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Abstract 

Skeletal muscle is a significant contributor to maintaining health at a whole-body level. 

Loss of skeletal muscle mass and strength is associated with reduced reports of quality 

of life, increased mortality and morbidity rates, and increased healthcare spending. As 

traditional approaches have so far failed to identify effective interventions to treat or 

prevent loss of muscle mass and strength and key mechanisms in the development of 

muscle wasting remain unknown, this thesis adopts an untargeted metabolomics 

approach to examine the plasma metabolomic profile of volunteers in four studies 

associated with maintenance or loss of skeletal muscle health. Throughout this thesis 

an integrative approach combining metabolomics data with outcome measures that 

demonstrate adaptation at the whole-body level has been adopted to provide relevant 

physiological context for observed changes in the plasma metabolome.  

In Chapter 3, untargeted metabolomics was used to assess the effect of sedentary 

behaviour induced by chronic bed rest on the plasma metabolome in healthy young 

men maintained in energy balance. Metabolites present at a significantly different 

plasma abundance relative to baseline following bed rest were linked to networks 

reflective of altered fat and carbohydrate utilisation, paralleling work which shows 

chronic bed rest blunts both the insulin mediated increase in carbohydrate oxidation 

and the suppression of fat oxidation. Correlation analysis found change in the plasma 

metabolome was most highly associated with rate of insulin mediated fat oxidation 

and glucose disposal following bed rest.  

In Chapter 4, the plasma metabolome was compared between three age groups 

before and after 20 weeks of resistance exercise training. Plasma metabolites 

characteristic of age prior to training showed a high degree of similarity to the muscle 

metabolome at the same timepoint. However, the abundance plasma metabolites 
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characteristic of age at baseline were found to be unchanged by resistance exercise 

training in all ages. In addition, within group analysis found that no plasma metabolites 

were present at a significantly different abundance relative to baseline after resistance 

exercise training regardless of age.   

In Chapter 5, the impact of aerobic exercise training and subsequent exercise 

withdrawal on the plasma metabolome in healthy young volunteers was assessed. 

Aerobic exercise was associated with a shift in lipid profile that can be linked to 

mitochondrial lipid oxidation. These results are in line with previous work reporting an 

increase in mitochondrial ATP production rates in response to palmitate. Associations 

were also found between lipid oxidation with respiratory exchange ratio and maximal 

oxygen uptake, providing further evidence to support mitochondrial adaptations in 

response to aerobic exercise training.  

Finally, in Chapter 6 the impact of aerobic exercise and subsequent exercise 

withdrawal on the plasma metabolome in healthy older individuals and age matched 

COPD patients was assessed. Although there was an observable response to exercise 

in the healthy controls, no differences in the abundance of any plasma metabolites 

were found in COPD following 8 weeks of training. This parallels previous work 

demonstrating a lack of adaptation in respiratory exchange ratio, maximal oxygen 

uptake and mitochondrial ATP production in COPD patients. In the healthy control 

group, correlation analysis supported a link between lipid oxidation mechanisms and 

physiological adaptations to aerobic exercise training, suggesting mitochondrial 

adaptations are common between healthy young and older individuals in response to 

aerobic training.  
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 Introduction 

1.1. OMICs approaches to the study of health, ageing and disease 

research 

The use of OMICs in the study of health, ageing and disease has expanded rapidly in 

recent years (Borges et al., 2020). OMICs refers to technologies aimed at the detection 

of the complete complement of DNA, RNA, proteins/phosphoproteins and/or 

metabolites within a biological system/tissue or sample  (Hasin et al., 2017). In 

contrast to beginning with a pre-determined hypothesis, as is common to many 

research problems, OMICs experiments adopt a holistic approach by focusing on 

understanding a complex biological system of cells, tissues and organs by looking at it 

as a whole and exploring the roles and relationships between molecules within that 

system (Hasin et al., 2017). OMICs experiments are often high-throughput and 

generate very large datasets with the premise being that if as much as possible is 

measured within a single system this may help highlight, through associations based 

on statistical interference, previously unknown biological factors important in the 

development of disease states or physiological phenotypes that can be used to define 

hypotheses which can be tested further (Kell and Oliver, 2004). A number of different 

OMICs techniques currently exist with the most commonly used being genomics, 

transcriptomics, proteomics, and metabolomics. Each provide a different level of 

information about the system under investigation and interact with each other to 

provide information predisposing a particular phenotype. An overview of the OMICs 

cascade is provided in Figure 1.1.  
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Figure 1.1 Overview of the omics cascade 

Biological systems can be studied using different omics approaches which each 
interact with each other. Genes are transcribed to mRNA transcripts, which can be 
translated to proteins or themselves regulate expression of other genes. Metabolites 
are produced as substrates in protein-mediated reactions and can themselves act as 
signalling molecules for proteins in cellular events. Perturbations to the genome, 
transcriptome and proteome are reflected in the downstream metabolome. Unlike 
genomics, transcriptomics and proteomics, which predict how changes in their 
respective omes can affect what happens at a phenotypic level, metabolomics 
provides a direct chemical link between genotype and phenotype. 

 

 Genomics, proteomics and transcriptomics 
The first OMICS technique to be developed was genomics, the study of an organism’s 

complete set of genetic information, which emerged in the 1990s as a result of the 

Human Genome Project and has since been commonly used in the study of 

relationships between genes and protein functions as well as to identify variations 

within the gene loci (Horgan and Kenny, 2011). Thousands of genomic variations have 

been associated with diseases and some have gone on to have translational benefits, 

for instance the identification of a t(9;22) translocation in chronic myeloid leukaemia 

by genomics enabled the therapeutic use of a BCR-ABL tyrosine kinase inhibitor that 

improved prognosis (Druker et al., 2001) and 5 year survival rate (Jain et al., 2017) in 
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leukaemia patients. However there are some limitations to genomics. Firstly, genome 

wide studies can identify the same genetic variants which contribute to different final 

outcomes depending on environmental factors (for example the differences in 

prevalence of Parkinson’s disease (Tanner et al., 1999), multiple sclerosis (Baranzini et 

al., 2010) or asthma (Sarafino and Goldfedder, 1995) in genetically identical twins) 

and, although many variants have been identified, associations with disease are often 

weak (Johnson and Donnell, 2009). To account for multiple test correction genome 

wide studies must adopt a level of significance of approximately 7.2x10-8 (Dudbridge 

and Gusnanto, 2008) therefore for a genomics experiment to be appropriately 

powered very large sample sizes are often required. For complex phenotypes with 

multiple identified loci variations that must all be accounted for, such as those 

associated with health, ageing, disease and the loss of muscle mass, this can be 

prohibitively expensive and difficult to accomplish (Visscher et al., 2012).  

Transcriptomics, the study of the total RNA content of a cell, is most often used to 

measure the active expression of gene transcripts but can also measure the expression 

of non-coding RNAs that do not translate to active genes but instead control DNA 

expression (de Goede et al., 2021). Transcriptomics approaches have been successful 

in finding prognostic and diagnostic markers of breast cancer which have been 

successfully translated with clinical benefit (Aarøe et al., 2010). However a major 

limitation of transcriptomics is that mRNA transcripts are not necessarily directly 

proportional to protein level. High expression of some mRNA transcripts is not 

correlated with subsequent protein expression while relatively small changes in the 

expression level of others result in large changes of the total amount of corresponding 

protein (Schwanhäusser et al., 2011) therefore important changes in RNA expression 

may be missed in transcriptomics experiments as they may not reached the statistical 

cut-offs required in large data sets and as a result transcriptomics can provide non-
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representative data. The benefit of transcriptomics in early intervention for cancer 

patients is established but potential markers for other diseases such as potential 

miRNA diagnostic markers of Alzheimer’s disease (Keller et al., 2014) or Parkinson’s 

disease (Youdim et al., 2007) have yet to reach the clinic. Additionally, as with 

genomics, sample size and reproducibility is an important factor in transcriptomics to 

overcome underpowered studies (Button et al., 2013).  

Finally, proteomics is the study of the full complement of proteins in a cell, tissue, or 

organism. Proteomics can also be used to characterise protein pathways and networks 

to understand their functional relevance. Proteomics is also a popular technique in 

biomarker research as proteins are likely to be affected by disease. For example, 

proteomics approaches enabled the development of a diagnostic kit for use in 

detecting soluble CD19 present in cerebrospinal fluid as a biomarker of lymphomas 

(Muniz et al., 2014). Proteomics has also been applied in musculoskeletal research in 

an attempt to identify molecular mechanisms of muscle mass loss in sarcopenia and 

cachexia however a robust protein signature of muscle mass loss has not yet been 

identified (Ibebunjo et al., 2013; Ebhardt et al., 2017; Ubaida-Mohien et al., 2019). 

Furthermore, while a number of candidate biomarkers for other diseases, such as 

cancer (Kwon et al., 2021), have been identified in clinical studies many have not yet 

reached clinical translation (Diamandis, 2012) and, as in transcriptomics, there is no 

simple relationship between protein expression and functional changes (Yu et al., 

2017).  

 Metabolomics 
While genomics, transcriptomics and proteomics can be very powerful techniques that 

have enabled significant advances in the field of biomedical science, data gathered 

from such experiments only represent alterations that predispose an organism’s 

phenotype so findings do not always correlate directly with the phenotype or any 
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changes to this phenotype in response to intervention or perturbation by disease 

(Horgan and Kenny, 2011; Hasin et al., 2017). For example, one pleiotropic gene can 

impact on multiple proteins to affect more than one phenotypic trait. A specific 

example can be found when looking at mutations in the Mc1r gene locus, which can 

influence rates of melanoma (Shuyang Chen et al., 2019) due to the role of MC1R in 

controlling skin pigmentation but are also associated with sepsis (Seaton et al., 2017) 

and rates of developing cancer unrelated to skin pigmentation (Feller et al., 2016). 

Metabolomics is a comparatively new field, first described in 1998 as an approach to 

measure the “change in the relative concentrations of metabolites as the result of the 

deletion or overexpression of a gene” (Oliver et al., 1998), that studies the 

metabolome, the full complement of small molecules (usually less than 1500 Da) 

present in a cell that represent the key intermediaries and/or endpoints in all 

metabolic reactions, and that are required for the normal growth, maintenance and 

function of a cell (Fiehn, 2002; Færgestad et al., 2009). Changes in this “metabolome” 

are directly responsive to stimuli (such as intracellular signalling triggered by disease 

(Mavers et al., 2009) reflecting the current status of an organism and, most 

importantly, any perturbations to the upstream genome, transcriptome or proteome 

should be reflected through concomitant changes in the downstream metabolome 

making it a vital and strong link between genotype and phenotype (Bujak et al., 2015). 

The metabolome in theory should carry an imprint of all genetic, epigenetic and 

environmental factors impacting on a system and as a consequence the majority of 

biological and medical perturbations can be expected to be visible in the metabolome 

making metabolites the ideal biomarkers of disease mechanisms and development. 

A key principle in metabolomics is that certain diseases or conditions that impact 

phenotypic change have effects on normal physiological processes within a system 
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which translate to visible differences in the metabolome of individuals with and 

without this condition or change. Untargeted metabolomics analyses the full set of 

measurable metabolic features within a sample, including uncharacterised 

metabolites, in an unbiased way allowing for the identification of consistent relative 

differences in groups of metabolites between individuals with or without a particular 

condition or phenotypic change (Schrimpe-Rutledge et al., 2016).  These changes act 

as biomarkers, allowing the stratification of individuals into groups based on their 

metabolic profile, and can be used to infer prognostic or diagnostic markers of disease, 

the mechanism of disease progression and identify possible therapeutic targets by 

studying alterations in metabolic pathways and the molecular or cellular functions 

regulating them (Zhang et al., 2017). Metabolomics therefore has the ability to detect 

changes before they are measurable within the phenotype. This is particularly 

important in helping to understand non-communicable diseases with complex 

pathologies.  

The use of untargeted metabolomics in the clinical study of complex diseases has been 

growing over the past 20 years (Tolstikov et al., 2020). For example, reduced levels of 

dehydroascorbic acid and increased levels of fructose, mannose and threonic acid in 

cerebrospinal fluid were indicative of early-stage Parkinson’s disease (Trezzi et al., 

2017). Ten plasma phospholipids predicted preclinical Alzheimer’s disease in 

cognitively normal individuals with a 90% degree of accuracy (Mapstone et al., 2014). 

Differences in plasma metabolite abundance in ALS patients compared to controls 

were used to identify novel pathways which were highly correlated with known ALS 

pathology (Goutman et al., 2020). Finally, a panel of 31 urinary metabolite biomarkers 

suggestive of abnormal amino acid and pentose phosphate metabolism pathways 

were closely associated with nonalcoholic fatty liver disease (Dong et al., 2017). 

However none of these potential markers have been translated for clinical application. 
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The number of features able to be measured by metabolomics techniques is key to 

the strength of this approach. Current metabolomics techniques are able to detect 

tens of thousands of metabolites in human studies (Patti et al., 2012), comparable to 

high-throughput proteomics (Low et al., 2013) or whole-transcriptome panels (Moses 

and Pachter, 2022). While number of features are comparable between omics 

approaches, transcript expression does not necessarily equal functional changes, as 

discussed above, and therefore may be relaying information not directly related to the 

biological question at hand. By measuring large numbers of metabolites per sample, a 

greater sensitivity to identify clear signatures is achieved which allows biological 

insights into changes underlying complex conditions as, unlike mRNA transcripts or 

proteins, differences relative metabolite concentrations must complement each other 

(Lu et al., 2017) and therefore provide direct information about changes within each 

impacted pathway.  

In contrast to the hypothesis generating approach of untargeted metabolomics there 

is an alternative and complimentary approach called targeted metabolomics which 

involves verification and validation of pre-defined metabolites or metabolite groups 

across samples provided through hypotheses generated using prior knowledge of 

conditions or previous untargeted experiments. While untargeted metabolomics 

studies relative changes within samples, targeted metabolomics provides a more 

precise and quantitative approach often involving semi-quantitative or quantitative 

measures of absolute concentrations of the defined groups of metabolites (Roberts et 

al., 2012).  By its nature targeted metabolomics limits the coverage of the metabolome 

to a few known groups which in turn limits the discovery of novel metabolic responses, 

however it may reveal new associations between the defined metabolites (Lewis et 

al., 2010). As such, targeted analysis is well suited to hypothesis testing studies and 

can be used to validate the results of untargeted works and help with translation to 
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clinical application. Examples of this are evident from the as early as the late 90’s, 

where conditions such as inborn errors of metabolism, disorders of fatty acid oxidation 

or phenylketonuria have been routinely screened for at birth using targeted tandem 

mass spectrometry (Wiley et al., 1999). This demonstrates the potential for application 

in clinical use of other metabolic biomarkers once investigations have progressed to 

the validation stage.  

 The metabolomic workflow for untargeted analysis 

1.1.3.1. Experimental design 

Metabolomics experiments generally have one of three desired outcomes: to identify 

clinically relevant diagnostic or prognostic markers (biomarker discovery); to uncover 

disease mechanism (pathogenesis studies); or to map associations between the 

metabolome and environmental factors, such as lifestyle (association studies) (Dunn 

et al., 2012). Regardless of intended outcome, careful experimental design is required 

to ensure that only biologically relevant variation is measured and confounding factors 

are accounted for in the analysis process. This involves the collection of metadata such 

as data related to physiology of the participants (for example, their age, gender, or 

BMI).  

1.1.3.2. Sample collection and preparation 

Having posed the research question and designed the study, the next consideration in 

the metabolomics pipeline is sample collection. Metabolomics can be used on a range 

of samples including biofluids (e.g. serum, plasma, urine or saliva), cells or tissues. 

With the exception of urine, which is considered to be metabolically inactive 

(Chetwynd et al., 2017) these sample types are considered to be metabolically active 

(i.e. metabolism is continuing within the sample even after collection). Samples must 

be quenched and stored immediately as metabolites are not stable at higher 
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temperatures (for example, plasma and serum concentrations of lysophospholipids 

underwent significant changes during storage at 4°C (Yang et al., 2013)).  

The collection of blood samples is further complicated by clotting. For serum 

collection, blood is allowed to be clotted before serum is removed however time and 

temperature of clotting can influence the serum metabolic profile. Extending clotting 

time was associated with a 9.08% increase in median absolute percent difference in 

level of metabolites (McClain et al., 2020) and pattern recognition showed clear 

differences in metabolic profile from serum clotted and room temperature and on ice 

from the same volunteers (Teahan et al., 2006). The collection of plasma does not 

involve a clotting process however the type of anticoagulant in blood tubes to prevent 

clotting can also have an impact on metabolic profile. For example, lipids were 

generally higher in abundance in tubes coated in EDTA than CPT and hierarchical 

clustering analysis showed clear differences in metabolic profile of plasma samples 

collected at the same time from the same donor depending on type of anticoagulant 

(Khadka et al., 2019). Blood tubes used in sample collection and clotting time and 

temperature must therefore be consistent across all samples.  

Other factors to consider include nutrition and time of sample collection. Nutrition can 

provide signals which perturb the metabolome. For instance high and low fat diets 

have differential effects on abundance of amino acids and nucleotides in the liver and 

serum regardless of sample collection time (Abbondante et al., 2016). Therefore 

fasting samples are often collected in metabolomics studies to remove the potential 

effect of dietary habits when studying how metabolism differs between populations 

of interest  (Chetwynd et al., 2017). Metabolite expression is also regulated by the 

diurnal cycle. 15% of identified metabolites in saliva and plasma were found to be 

under circadian rhythm (Dallmann et al., 2012). Time of sample collection should 
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therefore be homogenous between individuals and across collection days to reduce 

variability (Smith et al., 2020).  

Having preserved as much true metabolic variation as possible at the same collection 

stage, the optimal method of sample preparation must simplify the processing stage 

as much as possible to avoid introducing error while also extracting the greatest 

number of metabolites representing the sample’s phenotype possible without 

inducing degradation or contamination (Y. Chen et al., 2016). There is no universally 

accepted method of metabolite extraction therefore when designing a study the 

selected sample preparation method must be well documented to ensure consistency 

across all batches and to ensure the focus of the experimental outcomes are achieved. 

As with sample collection, this is particularly important in large scale studies where 

sample preparation may take place at multiple research sites as inaccuracies in 

processing and storage of samples may impact on the metabolic profile and prevent 

the identification of true metabolic variation (Smith et al., 2020).  

1.1.3.3. Data acquisition 

In metabolomics experiments metabolites are typically detected in samples though 

the use of either one or both of nuclear magnetic resonance (NMR) spectroscopy or 

mass spectrometry (MS) (Cambiaghi et al., 2017). NMR spectroscopy is a highly 

reproducible platform often used in metabolomic fingerprinting studies. Metabolites 

generate their own specific signal, referred to as resonance. Resonance of any 

particular proton is influenced by its chemical environment, and therefore the 

resonance obtained can be related to the relative position of chemical groups within 

the structure of the metabolite, and intensity is proportional to the number of nuclei 

under observation generating that specific resonance, and therefore to the molar 

concentration of the metabolite (Deidda et al., 2015; Tognarelli et al., 2015).  
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NMR is a non-destructive technique that can provide in-depth structural information 

and concentration of metabolites without the need for extensive sample preparation 

(Liu and Locasale, 2017) however NMR has a low sensitivity, typically only reaching 

around 100 µM (Lee et al., 2014). In contrast MS is a destructive method of acquisition 

that requires several stages of sample preparation and is not able to be used 

quantitatively in untargeted studies (Liu and Locasale, 2017) but enables the detection 

of metabolites at concentrations as low as the femtomolar range (Tsedilin et al., 2015). 

A single proton NMR spectrum can quantify up to approximately 200 metabolites 

while high resolution MS is capable of detecting tens of thousands of metabolites 

within a single sample (Ganna et al., 2016). NMR has a limited dynamic range, the ratio 

between maximum and minimum measurable values above background noise (Hung 

et al., 2013), spanning only two orders of magnitude (Suiter et al., 2014) while MS has 

an improved dynamic range of approximately 1:5000 in modern instruments 

(Kaufmann and Walker, 2016). Thus, while it is able to provide structural information 

about metabolites without extensive sample processing, the low sensitivity, resolution 

and dynamic range of NMR in comparison to MS limit the applicability of NMR in many 

metabolomics studies (Liu and Locasale, 2017). For these reasons the use of MS as a 

method of acquisition in metabolomics is more popular than NMR, with 16,207 non-

review articles (per Web of Science) relating to the use of MS in metabolomics 

compared to 6,428 non-review articles for NMR.  

MS converts analytes to an ionised state then detects molecules present in a sample 

by using their mass-to-charge (m/z) ratio such that each peak in the resulting 

chromatogram is associated with the mass spectrum of a specific metabolite, allowing 

its identification (Pitt, 2009) (Figure 1.2). While there are several examples of 

ionisation techniques in mass spectrometry including matrix-assisted laser 

desorption/ionisation (MALDI), resonance ionisation (RIMS) or atmospheric pressure 
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chemical ionisation (APCI) (Munson, 2006), one of the most popular methods in 

metabolomics experiments is electrospray ionisation which will be discussed here in 

more detail. First, the sample of interest is nebulised at the tip of a metal capillary 

which is receiving an electric charge typically between 3 and 5 kV (Kebarle, 2000) to 

create a spray of charged droplets in the ion source. Dry nitrogen is used as a flow of 

sheath gas around the capillary to improve nebulisation. In addition, the dry nitrogen 

facilitates the movement of droplets from the capillary into the mass spectrometer 

and, alongside the application of heat at temperatures of approximately 100-300°C 

(Banerjee and Mazumdar, 2012), causes the droplets to rapidly evaporate. As the 

droplets evaporate the charge on the outside is transferred to the analyte inside 

leaving the analyte ionised. Therefore, only charged analytes enter the mass analyser 

(Banerjee and Mazumdar, 2012).  

 

Figure 1.2 Schematic overview of the mass spectrometer 

Samples enter the mass spectrometer via the sample inlet, after which they are 
converted into charged ions in the ionisation source. Ions are accelerated and 
propelled into the mass analyser, which separates ions based on their unique mass-
to-charge (m/z) ratios. Finally, ions reach the detector which generates a signal for 
each ion, displayed as peaks on a chromatogram. Each peak represents a unique m/z 
ratio and retention time value. 
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In the mass analyser ions are separated using their unique m/z ratios. There are many 

types of mass analysers which each work slightly differently, including time of flight, 

ion trap or electrostatic sector analysers (de Hoffmann and Stroobant, 2001) but the 

orbitrap analyser is most relevant to this thesis and will be discussed in more detail. 

An orbitrap analyser typically has a working resolution of up to 1,000,000 (Eliuk and 

Makarov, 2015), higher than time of flight analysers which often operate at a 

resolution of around 60,000 (van der Heeft et al., 2009) or ion trap analysers which  

have a resolving power of 240,000 (Michalski et al., 2012), meaning there is a better 

separation of metabolite peaks with an orbitrap compared to alternative mass 

analysers. An orbitrap consists of 3 outer electrodes and 1 central electrode between 

which a voltage is applied. Ions are injected into the volume between the central and 

outer electrodes. The electric field created by the voltage between the electrodes 

combined with the tangential velocity of the ion keep the ion spiralling inside the 

orbitrap (Zubarev and Makarov, 2013). The specialised shape of the electrodes creates 

an axial electric field which pushes the ion towards the widest part of the orbitrap, 

where the outer electrodes are used as detector plates (Figure 1.3).  
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Figure 1.3 Illustrative example of orbitrap mass analyser used to separate ions by their 
m/z values 

Three outer and one central electrode form a unique shape in the mass analyser to 
generate an axial electric field which pushes ions towards the widest part of the 
orbitrap where the three outer electrodes are used as detectors. Ions are injected in 
the space between the central and outer electrodes of the mass analyser. The electric 
field generated by the electrodes and the existing velocity of the ions cause ions to 
spiral inside the orbitrap. Image available at: https://biorender.com/ 

 

A signal is generated when each ion reaches the detector and is passed to a computer 

where it is registered as a peak on a chromatogram. Every detectable analyte in the 

sample will create their own unique peak associated with their unique mass spectrum 

allowing for metabolite identification. To further improve resolution an orbitrap 

analyser can be combined with a quadrupole mass filter (Michalski et al., 2011). In a 

quadrupole mass filter, 4 rods are held parallel to each other and ions travel down the 

quadrupole between the rods. A radio frequency voltage with a DC offset voltage is 

applied between one opposing rod pair and the other. For a given ratio of radio 
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frequency to DC offset voltage, certain ions will have stable trajectories based on their 

m/z values. Only these ions will reach the detector while others will have unstable 

trajectories and collide with the rods (Figure 1.4). This principle allows for the 

monitoring of ions based on their m/z value by varying the voltage ratio (de Hoffmann 

and Stroobant, 2001). A quadrupole orbitrap mass spectrometer (Figure 1.5) uses the 

quadrupole mass filter for the selection of ions in a defined m/z range (though this can 

be wide for untargeted studies) and only those ions are transferred on for orbitrap 

analysis (Michalski et al., 2011). This combined approach in the mass analyser is 

termed tandem mass spectrometry and reduces the complexity of the sample and the 

likelihood of matrix effects, where a co-eluting compound can suppress the signal from 

an analyte of interest (Panuwet et al., 2016), which can be a limitation on MS 

sensitivity.  

To further reduce the likelihood of ion suppression, MS is commonly coupled to a 

chromatographic separation system (Cambiaghi et al., 2017). Chromatographic 

separation minimises signal suppression and provides a retention time identifier to 

further aid metabolite identification (Johnson et al., 2016). The most commonly 

employed methods for separation in metabolomics are gas chromatography (GC) and 

liquid chromatography (LC).  
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Figure 1.4 Illustrative example of the quadrupole mass analyser used to separate ions 
by their m/z values 

Four rods are held parallel to each other and a radio frequency voltage with a DC offset 
voltage is applied between each opposing rod pair. Ions are injected into the space 
between the rods. The trajectory of the ions is determined by their m/z value and the 
ratio of the voltages. Only certain m/z values will allow ions to have a stable trajectory 
and reach the detector, while ions with other m/z values will have unstable trajectories 
and collide with the rods. 
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Figure 1.5 Schematic of quadrupole orbitrap mass spectrometer 

Schematic of the Q-Exactive mass spectrometer produced by Thermo Fisher Scientific, 
a benchtop quadrupole orbitrap which can improve resolution of acquired data. The 
quadrupole mass filter is used to select ions in a defined m/z range. The selected ions 
are then passed to the orbitrap. Image from Thermo Fisher Scientifc UK: 
https://www.thermofisher.com/uk/en/home/industrial/mass-spectrometry/mass-
spectrometry-learning-center/mass-spectrometry-technology-overview/mass-
analyzer-technology-overview.html 

 

1.1.3.3.1. Chromatographic separation techniques 

GC-MS has historically been a popular choice in metabolomics. Samples are dissolved 

in a solvent and vaporised, then passed through a heated column by a chemically inert 

gas (Guiochon and Guillemin, 1990). In the column, the sample is repeatedly dissolved 

and vaporised in the stationary phase. The process of dissolving and vaporising 

depends on physiochemical properties of the column and the interaction with each 

metabolite, therefore the time of dissolving and vaporising is unique for each 

compound allowing metabolites to separate within the column. A mass spectrometer 

at the end of the column monitors the composition of the gas stream and converts it 

into signals which form chromatograms with peaks representing metabolites (Bartle 
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and Myers, 2002). GC-MS has clear chromatographic resolution, high reproducibility, 

and can provide detailed spectral information however it is limited by the size and type 

of metabolite that can be separated with GC (Ren et al., 2018). GC-MS is not suitable 

for larger compounds, or non-volatile or thermally unstable metabolites (Lei et al., 

2011). It also requires extensive preparation of samples prior to analysis often 

including the derivatisation of non-volatile compounds to make them volatile, which 

is time consuming (Liu and Locasale, 2017). It can also be difficult to distinguish 

compounds with similar chemical properties or low molecular weights using GC 

resulting in low resolution of chromatograms and poorer reproducibility (Büscher et 

al., 2009). Due to these issues and limitations of GC and the rapid technical 

development in the field of LC over the past few decades, LC is becoming a more 

popular choice than GC in metabolomics studies. 

LC separates molecules based on their physical and chemical properties, such as 

molecular size, charge, polarity, and affinity towards other molecules. It consists of a 

stationary and a mobile phase. The mobile phase comprises the solution containing 

the sample mixture and the solvent that moves the sample through the 

chromatographic column containing the stationary phase before it is injected into the 

mass spectrometer. Solvents in the mobile phase are typically a mix between non-

polar solvents (most commonly water) and polar solvents such as methanol or 

acetonitrile (Rusli et al., 2022). Composition of the mobile phase must be considered 

so that it does not accidentally damage the stationary phase. The stationary phase in 

LC is composed of long chain alkyl groups attached to the surface of irregularly or 

spherically shaped porous particles (Dass, 2007) typically between 2 and 5 µm in 

diameter (Borges, 2015). Traditionally particles in the stationary phase have been silica 

and this remains a popular choice for LC, though more recently non-silica stationary 

phases are being explored (Borges, 2015) as different separation methods are suited 
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to varying classes of metabolites. Functional groups in the long chain alkyls attached 

to stationary phase particles interact with compounds through hydrogen bonding, 

dipole-dipole interactions (both examples of hydrophilic bonding) and London forces 

(hydrophobic interactions) (Rusli et al., 2022) leading to retention. Non-interacting 

compounds or compounds with weaker interactions are not retained and elute quickly 

from the column, exhibiting shorter retention times (Petrova and Sauer, 2017) (Figure 

1.6).   

 

Figure 1.6 Schematic example of interactions between analytes and stationary phase 
in a liquid chromatography column 

Silica stationary particles (black circles) are bonded to functional groups (blue stars) 
which form hydrophobic and hydrophilic interactions with analytes (red stars) in the 
sample mixture, resulting in these compounds being retained in the column. 
Compounds which do not interact with the functional groups of the stationary phase 
(green hexagons) are not retained by the stationary phase and elute quickly. 
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Reverse phase (RP) chromatography is the most commonly used technique in 

metabolomics. In RP columns, the stationary phase is composed of compounds with 

high numbers of carbon molecules such as octadecylsilane (C18) or octylsilane (C8). 

The mobile phase begins at a high polarity which when passed through the stationary 

phase makes the surface of the particles in the column non-polar and hydrophobic 

(Molnar and Horvath, 1976). The hydrophobic particles in the column have a higher 

affinity for non-polar molecules in the sample with higher hydrophobicity and retain 

them, while polar compounds do not form interactions and elute quickly (Shabir, 

2010). The decreasing polarity of the mobile phase over the course of the separation 

reduces the hydrophobic interactions and allows non-polar compounds to elute at a 

later time point than polar compounds (Molnar and Horvath, 1976). However the 

quick elution of polar species of metabolites can increase ion suppression (Kloos et al., 

2013). The relatively recent development of hydrophilic interaction chromatography 

(HILIC) columns which are well suited for polar metabolites but do not retain 

hydrophobic molecules well has enabled the separation of metabolites that are only 

retained minimally using RP chromatography (Theodoridis et al., 2008). HILIC uses a 

polar stationary phase which can be bare silica or silica modified by many polar 

molecules such as DIOL, amino or amide bonded phases (Buszewski and Noga, 2012) 

and an aqueous/organic mobile phase of which a large proportion (>60%) is an organic 

solvent, commonly acetonitrile (Periat et al., 2013). Water molecules are attracted by 

the polar groups of the stationary phase and form a semi-immobilised aqueous layer 

over the surface of the stationary phase. Polar analytes within samples become 

partitioned between the semi-immobilised layer and the mobile phase which contains 

some aqueous content. The more hydrophilic an analyte is the greater the partitioning 

equilibrium shifts towards the semi-immobilised layer and the stronger the retention 

of the analyte (Tang et al., 2016). Thus, polar metabolites are retained for longer while 
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non-polar metabolites elute quickly. HILIC is a variant of normal phase 

chromatography but uses less toxic solvents which make it an advantageous technique 

(Borges, 2015). HILIC has been continuously growing in popularity as a separation 

method (Buszewski and Noga, 2012) and it is now generally accepted that using both 

RP and HILIC separation techniques in LC-MS analysis maximises coverage of the 

metabolome (Gika et al., 2008; Lu et al., 2008; Engskog et al., 2016). 

After metabolites have eluted from the chromatographic column they enter the 

source region of the mass spectrometer where they are ionised, as discussed in the 

previous section (Lu et al., 2008). The number and class of metabolites that can be 

detected depends on the ionisation mode of the mass spectrometer. No single mode 

can cover all the metabolome due to its complexity. As such positive and negative 

modes are often used in conjunction to maximise the number of detected metabolites 

(Emwas, 2015).  

LC-MS is a highly sensitive, specific and reproducible technique that provides an 

unbiased method of identifying metabolites associated with a particular clinical 

condition or phenotype (Guijas et al., 2018). In a study comparing three commonly 

used separation techniques coupled to MS the use of an LC system was found to be 

superior in reproducibility, time efficiency, and coverage of multiple metabolite 

classes regardless of polarity (Büscher et al., 2009). In toxicology and forensic testing 

LC-MS was found to be comparable in detection capability to GC-MS but with the 

additional advantages of easier and faster sample extraction and shorter run times 

(Perez et al., 2016). LC-MS is also advantageous because it can simultaneously 

measure multiple analytes in complex biological samples, giving a wider metabolite 

coverage than GC-MS, and can be used for the analysis of non-volatile polar molecules 
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(Leung and Fong, 2014). Because of these advantages the use of LC-MS in metabolic 

profiling has become increasingly popular. 

However LC-MS is not without its limitations. Analytical columns deteriorate over time 

resulting in retention time drifting that must be corrected computationally after data 

is acquired (Li and Li, 2020). Instability of signal can occur if the MS ion source becomes 

contaminated therefore a high level of maintenance is required for reproducible and 

accurate results. Finally despite some advances in this area the identification of 

metabolites remains a bottleneck in metabolomics research. While the hard electron 

ionisation of GC-MS produces a unique fragmentation pattern and reliably 

reproducible spectrum for each metabolite, spectra produced by LC-MS are variable 

between instruments (Gika et al., 2014) and the soft fragmentation produced by 

electrospray ionisation (commonly used in LC-MS) does not produce a unique 

fragmentation pattern for each ion. An additional step can be included in tandem mass 

spectrometry to select ions of a particular m/z ratio and increase their kinetic energy 

so they collide with neutral gas molecules and fragment further into unique fragment 

ions (Sleno and Volmer, 2004). In doing so, tandem mass spectrometry can separate 

ions with similar m/z ratios. Although freely available metabolite databases with 

information regarding m/z values and unique fragmentation patterns are growing in 

popularity there is still a large number of metabolites missing from their lists and 

matching metabolite features can be manually intensive and time consuming. An 

overview of the approaches required for data processing before analysis of eluted 

metabolites can be conducted is discussed in the following sections. 

1.1.3.4. Data pre-processing 

Metabolomics experiments generate large amounts of highly complex data. In order 

to produce a data matrix with the quantification of signals detected in a sample which 
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can be easily manipulated for further analysis the collected data must undergo a series 

of computational transformations, termed pre-processing. These involve detecting 

features present in the acquired spectra; performing correction to remove background 

noise that may impact signal intensity; alignment of peaks between samples; filtering 

of data and removal of low-quality features; and the removal of any differences 

between samples generated by technical, rather than biological variation (Katajamaa 

and Orešič, 2007).  

1.1.3.4.1. Peak picking and alignment 

The first step towards data analysis involves the generation of peak lists from raw LC-

MS data. Peak picking methods detect peaks in the chromatogram and integrate their 

areas to provide quantitative information about the corresponding metabolite (Zhang 

et al., 2009). The chromatographic data is transformed into a two-dimensional matrix 

characterised by m/z value and retention time or scan number ((m/z)/retention time). 

Thousands of variables can be detected and transformed at this stage (Bijlsma et al., 

2006). However, retention time drift, which can occur as a consequence of column 

degradation, unstable pH value of the mobile phase, and variations in column 

temperature and pressure, can result in the position of peaks which correspond to the 

same metabolic feature changing over the course of a single experimental run 

potentially resulting in the same feature being assigned a different identification 

between samples (Y. Wang et al., 2019). To counteract this, a peak alignment step is 

commonly included in the metabolomic pipeline. Although signal drift occurs along 

the retention time axis the high accuracy of modern MS technologies means shifts 

along the m/z axis are minimal (provided instruments are regularly calibrated) so data 

can be binned in m/z intervals. Peak alignment is then performed on each bin by the 

retention time axis. One commonly used method of peak alignment calculates 

retention time boundaries in the bin within which the observed peaks are understood 
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to represent the same feature across each of the samples (Alonso et al., 2015). 

However, some binned peaks may not be representative of the biological variation of 

interest and therefore filtering steps must be applied to ensure only relevant features 

are kept. 

1.1.3.4.2. Feature filtering 

Feature filtering is an important step in the metabolomic workflow to ensure 

subsequent statistical analysis is not impacted by low quality data (Schiffman et al., 

2019). Low quality data may arise from degenerate features, high background noise, 

unintentional removal of relevant peaks with low signal-to-noise ratio (a setting within 

the MS that can be adjusted based on known abundances of metabolites), or the 

presence of contaminants/artifacts within the samples from impurities in extraction 

solvents, the mobile phase, or metabolites retained in the column or ion source from 

previous experiments (Smith et al., 2006; Verpoorte et al., 2022). When filtering, high 

quality, biologically meaningful features should be retained while low quality features 

and background noise that may cause false positives in analysis should be removed 

from the dataset. The filtering pipeline typically consists of removing features based 

on the ratio of biological signal to blank signal, percentage of missing features, and 

variability of features across samples (Schiffman et al., 2019).  

Blank samples can be used to find background contaminating features contributing to 

increased technical variation. Median intensity of each feature in the biological 

samples is compared to the median intensity of the same feature in the blank samples 

and where the ratio of intensity is insufficient the feature is removed (Gadara et al., 

2021). Typically, 20-30% of untargeted data from MS experiments is missing values 

affecting approximately 80% of measured compounds (Hrydziuszko and Viant, 2012). 

When a feature is missing in more than 20% of samples in any one sample class it is 
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removed from the dataset, the so-called “80% rule” (Yang et al., 2015), as the 

proportion of missingness is high and suggests the feature is truly missing from many 

samples. Although removing features can increase the sparsity of data it prevents 

skewing of the distribution. Aside from the metabolite being truly absent from the 

sample there are several reasons why missing values occur. Firstly, the metabolite may 

be present at a concentration lower than the instrument’s limit of detection (LOD). 

Secondly, co-eluting compounds and ion suppression may produce matrix effects 

which impede the detection and quantification of the metabolite (Redestig et al., 

2011). A decline in the separation ability of the column or increasing contamination of 

the mass spectrometer may also affect quantification. Finally, limitations in upstream 

computational processing, such as poorly chosen peak picking or alignment 

parameters, may affect the detection of the compound across samples (Do et al., 

2018). A complete data matrix is required for most downstream statistical analysis so 

missing values remaining after the 80% rule has been applied must be addressed 

before analysis can proceed. A commonly used strategy for missing values is 

imputation, replacing the missing value with an acceptable substitute value, but there 

are various methods to do so. For example, if the LOD is known it can be used as a 

replacement for the missing value (Wei et al., 2018). Alternatively, a replacement 

value is calculated using the available measurements for each variable such as k-

nearest neighbour (kNN) where missing values are replaced by the average of the next 

closest non-missing values (Do et al., 2018), random forest (RF) where missing values 

are imputed based on a proximity matrix generated by RF classification of the 

remaining metabolites (Kokla et al., 2019), and mean or median replacement where 

the missing value is replaced by the mean or median of the remaining values for that 

metabolite (Hrydziuszko and Viant, 2012). Mean substitution may lead to inconsistent 

bias if values are missing not completely at random and increases sample size while 
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underestimating error (Kang, 2013) so is generally not recommended for high 

dimensionality data, but otherwise there is no consensus over which method is 

superior. Gromski et al. (2014) reported that RF outperformed kNN, median and zero 

replacement methods in clustering of samples and total explained variance after 

values were imputed, but Hrydrziuszko and Viant (2012) reported kNN was the 

superior method based on clustering of samples and spread of variance. More recently 

it has been suggested that selection of imputation method should depend on 

downstream analysis, with RF providing the best percentage variance for contribution 

to unsupervised analysis but kNN providing the most well fitted permutations in 

supervised analysis (Di Guida et al., 2016). More detailed explanations of statistical 

analysis techniques can be found later in section 1.1.3.5. As there is no current 

consensus over which method is optimal imputation technique should be selected 

under consideration of future analysis.  

Finally, variability of features across samples is typically measured by the coefficient 

of variation (CV), calculated by pooling samples of interest into a quality control (QC) 

sample which is injected alongside experimental samples and measuring variability of 

each feature within the pooled QC across the run. Typically a CV of 20-30% is used as 

a cut off, removing features with high variability across technical replicates which are 

unlikely to be genuine features of interest (Want et al., 2010). This cut off was set 

following recommendations set by the US Food and Drug Administration (FDA) in their 

guidance for validation of drugs in industry (Dunn et al., 2011) and considers the 

intensity of ions of interest which may unfortunately be near or at the LOD (Sangster 

et al., 2006). An overly conservative cut off may remove genuine metabolites of 

interest.  
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1.1.3.4.3. Data treatments 

After low quality data is removed, normalisation of the remaining data aims to remove 

unwanted systematic biases such that only biologically relevant differences remain in 

the data (Alonso et al., 2015). Methods which normalise data can generally be grouped 

into two categories: method driven normalisation approaches which extrapolate an 

external model for normalisation, or data-driven models which construct a model 

under the assumption that large numbers of metabolites remain constantly expressed 

throughout an experiment (Ejigu et al., 2013).  

One commonly used method-driven normalisation approach is the use of QC samples 

injected periodically throughout an analytical run. The QC samples are then used to 

construct a signal correction parameter with respect to the order of injection which 

can be applied to the remainder of the dataset, typically by locally estimated 

scatterplot smoothing (LOESS) signal correction which corrects for drift across samples 

by observing change in signal for the a given metabolic feature in QC samples and 

applying the same temporal shift in signal in the experimental samples  (Dunn et al., 

2011; Rusilowicz et al., 2016). Normalising to QC can minimise technical variation over 

the run. Another popular method is the use of one or multiple internal standards. 

Reference material is spiked into all samples at a uniform concentration. Internal 

standards are either stable isotopes or analogues of compounds which do not occur 

naturally within the chosen tissue (Ejigu et al., 2013) but should be chemically similar 

to a metabolite class of interest (for example 13C6 glucose is used as an internal 

standard for monosaccharides (Dunn et al., 2011)). However, this strategy is not 

always practical especially in large scale untargeted studies where it is difficult to 

include a relevant standard for all metabolites of interest (Thonusin et al., 2017).  
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Some argue that data driven normalisation methods are better choices for large scale 

untargeted experiments. Examples of popular data driven methods to normalise data 

include probabilistic quotient normalisation (PQN) (Dieterle et al., 2006), cyclic LOESS, 

and variance stabilisation normalisation (VSN) (Li et al., 2016). In PQN a mean response 

is calculated using QC samples, generating a reference vector. The median between 

the reference vector and every sample is computed which provides a vector of 

coefficients relating to each sample. Every sample is then divided by the median value 

of the vector of coefficients. PQN is therefore advantageous because it considers 

existing concentration changes between metabolite features (Dieterle et al., 2006; Di 

Guida et al., 2016). Cyclic LOESS applies a local normalisation curve to all possible pairs 

of samples, cycling through pairs several times (Bolstad et al., 2003). As every possible 

pair combination must be tested cyclic LOESS can be computationally intensive and 

slower than other methods of normalisation, however it can be applied to unbalanced 

data. VSN is a non-linear method of normalisation that aims to keep variance constant 

over the data range. A transformation is applied to the data which approaches the 

logarithm for large values, removing heteroscedasticity and decreasing coefficient of 

variation, while variance does not decrease as values approach the LOD variance, 

increasing the coefficient of variation for smaller values (Huber et al., 2002). VSN is not 

recommended for smaller sample sizes (Jauhiainen et al., 2014). Untargeted 

metabolomics data is often high dimensional data, thus limiting the applicability of 

VSN in untargeted studies. However, it should be noted that data driven methods of 

normalisation assume that a large number of metabolites experience the same 

pattern of drift over the course of the analysis which may not always be the case 

(Thonusin et al., 2017). Therefore, the selection of normalisation method should be 

carefully considered.  
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Scaling is a data treatment which aims to balance fold change differences between 

metabolites. Large differences in the fold changes of metabolite concentration mean 

that absolute abundance of some metabolites can vary over orders of magnitude from  

pM to mM within the same tissue (van den Berg et al., 2006). Scaling helps bring data 

within similar dynamic ranges while preserving relevant variability. Scaling methods 

adjust each metabolite using a unique scaling factor. Scaling factors can be determined 

based on data dispersion or by average value (van den Berg et al., 2006). However, 

scaling can also result in the undesirable inflation of large measurement errors, 

particularly for small values (Yang et al., 2015). 

Transformation is a type of scaling that refers to nonlinear conversions of the data. It 

compensates for the heteroscedasticity of metabolomic data and improves the 

symmetry of skewed distributions (van den Berg et al., 2006). Transformation is a 

necessary step as many statistical methods used for metabolomic analysis assume 

data distribution is approximately normal. A commonly example is the use of 

logarithmic transformations. Logarithmic transformations reduce the influence of 

large data values, such as outliers, and are particularly useful when interactions 

between variables are both additive and multiplicative (Boccard et al., 2010). This 

method has some limitations, particularly when handling low value or zero value data, 

however it does allow the fit of linear models which are often used in metabolomic 

statistical analysis (Alghamdi et al., 2019).  

1.1.3.5. Statistical analysis 

Having prepared the data in an appropriate format for further analysis, the primary 

goal in all metabolomic studies is the identification of metabolite signatures 

characteristic of any given condition, such as treatment, genotype, or disease, to allow 

the stratification of samples. This is often achieved by selecting metabolites which 
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significantly differ in abundance between sample populations, either by exploring 

each variable in the dataset individually (univariate) or by the simultaneous analysis of 

multiple variables (multivariate). Each of these approaches will now be discussed in 

more detail to provide insight into the statistical approaches to metabolomics 

techniques. 

1.1.3.5.1. Univariate analysis 

Untargeted metabolomics data often contains thousands of detected metabolites. 

Univariate methods, such as t-tests and ANOVA or their non-parametric alternatives, 

are employed to reduce the number of metabolites in a dataset by analysing one 

variable at a time such that only those with the largest changes between sample 

classes remain (Saccenti et al., 2014). In univariate analysis significance is determined 

where the calculated p value is less than a given number, typically 0.05 to align with 

conventional scientific practice. As the chance of finding a discriminating variable 

increases in proportion of the number of independent tests made the risk of type 1 

error, the false identification of non-discriminatory variables as discriminatory, also 

increases. Due to the high dimensionality of omics data, methods to correct for 

multiple testing are required to protect against type 1 errors,  i.e. false positive results 

(Broadhurst and Kell, 2006).  

However, multiple test corrections can also increase the risk of type 2 errors (i.e. false 

negative results) potentially removing biologically important information (Groenwold 

et al., 2021). Another drawback to traditional univariate methods is that, even if there 

are multi-molecule interactions which would separate groups on a systems level, if 

differences between groups are minor on a single molecule level univariate methods 

can fail to differentiate the groups (Bartel et al., 2013). In this case multivariate 

analytical methods are used to not only identify changes on a single molecule level but 
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also interactions between metabolites which allow discrimination of groups. 

Multivariate methods of analysis aim to reduce the dimensionality of data, reducing 

the number of observations from the thousands to tens or hundreds while retaining 

as much information in the original dataset as possible such that it is still possible to 

identify classifying features between sample populations. Multivariate methods 

therefore help to identify major trends and features within the data without increasing 

risk of type 1 or type 2 errors and allowing for the use of univariate tests thereafter.  

There are many options for multivariate analysis (including but not limited to 

hierarchical clustering to examine relationships between samples (Pang et al., 2021) 

and support vector machines for classification of samples (Mahadevan et al., 2008)) 

however due to the relevance of methods chosen in the studies detailed in this thesis 

only principal component analysis (PCA), partial least squares discriminant analysis 

(PLS-DA) and RF classification will be discussed in more detail.  

