org/10.1016/j.apen

ergy.2022.120172.

[10] Sadjad Galvani, Behnam Mohammadi-Ivatloo, Morteza Nazari-Heris,

Saeed Rezaeian-Marjani, Optimal allocation of static synchronous series

compensator (SSSC) in wind-integrated power system considering predictabil-

ity, Electric Power Systems Research, Volume 191, 2021, 106871, ISSN

0378-7796, https://doi.org/10.1016/j.epsr.2020.106871.

154

https://doi.org/10.1016/j.enpol.2009.07.030
https://doi.org/10.1016/j.enpol.2009.07.030
https://doi.org/10.1016/j.energy.2022.126141
https://doi.org/10.1016/j.apenergy.2022.120565
https://doi.org/10.1016/j.apenergy.2022.120565
https://doi.org/10.1016/j.renene.2022.08.079.
https://doi.org/10.1016/j.renene.2022.08.079.
https://doi.org/10.1016/j.apenergy.2022.120172
https://doi.org/10.1016/j.apenergy.2022.120172
https://doi.org/10.1016/j.epsr.2020.106871


[11] Ahmad K. ALAhmad, Voltage regulation and power loss mitigation

by optimal allocation of energy storage systems in distribution systems

considering wind power uncertainty, Journal of Energy Storage, Volume

59, 2023, 106467, ISSN 2352-152X, https://doi.org/10.1016/j.est.20

22.106467.

[12] Guodao Zhang, Yisu Ge, Zi Ye, Mohammed Al-Bahrani, Multi-objective

planning of energy hub on economic aspects and resources with heat and

power sources, energizable, electric vehicle and hydrogen storage system

due to uncertainties and demand response, Journal of Energy Storage, Vol-

ume 57, 2023, 106160, ISSN 2352-152X, https://doi.org/10.1016/j.es

t.2022.106160.

[13] Weiwei Dong, Guohua Zhao, Serhat Yüksel, Hasan Dinçer, Gözde
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[21] C. Pérez Albornoz, M.A. Escalante Soberanis, V. Ramı́rez Rivera, M.

Rivero, Review of atmospheric stability estimations for wind power appli-

cations, Renewable and Sustainable Energy Reviews, Volume 163, 2022,

112505, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2022.1125

156

https://doi.org/10.1016/j.renene.2022.09.111
https://doi.org/10.1016/j.renene.2022.09.111
https://doi.org/10.1016/j.rser.2013.10.030
https://doi.org/10.1016/j.rser.2013.10.030
https://doi.org/10.1016/B978-0-12-821353-7.00013-2
https://doi.org/10.1016/B978-0-12-821353-7.00013-2
https://doi.org/10.1016/B978-0-12-206070-0.50006-7
https://doi.org/10.1016/B978-0-12-206070-0.50006-7
https://doi.org/10.1016/j.rser.2022.112505
https://doi.org/10.1016/j.rser.2022.112505
https://doi.org/10.1016/j.rser.2022.112505


05.

[22] Alexander Kalmikov, Chapter 2 – Wind Power Fundamentals, Ed-

itor(s): Trevor M. Letcher, Wind Energy Engineering, Academic Press,

London, UK 2017, Pages 17-24, ISBN 9780128094518, https://doi.org/

10.1016/B978-0-12-809451-8.00002-3.

[23] Sohoni, Vaishali, S. C. Gupta and Rahul Nema. “A Critical Review on

Wind Turbine Power Curve Modelling Techniques and Their Applications

in Wind Based Energy Systems.” Journal of Energy 2016 (2016): 1-18.

[24] Terence C. Mills, Chapter 1 – Time Series and Their Features, Edi-

tor(s): Terence C. Mills, Applied Time Series Analysis, Academic Press,

London, UK 2019, Pages 1-12, ISBN 9780128131176, https://doi.org/

10.1016/B978-0-12-813117-6.00001-6.

[25] Han Wang, Ning Zhang, Ershun Du, Jie Yan, Shuang Han, Yongqian

Liu, A comprehensive review for wind, solar, and electrical load forecasting

methods, Global Energy Interconnection, Volume 5, Issue 1, 2022, Pages 9-

30, ISSN 2096-5117, https://doi.org/10.1016/j.gloei.2022.04.002.

[26] Shuai Hu, Yue Xiang, Hongcai Zhang, Shanyi Xie, Jianhua Li, Chenghong

Gu, Wei Sun, Junyong Liu, Hybrid forecasting method for wind power in-

tegrating spatial correlation and corrected numerical weather prediction,

Applied Energy, Volume 293, 2021, 116951, ISSN 0306-2619, https://do

i.org/10.1016/j.apenergy.2021.116951.

[27] Anne Gharaibeh, Abdulrazzaq Shaamala, Rasha Obeidat, Salman Al-

Kofahi, Improving land-use change modelling by integrating ANN with

Cellular Automata-Markov Chain model, Heliyon, Volume 6, Issue 9, 2020,

e05092, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2020.e

05092.

157

https://doi.org/10.1016/j.rser.2022.112505
https://doi.org/10.1016/j.rser.2022.112505
https://doi.org/10.1016/j.rser.2022.112505
https://doi.org/10.1016/B978-0-12-809451-8.00002-3
https://doi.org/10.1016/B978-0-12-809451-8.00002-3
https://doi.org/10.1016/B978-0-12-813117-6.00001-6
https://doi.org/10.1016/B978-0-12-813117-6.00001-6
https://doi.org/10.1016/j.gloei.2022.04.002
https://doi.org/10.1016/j.apenergy.2021.116951
https://doi.org/10.1016/j.apenergy.2021.116951
https://doi.org/10.1016/j.heliyon.2020.e05092
https://doi.org/10.1016/j.heliyon.2020.e05092


[28] Yu Jiang, Zhe Song, Andrew Kusiak, Very short-term wind speed fore-

casting with Bayesian structural break model, Renewable Energy, Volume

50, 2013, Pages 637-647, ISSN 0960-1481, https://doi.org/10.1016/j.

renene.2012.07.041.

