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Abstract 

A sense of agency (SoA) refers to an individual’s awareness of their control over their voluntary 

actions and the sensory consequences of those actions. Experiencing a veridical SoA is imperative 

to basic functioning as it facilitates effective goal-directed action. Despite this, a consensus on the 

trajectory at which the capacity to experience a SoA develops from childhood to adulthood has 

remained absent from past literature. To resolve this issue, SoA development was investigated by 

evaluating the influence of age on the functional efficiency of the forward model; the cognitive 

framework believed to generate a SoA. More specifically, the current research examined the extent 

to which children, adolescents and adults could, i) accurately predict the outcome of their action, 

and ii) update their action-outcome knowledge following post-action feedback; two skills 

indicative of a precise forward model.  

 

A synchronisation-continuation task (chapter 3) was used to assess the impact of age on 

both the capacity to form veridical action-outcome predictions and update action-outcome 

knowledge in children, adolescents and adults. To isolate the effect of age on action-outcome 

prediction, a cued reaction time task (chapter 4) and a goal-switching task (chapter 5) were also 

administered to children, adolescents, and adults. Likewise, an outcome learning task (chapter 6) 

was used to assess how post-action learning changes from adolescence to adulthood. It was 

revealed that the frequency at which individuals engage in action-outcome prediction (chapter 4) 

and the quality of those predictions (chapters 3 and 5) improves with age. Similarly, the accuracy 

(chapter 3) and magnitude (chapter 6) to which individuals can update action-outcome knowledge 

in response to feedback was also found to refine with age. Moreover, the results of this thesis 

extend prior knowledge by suggesting that forward model precision, and thereby, the capacity to 

experience a SoA, develops with age across childhood, adolescence, and young adulthood.  
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Covid-19 Impact Statement 

In March 2020, the UK government announced restrictions on all non-essential contact in response 

to the Covid-19 pandemic. This included the immediate suspension of all face-to-face data 

collection and teaching activities (Brown & Kirk-Wade, 2021). The following statement will 

outline the implications of these restrictions for the current research.  

 

As will be discussed within the empirical chapters, the current research primarily consisted 

of online behavioural experiments. However, the presented studies are not reflective of the original 

research plan for this project. In 2019, preparations had been made to run in-person behavioural 

experiments exclusively. More specifically, offline versions of the synchronisation-continuation 

task (see chapter 3) and cued RT task (see chapter 4) had been designed in MATLAB using 

Psychtoolbox (Kleiner et al., 2007). An electroencephalogram (EEG) was also intended to be used 

to record participants’ contingent negative variation (CNV) during the cued RT task, as 

implemented in prior developmental research (e.g., Bender et al., 2005; Thillay et al. 2015). The 

CNV is believed to be indicative of stimulus expectancy and motor preparation (Kononowicz & 

Penney, 2016), and hence, would have provided an additional measure of participants’ capacity to 

form outcome predictions. Furthermore, there was a plan to run an experiment to explore 

participants’ sensory adaptation, or in other words, their ability to adjust the direction of their 

reaching movements in response to sensory feedback. This would have involved using a hand-held 

robot manipulandum device to exert artificial perturbations on participants’ expected action-

outcome contingencies, similar to the device used in research by Kim et al. (2019b). 

 

In response to the announced restrictions on in-person contact, the current research 

underwent a complete shift in focus from offline behavioural experiments to online behavioural 

studies, i.e., experiments that could be completed remotely without face-to-face contact with a 

researcher. As a result, the synchronisation-continuation task and cued RT task were entirely 

reprogrammed within PsychoPy to facilitate the online data collection. To achieve this, a 

considerable amount of time was spent completing self-paced online courses in Python; the 

programming language needed to recreate the planned tasks within PsychoPy. In addition, given 

that participants were unlikely to have access to an EEG device or a hand-held robot 
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manipulandum device within their home, plans to utilise a CNV measure in the cued RT task and 

conduct a sensory adaptation study were abandoned.  

 

In addition to the suspension of all face-to-face research activities, all UK primary and 

secondary schools were closed intermittently throughout 2020, and some of 2021, as part of 

government-imposed restrictions on all in-person teaching. This meant that school educators and 

pupils had to navigate online teaching and learning for the first time, leading to increases in 

perceived workload, stress and burnout for both groups (Beames et al., 2021; Commodari & La 

Rosa, 2021; Kim et al., 2022). This caused a considerable delay to the recruitment of individuals 

aged 13-17 for all four of the current studies. Attempts were made to contact several high schools 

regarding the recruitment of adolescents for the current project during this time. However, quite 

understandably, many educators commented that they did not have the capacity or resources 

available to support any research studies. Even when schools did reopen, the majority of educators 

contacted noted that their workload still left little space to support any external projects, as they 

adjusted back to in-person teaching. To speak candidly, this created a great deal of anxiety for me. 

As the end of 2021 arrived, it was unclear whether any adolescent participants would be recruited 

at all.  

 

Fortunately, at the beginning of 2022, educators at two different secondary schools 

confirmed that they were able to facilitate participant recruitment for the current project. However, 

it should be noted that the difficulty experienced in gaining access to adolescent participants 

restricted the quantity of adolescent participants that were recruited. Likewise, given that all 

primary schools were also closed during the pandemic, it was only possible to recruit child 

participants via Summer Scientist Month, an event which ran online in 2020 and 2021. Again, this 

limited the number of child participants recruited, as well as the diversity of ages that I was able 

to collect data for.  

 

Finally, the current research intended to recruit adolescents with Tourette Syndrome for all 

four of the present studies. Tourette Syndrome is a developmental disorder associated with 

involuntary movements and vocalisations (Cavanna et al., 2009). Previous research has shown that 

individuals with Tourette Syndrome exhibit both a deficit in their ability to update their forward 
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model (Kim et al., 2019b) and an impaired sense of agency (Zapparoli et al., 2020). Therefore, by 

comparing the extent to which those with and without Tourette Syndrome could predict the most 

probable consequences of their actions and update their action-outcome knowledge, the current 

research intended to gain a more comprehensive understanding of how the neurotypical adolescent 

forward model system operates. Recruitment of individuals with Tourette Syndrome occurred via 

social media and through the charity, Tourettes Action. Unfortunately, an insufficient number of 

participants with Tourette Syndrome were recruited. Notably, government-imposed restrictions on 

face-to-face contact limited the avenues through which young people with Tourette Syndrome 

could be accessed. For instance, many support groups for individuals with Tourette Syndrome 

were not operating according to their normal schedule. Moreover, four planned chapters of this 

thesis were discarded. 

 

In summary, the Covid-19 pandemic and associated government-imposed restrictions 

warranted alterations to the planned research methods and introduced delays and constraints to 

participant recruitment. Thank you for taking this consideration when reading this thesis.  
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Chapter 1: General Introduction 

 

Chapter Summary 

Chapter 1 takes the form of a narrative review, beginning with an overview of how sense of agency 

has been conceptualised in past literature. Current knowledge regarding how a sense of agency 

might develop will then be discussed. Following this, the concept of a forward model will be 

introduced and the relevance of forward models to the topic of agency will be outlined. Finally, 

past research on how the quality of an individual’s forward model might improve with age will be 

discussed, which will then lead to the aims of this thesis. 

What is a Sense of Agency?  

A sense of agency (SoA) refers to an individual’s awareness of their control over their voluntary 

actions and the sensory consequences of those actions (Haggard & Chambon, 2012). Given that 

an individual will author numerous voluntary actions over the course of a single day, experiencing 

a SoA is imperative to basic functioning (Haggard, 2017). In particular, it enables the individual 

to identify and continuously monitor the impact of their own actions upon their environment 

(Liljeholm, 2021). Through this knowledge, they can then maintain an up-to-date understanding 

of how they can interact with the physical world in order to achieve their goals (Moore & Obhi, 

2012). In addition to shaping our knowledge of the external world, possessing a SoA is also 

paramount to maintaining an accurate sense of self as it provides a means through which to 

differentiate our own actions from those of other agents (David et al., 2011).  

 

When attempting to specify the precise characteristics of an agency experience, it is 

important to first acknowledge the idea that SoA can be subdivided into two separate constructs: 

a feeling of agency (FoA) and a judgement of agency (JoA; Synofzik et al., 2008). A FoA is 

defined as a low-level, internal ‘buzz’ sensation which informs the individual of their control over 

their voluntary action and its effect. It has been suggested that a FoA is formed through an internal 

computation where the expected consequence of a voluntary action is compared with what actually 

occurred after the action was performed. When a match is detected, a FoA is experienced and the 

event is classified as self-authored (Synofzik et al., 2013). The FoA has been argued to rely 
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predominantly on the cerebellum and sensorimotor areas, such as the pre-supplementary motor 

area (pre-SMA; Seghezzi et al., 2019) due to their role in predicting the sensory consequences of 

intended actions (Seghezzi & Zapparoli, 2020; Welniarz et al., 2021) and detecting disparity 

between predicted and observed sensory outcomes (Gabitov et al., 2020; van Kemenade et al., 

2019).  

 

In contrast to the FoA, the JoA is characterised as a higher-order, explicit belief regarding 

the most likely cause of an observed outcome. JoAs are believed to be produced through a process 

of conscious reasoning where the individual’s personal beliefs regarding their ability to execute 

the action, the perceived alignment between their intention and the observed outcome, and their 

perception of the contextual information available post-action execution, such as the spatial and 

temporal proximity of other potential sources of the sensory event, are taken into account (Desantis 

et al., 2011; Weiss et al., 2014). The JoA has been associated with activation in prefrontal areas, 

such as the dorsal medial prefrontal cortex (Sperduti et al., 2011), an area linked to the processing 

of salient context cues (Moorman & Aston-Jones, 2015) and hypothetical reasoning about others’ 

motives (Molenberghs et al., 2016), and the ventromedial prefrontal cortex (Subramaniam, 2021), 

which has been argued to contribute to self-referential processing and the maintenance of self- vs 

other-related cues in working memory (Yin et al., 2021).  

 

Evidently, where a FoA is merely concerned with establishing whether or not the individual 

themselves was the author of an observed event, a JoA moves a step beyond this and seeks to 

establish, if not the agent themselves, then who or what caused the event to happen (Haggard, 

2017). Unsurprisingly, researchers grounded in action literature tend to focus exclusively on 

examining the FoA, centring their investigations on understanding the cognitive and neural 

architecture underlying this internal agency sensation (e.g., Haggard & Clark, 2003). Whereas, 

phenomenological and social psychologists tend to be more concerned with understanding the JoA 

than the FoA, often framing their findings in the context of moral and legal responsibility (Lacey, 

2016; Pulkkinen & Aaltonen, 2003; Sidarus et al., 2020), as well as perceived free-will and 

wellbeing (Bandura, 1989; Saarikallio et al., 2020). 
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Research directly focused on determining the maturation of either facet of agency is 

notably lacking from past literature (Choudhury et al., 2007). Furthermore, of the research that has 

explicitly investigated SoA development, it may be argued that the primary focus has been on 

understanding children’s and adolescents’ JoA (e.g., Nobusako et al., 2020, 2022; van Elk et al., 

2015; Weijs et al., 2021) with relatively few studies concerned directly with revealing the nature 

of their FoA (e.g., Cavazzana et al., 2014, 2017). Arguably, this is likely the result of the relative 

ease with which a JoA can be measured in comparison to a FoA (Synofzik et al., 2013). To examine 

the accuracy of an individual’s JoA, a researcher will often manipulate the visual feedback 

available after a participant’s action, either temporally (Nobusako et al., 2020) or spatially 

(Metcalfe et al., 2010). They then need only ask the participant the extent to which they attribute 

the observed event to their own action or to that of another agent (Saito et al., 2015). Whereas, a 

FoA is not directly observable as it occurs internally and is thus harder for researchers to quantify 

(Haggard, 2017).  

 

The lack of direct research into the developmental trajectory of the FoA is a prominent 

issue given that a FoA is arguably more commonly experienced than a JoA and is therefore of 

greater use in everyday life (Haggard, 2017). Individuals are rarely required to make explicit 

evaluations regarding their sense of control over their actions in day-to-day life. Whereas, an 

internal experience of the fluidity between a planned action and its external effect is frequently 

experienced (Kühn et al., 2013). In addition, given that the FoA has been suggested to rely on 

different brain regions than the JoA, it follows that these two constructs will likely develop at 

differing rates (Saito et al., 2015). Indeed, research examining brain development from childhood 

to adulthood has consistently shown that cortical grey matter develops in a region-specific manner 

with motor and sensory systems maturing earliest and higher-order areas demonstrating a 

protracted development period (Gogtay et al., 2004; Lenroot & Giedd, 2006), thus suggesting that 

the FoA may develop at a faster rate than the JoA. Therefore, the current research aimed to 

determine the developmental trajectory of the FoA, as its presence, or lack thereof, is essential to 

individuals’ everyday interactions with their environment. For simplicity and to remain consistent 

with previous action literature (e.g., Haggard et al., 2002), the term SoA will be used to refer to 

the FoA exclusively throughout the remainder of this thesis. 

 

https://www.zotero.org/google-docs/?mOsFKk
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The Development of Agency 

We will now turn to current knowledge regarding how a SoA might develop. Despite being 

essential for daily life, few studies have directly investigated how SoA reaches an adult-like level 

of precision (Choudhury et al., 2007). Furthermore, of the research that has explicitly investigated 

SoA development, the primary focus has centred on comparing the experiences of children with 

those of adults (e.g., Cavazzana et al., 2014, 2017), thereby omitting adolescence from the 

discussion. Notably, of the two studies which have examined how an experience of agency differs 

in childhood relative to adulthood, both concluded that children have a reduced SoA compared to 

adults (Cavazzana et al., 2014, 2017). This implies that SoA develops linearly with age, meaning 

that adolescents will likely outperform children but perform comparatively worse than adults. 

Indeed, this idea is consistent with past neuroimaging research, which has highlighted adolescence 

as a critical development period featuring significant maturational changes in regions of the brain 

previously linked to SoA, such as the pre-SMA, the parietal cortex and the cerebellum (Blakemore 

et al., 2012; Fuhrmann et al., 2015; Shaw et al., 2008; Sowell et al., 1999; Wierenga et al., 2014; 

Zito et al., 2020). 

 

Thus far, this assertion of an age-related improvement in SoA across adolescence has not 

been supported. To date, only two studies have directly examined SoA in adolescence (Aytemür 

et al., 2021; Aytemür & Levita, 2021). In research by Aytemür and Levita (2021), children (9-10), 

mid-adolescents (13-14), late-adolescents (18-20) and adults (25-28) were instructed to make a 

keypress at any time of their choice whilst viewing an analogue clock. After a delay, a tone was 

delivered and participants were asked to report the time on the clock at the moment which the tone 

was heard. The extent to which participants exhibited the outcome binding effect was then 

recorded. The outcome binding effect refers to a phenomenon in which an individual judges a 

sensory event to have shifted temporally towards their action. This effect is believed to only occur 

when the individual believes that their action caused the event to transpire (Render & Jansen, 

2021). Hence, the outcome binding effect has been suggested to measure the extent to which an 

individual experiences agency over a given event (Borhani et al., 2017). Aytemür and Levita 

(2021) found that the outcome binding effect declined from childhood to late-adolescence before 

returning to a level similar to that observed in children at adulthood. Therefore, contrary to the 
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proposed notion of a linear improvement in SoA with age across ontogeny, this finding suggests 

that SoA development follows a U-shaped trajectory, with a marked decrement in adolescence.  

 

Intriguingly, when the same researchers measured the outcome binding effect again in mid-

adolescents (13-14), late-adolescents (18-20) and adults (25-28) using a near identical task, they 

failed to replicate their previous findings (Aytemür et al., 2021). It was found that the outcome 

binding effect was greater in mid-adolescents compared to adults, whilst outcome binding in late-

adolescents did not differ from the levels of binding observed in mid-adolescents or adults. 

Initially, this appears to directly contradict their previous conclusion of a poorer SoA amongst 

adolescents relative to adults. However, Aytemür et al. (2021) argued that the reason for the 

disparity between the findings of their two studies was that they had implemented a longer delay 

of 450ms between participants’ actions and the tone in the current task compared to the 250ms 

delay used in Aytemür and Levita (2021). 

 

In support of the idea proposed by Aytemür et al. (2021) to explain their results, previous 

research has argued that there is a cognitive mechanism, known as a temporal binding window, 

which determines the maximum delay that can exist between an action and an effect for the two to 

still be perceived as causally related (Jaime et al., 2014). It has been shown that the temporal 

binding window narrows with age through childhood, adolescence and young adulthood (Hillock-

Dunn & Wallace, 2012; Nobusako et al., 2018). Therefore, the results obtained by Aytemür et al. 

(2021) demonstrate that mid-adolescents are more willing to accept a longer delay between an 

action and an effect than adults. Arguably, this tendency suggests that adolescents are more likely 

to incorrectly bind unrelated actions and effects together, and thereby falsely perceive an event as 

self-produced compared to adults. This interpretation then implies that the results of Aytemür et 

al. (2021) are indeed consistent with the conclusion drawn by Aytemür and Levita (2021), as it 

suggests that adolescents have a less precise and more error-prone SoA compared to adults.  

 

Alternatively, if it were the case that adolescents’ expanded temporal binding window 

meant that they were more likely to perceive a tone that occurred 450ms after their action as self-

caused than adults in research by Aytemür et al. (2021), then it is unclear why adolescents in 

research by Aytemür and Levita (2021) were less able to perceive a tone that onset 250ms after 
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their action as self-produced compared to adults. Intuitively, it follows that, if adolescents’ 

temporal binding window can accommodate a 450ms delay between an action and its effect, then 

a shorter 250ms delay should fit adequately within that same window. For this reason, it can be 

argued that the explanation that was proposed by Aytemür et al. (2021) to explain their findings 

was specious, as it is incompatible with the results of Aytemür and Levita (2021). Subsequently, 

given that adolescents’ experience of agency has only been investigated in two prior studies with 

arguably contradictory results, the precise manner through which SoA matures across this 

development period remains ambiguous. Hence, the ultimate goal of the current research was to 

determine whether SoA matures at a linear rate across ontogeny, as suggested by past child studies 

(e.g., Cavazzana et al., 2014; 2017) and neuroimaging research (e.g., Blakemore et al., 2012).  

 

Notably, all four of the noted studies that have sought to determine the developmental 

trajectory of agency have employed a version of the intentional binding effect to measure SoA 

(Cavazzana et al., 2014, 2017; Aytemür et al., 2021; Aytemür & Levita, 2021). The intentional 

binding effect refers to a temporal compression which occurs between the perceived timing of an 

action and its sensory effect when the effect is thought to be self-authored (Haggard, 2017). To 

clarify, the outcome binding effect recorded by Aytemür and Levita (2021) and Aytemür et al. 

(2021) is often conceptualised as a subcomponent of the intentional binding effect that focuses 

exclusively on the perceived shift in the timing of the sensory effect relative to the voluntary action 

(Render & Jansen, 2021). It has been argued that the intentional binding effect is reliant on the 

same cognitive system as a SoA, as creating a mismatch between the expected and actual timing 

of the action consequence via the addition of a temporal delay has previously been found to 

diminish the intentional binding effect (Wen, 2019). For this reason, the intentional binding effect 

has commonly been used as a measure of agency within past research (Haggard, 2017).  

 

In criticism of the noted reliance on the intentional binding effect in past studies, it has 

been argued that this effect may not measure SoA exclusively (Suzuki et al., 2019). This can be 

said as it has also been associated with causal inference and multisensory integration in absence 

of any volitional action (Kirsch et al., 2019; Lorimer et al., 2020; Suzuki et al., 2019). Therefore, 

by studying how the functionality of the cognitive framework underlying SoA changes with age 
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across childhood, adolescence and young adulthood, it will be possible to gain a more direct 

understanding of SoA development than has been achieved in prior intentional binding studies. 

Forward Models and Their Relevance to Agency 

The internal computation through which predicted and observed action outcomes are compared in 

order to produce a SoA is believed to occur within a cognitive framework, known as a forward 

model (Haggard & Chambon, 2012). Forward models were originally conceptualised in the 

context of optimal motor control (e.g., Wolpert et al., 1995). Our environment is an inherently 

dynamic space. Hence, the brain often receives sensory input from multiple different sources 

simultaneously (Wolpert & Flanagan, 2001). Therefore, in order to regulate the impact of our 

motor actions on the environment, it has been argued that the brain maintains two classes of 

internal, computational model: forward sensory models and forward dynamic models (Wolpert et 

al., 1995). When an individual intends to perform an action, the brain first generates a motor 

command. This motor command contains instructions for the muscles on how to manipulate the 

current body state in order to execute the desired action. A forward sensory model uses an 

efference copy of the motor command to form a prediction regarding the most probable sensory 

consequences of the intended action. Whereas, a forward dynamic model uses the motor command 

to predict the most likely end body state that will be reached post-action execution (Wolpert & 

Ghahramani, 2000).  

 

When these internal models were first conceptualised, the precise mechanism through 

which these predictions are created was not explicitly specified (e.g., Wolpert et al., 1995). Given 

that our sensory receptors are unable to perceive sensory events with perfect acuity, it has been 

suggested that each signal arriving into the brain will be corrupted by a degree of perpetual and 

neural noise (van Beers et al., 2002; Neri, 2010; Wallace & Stevenson, 2014). Outside of the action 

context, perception researchers have argued that the brain is able resolve the uncertainty introduced 

by this noise and thereby, predict probable future sensory events, by weighting relevant knowledge 

gained from past experience against current contextual information using Bayes’ theorem (Vilares 

& Körding, 2011; see equation 1.1, as outlined by Shi et al., 2013). For example, when faced with 

an unidentifiable figure in a dimly lit room, pre-acquired knowledge, such as the identity of all the 
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other occupants in the house, is combined with contextual information, such as the physical stature 

of the figure, in order to presume the identity of the mystery individual.  

 

To briefly explain the notation shown in equation 1.1,  𝐸𝑝𝑟  refers to an average estimate of 

the sensory evidence accumulated from past experience, otherwise known as the prior. Whereas, 

𝐸𝑙𝑖 refers to the likelihood, or in other words, the individual’s perceptual estimate of the available 

contextual cues. 𝑊𝑝𝑟 and 𝑊𝑙𝑖 represent the weight awarded to the prior and the likelihood, 

respectively. Finally, 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 refers to the prediction produced as a result of the weighted 

combination of the prior and the likelihood.  

 

 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  (𝑊𝑝𝑟  ∗  𝐸𝑝𝑟)  + (𝑊𝑙𝑖 ∗  𝐸𝑙𝑖)  

(1.1) 

 

Crucially, in order to minimise the level of noise present in the final prediction, it has been 

argued that the likelihood and the prior are not necessarily integrated with an equal weighting to 

produce the posterior (Moore & Fletcher, 2012). For instance, if the individual’s sensory system 

is unable to make a reliable estimate of one or more sensory cues available in the environment, 

then less weight will be awarded to the likelihood information relative to the prior evidence (Ernst 

& Banks, 2002; Yon & Frith, 2021). On the other hand, if the individual’s prior knowledge is 

unreliable due to a lack of relevant experience, then the computed posterior will be based more on 

the likelihood than on the prior (Knill & Pouget, 2004). Therefore, it is believed that by attuning 

the weight assigned to the prior and likelihood, the veridicality of the posterior prediction is 

maximised.  

 

Subsequent literature has also sought to apply Bayes’ theorem to action research, thus 

suggesting that the predictions of forward sensory models and forward dynamic models are formed 

through a weighted combination of a prior and a likelihood (e.g., Faisal et al., 2008; Franklin & 

Wolpert, 2011; Legaspi & Toyoizumi, 2019). In the context of the forward sensory model, a prior 

refers to a belief regarding the typical result of the intended action, based on an average estimate 

of all previous iterations of the planned action. Whereas, a likelihood refers to an estimate of the 
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sensory information available in the environment before action execution, such as the perceived 

properties of an encountered object (Berniker & Körding, 2011; Di Luca & Rhodes, 2016). 

Therefore, from a Bayesian perspective, the predictions of a forward sensory model are formed 

through the combination of both internal prior knowledge cues and external likelihood cues 

(Moore & Fletcher, 2012).  

 

After the motor action has been completed, it is believed that a comparator mechanism 

within the forward sensory model then compares the predicted outcome with the actual sensory 

information observed (Carruthers, 2012). If a disparity is detected between the expected and 

observed outcomes, then one of two consequences occurs: either the forward sensory model is 

updated or the model remains unchanged and instead, a different action is chosen for any 

subsequent movements (Chambon et al., 2014). The magnitude to which the forward sensory 

model is modified varies according to the outcome of the comparator mechanism. The larger the 

discrepancy detected by the comparator, the greater the extent to which the probabilistic 

associations between the action and its potential effects are altered. The updated model is then 

used to generate new outcome predictions when the individual performs the target action again in 

the future (Franklin & Wolpert, 2011).  

 

A SoA is believed to arise as a by-product of the internal computation that occurs at the 

comparator mechanism; the greater the alignment between expectations and observations, the 

greater the probability that a SoA will be experienced (Sato & Yasuda, 2005). Subsequently, the 

accuracy with which an individual can experience a SoA over an observed sensory event is 

dependent on the precision of their forward model prediction. In turn, the veridicality of those 

predictions is thought to be reliant on the individual’s ability to utilise the information gained from 

past action to maintain an up-to-date conceptualisation of the action-outcome contingencies 

relevant to the current context (Asai, 2017). 

 

In support of the assertation that both the optimisation of motor control and SoA rely on 

the precision of the forward sensory model, past research has shown that both processes rely on 

the same areas of the brain, such as the cerebellum, the pre-supplementary motor area, and the 

angular gyrus (Tanaka et al., 2020; Welniarz et al., 2021). Similarly, past research has 
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demonstrated that introducing a spatial or temporal discrepancy between a voluntary action and its 

outcome creates an incongruency between the anticipated and actual consequence of the action, 

and thereby diminishes the individual’s sense of control over the observed event (Haggard et al., 

2002; Kirsch et al., 2016; Ruess et al., 2018). Taken together, these findings suggest that through 

studying the functionality of the forward sensory model, it will be possible to obtain a proxy 

measure of a participant's SoA. For simplicity, the forward sensory model will be referred to as 

the forward model for the remainder of this thesis. 

 

Incidentally, it should briefly be acknowledged that some past studies have adopted a 

Bayesian account to describe how outcome feedback can alter a learned action-outcome 

association (e.g., Berniker & Körding, 2011; Hohwy, 2017; Körding & Wolpert, 2006). Yon et al. 

(2020) argued that both the predicted and actual sensory information are entered into a weighted 

comparison. When the individual’s perceptual estimate of the observed outcome is more precise 

than their expectation, greater weight is assigned to this new evidence over their prediction. Their 

prior action-outcome knowledge will then remain unchanged and a new action will be selected for 

any subsequent actions. Whereas, when a prediction is less reliable than the sensory feedback 

observed, less weight is attributed to the prediction relative to the observed feedback. As a result, 

the individual will then incorporate the incoming sensory feedback into their prior estimate. Given 

that the prior is believed to be an average estimate of a range of past observations, it has been 

argued that, the larger the dissimilarity between the newly observed outcome and this distribution 

of past observations, the greater the extent to which the prior estimate is altered by this new 

outcome information (Berniker & Körding, 2011; Hohwy, 2017). Evidently, this Bayesian account 

of motor control appears to be compatible with the more traditional comparator mechanism 

account; larger discrepancies between predicted and observed outcomes result in more substantial 

changes to the conceptualised action-outcome relationship.  