1.1.3.5.2. Principal component analysis 

PCA is an unsupervised linear transformation of high dimensionality data that aims to 

preserve as much of the variance in the original data as possible in a lower 

dimensionality output (Figure 1.7). PCA is ubiquitous in metabolomics as it provides 

an easily understandable overview of the data. By simplifying the dataset but retaining 

variance relationships between samples and metabolites can be more easily 

understood (Worley and Powers, 2013). PCA requires a n x p data matrix, X, which has 

been standardised such that all variables are measured on the same scale (hence the 

importance of scaling data, discussed previously), where n represents samples and p 

represents measured variables. To identify correlations between variables, a 

covariance matrix is computed. The covariance matrix is a p x p symmetric matrix 



32 
 

containing all possible pairs of measured variables, where each element represents 

the covariance between two variables (Equation 1.1) (Jolliffe and Cadima, 2016).  

 

 

Figure 1.7 Example of principal component analysis (PCA) plot  

Illustrative example of PCA plot using the small round blue tumours (SRBCT) dataset 
available in R package mixOmics (Le Cao et al., 2016). PCA clusters samples based on 
their similarity. It reduces the number of dimensions within the dataset by 
constructing principal components which convey maximum variation of the data and 
contain the minimum amount of error.  A PCA plot is a projection of principal 
components where each dot represents one sample. Samples which are more similar 
are closer in proximity on the plot. This plot demonstrates similarity between samples 
from four types of cancer: 8 Burkitt Lymphoma (BL), 23 Ewing Sarcoma (EWS), 12 
neuroblastoma (NB), and 20 rhabdomyosarcoma (RMS) 

 

[

𝐶𝑜𝑣(𝑥, 𝑥) 𝐶𝑜𝑣(𝑥, 𝑦) 𝐶𝑜𝑣(𝑥, 𝑧)

𝐶𝑜𝑣(𝑦, 𝑥) 𝐶𝑜𝑣(𝑦, 𝑦) 𝐶𝑜𝑣(𝑦, 𝑧)

𝐶𝑜𝑣(𝑧, 𝑥) 𝐶𝑜𝑣(𝑧, 𝑦) 𝐶𝑜𝑣(𝑧, 𝑧)
]  

Equation 1.1 Example covariance matrix for 3-dimensional data with 3 variables, x, y 

and z 
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A principal component (PC) is a new variable constructed as linear combinations of the 

initial variables. PCs are constructed in a way that ensures the first PC accounts for the 

largest amount of variance possible, with each subsequent PC accounting for less 

variation (Figure 1.8). This method reduces dimensionality of the data without losing 

the large amount of information contained in the original data set. PCs are calculated 

using eigenvectors (the set of coefficients, also referred to as loadings or weights, 

appearing in each principal component which inform the direction of spread of the 

data) and eigenvalues (the variance of the principal component which gives the 

magnitude of the spread of the data) computed from the covariance matrix. 

Eigenvectors are ranked in descending order with respect to their eigenvalues. A d x k 

projection matrix, W, where d represents the number of original features and k 

represents the number of desired features based on the number of eigenvectors 

retained. The original matrix, X, is transformed via W to obtain a new n x k matrix, Y, 

where n is the number of observations and k is the number of desired features. The 

columns of matrix Y are the PCs (Alto, 2019).  Therefore, the larger the eigenvalue, the 

greater the importance of the PC (Jolliffe, 1990).  

PCA is an unsupervised method of separation which reduces dimensionality in an 

unbiased manner. However, it only reveals group structure in data when within-group 

variation is sufficiently smaller than between-group variation (Worley and Powers, 

2013). For a greater understanding of variation which takes sample class into account, 

supervised multivariate methods can be utilised.  
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Figure 1.8 Example scree plot indicating variance explained for 10 principal 
components 

Each principal component explains less variance than the previous component, with 
the majority of variance in the dataset explained by principal component 1 

 

1.1.3.5.3. Partial least squares discriminant analysis 

Partial least squares discriminant analysis (PLS-DA) is a method of supervised 

multivariate analysis which aims to reduce dimensionality of datasets with a 

separation model built with an awareness of class factors (Figure 1.9). Although 

originally developed for calibration and regression in chemometrics (Brereton and 

Lloyd, 2014), PLS-DA became a commonly used technique in metabolic analyses for 

classification and discrimination of data (Barker and Rayens, 2003). Like PCA, PLS-DA 

uses a n x p matrix, X, but also requires a n x q matrix containing sample class 

information, Y, where q represents class factors stored in numerical form (Figure 1.10). 

Instead of finding maximum variance between variables, as in PCA, PLS-DA aims to find 

the direction in the X space that explains the maximum variance direction in the Y 

space. This identifies fundamental relationships between the X and Y matrices.  
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Figure 1.9 Example of partial least squares discriminant analysis (PLS-DA) plot 

Illustrative example of PLS-DA plot using the small round blue tumours (SRBCT) dataset 

available in R package mixOmics (Le Cao et al., 2016). PLS-DA is a similar approach to 

PCA in that it also clusters samples based on their similarity, however PLS-DA links a 

matrix of raw data to a matrix of metadata such that sample class information is 

included in the separation model. This improves classification of samples, so samples 

cluster distinctly on plot based on their class. A PLS-DA plot is a projection of variance 

in components where each dot represents one sample. Samples which are more 

similar are closer in proximity on the plot. This plot demonstrates similarity between 

samples from four types of cancer: 8 Burkitt Lymphoma (BL), 23 Ewing Sarcoma (EWS), 

12 neuroblastoma (NB), and 20 rhabdomyosarcoma (RMS) 
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Figure 1.10 Example Y matrix of multiclass data 

Group information is recoded into dummy variables where 0 and 1 
represent group status. 1 = ‘in-group’; 0 = ‘out-group’ 
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The underlying model of PLS-DA can be written as:  

𝑋 =  𝑋̂  +  𝐸 =  𝑇𝑃𝑇  +  𝐸 

𝑌 =  𝑌̂  +  𝐺 =  𝑈𝐶𝑇  +  𝐺 

Equation 1.2 Underlying model of partial least squares discriminant analysis 

Where T and U are the scores for X and Y, P and C are the loadings for X and Y, and E 

and G are the residual errors of X and Y unaccounted for in the model, respectively 

(Worley and Powers, 2013). PLS aims to find a set of scores and loadings which 

summarize X and Y effectively, such that the U and T share maximum covariance.  

To construct PLS components, the weight vector, W, is first calculated such that T and 

U, and therefore X and Y, share maximum covariance. Loading scores P and C are then 

determined sequentially. Lastly, W, P and C are used to estimate the regression 

coefficient and the first PLS component is established. E and G become the input 

matrices for the construction of the second PLS component and the procedure is 

repeated (L.C. Lee et al., 2018). PLS component construction is repeated as many times 

as required to build the number of components required for the optimal separation 

model.  

However while PLS-DA has become a standard tool in metabolomic analysis it is known 

to be prone to providing an overly optimistic model of separation, termed ‘overfitting’. 

Overfitted results suggest class differences where there are none.  Overfitting in 

classical PLS-DA can be reduced by cross-validation. This typically involves splitting the 

dataset into a training and testing subsets. Analysis is performed on the training subset 

then validated on the testing subset. Multiple iterations of cross-validation are carried 

out to reduce variability using different subsets of the data (Figure 1.11). Two metrics 
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are used to evaluate the performance of the cross-validation algorithm: R2 and Q2 

(Worley and Powers, 2016).  

 

Figure 1.11 Example of k-fold cross validation used in PLS-DA with k = 10 

Image from Karl Rosaen Log, http://karlrosaen.com/ml/learning-log/2016-06-20/ 

R2 provides a measure of the model fit to the original data, while Q2 is the R2 value 

when the PLS model built on the training subset is applied to the testing subset. R2 

and Q2 are expressed on a scale of -1 to 1 with values closer to 1 indicating more PLS 

factors are incorporated in the fit and negative score showing clear overfitting 

(Golbraikh and Tropsha, 2002). For example, an R2 value of 0.9 means the PLS model 

accounts for 90% of variance in the training set while a value of 0.2 would imply only 

20% of variance comes from the PLS model. In addition, the smaller the difference 

between R2 and Q2 the more robust the model. When R2 is substantially larger than 

Q2 the model parameters are being severely influenced by irrelevant information or 

noise, resulting in an overfitted model (Bevilacqua and Bro, 2020). In this case 

alternatives to traditional PLS-DA can be considered.  

For instance, sparse PLS-DA (sPLS-DA) assumes that only a small number of features 

are responsible for driving an effect. As such, sPLS-DA performs variable selection on 
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the X matrix prior to classification in order to retain only informative variables in the 

model (Ruiz-Perez et al., 2020). Using lasso penalisation penalties are added to loading 

vectors to guide the feature selection and model fit processes (Jiang et al., 2013). sPLS-

DA is particularly useful when the number of features greatly outnumbers the number 

of samples, which often occurs in metabolomic studies, as it overcomes the problem 

of data being affected by a large number of predictor variables (Chung and Keles, 

2010).  

1.1.3.5.4. Random Forest 

Like PLS-DA, RF is a supervised machine learning form of classification and regression. 

RF can be used as an alternative to PLS-DA. This approach generates several decision 

trees, each of which is composed of different sets of randomly selected input variables 

(Figure 1.12). For each tree, input data is divided into training and testing sets using 

bootstrapping, a computational technique which resamples a single dataset to create 

multiple simulated samples (Figure 1.13) (Kulesa et al., 2015). On average, the training 

set will contain 63% of the samples from the original data, with the remaining 37% 

used in the testing set (Gromski et al., 2015). The trees start with root nodes, in which 

a few variables are randomly selected and evaluated for their ability to split the data. 

A common method of variable selection is to use as many as the square root of the 

number of variables. The variable resulting in the largest decrease in impurity is chosen 

to split the samples from the parent node into two subsets, producing two child nodes. 

The splitting process at each node is repeated until the nodes either contain a pre-

determined number of samples, or, more commonly, samples from only one class 

(Touw et al., 2013).  
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Figure 1.12 Example of a random forest decision tree 

Schematic representing random forest decision tree used in classification of samples 
in metabolomics analysis. The data is divided into testing and training sets. The training 
set is split into nodes within which variables are randomly selected and evaluated for 
their ability to split data by decreasing impurity. The processing of splitting into nodes 
continues until the nodes are left with either a pre-determined number of samples 
from one class or only one class of samples. 

 

RF has several advantages as a classification tool. Firstly, by constraining trees to a 

specified maximum depth and ensuring a minimum number of samples classified at 

each split, RF can avoid overfitting of data while remaining insensitive to noise within 

the dataset (Mendez et al., 2019). Like PLS-DA, RF provides an estimate of importance 

for variables within the data on the classification (Oza et al., 2019), however RF also 

contains a compensation mechanism within the model which avoids the need for 

cross-validation (Chen et al., 2013). As a result RF does not require additional steps for 

computational tuning of parameters in the same way as PLS-DA (Probst et al., 2018), 

decreasing processing time. RF does not require data to be on the same scale and can 

handle missing values in datasets better than PLS-DA further reducing the need for 

processing time (Gromski et al., 2015). Finally as a non-linear method of classification 
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RF can identify the covariance of non-linear data better than PLS-DA (Mendez et al., 

2019), providing an advantage in metabolomics where data can often be non-linear.  

 

Figure 1.13 Bootstrap sampling of populations 

Schematic representing normal (blue) and bootstrap (red) approaches to sampling. In 
normal sampling, one subset of a population is selected from which information is 
extrapolated to the whole population regarding sample distribution. In bootstrap 
sampling, several subpopulations are drawn from the original sample size by 
resampling observations with replacements from the original sample population. This 
achieves a better estimate of sampling distribution than traditional approaches. 

 

1.1.3.6. Biochemical interpretation of metabolomics datasets 

Following the selection of informative metabolites through multivariate or univariate 

techniques it is generally of interest to further investigate the biological roles of each 

of these metabolites and how they interact within the human body in an attempt to 

provide biological insight into these detected changes. Placing metabolites in their 

biological context can be achieved by mapping metabolites to pathways and networks 

in which they play a role. This enables a reliable interpretation of biological 

disturbances. There are several publicly available websites which permit users to 

upload their own data for pathway analysis, including MetaboAnalyst (Pang et al., 

Sample 
Sub-
population 

Inference 
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2021) and Reactome (Fabregat et al., 2017), and an increasing number of local 

computational packages are becoming available, including but not limited to FELLA 

(Picart-Armada et al., 2018), metPath (Shen, Yan, et al., 2022), CePa (Gu and Wang, 

2013) and pathwayPCA (Odom et al., 2022). 

Biological interpretation is often performed via metabolite pathway enrichment 

analysis, also referred to as pathway over representation analysis, which allows for the 

visualisation of metabolomic changes at a systems level (Kamburov et al., 2011; 

Kankainen et al., 2011). Metabolite set enrichment analysis (MSEA) is based on the 

similar technique used in transcriptomics of gene set enrichment analysis. A defined 

list of metabolites is created from the output of multivariate and univariate statistical 

analysis, these are then tested against lists of pathways from publicly available 

databases such as the Human Metabolome Database (HMDB) (Wishart et al., 2022) or 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) to 

determine which pathways are present more than would be expected, relative to 

chance, within the data (Reimand et al., 2019). From this, the overly expressed 

metabolites are expressed within the pathways and can be related to the functional 

activity of enzymes or other proteins, gene expression and expression of other 

metabolites to gain a greater understanding of metabolite-gene, metabolite-protein 

and metabolite-metabolite interactions within the cell which may contribute to 

explaining what exactly is changing in the cell in response to a particular stimulus (such 

as disease).  

Another alternative to MSEA is topology based enrichment, which uses knowledge of 

network interactions derived from public databases to further test the likelihood of 

predicted metabolite interactions between and within pathways and is becoming 

increasingly popular (Canzler and Hackermüller, 2020). However, there are a number 
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of limitations to be considered when placing metabolites into a biological context. 

Notably, there is a knowledge gap when relating a metabolite’s changed concentration 

to its physiological role which is exacerbated by the difficulty in comparing studies and 

poor linkage of metabolomics data with subject metadata or specific adaptations in 

physiology (Scalbert et al., 2009). 

 Advantages to metabolomics as an analytical tool 
Metabolomics has several advantages as a tool in studying non-communicable 

conditions such as the loss of muscle mass. Firstly, advances in the field of LC-MS/MS 

technologies permit the collection of high-resolution data at a sensitivity level greater 

than that of conventional metabolic assays such as enzymatic photometry (Rohen et 

al., 1990) or scintillation counting (Nassar et al., 2004). Metabolic markers of complex 

conditions and diseases may be present at too low a concentration to be detected by 

these conventional assays but could be highly informative of the presence or prognosis 

of the disease or condition of interest. Metabolomics is therefore extremely beneficial 

in the search for specific markers of complex conditions and diseases (Zhang et al., 

2015). Secondly, unlike conventional metabolic assays which can be limited in their 

scope of metabolism assessed, modern MS technology can detect thousands of 

metabolic features from a small biological sample which is of great benefit when 

searching for as yet unknown diagnostic or prognostic markers of disease (Gonzalez-

Covarrubias et al., 2022). Finally, the increasing popularity of metabolomics as an 

analytical approach in biology and physiology has led to the increased availability of 

specialist software for analysis of data which permits the mapping of metabolites to 

their biological roles and provides potential for physiological integration and may 

allow for novel insights into multifactorial pathophysiological mechanisms. The 

examples in the following chapters of this thesis demonstrate the utility of 
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metabolomics as an analytical tool in the study of skeletal muscle wasting and 

associated conditions.  

1.2. Current limitations to metabolomics approaches 

However despite the potential of metabolomics as a tool in physiology there are some 

limitations that must be considered in metabolomics approaches. For example, 

compared to our understanding of the upstream genome or proteome, our knowledge 

and annotation of the metabolome is still relatively limited (Johnson and Gonzalez, 

2012) and although advances in technology are being made rapidly the identification 

of novel metabolites remains a bottleneck in the workflow of discovery metabolomics 

(Zamboni et al., 2015). The diversity and size of the metabolome can also be a 

challenge. Firstly, the metabolome is much larger than the upstream genome, 

transcriptome or proteome. As of 2022 HMDB contains 220,945 entries (Wishart et 

al., 2022) although it is likely that the presence of currently unannotated metabolites 

within the metabolome means that its true size is much greater. Secondly, there is 

great variation in metabolite polarity and chemical structure which make it impossible 

to achieve complete coverage in one experiment. Metabolomics studies must instead 

aim for the highest possible fraction of coverage to get the best metabolomic profile 

(Clish, 2015). Furthermore, due to influence of genetic and environmental factors (for 

example, gender, BMI or smoking) on the metabolome, there can be large 

interindividual variation in relative metabolite variation over several orders of 

magnitude (Dunn et al., 2015) which must be controlled for in experimental design 

(Johnson and Gonzalez, 2012). Moreover, it is difficult to compare metabolomics data 

across laboratories and studies due to differences in experimental protocol and 

machinery, however the development of recommended protocols and establishment 

of quality control standards (Evans et al., 2020) can help to mitigate this problem.  
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Finally, a major limitation is that metabolomics analysis is often conducted in isolation 

from physiological data relating to the condition being explored that may provide 

insight into mechanisms leading to difficulty in the biological interpretation of 

metabolomics data (Scalbert et al., 2009). For example, very few studies link change 

in metabolite abundance with disease severity, morbidity or mortality rates when 

investigating metabolomics in chronic diseases. Lack of integration between 

physiological and metabolomic data may account for the general failure to translate 

metabolomics analysis to clinical use. There is growing interest in a ‘multiomics’ 

approach, the combination of metabolomics with output from transcriptomics, 

genomics or proteomics profiling (Hasin et al., 2017), however the collection of 

relevant phenotypic data which may be used to validate observed changes in the 

metabolome is still lacking, limiting the potential for metabolomic and physiological 

integration.  

Despite these limitations, metabolomics has been gaining interest as an analytical 

technique due to its ability to add insight into disease aetiology and identify metabolic 

signatures which can act as prognostic or diagnostic tools for complex conditions. 

1.3. Factors affecting skeletal muscle mass and function in health and 

disease 

 Exercise 

1.3.1.1. Resistance exercise 

Resistance exercise training (RET) provides skeletal muscle with anabolic signals that 

stimulate muscle protein synthesis and lead to hypertrophy (Miller et al., 2005). 

Resistance exercise is also associated with increases in measures of muscle strength, 

such as isometric (Hong et al., 2014) and eccentric contraction torques (Sato et al., 

2022) in young individuals. Although ageing is accompanied by a blunting of the 
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magnitude in the exercise training response (Phillips et al., 2017), improvements in 

skeletal muscle strength (Lai et al., 2021),  performance (such as increased gait speed, 

decreased sit to stand time or improved balance) (Keating et al., 2021), and mass 

(Bieler et al., 2022) are seen in older adults following resistance training. RET is also 

associated with improved metabolic health in older individuals and in patients with 

chronic illness. For example, older men with type 2 diabetes reported significantly 

lower HbA1c values after 10 weeks of resistance training relative to baseline (Bweir et 

al., 2009), suggesting improvements in insulin sensitivity are related to RET. This 

demonstrates the utility of resistance exercise in the maintenance of skeletal muscle 

mass and whole-body health regardless of age.   

1.3.1.2. Aerobic and submaximal steady-state exercise 

While not typically associated with hypertrophy to the same extent as resistance 

training, submaximal steady-state exercise is associated with well-defined benefits in 

the metabolism of skeletal muscle under healthy conditions and in chronic disease, for 

instance the amelioration of reductions in skeletal muscle metabolism induced by 

health problems such as obesity (Pérez-Martin et al., 2001) or heart failure (Esposito 

et al., 2018), which emphasise the importance of exercise in maintaining normal 

muscle metabolism. A predominant metabolic benefit associated with submaximal 

steady-state exercise is the increase in the oxidative capacity of skeletal muscle 

(Noonan and Dean, 2000). Although there are concurrent increases in the rates of fat 

and carbohydrate oxidation (Romijn et al., 1993), in submaximal exercise up to an 

intensity of approximately 65% of peak oxygen uptake (VO2
PEAK) fat oxidation is 

favoured (Venables et al., 2005). It has been suggested that this shift towards greater 

fat utilisation in oxidation underpins improvements in muscle oxidative capacity 

(Gollnick and Saltin, 1982; Overmyer et al., 2015). Submaximal steady state exercise is 

also linked with improved glucose homeostasis. After submaximal exercise, glucose 
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uptake in skeletal muscle increases, resulting in lower blood glucose concentrations 

(Brun et al., 1995) which are maintained for up to 48 hours (Hawley and Lessard, 2008). 

Consequently, submaximal exercise is often included in healthcare treatment plans for 

chronic diseases associated with increased insulin resistance (Chodzko-Zajko et al., 

2009).  

 Physical inactivity 
Conversely to the benefits of increased activity, sedentary behaviour is associated with 

detrimental effects in skeletal muscle and whole-body health. Reduced physical 

activity is strongly correlated with prevalence non-communicable disease (Lee et al., 

2012) and is associated with increased risk of early mortality regardless of age, 

ethnicity or sex and independent of adiposity (Roux et al., 2021). Within skeletal 

muscle inactivity is associated with the rapid atrophy of fibres and significant 

reductions in muscle cross sectional area (Inns et al., 2022) alongside significant 

reductions in force output representing a loss of muscle strength (Kawakami et al., 

2001). Historically the accumulation of intramyocellular lipid (IMCL) content have 

been reported following periods of inactivity (Bergouignan et al., 2009; Pagano et al., 

2018), however more recent evidence suggests that IMCL accumulation is not a direct 

adaptation of skeletal muscle to reduced physical activity per se but is instead simply 

reflective of excess energy balance. When individuals are maintained in energy 

balance IMCL content does not increase after acute (Dirks et al., 2016) or chronic (Shur 

et al., 2022) periods of bed rest despite the impairment of other metabolic processes, 

including the development of insulin resistance and failure to stimulate carbohydrate 

oxidation. 

Impairments in metabolic flexibility, the ability to switch from fat to carbohydrate 

oxidation in response to changes in metabolic or energetic demand such as in the 

transition from the fasted to the fed state (Galgani et al., 2008; Goodpaster and Sparks, 
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2018; Smith et al., 2018), are strongly associated with low physical activity and 

sedentary behaviour (Kelley et al., 1999) even when energy balance is maintained 

(Rudwill et al., 2018). Several mechanisms likely underlie metabolic inflexibility in 

skeletal muscle including reduced glucose disposal rate, mitochondrial dysfunction, 

and subsequent accumulation of free fatty acids leading to lipotoxicity (Smith et al., 

2018). Such disturbances to cellular homeostasis can cause disruption to insulin 

signalling networks and as a consequence lead to dysregulation in the balance of 

protein turnover and therefore further loss of skeletal muscle mass and function 

(Muoio, 2014), suggesting an association between skeletal muscle metabolism and the 

maintenance of muscle mass. This association is further emphasised by the decline in 

normal skeletal muscle metabolism and loss of muscle mass in ageing.  

 Diet 
Nutrient availability is a primary determinant of skeletal muscle proteostasis (Atherton 

and Smith, 2012) and therefore also of muscle mass. The anabolic impact of nutrients 

is primarily driven by essential amino acids (EAAs) derived from protein in the diet 

(Smith et al., 1992). In the postprandial state, EAA signalling causes an increase in 

muscle protein synthesis (MPS) rates approximately 45 to 90 minutes after ingestion, 

with a peak after 1.5 to 2 hours. Following this peak, MPS rates rapidly return to 

postabsorptive levels regardless of substrate availability (Atherton et al., 2010). 

Furthermore, ingestion of a subset of EAAs termed branched chain amino acids 

(BCAAs) following resistance exercise can enhance the resistance exercise-induced 

increase in rate of MPS (Jackman et al., 2023) which are sustained for up to 48 hours 

(Churchward-Venne et al., 2012). Thus, skeletal muscle mass is increased. Conversely, 

failure to consume the adequate amount of dietary protein can contribute to loss of 

skeletal muscle mass (Huh and Son, 2022).  
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Other components of the diet can also impact skeletal muscle mass and function. For 

instance, diets containing high proportions of fat or caloric intake over the amount 

required to maintain BMI can lead to increased IMCL content (Ahmed et al., 2018). 

Thus, dietary regulation is an important aspect of maintaining skeletal muscle mass 

and function. 

 Ageing 
Older individuals lose muscle mass at a proposed rate of 0.64-0.7% per year in women 

and 0.8-0.98% per year in men while muscle strength is lost at a much more rapid pace 

of 2.5-3% per year in women and 3-4% per year in men (Mitchell et al., 2012).  The 

number of adults over 60 is estimated to increase worldwide from 962 million in 2017 

to 2.1 billion by the mid-century (Granic et al., 2019). Sarcopenia is defined by the 

European Working Group on Sarcopenia in Older People (EWGSOP) as the 

unintentional loss of muscle mass and quality, strength or physical performance (for 

example, gait speed less than 0.8 m/s or a poor score on the short physical 

performance battery test) to two standard deviations below the mean of healthy 

young adults (Cruz-Jentoft et al., 2019).  

While there is currently no clinically relevant consensus definition of sarcopenia, most 

research defines sarcopenia by the criteria set by either the EWGSOP, Asian Working 

Group for Sarcopenia (AWGS) or the International Working Group for Sarcopenia 

(IWGS) and estimates that between 10 and 20% of individuals are sarcopenic (Shafiee 

et al., 2017), rising to approximately 50% and 43% in men and women older than 80, 

respectively (Iannuzzi-Sucich et al., 2002).  

Sarcopenia is characterised by morphological changes within muscle that contribute 

to loss of muscle mass and strength which are responsible for increased likelihood of 

falls, loss of autonomy (Landi et al., 2012) and increased mortality risk (J.H. Kim et al., 

2014; Vetrano et al., 2014) compared to non-sarcopenic counterparts. The 
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preferential atrophy of type II muscle fibres is a defining feature of sarcopenia (Brown 

and Hasser, 1996), likely due to a failure in the denervation and reinnervation cycle of 

muscle fibres (Piasecki et al., 2018).  Individuals with sarcopenia often gain visceral 

adipose tissue (Li et al., 2022), termed sarcopenic obesity. Differences between 

sarcopenic and non-sarcopenic obesity can be observed within the muscle. While in 

non-sarcopenic obesity, individuals usually have greater muscle mass and strength 

than lean counterparts, potentially due to higher muscle workload required for daily 

activities (Murton et al., 2015), sarcopenic obesity is associated with increased 

infiltration of muscle by fat and the increased deposition of intramuscular lipids (Choi 

et al., 2016) which in turn is associated with reduced muscle cross sectional area (Lang 

et al., 2010).  However, the extent to which infiltration of fat is a causative factor in 

sarcopenia is unclear. Ageing is associated with reduced physical activity (Suryadinata 

et al., 2020) and therefore elevation in IMCL content may simply be reflective of a 

positive energy balance.  

In parallel with the physical changes in muscle there is a decrease in muscle 

mitochondrial content and respiratory activity, reflected in lower phosphocreatine 

recovery rates (Andreux et al., 2018), lower maximal aerobic capacity and decreased 

activity of mitochondrial respiration complexes (Grevendonk et al., 2021), and the 

concurrent decrease in abundance of mitochondrial DNA and ATP production rates in 

skeletal muscle (Short et al., 2005) with advancing age. 

Ageing is also associated with the development of anabolic resistance, the blunted 

response of muscle to contractive or nutritive stimuli such as those received from 

essential amino acid ingestion (Cuthbertson et al., 2005) or resistance exercise (Kumar 

et al., 2009) which may contribute to further loss of muscle mass or the blunting of 

hypertrophic responses following RET (Phillips et al., 2017). The inhibitive effect of 
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insulin on muscle protein breakdown (MPB) is also blunted in older adults, both of 

which point to dysregulation of protein turnover in skeletal muscle that may 

contribute to the aetiology of sarcopenia (Fry and Rasmussen, 2011).  

 Disease 
Whilst there are clear factors contributing to muscle loss and deconditioning in health, 

the impact of disease can lead to additional burden as greater amounts of muscle mass 

loss in disease are associated with worse clinical outcomes. Patients with chronic heart 

failure and muscle loss had a significantly higher in-hospital mortality rate than age 

matched counterparts who did not experience loss of muscle mass (Attaway et al., 

2021). Cancer patients with cachexia, a multifactorial condition characterised by rapid 

and unintentional loss of muscle mass and adipose tissue (Evans et al., 2008), had 

worse clinical outcomes and increased mortality rates (Dewys et al., 1980; Skipworth 

et al., 2007) than non-cachectic counterparts, regardless of disease progression or 

tumour type. In ICU patients, muscle mass declines at a rate of up to 2% a day, which 

effects recovery time and rehabilitation, and acts as an independent risk factor for 

mortality (Wandrag et al., 2019). 

Skeletal muscle metabolism appears to be impacted by disease. Abnormal 

mitochondrial structure and increased mitochondrial area are found in the muscle of 

cachectic cancer patients (de Castro et al., 2019), pointing to mitochondrial 

dysfunction which may even precede muscle atrophy (Brown et al., 2017), although 

further validation is required. Loss of muscle mass and strength appears to be related 

to insulin sensitivity, potentially through impairment of protein turnover regulation, 

as type 2 diabetes is inversely associated with muscle strength (Hong et al., 2017) and 

mass (Tajiri et al., 2010) and cancer patients with cachexia report a higher degree of 

insulin resistance than those without (Jasani et al., 1978; Norton et al., 1984), although 

as cachexia was determined by weight loss alone the specific contribution of skeletal 
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muscle in the loss of insulin sensitivity is unclear. Nevertheless, disturbances to normal 

metabolism within skeletal muscle are associated with worse clinical outcomes and 

increased mortality rate in chronically ill individuals (Skipworth et al., 2007; Arthur et 

al., 2014; Tantai et al., 2022), demonstrating the importance of skeletal muscle in 

whole-body health.  

1.4. Metabolomics as a tool to study adaptations in muscle 

Despite an appreciation for the importance of muscle in maintaining whole-body 

health (Bhatheja and Bhatt, 2006; Stump et al., 2006; Wischmeyer et al., 2017) as of 

yet traditional analytical approaches have not fully defined the role metabolic 

dysregulation has played in skeletal muscle wasting and there are currently no 

effective interventions for treating or reversing muscle wasting in either health or 

disease (Garber, 2016; Aversa et al., 2017) despite growing interest and heavy 

investment in studying morbidities associated with poor skeletal muscle health and 

the subsequent loss of muscle mass over recent years (Yuan et al., 2022). This is in part 

due to the complexity of wasting conditions and difficulty in identifying patients most 

at risk of muscle mass loss, as the development of molecular and cellular adaptations 

which lead to a decline in muscle health must be detected prior to physiological 

changes for interventions to be successful (Bland et al., 2022). However, as 

metabolomics is capable of detecting small molecule changes in advance of 

observable physiological adaptations (Wishart, 2019) there is growing interest in the 

use of both untargeted and targeted metabolomics in musculoskeletal research to 

evaluate the role of different classes of metabolites across wasting conditions. The 

current findings will be discussed in more detail in the sections below.  
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1.4.1.1. Amino acids 

Several metabolomics studies have highlighted abnormal amino acid level in 

deconditioned and wasting muscle. For example, circulating plasma concentrations of 

seven BCAAs and BCAA-related metabolites were found to be significantly associated 

with both muscle cross-sectional area (CSA) and fat free mass index in functionally 

limited older adults, indicating a role for these metabolites in sarcopenia (Lustgarten 

et al., 2014). Of these, four compounds (leucine and its metabolite α-

hydroxyisocaproate, and two tryptophan-related metabolites, C-glycosyltryptophan 

and indolepropionate) accounted for 21% of variability in muscle CSA, suggesting 

these metabolites in particular could be important in classifying changes in CSA. BCAAs 

were also among the 10 metabolites found to be most associated with muscle mass in 

middle aged women (Korostishevsky et al., 2016). These studies do not link amino 

acids to muscle function, a key component of sarcopenia, and therefore clear links 

between amino acid metabolism and decline in muscle function cannot be established. 

However, when muscle quality (another key component used to define sarcopenia), 

determined by the ratio of quadriceps strength to thigh CSA, was assessed, leucine, 

isoleucine, and tryptophan were all found to be present at significantly higher plasma 

concentrations in participants with low muscle quality than their age-matched 

controls (Moaddel et al., 2016). Targeted studies support these findings. Low 

concentrations of serum BCAA and EAA have been linked to both lower skeletal muscle 

index and functional ability in older adults (ter Borg et al., 2019), and fasting BCAA 

plasma concentrations were significantly lower in sarcopenic women with poor 

physical performance than sarcopenic women with higher performance metrics or 

non-sarcopenic women (Yamada et al., 2018).  However, neither of these studies 

recorded participants’ daily protein intake (ter Borg et al., 2019; Yamada et al., 2018), 

and therefore it is possible that BCAA level simply reflects differences in habitual 
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protein consumption or energy balance. Non-fasting BCAA plasma concentrations 

were also significantly lower in sarcopenic than non-sarcopenic individuals, however 

no specific data was collected regarding the last meal eaten before the blood sample 

was taken and two general dietary recalls found absolute protein intake was lower in 

sarcopenic participants (Ottestad et al., 2018). Therefore, lower amino acids could 

simply be reflective of the reduced protein content of the last meal. The authors argue 

that non-fasting concentrations reflect the postprandial response to protein intake, 

but this could be better assessed by using a standardised and controlled diet.  

Other non-BCAA or EAA related metabolites have also been linked to decline in 

skeletal muscle health with age. One study identified proline as an independent risk 

factor for sarcopenia (Toyoshima et al., 2017), while another identified nine 

metabolites significantly associated with both muscle mass and function, including 

aspartic acid and glutamate, which were both negatively associated with grip strength 

and appendicular lean mass (Zhao et al., 2018). Eight pathways were significantly 

associated with the loss of muscle mass and function, of which seven involved glutamic 

acid and/or aspartic acid. Of these pathways, the majority related to amino acid 

metabolism, supporting a role for aberrant amino acid metabolism in sarcopenia (Zhao 

et al., 2018), although the study only recruited young women and so potential further 

dysregulation of these pathways in ageing was not assessed. However, targeted 

analysis also identified significantly increased serum concentrations of glutamic acid, 

asparagine and aspartic acid in elderly individuals with sarcopenia (Calvani et al., 

2018). Moreover, in severely frail elderly patients, significant differences in the plasma 

concentration of 11 amino acids was also identified (Adachi et al., 2018). EAAs were 

present at a significantly lower concentration in the plasma, with a 20.2% reduction in 

total EAA level in the frail group compared to a non-frail control. In addition, EAA, 

BCAA and tryptophan levels were strongly correlated with BMI in the frail group. 
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Although this study focused on frailty, which is distinct from sarcopenia, it further 

supports that amino acids provide a signature for low physical function and suggests 

that dysregulated amino acid metabolism may be common across conditions 

associated with the loss of muscle mass with age. 

Dysregulated amino acid metabolism has also been noted in cachexia. For example, in 

cancer patients the most prominent metabolic alteration associated with cachexia was 

found to be a decrease in the plasma concentration of amino acids, particularly 

arginine, tryptophan, and threonine, which had a 0.4-fold reduction compared to non-

cachexic cancer controls (Cala et al., 2018). Urinary metabolomics was able to 

effectively discriminate between cachectic and non-cachectic groups, and metabolites 

which differed between groups were largely involved in ketone body and amino acid 

metabolism pathways (Ose et al., 2019). However, as measures of muscle mass were 

not correlated with metabolite abundance and no measures of muscle strength or 

functional ability were carried out in these studies (Cala et al., 2018; Ose et al., 2019), 

associations between metabolite abundance and change in muscle health cannot be 

validated. As cachexia is a multi-organ syndrome and adaptations in amino acid 

metabolism were not confirmed to be correlated with loss of muscle mass, it is 

possible that these changes are not specific to skeletal muscle. Furthermore, 

differences in metabolite concentration did not remain significant after adjusting for 

multiple testing (Ose et al., 2019), and therefore further validation of these findings is 

required.  Finally, Yang et al. identified 15 metabolites to be distinct biomarkers for 

cancer cachexia, including increases in the levels of lysine, isoleucine and tyrosine and 

decreases in leucine (Yang et al., 2018). The metabolic pathways most disturbed in 

cachexia included the metabolism of several amino acids, and the synthesis and 

degradation of BCAAs. However, as cachexia was defined based on weight loss alone 

and no assessment of muscle strength, functional ability or mass were included in the 
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study, further validation of these findings is required to confirm the association of 

BCAAs and loss of muscle mass in cancer.  

Likewise, amino acid metabolism is clearly affected by daily energy expenditure. One 

study noted an inverse association between BCAA concentration and physical activity  

alongside lower plasma concentrations of several intermediates of BCAA metabolism 

in more active subjects (Xiao et al., 2016), while another found BCAA plasma 

concentration decreased in highly active individuals compared to their sedentary 

counterparts (Fukai et al., 2016), which suggests BCAA plasma concentration is linked 

in some way to muscle function. Additionally, in older adults, two weeks of step 

reduction resulted in a significant increase of plasma glutamine (1.3-fold) and 

methionine (1.2-fold) which did not return to baseline values following a recovery 

period of increased physical activity (Saoi et al., 2019). Proline has also been 

highlighted as a marker for both physical inactivity and cachexia. Reductions in plasma 

proline concentration were associated with higher physical activity and shorter sitting 

times (Fukai et al., 2016), and significant increases in proline concentrations were 

observed in COPD patients with cachexia (Ubhi, Cheng, et al., 2012). Proline is a 

glycogenic amino acid, providing a possible link between dysregulated skeletal muscle 

metabolism and glucose homeostasis in wasting. 

While metabolomics studies investigating the effects of mechanical unloading in 

humans are lacking, a key limitation in this area, these results from healthy ageing and 

cachexia provide preliminary evidence that amino acid metabolism is dysregulated in 

skeletal muscle following periods of disuse, and perhaps a link in terms of metabolic 

disturbances within the regulation of amino acid metabolism. These observations of 

dysregulated amino acid metabolism could be related to a number of known 

metabolic disturbances present in muscle wasting conditions or could be indicative of 
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an as yet unknown mechanism common across wasting conditions. For example, 

ageing and physical inactivity are associated with the development of anabolic and 

insulin resistance in skeletal muscle.  BCAAs are instrumental in driving MPS (Atherton 

and Smith, 2012) and increase following MPB proportional to fat free mass (Jourdan 

et al., 2012). The observed signatures of altered AA metabolism may therefore be 

indicative of a lack of incorporation after feeding leading to low MPS rates, or of 

increased MPB rates in muscle. Alternatively, the increased presence of BCAAs may 

promote insulin resistance through increased mTOR activation (Yoon, 2016). 

Abnormal glutamic acid metabolism and associated AA’s may be reflective of 

depressed energy metabolism pathways in muscle, as skeletal muscle acts as a major 

sink for glutamic acid where it plays a central role in energy provision (Rutten et al., 

2005). Although glutamine does not appear have a stimulatory effect on MPS under 

healthy conditions (Garlick and Grant, 1988), following surgery skeletal muscle levels 

of glutamine are depleted (Blomqvist et al., 1995) and administration of glutamine can 

increase MPS rates (Blomqvist et al., 1995). Glutamine therefore appears to have a 

role as a regulator of MPS under stressful conditions. Abnormal plasma levels of 

glutamine may therefore reflect a dysregulation to protein turnover not seen in 

healthy skeletal muscle which provides a mechanism driving early muscle mass loss (Xi 

et al., 2011). 

However, the cross-sectional nature of many metabolomics studies prohibits causal 

links between abnormal amino acid metabolism and the aetiology of muscle atrophy 

from being established. As such, the precise role of amino acids in the wasting process 

remains unclear.  
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1.4.1.2. Lipids 

An advantage to untargeted metabolomics is its unbiased nature, allowing a range of 

metabolite classes to be identified from a single sample. Although whether the 

increased presence of IMCL in ageing and disease is a driver of pathophysiology in the 

loss of muscle mass or simply a consequence of changes in habitual energy intake and 

physical activity levels is unknown, a few metabolomics studies suggest there is an 

impact on lipid metabolism within skeletal muscle.  

Total abundance of major phospholipid classes in skeletal muscle was increased in 

sarcopenic elderly when compared to their healthy counterparts (Hinkley et al., 2020). 

Total phosphatidylcholine and phosphatidylethanolamine levels were negatively 

associated with muscle volume and peak power, suggesting they may be related to 

impaired muscle function and loss of muscle mass, however validation in a larger 

cohort is required to confirm the metabolic signature. Forty metabolites were 

identified as being strongly associated with cancer cachexia, most of which were 

classed as lipids or fatty acids, and six metabolites, including two phospholipids and 

two fatty acids, formed a distinct metabolic signature for cachexia (Miller et al., 2019). 

Two of the most abundant compounds in both the cachexia and non-cachexia groups, 

lysophosphatidylcholine (LPC) 16:0 and LPC 18:2, increased 1.34-fold and 1.75-fold 

with cachexia, respectively, indicating a significant shift in lipid metabolism. LPC has 

been implicated in inflammation, facilitating the release of proinflammatory cytokines 

(Law et al., 2019). Given that one important feature of cachexia is chronic systemic 

inflammation (Deans and Wigmore, 2005), increased LPC may be a key factor in its 

development.  If validated in a larger cohort of patients, this signature may identify 

those at risk of developing cachexia, however it should be noted that the metabolites 

may be solely indicative of adipose tissue wasting and not muscle loss, as no 

assessment of skeletal muscle was performed. Loss of white adipose tissue before 
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reductions in skeletal muscle content have previously been observed in cachexia 

(Dalal, 2019). Additionally, increased IMCL content was linked to increasing lipolysis in 

other compartments of the body in cachexia patients (Stephens et al., 2011). In cancer 

patients with cachexia, mRNA expression of hormone sensitive lipase (HSL), a lipase 

protein present in adipose tissue, was approximately 50% higher than non-cachectic 

counterparts  and HSL protein expressed increased 2-2.5-fold between cachectic and 

non-cachectic cancer groups (Cao et al., 2010). Similar increases were seen between 

patients with cachexia and cancer patients who had lost weight due to other factors, 

such as malnutrition, indicating a unique role for lipolysis in cachexia-associated 

weight loss (Agustsson et al., 2007). Loss of adipose tissue therefore appears to be a 

critical component in early-stage cachexia and such metabolites may provide evidence 

of a unique aetiology, perhaps distinguishing it from other diseases associated with 

the loss of muscle mass.  

Changes in lipid metabolism as a result of disuse are less well studied. Although both 

short- and long-term bed rest studies have reported increased IMCL content similar to 

that observed in ageing disuse (Pagano et al., 2018; Cree et al., 2010; Bergouignan et 

al., 2009), as discussed previously it is unclear whether this accumulation is simply due 

to excess energy balance (Dirks et al., 2016). A key limitation in this area is the lack of 

metabolomics studies investigating lipid metabolism in relation to decreased energy 

expenditure. 

Thus far, metabolomics has identified common lipid signatures in several states 

associated with a reduction in skeletal muscle health or the loss of muscle mass, with 

a particular focus on phospholipids. However more research is needed in this area to 

validate this signature and to provide mechanistic insight into potential aetiologies.  
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1.4.1.3. Metabolites produced by energy and fuel metabolism 

pathways 

Mitochondrial adaptation to loss of muscle mass is reflected in the plasma 

metabolome. For example, following 7 days of post-surgery bed rest 557 metabolites 

were changed significantly. Notably, short-chain acylcarnitines and derivatives of fatty 

acid dicarboxylates were elevated immediately following surgery and circulating 

expression remained high after bed rest (Kemp et al., 2020). Acylcarnitine is involved 

in the transport of fatty acids into the mitochondria for oxidation, so increased 

circulating levels of acylcarnitine have previously been suggested as a marker of 

mitochondrial dysfunction (McGill et al., 2014). Importantly, this study did involve the 

correlation of metabolomics data with clinical parameters of handgrip and quadriceps 

strength, and muscle cross sectional area determined by ultrasound (Kemp et al., 

2020). Changes in plasma levels of acylcarnitine and dicarboxylate were strongly 

associated with loss of muscle strength and size following bed rest, pointing to 

mitochondrial dysfunction as a contributing factor to loss of muscle mass associated 

with physical activity. Supporting this, plasma concentration short-chain dicarboxylic 

and hydroxylated acylcarnitines were inversely associated with a decline in hand grip 

strength with age in men over a period of 18 months and accounted for 16% of total 

variability in hand grip strength (Ng et al., 2021). As this study took a targeted 

approach, other markers of mitochondrial adaptation, such as change in plasma 

abundance in phospholipids or pyruvate (Finsterer and Zarrouk-Mahjoub, 2018), 

remain undetected, and because only old men were assessed the difference in 

acylcarnitine concentration between young and older individuals, which may provide 

insight into the progressive loss of muscle mass with age, was not evaluated. 

A comprehensive profiling of frail elderly versus healthy elderly and healthy young 

individuals found clear differences in the muscle metabolome, including lower levels 
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of metabolites involved in the tricarboxylic acid (TCA) cycle in older participants 

(Fazelzadeh et al., 2016a). Metabolite expression was correlated with expression of 

genes related to mitochondrial function and oxidative phosphorylation, with similar 

declines in gene and metabolite expression seen across ageing, suggesting impaired 

mitochondrial function or lower mitochondrial content with age (Fazelzadeh et al., 

2016b). Importantly, acylcarnitine levels decreased significantly after RET in both frail 

and healthy elderly, further supporting a role for dysfunctional mitochondrial 

bioenergetics in deconditioned muscle. However, it should be noted that as body 

composition was not accounted for in these measurements, this may simply be a 

consequence of muscle mass loss rather than a causative factor.  

Metabolomics studies investigating changes to energy metabolism associated with 

muscle loss in ageing or disease are lacking, but several studies do show positive 

changes relating to energy metabolism in sedentary individuals following increased 

physical activity. For example, urinary metabolomics profiling revealed short term 

intensive exercise alters mitochondrial bioenergetics assessed by respiratory 

exchange rate and maximal oxygen uptake, particularly those relating to glycolytic 

systems (Enea et al., 2010). As only young women were assessed, the potential impact 

of the age-related blunting of the exercise response on metabolites associated with 

mitochondrial function was not explored.  

Likewise, sprint training induces changes in the urinary metabolome relating to 

bioenergetic pathways including TCA cycle intermediates and products of ATP 

degradation (Pechlivanis et al., 2010). In particular, 2-oxoglutarate, a component of 

the TCA cycle, was elevated following physical activity alongside increases in 

metabolites released during its synthesis. Similar metabolic alterations are seen in the 

plasma metabolome (Lewis et al., 2010). Exercise induced the rapid upregulation of 



61 
 

metabolic pathways responsible for substrate utilisation and increases in intermediate 

metabolites from adenine nucleotide catabolism and the TCA cycle. However, these 

changes only reflect acute metabolic adaptations to exercise. It is unclear whether 

similar positive changes are reflected in chronic metabolic responses, and therefore 

how important these metabolites are in the exercise adaptation response is yet to be 

determined. Additionally, without corroboration to assessment of physiological 

adaptations, it is not possible to fully determine the association between muscle 

mitochondrial adaption and the metabolome.  

1.4.1.4. Neuromuscular junctions and wider metabolic changes  

Metabolic dysfunction in skeletal muscle extends past dysregulation of amino acids 

and lipids. For example, several aspects of the neuromuscular system are suggested 

to contribute to the loss of muscle strength in sarcopenia (Rygiel et al., 2016). 

Degradation of motor neurons and the subsequent denervation of muscle fibres may 

account for loss of muscle strength associated with increasing age, such as the 

decrease in doublet discharges from ∼46% of motor units in younger individuals to 

∼25% in older individuals (Christie and Kamen, 2006), or the decreased maximal firing 

rate and decline in maximal voluntary contraction observed with increasing age (Ling 

et al., 2009). Denervation may be compensated for by the branching of surviving 

motor neurons resulting in increased motor unit size, as seen in healthy ageing where 

motor unit potential in non- and pre-sarcopenic men was larger than young men by 

26 and 41%, respectively (Piasecki et al., 2018). However in sarcopenic men the motor 

unit potential was significantly smaller than the pre-sarcopenic group, suggesting 

failure to expand motor units and reinnervate muscle fibres plays a role in sarcopenic 

muscle and could provide a distinction between healthy ageing and the development 

of sarcopenia. Neuromuscular instability has also been associated with unloading with 

both 3 and 14 days of bed rest resulting in significant increases in the number of NCAM 
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positive fibres (Demangel et al., 2017; Arentson-Lantz et al., 2016). Additionally, 

markers of denervation were observed in individuals with an inactive lifestyle, with a 

significantly higher percentage of denervated muscle fibres in sedentary seniors than 

both young and active older individuals (Mosole et al., 2014). In contrast, denervation 

does not appear to be a driver of cachexia. A recent study found that despite muscle 

fibre diameter being reduced by nearly 15% in cachectic patients, the morphology of 

neuromuscular junctions remained conserved across cachectic and non-cachectic 

individuals, with no evidence of pathology or denervation (Boehm et al., 2020). As 

such, investigating changes to the neuromuscular system may provide a distinction 

between cachexia and other muscle wasting conditions that represent unique 

aetiologies.  