[29] Tinghui Ouyang, Andrew Kusiak, Yusen He, Modeling wind-turbine

power curve: A data partitioning and mining approach, Renewable Energy,

Volume 102, Part A, 2017, Pages 1-8, ISSN 0960-1481, https://doi.org/

10.1016/j.renene.2016.10.032.

[30] Jianzhou Wang, Jianming Hu, A robust combination approach for

short-term wind speed forecasting and analysis – Combination of the ARIMA

(Autoregressive Integrated Moving Average), ELM (Extreme Learning Ma-

chine), SVM (Support Vector Machine) and LSSVM (Least Square SVM)

forecasts using a GPR (Gaussian Process Regression) model, Energy, Vol-

ume 93, Part 1, 2015, Pages 41-56, ISSN 0360-5442, https://doi.org/10

.1016/j.energy.2015.08.045.

[31] Zhengtang Liang, Jun Liang, Li Zhang, Chengfu Wang, Zhihao Yun,

Xu Zhang, Analysis of multi-scale chaotic characteristics of wind power

based on Hilbert–Huang transform and Hurst analysis, Applied Energy,

Volume 159, 2015, Pages 51-61, ISSN 0306-2619, https://doi.org/10.1

016/j.apenergy.2015.08.111.

[32] J.P.S. Catalão, H.M.I. Pousinho, V.M.F. Mendes, Short-term wind

power forecasting in Portugal by neural networks and wavelet transform,

Renewable Energy, Volume 36, Issue 4, 2011, Pages 1245-1251, ISSN 0960-

1481, https://doi.org/10.1016/j.renene.2010.09.016.

[33] Ma, Qingwen, Sihan Liu, Xinyu Fan, Chen Chai, Yangyang Wang,

and Ke Yang. 2020. “A Time Series Prediction Model of Foundation Pit

158

https://doi.org/10.1016/j.renene.2012.07.041
https://doi.org/10.1016/j.renene.2012.07.041
https://doi.org/10.1016/j.renene.2016.10.032
https://doi.org/10.1016/j.renene.2016.10.032
https://doi.org/10.1016/j.energy.2015.08.045
https://doi.org/10.1016/j.energy.2015.08.045
https://doi.org/10.1016/j.apenergy.2015.08.111
https://doi.org/10.1016/j.apenergy.2015.08.111
https://doi.org/10.1016/j.renene.2010.09.016


Deformation Based on Empirical Wavelet Transform and NARX Network”

Mathematics 8, no. 9: 1535. https://doi.org/10.3390/math8091535.

[34] Li Zhang et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 252 032052,

Xi’an, China. DOI 10.1088/1755-1315/252/3/032052.

[35] Hossain M, Mekhilef S, Afifi F, Halabi LM, Olatomiwa L, Seyedmah-

moudian M, et al. (2018) Application of the hybrid ANFIS models for long

term wind power density prediction with extrapolation capability. PloS

ONE 13(4): e0193772. https://doi.org/10.1371/journal.pone.01937

72.

[36] Dhiman, Harsh S., and Dipankar Deb. “A review of wind speed

and wind power forecasting techniques.” arXiv preprint arXiv:2009.02279

(2020), https://doi.org/10.48550/arXiv.2009.02279.

[37] Luis Torgo and Orlando Ohashi. 2011. 2D-interval predictions for

time series. In Proceedings of the 17th ACM SIGKDD international con-

ference on Knowledge discovery and data mining (KDD ’11). Associa-

tion for Computing Machinery, New York, NY, USA, 787–794. https:

//doi.org/10.1145/2020408.2020546.

[38] J.L. Torres, A. Garćıa, M. De Blas, A. De Francisco, Forecast of hourly

average wind speed with ARMA models in Navarre (Spain), Solar Energy,

Volume 79, Issue 1, 2005, Pages 65-77, ISSN 0038-092X, https://doi.or

g/10.1016/j.solener.2004.09.013.

[39] Pinson, P. (2012), Very-short-term probabilistic forecasting of wind

power with generalized logit–normal distributions. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 61: 555-576. https:

//doi.org/10.1111/j.1467-9876.2011.01026.x.

159

https://doi.org/10.3390/math8091535
10.1088/1755-1315/252/3/032052
https://doi.org/10.1371/journal.pone.0193772
https://doi.org/10.1371/journal.pone.0193772
https://doi.org/10.48550/arXiv.2009.02279
https://doi.org/10.1145/2020408.2020546
https://doi.org/10.1145/2020408.2020546
https://doi.org/10.1016/j.solener.2004.09.013
https://doi.org/10.1016/j.solener.2004.09.013
https://doi.org/10.1111/j.1467-9876.2011.01026.x
https://doi.org/10.1111/j.1467-9876.2011.01026.x


[40] Tanveer Ahmad, Hongcai Zhang, Biao Yan, A review on Renewable

energy and electricity requirement forecasting models for smart grid and

buildings, Sustainable Cities and Society, Volume 55, 2020, 102052, ISSN

2210-6707, https://doi.org/10.1016/j.scs.2020.102052.

[41] Tinghui Ouyang, Xiaoming Zha, Liang Qin, Yusen He, Zhenhao Tang,

Prediction of wind power ramp events based on residual correction, Renew-

able Energy, Volume 136, 2019, Pages 781-792, ISSN 0960-1481, https:

//doi.org/10.1016/j.renene.2019.01.049.
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