 

On a similar note, some studies have also taken a Bayesian approach to explain the manner 

in which a SoA can emerge (e.g., Legaspi & Toyoizumi, 2019). It has been argued that, the higher 

the probability that the expected and perceived outcomes were produced from the same prior 

estimate, the greater the individual’s SoA over the observed event (Legaspi & Toyoizumi, 2019). 

Again, it appears that this Bayesian perspective of SoA production is in agreement with the 
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traditional comparator mechanism account; the higher the correspondence between an anticipated 

and an observed outcome, the greater the probability that a SoA will be experienced. Ergo, this 

reinforces the decision to measure the functionality of the forward model as an index of one’s 

capacity to experience agency within this thesis. 

The Development of the Forward Model 

Attention will now turn to current knowledge regarding the developmental trajectory of the 

forward model, given its suggested role in constructing a SoA. In particular, this subsection will 

discuss how the ability to i) appropriately update action-outcome knowledge in response to 

incoming action feedback and ii) form accurate action-outcome predictions matures with age, as 

both abilities demonstrate the precision of the forward model (Desmurget & Grafton, 2000).  

 

In order to predict the consequence of a planned action, it has been suggested that an 

individual must first be able to conceptualise the causal associations between their own actions 

and observed sensory events (Assaiante, 2012). This action-outcome knowledge is not innate; 

infants will often flail their limbs in the absence of a distinct goal (Adolph & Franchak, 2017). 

However, these initial explorative movements provide infants with the opportunity to build 

associations between specific actions and their effects (Paulus et al., 2012). Indeed, it has been 

demonstrated that the capacity to learn about action-effect contingencies after repeated exposure, 

and use this knowledge to guide further action, is present from early infancy (Gredebäck et al., 

2018; Kretch & Adolph, 2012). For example, Watanabe and Taga (2006) demonstrated that, when 

the previously observed result of their leg kick suddenly became absent, 2-month-old infants 

increased the frequency of their subsequent kicking movements. This suggests that, from 2-

months-old, infants can acquire an understanding of the relationship between their kick and its 

effect from past action feedback. Not only this, but this also illustrates that infants can use this 

knowledge to predict the outcome of their action, as evidenced by their increased leg-kicking 

frequency when their expectation was violated. Therefore, this suggests that individuals can 

construct and operationalise a forward model from early infancy. 

 

Given evidence to suggest that the capacity to produce and utilise a forward model to 

support goal-directed action is already present from as early as 2-months-old (Watanbe & Taga, 
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2006), one could conclude that the objective of this thesis is redundant. However, the mere 

presence of a forward model does not guarantee that the model will operate with adult-like 

precision. Indeed, although it has been demonstrated that children can combine learned knowledge 

and new sensory evidence to generate causal predictions (Bejjanki et al., 2020; Griffiths et al., 

2011; Sobel & Munro, 2006), it has been argued that the accuracy of those predictions are poorer 

compared to those of adults (Klevberg & Anderson, 2002; Plumert, 1995). For example, when 

younger children (aged 4-7 years), older children (8-11 years), and adults were asked to walk 

through doorways of varying widths, Franchak (2019) found that participants’ accuracy in 

predicting whether or not they could fit through the available doorway space improved with age. 

This supports the idea that children possess a less sophisticated forward model compared to adults, 

as this finding suggests that children are less able to form accurate predictions regarding the most 

likely outcome of their action. 

 

One potential reason for the noted lack of precision in children’s outcome predictions is 

that the quantity of information that they are able to incorporate into their prior estimate has been 

argued to be poorer compared to that of adults (Chambers et al., 2018; Gopnik & Bonawitz, 2015). 

For example, in research by Barash et al. (2019), children aged 5-8 and adults drew yellow and 

green balls from an urn with replacement. Before each ball was drawn, participants predicted the 

ball’s colour. It was found that, compared to adults, children tended to base their predictions on 

the outcome of only the most recent trials, as opposed to an average estimate of all the balls seen 

so far. As a result, it was reported that children demonstrate poorer choice accuracy than adults. 

This suggests that, relative to adults, children are less able to appropriately update their prior 

action-outcome knowledge to incorporate new outcome evidence, thus resulting in erroneous 

subsequent predictions. Consequently, this implies that children’s inferior prediction accuracy 

results from a poorer ability to learn from post-action feedback when compared to adults. 

Therefore, this finding provides further support for the idea that children possess a less developed 

forward model system than adults.  

 

As the quantity of information that children are able to incorporate into their prior is 

believed to be relatively limited compared to that of adults, it has been suggested that their 

predictions will often be biased towards the likelihood (Chambers et al., 2018). As previously 
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noted, the sensory system is not an infallible machine able to perceive sensory events with 

impeccable acuity (Wolpert & Flanagan, 2001). This is particularly evident in children; adults have 

been shown to outperform children on tasks where they are asked to discriminate between different 

auditory and visual stimuli based on perceptual features, such as intensity, frequency, and duration 

(Bishop et al., 2011; Droit-Volet et al., 2007; Jensen & Neff, 1993; Zélanti & Droit-Volet, 2012). 

Likewise, it has been reported that children below the age of 10 are unable to integrate multiple 

sensory cues in an optimal manner (Ernst & Banks, 2002). Taken together, this suggests that 

children are less able to access an accurate perceptual estimate of the sensory information present 

within their environment compared to adults. Therefore, in addition to an unreliable prior, 

children’s poor prediction accuracy can also be attributed to a tendency to over-rely on imprecise 

likelihood information. Additionally, this lack of perceptual acuity can also be suggested to 

undermine their capacity to evaluate the congruency between predicted and actual feedback and 

thereby, update action-outcome knowledge. Ergo, this provides further evidence in support of the 

idea that children have a less precise forward model system than adults. 

Gaps in the Current Literature 

In parallel to previous SoA literature (e.g., Cavazzana et al., 2014, 2017), the majority of past 

studies which have contributed to our understanding of forward model development have tended 

to compare how children and adults differ in their ability to predict action consequences (e.g., 

Franchak, 2019; Perchet & Garcia-Larrea, 2005) and adapt behaviour in response to sensory 

feedback (e.g., Wilson & Hyde, 2013; Tahej et al., 2012; Scheerer et al., 2016). In contrast, 

relatively few studies have explicitly examined the manner in which the forward model system 

develops in adolescence (Quatman-Yates et al., 2012; Barlaam et al. 2012; Dahl et al. 2018). 

Hence, the objective of the current thesis was to determine the full trajectory at which the forward 

model develops from childhood to adulthood, including across adolescence.  

 

Adolescence is a developmental period which spans from the onset of puberty to the start 

of adulthood, typically occurring between the ages of 13-17-years-old (Jaworska & MacQueen, 

2015). This period is believed to be marked by substantial structural and functional changes within 

the brain (Sisk & Gee, 2022; Smith et al., 2011) as a result of increased synaptic pruning and 

myelination (Whitford et al., 2007). These maturational changes have been argued to cause a 
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progressive shift throughout adolescence from a bottom-up, stimulus-driven motor control strategy 

to a more top-down, proactive method of action control (Braver, 2012; Decker et al., 2016). In line 

with this idea, it has previously been argued that adolescents are better able to prepare appropriate 

motor responses in anticipation of target stimuli compared to children (Padilla et al., 2014; Van 

Gerven et al., 2016); a skill which necessitates the estimation of probable action-consequences 

(Wolpert & Flanagan, 2001). Furthermore, variation in adolescents’ anticipatory motor control has 

previously been linked to age-related changes in the structure of their prefrontal cortex 

(Vijayakumar et al., 2014), a region of the brain implicated in both the proactive orientation of 

attentional resources towards expected stimuli (Bechara et al., 1996; Snyder et al., 2021) and the 

anticipatory representation of goal-related information (Chatham et al., 2009). Taken together, this 

suggests that the ability to predict the most probable outcome of a planned action should improve 

across adolescence, in line with developmental changes occurring within the brain.  

 

In further support of the idea that adolescents’ ability to anticipate action-consequences 

improves with age, it may be suggested that adolescents are able to construct more reliable prior 

and likelihood estimates compared to children. For instance, past research has shown that 

adolescents demonstrate improved sensory perception abilities compared to children, as evidenced 

by their enhanced performance on sensory discrimination tasks (Herman et al., 1996; Ladouceur 

et al., 2007). This implies that adolescents are better able to form an accurate perceptual estimate 

of the sensory information present within their environment than children. Hence, this suggests 

that the quality of the likelihood estimate that individuals are able to use when generating their 

forward model predictions improves with age from childhood to adolescence. Similarly, it has 

been reported that adolescents tended to use a greater volume of past trial outcomes to inform their 

subsequent choices on learning tasks compared to children (e.g., Barash et al., 2019; Master et al., 

2020). This suggests that the reliability of individuals’ prior estimate also undergoes age-related 

improvements from childhood to adolescence. Therefore, it may be argued that both the quality of 

forward model predictions and the ability to appropriately update learned action-outcome 

mappings should refine with age in adolescence, before reaching full maturity in adulthood. 
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Summary and Research Aims 

To summarise, the purpose of this thesis was to rectify the absence of adolescents from prior SoA 

development literature, and thereby, establish the full developmental trajectory of a SoA from 

childhood to young adulthood. Given that a SoA is believed to be produced via a forward model 

(Haggard & Chambon, 2012), and a SoA itself cannot be directly observed (Haggard, 2017), the 

proficiency of individuals’ forward model system was chosen as a proxy measure of agency. More 

specifically, the functionality of an individual’s forward model system was examined via their 

ability to i) accurately predict the outcome of their action, and ii) update learned action-outcome 

knowledge in response to post-action feedback; two skills indicative of a precise forward model.  

 

The primary goals of this thesis were twofold: 

 

1. Based on past literature (e.g., Van Gerven et al., 2016), the first goal of this thesis was to 

test the idea that the ability to form accurate action-outcome predictions improves with age 

from childhood to adulthood.  

 

2. In addition, the second goal of this thesis was to evaluate the suggestion that the ability to 

appropriately update learned action-outcome associations in light of post-action feedback 

improves with age from childhood to adulthood, as suggested by past research (e.g., Master 

et al., 2020).  

 

Evidently, achieving these two initial goals will allow us to attain our ultimate thesis aim: 

 

3. To assess the assertion that SoA matures at a linear rate from childhood to adulthood, as 

suggested by past child studies (e.g., Cavazzana et al., 2014; 2017) and neuroimaging 

research (e.g., Blakemore et al., 2012), in light of the contradictory evidence presented by 

Aytemür and Levita (2021).  

 

The empirical studies within this thesis will address the first and second thesis goals. The 

implications of the findings drawn from the reported studies for the third thesis objective will then 

be discussed in chapter 7. Furthermore, the next chapter will outline how the first and second goals 
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were investigated within this thesis, alongside the relative merits and limitations of the methods 

employed to accomplish this endeavour.  
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Chapter 2:  A Comprehensive Discussion of the Methodology Used in the Current 

Research 

 

Chapter Summary 

Chapter 2 outlines how prediction accuracy and post-action outcome learning were assessed 

empirically within the current research, in addition to the relative merits and limitations of the 

methods used to achieve these goals. More precisely, this chapter begins by briefly discussing the 

specific online behavioural tasks that were employed across this thesis and how they facilitated 

the quantification of participants’ prediction accuracy and post-action outcome learning. Next, the 

disadvantages of conducting behavioural experiments online are discussed, alongside their 

implications for the robustness of the current research and how the identified issues were mitigated. 

Following this, the parent- and self-report scales that were used to assess participants’ level of trait 

impulsivity are described and their use in the current research supported with appropriate prior 

evidence. The benefits and challenges that were encountered when recruiting participants for the 

current online studies are then discussed. Finally, the approach to data analysis taken throughout 

this thesis is outlined and justified. 

The Specific Behavioural Tasks Implemented Within the Current Research 

Across chapters 3 - 6 of this thesis, four online behavioural tasks are presented, each of which were 

used to assess how the forward model reaches an adult-like level of precision. A relatively brief 

overview of each task, including their relevance to the forward model and why they were chosen 

for the current research, will now be presented. A more detailed discussion of how prediction 

accuracy and/or post-action outcome learning were quantified in each task can be found within 

each individual empirical chapter.  

 

Chapter 3 - The Synchronisation-Continuation Task 

The study described in chapter 3 used a synchronisation-continuation task to measure the accuracy 

and consistency of sensorimotor continuation in participants aged 4-25. Sensorimotor continuation 

refers to an individual’s ability to maintain a specified temporal interval between each of their 

motor responses (McPherson et al., 2018). In keeping with past synchronisation-continuation 



 30 

studies (Repp & Su, 2013), participants were first instructed to press the spacebar in synchrony 

with a series of isochronous tones that were delivered at either a high, medium or low frequency. 

They were then required to continue pressing the spacebar at the same pace after the tones had 

been removed. The accuracy and consistency with which participants could maintain the same 

temporal interval between each of their keypresses as was present between the tones was then 

recorded as an indicator of their sensorimotor continuation skill.   

 

Previous research has argued that effective sensorimotor continuation is dependent on the 

precision of the forward model (Maes, 2016). In order to accurately and consistently reproduce the 

target response pace, participants must use their prior knowledge of the target inter-response-

interval to predict the optimal time at which to make their next response. They must then monitor 

for, and correct, any disparity between their produced inter-response-interval and the target inter-

response-interval (Maes, 2016). Evidently, the greater the accuracy and consistency with which 

participants could maintain the target response pace, the better both their prediction accuracy and 

their post-action outcome learning. Therefore, the results of chapter 3 are relevant to both the first 

and second objectives of this thesis.  

 

Aside from providing an effective method of indexing forward model precision, the 

synchronisation-continuation task was also selected for the current research because it is believed 

to be sufficiently simplistic for young children to understand, as demonstrated by its 

implementation in previous developmental studies (e.g., Monier & Droit-Volet, 2019). In addition, 

despite the fact that synchronisation-continuation tasks have only been run in offline contexts 

within prior research (e.g., Drewing et al., 2006), the task was also chosen because it was 

reasonably effortless to implement online. This can be said as no additional hardware was needed 

for participants to complete the study; only access to a keyboard and a stable Wi-Fi connection 

were required. Therefore, the synchronisation-continuation task was an ideal paradigm to utilise 

in the current research. 

 

Chapter 4 - The Cued Reaction Time Task 

Chapter 4 details an experiment in which a cued reaction time (RT) task was used to assess 

predictive motor timing in participants aged 4-25. Predictive motor timing refers to the ability to 
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manipulate the timing of an intended action such that its occurrence aligns with the predicted onset 

of an imminent stimulus (Debrabant et al., 2012; Tanaka et al., 2021).  Inspired by the tasks 

implemented in research by Brown (2019) and Burnett Heyes et al. (2012), participants were first 

presented with a red stimulus for a fixed interval during the cued RT task. After this, an amber cue 

stimulus was presented for a variable interval. Finally, the amber cue stimulus was replaced by a 

green target stimulus. Participants’ objective was to make a mouse click response as soon as the 

target stimulus became visible.  

 

Crucially, participants could achieve the task objective by either making an anticipatory 

response or a reactive response (Burnett Heyes et al., 2012). Anticipatory responses required 

participants to predict the most likely onset time of the target stimulus and thus, when best to 

respond such that their keypress temporally aligned with the target stimulus’ onset. Whereas, 

reactive responses were triggered by the onset of the target stimulus, and thus, required no internal 

action preparation via the forward model in advance of the target stimulus’ arrival (Braver, 2012). 

The ratio of anticipatory to reactive responses produced by each participant was recorded. 

Intuitively, anticipatory responses were more advantageous than reactive responses, as an 

anticipatory response would achieve faster reaction time relative to a reactive response. 

Consequently, the higher the anticipatory to reactive response ratio, the greater the participant’s 

predictive motor timing, and thereby, the better their ability to form forward model predictions. 

Hence, unlike the synchronisation-continuation task described in chapter 3, the cued RT task was 

used to measure participants’ prediction accuracy exclusively. Therefore, the results of chapter 4 

address the first goal of this thesis.  

 

Evidently, it can be argued that the objective of the cued RT task was fairly straightforward 

for both younger and older participants to understand, as evidenced by prior developmental 

research (e.g., Brown, 2019). This simplicity minimises the potentially confounding impact of age-

related differences in task comprehension on the results, thus making it an ideal paradigm for the 

current research. Furthermore, past research has demonstrated that the cued RT task can easily be 

framed as a car race, given that the roles of the cue and target stimuli mirror those of real-world 

amber and green traffic lights (Burnett Heyes et al., 2012). Therefore, the cued RT was believed 
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to be effective in maintaining the attention of younger participants, thus further justifying its 

suitability for the current research.  

 

Chapter 5 - The Goal-Switching Task 

The study outlined in chapter 5 used a goal-switching task to measure task-switching in 

participants aged 5-21. Task-switching refers to an individual’s ability to flexibly shift between 

two or more different task objectives (Barcelo et al., 2006). Inspired by the task administered by 

Jung et al. (2015), on each trial of the goal-switching task, participants were presented with either 

a red or green stimulus positioned on the left or right side of the screen. When the stimulus was 

green, participants had to perform a pro-saccade, which involved moving their gaze towards the 

side of the screen that contained the stimulus. Whereas, when the stimulus was red, an anti-saccade 

was required; participants needed to move their gaze to the opposite side of the screen, away from 

the presented stimulus. Whether or not participants shifted their gaze in the correct direction was 

recorded for each trial. Hence, the goal-switching task required participants to shift between 

performing pro-saccades and anti-saccades across the trials.  

 

To make a correct response on the goal-switching task, the participant needed to combine 

their prior knowledge of the causal action-outcome associations with the colour of the presented 

stimulus in order to determine how best to respond. Therefore, similar to chapter 4, the results of 

chapter 5 also address the first goal of this thesis. Switch costs and mixing costs were calculated 

for both pro-saccade trials and anti-saccade trials based on participants’ response accuracy. Switch 

costs revealed the cost to accuracy of having to switch between action-outcome pairings when 

assessing how best to respond. Whereas, mixing costs demonstrated the cost to accuracy of having 

to maintain, and select between, different action-outcome associations (Manzi et al., 2011). 

Moreover, both switch costs and mixing costs provide an effective means through which to 

quantify an individual’s ability to use appropriate prior knowledge to guide their current actions 

and suppress incorrect, automatic responses. Similar offline tasks have previously been used to 

assess task-switching in developmental studies (e.g., Reimers and Maylor, 2005). Moreover, this 

reinforced the decision to utilise the goal-switching task within the current research.  
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Chapter 6 - The Outcome Learning Task 

Chapter 6 describes an experiment in which an outcome-learning task was administered to 

participants aged 14-24. Outcome learning refers to an individual’s ability to alter their knowledge 

of the action-outcome contingencies present within their environment in response to post-action 

feedback (Kawato & Wolpert, 2007). In keeping with the task used by Browning et al. (2015), 

participants selected between two boxes during the outcome-learning task, one of which contained 

a reward. The task contained two conditions. In the stable condition, the relative probability that 

each box would lead to a reward outcome was fixed. Whereas, in the volatile condition, these 

probabilities shifted between the two boxes over time. Each participant’s choices were then 

recorded. From this, one learning rate was calculated per condition for each participant. The 

learning rate revealed the extent to which the participant’s action-outcome knowledge, and 

subsequent choice behaviour, was modified in response to the most recently observed trial 

outcomes. The higher the learning rate, the greater the influence of recent outcomes on learned 

action-outcome knowledge, relative to the wider history of observed feedback. 

 

To maintain an up-to-date understanding of the probabilistic associations between actions 

and their effects, an individual must incorporate observed action feedback into their prior estimate 

(Berniker & Körding, 2011). Crucially, the rate at which these modifications to prior knowledge 

are made must be modulated according to the volatility of the current context (Behrens et al., 

2007). In a relatively stable context, where probabilistic action-outcome relationships remain fixed 

over time, it is optimal to possess a low learning rate. As a result, each action outcome will only 

trigger a minor update to the individual’s action-outcome knowledge (Behrens et al., 2008). 

Whereas, in a more volatile context, where action-outcome associations are subject to frequent 

change, a high learning rate is favourable. Consequently, a recent action outcome will trigger a 

substantial update to one’s action-outcome knowledge (Browning et al., 2015). Therefore, this 

suggests that, by examining an individual’s ability to optimally modify their learning rate 

according to the relative stability of the current context, it is possible to measure their capacity to 

make appropriate updates to their forward model. Hence, the results of chapter 6 address the 

second objective of this thesis. Notably, similar learning tasks have been used to assess 

individuals’ capacity to update action-outcome knowledge in prior developmental research (e.g., 

Eckstein et al., 2020), making this task ideal for the current research. 
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Brief Summary 

To summarise, participants’ performance on a synchronisation-continuation task, a cued RT task 

and a goal-switching task were used to quantify their ability to predict the consequences of their 

own actions. Additionally, the synchronisation-continuation task and an outcome learning task 

revealed participants’ capacity to update their action-outcome knowledge in response to past action 

feedback. All four tasks were selected for the current research based on their relative simplicity, 

thus meaning that they were easy for young participants to understand and straightforward to 

implement online.  

Online Behavioural Experiments 

Attention will now turn to establishing, more generally, the implications of conducting behavioural 

experiments in an online space and the specific impact that this had on the current research. An 

online behavioural experiment typically refers to a behavioural task, which has been programmed 

to run within a web browser. Online tasks are typically stored on a server, from which participants 

can access the task remotely via their own computer. Participants’ responses are then uploaded to 

the same server and made available to the researcher (Grootswagers, 2020). For context, each of 

the four tasks outlined within this thesis were programmed using PsychoPy software and hosted 

online via Pavlovia. PsychoPy is a free, open-source application, which allows researchers to 

design behavioural experiments for both offline and online use (Peirce et al., 2019). Whereas, 

Pavlovia is a web-based platform through which researchers can upload behavioural experiments 

created using PsychoPy to a secure server and collect data from participants remotely (Peirce et 

al., 2022).  

 

It has been argued that the robustness of the data collected via online behavioural tasks is 

determined by the functioning of numerous interconnected technological systems. These can 

include: the server, which hosts the task; the internet service provider, which delivers the required 

task files from the server to the participant’s computer; and the browser, which presents the stimuli 

to the participant and records their responses (Anwyl-Irvine et al., 2020). Subsequently, it has been 

suggested that any delay in the operating of these technologies can undermine the accuracy of both 

stimulus presentation times and recorded reaction times (Jia et al., 2018). For instance, when a task 

requires that new stimuli files be continuously downloaded from a server prior to their 
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presentation, any lag in a participant’s internet connection speed can cause alterations in the 

intended stimulus display times (Anwyl-Irvine et al., 2020). This was a particularly pertinent issue 

for the current research given that both the synchronisation-continuation task and cued RT task 

were dependent on precise stimulus onset timings and response time recordings. Therefore, this 

implies that the reliability of the current results was likely confounded by fluctuations in the 

efficiency of the computer, internet service provider, and browser used by each participant. 

 

Contrary to the idea that results obtained through browser-based tasks are inherently 

unreliable due to high levels of variation in temporal precision, recent studies have reported precise 

stimuli and response timings across various software packages available for conducting online 

behavioural experiments (Anwyl-Irvine et al., 2021). For instance, Bridges et al. (2020) directly 

compared the precision at which five different software packages commonly used for online study 

implementation were able to present visual stimuli durations online. It was found that the majority 

of the tested packages had an inter-trial variability of less than 5ms, regardless of the browser or 

operating system that was used to run the task. Similarly, across all of the tested browser and 

operating system combinations, all five software packages demonstrated an inter-trial variability 

of under 10ms for recorded response times. Taken together, this suggests that online behavioural 

experiments demonstrate minimal temporal delays in their stimuli and response timings. In support 

of this idea, several past studies have reported comparable reaction times between lab-based and 

browser-based studies (Armitage & Eerola, 2020; Barnhoorn et al., 2015; Crump et al., 2013; 

Gould et al., 2015; Hilbig, 2016; Kim et al., 2019a; De Leeuw & Motz, 2015), even when online 

studies are completed within domestic settings (Miller et al., 2018). Ergo, this suggests that the 

robustness of the data obtained from the current online studies was unlikely to be compromised by 

any unintended temporal delays.  

 

Aside from deviations in presentation and response timings, it has also been argued that 

the quality of the data collected via online behavioural experiments can be jeopardised by a lack 

of control over potential distractors (Sauter et al., 2020). Traditional lab-based experiments tend 

to be conducted within a standardised environment where potential distractors are minimised, thus 

facilitating participants’ ability to attend to the task. Whereas, online tasks are usually completed 

within participants’ own home or school where it is often not possible for the researcher to control, 
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nor even observe, the influence of distractors on participants’ attention (Kochari, 2019). Indeed, 

when examining data from 16 studies, Drody et al. (2023) found that participants frequently 

engaged in media-based multitasking whilst completing an online study within their home 

environment, such as watching a television or listening to music, with an average prevalence rate 

of 38%. Multi-tasking in this manner has previously been suggested to limit individuals’ attention, 

and thereby, diminish their task performance (Aagaard, 2019). Taken together, this raises concern 

over the reliability of the current findings, as they may be more reflective of variation in the 

distractive nature of participants’ surroundings, as opposed to the precision of their forward model.  

 

In order to mitigate the suggested confounding effect of distractors on the quality of the 

collected data, several methods of promoting participants’ attention were implemented in the 

current research. For example, in accordance with the recommendations outlined by Rhodes et al. 

(2020), each of the current tasks was framed as a game with age-appropriate animations and images 

used to maintain participants’ focus on the task objective. In addition, text-based prompts were 

used to stimulate participants’ attention following trials where no response was given, as suggested 

by Crump et al. (2013). Alternative options were also considered, such as requiring the researcher 

to remain present via a video call whilst participants completed the task in order to give 

encouragement and monitor their attention level (Forsberg et al., 2021). However, it was decided 

that the researcher’s presence would have introduced additional technical and ethical challenges 

(Howlett, 2022), which ultimately rendered this approach unsuitable for the current research. 

Admittedly, it would have been beneficial to also include a series of attention-check questions at 

regular intervals during the tasks. In doing so, it would be possible to monitor variation in 

participants’ attention and evaluate whether the methods used to boost participants’ attention were 

effective (Peer et al., 2022). 

 

Given the suggested issues in regard to variable timing accuracy and insufficient control 

over distractors, it may be queried as to why online behavioural experiments were selected for the 

current research over more traditional lab-based experiments. In truth, the initial research plan did 

not include any online behavioural experiments. In 2019, preparations had been made to run in-

person behavioural experiments exclusively. However, in March 2020, the UK government 

announced restrictions on all non-essential contact in response to the Covid-19 pandemic, 
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including the immediate suspension of all face-to-face data collection (Brown & Kirk-Wade, 

2021). To adapt to this change, the planned offline behavioural experiments were reprogrammed 

into online behavioural studies (see the Covid-19 impact statement for more information about 

these changes). Strikingly, few prior studies have used online behavioural tasks to assess motor 

optimisation (e.g., Hammerschmidt et al., 2021), or even SoA directly (e.g., Garaizar et al., 2016; 

Vilaza et al., 2014). Therefore, whilst the current research had not originally intended to utilise 

online behavioural experiments, this unexpected change provided a novel opportunity to establish 

the domains in which the forward model, and thereby agency, can be reliably measured within an 

online context. 

 

Brief Summary 

In summary, it has been argued that the results obtained from online behavioural experiments can 

be undermined by unintended deviations in stimulus and response timings and a lack of control 

over distractors. However, recent studies have reported that lab-based and web-based tasks show 

comparable precision in stimuli display durations and response time recording. This suggests that 

online behavioural tasks feature only minimal temporal delays in their stimuli and response 

timings. Furthermore, steps were taken to mitigate the confounding impact of distractors on 

participants’ task performance, such as gamifying the behavioural tasks. Ergo, the results gained 

through the current research are unlikely to have been confounded by timing inaccuracies or 

participant inattention. 