However, metabolomics studies investigating such disturbances are lacking. Murine 

models have been used to show the potential of untargeted analysis in this area, such 

as the identification of a 1.8-fold increase in acetylcholine in aged mice, likely 

representing a compensatory mechanism for the degeneration of neuromuscular 

junctions (Uchitomi et al., 2019), or large-scale changes to cell metabolism identified 

in models of cachexia (Pin et al., 2019) or unloading (Chakraborty et al., 2020), but 

whether these findings translate to human cohorts is unknown. Metabolic 

disturbances contribute significantly to muscle loss, therefore validating these 

signatures is essential in attempting to understand the mechanisms that drive 

physiological adaptations in skeletal muscle.  

1.4.1.5. Current limitations of metabolomics research 

Despite clear interest in the use of metabolomics to study muscle wasting in a range 

of conditions, the key limitation to the current literature is that many metabolomics 

studies lack relation to the decline in relevant parameters of health associated with 
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wasting conditions or measures of muscle mass and strength. For instance, while many 

studies propose associations between metabolite expression and mitochondrial 

respiration, only one study provided evidence of correlation between metabolites 

indicative of mitochondrial function and reduction in muscle strength (Kemp et al., 

2020). Therefore associations between metabolite abundance and known 

physiological adaptations in muscle wasting conditions cannot be validated. The 

associations discussed thus far are therefore highly speculative and the extent of the 

relationship between changes in the metabolome and adaptations to low muscle 

health cannot be fully comprehended. This may be a significant contributing factor in 

explaining why, despite targeted efforts, advancements in clinical biomarkers of 

wasting conditions have not been made. To fully comprehend the relationship 

between adaptations in the metabolome and the development of wasting conditions, 

physiological outcome measures of clinically relevant parameters including measures 

of muscle metabolism (for example, oxidative capacity) and function, strength and 

mass should be included in study designs.  

The cross-sectional nature of many metabolomics studies further limits the 

establishment of causal links between metabolite level and disease. Cross-sectional 

studies are only able to establish differences in metabolite level between study 

populations at one timepoint and therefore cannot assess metabolic change over 

time, which may be key in the development of slow onset wasting conditions such as 

sarcopenia which develops over a period of years, nor can they identify where in the 

metabolic pathway dysregulation occurs, preventing effective interventions from 

being developed. In addition, although there is recent evidence from murine models 

to suggest metabolic disturbances beyond that of amino acid or lipid metabolism are 

associated with a decline in skeletal muscle health and the subsequent loss of muscle 
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mass across wasting conditions there is little focus in this area allowing potential key 

insights into the aetiology of muscle wasting to go undetected.  

There is some disagreement on how accurately plasma metabolites reflect tissue 

metabolomic profiles, with some arguing that plasma is an inappropriate proxy for 

studying metabolism in muscle tissue (Fazelzadeh et al., 2016b) while others suggest 

the plasma metabolome has a high concordance with skeletal muscle metabolism with 

similar directional changes in metabolic profile (Dutta et al., 2012; Wu et al., 2022). 

Developing a full understanding of the link between plasma and muscle metabolomic 

profiles would be highly beneficial in identifying markers of metabolic dysregulation in 

sarcopenia and cachexia. Finally, differences in operational definitions of sarcopenia 

and cachexia (Cruz-Jentoft et al., 2019; Fielding et al., 2011; Evans et al., 2008; Morley 

et al., 2011; Chen et al., 2014; Fearon et al., 2011; Bijlsma et al., 2013; Van Ancum et 

al., 2020; Vanhoutte et al., 2016) have led to discrepancies in classification of disease 

between studies, hindering the ability to make accurate comparisons across studies 

and between different states of muscle wasting. This thesis aims to address these 

limitations in relation to the study of muscle wasting.  

1.5. Thesis aims 

Despite the recent advancements in this field the key gaps in the current literature 

relate to the lack of integration between physiological outcomes and metabolomics 

data and poor cohesion across study cohorts which limits ability to identify similarities 

and differences between the aetiologies underlying different states of muscle mass 

loss. Identifying potential universal mechanisms of muscular adaptations would be of 

great benefit in the development of successful therapeutics, but this requires a much 

greater understanding of the common links between conditions. In this thesis, I will 

explore differences in the plasma metabolomic profile of several cohorts of well 
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characterised participants with defined adaptations in skeletal muscle physiology 

relating to loss of muscle mass and strength, with correlation to relevant physiological 

parameters associated with declines in muscle health including lean mass, rate of 

oxidation, and insulin sensitivity to gain greater understanding of into the relationship 

of phenotypic changes in muscle and the plasma metabolome. 

Additionally, although measuring metabolite profiles in muscle directly allows for clear 

links between metabolite expression and phenotypic changes to be established, the 

collection of muscle tissue is difficult and highly invasive. It would be more beneficial 

to develop alternative approaches to assess changes in the muscle indirectly through 

measurements of plasma metabolite level. In this thesis, in addition to identifying 

markers of wasting and their biological relevance, I will test associations between the 

plasma and muscle metabolomes.  

The aims of this thesis are therefore as follows: 

1. To use untargeted metabolomics to fully characterise the plasma metabolome 

in several conditions associated with adaptations in skeletal muscle leading to 

poorer muscle metabolic health and mass loss 

2. To identify disrupted metabolic pathways in these conditions in order to 

understand the underlying mechanisms leading to metabolic dysregulation of 

skeletal muscle and their role in the loss of skeletal muscle mass  

3. To compare the plasma metabolome of different study cohorts to investigate 

whether there is a universal mechanism underlying the loss of muscle mass 
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 General methods 

This chapter describes the method development performed to find the optimal 

extraction method for untargeted metabolomics analysis of human plasma by mass 

spectrometry, in addition to the general methods and materials used across 

experimental Chapters 4, 5 and 6. Sample preparation and analysis by mass 

spectrometry in Chapter 3 was performed as part of a collaborative study at the 

Phenome Centre, University of Birmingham using different methods which are 

described in detail in the relevant chapter. 

2.1. Consumables and equipment 

 Solvents and reagents 
The following solvents and reagents were used in preparation of plasma samples and 

separation of metabolites within samples by liquid chromatography: 

Table 2.1 Solvents and reagents used in sample preparation and liquid 
chromatography separation of metabolites in method validation and experimental 
method protocols 

Solvents and reagents Manufacturer Location 
2H3-Caproate QMX Laboratories Thaxted, UK 
2H31-Palmitate Sigma Aldrich Gillingham, UK 
2H2-Glucose Sigma Aldrich Gillingham, UK 
Nortestosterone Sigma Aldrich Gillingham, UK 
Methanol (MeOH) Thermo Fisher Scientific Hemel Hempstead, UK 
Double distilled water 
(ddH2O) 

Sigma Aldrich Gillingham, UK 

Chloroform (CHCl3) Thermo Fisher Scientific Hemel Hempstead, UK 
Methyl tert-butyl ether 
(MTBE) 

Thermo Fisher Scientific Hemel Hempstead, UK 

Ethanol (EtOH) Thermo Fisher Scientific Hemel Hempstead, UK 
Proteinase K New England Biolabs Hitchin, UK 
Isopropanol (IPA) Thermo Fisher Scientific Hemel Hempstead, UK 
Acetonitrile (MeCN) Thermo Fisher Scientific Hemel Hempstead, UK 
Ammonium formate Thermo Fisher Scientific Hemel Hempstead, UK 
Formic acid Thermo Fisher Scientific Hemel Hempstead, UK 
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 Laboratory equipment 
The following equipment was used in preparation of plasma samples, separation of 

metabolites in samples by liquid chromatography, and acquisition of metabolomics 

data by mass spectrometry: 

Table 2.2 Laboratory equipment used in sample preparation, separation of 
metabolites by liquid chromatography, and acquisition of metabolomics data by mass 
spectrometry in method validation and experimental method protocols  

Equipment Manufacturer Location 

Heraeus Fresco 17 
centrifuge 

Thermo Fisher Scientific Hemel Hempstead, UK 

VXR Vibrax Shaker IKA Staufen, Germany 
TurboVap Biotage Hengoed, UK 
Ultimate 3000 UHPLC 
system 

Thermo Fisher Scientific Hemel Hempstead, UK 

InfinityLab Poroshell 120 
HILIC-Z column 

Agilent Cheadle, UK 

Modus C18 column Chromatography Direct Runcorn, UK 
Q-Exactive Hybrid 
Quadrupole-Orbitrap 
Mass Spectrometer 

Thermo Fisher Scientific Hemel Hempstead, UK 

Accela UHPLC pump and 
autosampler 

Thermo Fisher Scientific Hemel Hempstead, UK 

Zorbax SB-Aq RRHD 
column 

Agilent Cheadle, UK 

 

2.2. Method validation 

 Comparison of extraction methods for metabolites in 

plasma 
To assess the effectiveness of different sample preparation methods in the extraction 

of plasma metabolites three popular extraction methods were identified from the 

literature and selected for testing (Bligh and Dyer, 1959; Sostare et al., 2018; 

Wawrzyniak et al., 2018). For all methods pooled, fasted plasma from healthy adults 

provided from an inhouse biobank was first thawed at room temperature and 

centrifuged at 17,000 xg for 2 minutes at room temperature to pellet the fibrin clot. 

50 µl of plasma was pipetted to a clean Eppendorf/Microcentrifuge tube. 2H31-

caproate, 2H31-palmitate, 2H2-glucose and nortestosterone (10µl of each) were 
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pipetted into each sample for use as internal standards. The same procedure was 

performed for each of the methods described below.  

2.2.1.1. Method 1: The modified Bligh & Dyer method 

First 5.5 µl of ice cold MeOH per μl plasma and 0.9 μl ddH2O per μl plasma were added 

to each tube. The samples were then vortexed for 10 seconds. Two μl CHCl3 per μl 

plasma was added to each tube and samples were shaken on a VXR Vibrax shaker for 

2 minutes at 2,000 rpm. Samples were then centrifuged at 2,500 xg for 10 minutes at 

18°C to remove cellular debris and the supernatant was transferred to a fresh tube. 

Two μl CHCl3 per μl plasma and 2.27 μl ddH2O per μl plasma were added to aid phase 

separation, then samples were shaken at 2,000 rpm for 2 minutes and left at room 

temperature for 10 minutes to allow for phase separation to complete followed by 

centrifugation at 2,500 xg for 20 minutes at 18°C. Following phase separation 300 µl 

of the upper, polar phase, and 300 µl of the lower, non-polar phase were each carefully 

removed into clean 1.5 ml autosampler vials. Both phases were then dried at 30°C 

under N2 for 40 minutes. 

2.2.1.2. Method 2: The modified Matyash method 

First 5.5 μl ice cold MeOH per μl plasma and 0.9 μl ddH2O per μl plasma were added 

to each sample and tubes were vortexed for 10 seconds. Two μl MTBE per μl plasma 

was added and samples were shaken on a VXR Vibrax shaker for 3 minutes at 2,000 

rpm. Following this, 3.2 μl MTBE per μl plasma and 3.42 μl ddH2O per μl plasma were 

then added to samples to aid phase separation and tubes were shaken at 2,000 rpm 

for 1 minute. Samples were then incubated at room temperature for 10 minutes, 

followed by centrifugation at 2,500 xg for 10 minutes at 18°C.  

When following the protocol described above the polar and non-polar phases failed 

to separate on addition of MTBE and ddH2O so different solvent ratios were tested. 
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Internal standards were added to 50 μl plasma as above, then 3.87 μl MeOH per μl 

plasma and 12.9 μl MTBE per μl plasma were added to each sample and tubes were 

vortexed for 10 seconds and shaken for 3 minutes at 2,000 rpm. Next 3.3 μl ddH2O per 

μl plasma was added then samples were briefly vortexed and left at room temperature 

for 10 minutes. Samples were centrifuged at 2,500 xg for 10 minutes at 18°C. Finally, 

300 µl of the upper, polar phase, and 300 µl of the lower, non-polar phase, were each 

carefully removed into clean 1.5 ml autosampler vials. Both phases were then dried at 

30°C under N2 for 40 minutes. 

2.2.1.3. Method 3: A single phase Methanol:Ethanol solvent 

extraction method 

Three μl ice cold MeOH:EtOH (1:1, v/v) per µl plasma was added to the plasma and 

the samples were vortexed for 10 seconds. Samples were stored at -20°C for 60 

minutes followed by centrifugation at 2,500 xg for 15 minutes at 4°C. The supernatant 

was removed to a clean 1.5 ml autosampler vial and dried under N2 at 30°C for 40 

minutes. 

2.2.1.4. Methods 4, 5 and 6: Addition of proteinase K 

Evidence in the literature suggested that the addition of proteinase K (PK), a serine 

protease enzyme, improved metabolome coverage and reproducibility in both single- 

and dual-phase extraction protocols (Wawrzyniak et al., 2018; Zhang et al., 2019). 

Therefore for each protocol tested above 0.02 μl PK per µl plasma was added to the 

plasma after the addition of the internal standards. Samples were then incubated at 

37°C for 15 minutes before the ice-cold solvents were added and Methods 1, 2 and 3, 

respectively, were then followed as detailed above. 
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2.2.1.5. Resuspension of samples 

For methods 1, 2, 4 and 5, the polar phase was resuspended in 100 μl 80:20 

MeOH:ddH2O with 0.25% formic acid. The non-polar phase was first resuspended in 

50 μl 60:30:4.5 CHCl3:MeOH:ddH2O and then vortexed for 10 seconds after which 50 

μl 2:1:1 IPA:MeCN:ddH2O was added to the resuspension. For methods 3 and 6, all 

samples were resuspended in 100 μl 80:20 MeOH:ddH2O.  

 Separation of metabolites by liquid chromatography 
Samples were separated using an UltiMate 3000 UHPLC system. For HILIC 

chromatography, an InfinityLab Poroshell 120 HILIC-Z column (2.1mm x 150mm x 

2.7µm) was used with mobile phase A 10mM ammonium formate in 90% acetonitrile 

with 0.1% formic acid and mobile phase B 10mM ammonium formate in 50% 

acetonitrile with 0.1% formic acid. Mobile phase A increased from 1% to 95% over a 

gradient with total run time of 28 minutes. For reverse phase (RP) chromatography, a 

Modus C18 column (30mm x 3.0mm x 1.6µm) was used with mobile phase A 100% 

ddH2O with 0.1% formic acid and mobile phase B 100% MeOH with 0.1% formic acid. 

Mobile phase B increased from 1% to 95% over a gradient with total run time of 21 

minutes.   

For each sample, 5 µl of suspension was injected. Injection order was randomised to 

avoid bias. A blank sample containing only the resuspension buffer was injected at the 

start of the run to assess systematic contamination. Eight pooled QCs were injected 

following the blank to condition the column. Pooled QCs were also injected every 10 

experimental samples to assess sample drift within the acquisition (Figure 2.1). Due to 

technical error during the run, polar samples were run in two batches. The same 

pooled QCs were used across batches to allow for the correction of variation 

introduced by multiple acquisition batches.  
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Injection order Sample type 

1 Solvent blank 

2 Conditioning QC 1 

3 Conditioning QC 2 

4 Conditioning QC 3 

5 Conditioning QC 4 

6 Conditioning QC 5 

7 Conditioning QC 6 

8 Conditioning QC 7 

9 Conditioning QC 8 

10 Pooled QC sample 1 

11 Sample 3 

12 Sample 5 

13 Sample 9 

14 Sample 12 

15 Sample 2 

16 Sample 7 

17 Sample 4 

18 Sample 8 

19 Sample 14 

20 Sample 15 

21 Pooled QC sample 2 

22 Sample 20 

23 Sample 18 

24 Sample 17 

25 Sample 11 

26 Sample 10 

27 Sample 13 

28 Sample 19 

29 Sample 6 

30 Sample 16 

31 Sample 1 

32 Pooled QC Sample 3 

Figure 2.1 Example of sample injection order in LC run 

A typical set up of samples for an LC run composed of blank samples, pooled QC 
samples and experimental samples. At the beginning of the run, a blank sample 
containing only the resuspension solvent is injected. Following the blank, 8 pooled QC 
samples are injected to condition the column before experimental samples are 
injected. The same pooled QC samples are then injected periodically throughout the 
run to assess sample drift over the course of the run. The experimental samples are 
given a number according to the order in which they were prepared but placed in a 
randomised order throughout the run to prevent bias. 
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 Acquisition of data by mass spectrometry 
Data was collected using the Q-Exactive Hybrid Quadrupole-Orbitrap Mass 

Spectrometer operated in both positive and negative ionisation modes for HILIC and 

RP chromatography (Table 2.3). Unless otherwise specified in the table, units of 

measurement are vendor specific Arbitrary Units. 

Table 2.3 MS and MS/MS scan parameters for the acquisition of polar and non-polar 
metabolites in testing of extraction methods  

Parameter HILIC Reverse phase 

Mode Positive Negative Positive Negative 
MS scan parameters 
Scan type Full MS Full MS 
Scan range 70 – 1,050 m/z 70 – 2,000 m/z 
Fragmentation None None 
Resolution 70,000 70,000 
AGC target 1e6 3e6 
Maximum IT 100ms 200ms 100ms 250ms 
Microscans 5 1 
Sheath gas flow 54 48 
Aux gas flow 13 11 
Sweep gas flow 0 3 5 
Spray voltage 4kV 3.5kV 3kV 3.5kV 
Capillary temperature 260°C 320°C 300°C 320°C 
S-lens RF level 50 60 60 
Aux gas flow heater 
temperature 

430°C 320°C 300°C 

MS/MS scan parameters  
Resolution 17,500 17,500 
AGC target 1e6 1e6 
Maximum IT 50ms 50ms 
topN peaks 3 3 
Isolation window 1.5 m/z 1.5 m/z 
Normalised collision energy 25, 60, 100% 25, 60, 100% 
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 Pre-processing and filtering of acquired data  
Raw data acquired from the mass spectrometer in both ionisation modes and 

polarities was converted to mzXML file format using MS Convert software 

(ProteoWizard, Palo Alto, USA) and imported into R (version 3.4) utilising the xcms 

(Smith et al., 2006) and CAMERA packages (Kuhl et al., 2012). Files were processed 

using inhouse R scripts provided in Appendix 1 (R Core Team, 2021).  

Peak width was defined from the width of the narrowest and widest peaks, 

determined from manual inspection of the chromatograms. Parameters for peak 

detection were defined using the centWave algorithm with tolerance set at 20 ppm. 

Peaks were detected using the findChromPeaks function of xcms and aligned using the 

Obiwarp method and adjustRtime function to m/z bins of 0.6. Bin size was chosen to 

avoid signals from multiple compounds being converged into one signal by restrictions 

that were too lenient while also avoiding a signal from one compound being split by 

an overly conservative restriction. Peaks were grouped within bins using a bandwidth 

defined individually for each ion mode and polarity. Feature definitions for each 

metabolite were extracted to return a data frame containing the peak signal matched 

to m/z and retention time boundaries. The signal in areas of missing peaks was 

integrated from the m/z and retention time ranges defined in the data frame using the 

fillChromPeaks function. Finally, peaks were annotated with the CAMERA package 

(version 3.11) and data was exported as a data frame of metabolite feature vs sample 

ID with associated chromatographic peak areas for each detected metabolite. 

As polar samples were run in two batches, datasets produced from peak picking were 

combined to produce a single merged dataset. Inter-batch alignment was performed 

using the MetaboAnalyst web platform 4.0 (available at 

https://dev.metaboanalyst.ca/MetaboAnalyst/upload/BatchUpload.xhtml) using the 

ComBat alignment method for both the positive and negative acquisition modes. Only 

about:blank
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overlapping features across both batches were used. Intra-batch drift effect was 

corrected for using cyclic LOESS conducted using R package NormalyzerDE (version 

1.6.0) (Willforss et al., 2019). The data were then filtered according to the following 

acceptance criteria: the signal from a blank sample was less than 5% of the mean 

biological signal, the feature was present in at least 80% of all samples, and coefficient 

of variation (CV) was less than 10% after normalisation. An overview of this process is 

provided in Figure 2.2.  
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Figure 2.2 Workflow for pre-processing and processing of method validation samples 

Raw data acquired by UHPLC-MS/MS was computationally processed to prepare it in 
appropriate format for subsequent data analysis. Processing output was a matrix of 
metabolite ID vs sample ID with chromatographic peak area for each detected 
metabolite 
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 Data analysis 
For each method, the total number of detected features in each polarity and ionisation 

mode that remained after processing and filtering were determined. From the total 

number of features, the percentage of features matching the acceptance criteria was 

calculated (Table 2.4). Reproducibility of the extraction methods was compared using 

the CV of all accepted features for each method (Figure 2.3). Incubation with PK 

generally increased the percentage of the accepted features relative to the same 

extraction method without PK, however it also increased variability in all methods. The 

Bligh and Dyer method had the most consistency of the percentage of accepted 

features across polar and non-polar samples. CVs across extraction methods were 

similar. Therefore, due to consistency across accepted features, the Bligh and Dyer 

method was selected as the most appropriate for use in future studies and was used 

for analyses in chapters 4, 5 and 6 with minor adaptions.  
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Table 2.4 Comparison of six extraction methods based on the total number of features 
detected and percentage of features accepted using filtering criteria from an 
extraction of human plasma 

Method Polarity Ion 
mode 

Number of 
features detected 

Features 
accepted (%) 

Bligh and Dyer Polar Positive 2153 48.68 

Negative 2828 46.78 

Non-
polar 

Positive 4584 25.41 

Negative 2592 35.65 

Bligh and Dyer 
with enzyme 

Polar Positive 5294 72.25 

Negative 3627 57.29 

Non-
polar 

Positive 6935 47.27 

Negative 4031 2.431 

Matyash Polar Positive 1671 33.81 

Negative 2198 26.43 

Non-
polar 

Positive 5698 45.05 

Negative 4119 12.84 

Matyash with 
enzyme 

Polar Positive 4854 77.85 

Negative 3671 61.05 

Non-
polar 

Positive 7436 55.51 

Negative 5957 57.58 

Single phase Polar Positive 1966 54.02 

Negative 3003 49.78 

Non-
polar 

Positive 3299 90.15 

Negative 3962 4.89 

Single phase with 
enzyme 

Polar Positive 5698 80.13 

Negative 4401 68.28 

Non-
polar 

Positive 9683 69.85 

Negative 1732 1.27 
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Figure 2.3 Representative example of comparison of six extraction methods based on 
reproducibility 

Data from non-polar positive datasets. Boxplots representing coefficient of variation 
(CV) of all accepted features for each of the extraction methods tested. Reproducibility 
was similar across all methods but tended to be higher when proteinase K (PK) was 
added. 

 

2.3. Metabolite extraction from plasma in studies 

For all experiments where metabolite extraction from plasma samples was performed, 

metabolites were extracted from plasma according to the principles of the Bligh and 

Dyer method detailed in section 2.2.1.1. Further optimisation was performed 

following the method development work to ensure reproducible analyses across 

studies. The volumes of solvents and adaptations to the resuspension solvents used 

were based on work published by other groups which found the best metabolite yield 

and reproducibility (Southam et al., 2020). No benefit was found from including the 

internal standard mix for untargeted work, therefore internal standards were 

removed from the protocol to improve ease of workflow. The protocol described 

below is the final protocol used throughout experimental Chapters 4, 5 and 6 of this 

thesis. 
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First 320 µl ice-cold MeOH and 78 µl chilled ddH2O was added to 50 µl plasma and 

vortex mixed for 10 seconds. Following this 320 µl ice-cold CHCl3 and 160 µl ddH2O 

was added to the same tube, vortex mixed for 10 seconds and shaken for 2 minutes at 

2000 rpm. Samples were incubated at 4°C for 10 minutes, then centrifuged at 17,000 

xg for 10 minutes at 4°C. Finally, 377 µl upper, polar phase and 273 µl lower, non-polar 

phase were each pipetted into clean autosampler vials. Both phases were dried at 30°C 

under N2 and stored at -80°C until ready for analyses.  

Prior to analysis, samples were suspended in 75:25 MeCN:ddH2O and 75:25 IPA:ddH2O 

for HILIC and RP chromatography, respectively. Ten µl was removed from each 

suspended plasma sample to a clean Eppendorf tube and briefly vortexed to create a 

pooled QC which acts as a representative sample and can be used in the evaluation of 

coefficients of variation for each metabolite (Beger et al., 2019). One hundred µl of 

the pooled QC was transferred into a new autosampler vial for analysis. 

As the total number of samples in each study was larger than the maximum that could 

fit in the shaker and centrifuge at one time, samples were randomly assigned to equal 

sized batches for preparation such that each batch could fit in the equipment. Random 

assignment was chosen to reduce possible variation introduced by multiple sample 

preparations.  A sample composed of fasted plasma from an inhouse biobank was 

prepared in each batch for use as an inter-batch QC to assess technical variation across 

batches. Additionally, a sample containing 50 µl ddH2O was prepared alongside the 

plasma samples in an identical manner for use as an extraction blank to account for 

background noise from features in the extraction or suspension solvents.  
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2.4. Parameters for the separation of compounds by liquid 

chromatography 

Further optimisation of the gradient methods was performed to provide the optimal 

throughput for large numbers of samples which reduced the run time from 28 minutes 

to 17.5 minutes for HILIC and 21 minutes to 15.5 minutes for RP. Improvement of 

sample throughput in RP was also achieved by using a different chromatographic 

column.  

Samples from all preparation batches were combined in a single batch for data 

acquisition. Separation was performed on an Accela UHPLC pump and autosampler 

operated by Xcalibur software. For HILIC chromatography, an InfinityLab Poroshell 120 

HILIC-Z column (2.1mm x 150mm x 2.7µm) was used with mobile phase A 10mM 

ammonium formate in 90% acetonitrile with 0.1% formic acid and mobile phase B 

10mM ammonium formate in 50% acetonitrile with 0.1% formic acid. For RP, a Zorbax 

SB-Aq RRHD column (2.1mm x 100mm x 1.8µm) was used with mobile phase A ddH2O 

with 0.1% formic acid and mobile phase B methanol with 0.1% formic acid. Gradient 

programs are provided in Table 2.5. For each sample, 5 µl  was injected. Injection order 

was randomised to avoid bias. A blank containing only the resuspension solvent was 

injected at the start of the run to assess systematic contamination. Eight pooled QCs 

were injected to condition the column followed by a pooled QC for MS/MS 

fragmentation to aid in metabolite annotation. Pooled QCs were also injected every 

10 samples to assess drift effect and inter-batch QCs were injected every 20 samples 

to allow for the correction of variation introduced by different preparation batches 

(batch effect) if necessary. A second QC for MS/MS fragmentation was injected at the 

end of the run. Extraction blanks were injected after the MS/MS QC samples to assess 

for contamination introduced in the extraction process (Figure 2.4).  
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Table 2.5 Gradient elution programs for the separation of metabolites by ultra high 
performance liquid chromatography in each polarity 

Time Mobile Phase A (%) Mobile Phase B (%) 

Reverse phase (flow rate 400 µl/min) 
0.00 99.00 1.00 
1.00 99.00 1.00 
3.00 85.00 15.00 
6.00 5.00 95.00 
10.00 5.00 95.00 
10.50 99.00 1.00 
15.50 99.00 1.00 
HILIC (flow rate 400 µl/min) 
0.00 99.00 1.00 
0.50 99.00 1.00 
2.00 50.00 50.00 
10.00 1.00 99.00 
12.00 1.00 99.00 
12.50 99.00 1.00 
17.50 99.00 1.00 
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Injection order Sample type 

1 Solvent blank 

2 Conditioning QC 1 

3 Conditioning QC 2 

4 Conditioning QC 3 

5 Conditioning QC 4 

6 Conditioning QC 5 

7 Conditioning QC 6 

8 Conditioning QC 7 

9 Conditioning QC 8 

10 Pooled QC sample 1 

11 Pooled QC MSn Sample 1 

12 Extraction blank 1 

13 Sample 3 

14 Sample 5 

15 Sample 9 

16 Sample 12 

17 Sample 2 

18 Sample 7 

19 Sample 4 

20 Sample 8 

21 Sample 14 

22 Sample 15 

23 Pooled QC sample 2 

24 Sample 20 

25 Sample 18 

26 Sample 17 

27 Sample 11 

28 Sample 10 

34 Pooled QC Sample 3 

35 Pooled QC MSn Sample 2 

36 Extraction blank 2 

Figure 2.4 Example of sample injection order in LC run for experimental chapters 

A typical set up of samples for an LC run composed of blank samples, pooled QC 

samples and experimental samples. At the beginning of the run, a blank sample 

containing only the resuspension solvent is injected. Following the blank, 8 pooled 

QC samples are injected to condition the column before experimental samples are 

injected. The same pooled QC samples are then injected periodically throughout the 

run to assess sample drift over the course of the run. 2 QC samples are injected for 

tandem mass spectrometry fragmentation (MSn samples) to aid in annotation of 

metabolites by generating fragmentation patterns. Extraction blanks are injected 

after each MSn sample for assessment of contamination introduced in the sample 

preparation stage. The experimental samples are given a number according to the 

order in which they were prepared but placed in a randomised order throughout the 

run to prevent bias 
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2.1. Parameters for acquisition of data by mass spectrometry 

Acquisition of data was performed by a Q-Exactive Hybrid Quadrupole-Orbitrap Mass 

Spectrometer operated in both positive and negative acquisition modes for HILIC and 

RP chromatography (Table 2.6). The scan range parameter was adapted from section 

2.1.3 after further optimisation for optimal data acquisition by mass spectrometry 

analysis. Unless otherwise specified in the table, units of measurement are vendor 

specific Arbitrary Units. Examples of chromatograms acquired by mass spectrometry 

are provided in the appendices.  

Table 2.6 Final MS and MS/MS scan parameters for the acquisition of polar and non-
polar metabolites for experimental chapters 

Parameter HILIC Reverse phase 

Mode Positive Negative Positive Negative 
MS scan parameters 
Scan type Full MS Full MS 
Scan range 70 – 1,050 m/z 150 – 2,000 m/z 
Fragmentation None None 
Resolution 70,000 70,000 
AGC target 1e6 3e6 
Maximum IT 100ms 200ms 100ms 250ms 
Microscans 5 1 
Sheath gas flow 54 48 
Aux gas flow 13 11 
Sweep gas flow 0 3 5 
Spray voltage 4kV 3.5kV 3kV 3.5kV 
Capillary temperature 260°C 320°C 300°C 320°C 
S-lens RF level 50 60 60 
Aux gas flow heater 
temperature 

430°C 320°C 300°C 

MS/MS scan parameters  
Resolution 17,500 17,500 
AGC target 1e6 1e6 
Maximum IT 50ms 50ms 
topN peaks 3 3 
Isolation window 1.5 m/z 1.5 m/z 
Normalised collision energy 25, 60, 100% 25, 60, 100% 
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2.2. Pre-processing and filtering of acquired data 

Data pre-processing was conducted in R using the same parameters as detailed in 

section 2.1.4. Due to updated software, version 1.4.1106 of R was used for pre-

processing.  

Filtering parameters varied from section 2.1.4 due to the release of new 

computational packages which allowed for filtering of data output from xcms pre-

processing in R. Filtering of data was performed using the pmp R package (Jankevics 

et al., 2021). Following recommended guidelines for untargeted metabolomics 

(Broadhurst et al., 2018) metabolite features were retained when: peaks were present 

in at least 70% of pooled QC samples, relative standard deviation was less than 30%, 

and the extraction blank to mean QC peak area was less than 50%. PQN was applied 

to the remaining features, then missing values were imputed using the kNN algorithm. 

To correct for possible signal drift across the acquisition or batch effect, quality control 

robust spline correction (QC-RSC) was applied to the data matrix using inter-batch QCs 

and injection order of samples. Data were transformed using a variance stabilised 

generalised logarithm (glog) approach prior to analysis to correct heteroscedasticity 

of distribution and exported as a data matrix of metabolite ID vs sample ID with glog 

transformation of area of peaks that remained after filtering was applied for each 

detected metabolite. This finalised workflow is summarised in Figure 2.5. Following 

pre-processing data underwent statistical analysis which is detailed in subsequent 

chapters, although a general overview of the analytical pipeline is provided in Figure 

2.6. 



85 
 

 

Figure 2.5 General workflow for pre-processing and processing of untargeted 
metabolomics data 

Raw data acquired by UHPLC-MS/MS was computationally processed to prepare it in 
appropriate format for subsequent data analysis. Processing output was a matrix of 
metabolite ID vs sample ID with log transformation of chromatographic peak area for 
each detected metabolite. 
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Figure 2.6 General workflow for statistical analysis of metabolomics datasets 
following sample pre-processing and processing steps 

  



87 
 

 Metabolomic analysis of plasma from healthy 

young men following chronic bed rest 

3.1. Background 

 Skeletal muscle deconditioning following bed rest  
Reduced mechanical loading of skeletal muscle due to prolonged periods of disuse, 

such as bed rest, immobilisation or spaceflight (Bowden Davies et al., 2019), is 

associated with the development of muscle level deconditioning, the process of 

physiological change that leads to a physical decline in locomotor function of skeletal 

muscle (Fovet et al., 2021). Deconditioning is believed to be underpinned by numerous 

metabolic changes, some of which are described in more detail below.  

Firstly, skeletal muscle deconditioning associated with bed rest has well defined 

detrimental effects on skeletal muscle protein balance (Atherton et al., 2016; 

Rudrappa et al., 2016) and subsequently muscle mass and strength. These changes 

develop rapidly and are maintained as bed rest continues, for example one week of 

bed rest was associated with a 2.6% reduction in lean tissue mass, a 3.2% decline in 

quadriceps muscle cross-sectional area (CSA), a 6.9% reduction in leg press strength 

and a 8% reduction in leg extension strength (Dirks et al., 2016). Likewise, an earlier 

study demonstrated that 1 week of bed rest was associated with a 14% reduction in 

knee extensor strength (LeBlanc et al., 1992). Reductions continued after 17 weeks of 

bed rest when reductions in quadriceps (16-18%), ankle flexor (21%) and ankle 

extensor (30%) muscle volume were observed (LeBlanc et al., 1992). Similarly, 20 days 

of bed rest was associated with reductions in knee extensor (10%), knee flexor (11%), 

adductor (7%), and plantar flexor (12%) muscle groups (Akima et al., 2007), although 

changes in strength were not assessed.  

Secondly, the development of insulin resistance, the impaired ability of any given 

blood insulin concentration to stimulate tissue glucose uptake (Wilcox, 2005) is a 
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common trait of metabolic dysregulation in deconditioning associated with bed rest 

regardless of duration.  A 67% increase in the net serum insulin response over time to 

glucose loading via ingestion of 75g glucose, which is indicative of whole-body insulin 

resistance, was noted following 5 days of bed rest (Hamburg et al., 2007). Plasma 

insulin concentrations were greater after 7 days bed rest in the fasted state, and in 

response to infusion of glucose (Stuart et al., 1988), and whole-body and leg glucose 

uptake under euglycaemic clamp conditions decreased after 7 days of bed rest in 

healthy young volunteers (Mikines et al., 1991), which clearly demonstrates the 

development of both whole-body and peripheral insulin resistance with bed rest. 

Likewise, reduced muscle-level insulin sensitivity and the development of systemic 

glucose intolerance are reported following chronic bed rest (Rudwill et al., 2018). Data 

also demonstrates that bed rest has no effect on hepatic glucose utilisation or 

production (Stuart et al., 1988; Mikines et al., 1991), suggesting that of the 

development of insulin resistance during bed rest is reflective of changes in muscle 

glucose uptake.  

In healthy conditions insulin promotes the uptake of glucose into skeletal muscle 

where it is stored in the form of glycogen (non-oxidative glucose disposal) or used as 

an energy substrate (oxidative glucose disposal) (Argilés et al., 2016). In addition, 

insulin has an anabolic role in skeletal muscle through its regulation of MPS and MPB. 

Firstly, insulin inhibits MPB in a dose dependent manner (Fukagawa et al., 1985). 

Secondly, in the postprandial state insulin signalling increases the transport of EAAs 

into skeletal muscle and positively regulates the mammalian target of rapamycin 

signalling pathway (Cynober, 2013), which increases the rate of MPS. Understanding 

the muscle centric mechanism that underlies the loss of insulin sensitivity may provide 

some insight into the aetiology of deconditioning and regulation of muscle protein 

turnover, however the precise causative mechanism is currently unclear.  
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Insulin resistance in bed rest has historically been linked to the accumulation of IMCL 

content which is commonly reported as a consequence of bed rest. For example, 28 

days of bed rest increased intramyocellular triglyceride content by at least 20% in all 

participants in a cohort of healthy male volunteers (Cree et al., 2010) and total IMCL 

content increased 2.7% following 8 weeks bed rest in a group of healthy, young 

women (Bergouignan et al., 2009). Precisely how the accumulation of IMCL content 

and insulin resistance are related remains unknown although several mechanisms 

have been proposed. Initially it was suggested that the accumulation of IMCL content 

acted as a physical barrier to prevent insulin signalling thereby directly disrupting 

whole-body glucose homeostasis (Petersen and Shulman, 2006) but more recently it 

has been proposed that the coating of perilipins on the surface of the droplets 

influences droplet characteristics, such as inhibiting lipolysis, can induce 

morphological changes, including alterations to size and shape of the droplet, and 

affects the droplets’ dynamic nature which modulates insulin sensitivity of skeletal 

muscle (Gemmink et al., 2017). This theory aligns with both changes in the size and 

shape of lipid droplets in poor quality muscle (Crane et al., 2010; Stephens et al., 2011) 

and the so-called athletes’ paradox, the increase of IMCL content in insulin sensitive 

endurance trained athletes. Insulin sensitive, trained individuals and insulin resistant, 

non-trained individuals have similar muscle fat content but in trained muscle lipids are 

stored in small lipid droplets while in the untrained muscle lipids accumulate in large 

droplets (Nielsen et al., 2017).  

However bed rest studies have historically been confounded by participants’ dietary 

intake not being controlled. It is therefore unclear whether the observed rise in IMCL 

content is a direct consequence of inactivity or simply a side effect of excess energy. 

Recent research in which subjects are held in energy balance during bed rest suggest 

rapid changes in insulin metabolism occur without an increase in IMCL suggesting that 
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the development of insulin resistance is unrelated to gain in intramuscular fat. For 

example, IMCL content did not increase after one week of bed rest despite a 29% 

decrease in whole-body insulin sensitivity and a decline in muscle oxidative capacity 

when energy balance is maintained (Dirks et al., 2016).  

Another possible mechanism underlying insulin resistance is the development of 

metabolic inflexibility of skeletal muscle. Metabolic inflexibility is defined as the lack 

of ability to switch from fat to carbohydrate oxidation in response to changes in 

metabolic or energetic demand such as in the transition from the fasted to the fed 

state (Galgani et al., 2008; Goodpaster and Sparks, 2018; Smith et al., 2018). Habitual 

physical activity levels predict metabolic flexibility of skeletal muscle, therefore 

impairments in metabolic flexibility are strongly associated with deconditioning 

induced by reduced physical activity and sedentary behaviour (Kelley et al., 1999). For 

example, 10 days of bed rest led to a decrease in the insulin-mediated suppression of 

fatty acid rate of appearance in individuals held in energy balance with no gain in fat 

mass (Coker et al., 2014) however the potential mechanisms underlying change in 

fatty acid appearance were not explored.  

It has previously been suggested that metabolic inflexibility predisposes insulin 

resistance by the accumulation of incompletely oxidised lipid species in muscle which 

form as a consequence of higher rates of fat oxidation. The accumulated lipids are 

suggested to lead to muscle mitochondrial stress and subsequently insulin resistance 

(Palmer and Clegg, 2022). However it should be noted that while insulin resistance and 

metabolic inflexibility are clearly linked there is disagreement over whether insulin 

resistance is a consequence of metabolic inflexibility or a causative factor (Goodpaster 

and Sparks, 2018). The mechanism underlying development of insulin resistance in 

bed rest therefore remains unclear.  
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 Metabolomics in the study of adaptations to bed rest 
As discussed in Chapter 1, metabolites represent the endpoints of regulatory networks 

and provide a chemical link between changes occurring at the genomic and phenomic 

levels (Bujak et al., 2015). Adaptations in the metabolome during an intervention 

therefore reflect any observed physiological adaptations occurring in response to an 

internal or external stimulus which disrupts the normal biological state (Wishart, 

2019). Undertaking a systems biology approach by adopting metabolomics techniques 

in traditional intervention studies can provide greater insight into complex 

physiological mechanisms (Bartel et al., 2015) including metabolic and physiological 

adaptations to physical inactivity, such as loss of muscle mass and strength or the 

development of metabolic inflexibility and insulin resistance. 

Previous omics work in bed rest studies demonstrates the potential of such an 

approach. Lipidomics analysis of skeletal muscle tissue found total levels of cardiolipin 

significantly decreased with 10 days of bed rest (Standley et al., 2020) however given 

the great diversity of the metabolome there are likely to be wider effects of bed rest 

on metabolism which remain undetected by a lipid targeted approach. Forty five days 

of head down bed rest resulted in significant changes in the urinary excretion patterns 

of metabolites typically associated with muscle mass, such as lower levels of glutamine 

and guanidoacetate excretion and increased creatinine and glycine excretion, 

however association with physiological parameters was limited to bone mineral 

density and therefore the precise association of these metabolites with other 

physiological adaptations such as the loss of muscle mass remains unclear (P. Chen et 

al., 2016). Finally, 21 days of bed rest led to an enrichment in pathways involved in 

aminoacyl-tRNA biosynthesis, glycerophospholipid synthesis, and galactose 

metabolism, amongst others, but also caused a 2.5 fold reduction in urinary 

metabolite-metabolite interactions indicating a severe reduction in metabolic 
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diversity (Sket et al., 2020). However the study did not investigate the correlation 

between adaptations in the metabolome and physiological parameters representative 

of adaptation to bed rest.  

The application of metabolomics in physiology can be limited by failure to collect 

physiological endpoint measures related to the study question which can be 

associated with metabolomic measurements to increase impact and meaningfulness 

of metabolomics data. Notably, there is a gap in the literature relating metabolite 

changes associated with bed rest with the known adaptations in insulin sensitivity and 

fuel substrate oxidation. The current literature also lacks associations between 

changes in metabolites and the loss of muscle mass in bed rest. The lack of research 

in this area presents an opportunity for generation of novel insight by employing an 

untargeted metabolomics approach to study the effects of bed rest on metabolism. 

Therefore, the aims of this chapter are as follows: 

1. To investigate adaptations in the plasma metabolome under conditions of 

bed-rest induced decrements in insulin-mediated GD and changes in fuel 

oxidation, and to identify any specific pathways underlying this dysregulation 

of metabolism 

2. To identify associations between specific metabolite changes and changes in 

GD and fuel oxidation and lean body mass during bed rest 
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3.2. Methods 

 Study design 
This study utilised samples collected as part of a now published volunteer intervention 

study (Shur et al., 2022) which was conducted at the Institute of Space Medicine and 

Physiology, Toulouse, France (ClinicalTrials.gov Identifier: NCT03594799). The study 

was approved by the Toulouse ethics committee of the Rangueil University Hospital 

(Comite  ́de Protection des Personnes Sud-Ouest outre-Mer I, France) in accordance 

with the Declaration of Helsinki and the French Health Authorities (Ethics reference 

14-981). The study design is as follows: 

Healthy, physically active males aged 20 to 45 (n = 20) were recruited to undergo 60 

days of -6° head down tilt (HDT) bed rest. Prior to initiating bed rest participants 

underwent a 2-week run-in phase during which physical activity levels and diet were 

strictly controlled. During bed rest all activities including eating, washing and toileting 

were performed in the -6° HDT position. The sleep-wake cycle was controlled with 

wake up at 07:00 hours and lights out at 23:00 hours. Participants could move from 

side to side but were not permitted to sit up or stand at any time throughout the study.  

Throughout the study period, diet was strictly controlled to keep participants in energy 

balance. Participants received three meals and one snack per day. Energy 

requirements were estimated from each participant’s resting energy expenditure 

(REE) determined by indirect calorimetry multiplied by a physical activity level factor 

(PAL) of 1.2.  

Dual energy X-ray absorptiometry (DEXA) scans (Hologic, QDR4500C, Massachusetts, 

USA) were performed on day -2 (prior to initiation of bed rest) and day 58 (following 

bed rest) to detect changes in lean body mass. In addition, two experimental visits 

were performed during the study on day -6 and day 56. Participants were provided a 

standardised meal the evening before and then fasted from midnight. A 3-hour 
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hyperinsulinaemic euglycaemic clamp (60 mU/m2/min) was performed on both visits, 

and arterialised-venous blood samples were drawn for metabolomic analysis of 

plasma. On both visits, ventilated hood indirect calorimetry was performed 

immediately before and during the steady-state period of the insulin clamp to assess 

whole-body substrate oxidation. Arterialised-venous serum insulin and triglycerides 

and plasma non-esterified fatty acid (NEFA) concentrations were also measured 

before and every 15 minutes during the final hour of the clamp (steady-state). 

Bergström needle muscle biopsy samples were obtained from vastus lateralis before 

the clamp and at 180 min of the clamp. Two passes through the same entry site were 

made in each biopsy. The first pass was snap-frozen in liquid nitrogen. A portion of 

muscle from the second pass was imbedded in OCT mounting medium (361603E, VWR 

Chemical, Lutterworth, UK) and frozen in cooled isopentane (Thermo Fisher Scientific, 

Loughborough, UK) with the remaining tissue from the second pass frozen in liquid 

nitrogen. Muscle tissue was used to measure IMCL content and protein and gene 

transcripts.  

 Metabolite extraction from plasma 
Preparation of plasma samples for metabolite extraction was performed at the 

Phenome Centre, University of Birmingham using established protocols (Dunn et al., 

2011). 400µl plasma was mixed with 1,200µl MeOH. Samples were centrifuged at 

15,800 xg for 15 minutes at room temperature to pellet the protein precipitate. 370µl 

aliquots of supernatant were lyophilized in a centrifugal vacuum evaporator for 18 

hours. A saline blank consisting of 100µl 0.7% (wt/v) sodium chloride and a quality 

control (QC) plasma sample were prepared alongside the experimental samples. All 

samples were reconstituted in 100µl water, vortex mixed for 15 seconds and 

centrifuged at 15,800 xg for 15 minutes. 90µl supernatant was transferred to clean 

autosampler vials.  
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 Separation of compounds by liquid chromatography and 

acquisition of data by mass spectrometry 
Acquisition of data by UHPLC-MS/MS was conducted at the Phenome Centre, 

University of Birmingham. Analyses were performed with an Acquity UPLC system 

(Waters Ltd) coupled to a TOF mass spectrometer (LCT Premier, Waters Ltd). 

Chromatography was performed on a BEH column (C18, 2.1 x 100mm, 1.7µm, Waters) 

operating at 50°C. Mobile phase A was ddH2O with 0.1% (v/v) formic acid and mobile 

phase B was MeOH with 0.1% (v/v) formic acid. Data was acquired in ‘V mode’ as 

centroid data for an m/z range of 50-1,000. A scan time of 0.4s was applied. The mass 

spectrometer was operated in positive and negative ionisation modes.  

 Data pre-processing 
Data pre-processing was conducted at the Phenome Centre, University of 

Birmingham. Data were deconvoluted using the xcms package (Smith et al., 2006) in R 

(R Core Team, 2021). The settings applied for deconvolution were set to default except 

for step (0.02), S/N threshold (3), mass limit (0.05 amu), bw (10) and mzwid (0.05). 

Preprocessed data was exported as a data frame of metabolite feature vs sample ID 

with associated chromatographic peak areas for each detected metabolite.  

Per recommended guidelines (Broadhurst et al., 2018) metabolite features were 

retained when they met the following criteria: present in at least 70% of QC samples, 

QC relative standard deviation less than 30%, and blank signal of less than 5%. 

Remaining features were normalised by probabilistic quotient normalisation and log 

transformed to reduce heteroscedasticity of data.  

 Statistical analysis 
After filtering, normalisation and missing value imputation steps were completed, 

multivariate statistical analysis was performed on the remaining metabolites. Data for 

each polarity and ionisation mode was analysed separately. Firstly, PCA was 

performed to assess data quality and identify trends within the data including 
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clustering of groups or outlying data points. PLS-DA was next used to assess group 

classification using pre-bed rest and post-bed rest as class labels for the model. PLS-

DA assigns each feature a variable importance in projection (VIP) score summarising 

the contribution a variable makes to the separation model (Banerjee et al., 2013). If 

all variables have the same contribution to the model each would be assigned a VIP 

score of 1. A VIP score greater than 1 therefore indicates the variable is significant in 

distinguishing between classes. The model was validated by k-fold cross validation and 

accuracy was determined by Q2 and R2 values. All variables with a VIP score greater 

than 1 were extracted and formed a reduced dataset for further analysis. PCA and PLS-

DA separation models were fitted using the statistics module in MetaboAnalyst 5.0 

(Pang et al., 2021).  

To determine significance of differential metabolite abundance between pre- and 

post-bed rest samples univariate analysis was performed on the reduced dataset. 

Firstly, normality of metabolite distribution between samples was assessed using 

frequency distribution. Based on this either a paired t-test or a Wilcoxon signed-rank 

test was used to determine the significance of each metabolite. Finally, the log2 

transformed fold change of each metabolite feature between pre- and post-bed rest 

samples was obtained. This analysis was performed using the statistics module in 

MetaboAnalyst 5.0.  

The returned p-values were then adjusted for false discovery rate using the Benjamini-

Hochberg procedure using the R package sgof (Castro Conde and de Una Alvarez, 

2020). The Benjamini-Hochberg adjustment is well suited to metabolomic studies 

where a large number of features are tested simultaneously as it is less stringent than 

other measures (Peluso et al., 2021), such as the Bonferroni adjustment which controls 

the number of false positives by testing each hypothesis the significance level of α/m 
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where α is the desired alpha level and m is the number of hypotheses, by applying 

stepwise adjustments to the significance level based on the ranked order of the p-

values. As the Bonferroni adjustment method does not employ stepwise corrections, 

when there are a large number of hypotheses, it can be overly conservative. 

Adjustment methods which are too conservative may produce false negatives and 

discard truly significant observations. Significance was determined when FDR<0.05.   

 Prediction of functional activity of metabolomics data 
Pathway enrichment analysis within the full dataset was performed using the 

Mummichog algorithm (Li et al., 2013). Mummichog is a freely available software 

developed for the annotation of metabolites and prediction of influential pathways 

without the need of definitive metabolite identifiers, in contrast to conventional 

metabolomics approaches. Mummichog utilises a user inputted list of significant 

metabolites (p<0.05) to compute all possible metabolite matches and searches a 

reference metabolic network for every module that could be formed by the tentative 

identifications. As false matches will distribute randomly through the network, local 

enrichment is used to identify true metabolite matches. Next, random m/z values from 

a list of all metabolic features detected in the study are drawn to estimate the null 

distribution of modular activities. The statistical significance of the identified modules 

is calculated based on this null distribution (Li et al., 2013).  Mummichog has previously 

been used to study metabolic response to a range of stimuli, such as vaccination (Li et 

al., 2017), complex diseases (including chronic hepatitis B (Huang et al., 2016), 

nonalcoholic fatty liver disease (Jin et al., 2016), and Parkinson’s disease (Ascenzo et 

al., 2022)),  and age (Hoffman et al., 2014) amongst others. Network data output from 

mummichog analysis was reconstituted in Metscape 3 for legibility (Karnovsky et al., 

2012). 
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 Correlation of metabolomics data with physiological 

measures 
Correlation of significant metabolite expression with outcome measures of total lean 

body mass (LBM), steady state GD normalised to LBM, and rates of fat and 

carbohydrate oxidation was assessed by weighted correlation network analysis 

(WGCNA) (Langfelder and Horvath, 2008) performed in R. WGCNA groups metabolites 

in modules based on hierarchical clustering. Each module is arbitrarily assigned a 

colour. Firstly, comparison of outcome measures and metabolite abundance at 

baseline was carried out. Next, change in outcome measures after 56 days bedrest 

was assessed against log2 fold change of metabolite abundance after bed rest. 

Metabolic modules with weak correlations (r<|0.5|) to outcome measures were 

discarded and further analysis was performed on the remaining metabolites.   

 Identification of metabolites important in correlation 
Due to the smaller size of the remaining dataset after WGCNA, putative metabolite 

identification was performed using metID (Shen, Wu, et al., 2022) which utilises m/z 

and MS2 spectra matching from public metabolomics databases (HMDB, KEGG, MoNA 

and MassBank) to identify metabolite features. Mass tolerance was set at 5ppm.  

Common compound names of identified features were taken from HMDB and mapped 

to  metabolic pathways by over representation analysis (ORA) using MetaboAnalyst 

(Pang et al., 2021). ORA analyses whether metabolites within a particular pathway are 

present at a higher rate than would be expected (i.e. over-represented) in an 

experimentally defined list (Khatri et al., 2012). ORA provides a pathway impact score 

which is calculated as the sum of the importance measures of the matched 

metabolites normalised by the importance measures of all matched and unmatched 

metabolites in each pathway (Xia and Wishart, 2011). Pathway impact score 

represents an estimate of the importance of each pathway relative to the global 

metabolic network (Liu et al., 2019). Pathways with impact score greater than 0.1 were 
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considered to be the most relevant in ageing, in keeping with current literature (Guo 

and Tao, 2018; Liu et al., 2019). ORA also provides a measure of importance for defined 

metabolites within the pathway allowing insight into which metabolites within each 

pathway are most expressed in the dataset.  
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3.3. Results 

 Changes in physiological end point measures of 

metabolism and lean mass 
The physiological adaptations to bed rest including changes in GD and substrate 

oxidation are reported in Shur et al. (2022), however for clarity the main adaptations 

are presented here. REE decreased significantly (p=0.027) after bed rest. There was no 

lipid droplet density (p=0.13), droplet size (p=0.38), or percentage of IMCL relative to 

total tissue area (p=0.6), however LBM decreased significantly (p<0.001) showing loss 

of muscle mass without the accumulation of intramuscular fat. There was no 

difference in steady-state serum triglyceride concentration (p=0.6) or plasma NEFA 

concentration (p=0.3) before and after bed rest. There was a significant decline in 

whole-body GD, represented by a 22% reduction in insulin-mediated steady-state GD 

standardised to LBM, alongside a 19% blunting of the magnitude of increase in rate of 

carbohydrate oxidation and a 43% blunting of the magnitude of insulin-mediated 

inhibition of lipid oxidation during the steady state period of the insulin-clamp.  

 Multivariate analysis of plasma metabolite abundance 
The metabolome reflects both transcriptional and physiological changes and modern 

metabolomics techniques are able to detect changes in metabolites at a much higher 

sensitivity than the assays used to assess serum triglyceride and plasma NEFA 

concentrations. The next aim of this study was therefore to define how the observed 

adaptations in transcription, metabolism and body composition were reflected in the 

plasma metabolome with an untargeted metabolomics approach. To do this, an 

untargeted metabolomics approach was taken to profile all plasma metabolites in the 

fasted, resting state. A total of 29,443 metabolites were detected in plasma by 

untargeted metabolomic profiling: 8513 polar positive, 4425 polar negative, 9542 non-

polar positive and 9893 non-polar positive. After processing and filtering 16,462 total 

metabolites were retained.  
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PCA showed that there were no outlying data points and samples generally clustered 

well. However, there was no clear separation between pre- and post-bed rest samples. 

A PLS-DA separation model was able to classify samples as pre- and post-bed rest 

indicating clear differences occur in the fasting plasma metabolome as a consequence 

of chronic bed rest (Figure 3.1). K-fold cross validation found that the separation 

models were not overfitted and were accurate (Q2 > 0.4, R2 > 0.5 for all models).  

 

Figure 3.1 Separation of groups by timepoint using PLS-DA 

Representative plot of partial least squares discriminant analysis (PLS-DA) separation 
model with 95% confidence intervals showing similarity in abundance of all 
metabolites detected in plasma before bed rest (red triangles) and after 56 days bed 
rest (green crosses) for healthy young men held in energy balance. Each point 
represents one participant. Data from the polar negative dataset. Classification of 
samples improved over PCA using a PLS-DA model. 

 

Variables with a VIP score greater than 1 were selected as the most contributory 

factors in classification of samples by class and formed a reduced dataset for further 

analysis. A total of 3315 metabolites were deemed important in classification and 
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were retained for further analysis: 421 polar negative metabolites, 786 polar positive 

metabolites, 946 non-polar negative metabolites, and 1162 non-polar positive 

metabolites. Differential abundance of these metabolites between pre- and post-bed 

rest samples found that, of the 3315 metabolites assessed, 2835 were significantly 

different between the pre and post-bed rest timepoints following testing for FDR: 337 

polar negative metabolites, 597 polar positive metabolites, 847 non-polar negative 

metabolites, and 1054 non-polar positive metabolites.  

 Metabolite identification and network analysis 
Having formed a reduced dataset containing only metabolites important in 

classification of samples by timepoint the next step was to establish their physiological 

roles by placing metabolites in relevant networks and pathways. Mapping of 

metabolites deemed important in classification by VIP filtering to their predicted 

networks found that 25 unique pathways were significantly enriched (p<0.05) from 

pre- to post-bed rest across all ionisation modes and polarities. Notably, many of the 

disturbed pathways were found to be related to fat and carbohydrate oxidation 

pathways and metabolites involved in ATP generation. For instance, the purine 

metabolism pathway (Figure 3.2) was significantly impacted by bed rest in the polar 

positive and negative data sets (p=0.016 and p=0.017, respectively). Predicted 

interactions within the pathways suggested that differences in the plasma abundance 

of hypoxanthine, inosine, dAMP, xanthosine 5’-phosphate, L-aspartate, 5-

hydroxyisoburate and 5-amino-4-imidazolecarboxyamide were most responsible for 

the change in this pathway.  

Several amino acid metabolism pathways were also significantly affected by bed rest. 

Aspartate metabolism (p=0.001), arginine and proline metabolism (p=0.005) and 

lysine metabolism (p=0.03) were all significantly different after bed rest in the polar 

positive data set (Figure 3.3). Within these pathways there were differences in the 
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plasma abundance of three proteinogenic amino acids (L-methionine, L-proline, and 

L-aspartate), however most of the metabolites predicted to be influential in these 

pathways were intermediates of amino acid metabolism. L-pipecolate, L-citrulline, 5-

oxo-L-proline, 4-guanidinobutanamide, L-3-amino-isobutanoate and 3-

dehydroxycarnitine were the intermediate metabolites predicted to be the most 

influential in driving pathway change. Galactose metabolism was found to be 

significantly affected by bed rest (p=0.018), as were three pathways linked to the 

biosynthesis and oxidation of fatty acids (p=0.006, p=0.018, p=0.02) (Figure 3.4). 

Disturbances in galactose metabolism were mapped to differences in the plasma 

abundance of two precursors of galactose, melibiitol and 3-beta-D-galactosyl-sn-

glycerol, as well as to difference in plasma abundance of lactose-6-phosphate.  

Pathway analysis has shown that plasma metabolite abundance reflects the previously 

observed derangements to metabolism however it also demonstrates more 

widespread effects of bed rest on plasma metabolites which many not directly relate 

to insulin related changes in substrate oxidation or GD.  For instance, significant 

differences in pathways relating to sialic acid (p=0.017), linoleate (p=0.006) and 

arachidonic acid (p=0.018) metabolism were also observed.
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Figure 3.2 Network representation of purine metabolism pathways affected by chronic bed rest 

Pathways relating to purine metabolism which were significantly impacted (p<0.05) by 56 days bed rest in healthy young, male volunteers. Metabolite 
identification and pathway analysis was performed using the mummichog server. Network data was reconstituted in MetScape for legibility. Metabolites 
suggested by mummichog to contribute to change in pathway significance are highlighted in dark red.  
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Figure 3.3 Network representation of amino acid metabolism pathways affected by chronic bed rest 

Pathways related to metabolism of amino acids were significantly disturbed (p<0.05) by 56 days BR in healthy, young male volunteers. Metabolite 
identification and pathway analysis was performed using the mummichog server. Network data was reconstituted in MetScape for legibility. Metabolites 
suggested by mummichog to contribute to change in pathway significance are highlighted in dark red. 
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Figure 3.4 Network representation of galactose and fatty acid metabolism affected by chronic bed rest 

Pathways relating to (A) galactose metabolism and (B) fatty acid biosynthesis and oxidation which were significantly disturbed (p<0.05) by 56 days BR in young, 
healthy male volunteers, reflecting disturbances  to rates of carbohydrate and lipid oxidation. Metabolite identification and pathway analysis was performed 
using the mummichog server. Network data was reconstituted in MetScape for legibility. Metabolites suggested by mummichog to contribute to change in 
pathway significance are highlighted in dark red.
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3.3.3.1. Association of metabolite abundance with physiological 

outcome measures at baseline 

Profiling of metabolites using an untargeted approach provides insights into how the 

metabolome reflects physiological adaptations to chronic bed rest but does not 

provide key information regarding which metabolites and metabolic pathways are the 

most influential in driving these adaptations, if any. WGCNA allocates metabolites into 

modules based on topological overlap. Correlation of each module with relevant 

external traits can then be calculated to determine the relationship between 

metabolite abundance and phenotype data.  

Prior to bed rest, only a few modules of metabolites were correlated (r>|0.5| and 

p<0.05) with GD normalised to LBM, REE, rates of fat and carbohydrate oxidation, or 

LBM, providing insight into which metabolites are involved in maintaining metabolic 

homeostasis in healthy, young volunteers (Table 3.1). The strongest association at 

baseline was between the brown module of polar positive metabolites and GD 

normalised to LBM (r=-0.75, p<0.001). Within this module, the strongest associations 

were related to glycerophospholipid metabolism (impact score 0.20) which occurred 

due to plasma abundance of phosphatidylethanolamine (PE) and phosphatidylcholine 

(PC), and cysteine and methionine metabolism (impact score 0.12) with significant hits 

within the pathways mapped to plasma levels of L-cysteine and mercaptopyruvate.  
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Table 3.1 Table containing metabolic modules which are correlated (r>|0.5|, p<0.05) 
with measures of lean body mass (LBM), resting energy expenditure (REE), rate of fat 
oxidation, rate of carbohydrate (CHO) oxidation, or glucose disposal normalised to 
lean body mass (GD) prior to 56 days bed rest. Over representation analysis was 
applied to metabolites within each module to identify relevant metabolic pathways 
(impact score > 0.1) 

 

More moderate correlations between GD normalised to LBM and the red modules in 

the non-polar negative (r=0.5, p=0.03) and positive (r=-0.54, p=0.02) datasets were 

also observed. Metabolites in the non-polar negative red module were involved in 

glycerophospholipid metabolism (impact score 0.22), with PE and PC again matched 

within the pathway. Phosphatidylserine (PS) was also identified in the module. The 

non-polar positive red module was linked to sphingolipid metabolism (impact score 

0.27), glycine, serine and threonine metabolism (impact score 0.25), and glyoxylate 

Module  Outcome 
measure 

Correlation 
coefficient 

p- 
value 

Pathway Impact 
score 

Blue LBM 0.52 0.03 Terpenoid backbone  
biosynthesis 

0.11 

Lysine degradation 0.14 

Biotin metabolism 0.2 

Sulphur metabolism 0.21 

Yellow REE -0.59 0.009 Glycerophospholipid  
metabolism 

0.26 

Biotin metabolism 0.2 

Brown GD -0.75 0.0008 Glycerophospholipid 
metabolism 

0.2 

Cysteine and  
methionine 
metabolism 

0.12 

Green REE -0.63 0.009 Glycerophospholipid 
metabolism 

0.22 

Red GD 0.5 0.03 Glycerophospholipid 
metabolism 

0.25 

Tan REE -0.5 0.04 Glycerophospholipid 
metabolism 

0.2 

Red LBM 0.5 0.03 Sphingolipid 
metabolism 
Glycine, serine and  
threonine 
metabolism 
Glyoxylate and  
dicarboxylate 
metabolism 

0.27 
 

0.25 
 
 

0.11 

GD -0.54 0.02 

Fat 
oxidation 

0.53 0.02 

CHO 
oxidation 

-0.55 0.01 



109 
 

and dicarboxylate metabolism (impact score 0.11) pathways. In both glycine, serine 

and threonine metabolism and glyoxylate and dicarboxylate metabolism pathways, 

plasma abundance of glycine was identified as influential in the pathway. In 

sphingolipid metabolism, sphingomyelin and ceramide were found to be important 

within the pathway. Rates of fat and carbohydrate oxidation during steady state in the 

insulin clamp at baseline were also found to be correlated with the non-polar negative 

red module (fat oxidation, r=0.53, p=0.02; carbohydrate oxidation, r=-0.55, p=0.01) 

and were therefore also linked to plasma levels of glycine, sphingomyelin and 

ceramide.  

REE was negatively correlated with the yellow module in the polar negative dataset 

(r=-0.59, p=0.009), the green module in the polar positive dataset (r=-0.63, p=0.009) 

and the tan module of the non-polar negative dataset (r=-0.5, r=0.04). Metabolites in 

these modules were all involved in glycerophospholipid metabolism (for all, impact 

score > 0.1). The yellow module was also linked to biotin metabolism (impact score 

0.2). Plasma abundance of biotin was found to be important in dictating the biotin 

metabolism pathway response. In the tan module, PE and PC were highlighted. PE and 

PC were also involved in the green module, alongside 1-acyl-Sn-glycero-3-

phosphocholine. Likewise, in the yellow module, these metabolites were all 

highlighted alongside PS.  

Finally, LBM was correlated with the blue module in the polar negative dataset (r=0.52, 

p=0.03) and the red module in the non-polar positive dataset (r=0.5, p=0.03), and was 

therefore linked to plasma levels of glycine, sphingomyelin and ceramide. In the blue 

module, metabolites were involved in terpenoid backbone synthesis (impact score 

0.11), biotin metabolism (impact score 0.2), lysine degradation (impact score 0.14) and 

sulphur metabolism (impact score 0.21) pathways. Specific plasma metabolites 
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involved in these pathways were identified as mevalonic acid, biotin, 2-oxoadipate, 

and sulphate.   

 Associations between the change in metabolite 

abundance with bed rest from baseline and the change 

physiological outcome measures over the same period 
Having established that metabolites can be associated with measures of metabolic 

function and lean body mass at baseline, the next aim was to investigate associations 

between the change in plasma abundance from baseline during bed rest of 

metabolites which were important in classifying samples as pre- and post-bed rest 

(VIP>1) and the change in physiological function with bed rest (Table 3.2).  

Change in the rate of steady-state fat oxidation from baseline to day 56 of bed rest 

was moderately correlated with the brown module (r=-0.5, p=0.03) in the non-polar 

negative dataset. ORA found the metabolites within this module were linked to 

glycerophospholipid metabolism, with PE and 1-acyl-Sn-glycero-3-phosphocholine 

identified as most important within the pathway. All glycerophospholipids decreased 

in abundance following bed rest.   

Relative change in GD normalised to LBM was correlated with the yellow (r=-0.55, 

p=0.02) and blue (r=-0.5, p=0.03) modules in the polar positive dataset. ORA found 

metabolites in both modules were linked to amino acid metabolism. Arginine and 

proline metabolism was affected in both the yellow (impact score 0.14) and blue 

(impact score 0.11) modules although influential metabolites within the pathway were 

different in each module. In the yellow module, hydroxyproline and L-proline were 

highlighted as most important while in the blue module putrescine was found to be 

the most important. All three metabolites increased in plasma abundance after bed 

rest. Metabolites within the blue module were also linked to tryptophan metabolism 

(impact score 0.10), with serotonin identified as important. In the yellow module, 
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metabolites were linked to alanine, aspartate and glutamate metabolism (impact 

score 0.22), tyrosine metabolism (impact score 0.29), and phenylalanine, tyrosine and 

tryptophan biosynthesis (impact score 0.5). Within these pathways, L-aspartate, 

dopamine, L-tyrosine, and tyramine were all identified as influential metabolites. 

Tyramine decreased in plasma abundance after bed rest, but all other metabolites 

increased in plasma abundance.  

Table 3.2 Table containing metabolic modules which are correlated (r>|0.5|, p<0.05) 
with relative change in glucose disposal normalised to lean body mass (GD) or rate of 
fat oxidation after 56 days bed rest. Over representation analysis was applied to 
metabolites within each module to identify relevant metabolic pathways (impact score 
> 0.1) 

Module Outcome 
measure 

Correlation 
coefficient 

p-
value 

Pathway Impact 
score 

Yellow Change in 
GD 

-0.55 0.02 Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

0.5 

Tyrosine metabolism 0.29 

Alanine, aspartate 
and glutamate 
metabolism 

0.22 

Arginine and proline 
metabolism 

0.14 

Blue -0.5 0.03 Arginine and proline 
metabolism 

0.11 

Tryptophan 
metabolism 

0.10 

Brown Change in 
fat oxidation 

-0.5 0.03 Glycerophospholipid 
metabolism 

0.11 
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3.4. Discussion 
From untargeted analysis of the plasma metabolome 2835 metabolites were found to 

be significantly different from baseline after bed rest indicating that chronic bed rest 

induced large scale changes in the plasma metabolome.  

 Purine metabolism 
Metabolites produced in the degradation of nucleotides were found to be responsible 

for the difference in purine metabolism between baseline and post-bed rest samples 

(Figure 3.11). Purine metabolism is responsible for maintaining cellular stores of 

nucleotides which are mediators of essential physiological processes including as an 

immediate source of energy for muscle contraction or as signalling molecules for 

myofiber hypertrophy (Berdeaux and Stewart, 2012). Increased adenine nucleotide 

degradation has previously been linked to murine models of skeletal muscle disuse 

although the role of purines in human inactivity is not currently well studied (Miller et 

al., 2020).  Thus, the identification of purines as metabolites significantly impacted by 

bed rest provides novel insight into a role for purine metabolism in human inactivity. 

 Amino acid metabolism 
Amino acid metabolism pathways were also disturbed between baseline and post-

intervention samples (Figure 3.12) with many of the metabolites influential in the 

pathways identified as intermediates in amino acid metabolism rather than amino 

acids themselves. It is known that bed rest has a blunting effect on muscle sensitivity 

to EAA signalling and subsequently EAA induced protein synthesis (Biolo et al., 2004; 

Drummond et al., 2012) but these data suggest that wider changes in non-EAA 

metabolism also occur as a consequence of bed rest, potentially relating to the role of 

these metabolites as intermediaries in energy metabolism (Da Poian et al., 2010). 

Furthermore, the potential influence of L-aspartate as a driver of change in amino acid 

metabolism provides a possible mechanistic link between dysregulation of amino acid 

and purine metabolism pathways in the shift in metabolic health following bed rest.  
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 Energy metabolism 
Finally, galactose metabolism and three pathways involved in the biosynthesis and 

oxidation of fatty acids were found to be disturbed by bed rest (Figure 3.13). Cell 

culture models of myofibers suggest galactose improves oxidative capacity and 

enhances the inhibition of lipid oxidation in the fed state (Kase et al., 2013), although 

this has not yet been validated in humans, and it is therefore possible that the 

differences in plasma abundance of galactose-related metabolites are indicative of 

dysregulated galactose metabolism which contributes to the increased suppression of 

carbohydrate oxidation and reduced blunting of fat oxidation. Disturbances in de novo 

fatty acid biosynthesis and fatty acid oxidation and saturated fatty acid beta-oxidation 

were all mapped to differences in the plasma abundance of (S)-hydroxyoctanoyl-CoA, 

a metabolite involved in transferring fatty acids from the cytoplasm to the 

mitochondria for use in oxidation. Earlier transcriptomics analysis by Shur et al. (2022) 

showed the expression of muscle mRNA transcripts encoding the mitochondrial 

enzyme superoxide dismutase 2 (SOD2) increased after bed rest as part of 

transcriptional events that were collectively proposed to be causative of the shift in 

fuel oxidation. While SOD2 and (S)-hydroxyoctanoyl-CoA are not directly linked they 

both suggest mitochondrial adaptation may be linked to the blunted suppression of 

fat oxidation. Such as an association remains speculative without correlation to 

physiological measures.   

 Associations between metabolite abundance and 

outcome measures at baseline 
A major strength of this study is the elucidation of relationships between the plasma 

metabolome and physiological outcome measures, which can identify which 

metabolites, among thousands, are the most associated with the development of 

insulin resistance and metabolic inflexibility during chronic bed rest. Thus, the primary 

aim of this chapter was to investigate whether these plasma metabolite changes with 
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bed rest reflected the changes in GD and rates of fat and carbohydrate oxidation with 

bed rest. Accordingly, preliminary metabolite annotation and network analysis 

suggested that plasma metabolites which were present at a significantly different 

abundance after bed rest played roles in metabolic networks reflective of fat and 

carbohydrate utilisation. 

3.4.4.1. Phospholipids 

It is well established that levels of PC and PE in skeletal muscle are associated with 

insulin sensitivity and GD (Clore et al., 1998; S. Lee et al., 2018). Total PC and PE 

content in skeletal muscle are positively correlated with insulin sensitivity and an 

elevated PC:PE ratio is found in type 2 diabetes patients (Newsom et al., 2016) 

indicating the importance of maintaining the balance of skeletal muscle phospholipids 

in mediating insulin action. Here, PC and PE were identified by network analysis as 

important metabolites in the correlation of glycerophospholipid metabolism and 

steady state GD even at baseline. Given the abundance of PE and PC as components 

in the mitochondrial membrane (Grapentine and Bakovic, 2020) this suggests a link 

between mitochondrial morphology and regulation of GD in healthy volunteers.  

PC and PE were also identified as important in the correlation of glycerophospholipid 

metabolism with REE. It has previously been suggested that phospholipids are able to 

alter the activity of the sarco/endoplasmic reticulum Ca2+
 ATPase (SERCA) in skeletal 

muscle to regulate energy expenditure (Verkerke et al., 2020). 1-acyl-Sn-glycero-3-

phosphocholine was also selected as important in the correlation of 

glycerophospholipid metabolism and baseline REE. 1-acyl-Sn-glycero-3-

phosphocholine is a constituent of plasma membranes (PubChem, 2022), and its role 

in the association of glycerophospholipid metabolism and REE suggests an association 

between membrane phospholipid composition and regulation of REE.  
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3.4.4.2. Amino acids 

L-cysteine and its metabolite mercaptopyruvate were also identified as important in 

the association between GD with metabolite abundance. In agreement, 

supplementation with L-cysteine increases insulin sensitivity in a cell culture model 

(Achari and Jain, 2017), while patients with type 2 diabetes have reduced plasma 

cysteine levels (Jain et al., 2014). It has been suggested that the mechanism by which 

cysteine regulates insulin-mediated GD occurs through the degradation of cysteine to 

hydrogen sulphide (Carter and Morton, 2016). Plasma levels of hydrogen sulphide are 

negatively correlated with type 2 diabetes (Jain et al., 2010). One of the roles of 

mercaptopyruvate, which is produced by the breakdown of L-cysteine (Kanehisa and 

Goto, 2000), is as an intermediate in the production of hydrogen sulphide (Nasi et al., 

2020). The importance of mercaptopyruvate in the association between cysteine 

metabolism and steady state GD at baseline in the present work provides further 

evidence of this degradation pathway in glucoregulation.  

Glycine was also identified as another metabolite of importance in the association with 

rates of GD at baseline. Glycine has previously been identified as a serum biomarker 

of insulin sensitivity in older adults (Lustgarten et al., 2014). Additionally, plasma 

glycine levels are elevated following interventions that improve insulin sensitivity, 

such as exercise (Glynn et al., 2016), and correlated positively with rate of GD in 

healthy adults (Wang-Sattler et al., 2012). Serum glycine levels have been associated 

with a change in the plasma mRNA expression of 5-aminolevulinate synthase 1 (Wang-

Sattler et al., 2012), a mitochondrial enzyme involved in the haem biosynthesis 

pathway. Haem increases mitochondrial activity through its role in the electron 

transfer chain (Ogura et al., 2011). The correlation between plasma abundance of 

glycine and GD at baseline in the present study could therefore provide a link between 

mitochondrial function and glucose disposal.   
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3.4.4.3. Sphingolipids 

Sphingolipids are the major lipid species found in skeletal muscle (Sokolowska and 

Blachnio-Zabielska, 2019) and the skeletal muscle sphingomyelin signalling pathway is 

reported to be an important factor in determining the development of insulin 

resistance (Straczkowski et al., 2004). Sphingomyelin content in human skeletal 

muscle is related to total ceramide content, which is unsurprising given the function 

of sphingomyelin in the ceramide biosynthesis pathway (Bikman and Summers, 2011).  

Ceramides have previously been linked to decreased sensitivity of skeletal muscle to 

insulin.  Under normal conditions fatty acids (such as sphingomyelin) enter the 

ceramide biosynthesis pathway when a cell’s energy requirements are met, 

preventing their use in fat oxidation. Accumulation of ceramides, such as that seen in 

skeletal muscle tissue of type 2 diabetics (Broskey et al., 2018), can suppress 

carbohydrate oxidation and promote fat oxidation leading to insulin resistance 

(Summers et al., 2019). One proposed mechanism is that the accumulation of 

ceramides within muscle can inhibit the transmission of insulin signals through the Akt 

signalling cascade leading to a failure in insulin mediated glucose uptake (Powell et al., 

2003). Ceramide plasma abundance at baseline in the present study was correlated 

with GD in the steady state. These data therefore align with the current literature and 

support a role for ceramides and the sphingomyelin pathway in the regulation of 

insulin-mediated GD. Of note, glycine, sphingomyelin, and ceramide were also 

identified in pathways correlated with rates of steady-state fat or carbohydrate 

oxidation. Given GD, fat and carbohydrate oxidation are all known to be regulated by 

circulatory insulin and glucose concentrations, the overlap between these metabolites 

is unsurprising.  
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3.4.4.4. Correlation with lean body mass 

Whole-body lean mass is the largest sink for GD, and therefore is important in the 

regulation of glucose homeostasis. For example, LBM has been inversely associated 

with incident type 2 diabetes in men (Kalyani et al., 2020) and a lower LBM was 

observed in children and adolescents with insulin resistance compared to their insulin 

sensitive counterparts (Rodríguez-Córdoba et al., 2022). Likewise, LBM is a 

determinant of REE in adults (Deriaz et al., 1992; Müller et al., 2001). It is therefore 

not surprising that many of the metabolites identified to be associated with LBM at 

baseline were also found to be associated with REE, GD and steady-state substrate 

oxidation.  

Correlation of metabolite abundance with outcome measures at baseline shows 

associations which are in line with the current literature, which demonstrates the 

reliability of this approach and shows that it is an appropriate method to employ to 

study the relationship between the change in the plasma metabolome during bed rest 

with concurrent changes in GD and fuel metabolism.  

 Association between the change in plasma metabolite 

abundance and outcome measures with bed rest 
After 56 days of bed rest, fewer modules of metabolites were associated with the 

outcome measures. This may be reflective of the reduced diversity of the plasma 

metabolome as a consequence of bed rest, in line with previous literature (Sket et al., 

2020). Change in LBM, REE and steady-state carbohydrate oxidation rates were not 

associated with the change in plasma abundance of metabolites during bed rest. It is 

therefore possible that disruption to insulin mediated fat oxidation and GD are the 

primary adaptations associated with bed rest, with the other outcome measures 

occurring secondary to disruption in insulin mediated metabolic pathways.  
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3.4.5.1. Glycerophospholipids 

Change in the rate of fat oxidation during the steady-state of the insulin clamp was 

correlated with glycerophospholipid metabolism. It was discussed above how 

glycerophospholipid level and SERCA activity were related in respect to REE. However, 

SERCA expression is also related to oxidative efficiency (O’Donnell et al., 2009) and 

levels of intracellular Ca2+ contributes to the balance between rates of fat and 

carbohydrate oxidation by promoting lipolysis, which in turn promotes fat oxidation 

(Melanson et al., 2003), and activating glycogen phosphorylase, which leads to 

glycogenolysis and hyperglycaemia (Tammineni et al., 2020). It was previously shown 

that muscle mRNA expression of ATP2A1, which encodes SERCA, was increased after 

56 days bed rest (Shur et al., 2022) adding further support that chronic bed rest is 

associated with increased cellular free calcium availability.  

PE and 1- acyl-Sn-glycero-3-phosphocholine are constituents of plasma membranes. It 

has been suggested that the lipid composition of plasma membranes is influential in 

the development of insulin resistance (Ferrara et al., 2021; Wolfgang, 2021). It is 

therefore possible that the decrease in plasma abundance of PE and 1- acyl-Sn-

glycero-3-phosphocholine reflects a change in membrane lipid composition induced 

by bed rest, which contributed   to the blunting of the insulin mediated suppression of 

fat oxidation with BR. In keeping with this, IPA predicted the upregulation of fat 

oxidation following bed rest (Figure 3.7, Shur et al. 2022).  

Finally, the role of glycerophospholipids in the shift in fuel oxidation may also relate 

to an adaptation in mitochondrial function. PE is abundant in the inner mitochondrial 

membrane (Tasseva et al., 2013). Recently it was proposed that PE facilitates the entry 

of pyruvate into the mitochondrion to regulate membrane flexibility and, furthermore,  

that low mitochondrial PE availability was associated with poor mitochondrial 
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pyruvate uptake in vitro and in murine models (Siripoksup et al., 2022), suggesting a 

shift away from carbohydrate oxidation to fat oxidation. The importance of PE in the 

correlation of glycerophospholipid metabolism and change in the rate of fat oxidation 

during steady-state in the insulin clamp suggests a similar mechanism may occur in 

humans and that aberrant glycerophospholipid metabolism, in particular change in 

the abundance of PE, may act as a primary signal for a shift in mitochondrial fuel 

utilisation.  

3.4.5.2. Amino acid metabolism 

Change in steady-state GD with bed rest was correlated with several pathways related 

to amino acid metabolism. Plasma concentrations of amino acids have previously been 

used as biomarkers of insulin resistance. For example, greater concentrations of 

tyrosine have been associated with increased risk of type 2 diabetes (Sanmei Chen et 

al., 2019) and insulin resistance (Tai et al., 2010). Likewise, increased plasma proline 

concentrations are associated with insulin resistance (Tai et al., 2010) and increase the 

risk of type 2 diabetes, regardless of age (Chen et al., 2021). Here, tyrosine and proline 

were both found to be important metabolites in the association of amino acid 

metabolic pathways and the change in GD after bed rest. Abnormal amino acid 

metabolism is believed to precede impaired GD (Wurtz et al., 2012). Although the 

precise mechanism is unknown it has been proposed that the increased abundance of 

amino acids inhibits the phosphorylation of IRS-1 and IRS-2, key proteins involved in 

the insulin signalling cascade which stimulates GD (Patti et al., 1998). Muscle mRNA 

expression of these proteins was not assessed in this study, so direct links cannot be 

made between the signalling cascade and abundance of proline or tyrosine.  

L-hydroxyproline and putrescine, two breakdown products related to arginine and 

proline metabolism, were also highlighted as important in the association between 
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amino acid metabolites and the change in GD with bed rest. Putrescine is a polyamine. 

Polyamines are able to regulate insulin signalling via IGF-1 (Welsh, 1990) and as such 

have been implicated in diabetes (Fernandez-Garcia et al., 2019). The muscle mRNA 

expression of IGF-1 was different after bed rest (Shur et al., 2022), pointing to a 

mechanism by which differential abundance of putrescine could have affected the 

signalling action of IGF-1. Hydroxyproline is highly abundant in collagen (Chow et al., 

2015). Increased collagen content is found in insulin resistant skeletal muscle 

indicating remodelling of the extracellular matrix (ECM) (Berria et al., 2006). One 

possible mechanism by which ECM remodelling contributes to the development of 

insulin resistance and impaired GD is by the reduction of microvascular density which 

acts as a physical barrier, preventing both the binding of insulin to its receptor and the 

transmission of signals within the cell (Williams et al., 2016; Ahmad et al., 2018). 

Increased muscle mRNA expression of COL6A3 was observed after bed rest (Shur et 

al., 2022) lending further support to the association of collagen and impaired GD. 

Change in abundance of hydroxyproline therefore potentially links to change in 

deposition of collagen within muscle and contributes to the blunting of GD by 

inhibiting insulin signalling.  

The phenylalanine, tyrosine and tryptophan biosynthesis pathway was correlated with 

change in GD. Tyramine was one metabolite identified as important within this 

pathway. Tyramine administration in a murine model can cause large stimulation of 

GD, likely through peripheral monoamine oxidase activities (Morin et al., 2002) 

however in this study tyramine plasma abundance declined after bed rest. Such a 

decline in tyramine abundance may lead to low stimulation of monoamine oxidase 

and therefore contribute to blunted GD. Serotonin was also highlighted as an 

important metabolite within the tryptophan metabolism pathway. There are several 

possible explanations for the role of serotonin in decline in GD after bed rest. Firstly, 
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serotonin is a regulator of the contractile response of skeletal muscle (Takamori, 

1977), potentially through interaction with myostatin (MSTN) as inhibition of MSTN 

increases the expression of the Tph1 enzyme, which catalyses the rate limiting step in 

serotonin synthesis, in skeletal muscle (Chandran et al., 2012). It was suggested that a 

primary signal for adaptation in fuel selection after chronic bed rest was the lack of 

muscle contraction per se, while the regulation of glucose uptake appeared to be 

dissociated from the regulation of substrate oxidation when comparing acute and 

chronic bed rest responses (Shur et al., 2022). The importance of serotonin in driving 

associations between tryptophan metabolism and rate of steady-state GD in this study 

also supports the view that a lack of muscle contraction is a primary component of the 

adaptation in GD induced by chronic bed rest. Secondly, it has been suggested that 

the interaction between MSTN and serotonin pathways plays role in the regulation of 

glucose metabolism within skeletal muscle. Mstn-/- mice have greater insulin 

sensitivity than their wild type counterparts (Zhang et al., 2011). Transcriptomics 

analysis of skeletal muscle following chronic bed rest found increased expression of 

MSTN mRNA after bed rest (Shur et al., 2022). While further research is needed to fully 

elucidate the mechanism of interaction the combination of transcriptomics and 

metabolomics data in this cohort provides further evidence to support a role for the 

interaction of MSTN and serotonin in the development of insulin resistance.  

Dopamine was also identified as important in the correlation of the tyrosine 

metabolism pathway with change in GD with bed rest. Levels of dopamine in the 

peripheral nervous system are linked to insulin sensitivity, although the mechanism 

behind this association is unclear. For instance, treatment with a dopamine agonist 

improved insulin sensitivity of adipose tissue and whole-body metabolic profile in a 

murine model of type 2 diabetes (Tavares et al., 2021a). Dopamine has been proposed 

to regulate glucose uptake by skeletal muscle in an insulin independent manner 
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(Tavares et al., 2021b) however the correlation in the current data demonstrate a link 

between dopamine abundance and insulin-mediated GD in humans. More studies are 

needed to fully clarify the mechanism of action. 

Finally, L-aspartate was identified as important in correlation of change in GD with the 

alanine, aspartate and glutamate metabolism pathway. In Section 3.3.3, L-aspartate 

was found to be present at a significantly different plasma abundance after bed rest 

which suggests overall differential metabolite abundance may be reflective of a bed 

rest induced reduction in GD. Circulating aspartate has previously been identified as a 

possible marker of insulin resistance. Plasma aspartate was inversely associated with 

fasting glucose (Cheng et al., 2012) and serum aspartate was associated with elevated 

fasting glucose levels, decreased insulin secretion, and increased risk of type 2 

diabetes (Vangipurapu et al., 2019). Mechanistic studies are lacking, but the 

association between aspartate and insulin resistance may be due to differences in 

enzymatic activity of the malate-aspartate shuttle. Glucose restriction increased 

aspartate biosynthesis, which in turn increased activity of the malate-aspartate shuttle 

and a shift in substrate oxidation (Olszewski et al., 2022). It is therefore possible that 

differential abundance of L-aspartate after bed rest is not causative of blunted GD, but 

is instead reflective of an increase in aspartate biosynthesis triggered by reduced GD.  

Many of the pathways significantly correlated with steady-state GD and rate of fat 

oxidation after bed rest were different from the pathways which were significantly 

correlated at baseline suggesting that bed rest induced a significant shift in normal 

metabolic homeostasis. Importantly, identifying correlations between plasma 

metabolite abundance and measures of whole body and muscle metabolism and 

metabolic function suggests that systemic changes in the plasma metabolome are 

reflective of physiological adaptations and highlight the potential of plasma as a proxy 
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in studies of human metabolism. Irrespective of this point, it is clear that 

metabolomics in combination with human physiology brings unprecedented 

granularity and novel insight to research progression. 
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 Changes in the plasma metabolome in response 

to resistance exercise with ageing in healthy volunteers  

4.1. Background 

 Changes in skeletal muscle associated with ageing 
Sarcopenia is the unintentional loss of muscle mass, quality, strength or performance 

associated with increasing age (Cruz-Jentoft et al., 2019). Sarcopenia directly impairs 

locomotory function, increases risk of disability and mortality rates (Mcleod et al., 

2019), and is associated with severely reduced self-reported quality of life scores 

which cannot be explained by social factors such as gender, years of education or 

marital status (Veronese et al., 2022). Sarcopenia is also associated with increased 

healthcare costs. It has been reported that the total annual cost of hospitalisation for 

individuals with sarcopenia in the United States was $40.4 billion between 1994 and 

2004 representing 4.12% of the United States’ total health expenditure (Goates et al., 

2019) and in the United Kingdom the mean annual cost for healthcare per person with 

muscle weakness was reported as £4,592 resulting in approximately £2.5 billion excess 

costs for health and social care (Pinedo-Villanueva et al., 2018). 

Despite an appreciation for the social and clinical consequences of sarcopenia and 

heavy investment by multiple pharmaceutical companies, there have been no 

successful clinical translations of drugs which counteract the loss of muscle mass and 

strength (Kwak and Kwon, 2019; Feike et al., 2021). At present the most effective 

method of managing sarcopenia is by mitigating, but not completely preventing, the 

loss of muscle mass and strength through increased physical activity, in particular 

through the use of RET (Law et al., 2016) which prevents the loss of skeletal muscle 

mass by providing skeletal muscle with anabolic signals that promote MPS which leads 

to a positive protein balance and therefore muscle hypertrophy (Pasiakos, 2012).  
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 The influence of resistance exercise on protein turnover 
In the postabsorptive state, skeletal muscle protein is the primary source of amino 

acids (Argilés et al., 2016). In order to maintain a steady-state concentration of amino 

acids in the postabsorptive state, proteins in skeletal muscle are catabolised and the 

resulting amino acids are released into the vasculature for use in critical processes 

such as energy production or gluconeogenesis in other tissues including the liver, brain 

and kidneys (Carbone and Pasiakos, 2019). The catabolism of proteins and subsequent 

release of amino acids results in a negative protein balance within skeletal muscle 

which, in healthy individuals, is corrected for by the stimulation provided by feeding. 

When an adult individual consumes adequate daily protein but does not exercise 

muscle mass remains unchanged as the stimulation of MPS from feeding is transient 

and cannot build a positive net protein balance on its own. RET provides anabolic 

signals to skeletal muscle which dramatically increase MPS to rates that are sustained 

for up to 48 hours (Miller et al., 2005; Churchward-Venne et al., 2012). MPB is also 

elevated following exercise in order to provide amino acids to support the increase in 

MPS, however the provision of exogenous EAAs after exercise attenuates MPB and 

further stimulates MPS causing net protein balance to become positive (Phillips et al., 

1997; Burd et al., 2009). The positive net protein balance leads to an increase in muscle 

mass and strength through the process of hypertrophy. It is suggested that short 

lasting but high intensity muscle contractions caused by RET cause the balance of 

protein turnover in skeletal muscle to shift in favour of MPS by the activation of the 

mammalian target of rapamycin (mTOR) pathway (Endo et al., 2020), although the 

mechanisms of skeletal muscle adaptation are not completely defined.  

4.1.2.1. Age-related blunting of adaptations to resistance exercise 

training 

The benefits of RET in older individuals are well documented. Maximal motor unit 

discharge rates increased 49% in older adults following a 6 week resistance exercise 
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intervention (Kamen and Knight, 2004) representing an increase in force produced by 

the muscle. 12 weeks of RET elicited improvements in five repetition-maximum (RM) 

scores of leg extension (44.6%) and leg curl (44.9%) (Wood et al., 2001). In addition, 

RET has been shown to be effective at reducing mortality risk across all age groups 

(Nilsson et al., 2020). However, the hypertrophic response of skeletal muscle to RET is 

blunted in older adults compared to young individuals. For instance, while 1RM 

increased by 35% in young men and 25.3% in older men with no significant difference 

between the groups, average change in maximal voluntary contraction (MVC) across 

all joint angles improved in young (21%) but not older (6.3%) men (Brook et al., 2016). 

Likewise, muscle thickness of the vastus lateralis (VL) improved by 8.1% in young men 

but only 5% in older men, and VL fibre length improved in young men (5.1%) but not 

older men (0.8%). The discrepancies in skeletal muscle adaptations were underlaid by 

differences in rates of MPS and phosphorylation of P70S6K1, an activator of mTORC1 

associated with hypertrophy (Brook et al., 2016). 12 weeks of RET blunted the 

expression of REDD1, an inhibitor of mTOR signalling, by 80% in young but not older 

women (Greig et al., 2011). The differential expression of REDD1 was proposed as an 

explanation for the age-related differences in improvements in quadriceps volume 

(6.2% in young versus 2.5% in older women) and strength (27% in young versus 16% 

in older women). 

These data suggest that the blunted hypertrophic response in older adults may be 

linked to expression of regulators of the mTOR pathway, however the associations are 

not well established. Given the versatility of mTOR regulators (Bai and Jiang, 2010) it 

is difficult to achieve a complete profiling of their expression using traditional 

analytical approaches. Furthermore, the response to exercise is complex and likely 

multifactorial. Metabolomics is capable of simultaneously monitoring hundreds of 
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metabolites (Lv et al., 2022) making it a powerful technique in the study of complex 

conditions such as the adaptive response of skeletal muscle to RET.  

 Metabolomics in the study of adaptations to resistance 

exercise training 
Metabolomics has previously been used to study adaptations to endurance exercise 

in adults (Lewis et al., 2010) but recent evidence suggests that long term resistance 

and endurance exercise training induce distinct metabolic adaptations to the same 

exercise test. Cycling to exhaustion resulted in lower plasma concentrations of 

branched chain amino acids in resistance trained athletes than endurance trained, 

sprint trained or untrained individuals, while endurance athletes had higher CPT1-

ratios than other groups (Schranner et al., 2021). Wider differences in the metabolic 

response to exercise testing between groups were not established as the study used 

a targeted metabolomics kit which assessed amino acids and lipids, however it is likely 

that more discrepancies in the exercise response would be identified with an 

untargeted approach. To understand the mechanisms underlying the age-related 

blunting of the hypertrophic response it is therefore important to study adaptations 

in the plasma metabolome specific to RET.  

While most of the literature has focused solely on endurance exercise (Schranner et 

al., 2020) there is growing interest in applying metabolomics to specifically study 

adaptations to resistance exercise. Berton et al (2016) identified 13 metabolites with 

significant changes over time following resistance exercise in healthy young men. 

Metabolites which responded rapidly to exercise were largely related to the anaerobic 

system and energy metabolism pathways while those with significant changes 

occurring up to 1 hour after the end of exercise were linked to anabolic processes and 

muscular recovery. In their comprehensive profiling of the plasma metabolome, 

Morville et al. (2020) demonstrated that one hour of resistance exercise resulted in 
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significant changes to the expression of 93 metabolites either immediately following 

exercise cessation or over the course of 3 hours. The metabolites belonged to a range 

of classes, with lipids and nucleotides downregulated following exercise and amino 

acids upregulated. Finally, 46 metabolites in skeletal muscle were altered by 5 weeks 

RET and were linked to a wide range of metabolic functions including those involved 

in muscle growth (Gehlert et al., 2022). However, these studies only investigated 

young, healthy, and relatively well-trained men and therefore there is no appreciation 

for the impact of age on the metabolic response to RET or how the metabolic response 

may relate to the blunting of functional improvements of skeletal muscle in older 

individuals.  