Parent- and Self-Report Scales 

Impulsivity refers to a tendency to act prematurely without prior consideration for the 

consequences of one’s actions (Bakhshani, 2014). In line with this definition, previous learning 

studies have shown that individuals with higher levels of impulsivity are less likely to use 

knowledge of past action outcomes to guide their subsequent choices compared to those with lower 

impulsivity levels (Cáceres & San Martín, 2017; Franken et al., 2008; Hogarth et al., 2015; Lim et 

al., 2015). This suggests that high levels of impulsivity are associated with reduced outcome 

learning and less premeditated action, and thus, diminished use of an appropriate forward model. 

Notably, impulsivity has been suggested to interact with age; declining from childhood to 

adulthood (Forrest et al., 2019; Harden & Tucker-Drob, 2011). For this reason, the influence of 
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impulsivity on participants' task performance was controlled for in each of the current empirical 

studies. To achieve this, parents of all participants aged 4-12 completed the Strengths and 

Weaknesses of Attention-Deficit/Hyperactivity-symptoms and Normal-behaviours rating scale. 

Similarly, the UPPS-P short-form was administered to all participants aged 13-25. Both of these 

measures will now be described and their inclusion in the current research will be justified.  

 

The Strengths and Weaknesses of Attention-Deficit/Hyperactivity-symptoms and Normal-

Behaviours (SWAN) Rating Scale 

The SWAN rating scale is an 18-item parent-rated questionnaire designed to measure ADHD 

symptomology in individuals aged under 18 (Swanson et al., 2001). Parents of the child 

participants are asked to compare their child’s tendency to perform certain behaviours over the 

past month to other children on a 7-point Likert scale. Examples of items include, “stay seated” 

and “listen when spoken to directly”. The SWAN scale includes an inattention subscale and a 

hyperactivity/impulsivity subscale. The current research analysed data only from the 

hyperactivity/impulsivity subscale in order to quantify each child participant’s trait impulsivity. 

Higher SWAN-hyperactivity/impulsivity subscale scores indicate greater impulsivity.  

 

The SWAN-hyperactivity/impulsivity subscale was used to assess impulsivity in the 

current research because this measure has previously been shown to have moderate internal 

consistency (Cronbach’s 𝛼 = .7) and test-retest reliability (r = .66) when used with children (Lakes 

et al., 2011). Additionally, the SWAN-hyperactivity/impulsivity subscale has also been found to 

positively correlate with similar self-report (Lakes et al., 2011) and behavioural (Figueroa-Varela 

et al., 2010) measures of impulsivity in developmental studies, thereby indicating good convergent 

validity. Taken together, this suggests that the  SWAN-hyperactivity/impulsivity subscale provides 

a reliable and valid measure of impulsivity in children, both of which qualify this measure as ideal 

for use with participants aged 4-12 in the current research. 

 

In favour of complete transparency, it should be noted that the decision to adopt the 

SWAN-hyperactivity/impulsivity subscale as a measure of impulsivity was not made solely on the 

basis of the reported reliability and validity of this tool. On the contrary, this choice was also 

guided by convenience. Throughout the current research, all participants aged 4-12 were recruited 
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via an annual online event (see the online recruitment subsection of this chapter for more detail). 

When registering their child for the event, parents and careers were asked to complete the SWAN 

rating scale by the event organisers. The parent-reported data was then shared with the researchers 

after the event. Therefore, alongside its suggested reliability and validity, the SWAN-

hyperactivity/impulsivity subscale data was also selected as an index of impulsivity due to its 

availability during the collection of the behavioural task data.  

 

The UPPS-P Short-Form 

The UPPS-P short-form is a 20-item self-report questionnaire used to measure self-reported trait 

impulsivity (Cyders et al., 2014). The UPPS-P contains 5 subscales, including negative urgency, 

lack of perseverance, lack of premeditation, sensation seeking, and positive urgency. Negative 

urgency and positive urgency refer to a tendency to engage in impulsive behaviour when 

experiencing negative and positive emotions, respectively. Lack of premeditation indicates an 

individual’s tendency to act without prior planning. Lack of perseverance is often defined as a 

tendency to leave tasks incomplete. Sensation seeking refers to an individual’s propensity to 

engage in thrill-seeking behaviours (Cyders & Smith, 2008). Participants are instructed to indicate 

the extent to which they agree with each item on a 4-point Likert scale. Example items include, “I 

quite enjoy taking risks” and “When I am upset I often act without thinking”. Higher UPPS-P 

scores show greater self-reported trait impulsivity.   

 

Similar to the SWAN-hyperactivity/impulsivity subscale, the UPPS-P short-form was used 

as a measure of impulsivity within the current research because it has been shown to have good 

internal consistency and good test-retest reliability when administered with both adult (Dugré et 

al., 2019; Xue et al., 2017) and adolescent (Donati et al., 2021) samples. In addition, the UPPS-P 

short-form has also been reported to have good convergent validity, as scores from this scale have 

been found to positively correlate with scores from other self-report measures of impulsivity 

commonly used within past literature, such as the Barratt Impulsiveness Scale-11 (BIS-11; Xue et 

al., 2017). This suggests that the UPPS-P short-form is a reliable and valid means through which 

to quantify participants’ impulsivity, and thus, suitable for the present research. Furthermore, when 

collecting self-report data online, it is imperative to limit the time required for participants to 

complete the administered scales as this can prevent high participant drop-out rates (Galesic, 2006; 
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Hoerger, 2010). Notably, the UPPS-P short-form has been shown to be just as effective in 

measuring impulsivity as the original UPPS-P, yet requires less time to complete (Lozano et al. 

2018). Ergo, the short length of the UPPS-P short-form further reinforced the decision to 

implement this scale within the current research. 

 

Brief Summary 

To summarise, the SWAN-hyperactivity/impulsivity subscale and the UPPS-P short form were 

used to assess participants’ trait impulsivity throughout this thesis. This controlled for the influence 

of variation in participants’ impulsivity on the findings. These two scales were selected for the 

current research because they have demonstrated good reliability and validity within past research. 

They were also chosen because they are relatively quick to complete, thus reducing the chance of 

high participant drop-out rates.  

Online Recruitment 

Moving forward, the manner in which participants were recruited and given access to the online 

tasks will now be outlined. Following this, the benefits and challenges that were encountered when 

recruiting participants online for the current research will be discussed. 

 

In general, the current research attempted to recruit participants between the ages of 4 - 25-

years-old. To achieve this, participants aged 4-12 were recruited from Summer Scientist Month 

(SSM) 2020 and 2021, two online events hosted throughout August by the University of 

Nottingham. At the event, children were encouraged to play games designed by the researchers in 

the School of Psychology and learn about the brain and human behaviour. The event website 

contained links to the current tasks hosted on Pavlovia. Participants could simply click on any of 

the links to participate. Participants had the opportunity to receive one point in exchange for each 

study that they participated in. Points could be earned throughout the online event and attendees 

were encouraged to earn as many points as they could. Informed consent, demographic information 

and the SWAN rating scale data were obtained from parents or carers by the event organisers when 

registering their child for the event. 
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For all four studies, participants aged 13-17 were recruited from two high schools in the 

Nottinghamshire and Derbyshire areas from January 18th 2022 - 16th March 2022. Informed 

consent was first gained from the headteacher of the school. After this, informed parental consent 

was obtained via letters distributed by each school’s Head of Psychology. Amongst school pupils 

whose parents had consented to their participation in the research, the current studies were 

advertised via a poster distributed by their psychology teacher. The poster contained a link to each 

behavioural task and information on what each experiment involved. Additionally, the poster also 

contained a link to an online Qualtrics form where participants provided their informed consent 

and demographic information and completed the UPPS-P short form. In line with 

recommendations from Mackenzie et al. (2021), school pupils were also provided with an 

animated video which explained what each task involved and how they could participate. The 

video was designed to improve participants’ comprehension of what the research involved, and 

thus, facilitate their ability to provide their own informed consent to participate in the studies. For 

each study that participants took part in, they were given the opportunity to enter into a prize draw 

to win an Amazon voucher. 

 

Finally, participants aged 18-25 were recruited either through the University of Nottingham 

School of Psychology’s Research Participation Scheme (RPS) or through recruitment posters 

published on social media (see each empirical chapter for details of the specific recruitment dates 

for each study). The RPS website contained a separate link for each of the current studies, 

alongside information on what each experiment involved. The same links and information were 

also presented on the recruitment posters shared via social media. Each link first directed 

participants to an online Qualtrics form where they provided their informed consent and 

demographic information. They then completed the UPPS-P via the same online form, before 

being redirected to the task hosted on Pavlovia. For each study that participants took part in, they 

were given the opportunity to enter into a separate prize draw to win an Amazon voucher. In 

addition to entering a prize draw, participants recruited through RPS also had the option of 

receiving course credit for each of the studies that they volunteered to take part in. See each 

empirical chapter for additional information on how the participants within each sample were 

recruited. 
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It has been argued that one benefit of conducting online experiments, relative to offline 

studies, is that a greater number of participants can be recruited within a smaller time frame (Sauter 

et al., 2020). As the research materials are stored digitally on a server in an online study, multiple 

participants can all access the experiment, download the necessary materials onto their own 

computer, and complete the study simultaneously (Grootswagers, 2020). Whereas, in a traditional 

offline experiment, the research materials cannot be accessed directly by participants, meaning 

that the researcher must test each participant face-to-face, one at a time (Anwyl-Irvine et al., 2020). 

Therefore, it can be said that online studies are less time-consuming to conduct compared to offline 

studies.  

 

The increased time-efficiency offered by online experiments was particularly valuable for 

the current research, as it meant the current research was easier for school educators to 

accommodate. As noted earlier within this chapter, the current research was conducted during the 

Covid-19 pandemic. As a result of the pandemic, all UK secondary schools were closed 

intermittently throughout 2020, and some of 2021, as part of government-imposed restrictions on 

face-to-face interaction (Brown & Kirk-Wade, 2021). This meant that school educators and pupils 

had to navigate online teaching and learning for the first time, leading to increases in perceived 

workload, stress and burnout for both groups (Beames et al., 2021; Commodari & La Rosa, 2021; 

Kim et al., 2022). Therefore, as the current tasks could be completed by multiple students at once, 

and at any time, this meant that the current research caused minimal disruption to planned 

educational activities (Gu et al., 2016), and thereby required relatively little additional work from 

educators. As a result of this increased flexibility, it can be argued that teachers were more willing 

to allow pupils to participate in the current research, compared to if the current research had been 

run offline.  

 

In opposition to the suggestion that online studies are more appealing to school educators 

than offline experiments due to their increased flexibility, it can be argued that participating in 

online research holds less educational value for school pupils than in-person studies (Alibali & 

Nathan, 2010). When a study is run offline, pupils are able to observe the researcher as they 

administer the behavioural task. Subsequently, they gain the opportunity to learn, first-hand, how 

scientific research is conducted (Bartlett et al., 2017). Whereas, in an online study, the researcher 
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is often absent when the task is completed. Hence, from the educator’s perspective, online 

experiments offer less educational benefit for their pupils, relative to offline studies (Alibali & 

Nathan, 2010). For this reason, it can be suggested that educators would be less willing to support 

the recruitment of their pupils for an online study compared to an offline study. Therefore, in order 

to mitigate this issue and ensure that the current research was educational, the researchers 

collaborated with school educators to deliver webinars to school pupils explaining how the current 

studies were implemented and the significance of the findings for current literature. 

 

In addition to offering greater time-efficiency than lab-based studies, it has been argued 

that the results acquired through online studies are more generalisable to the wider population than 

the data obtained via offline studies (Grootswagers, 2020). Given that recruitment is not limited 

by location or office hours, it has been argued that online studies are able to recruit a larger (Adjerid 

& Kelley, 2018) and more diverse range of participants (Casler et al., 2013) than is often viable 

through offline, lab-based experiments (Mason & Suri, 2012). Therefore, this heightens the 

probability that the current results are reflective of young people’s genuine forward model 

development (Berinsky et al., 2012). In support of this idea, in all of the current studies, an 

adequate number of participants was recruited such that the performed analyses were sufficiently 

powered.  

 

Aside from providing access to a greater and more diverse sample, it has been suggested 

that online developmental studies overcome some of the ethical concerns associated with offline 

developmental experiments (Barchard & Williams, 2008). For instance, online experiments offer 

participants a greater level of anonymity than is feasible within an offline study. Offline data 

collection often involves face-to-face interaction between the researcher and participant. 

Inevitably, some of the participant’s identifying characteristics will be perceivable to the 

researcher during this interaction, such as their first name, facial features, and voice (Mackenzie 

et al., 2021). In contrast, online studies can be completed without any direct communication 

between the researcher and participants, meaning that none of these characteristics need to be 

shared (McCabe, 2004). In the context of developmental research, it has been suggested that 

increased anonymity can encourage parents to allow their child to complete an online study 

(Dworkin et al., 2016), thus enhancing participant recruitment. Although, this lack of direct 
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communication can also present unique ethical challenges, particularly when recruiting young 

people as in the current studies, as the researcher cannot know whether participants were coerced 

into participation by a teacher,  parent or other authority figure (Friedman et al., 2016).   

 

In addition to greater anonymity, it has been argued that it is easier for younger participants 

to withdraw from an online study, relative to an offline study (Mackenzie et al., 2021). In an offline 

study, the researcher is often present whilst the child or adolescent completes the experiment. It 

has been suggested that the inherent imbalance in authority status between the young participant 

and the adult researcher can cause participants to feel obligated to complete the full task 

(Birnbaum, 2004). Whereas, as the researcher is often absent during an online experiment, it has 

been posited that child and adolescent participants will not experience this same social pressure 

and thus, will feel more comfortable exerting their right to withdraw from the study (Mackenzie 

et al., 2021). Whilst this increased ease through which participants can exit the study does make 

the research more ethical, it can also lead to greater rates of attrition (Barchard & Williams, 2008). 

Hence, the current tasks were gamified in order to increase participant engagement and prevent 

withdrawals due to boredom (Looyestyn et al., 2017), as achieved in past studies (Vilaza et al., 

2014).  

 

Brief Summary 

In summary, participants were recruited for the current research via an online event, through local 

high schools, via the university’s RPS scheme, and through social media. Notably, the use of online 

experiments was beneficial for the current research as it meant that data could be collected from a 

larger and more diverse sample at a rapid rate. Additionally, online studies also offer the participant 

greater anonymity than offline studies, which has been suggested to enhance participant 

recruitment. Evidently, online experiments are likely to encounter greater rates of attrition than 

offline studies. They can also be perceived as holding less educational value than offline studies 

by gatekeepers, which can restrict researchers’ access to participants. Notably, these highlighted 

issues were addressed in the current research by gamifying experiments and collaborating with 

educators to deliver educational webinars.   
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Data Analysis Approach 

The approach taken to data analysis throughout this thesis will now be outlined and justified. More 

specifically, the manner in which age was conceptualised will be addressed, in addition to the 

statistical tests and outlier detection methods employed.  

 

The Use of Stepwise Multiple Linear Regression Analysis 

As age was treated as a continuous variable throughout this thesis, stepwise multiple linear 

regression analysis was used to assess the influence of age on the dependent variables within each 

of the current studies. More specifically, in each regression, impulsivity and sex were entered in 

an initial block as nuisance variables and age was entered alone in a second block. The reason for 

including impulsivity as a nuisance variable was described above within the parent- and self-report 

measures subsection. In regard to the inclusion of sex as a nuisance variable, the rate at which 

structural and functional maturation occurs within the brain has been shown to vary between males 

and females (De Bellis et al., 2001; Koolschijn & Crone, 2013; Sumich et al., 2012). Hence, sex 

was also included as a nuisance variable in the current research. Additional evidence regarding the 

effect of impulsivity and sex on participants’ performance on each of the current tasks can be found 

within each empirical chapter.  

 

In a stepwise multiple linear regression analysis, predictor variables are added or subtracted 

from the final regression model in an iterative process. At each step, a predictor variable is added 

to the model if it independently explains a significant proportion of the variance in the dependent 

variable. The order in which predictor variables are considered for addition into the model is 

determined by a specified criterion, such as p < .05 (Armstrong & Hilton, 2010). In contrast to a 

stepwise regression, the hierarchical regression requires that the researcher specify the order to 

which predictor variables are added to the model according to a theory (Leech et al., 2003). 

Notably, in each analysis conducted throughout this thesis, there was no theoretical reason to 

believe that impulsivity would explain a greater proportion of the variance in the dependent 

variable than sex, or vice versa. Therefore, the stepwise multiple linear regression was believed to 

be most suitable for the current research compared to alternative linear regression techniques, such 

as hierarchical multiple linear regression. 
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Admittedly, it is not a given that forward model development should follow a linear-shaped 

development trajectory. In contrast, an alternative model, such as a phase-change or quadratic 

model, may have been a more suitable fit for the data across the current tasks. Subsequently, in 

order to verify that the forward model does, indeed, follow a linear development trajectory, one 

would need to compare how well participants’ data fit to a linear model relative to alternative 

development models (i.e., linear, quadratic, phase-change, sigmoid). From this, it would then be 

possible to draw more concrete conclusions on the true trajectory at which the forward model 

develops throughout childhood, adolescence and young adulthood. Notably, this raises concern 

over the legitimacy of the current findings and hence, the results should be interpreted with caution. 

 

The Conversion of Linear Age to Logarithmic Age 

In line with past research that has focused on understanding developmental changes in the brain 

(i.e., Bethlehem et al., 2022), participants’ chronological age was converted to natural logarithmic 

age across all four empirical studies. The theoretical basis for this adjustment was grounded in the 

idea that time itself is logarithmic (George, 2016). It may be argued that a greater developmental 

difference exists between a 4-year-old and an 8-year-old compared to a 21-year-old and a 25-year-

old. Compared to adulthood, childhood is marked by significant advancements in the development 

of cognitive and motor skills (Brocki & Bohlin, 2004; Bolger et al., 2021). As the two pairs of 

individuals are 4 years apart in chronological age, expressing age on a traditional linear scale would 

not give an accurate representation of these differing developmental discrepancies. Whereas, 

adjusting age to a logarithmic scale provides an effective means for capturing this phenomenon 

(George, 2016). The difference between a 4-year-old and an 8-year-old on a logarithmic scale 

(𝑙𝑛(8)  −  𝑙𝑛(4)  =  .69) is larger than the difference between a 21-year-old and a 25-year-old on 

the same scale (𝑙𝑛(25) −  𝑙𝑛(21) =  .17). Therefore, comparing participants’ task performance 

against their logarithmic age provides a more accurate representation of the developmental 

trajectory of the forward model compared to if a linear age scale were used.  

 

The Implementation of Tukey’s Fences Method for Outlier Detection 

To exclude any potentially confounding anomalous data, the Tukey’s fences method for outlier 

detection (Tukey, 1977) was applied to the data collected within each empirical chapter. Using the 

Tukey’s fences method, any data points that are more than 1.5 interquartile ranges outside of the 
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lower and upper quartiles are identified as outliers (Tukey, 1977). This method was chosen for the 

current research as the interquartile range is not distorted by the presence of large outliers, unlike 

alternative methods of outlier detection that are based on the mean and standard deviation, such as 

the two standard deviation rule (Schwertman et al., 2004). Therefore, it can be argued that the 

Tukey’s fences method provides a more reliable method of identifying outliers compared to 

alternative techniques, such as the two standard deviation rule.  

 

Brief Summary 

To summarise, throughout the current research, age was converted to a logarithmic scale. Given 

that age was treated as a continuous variable, stepwise multiple linear regression analyses were 

employed throughout this thesis to explore the impact of age on participants’ task performance. 

Stepwise regression analysis was chosen over alternatives, such as hierarchical regression analysis, 

because neither of the two nuisance variables were suspected to be a larger predictor of task 

performance relative to the other. Finally, Tukey’s fences method for outlier detection was 

implemented across all four studies because this method is less likely to be influenced by large 

outliers compared to alternative outlier detection tests, such as the two standard deviation rule.  

Conclusion 

To conclude, the current thesis explored the influence of age on participants’ prediction accuracy 

and action-outcome learning using four online behavioural experiments. Within these experiments, 

four tasks were employed: a synchronisation-continuation task, a cued RT task, a goal-switching 

task and an outcome learning task. These tasks were chosen due to their simplicity, as this meant 

that they were both suitable for use with young participants and easy to implement online. In 

addition to these behavioural tasks, the SWAN-hyperactivity/impulsivity subscale and the UPPS-

P short form were used to assess participants’ trait impulsivity, and thereby, control for the effect 

of impulsivity on participants’ task performance. These two scales were selected because they 

have demonstrated good reliability and validity within past research. Notably, the use of online 

experiments meant that data could be collected from a larger and more diverse sample at a rapid 

rate. Furthermore, steps were taken to mitigate the confounding impact of distractors on 

participants’ task performance, such as gamifying any behavioural tasks.  
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Chapter 3: An Investigation into the Influence of Age on Sensorimotor Continuation from 

Childhood to Adulthood 

Chapter Summary  

Chapter 3 details an experiment where the aim was to investigate how sensorimotor continuation 

changes with age from childhood to adulthood. To achieve this, participants aged 4-25 years 

completed a synchronisation-continuation task where they synchronised their keypresses with a 

series of isochronous tones played at either a high, medium or low frequency. Participants then 

continued making keypresses at the same pace after the tones were removed. It was found that the 

accuracy and consistency of participants’ sensorimotor continuation improved with age. Crucially, 

sensorimotor continuation is believed to rely on an individual’s capacity to i) predict when to 

respond using a forward model and ii) adjust their forward model in light of sensory feedback. 

Hence, the results suggest that the forward model becomes more functionally efficient as 

individuals mature from childhood to adulthood.  

Introduction 

Sensorimotor synchronisation refers to an individual’s ability to align the timing of their own 

actions with the occurrence of an external stimulus (Schwartze et al., 2011). Whereas, 

sensorimotor continuation is defined as an individual’s ability to maintain this entrainment to the 

presented tempo after the external stimulus has been removed (McPherson et al., 2018). Both 

abilities are believed to rely on a forward model system (Maes, 2016). The development of 

sensorimotor synchronisation has previously been investigated in past literature, with most studies 

concluding that this ability improves with age across childhood, adolescence and adulthood (e.g., 

Mu et al., 2018; Thompson et al., 2015; although see Drewing et al., 2006 for an alternative 

account). Conversely, the developmental trajectory of sensorimotor continuation across ontogeny 

has received relatively less attention in past research (e.g., McAuley et al., 2006). For this reason, 

and in the interest of brevity, the current study will focus exclusively on understanding the 

developmental trajectory of sensorimotor continuation and the conclusions that can be drawn from 

this regarding the maturation of the forward model.  
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Sensorimotor continuation has often been investigated using synchronisation-continuation 

tasks in past research (e.g., Schwartze et al., 2011). These tasks typically involve presenting 

participants with sequences of isochronous auditory tones, each with a varying inter-tone-interval. 

Each trial tends to have an initial synchronisation phase and a subsequent continuation phase. In 

the synchronisation phase, participants are asked to tap their finger in time with each of the tones. 

During the continuation phase, participants are then instructed to carry on tapping their finger at 

the same pace in absence of the tones. The accuracy and consistency with which the participant 

can maintain the response pace adopted during the synchronisation phase is then recorded as an 

index of their sensorimotor continuation skill (Repp & Su, 2013).  

 

It has previously been argued that performance on the continuation phase of the  

synchronisation-continuation task is reliant on the forward model (Maes, 2016). On the 

continuation phase of the task, it has been suggested that participants need to use their forward 

model to predict the precise time at which to make their next response. This prediction is believed 

to be formed through a weighted combination of their prior and likelihood (Berniker & Körding, 

2011). In this instance, the prior is believed to include their memory of the inter-tone-interval 

presented during the synchronisation phase (Lewis et al., 2004; Witt & Stevens, 2013). Whereas, 

the likelihood refers to their perception of the time elapsed since the tactile feedback from their 

last tap was perceived (Narain et al. 2018). Furthermore, after each response has been made, it has 

been argued that the comparator mechanism within the forward model assesses whether the time 

interval between their taps matches with the interval that they intended to produce, which should, 

in turn, align with their memory of the target inter-tone-interval. If the two are incongruent, and 

hence their prediction of when to act was erroneous, participants then need to adjust the timing of 

their subsequent responses to ensure that the target response pace is achieved (Maes, 2016). 

Therefore, an individual’s sensorimotor continuation ability demonstrates the capacity of their 

forward model to both predict the outcome of their action, and thereby, when best to respond, and 

adjust the timing of any subsequent responses in light of observed sensory feedback.  

 

In support of the role of the forward model in determining performance on the continuation 

phase of the synchronisation-continuation task, previous research has suggested that responses 

made during this phase can be shaped by prediction errors. Participants have been found to adapt 
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their tapping pace in response to artificial perturbations in the timing of the sensory feedback from 

their taps (Maes et al., 2014). This suggests that the sensory feedback accrued from executing a 

response is indeed used to update the forward model and guide the time at which successive 

responses are made. Similarly, individuals with Tourette Syndrome, who have previously been 

shown to have an impaired ability to update their forward model (Kim et al., 2019b), have also 

been shown to perform worse than neurotypical controls on the continuation phase of the 

synchronisation-continuation task (Graziola et al., 2020). Taken together, this reinforces the idea 

that participants’ sensorimotor continuation ability is supported by their forward model.  

 

In addition to the accuracy and consistency of participants’ tapping pace, some past studies 

have also included a temporal bias measure to quantify the extent to which the participant tended 

to respond at a pace that was ahead of or behind the target response pace (e.g., Claassen et al., 

2013). This provides extra qualitative detail regarding the direction of participants’ deviation from 

the set response pace. A tendency to respond ahead of the target response pace might indicate that 

the participant was prone to underestimating the temporal interval between the presented tones. 

Whereas, a tendency to respond behind the target response pace might provide evidence that the 

participant tended to overestimate these inter-tone intervals. Crucially, as the goal of the task is to 

align one’s response pace with the target response pace and thereby, minimise prediction error, 

any deviation from the target pace indicates a less precise forward model, regardless of 

directionality. 

 

Notably, evidence on how sensorimotor continuation changes with age is limited within 

past literature. Only one previous study has claimed to have examined the development of 

sensorimotor continuation across the full lifespan (McAuley et al., 2006). In research by McAuley 

et al. (2006), participants aged 4-95 were asked to tap in time with a series of isochronous tones 

and then continue tapping at the same pace when the tones were removed. It was found that 

participants’ ability to accurately and consistently reproduce the presented tone sequence followed 

a quadratic pattern with performance improving with age throughout childhood, peaking in 

adulthood, before declining as individuals transitioned into old age. This suggests that 

sensorimotor continuation improves with age from childhood to adulthood.  
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In criticism of the study conducted by McAuley et al. (2006), it should be noted that 

participants’ ages only spanned between 4-12 and 18-95, with no participants aged between 13-

17. Therefore, by concluding that an age-related improvement in sensorimotor continuation occurs 

from childhood to adulthood, the researchers appear to assume that a linear development of this 

ability must take place between the ages of 12 and 18. Yet, this assertion cannot be conclusively 

supported by their findings, as they do not have any data for the adolescent development period. 

Consequently, this raises doubt over the idea of a continuous progression in sensorimotor 

continuation across adolescence.  

 

Contrary to the idea that sensorimotor continuation improves with age throughout the 

transition from childhood to adulthood, alternative research has suggested that this ability is 

already fully developed by adolescence. Witt and Stevens (2013) instructed participants aged 12-

43 to complete a synchronisation-continuation task with a target finger tapping pace of 0.75Hz. 