It is known that metabolomics can be used to identify metabolites that act as markers 

of decline in metabolic health related to the development of sarcopenia in both the 

muscle and plasma metabolomes. For example, differences in plasma concentration 

of EAAs, glutamine and tyrosine were identified between frail and non-frail elderly 

individuals (Adachi et al., 2018). Likewise, 37 serum amino acids and their derivatives 

were informative of physical frailty and sarcopenia in individuals over 70 years old. 

However, both of these studies were targeted, focussing specifically on amino acid 

profile and therefore did not investigate the wider metabolism affected by age, and 

neither compared amino acid profile to young individuals. Differences in frail and non-

frail older individuals in the muscle metabolome were similar to those of healthy older 

and young individuals, with most metabolites relating to mitochondrial respiration, 

oxidation and muscle tissue turnover (Fazelzadeh et al., 2016b). The same study 

demonstrated that RET in older individuals led to adaptations in muscle amino acid 

metabolism and acylcarnitine level, however the younger group did not undergo the 

exercise intervention and therefore potential age related blunting of metabolic 

adaptation could not be investigated (Fazelzadeh et al., 2016b). This study also used a 
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targeted approach and therefore potentially misses out on important insights in 

adaptations to both ageing and resistance exercise. Using an untargeted approach, 81 

metabolites indicative of widespread metabolic changes were identified as 

significantly altered from baseline to follow up in a 5 year longitudinal study (Johnson 

et al., 2019) however the mean age at baseline was 59 and there was no evaluation of 

similar 5 year changes in young individuals. Although the current literature lacks an 

evaluation of the effect of age on the exercise response it does demonstrate that both 

the metabolic changes associated with ageing and the response to RET can be 

detected with a metabolomics approach. Metabolomics may therefore be used to 

identify and explain differences in the adaptive response to resistance exercise 

between young and older adults. 

Recently it was shown that 20 weeks of RET led to hypertrophic responses in skeletal 

muscle in young individuals which were blunted with increasing age in both men and 

women (Phillips et al., 2017). Markers of metabolic health, such as insulin sensitivity 

assessed by fasting glucose concentration and homeostasis model of insulin resistance 

(HOMA-IR) score, plasma cholesterol and plasma triglycerides, were assessed before 

and after resistance exercise intervention. While resistance exercise was able to 

mitigate the age-related increase in HOMA-IR observed at baseline it was not able to 

combat the age associated elevation of plasma triglycerides (Phillips et al., 2017). The 

differences in the biochemical profile associated with age before and after 20 weeks 

of RET suggest that metabolism is impacted differentially by resistance exercise with 

advancing age. From the same cohort of participants, a panel of metabolites were 

identified as predictors of ageing at baseline from a skeletal muscle tissue biopsy using 

an untargeted metabolomics approach (Wilkinson et al., 2020). However evaluation 

of the metabolome using untargeted techniques before and after RET has not yet been 

conducted.  
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Metabolomics analysis of muscle tissue provides a direct readout of metabolic 

changes that may underlie the ageing process. However, muscle biopsies are an 

invasive procedure which require highly trained individuals to perform and can lead to 

complications, including severe discomfort or infection (Cotta et al., 2021). In contrast 

the collection of plasma is minimally invasive and easier to achieve, particularly in 

functionally limited older populations such as individuals with sarcopenia (Wilson et 

al., 2018). Although Fazelzadeh and colleagues concluded that plasma metabolites 

should not be used in assessment of muscle metabolism (Fazelzadeh et al., 2016b) 

others suggest the plasma metabolome provides an accurate readout of muscle 

health. For instance, a concordance between the plasma metabolome and skeletal 

muscle transcriptome was observed in type 1 diabetic individuals with several 

pathways, including lipid and carbohydrate metabolism, showing similar directional 

changes during insulin deprivation (Dutta et al., 2012).  A later study found plasma 

metabolites were correlated with skeletal muscle tissue, including several species of 

phospholipid and triglyceride, and concluded that the plasma metabolome could be 

used as a proxy for studying tissue metabolites (Wu et al., 2022). In addition, Chapter 

3 of this thesis demonstrated that assessment of differential metabolite abundance 

before and after 56 days of bed rest informed on adaptations in substrate oxidation 

and insulin sensitivity at the level of skeletal muscle and therefore lends further 

support to the use of plasma as a proxy for skeletal muscle tissue in studies of human 

metabolism. As biopsies may not always be viable, especially in older adults with 

functional limitations, identifying markers of ageing and the adaptive response to 

resistance exercise in plasma would be beneficial. 

Much of the previous metabolomics work has focused either on young individuals or 

old individuals with few comparisons between the ages, especially in regard to 

adaptations to RET. In this study, a fully characterised patient cohort of healthy adults 
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completed a supervised, controlled exercise intervention and reported age-related 

blunting of skeletal muscle hypertrophy and other improvements relating to metabolic 

health. In addition, a defined panel of biomarkers for ageing in the muscle 

metabolome were identified, demonstrating the ability of untargeted metabolomics 

to classify participant cohorts by age in this study. However our understanding of age-

related adaptations to resistance exercise in the metabolome is still lacking and it is 

unknown whether the metabolites which were informative of age in the muscle 

metabolome are reflected in the more easily accessible plasma. The aims of this 

chapter are therefore as follows: 

1. To identify metabolites important in the classification of samples by age in the 

plasma metabolome at baseline and to compare the plasma and muscle 

metabolomes at baseline to determine whether plasma biomarkers of ageing 

are an accurate reflection of metabolic changes within skeletal muscle tissue 

2. To investigate the adaptive response to resistance exercise in the plasma 

metabolome in young and older individuals, and to evaluate the differences in 

plasma markers of resistance exercise between the groups to determine the 

impact of ageing on the plasma metabolic response to RET 
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4.2. Methods 

 Study design 
This work utilised samples collected as part of a published volunteer intervention 

study (Phillips et al., 2017) conducted at the University of Nottingham. This study was 

reviewed and approved by the University of Nottingham Medical School Ethics 

Committee (D/2/2006) and complied with the Declaration of Helsinki. All subjects gave 

written informed consent to participate in the study prior to inclusion after all 

procedures and risks were explained. The original study design is as follows:  

Healthy young (n = 11, 25±4 years), middle-aged (n = 10, 50±4 years), and older (n = 

10, 70±4 years) men and women were recruited for a RET intervention study. All 

subjects performed activities of daily living but did not participate in routine exercise 

and were well matched for baseline lean mass.  Exclusion criteria included metabolic, 

respiratory or cardiovascular disorders; overt muscle wasting (>1 SD below age 

norms); or other signs and symptoms of ill health.  

Participants underwent 20 weeks whole-body RET, completing 3 supervised sessions 

of approximately 60 minutes per week. For the first 4 weeks of training, intensity was 

increased from 40% to 60% 1RM.  For the remaining 16 weeks, intensity was set at 

70% 1RM with multiple sets of 12 repetitions and 2 minutes of rest between sets. A 

total of 8 exercises (seated chest press, latissimus pull down, seated lever row, leg 

extension, leg curl, leg press, back extension, and ab curl) were performed in each 

session using the same number of repetitions. Assessments of 1RM were made every 

4 weeks to ensure the intensity of the training was correct.  

Prior to starting RET and following the final training session, two experimental visits 

were performed. Subjects refrained from exercise for 72 hours period to each visit and 

arrived in an overnight fasted state. Body composition was measured by dual-energy 

X-ray absorptiometry (DEXA; Lunar Prodigy II, GE Medical Systems, Chalfont St Giles, 
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UK). A catheter was then inserted into the antecubital vein of one arm for primed, 

continuous infusion of [1,2-13C2] leucine tracer (Cambridge Isotopes Ltd, Newtown 

Unthank, UK). A baseline blood sample was drawn from the antecubital vein for 

measures of plasma insulin and glucose, and serum cholesterol and triglycerides. For 

metabolomics, 4 ml venous blood was collected in EDTA-coated collection tubes at 

each visit and plasma was separated and immediately stored at -80°C until further 

analysis. Biopsies of VL tissue were taken under sterile conditions at 0, 120 and 250 

minutes of tracer infusion using the conchotome biopsy technique. Muscle was snap-

frozen in liquid nitrogen before storage at -80°C. Fractional synthetic rate (FSR) of 

myofibrillar protein was calculated from the incorporation of tracer into VL at 120 

minutes.   

Due to limitations in laboratory equipment size, plasma samples were randomly 

sorted into 2 batches and prepared in an identical manner. Metabolites were 

extracted from plasma according to the protocol detailed in Section 2.3. Separation of 

metabolites within samples via liquid chromatography was performed according to 

the parameters detailed in Section 2.4 and acquisition of data by tandem mass 

spectrometry was performed according to the protocol in Section 2.5.  

 Data pre-processing and statistical analysis 
Data pre-processing was performed in R using the parameters detailed in Section 2.6. 

For statistical analysis, data for each polarity and ionisation mode were analysed 

separately. All analysis was performed using inhouse R scripts using R version 4.1. 

Scripts are available in Appendix 2.  

4.2.2.1. Comparison of groups by age at baseline 

Firstly, to identify metabolites informative of age, samples were grouped by time and 

comparisons were made between young, middle-aged, and older individuals at 

baseline. Secondly, under the assumption that metabolite abundance in the middle-
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aged group would fall between the young and older groups (Wilkinson et al., 2020) the 

middle-aged group was removed and comparisons were made between only the 

young and older groups.  

Data was centred and scaled to perform principal component analysis (PCA) and 

partial least squares discriminant analysis (PLS-DA) validated by k-fold cross validation 

using the mixOmics package (Le Cao et al., 2016). Model accuracy was determined by 

percentage classification error. Variable importance to classification in PLS-DA was 

determined by VIP score. All features with a VIP score greater than 1 were retained for 

further analysis. Significance in differential abundance between older and young 

groups was determined by Student’s t-test adjusted for false discovery rate (FDR) using 

the Benjamini-Hochberg procedure when padj<0.05 (Benjamini and Hochberg, 1995). 

To demonstrate that metabolite abundance in the middle-aged group fell between the 

young and older groups, the middle-aged group was then included and significance in 

differential abundance between all age groups was determined by one-way ANOVA.  

4.2.2.1. Comparison of groups by age after resistance exercise training 

The same approach was taken to identify metabolites significantly different between 

plasma collected after RET in younger and older groups. The middle-aged group was 

again removed under the expectation that metabolite abundance would fall between 

the two extremes of age. Data was centred and scaled to perform PCA and PLS-DA 

validated by k-fold cross validation. Model accuracy was determined by percentage 

classification error. The dataset was reduced using VIP>1 and significance was 

determined using Student’s t-test for young vs older comparison. As before, to 

demonstrate that metabolite abundance in the middle-aged group fell between older 

and young groups the middle group was then included in analysis and one-way ANOVA 

was used to determine significance in differential metabolite abundance between all 

age groups, adjusted for FDR.  



135 
 

4.2.2.1. Pre-post analyses of the influence of age on the metabolic 

response to resistance exercise training 

To study the effect of increasing age in response to RET, baseline and post-intervention 

samples were compared within each age group using PCA and PLS-DA. Due to high 

error when the PLS-DA model was validated, a linear mixed effect model was next 

fitted to the data to find differential metabolite abundance. Linear models can test for 

variability of metabolite abundance in high dimensionality data (Filzmoser and 

Nordhausen, 2020). Age and time of collection were fixed effects. Participant ID was a 

random effect to account for subject specific variation. Contrast matrices were set up 

to evaluate differences in metabolite abundance at the baseline and post-intervention 

timepoints within each age group, and to evaluate which metabolites responded 

differently over time in the old group relative to the young group. Empirical Bayes 

moderated t-tests were performed to obtain p-values (Smyth, 2004). FDR was 

accounted for using the Benjamini-Hochberg procedure. Metabolites were deemed 

significantly different between comparisons when FDR<0.05. Analysis was performed 

using the limma package (Ritchie et al., 2015). 

Finally, to assess the overall similarities between baseline and post-intervention 

datasets for each group, the Spearman correlation coefficient for the abundance each 

metabolic feature at baseline and after resistance exercise was determined using the 

corrplot package (Wei and Simko, 2021).  

 Prediction of functional activity of metabolites 

important in classification 
Metabolites deemed important in classification by age at baseline or after training 

were further assessed for functional relevance. Metabolites were putatively identified 

using the R package metID (Shen, Wu, et al., 2022) which utilises m/z and MS2 spectra 

matching from public metabolomics databases (HMDB, KEGG, MoNA, and MassBank) 

to identify metabolite features. Mass tolerance was set at 5ppm.  
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Common compound names of identified features were taken from HMDB and mapped 

to  metabolic pathways by over representation analysis (ORA) using MetaboAnalyst 

version 5.0 (Pang et al., 2021). ORA provides a pathway impact score, which is 

calculated as the sum of the importance measures of the matched metabolites 

normalised by the importance measures of all matched and unmatched metabolites 

in each pathway (Xia and Wishart, 2011). Pathway impact score represents an 

estimate of the importance of each pathway relative to the global metabolic network 

(Liu et al., 2019). Pathways with impact score > 0.1 were considered to be the most 

relevant in ageing, in keeping with current literature (Guo and Tao, 2018; Liu et al., 

2019).  
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4.3. Results 

 Physiological adaptations to resistance exercise 
The physiological adaptations to RET are reported in Phillips et al. (2017), however for 

clarity a summary is presented here. Although significant gains in whole body strength 

and muscle quality were observed in young, middle-aged, and older groups after 20 

weeks of RET (p<0.001 for both measures), only the young group demonstrated 

significant improvements in whole-body hypertrophy (p<0.0001) and relative skeletal 

mass index (p<0.05) in response to RET. Additionally, the young group showed 

significant improvements in whole-body lean mass and relative skeletal mass index 

compared to middle-aged and older individuals (lean mass, p<0.01; skeletal mass 

index, p<0.05). Although there were no differences in fasted and rested FSR before or 

after RET between age groups, feeding and acute resistance exercise enhanced FSR 

significantly only in the young group (p<0.05) which may account for the differences 

in hypertrophy.  

Prior to training, HOMA-IR and fasting glucose level were significantly higher in the 

older group compared to the young (p<0.05 for both measures) representing lower 

insulin sensitivity. Following RET the older group reported significant improvements in 

HOMA-IR (p<0.05) such that there were no significant age-related differences in 

HOMA-IR after training. While there were no significant differences in plasma levels of 

triglycerides or total, LDL or HDL cholesterol between age groups before RET, there 

was a significant relationship seen between advancing age and LDL before RET and 

RET did not induce significant differences in LDL cholesterol. There was also a 

significant relationship between age and triglycerides after RET, indicating age-related 

differences in the metabolism.  

 Metabolomic analysis of skeletal muscle tissue 
In the same cohort of patients, biopsies of skeletal muscle tissue were taken at 

baseline to investigate biomarkers of ageing (Wilkinson et al., 2020). A summary of 
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these findings is presented here. An untargeted metabolomics approach was 

undertaken and the random forest algorithm was used to identify a subset of 

metabolites most informative of age in skeletal muscle tissue. The top 10 metabolites 

for each polarity and ion mode, as determined by variable importance, were selected 

and putatively identified. Several identified metabolites were already known to be 

associated with ageing, lending support to this approach. For example, androgen 

steroids decreased in abundance in the older group which is in line with current 

literature. In addition, metabolite network generation showed generation of 

subnetworks around phosphocreatine, androgen metabolism, histamine and 

lysophospholipid metabolism, pointing to role for these metabolites in human muscle 

ageing.   

 Multivariate analysis of groups at baseline 
Having demonstrated that an untargeted metabolomics approach is appropriate for 

classifying samples by age and can identify metabolites most informative of age in 

skeletal muscle tissue, the next step was to test whether a similar approach could be 

applied to a more easily accessible tissue such as plasma. Initial analysis at baseline 

using PCA showed no separation between age group. After fitting the PLS-DA model, 

better clustering of samples based on age was observed. However when the model 

was validated error rates of approximately 40% were seen in all ionisation modes and 

polarities. The model was therefore found to be overfitted and the classification was 

not reliable.  

After removal of the middle age group so that only the extremes of age would be 

represented, clustering of older and young samples remained poor with PCA but there 

was improved clustering of samples when a PLS-DA separation model was applied 

allowing for the classification of samples by age (Figure 4.1). Cross validation of this 

model showed classification error improved in all ionisation modes and polarities.  
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After filtering by VIP score, a total of 111 polar metabolites (54 negative and 57 

positive) and 926 non-polar metabolites (327 negative and 599 positive) were found 

to be informative of age and were retained for further analysis.  

 

Figure 4.1 Separation of age groups at baseline using multivariate statistical 
approaches following removal of middle-aged group 

Representative plot of partial least squares discriminant analysis (PLS-DA) with 95% 
confidence intervals showing similarity in abundance of all metabolites detected in the 
fasting, rested state at baseline between healthy young (orange triangle) and older 
(blue circle) individuals in non-polar negative data. Using PLS-DA, separation of older 
and young groups was observed, allowing classification of samples by age. 

 

4.3.3.1. Identification of metabolites informative of age at baseline 

Annotation by metID putatively identified 81 unique polar metabolites (38 negative 

and 43 positive) and 514 unique non-polar metabolites (167 negative and 347 positive) 

within a mass tolerance of 5ppm.  

The baseline plasma abundance of androgen related metabolites was found to be 

disturbed with ageing (Figure 4.2). Previously, a number of metabolites related to 

androgen steroid metabolism declined in abundance with age in skeletal muscle tissue 

(Wilkinson et al., 2020) and thus the plasma is accurately reflecting muscle level 

adaptations to age. Most notably, dehydroepiandrosterone (DHEA) sulphate 
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decreased significantly in the older group (p<0.001). Androsterone, another androgen 

related metabolite, decreased between older and young groups, although not 

significantly (p=0.056). Furthermore, 24-hydroxycalcitriol, a metabolite of vitamin D3, 

tended to decline in abundance in the older group (p=0.073).  

The plasma abundance of several species of lipid metabolites were different between 

young and older groups. For example, significant increases in plasma level of 

sphingolipid metabolite glucosylceramide (d18:1/16:0) and the ether lipid metabolite 

lysoPA(P-16:0e/0:0) (p<0.001 and p=0.03, respectively) with age were observed, as 

was a significant decrease in plasma DG(18:0e/2:0/0:0) (p<0.001) (Figure 4.3). ORA 

also found that other sphingolipid and ether metabolites were involved in pathway 

disturbances between young and older groups, although they did not change 

significantly within the plasma individually (for all metabolites, p>0.05) (Figure 4.4 and 

Figure 4.5).  
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Figure 4.2 Plasma abundance of androgen steroid metabolites in young, middle-aged 
and older individuals at baseline 

Boxplots showing log transformed abundance of (A) DHEA sulphate and (B) 
androsterone in the fasting, rested plasma metabolome in healthy young (Young), 
middle-aged (Middle) and older individuals (Old) prior to beginning RET. Plasma level 
of DHEA sulphate decreased significantly between young and middle-aged and young 
and older individuals. Plasma level of androsterone decreased between young and 
older individuals but the decline was not significant (p>0.05). 

***p<0.001 

A 

B 
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A B 

Figure 4.3 Plasma abundance of sphingolipid and ether metabolites in young, middle-aged and older individuals at baseline 

Boxplots showing log transformed abundance and (A) glucosylceramide (d18:1/16:0), (B) lysoPA(P-16:0e/0:0), and (C) DG(18:0e/2:0/0:0) in the fasting, rested 
plasma metabolome in healthy young (Young), middle-aged (Middle) and older individuals (Old) prior to beginning RET. Plasma levels of glucosylceramide 
(d18:1/16:0) and lysoPA(P-16:0e/0:0) increased significantly between young and older individuals while DG(18:0e/2:0/0:0) decreased significantly between 
young and older individuals. 

*p<0.05, **p<0.01 

C 

 

B 
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Figure 4.4 Output of over representation analysis mapping metabolites to sphingolipid metabolism pathways 

Putative metabolite identification and over representation analysis (ORA) found sphingolipid metabolism pathways were different between  healthy older 
and young individuals (pathway impact score > 0.1) in the fasted, rested state prior to RET. Metabolites highlighted in yellow were identified as most important 
in pathway analysis.   
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Figure 4.5 Output of over representation analysis to map metabolites to biological pathways involved in differences in ether metabolites with ageing baseline 

Putative metabolite identification and over representation analysis found that ether metabolism pathways were different (pathway impact score > 0.1) 
between healthy young and older individuals in the fasting, rested state prior to RET. Metabolites highlighted in yellow were identified as most important in 
pathway analysis. 
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Finally, ORA identified 24 pathways involved in the separation of samples by age, of 

which 10 had impact score > 0.1. Among these pathways, five were involved in lipid 

metabolism. The major pathway disturbed between older and young participants was 

linoleic acid metabolism, with the most influential changes mapped to a significant 

decrease in the plasma level of the metabolite 13-L-hydroperoxylinoleic acid (13(S)-

HPODE) (p<0.01) (Figure 4.6).  

 

 

Figure 4.6 Plasma abundance of 13(S)-HPODE in young, middle-aged and older 
individuals at baseline 

Boxplot showing log transformed abundance of 13-L-hydroperoxylinoleic acid (13(S)-
HPODE), a metabolite involved in linoleic acid metabolism, in the fasting, rested 
plasma metabolome between healthy young (Young), middle-aged (Middle) and older 
individuals (Old) prior to beginning RET. Plasma level decreased significantly between 
young and older age groups. 

*p<0.05 
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 Multivariate analysis of groups post-intervention 
Similarly to baseline analysis, PCA plots of post-intervention samples showed poor 

separation when the middle age group was included and although clustering improved 

with PLS-DA classification error remained very high. When the middle group was 

removed from analysis, classification error of PLS-DA was reduced and samples could 

be classified as young or older (Figure 4.7). After filtering by VIP score a total of 127 

polar metabolites (63 negative and 64 positive) and 901 non-polar metabolites (335 

negative and 566 positive) were retained for further analysis.  

 

Figure 4.7 Separation of old and young age groups after RET using PLS-DA 

Representative plot of partial least squares-discriminant analysis (PLS-DA) separation 
models with 95% confidence intervals showing similarity in abundance of all 
metabolites detected in the fasting, rested state after 20 weeks RET between healthy 
young (orange triangle) and older (blue circle) individuals in non-polar negative data. 
Clustering of samples by age was improved from previous PLS-DA model which 
included the middle-aged group. 

 

4.3.4.1. Comparison to baseline plasma metabolome 

Metabolite identification found 329 unique metabolites involved in the separation of 

young and older groups were overlapping between baseline and post-training 
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samples. ORA showed that many metabolic pathways involved in driving separation of 

samples by age were similar in the baseline and post-intervention samples (Figure 4.8).  

 

Figure 4.8 Bar graph showing similarity of pathway impact scores between baseline 
and post-intervention samples 

Impact scores of pathways which were identified by over representation analysis as 
different between the healthy young and older groups at baseline were compared to 
impact scores of the same pathways after 20 weeks RET. Many pathways had similar 
impact scores before and after resistance training. Linoleic acid metabolism had the 
largest impact score between ages at both timepoints. 

 

For instance, linoleic acid metabolism had the strongest impact in classifying groups 

by age at both baseline and after resistance exercise, although the mechanisms 

differed slightly. At baseline, differences in the pathway were mapped to a decline in 

the plasma abundance of a breakdown product of linoleic acid, however after exercise, 

differences were mapped to a significant decrease in linoleic acid itself (p<0.01) (Figure 

4.9).  
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Figure 4.9 Plasma abundance of linoleic acid in young, middle-aged and older 
individuals after resistance exercise training 

Boxplot showing log transformed abundance of linoleic acid in the fasting, rested 
plasma metabolome between healthy young (Young), middle-aged (Middle) and older 
(Old) individuals after completing 20 weeks supervised RET. Plasma levels of linoleic 
acid decreased significantly between young and middle, and young and older age 
groups. 

*p<0.05, **p<0.01 

 

Similar impact scores at baseline and after resistance exercise were also seen in 

sphingolipid metabolism, purine metabolism, pyrimidine metabolism and steroid 

hormone biosynthesis pathways. In particular, the pattern of decline in plasma 

metabolite abundance of DHEA sulphate and androsterone with ageing was similar to 

baseline, although interestingly the decline was significant for both metabolites after 

resistance exercise (p<0.001 and p<0.01, respectively) (Figure 4.10). These data 

therefore suggest that, although some precise pathways may differ, the overall plasma 
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metabolomic profile of ageing remains similar to baseline despite the exercise 

intervention. 

However, a large increase in the impact score of nicotinate and nicotinamide 

metabolism after resistance exercise was observed. This impact was mapped to the 

presence of two precursors of the essential energy metabolite nicotinamide adenine 

dinucleotide (NAD+), diamino-NAD+ and nicotinamide D-ribonucleotide (NMN) 

(Figure 4.11), although their plasma metabolite abundance was not significantly 

different between the young and older groups (p=0.18 and p=0.4, respectively).  

An increase in the impact score of glycerophospholipid metabolism to 0.38 after 

resistance exercise was also noted when compared to its baseline score of 0.26. Of the 

five metabolites identified as involved in the pathway by ORA, significant increases in 

the plasma abundance of phosphatidate (p=0.024) and phosphatidylethanolamine 

(PE) (p=0.046) were observed in the older group (Figure 4.12).  
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Figure 4.10 Plasma abundance of androgen steroid metabolites in young, middle-aged 
and older individuals after resistance exercise training 

Boxplots showing differences in log transformed abundance of (A) DHEA sulphate and 
(B) androsterone in the fasting, rested plasma metabolome between healthy young, 
middle-aged and older individuals after 20 weeks RET. Plasma abundance of DHEA 
sulphate and androsterone decreased significantly between young and middle-aged, 
and young and older individuals.  

**p<0.01, ***p<0.001 
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Figure 4.11 Output of over representation analysis to map metabolites to biological pathways involved in differences in nicotinate and nicotinamide 
metabolism with ageing after resistance exercise training  

Putative metabolite identification and over representation analysis found that nicotinate and nicotinamide metabolism pathways were different (pathway 
impact score > 0.1) between healthy young and older individuals after 20 weeks RET in the fasted, rested state. The impact score of the nicotinate and 
nicotinamide metabolism pathway increased from 0.03 at baseline to 0.24 after RET. Metabolites highlighted in yellow were deemed important in driving 
pathway impact in ageing by over representation analysis. 
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Figure 4.12 Differences in plasma abundance of glycerophospholipids between age 
groups after resistance exercise training  

Boxplots showing differences in log transformed abundance of (A) 
phosphatidylethanolamine and (B) phosphatidate in the fasting, rested plasma 
metabolome between healthy young, middle-aged and older individuals after 20 
weeks RET. Plasma level increased significantly between young and older individuals 
for both metabolites. 

*p<0.05 
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 Within age group time course analysis 
No real differences were seen in metabolites important in classification of samples by 

age at either pre- or post-exercise intervention, therefore confirmatory analysis to see 

if this was reflected from a pre-to-post intervention standpoint was next performed. 

To identify metabolites specifically changed by RET, the samples were grouped by age 

and formed three separate datasets for analysis. Firstly, for each age group, baseline 

and post-intervention samples were compared using PLS-DA. However, validation of 

the PLS-DA model returned high error rates for all ages (Figure 4.13).  

Fitting a linear mixed effect model is an alternative approach to testing variability of 

metabolite abundance in high dimensionality time course data (Filzmoser and 

Nordhausen, 2020), therefore a linear mixed effect model was fitted to each data 

matrix using participant ID as a random effect to control for subject specific variation 

at baseline which may be a confounding factor. However, no significant differences in 

metabolite abundance were found. Pre-post analysis of metabolites also found that 

no metabolites were significantly altered by resistance exercise in the old group 

relative to the young (Figure 4.14).  

To confirm pre-post analysis findings, a correlation matrix of all detected metabolite 

features was constructed. Correlation of abundance values at baseline and post-

intervention for each metabolite showed high levels of correlation in all age groups 

(Figure 4.15). Collectively, these data suggest that 20 weeks RET has little to no impact 

on the fasting, resting plasma metabolome regardless of age. 
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Figure 4.13 Representative plots of classification error of PLS-DA separation model for 
classification of samples by time 

Representative example of classification error following k-fold cross validation of PLS-
DA models of separation by timepoint for (A) young, (B) middle-aged, and (C) older 
individuals from the non-polar negative dataset. Overall maximum distance error was 
high (>40%) for all age groups, indicating that the separation model would be 
overfitted if applied to the data. 
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Figure 4.14 Differential abundance of metabolites before and after resistance exercise 
training in older group relative to young group 

Volcano plot showing metabolites which are significantly different in abundance after 
20 weeks RET in the older group relative to the young group. Each plotted point 
represents one metabolite. The x axis shows log fold change of metabolite abundance. 
The y axis shows -log10 p-value adjusted for false discovery rate (FDR) by the 
Benjamini-Hochberg method. The red line shows the threshold of FDR<0.05. No 
metabolites were significantly different in the older group relative to the young group 
after RET. 

  



156 
 

 

Figure 4.15 Correlation matrix of baseline and post-intervention metabolite abundance 

Representative example of correlation between baseline and post-intervention 
samples for older individuals in the polar negative dataset. Correlation across the 
whole dataset was high, indicating large amounts of similarity between the baseline 
and post-intervention fasting, rested plasma metabolomes. Similar degrees of 
correlation were seen for other ion modes and polarities between age groups. 

  



157 
 

4.4. Discussion 
This chapter demonstrates the ability of untargeted metabolomics to detect 

differences in the fasting plasma metabolome that reflect the effect of ageing between 

healthy young and older adults within skeletal muscle. Plasma metabolites which were 

significantly different between age groups at baseline were similar to the markers of 

ageing previously identified within the muscle metabolome, suggesting that the 

plasma metabolome reflects age-related adaptations within muscle. However, many 

of the metabolic pathways driving separation remained the same following a 20-week 

RET intervention. Furthermore, paired expression analysis found no significant 

differences in metabolite abundance in young, middle-aged, or older adults after 

training. Collectively, these data suggest that RET does not lead to systemic 

adaptations within the metabolome regardless of age.  

 Comparison of the ageing plasma and muscle 

metabolomes 

4.4.1.1. Androgen steroid metabolism 

In previous work, androgen steroid metabolites were prominent in the metabolic 

signature of ageing within muscle (Wilkinson et al., 2020).  In the present study the 

plasma abundance of DHEA sulphate declined significantly with age and the plasma 

abundance of androsterone showed a tendency to decrease with age. It is well 

established that testosterone level declines with age in both men and women (Harman 

et al., 2001; Feldman et al., 2002; Fabbri et al., 2016). This decline has been associated 

with reduced muscle mass and strength (Horstman et al., 2012), increased incidence 

of comorbidities (Stanworth and Jones, 2008) and increased risk of all-cause mortality 

(Bhasin, 2021). Therefore, the observed decline in plasma abundance of androgen 

steroids in this study provides plausible support for an untargeted metabolomics 

approach to study the physiology of ageing. Importantly, these data also provide 
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evidence to suggest the plasma metabolome provides an accurate reflection of 

physiological changes occurring within skeletal muscle as a consequence of ageing.  

Additionally, plasma levels of 24-hydroxycalcitrol, a metabolite of vitamin D3, tended 

to decrease with age in this study. Although vitamin D is not directly related to 

androgens the current literature supports an association between vitamin D deficiency 

and deficiency in serum testosterone and androgen metabolism in men (Wehr et al., 

2010). Like testosterone, vitamin D is a steroid hormone derived from cholesterol 

(Cutolo et al., 2014; Chu et al., 2021), which may explain this association as cholesterol 

metabolism is known to be altered with increasing age (Morgan et al., 2016; Nunes et 

al., 2022). Additionally, it is well known that vitamin D metabolism acts as a regulator 

of skeletal muscle health (Bollen et al., 2022). Low serum vitamin D3 levels are 

consistently associated with reduced grip strength (Haslam et al., 2014; Mendoza-

Garces et al., 2021), physical function (Rejnmark, 2011; Maroon et al., 2013), and an 

increased risk of sarcopenia (Vissier et al., 2003; Luo et al., 2021; Yoo et al., 2021). 

Vitamin D also appears to have a role as a regulator of muscle mass as dietary vitamin 

D supplementation improved cross sectional areas of the thigh and tibialis anterior 

muscles in haemodialysis patients (Gordon et al., 2008), and a significant association 

between low vitamin D levels and low skeletal muscle was observed in men and 

women under 65 years old (Marantes et al., 2012). A decline in the plasma abundance 

of a vitamin D3 breakdown product with age in the present study therefore lends 

support to the current literature and points to a role for the metabolism of vitamin D3 

in the physiology of skeletal muscle deconditioning in ageing.  

4.4.1.2. Phospholipids 

Lipid metabolites were also identified as markers of ageing within skeletal muscle 

(Wilkinson et al., 2020). In this study ORA found several pathways related to lipid 
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metabolism were disturbed between age groups at baseline. Several lipid metabolites 

were tentatively identified as phospholipid species. Phospholipids are key 

components of membranes, acting both as structural compounds which regulate 

physiochemical properties of membranes and as regulators of cellular processes 

including interaction with proteins to control signalling pathways between and within 

cells (Harayama and Riezman, 2018). Phospholipids are particularly abundant in the 

inner and outer mitochondrial membranes and disturbances to phospholipid 

composition of these membranes have been linked to reduced mitochondrial content 

and function (Mejia and Hatch, 2016). Ether lipids also make up significant component 

of subcellular membranes, including the mitochondrial membrane (Schooneveldt et 

al., 2022), and were noted to increase in plasma abundance with age in this study. It 

is known that ageing is associated with a decline in mitochondrial content and 

oxidative capacity (Short et al., 2005; Crane et al., 2010). The observed differences in 

the plasma abundance of phospholipid and ether lipid metabolites in this study may 

therefore reflect the disruption of the mitochondrial membrane as a consequence of 

age related mitophagy. Phosphocreatine was previously identified as perturbed in 

ageing muscle (Wilkinson et al., 2020) providing more evidence of the impairment of 

fuel metabolism pathways. While phosphocreatine was not identified here as a plasma 

marker of ageing, fumarate, an intermediate of the citric acid cycle, decreased in 

plasma abundance from young to older participants at baseline which reflects 

dysregulation to energy production pathways characteristic of ageing.  

Recent evidence also suggests that plasma ratios of PC and lysoPC metabolites play a 

role in longevity, possibly through interaction with chromatin (Papsdorf and Brunet, 

2018), and serve as accurate biomarkers of ageing (S. Kim et al., 2014; Pradas et al., 

2019). In the present study, there were alterations in the plasma level of several PC 

and lysoPC metabolites, with increased abundance of lysoPC(O-18:0) and 
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PC(20:0/22:4(7Z,10Z,13Z,16Z)), and decreased lysoPC(15:0) identified by ORA as 

important in driving metabolic pathway disruption in ageing, providing support to the 

current literature and pointing to a role for phospholipids in the age-related 

adaptations of skeletal muscle. 

4.4.1.3. Sphingolipids 

There were also changes in the plasma metabolome of several sphingolipids. 

Sphingolipids are essential in many aspects of cellular homeostasis, including as 

components of cellular membranes and in signalling (Hannun and Obeid, 2018). 

Sphingolipids have been identified as markers of ageing. For example, levels of 

sphingolipids within mouse tissue significantly with age (Wu et al., 2007) and an 

increase in sphingolipid enzymatic activity was observed in rat tissues (Sacket et al., 

2009). In humans, sphingolipid levels were associated with longevity (Montoliu et al., 

2014) and comorbidities of age, such as obesity (Turpin et al., 2014), atherosclerosis 

(Jiang et al., 2000) and Alzheimer’s disease (Mielke et al., 2012). The precise role of 

sphingolipids in adaptations in skeletal muscle associated with ageing is unclear but it 

has been suggested that dysregulation of sphingolipid metabolism in ageing may be 

related to cellular senescence (Montoliu et al., 2014) as the increase in sphingolipids 

leads to an accumulation of ceramides within tissues which in turn has a detrimental 

effect on maximum life span. In this study there was a significant increase in several 

ceramide metabolites in the older group relative to the young group, suggesting an 

association between elevation in plasma levels of ceramides and the physiology of 

ageing. 

4.4.1.4. Linoleic acid metabolism 

Finally, the pathway with the largest impact in classification of samples by age at 

baseline was linoleic acid metabolism. There was a significant decline in the 
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abundance of 13(S)-HPODE, a primary product of the linoleic acid metabolism pathway 

(Paley and Karp, 2021), with ageing. The linoleic acid metabolism pathway is known to 

be involved in mitochondrial oxidative phosphorylation. Dietary supplementation of 

linoleic acid leads to an increase in mitochondrial metabolites in a mouse model 

(Maekawa et al., 2019), therefore the present decrease in linoleic acid may provide 

further evidence to the decline in mitochondrial oxidative capacity and dysregulation 

of energy production with ageing, however without correlation to measures of 

oxidative capacity within the muscle in this study the association remains speculative, 

which should be acknowledged as a limitation to this study. 

 Changes in the ageing plasma metabolome induced by 

resistance exercise training 
Putative metabolite identification and ORA showed that the ageing plasma 

metabolome was largely unchanged by 20 weeks RET although after training a greater 

number of metabolites were identified by PLS-DA as important in classifying samples 

by age than at baseline, potentially due to greater mobility of metabolites following 

exercise although this did not occur to a great enough degree as to be significant.  

4.4.2.1. Linoleic acid metabolism 

ORA found that linoleic acid metabolism remained the pathway with the highest 

impact score when classifying samples by age. Steroid hormone biosynthesis also 

showed a similar impact in baseline and post-intervention samples, although there 

were slight differences in the plasma metabolite profile when pathways were 

investigated further. For instance, at baseline disturbances to linoleic acid metabolism 

were primarily linked to a decline in the plasma abundance of 13(S)-HPODE, a 

breakdown product of linoleic acid, while after intervention pathway disturbances 

were mapped to linoleic acid itself. This discrepancy may be explained by the highly 

dynamic nature of the metabolome. Although samples were collected in the fasted, 
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rested state at baseline and post-intervention, it is possible that day-to-day variation 

may have an impact on metabolic profile. However, given that the same pattern of 

decrease was seen in linoleic acid and 13(S)-HPODE, the outcome of pathway 

disturbances at baseline and after RET are likely to be similar.  

4.4.2.2. Androgen steroid metabolism 

There was also a difference in the profile of androgen steroids. While a decline in 

plasma abundance in androgen steroids was seen with age at both baseline and after 

intervention, the decline in androsterone was only significant after exercise training. 

This may reflect the attenuated capacity for the production of androgen steroids 

through RET with age. There is some disagreement in the current literature over 

whether androgen steroids are affected by exercise. While Ahtiainen et al. found mean 

androgen receptor mRNA and protein expression did not change after 21 weeks RET 

in either young or older men, indicating no change in androgen concentration as a 

consequence of exercise (Ahtiainen et al., 2003), Keizer and colleagues reported an 

increase in plasma DHEA sulphate after endurance exercise (Keizer et al., 1989) and 

Tremblay et al. observed an increase in plasma androgen level in response to 

resistance exercise in healthy, younger men (Tremblay et al., 2004). Here, the larger 

decline in androsterone plasma abundance after resistance exercise when compared 

to baseline suggests that the increase in androgen level following exercise may be 

blunted by ageing. However, it should also be considered that, as with linoleic acid, 

the differences in abundance may be reflective of the dynamic nature of the 

metabolome.  

4.4.2.3. Glycerophospholipid metabolism 

Despite the overall ORA output being very similar to the baseline analysis, there were 

some differences which indicate the ageing plasma metabolome may be affected in 
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some way by RET. The increase in the impact score of glycerophospholipid metabolism 

after resistance exercise when compared to baseline was mapped to significant 

increases in the plasma abundance of phosphatidate and PE. Both are highly flexible 

metabolites with roles in numerous metabolic pathways, such as the biosynthesis of 

components of biological membranes or as intermediates in glycolysis (Kanehisa and 

Goto, 2000), which makes identifying the specific mechanisms underlying the shift in 

pathway impact more complex and as physiological outcome measures were not 

assessed in this study the precise role of these metabolites in the exercise response is 

still unclear. However, it is possible that the overall increase in plasma abundance of 

these metabolites may represent a greater mobilisation of lipids following RET in older 

individuals.  

4.4.2.4. Nicotinate and nicotinamide metabolism 

The most notable change was the increase in impact score of the nicotinate and 

nicotinamide pathway, which is involved in the production of the coenzyme NAD+ and 

its subsequent roles in several metabolic processes, most notably as a critical 

metabolite in mitochondrial energy production through redox homeostasis (Chini et 

al., 2017). There is a growing body of evidence which points to a reduction in NAD+ as 

a major feature of both normal and sarcopenic ageing (Okabe et al., 2019), although 

data from human trials is lacking. In murine and cell culture models, the reduction has 

been observed in many tissues including skeletal muscle (Fang et al., 2017). Here, the 

plasma abundance of metabolites related to NAD+ tended to decline with age, 

although no significant differences were observed. Although the reduction in plasma 

abundance of these metabolites was non-significant, the large increase in the impact 

score of the nicotinate and nicotinamide pathway as a classifier of ageing suggests that 

even small changes in metabolite abundance can have a large influence on the plasma 

metabolome and therefore the ageing phenotype, and that small differences should 
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not be immediately disregarded. The decline in NAD+ metabolites and the greater 

pathway influence may point to a shift in energy metabolism as a consequence of RET 

that is impacted by age.  

Overall, some changes in the fasting, rested plasma metabolome after RET suggest 

that 20 weeks of exercise intervention may primarily have an impact on pathways 

relating to energy metabolism. However, despite the minor differences in metabolite 

profile within influential metabolic pathways the large similarities in output of 

metabolite identification and pathway ORA between baseline and post-intervention 

samples also suggest the plasma metabolites characteristic of age are largely 

unchanged by 20 weeks RET.   

 Time course analysis of exercise induced metabolomic 

changes 
To confirm the similarities between baseline and post-intervention samples, time 

course analysis of each age group was conducted. This confirmatory analysis also 

suggested that the plasma metabolome is largely unaffected by RET as no significant 

differences were found in any group when baseline and post-intervention samples 

were compared. This may be due to length of the intervention. It is possible that an 

extended period of training, for example several years, is required to induce 

detectable shifts in systemic metabolism. Alterations in 20 metabolites were found to 

persist for 8 days after a bout of high intensity concentric-eccentric exercise, however 

the subjects were well trained athletes  (Dünnwald et al., 2022) suggesting that to see 

a sustained metabolic response to exercise long term training is required. It should 

also be considered that Dünnwald et al. collected baseline samples under simulated 

normobaric hypoxic conditions, while day 8 was collected under normal conditions 

which may account for some differences in the metabolome. In the present study, 
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plasma collection was conducted under identical test conditions, eliminating this 

potential variation in the metabolome.  

Alternatively, lack of differential metabolites may also relate to the study design. 

Plasma was collected in a fasted, rested state 72 hours after the participants’ last bout 

of exercise. Given the temporal nature of MPS and MPB rates in response to anabolic 

signals from exercise (Atherton and Smith, 2012) and the lack of change in basal FSR 

before and after RET observed previously in the same cohort (Phillips et al., 2017), it 

is not unreasonable to suggest that adaptations in the metabolome may be similarly 

regulated, occurring in minutes not days. The temporal nature of metabolite 

expression following exercise is supported by the current literature. For instance, 

studies which show differences in the plasma metabolome following resistance 

exercise involve the collection of samples immediately following the cessation of 

exercise (Berton et al., 2016; Morville et al., 2020; Gehlert et al., 2022). In addition, 

time course profiling revealed many metabolites significantly impacted by RET 

returned to or approached pre-intervention levels over a recovery period of 240 

minutes (Morville et al., 2020). Moreover, in a 24-week endurance exercise 

intervention in untrained individuals when plasma was collected 48 hours after 

completion of exercise, the fasting plasma metabolome showed no difference 

between exercise and control groups, and only 7 metabolites were different between 

baseline and post-intervention in the exercise group (Brennan et al., 2018). It is likely 

that the number of significantly different metabolites would reduce with increasing 

time. Therefore, to fully understand the changes to the metabolome induced by RET 

and the effect of age on the response of skeletal muscle to resistance exercise, it may 

be necessary to collect plasma immediately following cessation of exercise. 
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 Plasma response to aerobic exercise training 

and detraining in healthy young individuals  

5.1. Background 

 Adaptations in metabolism associated with aerobic 

exercise training 
A predominant adaptation in metabolism linked with submaximal aerobic exercise 

training (AET) is a change in substrate selection during exercise. At a moderate training 

intensity, there is a decreased utilisation of carbohydrate substrates in oxidation which 

is compensated for by a proportional increase in fat oxidation (Ramadoss et al., 2022). 

Maximal rates of fat oxidation occur at exercise intensities of approximately 65% 

VO2
PEAK (Achten and Jeukendrup, 2003).  

Another major physiological adaptation to submaximal AET is the increase in 

endurance capacity of skeletal muscle, defined as the ability of an individual to sustain 

an activity for extended periods of time relative to their baseline capacity (Gibala et 

al., 2006). It has been suggested that this improvement is underpinned by the well 

documented change in substrate selection in oxidation which is suggested to increase 

skeletal muscle oxidative capacity.  For instance, AET at 65% VO2
PEAK was shown to 

ameliorate the reductions in fat and carbohydrate oxidation rates associated with 

obesity and improve muscular endurance in obese individuals (Pérez-Martin et al., 

2001). In non-obese, older adults, AET at the same intensity increased capacity for fat 

oxidation from 15.03 to 19.29 µmol/min/kg fat free mass (Pruchnic et al., 2004). 

Thirty-one days of 60% VO2
PEAK AET induced a 10% increase in total fat oxidation which 

was linked to a 63% increase in intramuscular triglyceride oxidation and a 16% 

decrease in glycogen oxidation (Phillips et al., 1996). As these changes occurred prior 

to increased maximal mitochondrial enzyme activity, it suggests that changed 

substrate utilisation precedes improvements in mitochondrial activity and thus 

oxidative capacity.   
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Beyond oxidative capacity, AET is also associated with improved glucose handling in 

healthy adults. Increases in the coefficient of glucose tolerance between 4 and 19 

minutes (83.9%) and between 10 and 30 minutes (90.6%) after glucose bolus,  glucose 

effectiveness at zero insulin (76.02%), and basal insulin effectiveness (134.3%) were 

observed in healthy young men and women after AET at 85% VO2
PEAK (Brun et al., 

1995). Subsequent investigations have confirmed 60% VO2
PEAK AET is also linked to 

improved glucose handling (Phillips et al., 1996; Carter et al., 2001). Submaximal AET 

may therefore be a potential therapeutic intervention for the treatment of muscle 

deconditioning, which is associated with shift in skeletal muscle oxidation (Chopard et 

al., 2009) and glucose tolerance (Q. Wang et al., 2019).  

 Metabolomics in the study of the response to aerobic 

exercise training 
Recent work has demonstrated that increased aerobic physical activity is linked to 

adaptations in the plasma metabolome. Rats that underwent five days of aerobic 

exercise training a week for 6 weeks reported elevations in purine metabolism and 

greater metabolic flexibility compared to their sedentary counterparts (Starnes et al., 

2017), reflecting improvements in the ability to adapt to demands on energy 

expenditure. In humans, changes in plasma levels of amino acids, fatty acids and 

carbohydrates have also been reported following aerobic exercise (Schranner et al., 

2020), representing the beneficial impacts of exercise on key pathways involved in 

maintenance of skeletal muscle metabolic health including the TCA cycle, ketogenesis, 

and gluconeogenesis. Plasma collected immediately after endurance exercise in 

middle-aged individuals demonstrated that the acute metabolic response to running 

or cycling reflected rapid changes in substrate utilisation of skeletal muscle, glycolysis, 

lipolysis and amino acid catabolism (Lewis et al., 2010), however participants were 

well trained which may affect the response as metabolomic changes in response to 

the same exercise stimuli differ between trained and untrained individuals (Mukherjee 
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et al., 2014). Another study found cycling to exhaustion lead to significant increases or 

decreases in the plasma abundance of 50 metabolites in resistance trained, endurance 

trained, sprint trained and untrained individuals, including several species of 

acylcarnitine and ratios of spermidine/putrescine and serotonin/tryptophan 

(Schranner et al., 2021). However, this study used a targeted metabolomics kit which 

measured only amino acids and lipids therefore potential insight into the adaptive 

response of the wider metabolism was missed.  