No difference was found between adolescents and adults in their ability to accurately maintain the 

target response pace. This suggests that sensorimotor continuation, and thus, the forward model, 

is already sufficiently developed by adolescence.  

 

In opposition to the conclusions drawn by Witt and Stevens (2013), it may be argued that 

the reported lack of an age-related change in sensorimotor continuation can be attributed to 

statistical error. The analysis performed by Witt and Stevens (2013) appears to have been 

underpowered. According to G*Power software (Faul et al., 2009), at least 72 participants would 

have been required to find a medium-sized effect with 80% power and a 5% alpha level in the 

mixed factorial ANOVA. This suggests that the absence of an age-related difference in 

sensorimotor continuation occurred due to statistical error, as opposed to a genuine lack of any 

developmental changes in sensorimotor continuation. Moreover, this suggests that the 

developmental trajectory of sensorimotor continuation requires further investigation.  

 

The Current Study 

The current research aimed to examine the beneficial influence of increased age on sensorimotor 

continuation across childhood to adulthood, as suggested by McAuley et al. (2006), against the 

contradictory findings from research by Witt and Stevens (2013). This would determine the 
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influence of age on participants’ ability to use the forward model to accurately predict action 

outcomes and update the forward model in response to observed sensory feedback. In the current 

experiment, participants aged 4-25 years were presented with a synchronisation-continuation task 

where they were instructed to make a series of keypresses in time with an external pacing stimulus. 

They then had to continue making keypresses at the same pace in absence of the pacing stimulus. 

The accuracy and consistency with which participants could maintain the set response pace was 

then calculated. In addition, the extent to which participants’ response pace lagged behind or ran 

ahead of the target response pace was also recorded. In order to rectify the criticisms raised against 

research by Witt and Stevens (2013), a power analysis was conducted prior to participant 

recruitment to ensure that all statistical tests were sufficiently powered. To test the findings of Witt 

and Stevens (2013), three hypotheses were formed: 

 

1. It was hypothesised that participants’ temporal accuracy would be predicted by age at all 

tone frequencies, with a higher temporal accuracy associated with older age.  

 

2. It was hypothesised that participants’ temporal variability would be predicted by age at all 

tone frequencies, with lower temporal variability associated with older age.  

Method 

Design 

The current study used a mixed factorial design. The between-subjects independent variables were 

age, sex and impulsivity. The within-subjects independent variable was the frequency at which the 

tones were presented during each condition of the synchronisation-continuation task. The key 

dependent variables were participants’ average temporal error, temporal variability, and temporal 

bias on the synchronisation-continuation task. These dependent variables acted as indicators of 

participants’ ability to predict and adjust the timing of their movements; skills which necessitate 

the use of a forward model.  

 

Participants 

212 participants were initially recruited (44 male, 168 female). The age of participants ranged from 

4 to 25 years (M=16.86, SD=4.2).  
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● 156 participants were right-handed, 16 were left-handed and 35 were ambidextrous, as 

measured by the Edinburgh Handedness Inventory – Short Form (EHI-SF; see appendix A for 

a full outline of this measure). 5 participants did not complete the EHI-SF. 

● 150 participants were White, 12 was Asian, 6 were Black, 5 had mixed/multiple ethnic 

identities, 2 had another ethnic identity that was not listed, and 37 did not report their ethnic 

identity.  

 

Participants were recruited through one of four avenues: 37 participants were recruited via the 

SSM event in August 2020 and August 2021, 23 were recruited from two high schools in the 

Nottinghamshire and Derbyshire areas from January 18th 2022 - 16th March 2022, and the 

remaining 152 were recruited either through the School of Psychology’s RPS system or through 

recruitment posters published on social media between 18th November 2020 - May 15th 2021. For 

more detailed information on how participants were recruited from each of these sources and how 

informed consent was obtained, please see chapter 2.  

 

The full experimental procedure of the current study was approved by the School of 

Psychology ethics committee at the University of Nottingham. Seven participants were excluded 

because they self-reported a diagnosis of either Attention Deficit Hyperactivity Disorder (ADHD) 

or Autism Spectrum Disorder (ASD). The decision to remove these participants was made on the 

basis that (i) the goal of the current study was to establish the neurotypical development trajectory 

of the forward model, and (ii) it has been previously demonstrated that individuals with these 

conditions tend to show impaired action planning (Gvirts Probolovski & Dahan, 2021; Haswell et 

al., 2009). More specifically, past research has shown that autistic individuals tend to attribute 

disproportionate weight to the prior, relative to the likelihood (Van de Cruys et al., 2014), leading 

to erroneous predictions regarding the sensory consequences of their actions (van Laarhoven et al. 

2019). In contrast, individuals with ADHD tend to give excessive weight to the likelihood, rather 

than the prior (Gonzalez-Gadea et al., 2015), which again has been found to result in reduced 

anticipation of their action consequences (Marzinzik et al., 2012). Therefore, the inclusion of 

participants with either of these conditions would have obscured the results regarding the 

neurotypical developmental trajectory of the forward model, and hence these participants were 
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removed from the sample. All remaining participants were neurotypical. The demographics of the 

adjusted sample can be viewed in table 3.1.
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Table 3.1. The demographic characteristics of the adjusted sample. 

 Age (years) Sex Ethnicity* Handedness** 

Full sample 

(n=205) 

Range= 

4 to 25  

M=16.81 

SD=4.26 

44 Male 

161 Female 

143 White  

12 Asian 

6 Black 

5 Mixed/multiple ethnic identities 

2 Any other ethnic identity 

150 right-handed 

16 left-handed 

34 ambidextrous 

Note. *Ethnicity information was not collected for 34 participants. **Handedness information was not collected for 5 participants. 
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Materials 

The Synchronisation-Continuation Task. The synchronisation-continuation task was 

used to measure participants’ ability to plan and adjust the timing of their movements. The task 

was designed using PsychoPy and ran online via Pavlovia (Peirce et al., 2019, 2022). Auditory 

stimuli included three sequences of 20 tones. The frequency at which tones were delivered on each 

sequence was either 1.25Hz (low), 1.6Hz (medium), or 2.5Hz (high). Accordingly, the time 

interval between each tone was either 400ms, 600ms, or 800ms. Past research has noted that 

children tend to have a shorter preferred motor tempo than adults during unpaced finger-tapping 

tasks (Hammerschmidt et al., 2021). Notably, the closer a prescribed response pace is to an 

individual’s motor tempo, the easier it is for the individual to synchronise their movements with 

the target response pace (Monier & Droit-Volet, 2019). Therefore, the frequency of the tone 

sequences was varied in order to control for the effect of age-related differences in participants’ 

preferred motor tempo on their ability to align their movements with the timing of the tones.  

 

Additionally, previous research has suggested that children struggle to match their actions 

with tones delivered at frequencies faster than 400ms as a result of underdeveloped motor 

coordination (Repp, 2005). Similarly, it has been suggested that data obtained from tasks with tone 

frequencies slower than 800ms fail to maintain young children’s attention (Faria et al., 2017). 

Therefore, with the child participants in mind, tone frequencies between 400-800ms were chosen 

for this task. The pitch of the 10th tone in each sequence was higher than the other tones. This high-

pitched tone acted as a cue, prompting participants to begin responding. Visual stimuli on the child 

version of the task included an image of a barn door and 9 images of cartoon farm animals. 

Whereas, an image of a wooden door and comical photographs of animals in costumes were 

included in the version of the task designed for adolescents and young adults. In both cases, the 

visual stimuli were chosen to create an age-appropriate narrative and maintain participants’ 

attention.   

 

Self-Report and Parent-Report Measures. The following self-report measures and parent-

report measures were also administered in the current study: 

● The SWAN-Hyperactive/Impulsive subscale was used to measure child participants’ 

impulsivity as reported by their parents or carers.  
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● The UPPS-P short-form was used to measure adolescents’ and young adults’ self-reported 

impulsivity.  

Please see chapter 2 for a full outline of the SWAN rating scale and UPPS-P short-form.  

 

Procedure 

Two versions of the synchronisation-continuation task were created. One version of the task was 

designed with adolescents and young adults (aged approximately 13-25) in mind. This version of 

the task was available to participants via the two high schools, RPS, and social media posts. The 

second version of the task was designed for children (aged 4-12) and was administered to 

participants at the two SSM events. As the two task versions were created with either adolescents 

and young adults or children in mind, the procedures through which the two task versions were 

given to participants will be referred to as the adolescent and young adult procedure and the child 

procedure, respectfully. That being said, it should be noted that, although SSM was aimed at 

children aged 4-12, individuals aged between 12-17 were also permitted to take part in the event. 

Therefore, it was possible for a participant aged >12 to have received the child version of the task.  

 

Adolescent and Young Adult Procedure. Participants recruited from a high school, via 

RPS or through social media provided their demographic information and completed the UPPS-P 

short form via an online survey hosted on Qualtrics before being redirected to the synchronisation-

continuation task.  

 

Upon opening the adolescent and young adult version of the synchronisation-continuation 

task, participants first saw a black instructions screen with details on how to complete the task. 

Participants were instructed to complete the task using the same hand throughout. Participants 

started the trials by pressing the spacebar. Participants first completed 3 practice trials to 

familiarise themselves with the task, before progressing to the main experiment trials. In each trial, 

participants were presented with a cartoon wooden door in the centre of the screen (see figure 

3.1A). Each trial had three phases, a listen phase, a synchronisation phase, and a continuation phase 

(see figure 3.1B). After a 0.5s delay, the listen phase began and a sequence of tones was heard. In 

this phase, participants were instructed to listen to the first 10 tones in the sequence. The purpose 

of the listening phase was to give participants an opportunity to familiarise themselves with the 
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sequence of tones. After the 10th tone, the synchronisation phase began. During this phase, 

participants responded to the trial by pressing the space bar in time with the tones. The 

synchronisation phase allowed participants the chance to practice pressing the keyboard in time 

with the tones. After a further 10 tones, the sequence ended and the continuation phase began. In 

the continuation phase, participants were required to continue pressing the spacebar at the same 

pace. The time of each spacebar keypress made during the continuation phase was recorded. Text 

and additional images onscreen reminded participants when to listen, respond and then continue 

responding in the absence of sound. After 30s, the trial ended. If no response was made during a 

trial, participants were reminded of the task instructions via text presented onscreen for 2s. Each 

trial lasted approximately 50s. 

  

Figure 3.1. 

Image of the Synchronisation-Continuation Task and a visual representation of the trial structure. 

 

Note. 3.1A. An image showing the listen phase of the synchronisation-continuation task. An image 

of a door was presented in the centre of the screen. Text displayed at the bottom of the screen and 

two images positioned either side of the door served as reminders to the participant that their 

current objective was to listen to the tones. 3.1B. A visual representation of the trial structure. The 

listen phase lasted for 10 tones. This was then followed by a synchronisation phase that lasted for 

10 tones. The synchronisation phase was then succeeded by a continuation phase that lasted for 

30s. Auditory tones were heard throughout the listen and synchronisation phases. Keypress 

responses were only permitted during the synchronisation and continuation phases. 

  

Three conditions were presented during the task: a low-frequency condition, a medium-

frequency condition, and a high-frequency condition. The frequency at which the tones were 

delivered differed per condition: 1.25Hz (low-frequency), 1.6Hz (medium-frequency), and 2.5Hz 
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(high-frequency). A reward screen was presented for 3s after each trial. The reward screen showed 

a comical photograph of an animal in a costume and text praising the participant’s performance. 

Images of costumed animals and a wooden door were used to create the narrative that participants 

were playing the role of a detective who had been tasked with locating a thief hidden within an 

apartment building. The theme of a mystery game was adopted to retain participants’ attention 

throughout the task and increase participant recruitment. Break screens were shown for an 

unlimited time every 3 trials. Break screens included encouraging text to further promote 

participants’ attention. An inter-trial interval was presented for 1s, during which a black screen 

with a white fixation cross was displayed. The task consisted of 12 trials that ran in a pseudo-

random order, 4 for each condition. The full procedure lasted approximately 15-minutes.  

 

Child Procedure. The child procedure was identical to the adolescent and young adult 

procedure with a small number of modifications. Participants’ parents or carers provided their 

child’s demographic information and completed the SWAN scale when registering their child for 

SSM. Once registered, participants could complete the synchronisation-continuation task at any 

time throughout the SSM event. Participants were encouraged to complete the left-hand vs right-

hand task to measure their hand preference before completing the synchronisation-continuation 

task and received one point in exchange for doing so (see appendix B for a full description of the 

left-hand vs right-hand task).  

 

The child version of the synchronisation-continuation task closely mirrored the adolescent 

and young adult version of the task with a few minor changes. Participants were presented with an 

image of a cartoon barn door in the centre of the screen, as opposed to the wooden door that was 

viewed by adolescent and young adult participants. Similarly, instead of a costumed animal, each 

reward screen showed a cartoon image of a sleeping farm animal. The visual stimuli were changed 

between the two versions of the task in order to support a new narrative; rather than searching for 

a thief, participants were now tasked with waking sleeping farm animals. The narrative was 

changed as it was believed that the concept of waking sleeping animals was more simplistic and 

hence, more age-appropriate. A second reward screen was shown after each trial for an unlimited 

time. The second reward screen informed participants that they had earned a piece of a picture and 

the full picture would be revealed at the end of the task. This picture-based reward was 
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implemented as an additional means of maintaining participants’ attention throughout the task. 

The second reward screen was not present in the adolescent and young adult version of the task as 

it was believed that additional reward screens were not necessary in order to maintain the attention 

of participants over 12-years-old. The full child procedure lasted approximately 10-minutes.  

 

Data Analysis 

Data from the self-report measures were pre-processed using MATLAB. Whereas, data obtained 

via the synchronisation-continuation task was pre-processed in Python using the Spyder IDE. All 

participants’ ages were converted to natural logarithmic age, as described in chapter 2.  

 

Self-Report Scales. All self-report and parent-report scales were summed and averaged to 

create an index for each of the variables of interest. In addition, SWAN-Hyperactive/impulsive 

subscale scores and UPPS-P short-form scores were converted to z-scores. This meant that the 

impact of impulsivity on task performance could be investigated across age, despite the fact that 

impulsivity was measured using the SWAN-Hyperactivity/impulsivity subscale for participants 

recruited at SSM and the UPPS-P short-form for the remaining participants.  

 

Erroneous Data Removal. For each trial of the synchronisation-continuation task, the 

time intervals between each spacebar keypress were calculated. These were referred to as inter-

tap-intervals (ITIs), consistent with previous finger-tapping tasks (e.g., Maes, 2016). All ITIs 

<200ms or >1s were removed to control for accidental keypresses and participant inattention. 

These cut-off values were chosen as they removed values 200ms below the lowest target response 

frequency (400ms) and 200ms above the highest target response frequency (800ms). On average 

across the participants, 2.46% of ITIs per trial fell outside of the cut-off values and were removed 

from further analysis (SD = 3.59, range = 0 - 34.5).  

 

Temporal Error. For each trial, the target ITI for the condition was subtracted from each 

ITI to produce a set of temporal error (TE) values. To clarify, 400ms was subtracted from each ITI 

in a high-frequency condition trial, 600ms was subtracted from each ITI in a medium-frequency 

condition trial, and 800ms was subtracted from each ITI in a low-frequency condition trial. A TE 

value indicates the level of discrepancy between the time gap separating two of the participant’s 
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successive keypresses and the time gap between two successive tones in the presented sequence. 

A negative TE indicated that the participant’s ITI was shorter than the target ITI, and therefore, 

the two successive keypresses were too close together in time. Whereas, a positive TE revealed 

that the participant’s ITI exceeded the target ITI, i.e., the two successive keypresses were too far 

apart in time.  

 

Temporal Bias. To explore the extent to which participants responded ahead of, or behind, 

the target response pace, the participant’s TE values were first pooled for each condition. A median 

TE value was then calculated for each condition from the pooled TE values. This was referred to 

as participants’ temporal bias. A negative temporal bias suggests that the participant tended to 

respond ahead of the set response pace. Whereas, a positive temporal bias suggests that the 

participant tended to respond behind the set response pace. This measure provided qualitative 

detail regarding the direction at which participants tended to deviate from the target response pace.  

 

Average Temporal Error. To investigate the magnitude with which a participant deviated 

their response pace from the pace set by the tones, the mean TE was obtained for each condition. 

To achieve this, all TE values were converted to their absolute values. This step was necessary as 

a negative TE could cancel out the influence of a positive TE when all TEs are averaged, which 

would obscure the participant’s true average TE. Next, the absolute TE values were pooled by 

condition and averaged to produce a mean TE and standard deviation for each of the three 

conditions. The mean TE values gave an indication of the participants’ temporal accuracy on each 

condition. Larger mean TE values demonstrate poorer temporal accuracy and thus, a less 

developed ability to both predict when to respond and update their pace when errors in their timing 

arise.  

 

Temporal Variability. Finally, to determine the extent to which a participant could 

consistently maintain the response pace set by the tones, a coefficient of variation (CV) was 

calculated for each condition. This was achieved by dividing the standard deviation of the TE by 

the mean TE for each condition. Larger CV values showed greater variability in the participant’s 

ability to match the set response pace. Similar to low temporal accuracy, a more variable response 

pace was indicative of an inferior ability to plan and adjust one’s response pace.  
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Outlier Detection. To exclude any potentially confounding anomalous data, the Tukey’s 

fences method for outlier detection was applied to the dataset (Tukey, 1977). See chapter 2 for an 

explanation of why the Tukey’s fences method for outlier detection was chosen over alternative 

outlier detection methods. 

 

Seventeen high-frequency median TE, 9 medium-frequency median TE, 12 low-frequency 

median TE, 4 high-frequency mean TE, 7 medium-frequency mean TE, 14 low-frequency mean 

TE, 9 high-frequency CV, 1 medium-frequency CV, and 10 low-frequency CV data points were 

found to be more than 1.5 interquartile ranges away from the nearest quartile. Upon comparison, 

it was found that the removal of the anomalous data points did not affect the direction or 

significance of the results regarding the influence of age, sex and impulsivity on the medium-

frequency median TE, the low-frequency median TE, the high-frequency CV, the medium-

frequency CV, or the low-frequency CV. Hence, the identified data points for these variables were 

not removed in order to ensure the completeness of the data. However, excluding the extraneous 

data points for the high-frequency median TE and the high-frequency mean TE did have an effect 

on the findings. Prior to outlier removal, high-frequency median TE was significantly predicted 

by age (𝛽 = .24, t = 3.5, p = .001) and high-frequency mean TE was not predicted by any predictor 

variable.  Whereas, age significantly predicted high-frequency mean TE after the outlier data 

points were excluded (𝛽 = -.17, t = -2.46, p = .02) and no longer predicted a significant proportion 

of the variation in high-frequency median TE. As a result of these changes, the 21 data points 

identified as outliers for these two variables were removed from the data so as not to statistically 

bias the results.  

 

Statistical Analyses. All statistical analyses were run in Statistical Package for the Social 

Sciences (SPSS). For the reasons outlined in chapter 2, impulsivity and sex were included as 

nuisance variables in the current study. In further support of the inclusion of impulsivity as a 

nuisance variable, previous research has shown that individuals with increased impulsivity 

demonstrate greater variability in their capacity to maintain a set response pace on synchronisation-

continuation tasks compared to those with lower levels of impulsivity (Barratt et al., 1981; Noreika 

et al., 2013; Valera et al., 2010). Therefore, this suggests that participants’ sensorimotor 
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continuation could have been confounded by age-related differences in their levels of impulsivity. 

Likewise, in the case of sex, lower response pace variability on synchronisation-continuation tasks 

has previously been associated with greater functional efficiency in the brain (De Guio et al., 

2012). Therefore, due to the suggestion that the brain matures at different rates in males and 

females (De Bellis et al., 2001; Koolschijn & Crone, 2013; Sumich et al., 2012), sex was also 

included as a nuisance variable in the current study. 

 

Nine stepwise multiple linear regressions were performed to investigate whether 

participants’ average temporal error, temporal variability, or temporal bias could be predicted by 

age, impulsivity, or sex in each of the three conditions. In each regression analysis, impulsivity 

and sex were entered in an initial block as nuisance variables, and age was entered alone in a 

second block. The purpose of these statistical tests was to reveal the extent to which an individual’s 

age can influence their predictive motor control when the respective influences of both impulsivity 

and sex are taken into account. G*Power analysis revealed that 77 participants were required to 

obtain a medium sized-effect (f2=.15) in a multiple linear regression with three predictor variables, 

80% power, and a 5% alpha level (Faul et al., 2009). As the sample contained 205 participants, the 

analyses were sufficiently powered.    

Results  

In the current study, participants completed 12 trials of a synchronisation-continuation task. To 

briefly reiterate, on each trial of the task, participants were instructed to listen to, press the spacebar 

in time with, and finally, replicate a sequence of tones presented at either a high-, medium-, or 

low-frequency. When replicating a tone sequence, participants’ objective was to press the spacebar 

in a manner such that the temporal gaps between each of their keypresses mirrored the gaps present 

between the tones. The level of disparity between each produced time interval relative to the 

genuine time intervals present in the target sequence was calculated. This revealed the accuracy 

and consistency at which participants could maintain the set response pace, as well as their 

tendency to respond ahead of or behind the set pace. 
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The Influence of Age on Participants’ Temporal Bias in Each of the Three Tone Frequency 

Conditions 

To explore the extent to which a participant tended to respond ahead of, or behind, the target 

response pace, their median TE value was obtained for each condition. This revealed the 

participant’s temporal bias; an indicator of the directionality of participants’ average deviations 

from the target response pace. A negative temporal bias suggested that the participant tended to 

respond ahead of the set response pace, i.e., press the spacebar at too quick a pace. Whereas, a 

positive temporal bias suggested that the participant tended to respond behind the set response 

pace, i.e., press the spacebar at too slow a pace.  

 

To investigate the influence of age on participants’ temporal bias, three stepwise multiple 

linear regressions were conducted on the high-frequency median TE, the medium-frequency 

median TE and the low-frequency median TE, with the factors: age, impulsivity, and sex. In each 

regression, impulsivity and sex were entered in an initial block as nuisance variables, and age was 

entered alone in a second block (see table 3.2 for the final models). It was revealed that both the 

medium-frequency median TE and the low-frequency median TE were significantly predicted by 

age (both p<.001), and were not predicted by impulsivity or sex (all p>.05). As age increased, both 

the medium-frequency median TE and the low-frequency median TE increased. Whereas, the 

high-frequency median TE was not predicted by age, impulsivity or sex (all p> .05). To further 

visualise the relationship between temporal bias and age, see figure 3.2 for each median TE 

variable plotted against participants’ unlogged age in years.
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Table 3.2. The results of three stepwise multiple linear regression analyses investigating the influence of age, impulsivity and sex on 

the temporal bias in the high-, medium- and low-frequency conditions 

Final regression model 𝛽 t F df R2 SE 

Temporal bias in the high frequency 

condition  (high-frequency median TE)    

      Age 

      Impulsivity 

      Sex 

 

 

No variables were entered into the model. 

Temporal bias in the medium frequency 

condition (medium-frequency median TE) 

      Age 

      Impulsivity 

      Sex 

 

 

.35** 

.04 

-.06 

 

 

5.3** 

.6 

-.86 

28.06** 1, 202 .12 .06 

Temporal bias in the low frequency 

condition (low-frequency median TE)   

      Age 

      Impulsivity 

      Sex 

 

 

.39** 

-.03 

-.02 

 

 

6.1** 

-.49 

-.31 

37.22** 1, 202 .16 .09 

Note. *p<.05  **p<.001.
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Figure 3.2. 

Temporal bias as a function of participants’ unlogged age in years and condition 

 

 

 

Note. 3.2A. A figure showing temporal bias in the high-frequency condition as a function of 

participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 3.2B. A figure 

showing temporal bias in the medium-frequency condition as a function of participants’ unlogged 

age in years. Error bars represent +/- 1 standard deviation. 3.2C. A figure showing temporal bias 

in the low-frequency condition as a function of participants’ unlogged age in years. Error bars 

represent +/- 1 standard deviation. 
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The Influence of Age on Participants’ Average Temporal Error in Each of the Three Tone 

Frequency Condition 

In addition to the median TE, each participants’ average TE was also calculated for each condition. 

This revealed the magnitude with which a participant deviated their response pace from the pace 

set by the tones. An average TE was obtained for each condition by averaging the absolute TE 

values from each trial within that condition. Mean TE values provide an indication of the 

participants’ temporal accuracy on each condition with larger mean TE values demonstrating 

poorer temporal accuracy and thus, a less developed ability to both predict when to respond via 

the forward model and update their pace when errors in their timing arise. To investigate the extent 

to which age had an effect on participants’ temporal error, three stepwise multiple linear 

regressions were conducted on the high-frequency mean TE, the medium-frequency mean TE and 

the low-frequency mean TE, with the factors: age, impulsivity, and sex. In each regression, 

impulsivity and sex were entered in an initial block as nuisance variables, and age was entered 

alone in a second block (see table 3.3 for the final models). It was revealed that all three dependent 

variables were significantly predicted by age (all p<.05), and were not predicted by impulsivity or 

sex (all p>.05). As age increased, mean TE decreased in all three conditions. For visualisation 

purposes, see figure 3.3 for each mean TE variable plotted against participants’ unlogged age in 

years. 

 

It should be noted that, initially, a significant model was found for the medium-frequency 

mean TE before age was added to the model, F(1, 202)= 4.92, p = .03. Medium-frequency mean 

TE was significantly predicted by sex (𝛽 = -.15, t = -2.22, p = .03) and was not predicted by 

impulsivity (𝛽 = .06, t = .82, p = .42). The model fit was R2= .02, SE = .05. However, after age 

was added to the model, the medium-frequency mean TE was significantly predicted by age (𝛽 = 

-.21, t = -3.03, p = .003), was not predicted by impulsivity (𝛽 = .06, t = .9, p = .37) and was no 

longer predicted by sex (𝛽 = -.11, t = -1.54, p = .13). Likewise, a significant model was also initially 

found for the low-frequency mean TE before age was added to the model, F(1, 202)= 5.97, p = 

.02. Low-frequency mean TE was significantly predicted by sex (𝛽 = -.17, t = -2.44, p = .02) and 

was not predicted by impulsivity (𝛽 = .07, t = 1.04, p = .3). The model fit was R2 = .03, SE = .06. 

However, after age was added to the model, the low-frequency mean TE was significantly 
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predicted by age (𝛽 = -.36, t = -5.39, p < .001), was not predicted by impulsivity (𝛽 = .08, t = 1.23, 

p = .22) and was no longer predicted by sex (𝛽 = -.09, t = -1.36, p = .18).
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Table 3.3. The results of three stepwise multiple linear regression analyses investigating the influence of age, impulsivity and sex on 

the average temporal error in the high-, medium- and low-frequency conditions 

Final regression model 𝛽 t F df R2 SE 

Average temporal error in the high frequency 

condition (high-frequency mean TE)          

      Age 

      Impulsivity 

      Sex 

 

 

-.17* 

.06 

-.03 

 

 

-2.46* 

.86 

-.35 

6.06* 1, 198 .03 

 

.02 

Average temporal error in the medium frequency 

condition (medium-frequency mean TE)     

      Age 

      Impulsivity 

      Sex 

 

 

-.21* 

.06 

-.11 

 

 

-3.03* 

.9 

-1.54 

7.16* 2, 201 .07 .05 

Average temporal error in the low frequency 

condition (low-frequency mean TE)     

      Age 

      Impulsivity 

      Sex 

 

 

-.36** 

.08 

-.09 

 

 

-5.39** 

1.23 

-1.36 

17.93** 2, 201 .15 .06 

Note. *p<.05  **p<.001. 
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Figure 3.3. 

Average temporal error as a function of participants’ unlogged age in years and condition 

 

 

Note. 3.3A. A figure showing average temporal error in the high-frequency condition as a function 

of participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 3.3B. A figure 

showing average temporal error in the medium-frequency condition as a function of participants’ 

unlogged age in years. Error bars represent +/- 1 standard deviation. 3.3C. A figure showing 

average temporal error in the low-frequency condition as a function of participants’ unlogged age 

in years. Error bars represent +/- 1 standard deviation. 
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The Influence of Age on Participants’ Temporal Variability in Each of the Three Tone 

Frequency Conditions 

To explore the extent to which a participant could consistently maintain the response pace set by 

the tones, a CV was calculated for each condition. The larger the CV value, the greater the 

variability in participants’ ability to match the set response pace, and hence, the less precise their 

forward model. To establish the extent to which age had an effect on the temporal variability in 

participants’ response behaviour, three stepwise multiple linear regressions were conducted on the 

high-frequency CV, the medium-frequency CV and the low-frequency CV, with the factors: age, 

impulsivity, and sex. In each regression, impulsivity and sex were entered in an initial block as 

nuisance variables, and age was entered alone in a second block (see table 3.4 for the final models). 

It was revealed that all three variables were significantly predicted by age (all p<.05), and were 

not predicted by impulsivity or sex (all p>.05). As age increased, the CV decreased in all three 

conditions. For visualisation purposes, see figure 3.4 for each CV variable plotted against 

participants’ unlogged age in years. 
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Table 3.4. The results of three stepwise multiple linear regression analyses investigating the influence of age, impulsivity and sex on 

the temporal variability in the high-, medium- and low-frequency conditions 

Final regression model 𝛽 t F df R2 SE 

Temporal variability in the high frequency 

condition (high-frequency CV)          

      Age 

      Impulsivity 

      Sex 

 

 

-.52** 

.02 

.07 

 

 

-8.54** 

.24 

1.05 

72.85** 1, 202 .27 

 

.2 

Temporal variability in the medium frequency 

condition (medium-frequency CV)       

      Age 

      Impulsivity 

      Sex 

 

 

-.22* 

.01 

-.02 

 

 

-3.27* 

.19 

-.26 

10.66* 1, 202 .05 .23 

Temporal variability in the low frequency 

condition (low-frequency CV)       

      Age 

      Impulsivity 

      Sex 

 

 

-.26** 

.02 

.02 

 

 

-3.76** 

.31 

.33 

14.15** 1, 202 .06 .23 

Note. *p<.05  **p<.001.
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Figure 3.4. 

Temporal variability as a function of participants’ unlogged age in years and condition 

 

 

Note. 3.4A. A figure showing temporal variability in the high-frequency condition as a function of 

participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 3.4B. A figure 

showing temporal variability in the medium-frequency condition as a function of participants’ 

unlogged age in years. Error bars represent +/- 1 standard deviation. 3.4C. A figure showing 

temporal variability in the low-frequency condition as a function of participants’ unlogged age in 

years. Error bars represent +/- 1 standard deviation. 
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Discussion 

The purpose of the current study was to determine the influence of age on the accuracy and 

variability of participants’ sensorimotor continuation ability, given its proposed reliance on the 

forward model (Maes, 2016). To achieve this, participants aged 4-25 completed a synchronisation-

continuation task in which they were instructed to press a computer key in time with a series of 

tones presented at either a high, medium, or low-frequency. After synchronising their responses 

with the tones, they then had to continue making keypresses at the same pace in the absence of the 

tones. The accuracy and variability with which participants were able to maintain the target 

response pace was computed. In addition, the extent to which participants’ response pace tended 

to run ahead of or lag behind the target response pace was also calculated. These measures acted 

as indicators of the participants’ ability to form accurate forward model prediction of when best to 

respond and update their model in response to post-action feedback.  

 

In the current study, it was found that increased age led to greater temporal accuracy and 

reduced temporal variability after controlling for the influence of impulsivity and sex. 

Furthermore, this result remained true regardless of the frequency at which the tones were 

delivered. These findings are consistent with both the first and second hypotheses of the current 

study. Similarly, the findings also align with the conclusion drawn by McAuley et al. (2006), as 

they suggest that the accuracy and consistency of individuals’ sensorimotor continuation improves 

with age from childhood to adulthood. Furthermore, the findings extend our current understanding 

of how the forward model develops, as they suggest that both the quality of the forward model’s 

predictions and the capacity to integrate observed action feedback into the forward model improve 

with increased age. That being said, it should be acknowledged that, across the frequency 

conditions, only a small proportion of the variance in participants’ temporal accuracy and temporal 

variability was explained by the final models (R2 = .03 - .27). Hence, the results should be 

interpreted with caution.   

 

Despite being consistent with the conclusion of research by McAuley et al. (2006), the 

findings of increased temporal accuracy and reduced temporal variability with age are not in 

agreement with the results of research by Witt and Stevens (2013). As posited earlier within this 

chapter, this disparity may be explained by statistical error. More specifically, Witt and Stevens 
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(2013) failed to achieve sufficient statistical power in their analyses. In contrast, all analyses were 

sufficiently powered in the current study. Therefore, this reinforces the idea that the effect of age 

on sensorimotor continuation was merely obscured by statistical error in research by Witt and 

Stevens (2013).  

 

As an alternative explanation, differences in the method through which temporal accuracy 

was measured may have given rise to the discrepancy between the current findings and those 

obtained by Witt and Stevens (2013). In their study, Witt and Stevens (2013) quantified temporal 

accuracy by measuring the average asynchrony between a participant’s tap and the time at which 

the participant should have tapped according to the target response pace. Evidently, this measure 

assumes that preserving a perfect alignment between the onset of each response and the timestamp 

of each tone is necessary to maintain the presented response pace. However, this is not always the 

case. For instance, it is plausible that a participant could have successfully reproduced the target 

ITI, but have shifted the onset of each of their responses slightly later than was expected. This 

would result in a constant offset between the time of each tone and the time of each response, thus 

falsely degrading the participant’s recorded temporal accuracy. Therefore, this suggests that the 

findings obtained by Witt and Stevens (2013) were not reflective of participants’ genuine 

sensorimotor continuation skill. In contrast, the current study measured poor temporal accuracy as 

the average extent to which participants’ inter-response-intervals deviated from the target inter-

response-interval. Hence, the current findings are more representative of participants’ 

sensorimotor continuation ability, as they were not confounded by deviations in the specific time 

during the trial at which a response was made.  

 

The present study also found that, when the target ITI was set to 600ms or 800ms, a greater 

tendency to respond ahead of the target response pace was linked to younger age. Whereas, there 

was no effect of age on the temporal bias at the high-frequency (400ms) target response pace. 

These findings appear to suggest that younger individuals’ poorer temporal accuracy relative to 

older individuals arises due to a tendency to overestimate the time at which they need to respond. 

Alternatively, the association between younger age and tending to respond ahead of the target 

response pace can also be explained by age-related differences in participants’ propensity to shift 

their response pace to their preferred response tempo. During the continuation phase of 
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synchronisation-continuation tasks, previous research has shown that children’s response pace 

drifted to their preferred response tempo to a greater extent than that of adults (McAuley et al., 

2010). In addition, children’s preferred response tempo has previously been shown to range 

between 400-500ms and gradually slow over time before averaging between 600-800ms in 

adulthood (Baruch et al., 2004; Hammerschmidt et al., 2021; Monier & Droit-Volet, 2019; Provasi 

& Bobin-Bègue, 2003). Therefore, this suggests that younger participants’ tendency to respond 

faster than the 600ms and 800ms target pace occurred as a result of their response pace drifting to 

their preferred response tempo of 400-500ms. In support of this idea, the tendency to response 

ahead of the target pace was found to decline with age, in line with the suggestion that children’s 

propensity to move their response pace to their preferred motor tempo reduces with age. However, 

this interpretation does not explain the observed link between older age and a greater tendency to 

respond behind the target response pace. Further research is needed to elucidate why this occurred.  

 

During the synchronisation-continuation task, it is believed that individuals predict when 

to make each response via a weighted combination of a prior and a likelihood (Berniker & Körding, 

2011). The likelihood refers to the individual’s perception of the time elapsed since their last 

response (Narain et al. 2018). Whereas, the prior refers to their memory of the average ITI 

presented during the synchronisation phase of the task (Lewis et al., 2004; Witt & Stevens, 2013). 

For this reason, one limitation of the current study is that the reported age-related improvement in 

sensorimotor continuation may have been modulated by developmental changes in participants’ 

capacity to retain the target ITI in working memory. In agreement with this suggestion, previous 

research has demonstrated that, during the continuation phase of a synchronisation-continuation 

task, children aged 11-12 were able to maintain an isochronous ITI in working memory for a longer 

timeframe compared to children aged 6-10 (Gomes et al., 1999). This suggests that the rate at 

which nonverbal, auditory information degrades over time within working memory declines with 

age in childhood. Therefore, future research should control for the impact of age-related variability 

in young people’s working memory capacity on the results in order to produce more reliable 

conclusions on how sensorimotor continuation changes with age from childhood to adulthood. 

 

Aside from age-related deficits in participants’ ability to recall the target ITI, it can be 

argued that, in comparison to older participants, younger participants were less capable of 
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perceiving the target ITI. Past research has shown that children perform worse than adults on tasks 

where they are asked to discriminate between different auditory and visual stimuli based on their 

duration (Droit-Volet et al., 2006; Droit-Volet et al., 2007; Zélanti & Droit-Volet, 2012). This 

suggests that the capacity to accurately perceive presented time intervals matures with age from 

childhood to adulthood. Therefore, the current results can be partly attributed to age-related 

improvements in participants’ ability to accurately judge the temporal interval presented between 

the tones, as opposed to being solely the result of maturation in the quality of their forward model.  

 

In addition to age-related differences in time perception, it may be argued that the results 

could have also been affected by varying years of music training amongst participants. Music 

training refers to the act of learning to play a music instrument, either formally with an instructor 

or informally via self-instruction (Braun Janzen et al., 2014). Past research has shown that 

possessing a greater number of years of music training was associated with more accurate and less 

variable synchronised tapping performance across participants aged 8-80 (Thompson et al., 2015). 

This is because experience of learning to play a musical instrument is believed to provide 

individuals with the opportunity to develop their ability to predict when the next beat will occur 

within a sequence (Slater et al., 2018) and practice in adjusting the timing of their movements 

according to auditory cues (Krause et al., 2010). Intuitively, older participants will have had more 

time in which to gain music training than younger participants. Hence, the observed age-related 

change in sensorimotor continuation skill could be, at least partially, explained by variation in 

individuals’ years of music training. Therefore, future research aimed at determining the influence 

of age on sensorimotor continuation should control for the impact of variability in individuals’ 

years of music training.  

 

The results of the current study demonstrated that sensorimotor continuation develops with 

age from childhood through to adulthood. However, it has been argued that effective sensorimotor 

continuation is reliant on two distinct mechanisms: i) the individual’s ability to form accurate 

forward model predictions about when to make each response, and ii) their ability to correct their 

forward model in instances where their response pace has deviated from the target pace (Maes, 

2016). Consequently, to gain a holistic understanding of how the forward model system matures 

with age, future research is needed to separate the relative developmental trajectories of these two 
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mechanisms. This could be accomplished by modifying the current task to include tone sequences 

with unexpected shifts in the length of the inter-tone-interval, as implemented in research by Hove 

et al. (2017). By measuring the speed and accuracy with which the individual can alter their 

response pace during the synchronisation phase to match these unexpected changes, it would be 

possible to assess how the ability to adjust one’s forward model develops with age. Similarly, the 

extent to which individuals can anticipate when these shifts in inter-tone-interval will occur after 

repeated exposure could also be quantified, as achieved in research by Mills et al. (2015). Through 

this measure, it would then be possible to isolate the impact of age on the quality of individuals’ 

forward model predictions on when best to respond.  

 

To conclude, the purpose of the present study was to determine the influence of age on 

young people’s sensorimotor continuation. It was found that both the accuracy and consistency 

with which the set response pace could be replicated improves with age from childhood to 

adulthood. As sensorimotor continuation is believed to rely on a forward model, the current results 

suggest that the forward model becomes more functionally efficient with age. To solidify these 

interpretations, future studies should elucidate whether the current findings can be replicated after 

controlling for the impact of variation in individuals’ working memory capacity, time perception 

and years of music training. Moving forward, it would also be beneficial for future research to 

examine the relative development trajectories of both the ability to form forward model predictions 

and update the forward model in response to observed sensory feedback. This would provide a 

more in-depth understanding of how precisely the forward model develops in functional efficiency 

from childhood to adulthood.  
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Chapter 4: Exploring the Impact of Age on Predictive Motor Timing from Childhood to 

Adulthood 

 

Chapter Summary  

The purpose of chapter 4 was to explore how predictive motor timing changes from childhood to 

adulthood, given the suggested role of the forward model in facilitating anticipatory motor action. 

This was achieved by administering a cued RT task to participants aged 4-25 years. Participants 

were first presented with a cue stimulus, followed by a target stimulus after a variable interval. 

Their objective was to respond as soon as a target stimulus appeared. It was found that both the 

ratio of anticipatory to reactive responses made by the participant and the average speed and 

consistency of their anticipatory decision process increased with age. This suggests that the ability 

to form accurate forward model predictions develops with age from childhood to adulthood.  

 

Introduction 

The study reported in chapter 3 was successful in demonstrating that individuals become more 

effective at using their forward model to control the accuracy and consistency of their motor 

actions with age. Notably, it remains unclear as to whether the age-related improvements described 

in chapter 3 arose due to the development of participants’ prediction abilities, their ability to learn 

from action feedback, or some combination of the two. By disentangling the developmental 

trajectories of these two abilities, it will be possible to gain a more in-depth understanding of how 

the ability to use a forward model improves with age. Therefore, chapter 4 focused exclusively on 

determining how the rate at which individuals use their forward model to predict when to respond 

develops with age.  

 

Predictive motor timing refers to an individual’s ability to manipulate the timing of an 

intended action such that its occurrence aligns with the predicted onset of an imminent stimulus 

(Tanaka et al., 2021). This ability has previously been measured using a cued reaction time task 

(Brown, 2019). In a cued RT task, participants are first presented with a cue stimulus. The cue 

stimulus is then succeeded by a target stimulus after a given time interval. Participants’ objective 

is to make a response as soon as the target stimulus has been perceived (Debrabant et al., 2012). 

Crucially, two distinct cognitive control processes can be employed to achieve this objective: a 
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proactive control process and a reactive control process (Braver, 2012). The proactive control 

process is prompted by the onset of the cue stimulus. The individual’s forward model is used to 

predict when the target stimulus will most likely occur and hence, when best to respond such that 

their keypress is temporally-contingent with the target stimulus’ onset. Relevant muscles then 

remain primed to execute the planned, anticipatory response throughout the duration of the cue 

(Burnett Heyes et al., 2012). Whereas, when the reactive control process is implemented, actions 

are selected retrospectively in response to the perception of the target stimulus. Consequently, 

executing a reactive response does not require any internal action preparation via the forward 

model in advance of the target stimulus’ onset, and is instead, triggered solely by external events 

(Lucenet & Blaye, 2014).  

 

Whilst it may be argued that a reactive response is indeed sufficient for completing a cued 

RT task, this approach is suboptimal given that the time needed to perceive the target stimulus and 

produce an appropriate response will contribute to the participant’s RT (Burnett Heyes et al., 

2012). In comparison, these time costs are reduced when an anticipatory response is made. By 

using the forward model to predict when the target stimulus will onset, participants have primed 

their sensory and motor systems to perceive the stimulus and perform an appropriate response 

before the target has even appeared (Braver, 2012). Therefore, effective predictive motor timing 

necessitates an anticipatory response strategy, as opposed to a reactive strategy, in order to 

minimise the individual’s RT relative to the target stimulus’ onset. For this reason, past studies 

have examined both the proportion of anticipatory responses produced by the individual 

(Debrabant et al., 2012), and the speed and consistency at which the decision to make an 

anticipatory response was reached (Adam et al., 2012; Burnett Heyes et al., 2012) as indices of 

predictive motor timing.  

   

 Notably, few prior studies have attempted to determine the full trajectory at which 

predictive motor timing develops from childhood to young adulthood (Debrabant et al., 2012). 

Instead, most studies have merely compared the performance of children and young adults on cued 

RT tasks (Iselin & DeCoster, 2009), often reporting that the latter demonstrate greater anticipatory 

response behaviour than the former (Brown, 2019; Perchet & Garcia-Larrea, 2005). This suggests 

that young adults show a greater tendency to prepare motor responses to anticipated stimuli than 
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children, and thus, are more likely to form predictions about the outcome of their action. However, 

it remains unclear as to whether these results can be extended across adolescence. A limited 

number of studies have shown that the ability to predict both the location (Van Gerven et al., 2016) 

and the identity (Iselin & DeCoster, 2009) of expected stimuli and prepare appropriate responses 

improves with age across adolescence. This increase in anticipatory behaviour has been argued to 

result from maturational changes occurring within the prefrontal cortex during adolescence (Smith 

et al., 2011). Therefore, it has been posited that predictive motor timing, or in other words, the 

tendency to use the forward model to prepare actions in advance, should also improve as 

individuals develop throughout adolescence. However, further research is needed in order to 

examine this idea empirically.  

 

The Current Study  

The purpose of the current study was to establish the extent to which the tendency to form 

predictions about when to respond in anticipation of a sensory event improves with age from 

childhood to adulthood. This would reveal how the capacity to generate predictions about the 

outcomes of planned actions using a forward model changes with age across this period. To 

achieve this, participants completed a cued RT task where they were presented with an amber cue 

stimulus, followed by a target green stimulus after a variable interval. Participants were instructed 

to click the screen as soon as the target stimulus became visible. Responses were classified as 

anticipatory or reactive based on the participant’s RT. From this, the ratio of anticipatory to 

reactive responses was calculated. The higher ratio, the greater the extent to which the participant 

tended to use their forward model to form predictions about the outcome of their action. In 

addition, participants’ RT data was also fitted to a two-horse linear rise-to-threshold model to 

calculate the speed and variability at which the decision to make an anticipatory response was 

reached. The faster and more consistent the rate of rise in their anticipatory decision process, the 

greater their tendency to form forward model predictions and prepare response in advance. To 

extend the findings of past research (e.g., Brown, 2019), two hypotheses were made: 

 

1) It was hypothesised that the ratio of anticipatory to reactive responses would be predicted 

by age, with greater age associated with a larger ratio. 
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2) It was hypothesised that the speed and variability in the rate of rise in the anticipatory 

decision process would be predicted by age, with greater age associated with a faster and 

more consistent rate of rise. 

 

Method 

Design 

An independent measures design was used in the current study. The independent variables were 

age, sex and impulsivity. The key dependent variables were the ratio of anticipatory to reactive 

responses, the mean rate of rise in the anticipatory decision process, and the variability in the rate 

of rise in the anticipatory decision process. These dependent variables acted as indicators of 

participants’ ability to prepare actions in advance; a skill that demands the use of the forward 

model.  

 

Participants 

323 participants were initially recruited (83 male, 239 female, and 1 preferred not to say). The age 

of participants ranged from 4 to 25 years (M=16.36, SD=4.14).  

 

● 220 participants were right-handed, 23 was left-handed and 52 were ambidextrous, as 

measured by the EHI-SF (see appendix A for a full outline of this measure). 28 participants 

did not complete the EHI-SF. 

● 212 participants were White, 19 were Asian, 7 were Black, 10 had mixed/multiple ethnic 

identities, 3 had another ethnic identity that was not listed,  8 preferred not to say, and 64 

did not report their ethnic identity.  

 

Participants were recruited through one of four avenues: 70 participants were recruited via 

SSM in August 2020 and August 2021, 58 were recruited from two high schools in the 

Nottinghamshire and Derbyshire areas from January 18th 2022 - 16th March 2022, and the 

remaining 195 were recruited either through RPS or through recruitment posters published on 

social media between 18th November 2020 - May 15th 2021. For more detailed information on 

how participants were recruited from each of these sources and how informed consent was 

obtained, please see chapter 2. The full experimental procedure of the current study was approved 
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by the School of Psychology ethics committee at the University of Nottingham. Seventeen 

participants were excluded because they self-reported a diagnosis of either ADHD or ASD.  The 

rationale for removing participants with these two conditions was outlined in chapter 3. All 

remaining participants were neurotypical. One participant was also removed because they 

responded during the red light presentation on >50% of the trials on the cued RT task. The 

demographics of the adjusted sample can be viewed in table 4.1. 



 84 

Table 4.1. The demographic characteristics of the adjusted sample. 

 Age (years) Sex Ethnicity* Handedness** 

Full sample 

(n=305) 

Range= 

4 to 25  

M=16.39 

SD=4.17 

78 Male 

226 Female 

1 Preferred not to say 

199 White  

19 Asian 

7 Black 

10 Mixed/multiple ethnic identities 

2 Any other ethnic identity 

7 Preferred not to say 

209 right-handed 

22 left-handed 

49 ambidextrous 

 

Note. *Ethnicity information was not collected for 61 participants. **Handedness information was not collected for 25 participants. 
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Materials 

 

The Cued Reaction Time Task. A cued RT task was used to measure participants’ 

predictive motor control. The task closely mirrored the tasks used in research by Brown (2019) 

and Burnett Heyes et al. (2012). The task was designed using PsychoPy and ran online via Pavlovia 

(Peirce, 2019, 2022). Stimuli consisted of two 119x178 pixel images of cartoon race cars. The cars 

were coloured red and blue to differentiate between the participant-controlled car and the 

computer-controlled car. Stimuli also included a 500x200 pixel image of a traffic light. The traffic 

light changed colour sequentially from red to amber to green during each trial. 

  

Self-Report and Parent-Report Measures. The following self-report measures and parent-

report measures were administered in the current study: 

● The SWAN-Hyperactive/Impulsive subscale was used to measure child participants’ 

impulsivity as reported by their parents or carers.  

● The UPPS-P short-form was used to measure adolescents’ and young adults’ self-reported 

impulsivity.  

Please see chapter 2 for a full outline of the SWAN rating scale and UPPS-P short-form.  

 

Procedure 

Similar to the synchronisation-continuation task reported in chapter 3, two versions of the cued 

RT task were created with the same age groups in mind: one version for adolescents and young 

adults and a second version for children. The adolescent and young adult version was available to 

participants via the two high schools, RPS, and social media posts. Whereas, the child version was 

administered at the two SSM events. As noted in chapter 3, although SSM was aimed at children 

aged 4-12, individuals aged between 12-17 were also permitted to take part. Therefore, it was 

possible for a participant aged >12 to have received the child version of the task.  

 

Adolescent and Young Adult Procedure. Adolescent and young adult participants 

provided their demographic information and completed the UPPS-P short-form via a survey hosted 

on Qualtrics before being redirected to the cued RT task.  
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Upon opening the cued RT task, participants first saw a black instructions screen with 

details about how to complete the task. Participants started the trials by pressing the spacebar. 

Participants were instructed to complete the task using the same hand throughout. Participants first 

completed 5 practice trials to familiarise themselves with the task, before progressing to the main 

experiment trials. In each trial, participants were presented with a red car and a blue car positioned 

at the bottom of the screen (see figure 4.1A). The red car and blue car were each controlled by the 

participant and the computer, respectfully. A set of traffic lights was positioned at the top of the 

screen with only the red light visible. After 1s, the red light was replaced by an amber light. The 

duration of the amber light varied on each trial via a Gaussian distribution with a mean of 750ms 

and a standard deviation of 125ms. When the amber light duration terminated, the green light was 

shown for 1s. Participants responded by clicking the screen as soon as the green light was visible. 

Time taken to click the screen was recorded relative to both the amber light’s onset and the green 

light’s onset. On each trial, the chance of winning was determined via an inverse exponential 

temporal discount function based on the participant’s reaction time relative to the green light’s 

onset (1/exp(2)RT; see figure 4.1B). Faster responses resulted in a higher chance of winning the 

trial. However, any responses that occurred before the green light’s onset or after the green light’s 

duration had ended resulted in the participant losing the trial. This time pressure was designed to 

encourage participants to prepare their responses in anticipation of the green light’s onset. 
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Figure 4.1. 

Image of the cued RT task and the inverse exponential temporal discount function.  

 

Note. 4.1A. An image showing the cued RT task. The participant’s and computer’s cars are 

positioned at the bottom of the screen. The traffic light is shown at the top of the screen with the 

green light visible. 4.1B. A figure showing the inverse exponential temporal discount function 

used to calculate a participant’s chance of winning a trial based on their reaction time relative to 

the green light’s onset. 

  

Making a response caused the cars to travel up the screen to simulate a car drag race. If the 

participant won the trial, then the participant’s car moved at a faster pace than the computer’s car. 

The opposite occurred when the participant lost the trial. As the cars moved, the sound of a car 

engine was heard. Each trial lasted for approximately 3s. After each trial, a feedback screen was 

presented for 1s. The feedback screen informed participants of whether they had won, lost, 

responded during the red light presentation, or failed to respond on the previous trial. The feedback 

screen also showed the current number of trials that both the participant and the computer had won 

throughout the experiment. If either no response was made or a response was made during the red 

light presentation during a trial, the feedback screen reminded participants of the task instructions. 

Break screens were shown every 25 trials for 2s each. The break screens included encouraging text 

to promote participants’ attention. Different encouraging messages were shown depending on 

whether the current number of trials won by the participant was greater or lower than the number 

of trials won by the computer. A reward screen was shown every 25 trials for an unlimited time. 

The reward screen featured an image of either a bronze, silver, or gold trophy and an encouraging 

message. An inter-trial interval was presented for 1s, during which a black screen was displayed. 
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There were 100 trials in total. The full adolescent and young adult procedure lasted approximately 

15-minutes.  

 

Child Procedure. The procedure completed by children mirrored that of the adolescent 

and young adult participants with a few minor exceptions. Child participants’ parents or carers 

provided their child’s demographic information and completed the SWAN rating scale when 

registering their child for SSM. Once registered, participants could complete the cued RT task at 

any time throughout the SSM event. Participants were encouraged to complete the left-hand vs 

right-hand task before completing the cued-RT task to measure their hand preference during daily 

tasks. For a full description of the left-hand vs right-hand task, please see appendix B. On the cued 

RT task, break and reward screens were presented every 10 trials rather than every 25 trials. 

Reward screens contained an image of a sticker and an encouraging message to promote 

participants’ attention. The full child procedure lasted approximately 10-minutes.  

 

Data Analysis 

All data pre-processing procedures were conducted in MATLAB. All participants’ ages were 

converted to natural logarithmic age, as described in chapter 2.  

 

Self-Report Scales. All self-report and parent-report scales were summed and averaged to 

create an index for each of the variables of interest. In addition, SWAN-Hyperactive/Impulsive 

subscale scores and UPPS-P short-form scores were converted to z-scores. This meant that the 

impact of impulsivity on task performance could be investigated across age, despite the fact that 

impulsivity was measured using the SWAN-Hyperactivity/impulsivity subscale for child 

participants and the UPPS-P short-form for adolescent and young adult participants.  

 

The Recorded Average Amber Light Duration. On each trial of the cued RT task, the 

duration of the amber light varied around a Gaussian distribution with a mean of 750ms and an SD 

of 125ms. This means that it should not have been possible for the amber light duration to be less 

than 500ms or greater than 1-second as this would have been over 2SDs away from the mean 

amber light duration. An amber light duration of this magnitude would likely have been caused by 

a technical error, such as a temporal delay in the updating of visual stimuli by the participant’s 
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internet browser. For this reason, the total number of trials with a recorded amber light duration 

that was less than 500ms or greater than 1-second was recorded and these trials were removed 

from the analysis. This provided a means through which to retrospectively verify whether the task 

ran as intended online and remove the statistical influence of any trials where technical errors may 

have occurred. On average, 0.36% of trials displayed an amber duration outside of the expected 

range of 500ms-1s (SD = 1.35, range = 0-17). 