Conversely to the benefits in glucose handling and oxidative capacity in skeletal muscle 

discussed above that are conferred by regular physical activity, undergoing periods 

where skeletal muscle does not receive sufficient stimuli leads to the loss of exercise-

induced adaptations in the muscle, referred to as detraining. Detraining is associated 

with a reduction in the capacity of skeletal muscle for oxidation of fatty acids (Laye et 

al., 2009) and is linked to reduced skeletal muscle function. For example, 3 months of 

detraining following 9 months of exercise led to a 7.57% decline in the distance 

travelled in a six minute walk test (Leitao et al., 2019), indicating reduced muscle 

function. In young female athletes, an 87% reduction in training intensity for one 

month caused a significant decrease in jump height from 0.48 to 0.44m (Dai et al., 

2012), suggesting reduced function of skeletal muscle occurs even after physical 

activity is reduced without complete cessation of exercise training. The impact of 

complete immobilisation on whole-body and skeletal muscle specific metabolism is 

outlined in Chapter 3 but there is also evidence to suggest simply reducing physical 

activity without absolute disuse has a similarly negative effect on the plasma 

metabolome. When older individuals underwent a short-term period of step 

reduction, 8 plasma metabolites were found to undergo significant changes in plasma 

circulation (Saoi et al., 2019) including carnitines and their sulphate derivatives, 

oxoproline, and creatine which overall reflected adaptations in muscle energy 
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metabolism in response to reduced physical activity. A limited assessment of the 

plasma metabolic profile after 6 months and 1 year of detraining following a period of 

exercise intervention found declines in plasma glucose, TAG, cholesterol, HDL-c and 

LDL-c alongside an increase in free insulin, suggesting an overall decline in metabolic 

health (Rossi et al., 2017), however this study focussed specifically on established 

clinical markers and did not investigate the potential mechanisms underlying the 

reduction in metabolic health associated with adaptation to detraining. Similarly, 

improvements in insulin sensitivity and HDL-c after 4 months of aerobic interval 

training relapsed after only 1 month of detraining (Mora-Rodriguez et al., 2014), but 

the underlying mechanisms were not discussed and a full assessment of the 

metabolome was not carried out.  As such, while there is increasing interest in applying 

metabolomics to study the exercise training response (Khoramipour et al., 2022) and 

the potential of metabolomics in understanding physiological adaptations to physical 

inactivity is clear (Saoi et al., 2019), the response of the plasma metabolome to 

detraining following a period of exercise intervention is relatively understudied. 

In a previously published volunteer intervention study (Latimer et al., 2021), 8 weeks 

of AET at 65% VO2
PEAK in a healthy young cohort induced a significant increase in 

mitochondrial DNA copy number (p<0.001) which declined following the period of 

exercise withdrawal where participants resumed habitual physical activity (p<0.001). 

Mitochondrial maximal rates of ATP production (MAPR) increased from baseline with 

AET for three substrate combinations (palmitate p=0.003; glutamate and succinate 

p=0.008; and glutamate and malate p=0.011) before returning to baseline values after 

the exercise withdrawal period (palmitate, p=0.016; glutamate and succinate, 

p<0.001; glutamate and malate, p=0.003), indicating a strong response in 

mitochondrial efficiency to both AET and exercise withdrawal in healthy young 

individuals.  
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In Chapter 4 of this thesis it was shown that a 20-week RET intervention had no 

significant effect on the plasma metabolome in healthy young or older individuals, 

however it was hypothesised that the type of exercise is likely to be influential in 

dictating metabolomic adaptations and therefore AET may induce differences in the 

plasma metabolome reflective of known physiological adaptations. In Chapter 3, it was 

demonstrated that metabolic signatures identified by untargeted metabolomics 

reflected muscle level adaptations to chronic bed rest. It is therefore reasonable to 

suggest a similar approach can be employed to identify plasma markers of metabolic 

dysregulation following exercise withdrawal which may influence the observed 

adaptations in skeletal muscle. The aims of this chapter are therefore as follows: 

1. To determine whether the response of the plasma metabolome to 8 

weeks of AET is reflective of physiological adaptations in healthy young 

individuals, and to identify metabolites most influential in driving 

metabolic adaptations to 8 weeks of AET 

2. To determine whether there is a detraining response in the plasma 

metabolome following 4 weeks of exercise withdrawal, and to identify 

metabolites most influential in driving metabolic adaptations to 4 weeks 

of exercise withdrawal  

3. To determine the relationship between changes in the plasma 

metabolome with relevant physiological outcome measures previously 

associated with adaptations to AET in healthy young individuals 
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5.2. Methods 

 Study design 
This study involved retrospective analysis of samples collected as part of a volunteer 

intervention study (Latimer et al., 2021) which was conducted at the Universities of 

Leicester and Nottingham, UK (Clinical Trials Register: ISRCTN10906292). The study 

was approved by the NHS National Research Ethics Service. All participants provided 

written informed consent. The original study design is as follows: 

COPD patients (n=19, 60-80 years), healthy controls age matched to COPD (HO, n=10) 

and young healthy controls (HY, n=10, 18-35 years) were recruited to an 8-week 

submaximal AET intervention followed by 4 weeks of exercise withdrawal. In this 

chapter, only HY was used in analysis. Participants were required to have normal lung 

function (FEV1/FVC > 0.7, FEV1 > 80%) and were excluded for any respiratory 

diagnosis. Individuals who participated in exercise exceeding 150 minutes/week at 

moderate intensity were excluded. Subjects were also excluded if: they had a medical 

condition associated with metabolic disturbances, inflammation, or impaired muscle 

function; they were receiving corticosteroid medication; they were receiving 

anticoagulation therapy or had a condition causing impaired clotting; they were a 

current smoker. Baseline subject characteristics are provided in Table 5.1.  

Baseline assessments were performed over three visits. On the first visit, body 

composition was acquired by dual energy X-ray absorptiometry (DEXA, Lunar Prodigy 

II, GE Healthcare, Buckinghamshire, UK) and participants underwent a familiarisation 

incremental cycling cardiopulmonary exercise test (CPET) on an electromagnetically 

braked cycle ergometer (Lode Corival, Groningen, The Netherlands). After three 

minutes unloading pedalling, workload increased progressively at a rate between 

5W/min and 20W/min for a test of 8-12 minutes duration. VO2
PEAK was monitored 

using a metabolic cart (Medisoft, Sorrines, Belgium).  The second visit took place a 
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minimum of 48 hours after the first and participants completed a second incremental 

CPET to verify the preceding test. At the third visit, muscle biopsy samples were 

obtained from the vastus lateralis (VL) muscle of the dominant leg using a needle 

micro-biopsy technique. Four passes were performed. Each pass harvested 

approximately 20mg VL tissue. Approximately 40mg muscle tissue was weighed for 

mitochondrial function and content measurements. The remaining tissue was snap 

frozen and stored in liquid nitrogen for assessment of DNA and mRNA expression 

analysis.  

Submaximal exercise testing consisted of 30 minutes of continuous cycling at 65% of 

the workload corresponding to the participant’s highest VO2
PEAK achieved in either of 

the baseline tests. Continuous monitoring of respiratory exchange ratio (RER) was 

performed throughout the test using a metabolic cart (Ergocard Professional, 

Medisoft, Sorinnes, Belgium) and an average was reported for the steady-state period. 

Training intensity was reset after 4 weeks. At the end of week 8, participants resumed 

their habitual physical activity levels. Incremental and submaximal tests were 

separated by at least 30 minutes of rest time.  

Fasted and rested venous blood samples were drawn at baseline, 1 week post 

baseline, after 4 weeks of exercise, after 8 weeks of exercise, and post detraining. 

Plasma and serum were separated and stored immediately at -80°C until further 

analysis. Plasma samples were randomly sorted into 4 batches and prepared in an 

identical manner. Metabolites were extracted from plasma according to the protocol 

detailed in Section 2.3. Separation of metabolites within samples via liquid 

chromatography was performed according to the parameters detailed in Section 2.4 

and acquisition of data by tandem mass spectrometry was performed according to the 

protocol in Section 2.5.  
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Table 5.1 Baseline subject characteristics. Data are presented as mean±SD unless 
otherwise stated. Percentage predicted values are calculated from normal values. 
FEV1: forced expiratory volume in 1s; FVC: forced vital capacity; RV: residual volume; 
TLC: total lung capacity; TLCO: transfer factor for the lung of carbon monoxide; BMI: 
body mass index; FFMI: fat-free mass index; QMVC: quadriceps maximum voluntary 
contraction. Table from Latimer et al. (2021).   

 HY (n=10) 

Age, years 28±5 
Female, n 6 
FEV1, % pred 112.6±20.6 
FEV1/FEV, % 81.6±9.3 
RV, % pred 107.9±48.9 
TLC, % pred 107.6±15.0 
RV/TLC, % 26.8±9.7 
TLCO, % pred 95.6±13.9 
Smoking history, n 
Current smoker 0 
Never smoker 10 
Ex-smoker 0 
BMI, kg/m2 26.0±7.6 
FFMI, kg/m2 16.5±2.8 
QMVC isometric strength, Nm 162.8±72.5 
Step count, 8-h average per day 6180±3449 (n=9) 
 

 Data pre-processing and statistical analysis 
Data pre-processing was performed in R using the parameters detailed in Section 2.6. 

For statistical analysis, data for each polarity and ionisation mode were analysed 

separately. All analysis of metabolomics data was performed using inhouse R scripts 

using R version 4.1. Scripts are available in Appendix 2. Following processing and 

filtering of metabolomics data, analysis of differential metabolite abundance from 

baseline at 1 week, 4 weeks and 8 weeks after starting AET, and following 4 weeks of 

exercise withdrawal (week 12 of the study) was performed by fitting a linear mixed 

effect model to each data matrix. Group and time were fixed effects while participant 

ID was a random effect to control for subject specific variation over the course of the 

study. P-values were obtained for each contrast by Empirical Bayes moderated t-tests 

adjusted for false discovery rate (FDR). Metabolites were deemed significantly 

different between comparisons when FDR<0.05.  
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Total lean mass, exercise steady-state RER, and VO2
PEAK were provided from Latimer et 

al. (2021) and assessed for normality using Shapiro-Wilk tests. Within group changes 

across time were tested using one-way repeated measures ANOVA with post-hoc 

pairwise comparisons adjusted for FDR using the Benjamini-Hochberg method.  

 Prediction of functional activity of differentially 

expressed metabolites 
Metabolites were putatively identified using metID (Shen, Wu, et al., 2022) utilising 

publicly available metabolomics databases. Mass tolerance was set at 5ppm. Common 

compound names of identified features were taken from HMDB and mapped to 

metabolic pathways by over representation analysis (ORA) using MetaboAnalyst 5.0 

(Pang et al., 2021). Pathways with an impact score greater than 0.1 were retained.  

 Correlation of metabolomic and physiological outcome 

data 
Correlation of metabolite expression with outcome measures of VO2

PEAK and RER 

during submaximal steady-state exercise at 65% VO2
PEAK was assessed by weighted 

correlation network analysis (WGCNA) (Langfelder and Horvath, 2008). Metabolic 

modules with weak correlations (r<|0.5|) to outcome measures were discarded and 

network analysis was performed on the remaining metabolite modules to determine 

their functional relevance. 
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5.3. Results 

 Physiological adaptations to aerobic exercise training 
Exercise intervention and withdrawal had no impact on total lean mass (p>0.05). 

Significant changes in VO2
PEAK (Figure 5.1) and exercise steady-state RER (Figure 5.2) 

were observed after 8 weeks of AET (VO2
PEAK, p<0.01; steady-state RER, p<0.001) and 

after 4 weeks of exercise withdrawal (VO2
PEAK, p<0.05; steady-state RER, p<0.001) 

relative to their baseline values. No significant differences between VO2
PEAK or exercise 

steady-state RER were observed between weeks 8 AET and 4 weeks of exercise 

withdrawal (p>0.05).   

 

Figure 5.1 Peak oxygen uptake at baseline, after 8  weeks aerobic exercise training and 
4 weeks exercise withdrawal 

Change in peak oxygen uptake (VO2
PEAK) after 8 weeks aerobic exercise training and 4 

weeks of exercise withdrawal in healthy young adults. There was a significant increase 
in VO2

PEAK at week 8 AET and 4 weeks exercise withdrawal relative to baseline value, 
however there was no difference in value of VO2

PEAK between week 8 and exercise 
withdrawal timepoints. Boxplots represent the spread of data. Each circle represents 
one participant and shows precise distribution of data within groups. 

*p<0.05, **p<0.01 
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Figure 5.2 Submaximal steady-state exercise respiratory exchange ratio at baseline, 
after 8 weeks aerobic exercise training and 4 weeks exercise withdrawal 

Change in steady state respiratory exchange ratio at 65% VO2
PEAK after 8 weeks aerobic 

exercise training and 4 weeks of exercise withdrawal in healthy young adults. There 
was a significant decrease in respiratory exchange ratio at 8 weeks AET and 4 weeks 
exercise withdrawal relative to baseline value, however there was no difference in 
value of respiratory exchange ratio between week 8 AET and exercise withdrawal 
timepoints. Boxplots represent the spread of data. Each circle represents one 
participant and shows precise distribution of data within groups. 

***p<0.001  
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 Differential metabolite abundance 
A total of 108 metabolites were present at a significantly different abundance (p<0.05) 

compared to baseline after either 1 week, 4 weeks or 8 weeks of AET or 4 weeks of 

exercise withdrawal. Of these, 22 were significantly different after 1 week of AET 

(Figure 5.3A), 14 were significantly different after 4 weeks AET (Figure 5.3B), 21 were 

significantly different after 8 weeks AET (Figure 5.3C), and 51 were significantly 

different after 4 weeks exercise withdrawal (Figure 5.4). 
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Figure 5.3 Differential metabolite abundance following exercise training 

Comparison of metabolite abundance between baseline and following (A) 1, (B) 4 and 
(C) 8 weeks of aerobic exercise training (AET) in healthy young participants. The x axis 
shows log fold change of metabolite abundance. The y axis shows -log10 p-value 
adjusted for false discovery rate by the Benjamini-Hochberg method. The black line 
shows the threshold of FDR<0.05. Each plotted point represents a metabolite (blue, 
significantly downregulated; red, significantly upregulated; grey, not significantly 
different between timepoints).     

A 

B 

C 
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Figure 5.4 Differential metabolite abundance between baseline and 4 weeks detraining 

Comparison of metabolite abundance between baseline and after 4 weeks of exercise 
withdrawal following aerobic exercise training in healthy young participants. The x axis 
shows log fold change of metabolite abundance. The y axis shows -log10 p-value 
adjusted for false discovery rate by the Benjamini-Hochberg method. The black line 
shows the threshold of FDR<0.05. Each plotted point represents a metabolite (blue, 
significantly downregulated; red, significantly upregulated; grey, not significantly 
different between timepoints). 

 Identification of metabolites 
Metabolites affected by 1, 4 and 8 weeks of AET were within the same class of 

molecule, suggesting a consistent metabolic response to AET in all individuals (Figure 

5.5). The most common metabolite classes at all timepoints were identified as 

organooxygen compounds, prenol lipids, carboxylic acids and their derivatives, and 

fatty acyls.  

In contrast to the consistent response during AET, after exercise withdrawal there was 

a greater variety of metabolite classes identified, suggesting exercise withdrawal may 

have a more widespread impact than AET (Figure 5.6). In particular, there were an 

increased number of metabolite classes related to xenobiotics, with several 

metabolites identified as solely exogenous. This may reflect the importance of the diet 
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in dictating substrate utilisation in energy production during periods of reduced 

physical activity.  
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Figure 5.5 Classes of metabolites significantly different after exercise training 

Donut charts showing classes of metabolites present at significantly different plasma 
levels after (A) 1, (B) 4 and (C) 8 weeks of aerobic exercise training compared to 
baseline values in healthy young individuals. Classes are represented as a percentage 
of the number of metabolites changed in abundance from baseline.  

  

A 

B 

C 
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Figure 5.6 Metabolite classes significantly different after 4 weeks exercise withdrawal 

Donut chart showing classes of metabolites present at significantly different plasma 
levels after 4 weeks exercise withdrawal compared to baseline values in healthy young 
individuals. Classes are represented as a percentage of the number of metabolites 
changed in abundance from baseline. 
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 Correlation of plasma metabolite abundance with 

physiological adaptations 
Having demonstrated that there was an observable response in the plasma 

metabolome over 8 weeks AET and 4 weeks of exercise withdrawal, the next aim of 

this chapter was to integrate metabolomic and physiological data by identifying which 

metabolites were associated with previously defined physiological adaptations in 

cardiorespiratory fitness in response to AET and exercise withdrawal. Firstly, 

associations between baseline measures of metabolite abundance and physiological 

outcomes were assessed (Table 5.2). Next, associations between change in metabolite 

abundance and change in physiological outcomes at week 8 (Table 5.3) and week 12 

(Table 5.4) were made. WGCNA correlation indicated high degrees of association 

between metabolic modules and measurements of VO2
PEAK and exercise steady-state 

RER. To clarify which metabolites were important in driving association and their 

biological roles, metabolite identification and pathway analysis were performed on 

modules which were associated with at least one measure of adaptation.  
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Table 5.2 Table containing metabolic modules of metabolite abundance at baseline 
which are correlated (r>|0.5|) with measures of exercise steady-state respiratory 
exchange ratio (RER) and maximal oxygen uptake (VO2

PEAK) at baseline. P-values of 
correlation are included for reference but no correlations were significant (p<0.05). 
Over representation analysis was applied to metabolites within each module to 
identify relevant metabolic pathways (impact score > 0.1). 

Module Correlation 
with 
outcome 
measure 

Coefficient p-value Pathway Impact 
score 

Yellow RER -0.77 0.1 Glycerolipid 
metabolism 

0.33 

Green 0.7 0.2 Caffeine metabolism 0.69 

beta-Alanine 
metabolism 

0.50 

Biotin metabolism 0.20 

Arginine and proline 
metabolism 

0.11 

Glycerophospholipid 
metabolism 

0.10 

Green-
yellow 

RER -0.74 0.1 Arginine 
biosynthesis 
Glycerophospholipid 
metabolism  
Sphingolipid 
metabolism  

0.12 
 

0.22 
 

0.37 

VO2
PEAK -0.54 0.3 

Midnight 
blue 

RER -0.51 0.4 Glycerophospholipid 
metabolism 

0.20 

Sphingolipid 
metabolism 

0.27 

Yellow RER -0.64 0.2 Glycerophospholipid 
metabolism 

0.25 

VO2
PEAK -0.81 0.1 

Dark 
green 

RER 0.73 0.2 Glycerophospholipid 
metabolism 

0.2 

Dark 
turquoise 

RER 0.96 0.01 Sphingolipid 
metabolism 

0.27 

Orange VO2
PEAK -0.86 0.06 Sphingolipid 

metabolism 
0.35 

alpha-Linolenic acid 
metabolism 

0.33 

Glycerophospholipid 
metabolism 

0.22 

Arginine 
biosynthesis 

0.12 

Phosphatidylinositol 
signalling system 

0.11 

Magenta VO2
PEAK 0.69 0.2 Glycerophospholipid 

metabolism 
0.26 
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Nicotinate and 
nicotinamide 
metabolism 

0.23 

Pentose and 
glucuronate 
interconversions 

0.14 

Dark grey RER -0.64 0.4 Glycerophospholipid 
metabolism 

0.20 

Sphingolipid 
metabolism 

0.18 

Pentose and 
glucuronate 
interconversions 

0.14 

Grey60 VO2
PEAK 0.95 0.05 Propanoate 

metabolism 
0.27 

Pentose and 
glucuronate 
interconversions 

0.14 

Glycerophospholipid 
metabolism 

0.11 

Light cyan RER 0.95 0.05 Pentose and 
glucuronate 
interconversions 

0.14 

VO2
PEAK 0.76 0.2 

Purple RER -0.63 0.4 Pentose and 
glucuronate 
interconversions 

0.14 

VO2
PEAK -0.6 0.4 

Salmon VO2
PEAK -0.52 0.5 Glycerophospholipid 

metabolism 
0.22 

Pentose and 
glucuronate 
interconversions 

0.14 

Dark 
turquoise 

RER -0.77 0.2 Glycerophospholipid 
metabolism 

0.25 

VO2
PEAK -0.61 0.4 
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Table 5.3 Table containing metabolic modules of change in metabolite abundance 
after 8 weeks aerobic exercise training which are correlated (r>|0.5|) with change in 
measures of exercise steady-state respiratory exchange ratio (RER) and maximal 
oxygen uptake (VO2

PEAK) after 8 weeks aerobic exercise training. Over representation 
analysis was applied to metabolites within each module to identify relevant metabolic 
pathways (impact score > 0.1). 
*Correlation p<0.05 

Module Correlation 
with 
outcome 
measure 

Coefficient p-value Pathway Impact 
score 

Turquoise Change in 
RER 

0.65 0.5 Caffeine metabolism 
Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 
beta-Alanine 
metabolism 
Glycerolipid 
metabolism 
Tyrosine metabolism 
Sulphur metabolism 
Arginine and proline 
metabolism 

0.69 
0.50 

 
 
 

0.40 
 

0.34 
 

0.15 
0.13 
0.11 

Change in 
VO2

PEAK 
0.96 0.1 

Blue Change in 
RER 

0.76 0.4 Glycine, serine and 
threonine 
metabolism 

0.35 

Biotin metabolism 0.20 

Glycerophospholipid 
metabolism 

0.20 

Pyrimidine 
metabolism 

0.18 

Aminoacyl-tRNA 
synthesis 

0.17 

beta-Alanine 
metabolism 

0.10 

Black Change in 
RER 

1 0.004* Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 
Phenylalanine 
metabolism 

0.50 
 
 
 

0.36 

Change in 
VO2

PEAK 
-0.55 0.4 

Yellow Change in 
RER 

0.62 0.4 Arginine and proline 
metabolism 

0.11 

Change in 
VO2

PEAK 
-0.84 0.2 

Light cyan Change in 
RER 

-0.54 0.3 Sphingolipid 
metabolism 

0.27 
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Change in 
VO2

PEAK 
0.59 0.3 Nicotinate and 

nicotinamide 
metabolism 

0.23 

Glycerophospholipid 
metabolism 

0.22 

Pantothenate and 
CoA biosynthesis 

0.18 

Fatty acid 
degradation 

0.12 

Grey60 Change in 
VO2

PEAK 
-0.83 0.08 Sphingolipid 

metabolism 
0.37 

Glycerophospholipid 
metabolism 

0.26 

Dark 
green 

Change in 
RER 

0.85 0.07 Glycerophospholipid 
metabolism 

0.20 

Dark red Change in 
VO2

PEAK 
0.73 0.2 Arginine biosynthesis 0.12 

Yellow Change in 
RER 

-0.55 0.3 Glycerophospholipid 
metabolism 
Pentose and 
glucuronate 
interconversions 
Arginine biosynthesis 
Phosphatidylinositol 
signalling system 

0.22 
 

0.14 
 
 

0.12 
0.11 

Change in 
VO2

PEAK 
0.78 0.1 

Brown Change in 
RER 

0.78 0.07 Glycerophospholipid 
metabolism 

0.20 

Pentose and 
glucuronate 
interconversions 

0.14 

Green Change in 
VO2

PEAK 
-0.78 0.07 Sphingolipid 

metabolism 
0.22 

Pentose and 
glucuronate 
interconversions 

0.14 

Blue Change in 
RER 

-0.84 0.04* Glycerophospholipid 
metabolism 
Pentose and 
glucuronate 
interconversions 

0.26 
 

0.14 Change in 
VO2

PEAK 
0.52 0.3 

Red Change in 
RER 

-0.77 0.08 Propanoate 
metabolism 

0.27 

Glycerophospholipid 
metabolism 

0.22 

Pentose and 
glucuronate 
interconversions 

0.14 
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Table 5.4 Table containing metabolic modules of change in metabolite abundance 
after 4 weeks exercise withdrawal which are correlated (r>|0.5|) with change in 
measures of exercise steady-state respiratory exchange ratio (RER) and maximal 
oxygen uptake (VO2

PEAK) after 4 weeks of exercise withdrawal. Over representation 
analysis was applied to metabolites within each module to identify relevant metabolic 
pathways (impact score > 0.1). 
*Correlation p<0.05 

Module Correlation 
with 
outcome 
measure 

Coefficient p-value Pathway Impact 
score 

Blue Change in 
RER 

0.83 0.4 Caffeine metabolism 
Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 
Pyrimidine 
metabolism 
Biotin metabolism 
Tyrosine 
metabolism 
Sulphur metabolism 
Arginine and proline 
metabolism 
Glycerolipid 
metabolism 

0.69 
 

0.50 
 
 
 

0.22 
 

0.20 
0.15 

 
0.13 
0.11 

 
0.10 

Change in 
VO2

PEAK 
0.97 0.1 

Yellow Change in 
VO2

PEAK 
-0.81 0.4 Caffeine metabolism 

beta-Alanine 
metabolism 

0.69 
 

0.40 Change in 
RER 

-0.97 0.2 

Brown Change in 
RER 

0.78 0.2 Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

0.50 

Phenylalanine 
metabolism 

0.36 

Alanine, aspartate 
and glutamate 
metabolism 

0.16 

Turquoise Change in 
RER 

0.72 0.3 Arginine and proline 
metabolism 

0.11 

Change in 
VO2

PEAK 
-0.74 0.3 

Red Change in 
RER 

-0.76 0.1 Glycerophospholipid 
metabolism 

0.10 

Change in 
VO2

PEAK 
0.78 0.1 

Green 
yellow 

Change in 
RER 

-0.5 0.4 Sphingolipid 
metabolism 

0.35 
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Glycerophospholipid 
metabolism 

0.22 

Arginine 
biosynthesis 

0.12 

Dark green Change in 
RER 

0.77 0.1 Glycerophospholipid 
metabolism 
Sphingolipid 
metabolism 

0.31 
 

0.31 Change in 
VO2

PEAK 
-0.51 0.4 

Light green Change in 
RER 

0.78 0.1 Glycerophospholipid 
metabolism 

0.26 

Brown Change in 
RER 

-0.77 0.01* Glycerophospholipid 
metabolism 

0.25 

Dark 
turquoise 

Change in 
RER 

0.52 0.4 Propanoate 
metabolism 

0.27 

Pentose and 
glucuronate 
interconversions 

0.14 

Glycerophospholipid 
metabolism 

0.10 

Blue Change in 
RER 

-0.62 0.3 Pentose and 
glucuronate 
interconversions 
Glycerophospholipid 
metabolism 

0.14 
 
 

0.11 
Change in 
VO2

PEAK 

0.61 0.3 

 

At baseline many modules were correlated with both VO2
PEAK and exercise steady-state 

RER (r>|0.5|). Additionally, pathways involved in correlation were similar across all 

modules. The most common pathway in correlations at baseline was 

glycerophospholipid metabolism, with 6 modules correlated with exercise steady-

state RER and 7 modules correlated with VO2
PEAK being linked to glycerophospholipid 

metabolism by ORA (impact score > 0.1). Important metabolites were similar between 

modules. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), 

phosphatidylserine (PS), 1-acyl-sn-glycero-3-phosphocholine, and sn-glycero-3-

phosphocholine were repeatedly found to be important in correlations of metabolic 

modules with VO2
PEAK and exercise steady-state RER. Exercise steady-state RER was 

also linked to sphingolipid metabolism in 4 modules. VO2
PEAK was also linked to 

sphingolipid metabolism in two modules (impact score > 0.1). Glucosylceramide, 

digalactosylceramide, sphingosine-1-phosphate, sphingomyelin and ceramide were all 
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found to be important in associations with both RER and VO2
PEAK. Galactosylceramide 

was also found to be important in the association with exercise steady-state RER but 

not with VO2
PEAK. Pentose and glucuronate interconversions were linked to VO2

PEAK in 

5 modules and exercise steady-state RER in 3 modules (impact score > 0.1). In all 

modules, plasma abundance of β-D-glucuronside was important in the pathway.  

Glycerophospholipid metabolism, pentose and glucuronate interconversions and 

sphingolipid metabolism all remained associated with VO2
PEAK and exercise steady-

state RER in correlations between change in metabolite abundance and change in 

outcome measures after 8 weeks AET (impact score > 0.1). Glycerophospholipid 

metabolism was associated with change in exercise steady-state RER in 6 modules and 

with VO2
PEAK in 4 modules, with importance again mapped to plasma abundance of PE, 

PC, PS, 1-acyl-sn-glycero-3-phosphocholine, and sn-glycero-3-phosphocholine. 

Sphingolipid metabolism was associated with change in exercise steady-state in 4 

modules and with VO2
PEAK in 2 modules. Like glycerophospholipid metabolism, 

influential metabolites in driving pathway association were the same as at baseline 

with the addition of sulphatide which was associated with change in VO2
PEAK. Pentose 

and glucuronate interconversions were associated with change in exercise steady-

state in 3 modules and with VO2
PEAK in 5 modules with importance again mapped to 

the plasma abundance of β-D-glucuronside.  

There was also an increase in the association of amino acid metabolism pathways with 

outcome measures after 8 weeks AET. Although at baseline arginine and proline 

metabolism pathways were associated with exercise steady-state RER and VO2
PEAK and 

remained associated here (for all, impact score > 0.1), with L-argininosuccinate and L-

ornithine identified as important in driving associations, at the 8 week timepoint a 

wider range of amino acid metabolism pathways were involved in correlations. First, 
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the phenylalanine, tyrosine and tryptophan biosynthesis pathway was found to be 

associated with both change in exercise steady-state RER and change in VO2
PEAK in 2 

modules (impact score 0.5 for both). Influential metabolites in association were 

identified as L-tyrosine and L-phenylalanine. L-tyrosine was also found to be influential 

in the association of tyrosine metabolism with both change in RER and change in 

VO2
PEAK alongside 3-fumarylpyruvate (impact score 0.15). Similarly, L-phenylalanine 

was highlighted as important in the association of phenylalanine metabolism with 

change in exercise steady-state RER and VO2
PEAK in 1 module (impact score 0.36). 

Glycine, serine and threonine metabolism was linked to change in exercise steady-

state RER in 1 module (impact score 0.35). Influential metabolites within this pathway 

were identified as L-serine, creatine, carbon dioxide, dimethylglycine, and betaine.  

Changes in similar metabolic pathways were associated with changes in outcome 

measures after 4 weeks of exercise withdrawal. Glycerophospholipid metabolism was 

associated with change in exercise steady-state RER in 6 modules and change in 

VO2
PEAK in 3 modules (impact score > 0.1). Sphingolipid metabolism was associated 

with change in exercise steady-state RER in 2 modules and change in VO2
PEAK in 1 

module (impact score > 0.1). Pentose and glucuronate interconversions were 

associated with change in exercise steady-state RER in 2 modules and change in 

VO2
PEAK in 1 module (impact score > 0.1). Influential metabolites in the pathways were 

found to be the same as in previous associations, with PE, PC, PS, 1-acyl-sn-glycero-3-

phosphocholine, and sn-glycero-3-phosphocholine important in glycerophospholipid 

metabolism, β-D-glucuronside important in pentose and glucuronate 

interconversions, and glucosylceramide, digalactosylceramide, sphingosine-1-

phosphate, sphingomyelin, ceramide and galactosylceramide important in 

sphingolipid metabolism. Amino acid metabolism pathways remained associated with 

change in exercise steady-state RER and VO2
PEAK. Phenylalanine, tyrosine and 
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tryptophan biosynthesis, phenylalanine metabolism and tyrosine metabolism were 

associated with exercise steady-state RER in 2 modules and with VO2
PEAK in 1 module 

(for all modules, impact score > 0.1). Influential metabolites were again identified as 

L-tyrosine and L-phenylalanine, but L-adrenaline was also identified as influential in 

the tyrosine metabolism pathway which was not found after 8 weeks AET. Arginine 

and proline metabolism pathways were again linked to exercise steady-state RER and 

VO2
PEAK (for all associations, impact score > 0.1) and influential metabolites were 

identified as L-argininosuccinate and L-ornithine. Finally, the alanine, aspartate and 

glutamate metabolism pathway was associated with change in exercise steady-state 

RER for the first time (impact score 0.16). Influential metabolites within the pathway 

were identified as 2-oxoglutarate and L-glutamine.  
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5.4. Discussion 
The main finding of this chapter is that there is an observable response to AET and 

subsequent exercise withdrawal in the plasma metabolome of healthy young 

individuals. In Chapter 4 of this thesis, it was shown that RET had no effect on the 

rested, fasting plasma metabolome in healthy young individuals. In contrast, these 

data support a role for AET and exercise withdrawal as a modulator of the plasma 

metabolome. It is possible that AET has a more immediate and systemic effect on 

metabolic health than RET, suggesting that exercise type is influential in dictating the 

plasma metabolic response. Furthermore, through correlation of metabolite 

abundance and measures of cardiorespiratory fitness, this chapter demonstrates that 

the plasma metabolome is reflective of adaptations to AET at the skeletal muscle level 

and provides complementary information to previously published work (Latimer et al., 

2021).  

 Classification of metabolites impacted by exercise 

training intervention 

5.4.1.1. Fatty acyls 

Putative identification of metabolites significantly impacted by at least 1 week of AET 

demonstrated that there was a shift in lipid profile with AET. Many metabolites with 

differential abundance at 1, 4 and 8 weeks of AET were identified as fatty acyls (Figures 

5.10-12). For example, there was an increase in plasma abundance of (±)-

sulfobutanedioic acid at 4 weeks of AET followed by a decline in (±)-2-Hydroxy-4-

(methylthio)butanoic acid after 8 weeks of AET. Both belong to a subclass of fatty acyls 

called thia fatty acids, suggesting that length of exercise period has differential effects 

on the same metabolite subclasses within the metabolome. Thia fatty acids can have 

profound effects on lipid metabolism, including modulating mitochondrial beta 

oxidation (Dyroy et al., 2006) and can reportedly promote a cardioprotective plasma 

profile (Berge et al., 2002). The difference in metabolite abundance may therefore 
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relate to a potential regulatory impact on lipid metabolism which contributes to a shift 

in substrate oxidation favouring lipids over carbohydrates that is reflected in the 

decline of exercise steady-state RER previously reported (Latimer et al., 2021). 

Different metabolites were affected by different lengths of exercise, likely reflective 

of the diverse roles of lipids in the exercise response including in substrate oxidation.  

5.4.1.2. Phospholipids 

There was also a significant decrease in the plasma abundance of PE 22:0/P-18:1(11Z) 

after 1 week of AET. PE has diverse roles in the metabolism, including in membrane 

fusion and as a substrate in many metabolic pathways (Vance and Tasseva, 2013). PE 

content in the mitochondrial membrane is therefore influential in maintaining 

mitochondrial biogenesis and rates of mitochondrial respiration. There is also 

mounting evidence to suggest that mitochondrial PE content impacts mitochondrial 

membrane dynamics and fluidity, although the exact mechanism still remains unclear 

(Grapentine and Bakovic, 2020). It is therefore possible that the observed reduction in 

PE 22:0/P-18:1(11Z) reflects an increased uptake of lipids in skeletal muscle 

mitochondria to positively modulate substrate oxidation as reflected by decreased 

exercise steady-state RER which suggest that submaximal exercise training leads to a 

greater proportion of lipids oxidised at the same intensity compared to baseline 

measures. Supporting this, metabolites in modules correlated with exercise steady-

state RER after 8 weeks AET were mapped to glycerolipid and glycerophospholipid 

metabolism pathways. Moreover, the number of metabolic markers of AET which can 

be linked to lipid oxidation in the mitochondria mirrors previous work which shows a 

significant increase in mitochondrial ATP production in response to palmitate after 8 

weeks AET (Latimer et al., 2021). 
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5.4.1.3. Carboxylic acids and derivatives 

Finally, metabolism of carboxylic acids and derivatives was disrupted at all timepoints 

during AET. After 1 week there was an increase in plasma abundance of iminoaspartic 

acid and a decrease in glutaminylthreonine. Iminoaspartic acid is produced by the 

breakdown of aspartate and used as a substrate in the production of NAD, a major 

component of energetic and signalling pathways (Kanehisa and Goto, 2000).  The 

relationship between physical activity and NAD is well established, with exercise 

leading to increases in NAD levels in skeletal muscle that can ameliorate age-related 

declines in muscle function by increasing expression of mitochondrial proteins relating 

to ATP production (de Guia et al., 2019). Increased plasma abundance of iminoaspartic 

acid may therefore relate to increased production of NAD for use in oxidative 

phosphorylation. Glutaminylthreonine is consumed in the glutamyl cycle as part of the 

mechanism of glutathione biosynthesis (Paley and Karp, 2021). Glutathione plays a 

crucial role in maintaining homeostasis and whole-body health including as a vital 

metabolite in maintenance of mtDNA (Pizzorno, 2014). In addition, glutathione 

depletion has been implicated in the loss of skeletal muscle function with ageing (Julius 

et al., 1994) and chronic degenerative diseases associated with muscle wasting 

(Ballatori et al., 2009).  The observed decline in plasma abundance of 

glutaminylthreonine may relate to its increased use in glutathione biosynthesis and 

indicates the beneficial impact of exercise on glutathione to maintain muscle function.  

In addition, phenylalanine was significantly elevated from baseline after 4 and 8 weeks 

of AET. Ingestion of L-phenylalanine promotes fat oxidation during exercise (Ueda et 

al., 2017). The present increase in plasma phenylalanine may relate to the shift to 

favour lipid oxidation as a source of energy in response to increased energetic 

demands brought about by AET, in keeping with evidence from Latimer et al. (2021) 
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which showed a significant increase in mitochondrial ATP production in response to 

palmitate.  

 Effect of exercise withdrawal on the plasma 

metabolome 
Many metabolites which were significantly impacted by 1, 4 or 8 weeks AET were 

identified as belonging to the same metabolite classes. In comparison, a greater 

variety of metabolites were affected by the detraining period (Figure 5.13). It is 

possible that while the individual metabolites may differ, AET induces responses in 

similar metabolic pathways at each timepoint to promote a consistent metabolic 

profile which reflects whole-body and skeletal muscle specific adaptations to AET and 

promotes a healthier phenotype in young, untrained individuals. As such, returning to 

a more sedentary lifestyle may disrupt the newly established metabolic equilibrium 

resulting in large disruption to metabolic processes and the variety of metabolite 

classes impacted.   

However, several metabolites were affected in the same way during AET and after 

exercise withdrawal. For instance, plasma abundance of phenylalanine was 

significantly elevated from baseline at both week 8 and week 12. (±)-Sulfobutanedioic 

acid was elevated at week 4 and week 12. As discussed above, both metabolites can 

be linked to regulation of fat oxidation.  This suggests that, although there are changes 

in metabolism indicating a general decline in adaptations in the metabolism associated 

with greater whole-body health following exercise withdrawal, some benefits 

conferred by AET may be maintained during this withdrawal period. This also supports 

the hypothesis that exercise type is influential in dictating whole-body and muscle 

level adaptations in the metabolome in response to increased activity as no benefits 

from RET were maintained after refraining from exercise for only 72 hours (as 

discussed in Chapter 4). Benefits in the metabolism being maintained during the 
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exercise withdrawal period is also in line with the lack of significant difference in either 

exercise steady-state RER or VO2
PEAK between the 8- and 12-week timepoints. 

However, assessment of plasma abundance of glycerophospholipid metabolites which 

were correlated with change in exercise steady-state RER and VO2
PEAK (discussed 

further in Section 5.4.3) indicated that plasma abundance was more similar to the 

baseline value after 4 weeks of exercise withdrawal than after 8 weeks AET. This 

suggests the benefits in the metabolism may not be maintained for periods of 

detraining longer of 4 weeks which may then lead to observable reductions in VO2
PEAK 

and exercise steady-state RER.  

 Integration of metabolomic and physiological outcome 

datasets 
WGCNA correlations were able to link metabolite abundance and measures of VO2

PEAK 

and exercise steady-state RER which were previously shown to be impacted by AET. 

Importantly, these results suggest that the plasma mirrors the response within skeletal 

muscle, providing a view of muscle level adaptations to AET without requiring a tissue 

biopsy. This is in line with previous findings from Chapter 4, which show plasma and 

metabolome biomarkers of ageing mirror each other, and in agreement with recent 

literature indicating a positive correlation between the levels of plasma and muscle 

metabolites (Wu et al., 2022). Correlations were assessed at baseline, after 8 weeks of 

AET and after 4 weeks of exercise withdrawal. At each timepoint there was a large 

overlap in metabolic pathways associated with exercise steady-state RER and VO2
PEAK. 

The metabolome is therefore mirroring previously established correlations between 

RER and other indicators of physical fitness, including VO2
PEAK, which were found in 

healthy men regardless of training condition (Ramos-Jiménez et al., 2008).  
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5.4.3.1. Correlations between metabolite abundance and outcome 

measures at baseline 

Correlation between metabolite abundance and measures of exercise steady-state 

RER and VO2
PEAK at baseline provides insight into the metabolic processes that dictate 

measures of physical fitness in untrained individuals. Multiple modules of metabolites 

were linked glycerophospholipid metabolism, sphingolipid metabolism, and pentose 

and glucuronate interconversion pathways (Table 5.1).  

5.4.3.2. Glycerophospholipids 

Associations between glycerophospholipid metabolism and rates of fat oxidation were 

observed in young men after bed rest in Chapter 3, pointing to a role for mitochondrial 

lipids in the physiological response to sedentary behaviour. The correlation of 

glycerophospholipid metabolism with physiological adaptations to both exercise and 

sedentary behaviour suggests that the regulation of mitochondrial function is key to 

maintaining skeletal muscle health and warrants further investigation as a potential 

therapeutic target for preventing the loss of muscle mass. In Chapter 3 and in the 

present chapter, PE was identified as an important metabolite in the association 

between outcome measures and metabolomics data. However, while bed rest seemed 

to induce a decline in plasma abundance of many PE species and some PE species were 

found to decrease in abundance after a bout of AET at baseline, other PE species 

increased in abundance following AET. This suggests that, rather than specific PE 

metabolites influencing fat oxidation, improvement in muscle oxidative capacity 

actually relates to the ratio of glycerophospholipid species present within the muscle, 

with some species promoting a healthier muscle oxidative state. Disruption to this 

ratio, such as that seen in response to chronic bed rest, may cause a decline in 

oxidative capacity.  
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5.4.3.3. Sphingolipids 

Sphingolipids are found as components of cell membranes (Holthuis et al., 2001) and 

modulate cell signalling pathways including those involved in the growth, 

differentiation and regeneration of skeletal muscle cells (Tan-Chen et al., 2020). This 

is not the first study to find associations between sphingolipids and exercise 

intervention. Muscle sphingosine, sphingospine-1-phosphate and ceramide 

concentrations increased with a bout of submaximal exercise before decreasing in a 

recovery period in athletes and untrained individuals (Bergman et al., 2016). A 

decrease in plasma concentration of sphingomyelin and ceramides was associated 

with improvement in VO2
PEAK over a 6 month period of AET and RET intervention 

(Saleem et al., 2020). It is suggested that the lipotoxic accumulation of ceramides 

within skeletal muscle occurs as a consequence of incomplete fatty acid oxidation 

(Koves et al., 2008). The association of sphingolipid metabolism with exercise steady-

state RER may therefore relate to the increased reliance on lipids as a substrate in 

oxidation during exercise. It has also been suggested that the change in concentration 

of muscle sphingolipids may be related to the improved insulin sensitivity associated 

with chronic exercise (Bergman et al., 2016). As insulin sensitivity was not assessed in 

this study this association cannot be definitively validated but this may be of interest 

to investigate further.  

5.4.3.4. Pentose and glucuronate interconversion pathways 

The pentose and glucuronate interconversions pathway occurs parallel to glycolysis 

and relates to the metabolism of carbohydrates as substrates in oxidation (Moisá et 

al., 2013). Although submaximal exercise is typically associated with the preferential 

use of lipids as oxidative substrates (Purdom et al., 2018) there is also an increase in 

carbohydrate oxidation (Romijn et al., 1993). The correlation of pentose and 

glucuronate interconversions with the outcome measures may reflect this increase in 
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carbohydrate oxidation. However, ORA found that the metabolite important in driving 

the association of the pentose and glucuronate interconversion pathway with exercise 

steady-state RER and VO2
PEAK was β-D-glucuronide, an intermediate in the production 

of D-glucuronate. This conversion mainly occurs in the liver (Bock and Kohle, 2005). 

Although it is possible β-D-glucuronide was released from the liver for use in 

carbohydrate oxidation in skeletal muscle and that this association therefore reflects 

organ crosstalk in the exercise response, it also demonstrates that while many changes 

in the plasma metabolome in response to AET reflect muscle level adaptations others 

are indicative of systemic changes which should be considered when viewing the 

metabolomic response to AET with a focus on skeletal muscle.  

As associations between measures of exercise steady-state RER and VO2
PEAK in skeletal 

muscle and plasma metabolite abundance in glycerophospholipid and sphingolipid 

metabolism pathways could be found at baseline it was deemed likely that 

adaptations in skeletal muscle as a consequence of 8 weeks AET and 4 weeks exercise 

withdrawal would also be associated with the plasma metabolome.  

5.4.3.5. Correlations between change in metabolite abundance and 

outcome measures after exercise training and exercise withdrawal 

Glycerophospholipid metabolism, sphingolipid metabolism and pentose and 

glucuronate interconversion pathways which were associated with outcome measures 

at baseline were also found to be associated with change in exercise steady-state RER 

and VO2
PEAK after 8 weeks AET (Table 5.2) and after 4 weeks exercise withdrawal (Table 

5.3), further demonstrating the role of these metabolites in dictating the exercise 

response, although as discussed above the pentose and glucuronate interconversion 

pathway may be more indicative of organ crosstalk that influences the exercise 

response than specific adaptations in skeletal muscle.  
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In addition to these associations, many correlations between amino acid metabolism 

and change in exercise steady state RER and VO2
PEAK were observed after 8 weeks AET 

(Table 5.2). 

5.4.3.6. Arginine and proline metabolism 

 Arginine and proline metabolism was associated with both outcome measures after 

8 weeks AET. L-ornithine and L-arginosuccinate, two non-proteinogenic amino acids, 

were identified as influential in this pathway. Ingestion of L-ornithine supplements has 

previously been linked to reduced muscle fatigue during AET (Demura et al., 2010). 

Exercise interventions can lead to the accumulation of ammonia within skeletal 

muscle. When ammonia is produced by the deamination of AMP it prevents the 

resynthesis of ATP during exercise (Rusip et al., 2018), inhibiting oxidative 

phosphorylation and leading to muscle fatigue. L-ornithine facilitates the release of 

ammonia from skeletal muscle resulting in lower muscle fatigue and therefore the 

importance of L-ornithine in the association of arginine and proline metabolism with 

exercise steady-state RER and VO2
PEAK may relate to improvements in oxidative 

phosphorylation with exercise. In a separate study, dietary supplementation of L-

ornithine promoted lipid metabolism during an endurance exercise intervention in 

healthy young volunteers (Sugino et al., 2008). In the present study the observed 

decrease in RER indicates a higher capacity for lipid oxidation. The association of L-

ornithine and exercise steady-state RER therefore provides further evidence to 

support a role for L-ornithine in the modulation of fuel oxidation in physiological 

adaptation to AET.  

5.4.3.7. Glycine, serine and threonine metabolism 

L-ornithine and L-arginosuccinate can also both be used as precursors in the creatine 

biosynthesis pathway (Haines et al., 2011). Creatine was identified as an important 
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metabolite in the association of the glycine, serine and threonine metabolism pathway 

with change in exercise steady-state RER. This highlights the interactivity of the 

metabolome and the metabolic response to AET. Approximately 95% of creatine in the 

body is stored within skeletal muscle (Haines et al., 2011). Creatine is commonly used 

as an anabolic supplement to improve muscle mass and strength (Cooper et al., 2012) 

but is also linked to normal skeletal muscle metabolism. For instance, creatine is 

involved in maintaining the intracellular availability of ATP (Clark, 1997) and decreased 

ATP content has been linked to decreased creatine in acute skeletal muscle wasting in 

critical illness (Puthucheary et al., 2018) implying an association between decreased 

oxidative capacity and decreased creatine content which supports the association 

between creatine and change in exercise steady-state RER observed here. However, it 

should be considered that decreased oxidative capacity and creatine content in critical 

illness may simply reflect the increase in dead muscle fibres linked to ICU admission 

(Formenti et al., 2019).  