 

Percentage of Non-Response Trials. On the cued RT task, participants were instructed to 

respond by clicking the screen as soon as the green light became visible. They then had 1-second 

in which to make their response. Hence, a lack of a response on a given trial indicated either poor 

task comprehension or participant inattention. On average, 1.47% of trials received no response 

(SD= 3.77, range= 0 - 33). All trials without a response were removed from further analysis in 

order to remove the influence of these occurrences on the results.  

 

Percentage of Responses Made During the Red Light. On each trial of the cued RT task, 

participants were presented with a set of traffic lights which moved from red to amber to green 

across the course of the trial. To reiterate, the red light and green light were both on screen for 1-

second each. Whereas, the amber light’s duration was variable. Due to the uncertainty around the 

exact duration of the amber light on any given trial, it is feasible that a participant who has prepared 

their motor response in anticipation of the green light’s onset may accidentally respond whilst the 

amber light is still onscreen. However, unlike the amber light, the red light’s presence does not 

signify that the green light’s onset is imminent. Therefore, any responses made during the red 

light’s presentation are unlikely to have been caused by the mistimed execution of a prepared 

motor response and are instead, more likely to have resulted from either poor task comprehension 

or participant error. On average, 1.28% of trials were responded to during the presentation of the 

red light (SD= 2.73, range= 0 - 20.48). All trials for which this type of response was made were 

removed from further analysis in order to remove the influence of these occurrences on the results. 

Taken together, 2.76% of trials were removed on average due to either: an amber duration outside 

of the expected range, a failure to respond or a response made during the red light presentation 

(SD = 5.31, range = 0 - 45.16). 
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Reaction Time. Reaction time was calculated relative to both the onset of the amber light 

(RTA) and the green light onset (RTG). It is useful to examine both RTA and RTG, as an RTA 

demonstrates precisely where the participant’s response fell within the time window available for 

a valid response to be made, which overlaps both the amber and green light durations. This 

information is helpful for constructing the two-horse linear rise-to-threshold model, as outlined 

below. Whereas, an RTG provides a more direct indication of how successful the participant was 

in achieving the task goal, i.e. the temporal closeness of their response to the green light’s onset. 

A negative mean RTG shows that the participant had a tendency to respond before the green light’s 

onset. Whereas, a positive RTG indicates that the participant tended to respond after the green 

light’s onset.  

 

The Anticipatory to Reactive Response Ratio. Anticipatory responses were defined as 

any response with an RTA that was less than the cut-off criterion of 850ms. This value was selected 

as it combined the average amber light duration (750ms) and 100ms of the green light’s duration. 

This is in line with past research which has defined an anticipatory response as any response made 

within 100ms of the onset of the target stimulus (e.g., Debrabant et al., 2012). Therefore, any 

response that was made between the amber light onset and 100ms into the green light’s duration 

was classified as anticipatory. Whereas, all responses made after the cut-off criterion were counted 

as reactive responses. The total number of anticipatory responses was divided by the total number 

of reactive responses to form the anticipatory to reactive response ratio. This ratio indicated 

whether a participant tended  to respond in an anticipatory or reactive manner. Higher values 

demonstrated a larger tendency to make anticipatory responses, and thus, showed more frequent 

use of the forward model to plan motor responses ahead of their execution, as opposed to merely 

responding reactively. 

 

The Two-Horse Linear Rise-to-Threshold Model Parameters. All valid responses 

made on the cued RT task can be classified as either the product of an anticipatory or a reactive 

decision process. As each trial progresses, these two decision processes compete in a two-horse 

race toward the threshold level required for a response to be executed (Carpenter et al., 2009). 

The decision process which reaches the action execution threshold first determines the identity of 

the performed action. The anticipatory decision process rises slowly from the onset of the amber 
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light toward the action execution threshold; a response is prepared in anticipation of the green 

light’s arrival. Whereas, the reactive decision process is triggered by the presence of the green 

light and rises sharply to the response initiation threshold; here, no prior response preparation 

transpires (Burnett Heyes et al., 2012).  

 

To statistically capture this race, a two-horse linear rise-to-threshold model outlined by 

Burnett Heyes et al. (2012) was applied to each participant’s RTA data (see equation 4.1). 𝑃𝑟(𝑇 ≤

 𝑡) denotes the cumulative probability function of a participant’s RTA data, i.e., the probability that 

a response had occurred (T) by time t following the amber light onset. ΨA and ΨR signify the 

anticipatory and reactive cumulative recinormal distributions. The notation, t0, refers to the cut-

off criterion, 850ms. Hence, the ΨA was constructed on the probability that the participant 

responded at a time after the amber light onset (t). Whereas, the ΨR was based on the probability 

that the participant responded at a time following the cut-off criterion (t-t0).  

 

 

    𝑃𝑟(𝑇 ≤  𝑡)  =  𝜓𝐴(𝑡)  +  𝜓𝑅(𝑡 −  𝑡0) −  𝜓𝐴(𝑡)𝜓𝑅(𝑡 −  𝑡0) 

(4.1) 

 

  In order to fit the two-horse linear rise-to-threshold model to the data, a cumulative 

probability function (CPF) of the participant’s RTA data was first calculated (see the black line on 

figure 4.2A). The CPF describes the probability that a response had occurred (T) by time t 

following the amber light onset. To construct the CPF, both the average duration of the amber light 

(750ms) and the full duration of the green light were segmented into equally spaced intervals of 

50ms, spanning 1.75 seconds in total. For each time interval, the probability that the participant 

had made a response by the onset of that specific time interval. In addition to the CPF, a probability 

density function (PDF) was also produced for visualisation purposes using a similar procedure; 

the probability that the participant had made a response during each individual time interval was 

recorded (see the blue bars on figure 4.2B).  

 

Next, the two-horse linear rise-to-threshold model was used to fit two cumulative 

recinormal distributions to the participant’s CPF, each representing the anticipatory (ΨA) and 
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reactive (ΨR) decision processes, respectfully (see the red line on figure 4.2A for the overall model 

fit). A cut-off criterion (t0) of 850ms was used to define the time windows for which an 

anticipatory or reactive response would fall. As described above in the case of the anticipatory to 

reactive response ratio, this cut-off value was selected as it incorporated the average amber light 

duration (750ms) and 100ms of the green light’s duration. Hence, the ΨA was constructed based 

on the probability that the participant responded at any time after the amber light onset (t). 

Whereas, the ΨR was based on the probability that the participant responded at any time following 

the cut-off criterion (t-t0).  

 

Through maximum likelihood estimation, the mean rate of rise for the anticipatory (μA) 

and reactive (μR) distributions and their corresponding SDs (σA, σR) were calculated. The mean 

rate of rise and standard deviation of each distribution demonstrates, on average, how quickly and 

variably each of the two decision processes rose toward the required threshold for executing a 

response. For a visual example of these decision processes, please refer to figure 4.2C. This shows 

one participant’s PDFs for the anticipatory and reactive decision processes constructed using the 

mean and SD parameters obtained through fitting the two-horse linear rise-to-threshold model to 

their RTA data. Finally, a coefficient of variation was calculated for each decision process in order 

to obtain a more precise measure of variability than is afforded by the standard deviation (CVA, 

CVR). If a participant tended to prepare a response using their forward model, then the ΨA should 

have risen sharply towards the action execution threshold, resulting in a higher μA and lower CVA 

compared to those who tended to make only reactive, stimulus-driven responses. 
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Figure 4.2. 

The cumulative probability function, probability density function, and anticipatory and reactive 

distributions for one participant. 

 

Note. 4.2A. A figure showing the cumulative probability function (CPF) for participant 9. This 

shows the cumulative probability that the participant had made a response at each incremental time 

interval throughout the combined timecourse of the amber and green light durations. The black 

line shows the participant’s CPF constructed from their RTA data. The blue line shows the two-

horse linear rise-to-threshold model (see equation 4.1) prior to being fitted to the participant’s CPF 

through maximum likelihood estimation. The ΨA and ΨR distributions in this default model have 

the following arbitrary parameters: μA = 0.5, σA = 0.5,  μR = 2, σR = 2. The red line then shows 

the two-horse linear rise-to-threshold model after being fitted to the participant’s CPF. The fitted 

model parameters for this participant were μA = 0.78, σA = 0.44,  μR = 5.18, σR = 10.69. 4.2B. A 

figure showing the probability density function (PDF) for participant 9’s RTA data. This reveals 

the probability that the participant had made a response by any given timepoint within the amber 

and green light durations. Each blue bar represents the probability that the participant responded 

during the specific time interval to which the blue bar spans. The dashed green vertical line 

indicates the average onset of the green light, i.e., 750ms after the amber light’s onset. The red line 

shows the probability density function constructed using the participant’s fitted model parameters. 

4.2C. A figure showing the separate probability density functions for the anticipatory and reactive 

decision processes constructed using the fitted model parameters for participant 9. The orange line 

shows the anticipatory distribution. Whereas, the green line shows the reactive distribution. 
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Despite both defining 850ms as a cut-off criterion during their formation, it is important to 

clarify that the μA is not synonymous with the anticipatory to reactive response ratio. During the 

calculation of the anticipatory to reactive response ratio, each RTA is labelled as either anticipatory 

or reactive according to an absolute binary classification system. Any responses that are made 

before the cut-off criterion are classified as anticipatory, i.e., prepared before the green stimulus 

onset. Whereas, all those that fall after this value are reactive. The specific time at which a response 

occurred within the anticipatory or reactive temporal window is irrelevant. Whereas, as the two-

horse linear rise-to-threshold model’s parameters capture the speed and variability at which each 

decision process triggered a motor response, all four variables are dependent on precisely when 

during a trial the response was made. For instance, if a participant responded at approximately the 

same time point within the anticipatory time window on multiple trials then this would lead to a 

higher μA and a lower CVA compared to if their responses were more widely distributed 

throughout this period across the trials. In the former scenario, the slope of the PDF curve for the 

ΨA (as visualised in figure 4.2C) would rise sharply to a peak. The same is also true for the μR 

and the CVR; the greater the temporal clustering of the reactive responses within the reactive time 

window, the greater the μR and the lower the CVR.  

 

In some circumstances, a negative μA or μR could occur. These negative values indicated 

that the two cumulative recinormal distributions could not be fit to the participants’ response 

probability data. For instance, in the case of participant 10, a μA of -8.81 was observed. The 

participant’s RTA data appeared to show a binary pattern of anticipatory responses; there was a 

high probability that the participant would respond both at the very beginning of the amber light’s 

duration and later towards the end of the anticipatory response window (see figures 4.3A-C). An 

optimal PDF curve for this dataset would have two peaks. Hence, this binary response pattern 

cannot be adequately captured by a single μA and CVA parameter. As a result, the produced μA 

value is unlikely to be representative of the participant’s predictive motor timing behaviour. 

Similarly, participant 60 demonstrated a large negative μR of -202.34. The data showed that this 

participant had a high probability of responding both immediately after the cut-off criterion and at 

a later stage in the green light’s duration (see figures 4.3D-F). Again, this binary pattern of reactive 

responses cannot not be reliably captured using a single μR and CVR parameter. As these values 

can be attributed to statistical error, any negative μA, μR, CVA, or CVR values were excluded from 
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the statistical analyses. For this reason, 9 μA, 9 CVA, 122 μR, and 122 CVR data points were 

removed from the data. 

 

Figure 4.3. 

The cumulative probability functions, probability density functions, and anticipatory and reactive 

distributions for two participants with erroneous model fits. 

 

Note. 4.3A-C. Three figures showing the cumulative probability function (4.3A), probability 

density function (4.3B), and anticipatory and reactive distributions (4.3C) for participant 10. See 

figure 4.2 for a detailed description of how the data is presented in each figure. In particular, on 

4.3B, note the relatively tall bars close to time = 0 on the x-axis and just after the green dashed 

line. This indicates that this participant made a high proportion of responses both early into the 

amber light duration and within 100ms of the green light’s onset, leading to an erroneous, negative 

μA value (μA = -8.81). Notably, the constructed PDF curves (4.3C) fail to capture this binary 

response pattern. 4.3D-F. Three figures showing the cumulative probability function (4.3D), 

probability density function (4.3E), and anticipatory and reactive distributions (4.3F) for 
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participant 60. See figure 4.2 for a detailed description of how the data is presented in each figure. 

On 4.3D, it can be seen that this participant made a high proportion of responses both immediately 

after the cut-off criterion (850ms) and later in the green light’s duration, leading to an erroneous, 

negative μR value (μR = -202.34). Notably, the constructed PDF curves (4.3F) were a poor fit for 

the participant’s data; most reactive responses appear to have been falsely classified as 

anticipatory.  

 

Bayesian Learning Model Parameters. In addition to determining how the ability to form 

predictions via the forward model changes with age, the current research had also aimed to 

examine age-related changes in the ability to update the forward model in light of the goal-related 

information gained via past action experience. To achieve this aim, a Bayesian learning model was 

fitted to each participant’s RTA data. For each trial of the cued RT task, the fitted model parameters 

revealed the weight that the participant had attributed to an average estimate of all past amber light 

durations (i.e., the prior) relative to the amber light duration shown on the most recent trial (i.e., 

the likelihood) when predicting the most probable time at which the green light would onset (i.e., 

the posterior), and therefore, when best to respond. In accordance with typical learning tasks 

(Jacobs & Kruschke, 2011; Yu & Dayan, 2004), it was expected that the weight on prior would 

increase over time as more amber durations were observed. Hence, the higher the average weight 

on the prior, the greater the participant’s ability to successfully update their forward model in light 

of new information. Unfortunately, it was found that all participants failed to construct a reliable 

representation of the prior. This suggests that either the cued RT task was not suitable for this type 

of analysis, or the Bayesian learning model used was incorrect. For this reason, the influence of 

age on the weight attributed to the prior and the likelihood during the cued RT task was not 

examined in this thesis (see appendix C for more information).  

 

Outlier Detection. To exclude any potentially confounding anomalous data, the Tukey’s 

fences method for outlier detection was applied to the dataset (Tukey, 1977). Fifteen anticipatory 

to reactive response ratio, 10 μA, 22 CVA, 15 μR, 15 CVR data points were found to be more than 

1.5 interquartile ranges away from the nearest quartile. Upon comparison, it was found that the 

removal of the anomalous data points did not affect the direction or significance of the results 

regarding the influence of age, sex and impulsivity on the ratio of anticipatory to reactive 
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responses, the μA, or the CVA. Hence, the identified data points for these variables were not 

removed in order to ensure the completeness of the data. However, excluding the extraneous data 

points for μR and CVR did have an effect on the findings. Prior to outlier removal, μR was 

significantly predicted by impulsivity (𝛽 = .18, t= 2.47, p = .01) and CVR was not predicted by any 

predictor variable. Whereas, age significantly predicted both μR (𝛽 = .21, t= 2.76, p= .01) and CVR 

(𝛽 = -.17, t= -2.23, p= .03) after the outlier data points were excluded. In addition to age, CVR was 

also significantly predicted by impulsivity (𝛽 = .16, t= 2.12, p= .04) after outliers were removed. 

Hence, the 30 data points identified as outliers for these two variables were removed from the data 

so as not to statistically bias the results.  

 

Statistical Analyses. All statistical analyses were run in SPSS. For the reasons outlined in 

chapter 2, impulsivity and sex were included as nuisance variables in the current study. In further 

support of the inclusion of impulsivity as a nuisance variable in the current study, it can be noted 

that, in order to perform well on the cued RT task, participants needed to refrain from executing 

their response until a moment close to the target visual stimulus’ onset time. Past studies have 

demonstrated that individuals with a high level of impulsivity struggle to withhold their responses 

in comparison to those with lower levels of impulsivity (Leshem & Yefet, 2019). Therefore, 

impulsivity was included as a nuisance variable to control for the impact of age-related variation 

in impulsivity on the current findings. Similarly, in terms of sex, past research has suggested that 

females demonstrate greater efficiency in deploying proactive control over their actions compared 

to males (Bianco et al., 2020; Yücel et al., 2012; Smittenaar et al., 2015). Furthermore, it has been 

argued that this is due to sex differences in the rate at which regions of the brain implicated in 

cognitive control develop (Christakou et al., 2009). Hence, sex was also included as a nuisance 

variable in the analyses.  

 

Five stepwise multiple linear regressions were performed to investigate whether the 

anticipatory to reactive response ratio, the μA, the CVA, the μR, or the CVR could be predicted by 

age, impulsivity, or sex. In each stepwise multiple linear regression analysis, impulsivity and sex 

were entered in an initial block as nuisance variables, and age was entered alone in a second block. 

The purpose of these statistical tests was to reveal the extent to which an individual’s age can 

influence their predictive motor control when the respective influences of both impulsivity and sex 
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are taken into account. G*Power analysis revealed that 77 participants were required to obtain a 

medium sized-effect (f2=.15) in a multiple linear regression with three predictor variables, 80% 

power, and a 5% alpha level (Faul et al., 2009). Therefore, as the sample contained 305 

participants, the performed analyses were sufficiently powered.  

Results 

In the current study, participants completed 100 trials of the cued RT task, which involved making 

a mouse click response as soon as a green light stimulus became visible. On average, participants 

responded 194.59ms after the green light’s onset (SD = 76.97, range = 30.76 - 500.55).  

 

The Influence of Age on Participants’ Anticipatory and Reactive Response Behaviour 

On each trial of the cued RT task, a participant could respond in either an anticipatory or a reactive 

manner. Anticipatory responses necessitate the use of the forward model as they have to be 

prepared during the amber light’s presentation in order to ensure that a response can be given as 

soon as the green light becomes visible. Whereas, a reactive response was triggered by the onset 

of the green light and therefore, did not require any predictive motor planning using the forward 

model (Burnett Heyes et al., 2012). On average, 30.4% of participants’ responses were anticipatory 

(SD = 15.12, range = 1 - 82). Notably, this demonstrates that every participant made at least one 

anticipatory response. Additionally, this average anticipatory response rate was significantly 

greater than 0, t(304) = 35.14, p<.001, d= 15.11, meaning that a sufficient level of anticipatory 

responses were made across participants to warrant further analysis. That being said, it should be 

noted that this figure was significantly lower than the 47% rate of anticipatory behaviour reported 

by Brown (2019), t(304) = -19.19, p<.001, d = 15.12. The anticipatory to reactive response ratio 

was calculated to provide an indication of a participant’s tendency to respond in an anticipatory 

manner relative to their tendency to make a reactive response. Higher values demonstrate a larger 

tendency to make anticipatory responses over reactive responses, and thus, show more frequent 

use of the forward model to plan motor responses ahead of their execution.  

 

The μA and the CVA were obtained from participants’ reaction time data using the two-

horse linear rise-to-threshold model. Similar to the anticipatory to reactive response ratio, the μA 

and the CVA also provide information regarding the participant’s anticipatory response behaviour; 
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they demonstrate the average speed and variability with which a participant’s anticipatory decision 

process rose toward the action execution threshold. The larger the μA, the sharper the rise in their 

anticipatory decision process and thus, the greater their tendency to plan their response ahead of 

time using the forward model. Likewise, the lower the CVA, the narrower the rise in their 

anticipatory decision process and therefore, the more consistent their tendency to plan a response, 

as opposed to responding reactively. 

 

In addition to the μA and the CVA, the μR and the CVR were also calculated from 

participants’ reaction time data via the two-horse linear rise-to-threshold model. The μR and the 

CVR show how quickly and variably a participant’s reactive decision process rose toward the 

action execution threshold on average. Much like the μA, the greater the μR, the sharper the rise 

in the participant’s reactive decision process and the greater their tendency to respond reactively. 

The lower the CVR, the narrower the rise in the reactive decision process and the more consistent 

their tendency to respond reactively, rather than plan their responses. It was important to examine 

the μR and the CVR as they act as the foil to the both the μA and the CVA, respectively. Therefore, 

both parameters reveal the extent to which a participant failed to recruit the forward model and 

engage in predictive motor planning, and instead produced reflexive responses. 

 

Five stepwise multiple linear regressions were conducted on the anticipatory to reactive 

response ratio, the μA, the CVA, the μR and the CVR, with the factors: age, impulsivity, and sex. 

In each regression analysis, impulsivity and sex were entered in an initial block as nuisance 

variables, and age was entered alone in a second block (see table 4.2 for the final models). It was 

revealed that all five variables were significantly predicted by age (all p<.05). The anticipatory to 

reactive response ratio, the μA, and the μR were found to increase with age. Whereas, the CVA 

and the CVR decrease with age. None of the dependent variables were predicted by sex (all p>.05). 

Impulsivity was only a significant predictor of the CVR (p<.05) and did not significantly predict 

any of the other four variables (all p>.05). As impulsivity score increased, CVR increased. For 

visualisation purposes, see figure 4.4 and 4.5 for each of the independent variables plotted against 

participants’ unlogged age in years. 
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It should be noted that, initially, a significant model was found for CVA before age was 

added to the model, F(1, 289)= 4.96, p = .03. CVA was significantly predicted by sex (𝛽 = -.13, t 

= -2.23, p = .03) and was not predicted by impulsivity (𝛽 = .08, t = 1.28, p = .2). The model fit was 

R2 = .02, SE = .58. However, after age was added to the model, CVA was significantly predicted 

by age (𝛽 = -.2, t = -3.42, p = .001), was not predicted by impulsivity (𝛽 = .07, t = 1.26, p = .21) 

and was no longer predicted by sex (𝛽 = -.07, t = -1.2, p = .23). Likewise, a significant model was 

also initially found for CVR before age was added to the model, F(1, 163)= 4.31, p = .04. CVR was 

significantly predicted by impulsivity (𝛽 = .16, t = 2.08 p = .04) and was not predicted by sex (𝛽 

= -.03, t = -.44, p = .66). The model fit was R2 = .03, SE = .96. However, after age was added to 

the model, both age (𝛽 = -.16, t = -2.13, p = .04) and impulsivity (𝛽 = .15, t = 2.01, p = .05) were 

revealed to be significant predictors of CVR, whereas sex was not a significant predictor (𝛽 = .03, 

t = .38, p = .7). 
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Table 4.2. The results of five stepwise multiple linear regression analyses investigating the influence of age, impulsivity and sex on the 

temporal bias in the anticipatory to reactive response ratio, μA, CVA, μR, and CVR 

Final regression model 𝛽 t F df R2 SE 

The anticipatory to reactive response ratio          

      Age 

      Impulsivity 

      Sex 

 

.22** 

.05 

-.07 

 

3.94** 

.96 

-1.09 

15.56** 1, 298 .05 

 

.48 

The mean rate of rise in the anticipatory decision 

process (μA) 

      Age 

      Impulsivity 

      Sex 

 

 

.5** 

-.06 

-.05 

 

 

9.79** 

-1.21 

-.88 

95.8** 1, 289 .25 .12 

The variability in the rate of rise in the anticipatory 

decision process (CVA) 

      Age 

      Impulsivity 

      Sex 

 

 

-.2* 

.07 

-.07 

 

 

-3.42* 

1.26 

-1.2 

8.4** 2, 288 .06 .57 
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Final regression model 𝛽 t F df R2 SE 

The mean rate of rise in the reactive decision process 

(μR) 

      Age 

      Impulsivity 

      Sex 

 

 

.2* 

-.01 

-.08 

 

 

2.66* 

-.16 

-1.02 

7.05* 1, 164 .04 1.65 

The variability in the rate of rise in the reactive 

decision process (CVR) 

      Age 

      Impulsivity 

      Sex 

 

 

-.16* 

.15* 

.03 

 

 

-2.13* 

2.01* 

.38 

4.47* 2, 162 .05 .95 

Note. *p<.05  **p<.001
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Figure 4.4. 

Anticipatory to reactive response ratio as a function of participants’ unlogged age 

 

Note. A figure showing the anticipatory to reactive response ratio as a function of participants’ 

unlogged age in years. Error bars represent +/- 1 standard deviation.  
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Figure 4.5. 

The μA, CVA, μR, and CVR as a function of participants’ unlogged age in years 

 

Note. 4.5A. A figure showing the mean rate of rise in the anticipatory response process (μA) as a 

function of participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 4.5B. 

A figure showing the variability in the rate of rise in the anticipatory decision process (CVA) as a 

function of participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 4.5C. 

A figure showing the mean rate of rise in the reactive response process (μR) as a function of 

participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 4.5D. A figure 

showing the variability in the rate of rise in the reactive decision process (CVR) as a function of 

participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 
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Discussion 

The purpose of the current study was to determine how predictive motor timing changes with age 

from childhood through to adulthood, and thereby, extend the findings of past research (e.g., 

Brown, 2019). To briefly recap, participants aged 4-25 completed 100 trials of a cued RT task. 

During the task, participants had to respond as soon as a target stimulus appeared. The ratio of 

anticipatory to reactive responses made by the participant and the average speed and variability of 

their anticipatory decision process were recorded. These measures showed participants’ tendency 

to use their forward model to predict when to respond in order for their action to coincide with the 

onset of a target sensory event. 

 

In the current study, it was found that as age increased, the tendency to make anticipatory 

responses over reactive responses also increased. Similarly, greater age was also associated with a 

faster and more consistent rate of rise in the anticipatory decision process towards the action 

execution threshold. These findings support both hypotheses of the current study. Furthermore, the 

results of the present study extend both the results of past research (Brown, 2019; Perchet & 

Garcia-Larrea, 2005) and our current understanding of how the forward model develops, as they 

suggest that the tendency to form forward model predictions about when to execute a motor 

response increases with age from childhood to adulthood. The current findings also mirror the 

results of previous literature, which have argued that the rate at which individuals attempt to predict 

the properties of anticipated stimuli and prepare actions in advance improves with age from 

childhood to adulthood (e.g., Van Gerven et al., 2016).  

 

In parallel to results obtained for the anticipatory decision process, the present study also 

found that older age predicted a faster and more consistent rate of rise in the reactive decision 

process towards the action execution threshold. This suggests that the average speed and 

consistency at which individuals decide to make a reactive response increases with age. This 

finding is consistent with past research, which has shown that the average response time to 

unanticipated stimuli becomes faster with age across ontogeny (Dykiert et al., 2012). Taken 

together, this suggests that the average speed at which individuals can proactively prepare 

responses in advance of expected stimuli and reactively formulate appropriate actions in response 

to unexpected stimuli both improve with age. However, it should be noted that only a small 
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proportion of the variance in participants’ anticipatory to reactive response ratio, as well as the 

speed and consistency of the rate of rise in both their anticipatory and reactive decision processes, 

was explained by the final models (R2 = .04 - .25). Hence, the current findings should be interpreted 

with caution.   

 

In spite of the noted age-related increase in anticipatory response behaviour, it should be 

acknowledged that, on average, less than a third of the responses made by participants were 

anticipatory. This figure was significantly lower than the average percentage of anticipatory 

responses reported by Brown (2019). Strikingly, the task administered in the current study was 

near identical to the task administered by Brown (2019). The only difference between the two tasks 

was that the present task ran online, whereas the task reported by Brown (2019) was completed in-

person. This raises concern regarding the legitimacy of the current findings, as this indicates that 

an aspect of the current task may have artificially deterred some participants from proactively 

preparing their responses. Admittedly, the precise factor that could have manipulated participants’ 

behaviour in this manner is difficult to identify retrospectively. Previous literature has found that 

participants tend to expect a delay in the speed at which experimental stimuli are presented online 

compared to offline (Garaizar et al., 2016). Therefore, this expectancy may have caused 

participants to be slower to respond in the online context than the offline context, resulting in fewer 

anticipatory responses. Moreover, determining the exact causal precursor to this low rate of 

anticipatory response behaviour will require future research.  

 

It can also be posited that the results were confounded by the way in which anticipatory 

responses were defined. In the current study, anticipatory responses were determined in relation to 

a cut-off criterion, which was equal to the average amber light’s duration plus 100ms of the green 

light’s duration. This meant that any responses which occurred during the amber light presentation 

were classed as anticipatory; they had been prepared in advance of their execution using a forward 

model. However, it should be acknowledged that a response made whilst the amber light was 

visible demonstrates a less effective use of the forward model compared to a response executed at 

the moment when the green light onset. Therefore, to provide a more precise measure of 

participants’ forward model functioning, future research should use stricter criteria to define 
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anticipatory responses, such as classifying only responses made within 100ms of the green light’s 

onset as anticipatory.  

 

Admittedly, it can also be argued that the current results were likely to have been 

confounded by age-related differences in participants’ temporal perception. In order to perform 

the cued RT task well, it can be argued that participants need to use the amber duration information 

presented on past trials, as well as the time elapsed since the current amber light onset, to guide 

their prediction of when to respond (Berniker & Körding, 2011). As noted in chapter 3, prior 

literature has shown that the acuity with which children can perceive the duration of both visual 

and auditory stimuli is inferior compared to that of adults (Droit-Volet et al., 2006; Droit-Volet et 

al., 2007; Zélanti & Droit-Volet, 2012). This indicates that the capacity to judge the temporal 

duration of a stimulus matures with age from childhood to adulthood. Therefore, it can be argued 

that the current results were confounded by age-related variation participants’ ability to accurately 

perceive the amber light duration observed on each trial. To improve, the impact of age on temporal 

perception could be measured, and thus controlled for, in future studies using temporal bisection 

task as administered in research by Droit-Volet et al. (2007). 

 

To conclude, the current study found that the tendency to prepare a motor response in 

anticipation of a sensory event increases with age from childhood to adulthood. This extends the 

findings of past literature, as it suggests that the extent to which individuals use their forward 

model to guide their actions develops over this period. In order to solidify this conclusion, future 

research is needed to determine the factor, or factors, that could have hindered the proportion of 

anticipatory responses that were produced by participants in the current study. Likewise, future 

research is also warranted in order to elucidate whether the current results can be replicated after 

controlling for the influence of age-related variation in temporal perception on the findings.  

 

 

 

 

 

 

https://www.zotero.org/google-docs/?aNNyIi
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Chapter 5: Exploring the Influence of Age on Task-Switching from Childhood to 

Adulthood 

 

Chapter Summary 

Chapter 5 describes an experiment where the aim was to investigate how task-switching changes 

with age from childhood to adulthood. To accomplish this, participants aged 5-21 years completed 

a goal-switching task where they had to switch between performing pro-saccades and anti-

saccades according to the colour of the presented stimuli. Switch costs and mixing costs were 

calculated separately for pro-saccade and anti-saccade trials based on participants’ response 

accuracy. To execute the correct response, participants needed to use the presented stimulus colour 

to then select the correct action-outcome pairing from prior knowledge. Hence, switch costs 

demonstrated the cost to accuracy of having to switch between action-outcome pairings when 

determining how to respond. Whereas, mixing costs showed the cost to accuracy of having to 

maintain, and select between, these action-outcome associations. Unfortunately, the pro-saccade 

switch costs, anti-saccade mixing costs, and pro-saccade mixing costs did not significantly differ 

from zero. Hence, the influence of age on these variables could not be examined. However, it was 

found that the anti-saccade switch costs reduced with age. This provides further support for the 

idea that the ability to combine context cues with prior knowledge to form accurate forward model 

predictions develops with age from childhood to adulthood.  

 

Introduction  

The experiment described in chapter 4 revealed that the tendency to form forward model 

predictions develops with age from childhood to adulthood. Notably, the cued RT task presented 

in chapter 4 required participants to time their responses to coincide with the onset of a target 

stimulus. Arguably, this meant that the findings were confounded by age-related variation in 

participants’ temporal perception. Hence, the objective of the current chapter was to overcome the 

noted limitation of the study outlined in chapter 4 by administering a task where the temporal 

characteristics of the presented stimuli were irrelevant to the task objective. Ergo, the current 

chapter extends our knowledge on how the accuracy of one’s forward model predictions changes 

with age.  
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Task-switching refers to an individual’s ability to flexibly shift between two or more 

different task objectives (Barcelo et al., 2006). Effective task-switching requires that the individual 

maintain numerous action-outcome pairings within memory, each outlining how a particular 

stimulus, or category of stimuli, can be interacted with, and to what effect (Koch et al., 2010). 

Relevant prior knowledge must then be combined with available context cues in order to select the 

most appropriate action for the current task (Berniker & Körding, 2011). Hence, effective task-

switching necessitates intentional, goal-directed behaviour executed via a forward model, as 

opposed to automatic, habitual responses made without appropriate reference to this stored action-

outcome knowledge (Hogarth et al., 2015). Consequently, by examining how the propensity to 

switch between different tasks changes with age, it is possible to investigate how the ability to 

form accurate forward model predictions matures.  

 

Task-switching has typically been measured using behavioural tasks where participants are 

required to switch between two or more conflicting task objectives within a single block of trials 

(Karayanidis & McKewen, 2021). The trials within these mixed-task blocks are categorised as 

either repeat trials or switch trials (Kiesel et al., 2010). A repeat trial refers to a trial where the 

current task objective matches with the objective of the last trial. Whereas, a switch trial refers to 

instances for which these two objectives differ (Cepeda et al., 2001). Switch costs are then 

calculated for each participant by finding the difference in error rate, or the time taken to respond, 

on switch trials relative to repeat trials in mixed-task blocks. Switch costs have been suggested to 

demonstrate the damage to performance of having to shift between the action-outcome 

associations stored within memory (Manzi et al., 2011). The lower the switch cost, the greater the 

efficiency with which an individual can switch between known action-outcome pairings, and thus, 

act intentionally, avoiding an incorrect, habitual response. 

 

In addition to mixed-task blocks, previous studies have also often included single-task 

blocks, where the task objective remains static across the trials (Kiesel et al., 2010). Mixing costs 

can then be obtained by calculating the difference in performance on repeat trials in the mixed-

task blocks compared to performance on single-task block trials. In contrast to a switch cost, a 

mixing cost demonstrates the detrimental impact to performance of having to maintain, and select 

between, two or more action-outcome pairings (Manzi et al., 2011). The lower the mixing cost, 
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the greater the individual’s ability to select appropriate prior action-outcome knowledge from 

memory to combine with contextual evidence to determine how best to respond. Moreover, it may 

be argued that both switch costs and mixing costs provide an effective means through which to 

quantify an individual’s task-switching skill, and thereby, their ability to supress automatic, 

habitual responses and author appropriate, intentional actions via the forward model.  

 

Traditionally, past studies have tended to calculate switch costs and mixing costs for both 

participants’ error rate and their saccade duration (e.g., Reimers & Maylor, 2005). However, in 

line with previous research (e.g., Papoutsaki et al., 2018; Semmelmann & Weigelt, 2018; Slim & 

Hartsuiker, 2022), pilot data revealed that the eye-saccade data obtained via the WebGazer 

software lacked sufficient temporal precision (see discussion for further detail). Hence, saccade 

duration was not recorded in the final version of the current task. As a result, all switch costs and 

mixing costs were computed on the basis of participants’ error rates in the present study. For 

simplicity, the terms “switch cost” and “mixing cost” will now be used exclusively to refer to the 

costs calculated on the basis of error rates.  

 

Previous studies have predominantly found that children demonstrate higher switch costs 

and mixing costs than young adults on task-switching paradigms (e.g., Davidson et al., 2006; Kray 

et al., 2004; Kray et al., 2008). However, only two previous studies have included adolescents 

within their sample, both of which failed to find conclusive evidence to support the existence of 

an age-related decline in either switch costs or mixing costs (Manzi et al., 2011; Reimers & 

Maylor, 2005). Manzi et al. (2011) presented children (9-10), adolescents (13-14), and young 

adults (20-27) with either three 1s, three 3s, a single 1, or a single 3. Participants had to switch 

between reporting the quantity and identity of the numbers displayed. Consistent with the idea of 

an age-related reduction in mixing costs, it was found that adolescents showed higher mixing costs 

than young adults. However, mixing costs did not differ between children and adolescents, nor 

children and young adults. Whereas, switch costs did not differ between the three age groups. 

Similarly, Reimers and Maylor (2005) presented participants aged 10-66 with a series of 

photographs of faces. Participants had to switch between reporting the gender and emotional 

expression of the target face. Contrary to past literature, no age-related changes in switch costs or 

mixing costs were found. Taken together, these findings suggest that the current consensus on the 
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full developmental trajectory of both switch costs and mixing costs remains ambiguous and would 

benefit from further research.  

 

The Current Study  

The purpose of the current study was to determine the impact of age on participants’ ability to 

flexibly switch between different task objectives. To achieve this aim, participants aged 5-21 were 

instructed to complete the goal-switching task, inspired by the task used by Jung et al. (2015). 

During the task, participants moved their fixation point to the left or right side of their computer 

screen in response to the colour and position of a visual stimulus. More specifically, participants 

made pro-saccades in response to green stimuli; moving their fixation point towards the presented 

stimulus. Whereas, red stimuli warranted anti-saccades, where participants shifted their gaze away 

from the stimulus and towards the opposite side of the screen. In two single-task conditions, stimuli 

colour remained fixed across trials. Whereas, in a mixed condition, both red and green stimuli were 

presented in a random order. Switch costs and mixing costs were then computed based on 

participants’ error rate in the same manner as described in previous studies (e.g., Manzi et al., 

2011). Based on previous literature, two hypotheses were formed, which have been outlined below. 

If supported by the data, both hypotheses would indicate that task-switching, and thereby, the 

ability to shift between action-outcome pairings to facilitate effective goal-directed action, 

improves with age from childhood to adulthood. 

 

1. To test the findings of both Manzi et al. (2011) and Reimers and Maylor (2005) against the 

contradictory findings from past literature (e.g., Davidson et al., 2006), it was hypothesised 

that:  

a. Pro-saccade switch costs would be predicted by age, with lower switch costs 

associated with older age. 

b. Anti-saccade switch costs would be predicted by age, with lower switch costs 

associated with older age.  

 

2. To test the results of Manzi et al. (2011) and Reimers and Maylor (2005) against 

contradictory findings from past literature (e.g., Kray et al., 2004; Kray et al., 2008), it was 

hypothesised that:  
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a. Pro-saccade mixing costs would be predicted by age, with lower mixing costs 

associated with older age. 

b. Anti-saccade mixing costs would be predicted by age, with lower mixing costs 

associated with older age.  

 

Method 

Design 

A mixed factorial design was used in the current study. The between-subjects independent 

variables were age, sex, and impulsivity. The within-subjects independent variables were trial type 

(pro-saccade trial or anti-saccade trial) and task type (switch task or repeat task). The four 

dependent variables were the pro-saccade and anti-saccade switch costs and the pro-saccade and 

anti-saccade mixing costs obtained from the goal-switching task. Switch costs demonstrate the 

participant’s ability to make appropriate shifts between the different action-outcome pairings 

stored within memory when predicting how best to respond. Whereas, mixing costs provide an 

indication of participants’ ability to maintain, and select between, two or more competing action-

outcome associations. Four additional dependent variables were also recorded to explore the 

suitability of the goal-switching task as a method of measuring task-switching online in 

participants of varying ages. These dependent variables were the total number of position errors, 

the average time to reposition, the average number of fixation errors, and the average time to first 

fixate.  

 

Participants 

100 participants were initially recruited (15 male, 85 female). The age of participants ranged from 

5 to 21 years (M= 17.7, SD= 2.69).  

 

● 75 participants were right-handed, 4 were left-handed and 18 were ambidextrous, as 

measured by the EHI-SF (see appendix A for a full outline of this measure). 3 participant 

did not complete the EHI-SF.  

● 74 participants were White, 11 were Asian, 2 were Black, and 7 had a mixed/multiple 

ethnic identity, and 6 did not report their ethnic identity. 
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Participants were recruited through one of four avenues: 7 participants were recruited 

through SSM in August 2021, 12 were recruited from two high schools in the Nottinghamshire 

and Derbyshire areas from January 18th 2022 - 16th March 2022, and the remaining 81 participants 

were recruited either through RPS or through recruitment posters published on social media from 

the 9th November 2021 - 18th March 2022. For more detailed information on how participants 

were recruited from each of these sources and how informed consent was obtained, please see 

chapter 2. The full experimental procedure of the current study was approved by the School of 

Psychology ethics committee at the University of Nottingham.  

 

Five participants were excluded because they self-reported a diagnosis of either ADHD, 

ASD or Obsessive Compulsive Disorder (OCD). The rationale for removing participants with ASD 

or ADHD was outlined in chapter 3. In terms of participants who reported a diagnosis of OCD, 

prior research has suggested that those with OCD tend to perceive top-down, interoceptive signals, 

such as their memory of past events, as unreliable, and thus, underweight the prior relative to the 

likelihood (Fradkin et al., 2020; Schultchen et al., 2019), resulting in a failure to accurately predict 

the sensory consequences of their own actions (Gentsch et al., 2012). Therefore, to avoid obscuring 

the results regarding the neurotypical developmental trajectory of the forward model, these 

participants were removed from the sample. All remaining participants were neurotypical. A 

further 11 participants were also excluded because they failed to respond on over 50% of the goal-

switching task trials. All participants reported normal vision or agreed to wear contact lenses to 

correct their vision throughout the task. The demographics of the adjusted sample can be viewed 

in table 5.1. 
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Table 5.1. The demographic characteristics of the adjusted sample. 

 Age (years) Sex Ethnicity* Handedness** 

Full sample 

(n=84) 

Range= 

5 to 21 

M=17.63 

SD=2.89  

13 Male 

71 Female 

61 White 

10 Asian  

2 Black 

5 Mixed/multiple ethnic identities  

65 right-handed 

4 left-handed 

12 ambidextrous 

Note. *Ethnicity information was not collected for 6 participants. **Handedness information was not collected for 3 participants.
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Materials 

 

The Goal-Switching Task. The goal-switching task was used to measure participants’ 

ability to adapt their movements in response to changes in the task objective. The design of the 

task was inspired by the task used in research by Jung et al. (2015). The task was designed using 

PsychoPy and ran online via Pavlovia (Peirce, 2019). Stimuli consisted of a 200x200 pixel red 

square and a 200x200 pixel green square. In the child version of the task, each square contained 

an identical cartoon face. Faces were included in order to promote children’s attention. 

 

WebGazer Software. WebGazer is a JavaScript-based library designed to track and record 

participants’ eye movements in real-time via their device’s webcam (Papoutsaki et al., 2017). 

WebGazer is comprised of two elements: a pupil detector and a gaze estimator. The pupil detector 

is used to identify the location of the participant’s pupils within the webcam feed. This is achieved 

by pinpointing two circular regions which each possess a higher contrast relative to their 

surrounding area (Papoutsaki et al., 2017). The gaze estimator was used to approximate 

participants’ point of fixation via a regression model. Mouse click events made during a series of 

calibration trials were used to guide the model’s predictions (Papoutsaki et al., 2017). Mouse click 

events were used based on the assumption that participants’ cursor potion and gaze location should 

align when a mouse click is made (Hauger et al., 2011). Previous studies have reportedly obtained 

similar results using WebGazer to measure eye-movements online compared to lab-based eye-

tracking methods, albeit with greater variance in the spatial and temporal resolution of the collected 

data (Papoutsaki et al., 2018; Slim & Hartsuiker, 2022).  

  

Self-Report and Parent-Report Measures. The following self-report measures and parent-

report measures were administered in the current study: 

● The SWAN-Hyperactive/Impulsive subscale was used to measure child participants’ 

impulsivity as reported by their parents or carers.  

● The UPPS-P short-form was used to measure self-reported impulsivity in adolescents and 

young adults.  

Please see chapter 2 for a full outline of these two measures.  
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Procedure 

Similar to the synchronisation-continuation task reported in chapter 3, two versions of the goal-

switching task were created with the same age groups in mind: one version for adolescents and 

young adults and a second version for children. The adolescent and young adult version was 

available to participants via the two high schools, RPS, and social media posts. Whereas, the child 

version was administered at the two SSM events. As was noted in chapter 3, although SSM was 

aimed at children aged 4-12, individuals aged between 12-17 were also permitted to take part. 

Therefore, it was possible for a participant aged 12+ to have received the child version of the task.  

 

Adolescent and Young Adult Procedure. Adolescent and young adult participants 

provided their demographic information, reported whether or not they needed to wear glasses to 

correct their vision, and completed the UPPS-P short-form via a survey hosted on Qualtrics before 

being redirected to the goal-switching task. If participants reported that they needed to wear glasses 

to correct their vision, they were instructed to wear contact lenses whilst completing the task, and 

report whether or not it was possible for them to do this. This controlled for impact of light glare 

from the lenses of the glasses on the recorded point of fixation during the task.  

 

Upon opening the goal-switching task, participants were first presented with an instructions 

screen with details about how to complete the task. The instructions also asked that participants sit 

in a brightly lit room, preferably in front of a window or a lamp, and that they remove anything 

that may be obscuring their eyes, such as their hair. This maximised the likelihood that 

participants’ point of fixation would be recorded accurately. Throughout the task, all written 

instructions were accompanied by a voice-over which read the instructions to participants. 

Participants also saw a 320x240 pixel video feed taken from their device’s built-in webcam using 

the WebGazer JavaScript library (Papoutsaki et al., 2017). This was positioned in the top centre of 

the screen and contained a 200x160 pixel outline of a green square, two thirds the size of the video 

feed. Throughout the experiment, the position of the participant’s face in relation to the square 

outline was continuously monitored by the WebGazer program. When the participant’s face was 

within the square outline, the outline turned green. If their face left the square outline, the outline’s 

colour changed to red. This helped participants to position themselves in a way such that their eye 
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movements could be detected by WebGazer. Once the participant was satisfied that their face was 

positioned within the square outline, they could press the spacebar to progress to the next screen. 

In addition to the position of their face, participants’ eye movements were also accessed by the 

WebGazer program via their device’s webcam.  

  

Next, participants completed 34 calibration trials. At the beginning of the calibration trials, 

the video feed was removed from the screen so as not to distract the participant during the task. In 

the event that the participant’s face exited the square outline, the video feed was revealed again. 

The video feed then disappeared 3s after the participant’s face had re-entered and remained within 

the square outline. Occasions for which the participant’s face left the square outline were defined 

as position errors and were recorded. In addition, the time taken for the participant’s face to re-

enter the square outline was also recorded. Both the number of position errors and the time taken 

to reposition the face assessed how difficult it was for participants to maintain their position in the 

square outline and reposition themselves after moving outside of the outline. On each calibration 

trial, a 30x30 pixel white square appeared at a random location on the screen. Participants were 

instructed to click on each square. After this, participants were presented with a demonstration of 

the main task and completed 5 practice trials to familiarise themselves with the task. Participants 

were then asked to report via a keypress whether they believed that their eye-movements had been 

tracked correctly during the practice trials. If the participant responded no, then the calibration 

trials were repeated once more before the main experiment trials began. Whereas, if a yes response 

was given, then the participant progressed immediately to the main experiment trials.  

 

Throughout the task, the screen was divided vertically into 6 invisible zones (see figure 

5.1). At the beginning of each trial, a 40x40 pixel white circle was visible in the centre of the 

screen, on the border of the 3rd and 4th zone. The circle flashed for 300ms. The circle remained 

onscreen until the participant’s fixation point had entered into either the 3rd or 4th zone. The time 

taken for first fixation to be achieved, i.e., the time taken for the participant’s fixation point to first 

enter the 3rd or 4th zone on each trial relative to the first circle flash, was recorded. In addition, 

any instance for which the participant’s fixation point then left the 3rd or 4th zone again before 

the target square had appeared was defined as a fixation error and was also recorded. Both the time 

taken to first fixate and the number of fixation errors serve as an indication of the participant’s 
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difficulty in achieving and maintaining fixation during the goal-switching task. If the time to first 

fixate exceeded 2 seconds, text was displayed below the white circle to encourage the participant 

to move their point of fixation into the 3rd or 4th zone. After first fixation had been achieved, 

participants were presented with a target red or green square positioned in either the 1st or 6th zone 

(see the square shown in figure 5.1 for an example). The probability that the target square would 

appear in either the 1st or 6th zone was equal and randomised across the trials. 

  

Participants responded by moving their fixation point into either the 1st or 6th zone as 

quickly as possible. If the target square was green, then participants responded by moving their 

fixation point into the same zone (1st or 6th zone) as the target square. Whereas, if the target square 

was red, then participants moved their fixation point into the end zone that did not contain the 

target square (again, either the 1st or 6th zone). Participants’ responses were recorded as either 

correct or incorrect accordingly. In keeping with previous research (Alahyane et al., 2014), for 

occasions in which the participant’s fixation point initially entered into the 2nd or 5th zone in the 

incorrect direction, changed direction and then ultimately entered into the 1st or 6th zone in the 

correct direction, this type of response was logged as incorrect. The reasons for this are two-fold. 

First, this initial error in the direction of their saccade demonstrates an automatic, habitual 

response, and thus, an absence of deliberate motor control guided by appropriate prior knowledge 

(Tanaka et al., 2021). Secondly, although this would show that the participant was successful in 

correcting the trajectory of their saccade, this correction occurs at a relatively late stage in the 

saccade’s full movement path (i.e., right before the 1st or 6th zone is reached). Therefore, this 

demonstrates a failure to combine appropriate prior knowledge with the current contextual 

evidence when predicting how best to respond. All correct responses were awarded one point. The 

participant’s total earned points were displayed in the top right-hand corner of the screen 

throughout the task. Participants were encouraged to score as many points as possible in order to 

promote their attention.  
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Figure 5.1. 

Image of the goal-switching task with additional notations. 

 

Note. An image showing the goal-switching task. A green target square is positioned at the left 

side of the screen within the 1st zone. A white circle is positioned at the centre of the screen. This 

was used to attract participants’ fixation point towards the centre of the screen at the beginning of 

each trial. The dashed lines and numbers 1-6 indicate each of the 6 invisible zones. The dashed red 

line represents the centre of the screen. Notably, the dashed lines and numbers were not visible to 

the participant. 

  

Two types of trial were presented during the task: pro-saccade trials and anti-saccade trials. 

In pro-saccade trials, only green squares appeared. Whereas, in anti-saccade trials, only red squares 

were shown. In addition to this, the task contained 3 conditions, a pro-saccade condition, an anti-

saccade condition, and a mixed condition. Each condition was presented in two separate blocks 

with the order of the blocks counterbalanced between participants. The pro-saccade condition 

featured only pro-saccade trials. The anti-saccade condition contained only anti-saccade trials. 

Whereas, the mixed condition included an equal number of both pro-saccade and anti-saccade 

trials and the presentation order of each trial type was randomised. All trials in the mixed condition 

were further divided into switch trials and repeat trials. A switch trial referred to a trial in which 
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the colour of the target square on the current trial differed from the colour of the target square on 

the previous trial. Whereas, a repeat trial referred to a trial in which the current colour of the target 

square matched the colour of the target square on the previous trial. To clarify, this resulted in four 

possible trial-task type combinations for trials in the mixed condition: pro-saccade switch, pro-

saccade repeat, anti-saccade switch, and anti-saccade repeat. There were equal numbers of each 

trial-task type combination in the mixed condition. Each trial lasted for approximately 1s. If no 

response was made 2s after the target had appeared, text was displayed that reminded participants 

of the task instructions. Break screens were shown every 80 trials for an unlimited amount of time. 

Participants pressed the spacebar when they were ready to continue with the task. The break 

screens included encouraging text to promote participants’ attention. An inter-trial interval was 

presented for 1s, during which a black screen was displayed. There were 240 trials in total, 80 per 

condition, and 40 per block. The full procedure lasted approximately 15-minutes. 

 

Child Procedure. The procedure completed by children mirrored that of the adolescent 

and young adult participants with a few minor exceptions. Child participants’ parents or carers 

provided their child’s demographic information and completed the SWAN when registering their 

child for SSM. Once registered, participants could complete the goal-switching task at any time 

throughout the SSM event. Participants were encouraged to complete the left-hand vs right-hand 

task before completing the goal-switching task to measure their hand preference during daily tasks. 

For a full description of the left-hand vs right-hand task, please see appendix B. At the beginning 

of the goal-switching task, participants were asked to report via a keypress whether or not they 

needed to wear glasses to correct their vision. If the participants gave a yes response, they were 

asked to wear contact lenses throughout the task and report whether or not it was possible for them 

to do so. During the task, an image of a sticker was presented for an unlimited time every 10 trials 

as a reward to promote children’s attention. Break screens were presented every 20 trials rather 

than every 80 trials. There were 120 trials in total, 40 per condition, and 20 per block. The full 

child procedure lasted approximately 5-minutes. 

 

Data Analysis 

All data pre-processing procedures were conducted in MATLAB and all statistical analyses were 

run in SPSS. Participants’ ages were converted to natural logarithmic age, as described in chapter 
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2. Any trials on the goal-switching task for which no response was recorded were removed from 

the analysis. On average 17% of trials were removed per participant (SD = 12.27, range = 0.42 - 

48.33). Among participants who reported the need to wear glasses to correct their vision (61% of 

the sample), all stated that they would wear contact lenses whilst completing the study.  

 

Self-Report and Parent-Report Scales. All self-report and parent-report scales were 

summed and averaged to create an index for each of the variables of interest. In addition, SWAN-

Hyperactive/Impulsive subscale scores and UPPS-P Short-form scores were converted to z-scores. 

 

Error Rate. An error rate was calculated for all trials in the pro-saccade condition, all trials 

in the anti-saccade condition, and all trials of each trial-task type combination in the mixed 

condition. This was achieved by dividing the number of incorrect responses by the total number 

of trials within each condition, or within each trial-task combination type in the case of the mixed 

condition trials. This provided an indication of the extent to which the participant struggled to 

appropriately adjust, or maintain, the congruency between their response and the current trial’s 

objective.  

 

Switch Costs. To measure how changes in the task objective between consecutive trials 

influenced participants’ ability to direct their gaze correctly, switch costs were calculated for each 

trial type resulting in a pro-saccade switch cost and an anti-saccade switch cost for each participant. 

The pro-saccade switch cost was produced by finding the difference in error rate between the pro-

saccade repeat trials and the pro-saccade switch trials in the mixed condition. Whereas, the anti-

saccade switch cost was obtained by subtracting the error rate for the anti-saccade repeat trials 

from the error rate for the anti-saccade switch trials in the mixed condition. For clarification, on 

switch trials, the target gaze location altered between successive trials. Whereas, on a repeat trial 

the target gaze location remained unchanged. Hence, by comparing the error rate on switch vs 

repeat trials, a switch cost effectively demonstrates the cost to response accuracy that occurred 

when the task objective was changed between trials. Lower switch costs demonstrate a better 

ability to switch between known action-outcome pairings, and hence, use their forward model to 

act intentionally and avoid making an erroneous, habitual response.  
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Mixing Costs. In addition to switch costs, mixing costs were also calculated for each trial 

type. The pro-saccade mixing cost was calculated by subtracting the error rate for the repeat trials 

on the pro-saccade condition from the error rate for the pro-saccade repeat trials on the mixed 

condition. Whereas, the anti-saccade mixing cost was obtained by subtracting the error rate for the 

repeat trials on the anti-saccade condition from the error rate for the anti-saccade repeat trials on 

the mixed condition. To clarify, in the pro-saccade condition and anti-saccade condition, only one 

colour of square was presented, and hence, only one type of response was required throughout the 

condition (i.e., always look towards the square, or always look away from the square). Whereas, 

in the mixed condition, both green and red squares were shown, meaning that participants had to 

frequently change their method of response. Hence, a mixing cost provides an indication of the 

participant’s ability to maintain, and select between, two known action-outcome associations 

within a single condition. 