Other important metabolites in the serine, glycine and threonine pathway were 

putatively identified as L-serine, dimethylglycine, betaine, and carbon dioxide. Serine 

is important in regeneration and proliferation of skeletal muscle by regulating muscle 

progenitor cells (Thalacker-Mercer et al., 2020) indicating its importance in the 

maintenance of skeletal muscle. Dietary supplementation of serine reduced fatigue 

during submaximal aerobic exercise (Tsuda et al., 2019) providing support in the 

current literature that serine in some way relates to the adaptive response to exercise, 

although its precise role is not clear as arginine and valine were also supplemented in 

the study and may have anti-fatiguing effects. Serine has also been linked to pyruvate 

metabolism (Chaneton et al., 2012), giving it a role in carbohydrate oxidation which 

provides further support for its association with change in exercise steady-state RER, 

and to sphingolipid synthesis (Hwang et al., 2017), further highlighting the interactive 



203 
 

nature of the metabolome in the response to AET. Finally, serine acts as a precursor in 

the biosynthesis of glycine, as do betaine and dimethylglycine (Kanehisa and Goto, 

2000). Glycine is also essential for skeletal muscle regeneration (Thalacker-Mercer et 

al., 2020) and was previously noted as important in physiological adaptations 

associated with chronic bed rest in Chapter 3. These results suggest that similar 

metabolic pathways may be disturbed in adaptive responses to muscle disuse and 

increased activity, potentially identifying pathways which may be utilised in 

therapeutic interventions to mitigate muscle deconditioning.  

L-tyrosine was another metabolite identified with change in exercise steady-state RER 

and was also associated with change in VO2
PEAK. L-tyrosine treatment in rodents has 

been shown to reduce deficits in locomotor activity associated with ageing (Brady et 

al., 1980) suggesting that tyrosine has beneficial effects on muscle strength and 

function. Improvements in stamina and body strength in nemaline myopathy patients 

were seen after dietary L-tyrosine supplementation in a pilot study (Ryan et al., 2008) 

suggesting tyrosine may have a similar role in muscle strength in humans. A larger 

study demonstrated that dietary tyrosine supplementation was associated with a 15% 

increase in exercise time to exhaustion (Tumilty et al., 2011) further supporting a role 

for tyrosine in the exercise response. While these studies only investigate 

supplementation of tyrosine, the beneficial response to tyrosine supplementation 

suggests that there is an intrinsic role for tyrosine in the exercise response. It is 

possible that the concentration of tyrosine naturally produced from exercise may not 

be enough to induce changes in strength by itself but given the association of tyrosine 

with both outcome measures in this study it is possible that adaptation in oxidation 

mechanisms and increased oxygen uptake may precede improvements in muscle 

strength in adaptation to AET.  
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The associations with amino acid metabolism and adaptations to AET and exercise 

withdrawal also demonstrate that correlation analysis is complementary to the output 

from differential abundance analysis. L-phenylalanine was identified as important in 

the associations of phenylalanine metabolism and phenylalanine, tyrosine and 

tryptophan biosynthesis pathways with change in exercise steady-state RER and 

VO2
PEAK after 8 weeks AET and 4 weeks exercise withdrawal. As discussed in Section 

5.4.1, plasma abundance of phenylalanine was significant increased after AET and 

remained elevated after exercise withdrawal. This provides evidence to validate the 

use of differential abundance analysis to find markers of change in the plasma which 

are relevant to intramuscular adaptations to an exercise intervention. The potential of 

physiological and metabolomic integration has been explored in Chapter 3 but the 

associations in this chapter lend further support to the importance of integrative 

approaches in understanding physiological adaptations. 
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 Metabolomic analysis of plasma following 

aerobic exercise in COPD patients and age matched 

healthy controls 

6.1. Background 

 Chronic obstructive pulmonary disease  
Chronic obstructive pulmonary disease (COPD) is the second most common lung 

condition in the UK,  affecting roughly 9% of adults over the age of 70 (Snell et al., 

2016). It is also the fourth leading cause of death worldwide, accounting for 

approximately 4.8% of global deaths (Raherison and Girodet, 2009). COPD patients 

commonly exhibit abnormal skeletal muscle characteristics compared to age-matched 

healthy counterparts (Jaitovich and Barreiro, 2018), including altered fibre type 

composition, lower cross-sectional area (CSA) (Jakobsson and Jorfeldt, 1990), 

dysregulated protein turnover (Jagoe and Engelen, 2003), and reduced maximal 

activities of oxidative enzymes (Polkey, 2002). Such adaptations influence the muscle 

metabolic response to exercise stimuli and contribute to the development of exercise 

intolerance, which is commonly reported in COPD patients. While exercise intolerance 

is potentially worsened by symptoms associated with decreased lung function such as 

breathlessness, evidence suggests ventilatory limits contribute to exercise intolerance 

without being the sole cause. For example, 19% of a COPD patient cohort reported leg 

discomfort as the primary reason for stopping exercise (Guenette et al., 2014). In 

addition, both single and double lung transplants restored respiratory function but not 

exercise tolerance or maximum work rate at either 3 months or 1 to 2 years after 

transplant (Williams et al., 1992).  

Despite some variation in patient response (de Brandt et al., 2018; Ward et al., 2020), 

it is generally recognised that improvements in exercise tolerance, muscle strength 

and quality of life can be induced by AET interventions in COPD patients (Vogiatzis et 

al., 2005). For example, 8 weeks AET increased endurance exercise time from 8.8 
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minutes at baseline to 20.8 minutes after intervention, and 6 minute walk distance 

increased from 388 to 414 meters in the COPD patient cohort (Mador et al., 2004). 

Likewise, a 3 month period of walking at a rating of perceived dyspnoea of 3-5 on the 

Borg categorical scale increased 6 meter walk distance by 48.2 meters and decreased 

time to rise from a chair by  5 seconds in COPD patients (Berry et al., 2018). However, 

the physiological mechanisms underlying these improvements are not well defined. In 

addition, studies investigating the effect of AET on COPD often compare patients 

undertaking exercise to a control group of sedentary COPD patients rather than 

including age-matched healthy controls. As such the impact of COPD on the response 

of skeletal muscle to exercise is relatively understudied. Recent work has 

demonstrated that whole-body and muscle specific mitochondrial adaptations in 

response to 8 weeks AET at 65% VO2
PEAK were not observed in older COPD patients, in 

contrast to age matched and healthy young (HY) controls at the same exercise 

intensity (Latimer et al., 2021). In addition, the observed response to AET was blunted 

in the healthy older (HO) group relative to HY. Chapter 5 of this thesis demonstrated 

that changes in the plasma metabolome in response to AET in the HY group were 

representative of muscle level adaptations in respiratory exchange ratio (RER) and 

VO2
PEAK. It is hypothesised that a similar approach may be able to characterise 

adaptations to AET in older individuals and in COPD patients.  

 Metabolomic adaptations to submaximal aerobic 

exercise training 
In addition to characterising the exercise response to 65% VO2

PEAK AET in Chapter 5, 

metabolomics has been employed to investigate adaptations to submaximal exercise 

in the literature. A targeted study found extended periods of AET at an intensity of 

70% VO2
PEAK in 50-60 year olds was associated with change in plasma indicators of 

glycogenolysis, change in fuel substrate mobilisation, and differences in plasma 

abundance of purine metabolites and tricarboxylic acid intermediates (Lewis et al., 
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2010). As only targeted metabolomics was used, there may be further changes in the 

metabolome not identified by Lewis and colleagues. Importantly, the participants 

were trained marathon runners which is highly likely to impact on their metabolic 

response to AET. When the urinary metabolomic response to a ramped VO2
PEAK test 

was assessed in trained cyclists and untrained controls, differences were seen 

between pre- and post-exercise timepoints in urinary creatinine, citrate, TMAO and 

glycine (Mukherjee et al., 2014). However, there were also measurable differences in 

urinary metabolites involved in energy metabolism, lipid metabolism, insulin signalling 

and cardiovascular function found between the groups after exercise (Mukherjee et 

al., 2014). Previous work in this thesis demonstrated the similarities between the 

plasma and skeletal muscle metabolomes, but it is unclear whether the urinary 

metabolome also accurately reflects adaptations within skeletal muscle as no such 

comparison was made. Moreover, NMR spectroscopy was employed for the 

metabolomics analysis, which due to its lower sensitivity (discussed in more detail in 

Chapter 1) may be unable to detect as many metabolites as mass spectrometry, and 

therefore may be an inferior approach. Additionally, in both Lewis et al. (2010) and 

Mukherjee et al. (2014) there was no comparison to younger individuals so insight 

regarding a possible blunting of the exercise adaptive response with age was missing. 

A later study observed differences in purine metabolism between young and older 

trained athletes following high intensity AET which indicated an age-related decline in 

ATP resynthesis during exercise (Zieliński et al., 2019). As this study only investigated 

purine metabolism, wider changes in the metabolism were not investigated. 

Additionally, the exercise test was high intensity and may elicit differences in the 

metabolic response to exercise than submaximal testing. However, the study of 

Zieliński et al. (2019) does demonstrate the potential of metabolomics in investigating 

the impact of age in adaptations to AET. Finally, the participants in all the studies 
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outlined above were healthy, and therefore insight of how AET in chronic disease 

impacts on the metabolome is missing. This gap in the literature presents an 

opportunity for novel insight. The aims of this chapter are therefore as follows: 

1. To determine whether the response of the plasma metabolome to 8 weeks 

AET is reflective of physiological adaptations in healthy older individuals, and 

to identify metabolites most associated with metabolic adaptations to 8 

weeks of AET 

2. To determine whether any differences in the physiological responses to 8 

weeks AET in COPD patients and age matched healthy controls is reflected in 

the plasma metabolome 

3. To investigate the plasma metabolome response to AET withdrawal in COPD 

patients and age matched healthy controls, and identify metabolites most 

associated with physiological adaptation to exercise withdrawal 
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6.2. Methods 

 Study design 
This chapter retrospectively utilised samples collected as part of a volunteer 

intervention study (Latimer et al., 2021), which was conducted at the Universities of 

Leicester and Nottingham, UK (Clinical Trials Register: ISRCTN10906292). The study 

was approved by the NHS National Research Ethics Service. All participants provided 

written informed consent. Baseline assessments, submaximal testing protocols and 

timepoint sampling was as described in Chapter 5. HO were required to have normal 

lung function (FEV1/FVC > 0.7, FEV1 > 80%) and were excluded for any respiratory 

diagnosis. HO individuals who participated in exercise exceeding 150 minutes/week at 

moderate intensity were excluded. In this thesis chapter, HY was excluded from 

analysis. Participant characteristics are detailed in Table 6.1. 

As there were a greater number of baseline samples in the COPD group than the HO 

control, additional baseline plasma samples from age matched healthy controls who 

had previously completed a 6-week exercise training study and consented to the 

storage and use of their plasma in future research were provided from an in-house 

biobank (Brook et al., 2015) to equalise numbers and allow a more robust comparison 

across groups at baseline. 

Plasma samples were randomly sorted into 4 batches and prepared in an identical 

manner. Metabolites were extracted from plasma according to the protocol detailed 

in Section 2.3. Separation of metabolites within samples via liquid chromatography 

was performed according to the parameters detailed in Section 2.4 and acquisition of 

data by tandem mass spectrometry was performed according to the protocol in 

Section 2.5.  
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Table 6.1 Baseline subject characteristics. Data are presented as mean±SD unless 
otherwise stated. Percentage predicted values are calculated from normal values. 
FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; RV: residual volume; 
TLC: total lung capacity; TLCO: transfer factor for the lung of carbon monoxide; BMI: 
body mass index; FFMI: fat-free mass index; QMVC: quadriceps maximum voluntary 
contraction. ¶: pack-year average for ex-smokers only. Table from Latimer et al. 
(2021).   

 HO (n=10) COPD (n=19) p-value HO 
versus COPD 

Age, years 70.7±5.1 70.2±5.9 0.834 
Female, n 5 14  
FEV1, % pred 98.3±9.2 55.6±16.2 <0.001 
FEV1/FEV, % 74.5±4.4 44.6±12.1 <0.001 
RV, % pred 98.4±19.2 157.3±44.9 0.001 
TLC, % pred 104.3±11.9 121.3±19.1 0.007 
RV/TLC, % 38.4±4.2 53.5±9.4 <0.001 
TLCO, % pred 98.3±12.7 61.5±18.7 <0.001 
Smoking history, n 
Current smoker 0 0  
Never smoker 6 0  
Ex-smoker 4 19  
Smoking, pack-
years¶ 

18.3±21.5 38.5±15.4 0.036 

BMI, kg/m2 28.5±3.3 29.0±6.4  
FFMI, kg/m2 18.1±1.5 17.2±2.7  
QMVC isometric 
strength, Nm 

129.7±36.8 98.6±36.1 0.058 

Step count, 8-h 
average per day 

6007±2008 (n=9) 4021±1864 0.046 

 

 Data pre-processing and statistical analysis 
Data pre-processing was performed in R version 4.1 using the parameters detailed in 

Section 2.6. For statistical analysis, data for each polarity and ionisation mode were 

analysed separately. All analysis of metabolomics data was performed using inhouse 

R scripts using R version 4.1. Scripts are available in Appendix 2.  

Firstly, to assess differences in the plasma metabolome between HO and CODP groups, 

PCA and sPLS-DA were applied to the data using the mixOmics package (Le Cao et al., 

2016). Following this, analysis of differential metabolite abundance was performed by 

fitting a linear mixed effect model to each data matrix with the limma package (Ritchie 

et al., 2015) using group and time as fixed effects and participant ID as a random effect. 
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For time course analysis, in-house samples were removed from the datasets. Contrasts 

were set up within each group comparing baseline metabolite abundance with change 

in abundance at weeks 1, 4 and 8 of AET and after exercise withdrawal. P-values were 

obtained by Empirical Bayes moderated t-tests adjusted for false discovery rate (FDR) 

by the Benjamini-Hochberg method. Metabolites were deemed significantly different 

between comparisons when FDR<0.05.  

Total lean mass, RER during steady-state exercise, and VO2
PEAK were provided from 

Latimer et al. (2021) and assessed for normality using Shapiro-Wilk tests. Within group 

changes across time were tested using one-way repeated measures ANOVA with post-

hoc pairwise comparisons adjusted for false discovery rate (FDR) using the Benjamini-

Hochberg method.  

 Metabolite identification 
Metabolites were putatively identified using metID (Shen, Wu, et al., 2022). Mass 

tolerance was set at 5ppm. Common compound names of identified features were 

taken from HMDB and mapped to metabolic pathways by over representation analysis 

(ORA) using MetaboAnalyst 5.0 (Pang et al., 2021). Pathways with an impact score 

greater than 0.1 were retained.  

 Correlation of metabolomic and physiological outcome 

data 
Correlation of metabolite expression with outcome measures of VO2

PEAK and RER 

during submaximal steady-state exercise at 65% VO2
PEAK was assessed by weighted 

correlation network analysis (WGCNA) (Langfelder and Horvath, 2008). Metabolic 

modules with weak correlations (r<|0.5|) to outcome measures were discarded and 

network analysis was performed on the remaining metabolite modules to determine 

their functional relevance.  
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6.3. Results 

 Physiological adaptations to aerobic exercise training 
VO2

PEAK increased significantly in HO after 8 weeks AET (p<0.01). No significant increase 

was seen after 8 weeks AET in COPD (p>0.05). No significant difference in change in 

VO2
PEAK was seen in either group between baseline and 4 weeks exercise withdrawal 

or between 8 weeks AET and 4 weeks exercise withdrawal (p>0.05, Figure 6.1). The 

RER during steady-state exercise decreased significantly from baseline after 8 weeks 

AET in HO (p<0.001) and COPD (p<0.05) indicating a greater contribution of fat 

oxidation to energy production. The RER during steady-state remained significantly 

lower than baseline in HO after 4 weeks exercise withdrawal (p<0.001), but there was 

no significant difference from baseline at the same point in COPD (p>0.05, Figure 6.2).  

 

Figure 6.1 Peak oxygen uptake in COPD patients and age matched healthy controls at 
baseline, after 8 weeks aerobic exercise training and 4 weeks exercise withdrawal  

Boxplots showing peak oxygen uptake (VO2
PEAK) at baseline, after 8 weeks of aerobic 

exercise training (at 65% VO2
PEAK) and after 4 weeks of exercise withdrawal in COPD 

patients and age matched healthy controls (Healthy older). Although no significant 
differences in VO2

PEAK between time-points was seen in the COPD group, VO2
PEAK 

increased significantly in the healthy older group at week 8. Boxplots represent the 
spread of data. Each black circle represents one participant and shows the specific 
distribution of data within groups. Outlying data points for baseline, week 8 or week 
4 withdrawal measurements are shown in red, green or blue, respectively. 

**p<0.01 
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 Multivariate analysis of baseline samples 
After filtering, a total of 2143 negatively ionised metabolites (496 polar and 1647 non-

polar) and 2491 positively ionised metabolites (392 polar and 2099 non-polar) were 

retained at baseline. However, PCA could not distinguish between HO and COPD 

groups at baseline. An sPLS-DA separation model showed improved separation of 

groups at baseline, however cross validation showed error rates greater than 20% for 

all models and the separation model was therefore considered overfitted (Figure 6.3). 

  

Figure 6.2 Steady-state exercise respiratory exchange ratio in COPD patients and age 
matched healthy controls at baseline, after 8 weeks aerobic exercise training and 4 
weeks exercise withdrawal 

Boxplots showing steady-state exercise respiratory exchange ratio (RER) at baseline 
(red), after 8 weeks of aerobic exercise training (at 65% VO2PEAK) (green) and after 4 
weeks of exercise withdrawal in COPD patients and age matched healthy controls 
(Healthy older). A significant decrease in RER was seen at week 8 in both groups. RER 
was also significantly decreased after exercise withdrawal in HO but not COPD. No 
difference between 8 weeks AET and 4 weeks exercise withdrawal was seen in either 
group. Each black circle represents one participant and shows distribution of data 
within groups.  

*p<0.05, ***p<0.001 
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Figure 6.3 Separation of groups at baseline by sPLS-DA 

Representative plot of sparse partial least squares discriminant analysis (sPLS-DA) 
separation model using all detected metabolites at baseline, with 95% confidence 
ellipses, for COPD (blue circle) and HO (orange triangle) groups in non-polar negative 
data. Better classification of samples by group was achieved relative to PCA, however 
cross-validation of the model demonstrated high error rates (>20%). High error rates 
indicate that the model is overfitted and thus classification cannot be considered as 
accurate. 

 

 Linear modelling 
Given that PCA resulted in poor separation between groups at baseline and the sPLS-

DA separation model was overfitted, an alternative approach was needed to identify 

classifying metabolites. A linear model can be used to test for variability of metabolite 

abundance between groups in high dimensionality data (Zhan et al., 2015). Following 

adjustment for multiple testing, significant differences (p<0.05) in the abundance of 

65 metabolites were found between HO and COPD groups at baseline (Figure 6.4).   

The linear model was then extended to compare baseline metabolite abundance with 

abundance after 1, 4 and 8 weeks AET and after 4 weeks exercise withdrawal (Table 

6.2). A response to AET was observed in HO, with 73 metabolites present at a 

significantly different abundance (p<0.05) at either 1 week, 4 weeks or 8 weeks AET, 

or after 4 weeks exercise withdrawal compared to baseline. Of these, 35 were 
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significantly different after 1 week of AET, 35 were significantly different after 8 weeks 

AET and 3 were significantly different after 4 weeks exercise withdrawal. No 

metabolites were significantly different after 4 weeks exercise in HO. Most notably, no 

metabolites were found to have a significantly different expression from baseline at 

any point following the start of AET in COPD.  

 

Figure 6.4 Differential metabolite abundance between groups at baseline 

Comparison of metabolite abundance between COPD patients and age matched 
health controls. The x axis shows log fold change of metabolite abundance. The y axis 
shows -log10 p-value adjusted for false discovery rate by the Benjamini-Hochberg 
method. The black line shows the threshold of FDR<0.05. Each plotted point 
represents a metabolite (blue, significantly downregulated; red, significantly 
upregulated; grey, not significantly different between groups). 

 

Table 6.2 Number of metabolites significantly different at at least one time point 
compared to the baseline value 

 

 COPD Healthy Older 

HILIC negative 0 2 
HILIC positive 0 20 
RP negative 0 24 
RP positive 0 27 
TOTAL 0 73 
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 Metabolite identification 
At baseline, metabolites present at significantly different abundances between COPD 

and HO were mapped to 32 known metabolite classes. The largest known class was 

organooxygen compounds, followed by carboxylic acids and their derivatives (Figure 

6.5).   

 

Figure 6.5 Classes of metabolites significantly different between COPD and HO groups 
at baseline 

Donut charts showing classes of metabolites present at significantly different plasma 
levels when measured prior to AET intervention between COPD and HO at baseline. 
Classes are represented as a percentage of the number of metabolites changed in 
abundance. 

 

1 week of AET induced a shift in the plasma abundance of 35 metabolites which were 

mapped to 16 known metabolite classes (Figure 6.6A). The largest percentage of 

identified classes impacted were species of lipid, most notably glycerophospholipids, 

prenol lipids and fatty acyls. Derivatives of carboxylic acids and steroids were also 

predominant in the response after 1 week. After 8 weeks AET, 18 known metabolite 

classes were impacted (Figure 6.6B). A greater number of metabolites were linked to 

carboxylic acids and their derivatives compared to after 1 week AET. An increase in the 

number of atty acyls, glycerophospholipids and organooxygen compounds were also 

seen. In contrast, after 4 weeks of exercise withdrawal only 2 metabolite classes were 
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impacted compared to baseline (Figure 6.7). A derivative of carboxylic acid and a 

bithiophene were identified as significantly different relative to baseline value. At all 

timepoints, there were several metabolites which could not be identified, a known 

limitation of untargeted metabolomics.   

 

Figure 6.6 Classes of metabolites significantly different after exercise training 

Donut chart showing classes of metabolites present at significantly different plasma 
abundance after (A) 1 week and (B) 8 weeks of aerobic exercise training intervention 
compared to baseline values in healthy older participants. Classes are represented as 
a percentage of the number of metabolites changed in abundance.  

  

A 

B 
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Figure 6.7 Metabolite classes significantly different after 4 weeks exercise withdrawal 

Donut chart showing classes of metabolites present at significantly different plasma 
levels after 4 weeks exercise withdrawal compared to baseline values in healthy older 
participants. Classes are represented as a percentage of the number of metabolites 
changed in abundance. 

 Correlation analysis 
Integration of metabolomics data and physiological outcome measures was 

performed using WGCNA to determine whether changes in the metabolome reflected 

skeletal muscle level adaptations. Firstly, comparisons were made between 

metabolite abundance and outcome measures at baseline (Table 6.3). Next, 

correlations between change in metabolite abundance and change in steady-state 

exercise RER and VO2
PEAK at week 8 (Table 6.4) and week 12 (Table 6.5) were assessed. 

WGCNA correlation indicated high degrees of association between metabolic modules 

and measurements of VO2
PEAK and steady-state exercise RER. To clarify which 

metabolites were important in driving association and their biological roles, 

metabolite identification and pathway analysis were performed on modules which 

were associated with at least one measure of adaptation.  
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Table 6.3 Table containing metabolic modules of metabolite abundance at baseline 
which are correlated (r>|0.5|, p<0.05) with measures of exercise steady-state 
respiratory exchange ratio (RER) and maximal oxygen uptake (VO2

PEAK) at baseline. 
Over representation analysis was applied to metabolites within each module to 
identify relevant metabolic pathways (impact score > 0.1). 

Module Correlation 
with 
outcome 
measure 

Coefficient p-value Pathway Impact 
score 

Turquoise VO2
PEAK 0.68 0.003 Arginine and proline 

metabolism 
0.20 

Arginine 
biosynthesis 

0.14 

Cyan RER -0.53 0.006 Glycerophospholipid 
metabolism 

0.20 

Pantothenate and 
CoA biosynthesis 

0.18 

Fatty acid 
degradation 

0.12 

Table 6.4 Table containing metabolic modules of change in metabolite abundance 
after 8 weeks aerobic exercise training which are correlated (r>|0.5|, p<0.05) with 
change in measures of exercise steady-state respiratory exchange ratio (RER) and 
maximal oxygen uptake (VO2

PEAK) after 8 weeks aerobic exercise training. Over 
representation analysis was applied to metabolites within each module to identify 
relevant metabolic pathways (impact score > 0.1). 

Module Correlation 
with 
outcome 
measure 

Coefficient p-value Pathway Impact 
score 

Green Change in 
RER 

0.61 0.02 Arginine and proline 
metabolism 

0.12 

Change in 
VO2

PEAK 
0.78 0.0006 

Turquoise Change in 
VO2 

-0.68 0.005 beta-Alanine 
metabolism 

0.40 

Red Change in 
RER 

-0.77 0.0008 Sphingolipid 
metabolism 

0.31 

Glycerophospholipid 
metabolism 

0.25 

Black Change in 
RER 

-0.51 0.05 Sphingolipid 
metabolism 

0.27 

Pantothenate and 
CoA biosynthesis 

0.18 

Fatty acid 
degradation 

0.12 

Table 6.5 Table containing metabolic modules of change in metabolite abundance 
after 4 weeks exercise withdrawal which are correlated (r>|0.5|, p<0.05) with change 
in measures of exercise steady-state respiratory exchange ratio (RER) and maximal 
oxygen uptake (VO2

PEAK) after 4 weeks of exercise withdrawal. Over representation 
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analysis was applied to metabolites within each module to identify relevant metabolic 
pathways (impact score > 0.1). 

Module Correlation 
with 
outcome 
measure 

Coefficient p-value Pathway Impact 
score 

Brown Change in 
VO2

PEAK
 

-0.56 0.02 Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

0.50 

Tyrosine 
metabolism 

0.14 

Pyrimidine 
metabolism 

0.13 

Turquoise Change in 
VO2

PEAK 
0.51 0.04 Caffeine metabolism 0.69 

beta-Alanine 
metabolism 

0.40 

Glycerolipid 
metabolism 

0.34 

Biotin metabolism 0.20 

Arginine and proline 
metabolism 

0.11 

Pyrimidine 
metabolism 

0.10 

Grey Change in 
RER 

0.53 0.03 Glycine, serine and 
threonine 
metabolism 

0.27 

Aminoacyl-tRNA 
biosynthesis 

0.17 

Brown Change in 
VO2

PEAK 
-0.78 0.0006 beta-Alanine 

metabolism 
0.40 

Turquoise Change in 
RER 

-0.5 0.04 Glycerophospholipid 
metabolism 

0.14 

Salmon Change in 
VO2

PEAK 
0.51 0.04 Glycerophospholipid 

metabolism 
0.22 

 

At baseline, VO2
PEAK in HO was correlated with the polar positive turquoise module 

(r=0.68). Metabolites in this module were related to arginine biosynthesis (impact 

score 0.14) and arginine and proline metabolism (impact score 0.2). Within these 

pathways, influential metabolites were putatively identified as L-guanidinoacetate, L-

ornithine, L-arginine, creatine, 2-oxoglutarate and urea. Steady-state exercise RER in 

HO at baseline was associated with the cyan module in the non-polar positive dataset 

(r=-0.53). Metabolites in this module were mapped to glycerophospholipid 
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metabolism (impact score 0.2), pantothenate and CoA biosynthesis (impact score 

0.18) and fatty acid degradation (impact score 0.12) pathways. In the 

glycerophospholipid metabolism pathway, influential metabolites were identified as 

phosphatidylethanolamine (PE) and phosphatidylcholine (PC). In the pantothenate 

and CoA biosynthesis and fatty acid degradation pathways, the important metabolite 

was identified as CoA.  

Similar associations were seen after 8 weeks AET in HO. Arginine and proline 

metabolism (impact score 0.12) remained correlated with VO2
PEAK (r=0.78) but was also 

found to be correlated with steady-state exercise RER (r=0.61). Fewer metabolites 

within the pathway were important in these correlations compared to baseline. Only 

L-ornithine and creatine were deemed important by ORA. Glycerophospholipid 

metabolism (impact score 0.25), pantothenate and CoA biosynthesis (impact score 

0.18) and fatty acid degradation (impact score 0.12) pathways remained associated 

with exercise steady-state RER. Plasma abundance of CoA increased after AET in HO. 

Several PE and PC species were identified in the data but there was no universal 

pattern of increase or decrease.  

The turquoise module in the polar positive dataset was correlated with VO2
PEAK after 8 

weeks AET in HO (r=-0.68). Metabolites in this module were mapped to the β-alanine 

metabolism pathway with β-alanine identified as important within the pathway by 

ORA. Mean abundance of β-alanine only increased a small amount relative to baseline 

after 8 weeks AET, possibly indicating that only small changes in metabolite abundance 

is reflective of measurable physiological change. Two modules in the non-polar 

positive dataset which were correlated with steady-state exercise RER (red r=-0.77 and 

black r=-0.51) contained metabolites that were mapped to the sphingolipid 

metabolism pathway (impact scores 0.31 (red module) and 0.27(black module)). 
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Important metabolites were identified as N-acylsphingosine and sphingomyelin. 

Sphingolipids increased in plasma abundance after 8 weeks AET in HO.  

After exercise withdrawal, β-alanine metabolism was identified in two modules in HO 

(impact score 0.4 for both modules), which were associated with change in VO2
PEAK 

during exercise withdrawal (r=0.51 and r=-0.78). β-alanine was identified as important 

and was decreased relative to baseline abundance. Arginine and proline metabolism 

(impact score 0.11) was associated with change in VO2
PEAK after exercise withdrawal 

(r=0.51). Within the pathway, L-ornithine was highlighted as influential and was found 

to decrease in abundance relative to baseline. Two modules associated with change 

in VO2
PEAK (r=0.51 for both) and one module associated with change in RER (r=-0.5) in 

HO during exercise withdrawal were linked to glycerophospholipid metabolism 

(impact score > 0.1 for all associations). Metabolites important in the pathway were 

identified as PE, PC, phosphatidylserine (PS) and 1-acyl-sn-glycero-3-phosphocholine. 

Some glycerophospholipid metabolites increased in abundance relative to baseline 

while some decreased, suggesting that the absolute abundance is less important than 

the ratio of metabolites.  

In addition, the glycine, serine and threonine pathway (impact score 0.27) was 

associated with the change in steady-state exercise RER in HO following exercise 

withdrawal (r=0.53). L-serine, which increased relative to baseline abundance, and 

betaine, which decreased relative to baseline abundance, were identified as influential 

within the pathway. The phenylalanine, tyrosine and tryptophan biosynthesis pathway 

(impact score 0.5) and tyrosine metabolism pathway (impact score 0.14) were both 

associated with change in VO2
PEAK following exercise withdrawal (r=0.53 and r=-0.56, 

respectively), suggesting greater involvement of amino acids in the association of the 

plasma metabolome and physiological adaptations after detraining than after exercise 
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intervention. Within both pathways, L-tyrosine was identified as important and 

decreased in abundance relative to baseline.  
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6.4. Discussion 
The main finding of this chapter is that there was an observable response to AET in the 

plasma metabolome of HO individuals but not in COPD patients at matched exercise 

intensities, which parallels the pattern of physiological and mitochondrial adaptation 

to AET previously reported (Latimer et al., 2021).  

 Metabolic disturbances caused by COPD at baseline 
Although not a primary aim of this chapter, comparison between COPD patients and 

age matched healthy controls at baseline allowed for the identification of metabolites 

which could potentially serve as biomarkers for COPD.  

6.4.1.1. Carboxylic acids and derivatives 

Among the metabolites which were significantly different between groups, one of the 

largest classes affected was carboxylic acids and their derivatives which is indicative of 

dysregulated amino acid metabolism. Firstly, there was a decrease in lysine 

metabolism in COPD compared to HO. Plasma abundance of D-lysine and N6-N6-N6-

trimethyl-L-lysine both decreased significantly in COPD patients. Previously, reduced 

levels of lysine in serum was associated with a greater severity of COPD (Ubhi, Riley, 

et al., 2012) and, although it has not been identified in humans, N6-N6-N6-trimethyl-

L-lysine was significantly decreased in a rat model of COPD  (Du et al., 2023).  N6-N6-

N6-trimethyl-L-lysine is involved in fatty acid oxidation as a precursor of carnitine 

biosynthesis (Paley and Karp, 2021). Recent evidence points to metabolic 

programming in COPD to support a reduced capacity for beta oxidation (Michaeloudes 

et al., 2017) and instead a higher reliance on anabolic glycolysis (Allaire et al., 2004), 

which may explain this disturbance. This is supported by lower steady-state exercise 

RER in COPD at baseline (Latimer et al., 2021).  

Secondly, there was an increase in plasma abundance of phenylalanine in COPD 

compared to HO. These results are consistent with previous literature which shows 
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elevated serum and plasma phenylalanine is associated with increased disease 

severity in COPD patients (Ubhi, Riley, et al., 2012; Kuo et al., 2019; Kim et al., 2022). 

Furthermore, elevated serum phenylalanine contributed to clustering of COPD 

patients away from controls (Ubhi, Riley, et al., 2012), and reduced splanchnic 

extraction of phenylalanine was observed in COPD patients compared to age matched 

healthy counterparts (Jonker et al., 2017) suggesting that dysregulation of 

phenylalanine metabolism is a hallmark of COPD. Phenylalanine is associated with 

pulmonary hypertension (Tan et al., 2020), a common side effect of COPD which is 

associated with shorter survival and poorer clinical outcomes (Barbera et al., 2003), 

which may account for differences in the plasma abundance of phenylalanine between 

groups.  

6.4.1.2. Organooxygen compounds 

Another large class of metabolites significantly different between COPD and HO at 

baseline was organooxygen compounds, such as 2,3-diketogulonate which increased 

significantly in COPD. 2,3-diketogulonate is a breakdown product of ascorbate and can 

act as an antioxidant compound (Dewhirst and Fry, 2018). COPD is a disease with an 

increased oxidative burden (Domej et al., 2014). Therefore, the rise in 2,3-

diketogulonate may be a protective mechanism against systemic inflammation or 

chronic inflammation of the airways in COPD. Some differences in the metabolome at 

baseline can be attributed to xenobiotic metabolism. Although exclusion criteria were 

selected to control for any respiratory diagnosis or comorbidities associated with 

metabolic disturbances, not all individual variation can be accounted for. Finally, there 

were a number of disturbances in other metabolite classes, such as several species of 

lipids, steroids and nucleotides which all may contribute to the pathogenesis of COPD, 

and support roles for alternative methods of substrate oxidation which may account 
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for decreased oxidative capacity of skeletal muscle in COPD and contribute to the 

noticeable difference in response to AET, discussed in the following section.  

 Exercise induced differences in the plasma metabolome 
Although there was an observable response to AET in the plasma metabolome in HO, 

there were no differences in the plasma metabolome over 8 weeks AET in COPD 

patients. Importantly, this observation parallels the lack of adaptation in VO2
PEAK, 

steady-state exercise RER and maximal rates of mitochondrial ATP production 

reported in this Chapter and by Latimer et al. (2021). Due to the difficulty in 

ascertaining true VO2
PEAK in COPD patients, a higher training workload may be required 

in COPD patients to elicit the same response as in healthy individuals and may be an 

avenue for future research. Nevertheless, the absence of a metabolic response to an 

AET stimulus in COPD patients parallels data from the muscle mitochondrial and 

whole-body levels and demonstrates the strength of metabolomics as a tool for 

studying physiology. In addition, possible insight into the mechanism of metabolic 

improvement in healthy individuals is provided through the current longitudinal 

analysis of the plasma metabolome in age-matched controls throughout the training 

period.  

6.4.2.1. Lipid metabolism impacted by exercise 

The majority of metabolites significantly different after 1 week of AET were lipid 

species. In older adults, there is an increased abundance of lipids in the resting state 

(Wilkinson et al., 2020) and increased deposition of intramuscular fat in muscle (Crane 

et al., 2010). AET affects lipid mobilisation and muscle lipid utilisation, thus here it is 

possible that the plasma metabolome is reflecting muscular lipid composition. These 

findings are also complementary to the data in Latimer et al. (2021) where it was 

demonstrated that the muscle mitochondrial ATP production in HO increased 

significantly in response to palmitate, but not to glutamate and succinate or glutamate 
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and malate substrate combinations. The decline in steady-state exercise RER with 

training also reflects increased contribution of lipids to energy production. Thus, the 

data in this chapter provides supportive evidence to demonstrate the importance of 

lipid oxidation in the adaptive response to AET and provides a possible link between 

whole-body and muscle specific adaptations. For instance, there were significant 

differences in the plasma abundance of 13-hydroxy-9-methoxy-10-oxo-11-

octadecenoic acid and the glycerolipids tripalmitin (TG(16:0/16:0/16:0),  

phosphatidylcholine (PC) 15:0/20:0, phosphatidylethanolamine (PE) 

14:1(9Z)/14:1(9Z)) and lysoPC(22:5(4Z,7Z,10Z,13Z,16Z)) following 8 weeks of AET in 

HO. TG(16:0/16:0/16:0) is an important mediator in the metabolism of fatty acids for 

energy (Wishart et al., 2022). Differences in the metabolism of PCs, PEs, and lysoPCs 

have all previously been reported after exercise intervention (Newsom et al., 2016; S. 

Lee et al., 2018; Babu et al., 2022) and a significant decrease in PE 22:0/P-18:1(11Z) 

was noted after AET in the HY group in Chapter 5. One role of lysoPCs is as signalling 

mediators for oxidative stress and inflammatory responses (Law et al., 2019). Here, a 

decrease in plasma abundance in lysoPC(22:5(4Z,7Z,10Z,13Z,16Z)) was observed, 

possibly reflecting reduced oxidative stress as a consequence of an increase in 

oxidative capacity. Glycerophospholipids are also abundant in mitochondrial 

membranes, where the ratio of glycerophospholipids is influential in dictating 

membrane integrity and fluidity which must be maintained for mitochondrial 

respiration (Grapentine and Bakovic, 2020). Thus, the observed differences in plasma 

abundance of glycerophospholipids may reflect a change in mitochondrial lipid ratios. 

Altered mitochondrial lipid ratios may in turn explain the differences in lipid oxidation 

between COPD and HO that could contribute to the lack of observable adaptation to 

AET in COPD.  
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In addition, there was an increase in 13-hydroxy-9-methoxy-10-oxo-11-octadecenoic 

acid, a metabolite of linoleic acid. Linoleic acid metabolism was significantly affected 

by chronic bed rest, as detailed in Chapter 3. This provides evidence to suggest that 

this pathway is influential in muscle adaptation to change in physical activity and may 

potentially reflect a common mechanism underlying skeletal muscle deconditioning.  

Given the number of lipid metabolites significantly impacted by at least 1 week of AET 

and that mitochondrial ATP production was unaffected by fatty acid substrates in 

COPD patients (Latimer et al., 2021), insight into the mechanisms underlying 

discrepancies in adaptation to AET between COPD and HO controls may lie in lipid 

metabolism and oxidation pathways and this should therefore be a focus of future 

research. 

6.4.2.2. Amino acid metabolism following exercise 

There was also a rise in plasma phenylalanine level from baseline at 1 week AET. The 

potential benefits of phenylalanine in exercise were discussed previously in Chapter 5 

and related to the promotion of fat oxidation during exercise by L-phenylalanine 

supplementation (Ueda et al., 2017). The observed increase in plasma phenylalanine 

in HO may therefore be involved in the preferential use of lipids as oxidative substrates 

in response to increased energetic demands as a consequence of AET. This is in line 

with the significant increase in mitochondrial ATP production after 8 weeks AET in 

response to palmitate but not to glutamate and succinate or glutamate and malate 

(Latimer et al., 2021). After 8 weeks AET in HO, L-phenylalanine remained significantly 

elevated from baseline.  

6.4.2.3. Metabolites changed after exercise withdrawal 

Finally, after 4 weeks of exercise withdrawal, only three metabolites remained 

significantly different to baseline value in HO. Phenylalanine remained elevated from 
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baseline, possibly indicating that the plasma metabolome maintains some of the 

benefits conferred by AET. This is in line with the changes in plasma abundance in HY 

after exercise withdrawal. However, the reduced number of significantly different 

metabolites after withdrawal when compared to 1 or 8 weeks of AET suggests that 

there is a general loss of the beneficial changes to the plasma metabolome, even 

during a short detraining period. No lipid metabolites were significantly different after 

exercise withdrawal, which is in line with mitochondrial ATP production rates which 

returned to baseline value in HO, even in response to palmitate (Latimer et al., 2021). 

It is possible that decline in lipid oxidation contributes to the loss of physiological 

adaptations during a detraining period.  

 Correlation of metabolite abundance with outcome 

measures at baseline in healthy older controls 
A major strength of this study is the collection of detailed data relating to physiological 

outcome measures of steady-state VO2
PEAK and steady-state exercise RER. Correlation 

of physiological measurements with metabolomics data allows for a greater insight in 

the possible mechanisms underlying skeletal muscle adaptations to AET without the 

use of muscle biopsies, as demonstrated with the similar examples in Chapters 3 and 

5. Although outcome measures were collected for both COPD and HO, as no 

metabolites were significantly different from baseline at any timepoint during the AET 

intervention in COPD correlation analysis was only performed on HO.  

6.4.3.1. Amino acid metabolism association with maximal oxygen 

uptake 

At baseline, steady-state VO2
PEAK was associated with arginine and proline metabolism 

pathways (Table 6.2). Within these pathways, L-arginine, creatine, 2-oxoglutarate, L-

guanidinoacetate, L-ornithine and urea were found to be important in the association. 

As discussed in Chapter 5, L-ornithine may relate to a fatigue response by facilitating 
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the release of ammonia from skeletal muscle to promote phosphorylation (Rusip et 

al., 2018). L-ornithine may also promote lipid oxidation (Sugino et al., 2008), indicating 

metabolites most associated with whole body physiological adaptations to AET are 

involved in lipid oxidation, aligning with the previous findings of this chapter and with 

mitochondrial ATP production rates (Latimer et al., 2021). 2-oxoglutarate is a rate 

limiting intermediate of the TCA cycle (Araújo et al., 2014), therefore the importance 

of 2-oxoglutarate in the association of arginine and proline metabolism with VO2
PEAK 

may provide a direct link between arginine and proline metabolism and oxidative 

metabolism pathways. Finally, several meta-analyses suggest that L-arginine 

supplementation may increase VO2
PEAK in healthy individuals (Viribay et al., 2020; 

Rezaei et al., 2021). L-arginine is a precursor of nitric oxide, which can increase vessel 

vasodilation and flow. As VO2
PEAK can be limited by locomotor muscle blood flow  

(Saltin and Calbet, 2006), a possible mechanism linking L-arginine and VO2
PEAK is that 

synthesis of nitric oxide from L-arginine enhances oxygen and nutrient delivery to 

skeletal muscle, enabling an increase in oxygen consumption. Although these studies 

assess dietary supplementation of L-arginine, the present data suggests arginine 

metabolism may promote improvements in VO2
PEAK without supplementation.  In 

addition, as there was no difference in L-arginine in COPD at the 8-week AET 

timepoint, disturbances to arginine and proline metabolism pathways in COPD may 

help explain why the COPD group did not demonstrate an improvement in VO2
PEAK 

following 8 weeks of AET (Latimer et al., 2021). 

6.4.3.2. Metabolites associated with respiratory exchange ratio 

Three pathways were significantly associated with exercise steady-state RER at 

baseline (Table 6.2). Plasma levels of CoA were identified as influential in forming the 

association between RER and fatty acid degradation and pantothenate and CoA 

biosynthesis pathways. CoA can be related to the synthesis and degradation of fatty 
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acids (Leonardi and Jackowski, 2007) and therefore this association likely also links to 

the increase in lipid oxidation following AET, which appears to be the primary adaptive 

response, although it should also be considered that this association may be 

influenced by dietary consumption of pantothenic acid. Additionally, 

glycerophospholipid metabolism was identified in modules associated with steady-

state exercise RER with PE and PC identified as important within the pathway. As 

suggested in previous chapters of this thesis, change in glycerophospholipid 

metabolism may relate to the ratio of mitochondrial lipids which regulates skeletal 

muscle metabolism in the adaptive response to change in physical activity through 

influencing oxidative capacity.  

The association of these three pathways with steady-state exercise RER are either in 

line with previous findings in this thesis or highlight pathways expected to be impacted 

by increased energetic demand, such as in the exercise response, which lends support 

to this method as an analytical approach.  

 Correlation of metabolite abundance with outcome 

measures after aerobic exercise training and exercise 

withdrawal in healthy older individuals 
All four pathways associated with outcome measures at baseline in HO remained 

associated after 8 weeks AET (Table 6.3). The same metabolites were identified as 

influential in the pathway in glycerophospholipid metabolism, fatty acid degradation 

and pantothenate and CoA biosynthesis, however in arginine and proline metabolism 

only L-ornithine and creatine were identified as important, which is different than at 

baseline. L-ornithine can be related to the biosynthesis of creatine which may relate 

to increased oxidative capacity through its role in maintaining intracellular availability 

of ATP (Clark, 1997). The relation of arginine and proline metabolism to ATP availability 

is further supported by the identification of creatine as an influential metabolite.  In 

addition, while glycerophospholipid metabolism, fatty acid degradation and 
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pantothenate and CoA biosynthesis all remained associated with only exercise steady-

state RER, arginine and proline metabolism was associated with both RER and VO2
PEAK.  

6.4.4.1. Associations of metabolites with change in respiratory 

exchange ratio 

In addition to the established associations, plasma abundance of N-acylsphingosine 

and sphingomyelin was influential in forming an association between sphingolipid and 

change in steady-state exercise RER (Table 6.3). Ceramides accumulate as a 

consequence of incomplete fatty acid oxidation (Koves et al., 2008) which may explain 

this association, as the observed decline in RER represents an increased contribution 

of lipids as oxidative substrates. In addition, sphingolipids and ceramides have 

previously been noted to increase within muscle tissue following submaximal exercise 

(Bergman et al., 2016; Saleem et al., 2020).  The present results indicate that the 

plasma metabolome is reflecting intramuscular adaptations.  

6.4.4.2. Associations of metabolites with change in maximal oxygen 

uptake 

Finally, β-alanine metabolism was identified as significantly associated with change in 

VO2
PEAK after 8 weeks AET in HO. Within this pathway, change in plasma abundance of 

β-alanine was identified as influential. β-Alanine can be diverted to the pantothenate 

and CoA biosynthesis pathway or to the malonate biosynthesis pathway (Kanehisa and 

Goto, 2000), both of which relate to the biosynthesis and degradation of fatty acids 

and may therefore relate to increase in oxidative capacity as a consequence of AET. 

This would highlight the interactive nature of the metabolome, which was previously 

seen in the associations with physiological outcome measures in HY. Alternatively, β-

alanine is commonly used as a performance enhancing supplement (Hobson et al., 

2012) as it is converted to carnosine within skeletal muscle which acts as a buffer for 
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lactic acid and reduces the fatigue effect (Artioli et al., 2010), resulting in greater 

endurance capacity. Improvements in VO2
PEAK have been associated with 

improvements in endurance capacity of skeletal muscle (Bartov et al., 2009). The 

association between β-alanine metabolism and change in VO2
PEAK may therefore relate 

to greater endurance capacity of skeletal muscle following exercise intervention.  

6.4.4.3. Metabolites associated with measures after exercise 

withdrawal 

After 4 weeks of exercise withdrawal, arginine and proline metabolism and β-alanine 

metabolism remained associated with change in VO2
PEAK and glycerophospholipid 

metabolism remained associated with change in both VO2
PEAK and steady-state 

exercise RER, indicating that some metabolic benefits conferred by AET are 

maintained throughout the detraining period (Table 6.4). However, fatty acid 

degradation, CoA biosynthesis and sphingolipid metabolism were no longer associated 

with RER or VO2
PEAK which indicates that not all metabolic adaptations persist following 

cessation of exercise. Following a longer period of detraining, associations between 

arginine and proline, β-alanine and glycerophospholipid metabolism pathways with 

outcome measures may also be lost.  

 Comparison of metabolic adaptations in healthy older 

and young control groups 
Fewer metabolites were significantly different following 8 weeks of AET in the older 

group compared to the young which suggests the exercise adaptation response is 

blunted with age. This aligns with previously published data at the muscle 

mitochondrial and whole-body level (Latimer et al., 2021). However, some elements 

of the exercise response appear to be unaffected by age. For instance, there were 

similarities in the direction of change of phosphatidylethanolamine species between 

older and young groups. Phenylalanine was also significantly elevated following AET in 
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both young and older groups. L-ornithine was involved in associations with VO2
PEAK and 

steady-state exercise RER in both age groups, suggesting the biosynthesis of creatine 

occurs in the AET adaptive response regardless of age. Such common mechanisms may 

provide possible insight into a common mechanism of adaptation in skeletal muscle 

metabolism following AET.  

In healthy young individuals, more metabolites remained significantly different from 

baseline after the withdrawal period, possibly indicating that the positive effects of 

AET on the metabolism are lost more quickly in older individuals which may allow for 

the rapid development of deconditioning with age. This is in line with a greater decline 

in VO2
PEAK in healthy older than young individuals over the 4 week detraining period 

(Latimer et al., 2021), and with current literature, which shows old adults (74-86 years)  

had a significantly poorer performance in arm curl and 6 minute walk tests following 

52 weeks of detraining after a 9 week period of strength training from their baseline 

scores while their ‘young-old’ counterparts (60-73 years) returned to baseline value 

(Toraman, 2005). However of the 12 pathways associated with either VO2
PEAK or 

steady-state exercise RER after exercise withdrawal in the healthy older group 9 were 

previously found to be associated with the same outcome measures in healthy young, 

suggesting that many adaptations to detraining are unaffected by age. Notably, in both 

groups there was a consistent association of VO2
PEAK and steady-state exercise RER 

with amino acid metabolism after 4 weeks of exercise withdrawal. For instance, L-

tyrosine was associated with VO2
PEAK following exercise withdrawal regardless of age. 

L-tyrosine is a popular supplement in exercise and oral consumption of a L-tyrosine 

supplement prior to exercise was associated with a 15% increase in exercise capacity 

and significantly increased time to exhaustion in healthy young men and was therefore 

suggested to improve endurance of skeletal muscle by increasing availability for 

dopamine synthesis (Tumilty et al., 2011). However, others have reported no benefit 
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of supplementary L-tyrosine on muscle endurance or strength (Chinevere et al., 2002; 

Attipoe et al., 2015). Although there is interest in understanding the impact of tyrosine 

as a supplement on muscle strength and mass, the current literature has not focused 

on assessing the impact of endogenous L-tyrosine on exercise. Here, the association 

of L-tyrosine with VO2
PEAK regardless of age provides preliminary evidence to link L-

tyrosine abundance with whole body physiological adaptations to exercise.  

L-serine and betaine were associated with RER after withdrawal in both age groups. 

Both have previously been linked to the biosynthesis of glycine, which itself was 

associated with skeletal muscle adaptations to bed rest in Chapter 3 of this thesis and 

is an essential mediator in skeletal muscle regeneration in response to injury 

(Thalacker-Mercer et al., 2020) where it exerts its action by increasing the activation 

of mTORC1 in muscle progenitor cells (Lin et al., 2020). Whether the mechanism of 

action of L-serine and betaine in response to exercise withdrawal is the same as their 

involvement in the glycine synthesis pathway for regeneration following injury is 

unclear, however the association of these amino acid metabolites with physiological 

outcome measures regardless of age indicates a potential role for amino acids in the 

detraining response that may be of interest to investigate in future research.  
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 General discussion 
This thesis used an untargeted metabolomics approach to characterise the plasma 

metabolome in four studies in order to provide insight into the metabolic pathways 

involved in the whole-body and skeletal muscle level adaptive responses to ageing and 

change in physical activity. In addition, by comparison to physiological outcomes 

relevant to adaptations at the muscular and whole-body level this thesis has 

demonstrated the potential of metabolomics in an integrative approach to studying 

physiological adaptation to stressors. Such an approach allows insight into specific 

metabolic pathways most highly associated with adaptation at a whole-body level to 

a specific intervention and which metabolites within those pathways are most 

important in the association. The integration of metabolomics and physiological data 

is a key strength of this thesis over much of the current literature, which often focuses 

on the use of metabolomics in isolation from relevant participant metadata or 

physiological measures.  

7.1.1.1. Similarities across studies 

Across the four studies discussed in this thesis, plasma levels of glycerophospholipid 

were consistently identified as markers of adaptation. Additionally, ceramides and 

other sphingolipids were consistently identified as plasma markers of adaptation. 

Moreover, both glycerophospholipids and sphingolipids were associated with 

physiological endpoint measures in Chapters 3, 5 and 6. Glycerophospholipids have 

essential roles as components of mitochondrial membranes (Tasseva et al., 2013) and 

it is suggested that ceramides can accumulate due to incomplete fatty acid oxidation 

(Sokolowska and Blachnio-Zabielska, 2019). Additionally in Chapter 6, no metabolites 

were present at a significantly different abundance following AET in the COPD group 

indicating a failure to adapt to stimulus provided by AET at the whole-body level in 

COPD patients. This parallels previous results from mitochondrial functional testing 



237 
 

which showed no difference in mitochondrial ATP production rates in response to 

palmitate substrate in COPD. Overall, the consistency in the identified metabolites and 

metabolic pathways which are significantly disturbed by each intervention points to 

the regulation of mitochondrial metabolism as a primary feature of adaptation to 

change in physical activity or age.  

7.1.1.2. The use of plasma to reflect muscle metabolism 

While the plasma metabolome reflects whole body metabolism, association of plasma 

metabolite abundance with physiological outcome measures provides evidence to 

suggest that it is possible to correlate changes in the plasma metabolome with 

adaptions occurring within skeletal muscle. Physiological outcome measures were not 

available for Chapter 4, which is a limitation to that study, however a similar 

association between the plasma metabolome and skeletal muscle was demonstrated 

by comparing putative identifications of markers of ageing in the plasma with 

previously identified markers of ageing in the muscle metabolome (Wilkinson et al., 

2020).  

7.1.1.3. Novel non-annotated metabolites 

Many metabolites identified in this thesis are complementary to the current literature, 

however in each study a number of metabolites were unidentified, representing 

potential novel markers of metabolic adaptation. As advances in the metabolomics 

field continue and databases expand, in the future it may be possible to annotate 

these compounds and identify new markers of adaptation.  

7.1.1.4. Future directions 

The consistent identification of metabolites related to mitochondrial composition and 

oxidation across studies, in combination with parallels to previously published 

functional testing data, suggests that mitochondrial respiratory activity and 
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maintenance of normal mitochondrial morphology may be major contributors to 

whole body and skeletal muscle adaptations. Interventions to maintain mitochondrial 

health and respiratory function may be of benefit in combating deconditioning and 

loss of muscle strength and mass, either by therapeutics that target mitochondria 

(Singh et al., 2021) or by exercise (Sorriento et al., 2021), and may therefore be of 

interest to investigate further. 

Additionally, similar associations between mitochondrial metabolites such as 

glycerophospholipids and glycerolipids with measures of increased whole body lipid 

oxidation in Chapters 3, 5 and 6 suggest that adaptations to sedentary behaviour and 

submaximal exercise may occur through similar metabolic pathways. This provides 

preliminary evidence to suggest a linkage between muscle mRNA expression, muscle 

mitochondrial function, whole body physiological adaptations, and the plasma 

metabolome. Both hypotheses may be tested further by determining correlations 

between  metabolomics data, muscular mRNA expression (Shur et al., 2022) and 

maximal rates of muscle mitochondrial ATP production (Latimer et al., 2021).  

Physiological and metabolomic data in Chapter 6 also demonstrated that adaptations 

to AET could not be detected in the plasma metabolome of the COPD patients, in 

contrast to the observable response in the metabolome of age matched healthy 

controls. The failure to respond at the metabolomic level mirrors previously published 

research at the muscle mitochondrial and whole-body levels (Latimer et al., 2021). This 

may in part be due to ventilatory capacities of COPD patients affecting a true 

calculation of VO2
PEAK. Therefore, an intervention of differing exercise intensities may 

also be of interest in this cohort as higher intensity AET may elicit similar responses to 

those seen in the control groups at 65% VO2
PEAK.  
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Finally, while AET resulted in change in the abundance of plasma metabolites in 

healthy individuals a 20-week RET intervention did not result in observable differences 

in the plasma abundance of any metabolites in either healthy young or older 

participants. It is possible that the type of exercise intervention has an influence on 

the skeletal muscle exercise response. However, while participants in both studies 

were healthy and of comparable ages, as both studies were conducted independently 

there may be variations in study protocol that limit comparisons. Plasma was collected 

24 hours after AET but 72 hours after RET. To fully determine whether type of exercise 

has an influence on metabolic adaptations, an intervention directly comparing AET and 

RET in healthy young and old individuals could be carried out which ensures that time 

of sample collection relative to finishing exercise is identical between AET and RET 

groups.  

7.1.1.5. Limitations 

There are limitations to the studies in this thesis which must be recognised. Firstly, for 

each study a relatively small number of participants were recruited. Small sample sizes 

limit the generalisability of the findings. Large scale studies recruiting hundreds of 

participants are required to validate these results, particularly in relation to the 

identification of plasma metabolites which may act as biomarkers of COPD in Chapter 

6. In addition, plasma samples for each study in this thesis were provided from 

biobanks. Samples were previously collected by collaborators in internal and external 

research groups. Therefore, while sample processing and analysis could be controlled 

across studies, sample collection (for example, time of collection or time until 

quenching) and storage prior to use in this thesis could not be controlled and may 

introduce variation into the results. As discussed in the Introduction of this thesis, 

variations in sample collection and storage procedures can have large impacts on the 

plasma metabolic profile (Smith et al., 2020). A limitation in current untargeted 
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metabolomics work is the inability to identify all detected metabolic features due to 

the complexity and diversity of the metabolome. The poor annotation of the 

metabolome relative to the genome or proteome remains a drawback to a 

metabolomics approach but advances are continually being made in this field to 

permit annotation of previously unidentified metabolites (Zamboni et al., 2015). As 

new technologies are continually emerging to aid in metabolite identification, future 

research may revisit this work to annotate metabolic features which are currently 

unidentified. In addition, metabolites selected as markers through untargeted 

metabolomics cannot be definitively identified (Salek et al., 2013) and only relative 

changes in abundance can be measured by an untargeted approach (Gertsman and 

Barshop, 2018). Markers of skeletal muscle adaptation to sedentary behaviour, ageing 

or exercise identified by untargeted metabolomics in this thesis should next be verified 

and quantified by targeted work. 
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Appendix 1. Pre-processing and filtering of metabolomics 

data 

##XCMS PREPROCESSING 

library(BiocManager) 

library(xcms) 

library(RColorBrewer) 

library(pander) 

library(magrittr) 

library(pheatmap) 

library(SummarizedExperiment) 

library(CAMERA) 

 

setwd("D:/UroCa_eHIT/28Apr22_HILICpos/mzXML") #example files 

mzXML <- dir("Samples", full.names = TRUE, recursive = TRUE) 

 

#load raw data using readMSData method from MSnbase package  

raw_data <- readMSData(files = mzXML, mode = "onDisk") 

 

#get base peak chromatograms 

bpis <- chromatogram(raw_data, aggregationFun = "max")             
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#define peakwidth parameters using widest and narrowest peaks  

rtr <- c(8.5*60, 10.5*60) 

mzr <- c(293.0981+0.01, 293.0981-0.01) 

 

chr_raw <- chromatogram(raw_data, mz = mzr, rt = rtr) 

 

#run chromatogram extraction 

cwp <- CentWaveParam(peakwidth = c(10, 40),ppm = 20) # set parameters 

xdata <- findChromPeaks(raw_data, param = cwp) 

 

#align data  

xdata <- adjustRtime(xdata, param = ObiwarpParam(binSize = 0.6)) 

 

#get base peak chromatograms 

bpis_adj <- chromatogram(xdata, aggregationFun = "max")                                  

#does the object have adjusted retention times? 

hasAdjustedRtime(xdata) 

                                  

##correspondence 

#define the m/z slice 
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mzr <- c(180.05, 180.15) 

#extract and plot the chromatogram 

chr_mzr <- chromatogram(xdata, mz = mzr, rt = c(0, 930)) 

par(mfrow = c(2, 1), mar = c(1, 4, 1, 0.5)) 

plot(chr_mzr) 

#define bandwidth paramters for peak density method 

pdp <- PeakDensityParam(sampleGroups = rep(1, length(fileNames(xdata))), 

                               minFraction = 0.4, bw = 10) 

plotChromPeakDensity(xdata, mz = mzr, param = pdp, pch = 16, xlim = c(0, 930)) 

 

##perform the correspondence 

pdp <- PeakDensityParam(sampleGroups = rep(1, length(fileNames(xdata))), 

                        minFraction = 0.4, bw = 10) 

xdata <- groupChromPeaks(xdata, param = pdp) 

                                                                                                   

#fill missing peaks using default settings 

xdata <- fillChromPeaks(xdata) 

 

#convert XCMSnExp object to xcmsSet for use with CAMERA 

xset <- as(xdata, "xcmsSet") 
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xsa <- annotate(xset, cor_eic_th = 0) 

peaklist <- getPeaklist(xsa) 

indexNA <- is.na(peaklist) 

peaklist[indexNA] <- 0 

is.na(peaklist) #sanity check              

#write peaklist as csv file 

write.csv(peaklist, "hiit_hilicpos.csv") 

 

##FILTERING METABOLOMICS DATA 

#import data from .csv file and convert to SummarizedExperiment 

#load required package 

library(SummarizedExperiment) 

setwd("D:/UroCa_eHIT/09May22_RPneg/pmp") #set working directory for files 

rpneg_all <- read.csv("data.csv", 

                      row.names = 1) #load data into dataframe 

rpneg <- list() 

rpneg$dataMatrix <- rpneg_all #form dataMatrix 

 

#transpose peak matrix, so features are in rows and samples in columns 

rpneg$dataMatrix <- as.matrix(t(rpneg$dataMatrix)) 
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colnames(rpneg[["dataMatrix"]]) #colnames should be sample names 

row.names(rpneg[["dataMatrix"]]) #rownames should be metabolite names 

 

#missing values in the input data are stored as 0, replace with NA 

rpneg$dataMatrix[rpneg$dataMatrix == 0] <- NA 

 

#round numbers to 5 digits 

#rownames(rpneg$assay) <- round(as.numeric(rownames(rpneg$assay)), 5) 

#import metadata 

meta <- read.csv("sample.csv") 

rpneg$sampleMetadata <- meta #store in list 

 

#make SummarizedExperiment object combining metabolites and metadata 

rpneg <- SummarizedExperiment(assays = list(rpneg$dataMatrix), 

                                    colData = DataFrame(rpneg$sampleMetadata)) 

 

#load required packages 

library(BiocManager) 

library(pmp) 

library(S4Vectors) 
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#use summarizedExperiment. Check class: 

rpneg 

 

#check missing samples and find % 

sum(is.na(assay(rpneg))) 

sum(is.na(assay(rpneg)))/length(assay(rpneg))*100 

 

##filter by QC 

#apply the mv feature to filter based on QC sample Class only. Peaks must be present 

in  

#at least 70% of QC samples: 

rpneg_filtered <- filter_peaks_by_fraction(df = rpneg, 

                                           min_frac = 0.7, 

                                           classes = rpneg$Group, 

                                           method = "QC", 

                                           qc_label = "QC") 

 

#check missing samples again 

sum(is.na(assay(rpneg_filtered))) 
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#filter by RSD<30% 

rpneg_filtered <- filter_peaks_by_rsd(df = rpneg_filtered, 

                                      max_rsd = 30, 

                                      classes = rpneg$Group, 

                                      qc_label = "QC") 

#check missing samples again 

sum(is.na(assay(rpneg_filtered))) 

 

##filter by blank 

#FC 20 is equivalent to 0.05 blank/QC ratio 

#QC label means only QC samples are used to calculate comparison intensity 

rpneg_blank <- filter_peaks_by_blank(rpneg_filtered, 

                                     fold_change = 20, 

                                     classes = rpneg_filtered$Group, 

                                     blank_label = "B", 

                                     qc_label = "QC", 

                                     remove_peaks = TRUE, 

                                     remove_samples = FALSE, 

                                     fraction_in_blank = 0) 
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sum(is.na(assay(rpneg_blank))) 

 

#discard blank for further analysis 

rpneg_drop <- rpneg_blank[, rpneg_blank$Remove == "NO"] 

 

sum(is.na(assay(rpneg_drop))) 

##DATA NORMALISATION 

#this will apply probabilistic quotient normalisation 

#normalise samples to pooled QC 

rpneg_norm <- pqn_normalisation(df = rpneg_drop, 

                                classes = rpneg_drop$Group, 

                                qc_label = "QC") 

 

#MISSING VALUE IMPUTATION 

rpneg_mv_imputed <- mv_imputation(rpneg_norm, 

                                  method = "knn") 

 

##DATA SCALING 

#the glog transformation algorithm stabilises variance across low and high intensity 

#features 
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rpneg_glog <- glog_transformation(df = rpneg_mv_imputed, 

                                  classes = rpneg_mv_imputed$Group, 

                                  qc_label = "QC") 

 

##signal correction - used for batch effect correction when samples run over several 

#batches. Not always necessary 

#set class, batch and sample order from m\etadata 

class <- rpneg_mv_imputed$Group 

batch <- rpneg_mv_imputed$Batch 

order <- rpneg_mv_imputed$Order 

 

#apply signal drift correction using QCRSC function 

corrected_data <- QCRSC(df = rpneg_mv_imputed, 

                        order = order, 

                        batch = batch, 

                        classes = class, 

                        spar = 0, 

                        minQC = 4) 

#visual comparison of results 

plots <- sbc_plot(df = rpneg_mv_imputed, corrected_data, 
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                  classes = class, 

                  batch = batch, 

                  output = NULL, 

                  index = c(10, 50, 100, 150)) 

plots 

 

#write files in .csv format as required 

write.csv(assay(rpneg_glog), "rpneg_glog.csv") 

write.csv(assay(rpneg_mv_imputed), "rpneg_mv_imputed.csv") 

write.csv(assay(rpneg_blank), "rpneg_blank_filtered.csv") 

write.csv(assay(rpneg_filtered), "rpneg_RSD_filtered.csv") 

write.csv(assay(rpneg_norm), "rpneg_PQN.csv") 

write.csv(assay(corrected_data), "rpneg_qcrsc.csv") 
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Appendix 2. Statistical analysis from Chapter 4 

#PLS-DA 

#load required packages 

library(mixOmics) 

library(dplyr) 

 

#set working directory 

setwd("C:/Users/mzxia1/Documents/BBSRC2/RP pos/PLS") 

#load log transformed metabolite data and sample metadata 

glog <- read.csv("rppos_glog.csv", 

                 row.names = 1) 

meta <- read.csv("meta.csv", 

                 row.names = 1) 

 

#double check samples are the same 

keep_glog <- colnames(glog) 

meta <- as.data.frame(meta[which(rownames(meta) %in% keep_glog),]) 

 

#combine glog data with meta data 

glog <- as.data.frame(t(glog)) 
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glog <- cbind(meta, glog) 

 

#filter including middle group 

glog_mid_pre <- glog %>% 

  filter(class == "O"|class == "Y"|class == "M") %>% 

  filter(timepoint == "F") #replace timepoint with L for post-intervention comparison 

 

#set up dataframes - post-intervention comparisons 

X_mid_pre <- glog_mid_pre[,4:ncol(glog_mid_pre)] 

Y_mid_pre <- as.factor(glog_mid_pre$class) 

#check dimensions and summary 

dim(X_mid_pre); length(Y_mid_pre) 

summary(Y_mid_pre) 

 

#preliminary analysis with PCA 

pca.mid.post <- pca(X_mid_pre, ncomp = 10, center = TRUE, scale = TRUE) 

plot(pca.mid.post) 

plotIndiv(pca.mid.post, group = glog_mid_pre$class, ind.names = FALSE, 

          legend = TRUE, title = "PCA post-intervention", 

          ellipse = TRUE) 
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#tuning parameters and numerical outputs: 

# 1) determine number of components: 

plsda_mid_pre <- plsda(X_mid_pre, Y_mid_pre, ncomp = 10) 

set.seed(123) #for reproducibility 

plsda_mid_pre_tuned <- perf(plsda_mid_pre, validation = "Mfold", 

                        folds = 6, progressBar = TRUE, 

                        nrepeat = 100) 

plot(plsda_mid_pre_tuned, 

     sd = TRUE, legend.position = "horizontal") #plot tuning 

 

#2) final PLS-DA 

plsda_mid_pre_final <- plsda(X_mid_pre, Y_mid_pre, ncomp = 2) 

plotIndiv(plsda_mid_pre_final, ind.names = FALSE, 

          legend = TRUE, ellipse = TRUE, 

          title = "PLS-DA, postline comparison") 

 

##testing without middle 

glog_pre <- glog_mid_pre %>% 

  filter(class == "O"|class == "Y") 

X_pre <- glog_pre[,4:ncol(glog_pre)] 



357 
 

Y_pre <- as.factor(glog_pre$class) 

 

#preliminary analysis with PCA 

pca.post <- pca(X_pre, ncomp = 10, center = TRUE, scale = TRUE) 

plotIndiv(pca.post, group = glog_pre$class, ind.names = FALSE, 

          legend = TRUE, title = "PCA post-intervention (Old vs Young)", 

          ellipse = TRUE) 

 

#tuning parameters and numerical outputs: 

# 1) determine number of components: 

plsda_pre <- plsda(X_pre, Y_pre, ncomp = 9) 

set.seed(123) 

plsda_pre_tuned <- perf(plsda_pre, validation = "Mfold", 

                        folds = 6, progressBar = TRUE, 

                        nrepeat = 100) 

plot(plsda_pre_tuned, col = color.mixo(1:3), 

     sd = TRUE, legend.position = "horizontal") 

 

#2) final PLS-DA 

plsda_pre_final <- plsda(X_pre, Y_pre, ncomp = 4) 
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plotIndiv(plsda_pre_final, ind.names = FALSE, 

          legend = TRUE, ellipse = TRUE, 

          title = "PLS-DA, post-intervention comparison") 

 

#get vip scores from final model 

vip <- as.data.frame(vip(plsda_pre_final)) 

vip$mean <- rowMeans(vip) 

#filter to only keep VIP > 1 

vip <- vip %>% 

  filter(mean > 1) 

#export file of all metabolites with VIP > 1 

write.csv(vip, "vip_pre_rp.csv") 

 

#PLS-DA of baseline vs post-intervention samples by age 

#example: young group 

glog_young <- glog %>% 

  filter(class == "Y") 

X_young <- glog_young[,4:ncol(glog_young)] 

Y_young <- as.factor(glog_young$timepoint) 
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#check dimensions and summary 

dim(X_young); length(Y_young) 

summary(Y_young) 

 

#preliminary analysis with PCA 

pca.young <- pca(X_young, ncomp = 10, center = TRUE, scale = TRUE) 

plot(pca.young) 

plotIndiv(pca.young, group = glog_young$timepoint, ind.names = FALSE, 

          legend = TRUE, title = "PCA Young group", 

          ellipse = TRUE) 

 

#tuning parameters and numerical outputs: 

# 1) determine number of components: 

plsda_young <- plsda(X_young, Y_young, ncomp = 10) 

set.seed(123) 

plsda_young_tuned <- perf(plsda_young, validation = "Mfold", 

                        folds = 8, progressBar = TRUE, 

                        nrepeat = 100) 

plot(plsda_young_tuned, 

     sd = TRUE, legend.position = "horizontal") 
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#Correlation heatmap 

#load required packages 

library(dplyr) 

library(corrplot) 

#set working directory and load data 

setwd("C:/Users/mzxia1/Documents/BBSRC2/Correlation") 

rppos <- read.csv("rppos_glog.csv", row.names = 1) 

rppos <- rppos[ave(1:nrow(rppos), rppos$Participant, FUN = length)>1,] 

 

#filter data 

old_last <- rppos %>% 

  filter(Target == "O_L") 

old_first <- rppos %>% 

  filter(Target == "O_F") 

 

#remove metadata and transpose 

old_last <- old_last[,5:ncol(old_last)] 

old_last <- as.data.frame(t(old_last)) 

old_first <- old_first[,5:ncol(old_first)] 

old_first <- as.data.frame(t(old_first)) 
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#arrange data frames in correct order 

old_last$ID <- rownames(old_last) 

old_last <- old_last %>% 

  relocate(ID, .before = PW031L) %>% 

  relocate(GS042L, .after = MJ022L) %>% 

  relocate(JS019L, .after = PW031L) 

old_first$ID <- rownames(old_first) 

old_first <- old_first %>% 

  relocate(ID, .before = PW031F) 

 

#set up correlation matrix 

cormat= matrix(0, nrow=nrow(old_first), ncol=nrow(old_last)) 

head(old_first); 

head(old_last); 

for(i in 1:nrow(old_first)){ 

  for(j in 1:nrow(old_last)) 

  { 

    cormat[i,j] = cor(unlist(old_first[i,-1]), unlist(old_last[j,-1]), 

                      use = "complete.obs") 

  } 
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} 

rownames(cormat) <- rownames(old_first) 

colnames(cormat) <- rownames(old_first) 

 

#plot heatmap 

library(corrplot) 

corrplot(cormat, 

         order = "hclust", 

         method = "shade", 

         tl.cex = 0.5) 
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Appendix 3. Statistical analysis from Chapters 5 and 6 

##PHYSIOLOGICAL DATA 

#example of young group. Replace with old and COPD as necessary 

#load required packages 

library(ggpubr) 

library(tidyverse) 

library(broom) 

 

####lean mass#### 

setwd("C:/Users/mzxia1/Documents/COPD/Chapter graphs Nov 22") 

alldata <- read.csv("leanmass_young.csv") 

 

#check normality  

res <- aov(Total.Lean.Mass ~ Visit, 

           data = alldata) 

shapiro.test(res) 

 

kruskal.test(Total.Lean.Mass ~ Visit, data = alldata) # data not normally distributed so 

use non-parametric 
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####vo2 and rer young#### 

library(reshape2) 

fitness <- read.csv("rer_vo2.csv") 

 

rer_young <- fitness[,c(1:5)] %>% 

  filter(Group== "HY") 

vo2_young <- fitness[,c(1:2, 6:8)] %>% 

  filter(Group == "HY") 

 

rer_young_m <- melt(rer_young) 

res.rer <- aov(value ~ variable, 

               data = rer_young_m) 

summary(res.rer) 

shapiro.test(res.rer$residuals) 

 

#significance difference in anova so post hoc test 

pairwise.t.test(rer_young_m$value, rer_young_m$variable, paired = TRUE, 

               p.adjust.method = "BH") 

 

#same test with vo2 
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vo2_young_m <- melt(vo2_young) 

rer.vo2 <- aov(value ~ variable,  

               data = vo2_young_m) 

summary(rer.vo2) 

shapiro.test(rer.vo2$residuals) 

 

#not normally distributed so need kruskal wallis 

kruskal.test(value~variable, data = vo2_young_m) #still significant 

 

pairwise.t.test(vo2_young_m$value, vo2_young_m$variable, paired = TRUE, 

                p.adjust.method = "BH") 

 

##FIT LINEAR MIXED EFFECTS MODEL 

#load required packages 

library(mosaic) 

library(dplyr) 

library(limma) 

library(reshape2) 

library(ggplot2) 

library(statmod) 
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library(forcats) 

 

setwd("D:/COPD/limma") 

all_data <- read.csv("rppos_all.csv", 

                     row.names = 1) #data matrix including metadata in first three columns 

 

#for replicated time points, it is most convenient to join the experimental factors  

#into one combined factor 

all_data <- mutate(all_data, group_time = derivedFactor( 

  "COPD_V1" = (Class == "COPD" & Timepoint == "V1"), 

  "COPD_V2" = (Class == "COPD" & Timepoint == "V2"), 

  "COPD_V3" = (Class == "COPD" & Timepoint == "V3"), 

  "COPD_V4" = (Class == "COPD" & Timepoint == "V4"), 

  "COPD_V5" = (Class == "COPD" & Timepoint == "V5"), 

  "Old_V1" = (Class == "Old" & Timepoint == "V1"), 

  "Old_V2" = (Class == "Old" & Timepoint == "V2"), 

  "Old_V3" = (Class == "Old" & Timepoint == "V3"), 

  "Old_V4" = (Class == "Old" & Timepoint == "V4"), 

  "Old_V5" = (Class == "Old" & Timepoint == "V5"), 

  "Young_V1" = (Class == "Young" & Timepoint == "V1"), 
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  "Young_V2" = (Class == "Young" & Timepoint == "V2"), 

  "Young_V3" = (Class == "Young" & Timepoint == "V3"), 

  "Young_V4" = (Class == "Young" & Timepoint == "V4"), 

  "Young_V5" = (Class == "Young" & Timepoint == "V5"), 

  method = "first", 

  .default = NA 

)) #see limma user's guide section 9.6 and 9.7 for more details 

 

all_data <- all_data %>% 

  relocate(group_time, .after = Timepoint) #arrange columns so all metadata is at the 

start of matrix 

 

#create required inputs for lmmsDE function 

dat <- all_data[,5:ncol(all_data)] #data matrix with each row representing an 

experimental sample, and each column a single metabolite 

#dat contains no metadata 

 

group_time <- factor(all_data$group_time) #factor containing combined group and 

time point 

group_time <- group_time %>% 

  fct_relevel("COPD_V1", "COPD_V2", "COPD_V3", "COPD_V4", "COPD_V5", 
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              "Old_V1", "Old_V2", "Old_V3", "Old_V4", "Old_V5", 

              "Young_V1", "Young_V2", "Young_V3", "Young_V4", "Young_V5") #make 

sure factor levels are in the right order 

sampID <- as.character(all_data$Participant) #character vector containing the 

sample names 

class <- as.character(all_data$Class) #character vector indicating group of each 

sample 

namesMetab <- colnames(dat) #metabolite column names  

 

#prepare for linear mixed model differential expression analysis using limma 

#design group * time effect model 

design <- model.matrix(~0+group_time) 

colnames(design) <- levels(group_time) 

 

#block subject specific variability (baseline differences between subjects) 

dupcor <- duplicateCorrelation(t(dat), design, block=sampID) 

 

#fit linear mixed effect model 

fit <- lmFit(object = t(dat), design = design, block = sampID,  

             correlation = dupcor$consensus.correlation) 

fit <- eBayes(fit) 
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#make desired contrasts between experimental conditions 

cmAllTime <- makeContrasts(V1_COPD_Old = COPD_V1 - Old_V1, 

                           V2_COPD_Old = COPD_V2 - Old_V2, 

                           V3_COPD_Old = COPD_V3 - Old_V3,  

                           V4_COPD_Old = COPD_V4 - Old_V4, 

                           V5_COPD_Old = COPD_V5 - Old_V5, 

                           V1_Old_Young = Old_V1 - Young_V1, 

                           V2_Old_Young = Old_V2 - Young_V2, 

                           V3_Old_Young = Old_V3 - Young_V3, 

                           V4_Old_Young = Old_V4 - Young_V4, 

                           V5_Old_Young = Old_V5 - Young_V5, 

                           V1_COPD_Young = COPD_V1 - Young_V1, 

                           V5_COPD = COPD_V5 - COPD_V1, 

                           V4_COPD = COPD_V4 - COPD_V1, 

                           V3_COPD = COPD_V3 - COPD_V1, 

                           V2_COPD = COPD_V2 - COPD_V1, 

                           V5_Old = Old_V5 - Old_V1, 

                           V4_Old = Old_V4 - Old_V1, 

                           V3_Old = Old_V3 - Old_V1, 
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                           V2_Old = Old_V2 - Old_V1, 

                           V5_Young = Young_V5 - Young_V1, 

                           V4_Young = Young_V4 - Young_V1, 

                           V3_Young = Young_V3 - Young_V1, 

                           V2_Young = Young_V2 - Young_V1, 

                           levels = design) 

 

# store names of contrast in variable 

contrastNames <- names(as.data.frame(cmAllTime)) 

 

# Then compute these contrasts and moderated t-tests 

fitAllTime <- contrasts.fit(fit, cmAllTime) 

fitAllTime <- eBayes(fitAllTime) 

 

# pull out up and down expression summary data 

dtAllTime  <- decideTests(fitAllTime) 

dESumAllTime  <- summary(dtAllTime) 

 

#create tables of differences 
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topMetab <- topTable(fitAllTimepoint, coef = 1, n = Inf, adjust.method = "BH") 

#replace coefficient for desired comparisons 

 

###METABOLITE IDENTIFICATION 

#data in format of ID, m/z, rt 

#load required packages 

library(metid) 

library(dplyr) 

 

getwd() 

setwd("C:/Users/mzxia1/Documents/COPD/metID”) 

#annotate with multiple databases 

#set parameters - MS1 databases 

param1 <- identify_metabolites_params(ms1.match.ppm = 5, 

                                      rt.match.tol = 1000000, 

                                      polarity = "negative", 

                                      column = "hilic", 

                                      candidate.num = 1, 

                                      database = "hmdb_ms1_database0.0.3") 

param2 <- identify_metabolites_params(ms1.match.ppm = 5, 
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                                      rt.match.tol = 1000000, 

                                      polarity = "negative", 

                                      column = "hilic", 

                                      candidate.num = 1, 

                                      database = "kegg_ms1_database0.0.3") 

#MS2 databases 

param3 <- identify_metabolites_params(ms1.match.ppm = 5, 

                                      rt.match.tol = 1000000, 

                                      polarity = "negative", 

                                      column = "hilic", 

                                      candidate.num = 1, 

                                      database = "hmdb_database0.0.3") 

param4 <- identify_metabolites_params(ms1.match.ppm = 5, 

                                      rt.match.tol = 1000000, 

                                      polarity = "negative", 

                                      column = "hilic", 

                                      candidate.num = 1, 

                                      database = "massbank_database0.0.3") 

param5 <- identify_metabolites_params(ms1.match.ppm = 5, 

                                      rt.match.tol = 1000000, 
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                                      polarity = "negative", 

                                      column = "hilic", 

                                      candidate.num = 1, 

                                      database = "mona_database0.0.3") 

param6 <- identify_metabolites_params(ms1.match.ppm = 5, 

                                      rt.match.tol = 1000000, 

                                      polarity = "negative", 

                                      column = "hilic", 

                                      candidate.num = 1, 

                                      database = "orbitrap_database0.0.3") 

 

#metabolite identification using all parameters 

result <- identify_metabolite_all(ms1.data = "metab_ms1.csv", 

                                  ms2.data = "PooledQC_MSn_3.mzXML", 

                                  parameter.list = c(param1, param2, param3, 

                                                     param4, param5, param6), 

                                  path = ".") 

 

#get identification tables for results where metabolites are annotated 

table1 <- get_identification_table(result[[1]], 
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                                   type = "new") #replace result[[x]] for each table 

 

#remove nas from table 

table1 <- table1 %>% 

    filter(!is.na(Compound.name)) #replace table number as necessary 

 

#if one peak has multiple annotations, we only want the one with highest confidence 

table2 <- table2 %>% 

  filter(!(name %in% table1$name)) #replace table2 number as necessary 

 

#combine tables and export 

annotation_table_all <- rbind(table1, table2, table3, table4, table5, table6) 

write.csv(annotation_table_all, "metab_annotation.csv") 

 

 

#WGCNA 

#Exaple: Base in metab data vs Base in clinical data 

####DATA INPUT AND CLEANING#### 

setwd("C:/Users/mzxia1/Documents/COPD/Updated analysis Oct 

22/Correlation/WGCNA")#set working directory 
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#load required packages 

library(WGCNA) 

library(dplyr) 

options(stringsAsFactors = FALSE) 

 

metabData <- read.csv("metabdata_v1_hilicpos.csv") 

 

#check what is in data set 

dim(metabData) 

names(metabData) 

 

#remove auxillary data if necessary and transpose expression data for further 

analysis 

datExpr0 <- as.data.frame(t(metabData[,-1])) 

names(datExpr0) <- metabData$FeatID 

 

#check for missing values and identification of outlier samples 

gsg <- goodSamplesGenes(datExpr0, verbose = 3) 

gsg$allOK 
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#cluster the samples to see if there are any obvious outliers 

sampleTree <- hclust(dist(datExpr0), method = "average") 

 

#plot the sample tree 

sizeGrWindow(12,9) #open graphic output window of 12 by 9 inches 

par(cex = 0.6) 

par(mar = c(0,4,2,0)) 

plot(sampleTree, main = "Sample clustering to detect outliers", 

     sub="", xlab = "", cex.lab = 1.5, cex.axis = 1.5,  

     cex.main = 2) 

 

#based on graph, choose height cut that will remove the outlying samples 

abline(h=4.1, col = "red") #plot line to show cut 

clust <- cutreeStatic(sampleTree, cutHeight = 30, minSize = 3) #determine cluster 

under line 

table(clust) #clust 1 contains samples we want to keep 

keepSamples <- (clust == 1) 

datExpr <- datExpr0[keepSamples,] 

 

nMetabs <- ncol(datExpr) 
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nSamples <- nrow(datExpr) 

#variable datExpr now contains expression data for network analysis 

 

#load clinical trait data 

traitData <- read.csv("clinvars.csv") 

traitData <- na.omit(traitData) 

dim(traitData) 

names(traitData) 

 

#make sure only same subjects are used 

keepmetabs <- rownames(datExpr) 

traitData <- subset(traitData, SubjectID %in% keepmetabs) 

keeprows <- traitData$SubjectID 

datExpr <- as.data.frame(datExpr[which(rownames(datExpr) %in% keeprows),]) 

 

traitBase <- traitData[,c(1,3,6,9)] 

colnames(traitBase)[2:7] <- c("TFM", "RER", "VO2") 

 

#form dataframe analogous to expression data that will hold the clinical traits 

metabSamples <- rownames(datExpr) 



378 
 

traitRowsBase <- match(metabSamples, traitData$Subject) 

datBase <- traitBase[traitRowsBase,-1] #so only numeric values are left 

rownames(datBase) <- traitBase[traitRowsBase, 1] 

 

collectGarbage() 

 

#re-cluster samples 

sampleTree2 <- hclust(dist(datExpr), method = "average") 

#convert traits to a colour representation: white means low, red means high, grey 

means missing entry 

traitColours <- numbers2colors(datBase, signed = FALSE) 

#plot the sample dendogram and colours underneath 

sizeGrWindow(12,9) #open graphic output window of 12 by 9 inches 

par(cex = 0.6) 

plotDendroAndColors(sampleTree2, traitColours,  

                    groupLabels = names(datBase), 

                    main ="Sample dendogram and trait heatmap") 

 

####NETWORK CONSTRUCTION AND MODULE DETECTION#### 

#choose set of soft-threshold powers  
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powers <- c(c(1:10), seq(from=12, to=20, by=2)) 

#call network topology analysis function 

sft <- pickSoftThreshold(datExpr, powerVector=powers, verbose=5) 

#plot the results 

sizeGrWindow(9,5) 

par(mfrow =c(1,2)) 

cex1=0.9 

#scale free topology fit index as a function of the soft-thresholding power 

plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], 

     xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed 

R^2",type="n", 

     main = paste("Scale independence")) 

text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], 

     labels=powers,cex=cex1,col="red") 

#this line corresponds to using an R2 cutoff of h 

abline(h=0.9, col = "red") 

#mean connectivity as a function of the soft-tresholding power 

plot(sft$fitIndices[,1], sft$fitIndices[,5], 

     xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n", 

     main = paste("Mean connectivity")) 
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text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red") 

#choose the lowest power for which the scale-free topology fit index curve flattens 

out upon reaching a high value 

 

#co-expression similarity and adjacency 

#calculate adjacncies using soft thresholding power 

softPower <- 8 

adjacency <- adjacency(datExpr, power = softPower) 

 

#topology overlap matrix (TOM) to minimise effects of noise and spurious 

associations 

#turn adjacency into topology overlap 

TOM <- TOMsimilarity(adjacency) 

dissTom <- 1-TOM 

 

#clustering using TOM 

#use hierarchical clustering to produce dendogram of metabolites 

#call clustering function 

metabTree <- hclust(as.dist(dissTom), method ="average") 

#plot resulting clustering tree 

sizeGrWindow(12,9) 
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plot(metabTree, xlab = "", sub="", main = "Metabolite clustering on TOM-based 

dissimilarity", 

     labels = FALSE, hang = 0.04) 

 

#to get large modules, set minimum module size relatively high 

minModuleSize <- 30 

#module identification using dynamic tree cut 

dynamicMods <- cutreeDynamic(dendro=metabTree, distM = dissTom,  

                             deepSplit=2, pamRespectsDendro = FALSE, 

                             minClusterSize = minModuleSize) 

table(dynamicMods)#returns modules labelled largest to smallest. 0 is unassigned 

features 

 

#plot the module assignment under the gene dendogram 

dynamicColors <- labels2colors(dynamicMods) 

table(dynamicColors) 

#plot the dendogram and colours underneath 

sizeGrWindow(8,6) 

plotDendroAndColors(metabTree, dynamicColors, "Dynamic Tree Cut", 

                    dendroLabels = FALSE, hang = 0.03, 

                    addGuide = TRUE, guideHang = 0.05, 
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                    main = "Metabolite dendrogram and module colors") 

 

#merging of modules whose expression profiles are very similar 

#calculate eigengenes 

MEList <- moduleEigengenes(datExpr, colors = dynamicColors) 

MEs <- MEList$eigengenes 

#calculate dissimilarity of module eigengenes 

MEDiss <- 1-cor(MEs) 

#cluster module eigengenes 

METree <- hclust(as.dist(MEDiss), method = "average") 

#plot the results 

sizeGrWindow(7,6) 

plot(METree, main = "Clustering of module eigengenes", 

     xlab = "", sub = "") 

 

#here, choose a height cut of 0.3, corresponding to correlation of 0.7, to merge 

MEDissThres <- 0.3 

#plot the cut line into the dendogram 

abline(h=MEDissThres, col = "red") 

#call automatic merging function 
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merge <- mergeCloseModules(datExpr, dynamicColors, cutHeight = MEDissThres, 

                           verbose = 3) 

#get merged module colours 

mergedColours <- merge$colors 

#eigengenes of the new merged modules 

mergedMEs <- merge$newMEs 

 

#plot dendogram again with original and merged module colours underneath 

sizeGrWindow(12,9) 

plotDendroAndColors(metabTree, cbind(dynamicColors, mergedColours), 

                    c("Dynamic Tree Cut", "Merged dynamic"), 

                    dendroLabels = FALSE, hang = 0.03, 

                    addGuide = TRUE, guideHang = 0.05) 

 

#rename to moduleColours 

moduleColours <- mergedColours 

#construct numerical labels corresponding to the colours 

colourOrder <- c("grey", standardColors()) 

moduleLabels <- match(moduleColours, colourOrder)-1 

MEs <- mergedMEs 
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####RELATING MODULES TO EXTERNAL INFORMATION AND IDENTIFYING 

IMPORTANT METABOLITES#### 

#quantify module-trait associations 

#define numbers of genes and samples 

#nMetabs <- ncol(datExpr) 

#nSamples <- nrow(datExpr) 

 

#recalculate MEs with colour labels 

MEs0 <- moduleEigengenes(datExpr, moduleColours)$eigengenes 

MEs <- orderMEs(MEs0) 

moduleTraitCor <- cor(MEs, datBase, use = "p") 

moduleTraitPvalue <- corPvalueStudent(moduleTraitCor, nSamples) 

 

#colour code each association by the correlation value 

sizeGrWindow(20,6) 

# Will display correlations and their p-values 

textMatrix = paste(signif(moduleTraitCor, 2), "\n(", 

                   signif(moduleTraitPvalue, 1), ")", sep = ""); 

dim(textMatrix) = dim(moduleTraitCor) 
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par(mar = c(6, 8.5, 3, 3)) 

# Display the correlation values within a heatmap plot 

labeledHeatmap(Matrix = moduleTraitCor, 

               xLabels = names(datBase), 

               yLabels = names(MEs), 

               ySymbols = names(MEs), 

               colorLabels = FALSE, 

               colors = blueWhiteRed(50), 

               textMatrix = textMatrix, 

               setStdMargins = FALSE, 

               cex.text = 0.5, 

               zlim = c(-1,1), 

               main = paste("Module-trait relationships")) 

 

#metabolite relationship to trait and important modules quantify associations of 

#individual features with trait of interest by defining metabolite significance as the 

#absolute value of the correlation between the gene and the trait 

#also, define a quantitative measure of module membership as correlation of 

#module 

#eigengene and metabolite expression profile 

tfm <- as.data.frame(datBase$TFM) 
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names(tfm) <- "tfm" 

 

rer <- as.data.frame(datBase$RER) 

names(rer) <- "rer" 

 

vo2 <- as.data.frame(datBase$VO2) 

names(vo2) <- "vo2" 

 

# names (colors) of the modules  

modNames <-  substring(names(MEs), 3) 

metabModuleMembership <- as.data.frame(cor(datExpr, MEs, use = "p")); 

MMPvalue <- 

as.data.frame(corPvalueStudent(as.matrix(metabModuleMembership), nSamples)) 

names(metabModuleMembership) = paste("MM", modNames, sep=""); 

names(MMPvalue) <-  paste("p.MM", modNames, sep=""); 

 

#first trait 

metabTraitSignificance <-  as.data.frame(cor(datExpr, vo2, use = "p")); 

MSPvalue <-  as.data.frame(corPvalueStudent(as.matrix(metabTraitSignificance), 

nSamples)); 

names(metabTraitSignificance) <-  paste("MS.", names(vo2), sep=""); 
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names(MSPvalue) <-  paste("p.MS.", names(vo2), sep="") 

#second trait 

metabTraitSignificance2 <-  as.data.frame(cor(datExpr, rer, use = "p")); 

MSPvalue2 <-  as.data.frame(corPvalueStudent(as.matrix(metabTraitSignificance2), 

nSamples)); 

names(metabTraitSignificance2) <-  paste("MS.", names(rer), sep=""); 

names(MSPvalue2) <-  paste("p.MS.", names(rer), sep="") 

#third trait 

metabTraitSignificance3 <-  as.data.frame(cor(datExpr, tfm, use = "p")); 

MSPvalue3 <-  as.data.frame(corPvalueStudent(as.matrix(metabTraitSignificance6), 

nSamples)); 

names(metabTraitSignificance3) <-  paste("MS.", names(tfm), sep=""); 

names(MSPvalue3) <-  paste("p.MS.", names(tfm), sep="") 

 

 

#identify genes with high GS and MM 

module <- "grey" #find module with high association 

column <- match(module, modNames) 

moduleMetabs <- moduleColours == module 

 

sizeGrWindow(7,7) 
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par(mfrow = c(1,1)) 

verboseScatterplot(abs(metabModuleMembership[moduleMetabs, column]), 

                   abs(metabTraitSignificance[moduleMetabs, 1]), 

                   xlab = paste("Module Membership in", module, "module"), 

                   ylab = "Metabolite significance for Base in peak oxygen uptake", 

                   main = paste("Module membership vs. metabolite significance\n"), 

                   cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module) 

#summary output of network analysis results 

#create dataframe 

metabInfo0 <- data.frame(featID = metabData$FeatID, 

                         moduleColor = moduleColours, 

                         metabTraitSignificance, 

                         MSPvalue, 

                         metabTraitSignificance2, 

                         MSPvalue2, 

                         metabTraitSignificance3, 

                         MSPvalue3) 

#order modules by significance for trait 

modOrder <- order(-abs(cor(MEs, vo2, use="p"))) 

#add module membership information in the chosen order 
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for (mod in 1:ncol(metabModuleMembership)){ 

  oldNames = names(metabInfo0) 

  metabInfo0 = data.frame(metabInfo0, metabModuleMembership[, 

modOrder[mod]], 

                          MMPvalue[, modOrder[mod]]); 

  names(metabInfo0) = c(oldNames, paste("MM.", modNames[modOrder[mod]], 

sep=""), 

                        paste("p.MM.", modNames[modOrder[mod]], sep="")) 

} 

#order metabolites in Info variable by module colour, then by TraitSignificance 

metabOrder <- order(metabInfo0$moduleColor, -abs(metabInfo0$MS.vo2)) 

metabInfo <- metabInfo0[metabOrder,] 

#write as spreadsheet 

write.csv(metabInfo, file = "metabInfo_HILICpos_base.csv") 
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Appendix 4. Chromatograms 

 

Supplementary Figure 1 Example chromatograms 

Representative examples of chromatograms obtained by UHPLC-MS/MS operated in 
the (A) polar negative, (B) polar positive, (C) non-polar negative, and (D) non-polar 
positive mode. 

A 

B 

C 

D 