 

Total Number of Position Errors. The total number of occasions for which the 

participant’s face left the square outline throughout the experiment was recorded. This measure 

shows how difficult it was for participants to maintain a position where they were in view of the 

webcam. It is important to note that position errors were not bound by the temporal constraints of 

a single trial as it was possible for several trials to pass before the participant’s face returned to the 

square outline. Hence, the total number of position errors was analysed as averaging across trials 

would not produce a meaningful result.  

 

Average Time to Reposition. The average time taken for a participant to re-enter the 

square outline was found by dividing the total time taken for the participant to reposition their face 

within the square outline by the total number of position errors made. Similar to the total number 

of position errors, the average time taken to reposition also shows how difficult it was for 

participants to position themselves within view of the webcam.  

 

 

Average Number of Fixation Errors. The average number of fixation errors made by 

each participant was calculated by dividing the total number of fixation errors by the total number 
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of trials completed. This measure shows how difficult it was for participants to hold their fixation 

point at the centre of the screen at the start of each trial.  

 

Average Time to First Fixate. The average time to first fixate on the white circle cue at 

the beginning of each trial was calculated for each participant by dividing the total time taken to 

first fixate by the total number of trials. This measure is useful as an excessive average time to first 

fixate may indicate an issue with the calibration of the eye-tracking and therefore, provide an 

insight into the suitability of the task as an online measure of task-switching. It should be noted 

that, due to limitations in WebGazer’s spatial resolution (Slim & Hartsuiker, 2022), the precise 

point of fixation cannot be known. As a result, the recorded time taken to move the fixation point 

to the 3rd or 4th zone of the screen may be somewhat inaccurate and any results based on this 

measure should be interpreted with caution. 

 

Peak Velocity and Saccade Duration. It may have been informative to measure the peak 

velocity and saccade duration of participants’ saccades, as achieved in prior task-switching studies 

which utilised eye-tracking techniques in a lab-based setting (e.g., Jung et al., 2015). Through this, 

it would have been possible to gain an additional measure of the extent to which changes in the 

task objective hindered participants’ task-switching performance. Initially, an attempt was made 

to measure both the peak velocity and duration of participants’ saccades on each trial. However, 

there was an observable spatial and temporal offset between the fixations and saccades 

approximated by WebGazer and participants’ genuine eye-movements, both of which are 

detrimental to the accurate calculation of peak velocity and saccade duration.  

 

This observation of poor temporal and spatial acuity was consistent with previous studies 

that also employed WebGazer to record participants’ saccades online (e.g., Papoutsaki et al., 2018; 

Semmelmann & Weigelt, 2018; Slim & Hartsuiker, 2022). Whilst it has been argued that 

WebGazer can determine the approximate area of the screen to which the fixation point is located 

(Semmelmann & Weigelt, 2018), it has also been noted that it lacks the spatial precision required 

to track the distance travelled by a participant’s saccade (Slim & Hartsuiker, 2022). For instance, 

Slim & Hartsuiker (2022) reported an average offset between participants’ actual and estimated 

fixation point of approximately 30% of their computer screen size. Similarly, whilst lab-based 
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experiments have reported that a saccade to a target stimulus should take approximately 200ms to 

perform (e.g., Matin et al., 1993), Semmelmann and Weigelt (2018) found that saccades recorded 

via WebGazer lasted 450–750ms on average. Therefore, it was concluded that the data acquired 

through WebGazer was not suitable for calculating peak velocity and saccade duration. 

Consequently, both measures were ultimately removed from the final versions of the task.  

 

Outlier Detection. To exclude any potentially confounding anomalous data, the Tukey’s 

fences method for outlier detection was applied to the dependent variables (Tukey, 1977). It was 

revealed that 1 pro-saccade switch cost, 2 anti-saccade switch cost, 1 pro-saccade mixing cost, 1 

anti-saccade mixing cost, 5 total number of position errors, 7 average time to reposition, and 2 

average time to first fixate data points were more than 1.5 interquartile ranges away from the 

nearest quartile. Upon comparison, it was found that the removal of the anomalous data points did 

not affect the direction or significance of the results regarding the influence of the predictor 

variables on the anti-saccade switch cost, the anti-saccade mixing cost, the total number of position 

errors or the average time to reposition. Hence, the identified data points for these variables were 

not removed in order to ensure the completeness of the data. However, excluding the extraneous 

data points for the pro-saccade switch cost, the pro-saccade mixing cost, and the average time to 

first fixate did have an effect on the findings.  

 

Prior to outlier removal, the pro-saccade mixing cost was significantly predicted by both 

age (𝛽 = .24, t = 2.3, p = .02) and sex (𝛽 = .24, t = 2.28, p = .03). Whereas, the variance in the pro-

saccade switch cost and the average time to first fixate was not significantly explained by any of 

the predictor variables. After the outliers were removed, age significantly predicted the pro-

saccade switch cost (𝛽 = .27, t = 2.54, p= .01) and the average time to first fixate (𝛽 = -.23, t = -

2.1, p= .04). However, the pro-saccade mixing cost was not predicted by any of the predictor 

variables after outliers were excluded. As a result of the observed changes, the 4 data points 

identified as outliers for these three variables were removed from the data so as not to statistically 

bias the results.  
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Results 

In the current study, participants completed a goal-switching task to measure their task-switching 

ability. On each trial of the task, participants were presented with a red or a green square on the 

left or right of the screen. When a green square was presented, participants were instructed to look 

towards the side of the screen that contained the square. Whereas, when a red square was visible, 

participants were required to look towards the side of the screen that did not contain the square.  

 

Task Performance 

On average, participants successfully looked towards the correct side of the screen on 77.54% of 

trials (SD = 17.74, range = 37.23 - 98.2). This performance level was significantly different from 

chance (t(83) = 14.23, p<.001, d= .18), suggesting that participants understood the task 

instructions. To verify that a sufficient number of errors were made across each trial-task type 

combination in the mixed condition, as well as within each of the two pure conditions, six one 

sample t-tests were conducted. G*Power analysis revealed that 27 participants were required to 

obtain a medium sized-effect (d= .5) in a one sample t-test with 80% power and a 5% alpha level 

(Faul et al., 2009). Therefore, the analyses were sufficiently powered. Figure 5.2 shows average 

error rate as a function of trial-task type and condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 126 

Figure 5.2. 

Average error rate as a function of trial-task type and condition 

 

Note. A figure showing the average error rate for each trial-task type combination in the mixed 

condition, in addition to the error rate for each pure condition. Error bars represent +/- 1 standard 

deviation. The blue and grey bars indicate the average error rate for the switch and repeat trials 

within the mixed condition, separated by trial type. Whereas, the orange bars show the average 

error rate for the trials in the two pure conditions, i.e., the pure pro-saccade condition and pure 

anti-saccade condition.  

 

Within the mixed condition, error rates for the pro-saccade switch trials (t(83)= 9.39, 

p<.001, d= .2), pro-saccade repeat trials (t(83)= 8.75, p<.001, d= .21), anti-saccade switch trials 

(t(83)= 13.46, p<.001, d= .24), and the anti-saccade repeat trials (t(83)= 11.33, p<.001, d= .2) were 

all found to significantly differ from zero. Similarly, the error rate for trials in the pure pro-saccade 

condition (t(83)= 9.17, p<.001, d= .18) and pure anti-saccade condition (t(83)= 10.8, p<.001, d= 

.2) also significantly differed from zero. As a brief reminder, switch costs were calculated for each 

trial type by subtracting the error rate for the repeat trials from the error rate for the switch trials 

within the mixed condition. Whereas, mixing costs were found for each trial type by subtracting 

the error rate for the repeat trials on a pure condition from the error rate for the repeat trials on the 
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mixed condition. Taken together, this suggests that there were a sufficient number of errors made 

to progress with the analysis. 

 

Switch Costs and Mixing Costs as a Function of Trial Type 

To determine whether there was a significant difference in switch costs and mixing costs between 

the two trial types, two paired sample t-tests were conducted. This revealed the extent to which the 

current task adequately replicated the goal-switching tasks implemented within previous research 

(e.g., Reimers & Maylor, 2005). As a reminder, switch costs quantified the extent to which 

participants struggled to shift between the two action-outcome pairings when predicting how best 

to respond, and thereby, suppress an incorrect, habitual response. Whereas, mixing costs revealed 

participants’ ability to select between, and maintain, two action-outcome associations. It was 

expected that the anti-saccade switch cost and anti-saccade mixing cost would be higher than the 

pro-saccade switch cost and pro-saccade mixing cost. This is because individuals tend to 

reflexively direct their case towards incoming stimuli. Hence, an automatic pro-saccade response 

must be supressed in favour of a more intentional anti-saccade response on the anti-saccade trials, 

thus creating greater opportunity for error (Jung et al., 2015). In addition to this, the anti-saccade 

trials in the current task featured a spatial incongruity between the side of the screen to which the 

target stimulus was positioned and the side of the screen to which participants needed to look. As 

a result, the anti-saccade trials were more cognitively demanding than pro-saccade trials, where 

this spatial incongruity was absent. G*Power analysis revealed that 27 participants were required 

to obtain a medium sized-effect (d=.5) in a paired samples t-test with 80% power and a 5% alpha 

level (Faul et al., 2009). Therefore, the analyses were sufficiently powered. Figure 5.3 shows 

switch costs and mixing costs as a function of trial type. 
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Figure 5.3. 

Switch costs and mixing costs as a function of trial type 

 

Note. A figure showing switch costs and mixing as a function of trial type. Error bars represent +/- 

1 standard deviation. 

  

It was found that the anti-saccade switch cost was significantly higher than the pro-saccade 

switch cost, t(82)= -3.9, p<.001, d= .22. However, there was no significant difference between the 

pro-saccade mixing cost and the anti-saccade mixing cost, t(82)= 1.08, p= .29, d= .15.  

 

The Extent to Which the Switch Costs and Mixing Costs for Each Trial Type Significantly 

Differed from Zero 

As seen in figure 5.3, the means for both switch costs and mixing costs appeared to be relatively 

small. To explore this observation further, four one-sample t-tests were conducted. These tests 

revealed the extent to which the pro-saccade switch cost, anti-saccade switch cost, pro-saccade 

mixing cost and anti-saccade mixing cost differed from zero. Anti-saccade switch costs were found 

to be significantly different from zero, t(83)= 5.62, p<.001, d= .16. This suggests that a greater 

number of errors were made on anti-saccade switch trials compared to anti-saccade repeat trials 

within the mixed condition. Whereas, pro-saccade switch costs (t(82)= .49, p= .63, d= .15), anti-



 129 

saccade mixing costs (t(83)= .48, p= .63, d= .11) and pro-saccade mixing costs (t(82)= 1.63, p= 

.11, d= .12) did not significantly differ from zero. This suggests that there was no difference in the 

number of errors made on pro-saccade switch trials and pro-saccade repeat trials in the mixed 

condition, nor any difference in the number of errors made on mixed condition trials and pure 

condition trials for either trial type. Given that the pro-saccade switch costs, anti-saccade mixing 

costs, and pro-saccade mixing costs did not significantly differ from zero, the influence of age on 

these variables will not be examined in the current study.  

 

The Influence of Age on Participants’ Anti-Saccade Switch Costs 

To investigate the extent to which the variance in anti-saccade switch costs could be explained by 

age, a stepwise multiple linear regression was conducted. Impulsivity and sex were entered in an 

initial block as nuisance variables, and age was entered alone in a second block. The purpose of 

this test was to reveal the extent to which an individual’s age influences their ability to combine 

appropriate action-outcome knowledge with available context cues when the respective influences 

of both impulsivity and sex are taken into account. G*Power analysis revealed that 77 participants 

were required to obtain a medium sized-effect (f2=.15) in a multiple linear regression with three 

predictor variables, 80% power, and a 5% alpha level (Faul et al., 2009). Therefore, as the sample 

contained 84 participants, the analyses were sufficiently powered.  

 

The rationale for including impulsivity and sex as nuisance variables in the current 

regression analysis was outlined in chapter 2. In further support of the inclusion of impulsivity as 

a nuisance variable, previous research has argued that higher levels of impulsivity are associated 

with a reduced ability to inhibit automatic, habitual responses (Bari & Robbins, 2013). Hence, 

impulsivity was included as a nuisance variable to control for the potential impact of age-related 

variation in impulsivity on the current findings. In regard to sex, past research has suggested that 

females demonstrate greater efficiency in deploying proactive control over their actions compared 

to males (Bianco et al., 2020; Yücel et al., 2012; Smittenaar et al., 2015). Furthermore, it has been 

argued that this is due to sex differences in the rate at which regions of the brain implicated in 

cognitive control develop (Christakou et al., 2009). Therefore, sex was also included as a nuisance 

variable within the analyses. Figure 5.4A shows anti-saccade switch cost plotted against a model 
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of age, impulsivity and sex, whereas, figure 5.4B shows anti-saccade switch cost plotted against 

participants’ unlogged age in years for visualisation purposes. 

 

Figure 5.4. 

Anti-saccade switch cost plotted against both a model of age, impulsivity and sex and participants’ 

unlogged age in years. 

 

 

Note. 5.4A. A figure showing anti-saccade switch cost plotted against a model of age, impulsivity 

and sex. Error bars represent +/- 1 confidence interval. 5.4B. A figure showing anti-saccade switch 

cost as a function of participants’ unlogged age in years. Error bars represent +/- 1 standard 

deviation. 

 

A significant model was found, F(1,81) = 7.64, p = .01. It was revealed that the anti-saccade 

switch cost was significantly predicted by age (𝛽 = -.29, t = -2.76, p = .01), and was not predicted 

by impulsivity (𝛽 = .06, t = .54, p = .55) or sex (𝛽 = .03, t = .23, p = .82). As age increased, the 

anti-saccade switch cost decreased. The overall model fit was R2 = .09 (SE = .16).  

 

 

The Influence of Age on the Total Number of Position Errors, the Average Time Taken to 

Reposition, the Average Number of Fixation Errors, and the Average Time Taken to First 

Fixate 

To establish the suitability of the goal-switching task for use with participants of different ages, 

the total number of position errors, the average time taken to reposition, the average number of 

fixation errors, and the average time taken to first fixate were recorded. More specifically, these 
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variables examined whether participants could maintain their position in view of the webcam and 

hold their fixation point at the start of a trial without the presence of a researcher to give continued 

instruction. Four simple linear regressions were then conducted to investigate the extent to which 

age could explain the variance in each of these four variables (see table 5.2 for the final models). 

G*Power analysis revealed that 55 participants were required to obtain a medium sized-effect 

(f2=.15) in a simple linear regression with 80% power and a 5% alpha level (Faul et al., 2009). As 

the sample contained 84 participants, the analyses were sufficiently powered. It was revealed that 

the total number of position errors, the average number of fixation errors, and the average time 

taken to first fixate were significantly predicted by age (all p<.05). As age increased, the total 

number of position errors, the average number of fixation errors, and the average time taken to 

first fixate decreased. Unlike the other three variables, the average time taken to reposition was 

not significantly predicted by age (p>.05). For visualisation purposes, see figure 5.5 for each 

variable plotted against participants’ unlogged age in years.
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Table 5.2. The results of four simple linear regression analyses investigating the influence of age on the total number of position errors, 

the average time taken to reposition, the average number of fixation errors, and the average time taken to first fixate 

Final regression model 𝛽 t F df R2 SE 

The total number of position errors 

      Age 

 

-.57** 

 

-6.25** 

39.02** 1, 82 .32 11.05 

The average time taken to reposition  

      Age 

 

No variables were entered into the model. 

 

The average number of fixation errors 

      Age 

 

-.26* 

 

-2.39* 

5.71* 1, 82 .07 .13 

The average time taken to first fixate 

      Age 

 

-.23* 

 

-2.1* 

4.41* 1, 80 .05 .38 

Note. *p<.05  **p<.001.
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Figure 5.5. 

The total number of position errors, the average time taken to reposition, the average number of 

fixation errors, and the average time taken to first fixate as a function of participants’ unlogged 

age in years  

 

Note. 5.5A. A figure showing the total number of position errors as a function of participants’ 

unlogged age in years. Error bars represent +/- 1 standard deviation. 4.5B. A figure showing the 

average time taken to reposition as a function of participants’ unlogged age in years. Error bars 

represent +/- 1 standard deviation. 4.5C. A figure showing the average number of fixation errors 

as a function of participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 

4.5D. A figure showing the average number of fixation errors, and the average time taken to first 

fixate as a function of participants’ unlogged age in years. Error bars represent +/- 1 standard 

deviation. 
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Discussion 

The purpose of the current study was to determine how the ability to maintain, and switch between, 

different action-outcome pairings according to the current task objective changes with age from 

childhood to adulthood. To briefly recap, participants aged 5-21 completed a goal-switching task 

where they switched between looking towards green square stimuli and looking away from red 

square stimuli. To execute the correct response, participants needed to use the presented stimulus 

colour to then select the correct action-outcome pairing from prior knowledge. To that end, switch 

costs and mixing costs were recorded for both the pro-saccade and anti-saccade trial types. Switch 

costs measured the extent to which participants failed to shift between action-outcome pairings 

when selecting their responses. Whereas, mixing costs provided an index of the cost to response 

accuracy of having to maintain, and select between, different action-outcome associations within 

memory. 

 

In agreement with both the second sub-hypothesis (1b) of the current study and previous 

literature (e.g., Davidson et al., 2006), it was found that the variance in the anti-saccade switch 

cost was explained by participants’ age, even after accounting for impulsivity and sex. More 

specifically, older age was associated with a lower anti-saccade switch cost, and therefore, a better 

ability to flexibly switch from a pro-saccade response method to an anti-saccade response method. 

This result is also consistent with past developmental literature. Alahyane et al. (2014) 

demonstrated that the number of errors accrued when switching between pro- and anti-saccades 

declined with age across children (8-12) and adolescents (13-17), before plateauing in young 

adulthood (18-25). This age-related change was associated with developmental improvements in 

the activity of the fronto-parietal network (Alahyane et al., 2014); regions of the brain implicated 

in proactive motor control and the inhibition of interference from irrelevant action-outcome 

pairings (Cooper et al., 2015; Jamadar et al., 2010). Therefore, this further supports the idea that 

task-switching improves with age as children transition to young adulthood. Moreover, the current 

findings extend our prior understanding of forward model development, as they suggest that the 

capacity to form accurate forward model predictions improves with age from childhood to 

adulthood. That being said, it should be acknowledged that only a small proportion of the variance 

in participants’ anti-saccade switch cost was explained by the final model (R2 = .09). Hence, the 

results should be interpreted with caution.   
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Despite the noted utility of the current results in extending our knowledge of how the 

forward model develops, it should be acknowledged that the findings do not align with the results 

of previous task-switching studies which also included adolescents within their sample (e.g., 

Manzi et al., 2011; Reimers & Maylor, 2005). In contrast to the current results, both Manzi et al. 

(2011) and Reimers and Maylor (2005) reported that there was no difference in the switch costs 

accrued by children, adolescents and young adults when asked to shift between two competing 

tasks. It is difficult to specify the precise reason for this disparity without engaging in mere 

speculation. Notably, the tasks used by Manzi et al. (2011) and Reimers and Maylor (2005) 

differed from the current task in two key ways. First, in research by Manzi et al. (2011) and 

Reimers and Maylor (2005), participants switched between performing different actions in 

response to the same set of stimuli. Whereas, in the current task, green stimuli were always 

responded to with pro-saccades and red stimuli always warranted anti-saccades. Second, in the 

tasks used by Manzi et al. (2011) and Reimers and Maylor (2005) participants responded via 

keypresses. Whereas, participants in the current study responded by directing their gaze to the left 

and right of the screen. Speculatively, it may be argued that these methodological differences could 

have led to inconsistencies in how cognitively demanding each task was to complete; thereby, 

resulting in the noted disparity in the effect of age across the studies. 

 

Unfortunately, the pro-saccade switch costs, pro-saccade mixing costs and anti-saccade 

mixing costs were found to be statistically close to zero in the present study. The low pro-saccade 

switch costs suggest that switching from an anti-saccade to a pro-saccade task objective incurred 

no significant cost to response accuracy relative to instances where the pro-saccade objective 

remained active over consecutive trials. Similarly, the low mixing costs suggest that response 

accuracy was not hindered by having to maintain, and select between, two different response 

options within a single condition. As a result of these low costs, it was not possible to reliably test 

the influence of age on these three variables (hypotheses 1a, 2a, or 2b). Thus, the present study 

cannot draw any concrete conclusions on how the ability to select between different action-

outcome pairings when predicting how to best respond changes with age.  
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It is unclear as to why the pro-saccade switch costs and mixing costs were low, especially 

given that previous lab-based eye-tracking studies have reported sizeable pro-saccade and anti-

saccade switch costs and mixing costs in neurotypical adults (Jung et al., 2015). Speculatively, one 

reason for this may be that the 2-second time window for responses allowed participants sufficient 

time to override any incorrect, automatic responses before executing their actual response. This 

may then have deflated switch costs and mixing costs across participants. Future research is needed 

to empirically assess whether the response time limit or any other specific aspect of the current 

task could have caused these low switch and mixing costs to occur.  

 

Admittedly, the present study possessed a number of limitations. For instance, due to the 

method in which gaze locations were approximated by WebGazer, it is likely that the accuracy of 

participants’ recorded fixation positions reduced over time as the trials progressed. In order to 

match pupil locations with their corresponding screen coordinates, WebGazer functions under the 

assumption that the position of the cursor and location of an individual’s gaze will align when an 

intentional cursor click is made (Papoutsaki et al., 2018). Therefore, successive clicks are used to 

continuously calibrate WebGazer’s estimations against the participant’s genuine gaze positions. 

However, as the time elapsed since the last mouse click grows, the likelihood that a spatial offset 

will arise between the record screen coordinates and genuine gaze location increases (Papoutsaki 

et al., 2018). In the current study, cursor clicks were only recorded during the calibration trials 

presented at the beginning of the goal-switching task. This undermines the reliability of the current 

findings, as it suggests that the accuracy with which the direction of participants’ saccades were 

recorded deteriorated over time. To ensure that a precise calibration is maintained, future iterations 

of the goal-switching task should include additional calibration trials presented at regular intervals 

between the main experimental trials, as employed by Slim and Hartsuiker (2022). Alternatively, 

the webcam feed could be recorded and later reviewed by two independent coders in order to verify 

that the direction of participants’ saccades was measured correctly, as achieved in research by 

Scott and Schulz (2017).  

 

Aside from technical issues introduced by the manner in which WebGazer was utilised, it 

may be argued that participants’ ability to adhere to the task instructions also distorted the 

robustness of the eye-tracking data. The present study revealed that participants’ ability to maintain 
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their position in view of the webcam and hold their gaze at the centre of the screen at the start of 

each trial improved with age. Removing one’s gaze from the screen, or one’s body from the 

webcam view, would have disrupted the calibration between the true gaze locations and the 

recorded screen coordinates (Papoutsaki et al., 2018). Therefore, this raises further concern 

regarding the legitimacy of the collected error rate data. This then further supports the idea that 

future research should include more frequent calibration trial blocks to ensure that the alignment 

between genuine and measured eye-positions is maintained. Furthermore, to improve younger 

participants’ engagement with the task and thereby, prevent position and fixation errors from 

occurring, future research should modify the presented stimuli to be more appealing to children. 

For example, Semmelman et al. (2017) repeatedly flashed an image of a cartoon monkey in the 

centre of the screen at the beginning of each trial in order to attract children’s attention to that 

location. Hypothetically, this would likely have been a more effective approach to maintaining 

young participants’ attention compared to the white dot used in the current study.  

 

In addition to concerns related to measurement accuracy, the composition of the sample 

should also be acknowledged as a limitation of the current study. The recruited participants were 

fairly homogenous in age (see appendix D for a visualisation of the age spread within the final 

sample). Over two thirds of the sample (72.62%) were aged between 18-19, whilst only 17.86% 

of participants were aged under 18, including nine adolescents (aged 13-17), and six children (aged 

5-12). This lack of variance in participant age raises concern over the robustness of the present 

findings, as it may be argued that the height of the slope in the regression model was driven by 

only a small number of younger participants (see figure 5.4). Therefore, the findings should be 

interpreted with caution. As noted in the Covid-19 impact statement, the government imposed 

restrictions on face-to-face research and teaching introduced in response to the Covid-19 pandemic 

meant that there were few opportunities available for recruiting child and adolescent participants. 

That being said, in comparison to the other three studies reported in this thesis, the present study 

recruited the lowest number of participants aged under 18. This suggests that a specific aspect of 

the current task deterred younger participants from taking part.  

 

Speculatively, parents may have felt discouraged from allowing their child to complete the 

goal-switching task due to privacy concerns. Indeed, previous developmental studies which have 
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used webcams to collect data online have cited parents’ privacy concerns as a potential reason for 

low participant recruitment relative to similar lab-based studies (e.g., Semmelmann et al., 2017). 

Given that parents’ privacy concerns were not measured in the current study, it was not possible 

to test whether this had any sizeable effect on child and adolescent engagement with the research. 

Notably, mitigations were made to prevent this occurrence, such as emphasising to parents and 

participants via written correspondence that no video recordings would be taken during the task. 

However, it would also be beneficial for future researchers to arrange school-based talks designed 

specifically to answer any ethical and data-privacy concerns that participants and their parents may 

have, as implemented in previous studies (e.g., Rait et al., 2015). 

 

To conclude, the purpose of the current study was to determine how task-switching 

develops from childhood to adulthood. This provided an indication of how the capacity to combine 

relevant prior knowledge with current contextual information to form veridical outcome 

predictions matures with age. Whilst it was not possible to examine the impact of age on 

participants’ mixing costs, it was found that switch costs declined with age for the anti-saccade 

trials. This suggests that the ability to flexibly shift between learned action-outcome associations 

when predicting how best to respond improves from childhood to adulthood. Notably, confidence 

in the reliability of the current findings was undermined by the suggested lack of spatial acuity in 

the recorded gaze locations and the heterogeneity of participants’ ages within the recruited sample. 

Therefore, future research is needed to verify whether the similar findings can be obtained using a 

task with better spatial precision and a wider range of participant ages.  
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Chapter 6: Establishing How the Ability to Make Appropriate Modifications to Action-

Outcome Knowledge Changes from Adolescence to Adulthood 

 

Chapter Summary 

The purpose of chapter 6 was to establish how the ability to appropriately update action-outcome 

knowledge in response to post-action feedback changes with age from adolescence to adulthood. 

To achieve this, participants aged 14-24 completed an outcome learning task where they were 

instructed to select between two prize boxes with the goal of obtaining a reward. In a stable 

condition, the probability that each box would deliver a reward remained fixed. Whereas, in a 

volatile condition, the reward probabilities shifted between the two boxes over time. The extent to 

which participants’ updated their choice behaviour in response to recent trial outcomes was 

indexed via a learning rate. Notably, it is advantageous to have a lower learning rate within a stable 

context than in a volatile context. Hence, participants needed to alter their learning rate according 

to the volatility of the current context. Strikingly, it was revealed that learning rate was not 

influenced by age in either condition. However, the difference in learning rate between conditions 

was found to increase with age. This suggests that the magnitude to which individuals can tailor 

their action-outcome knowledge appropriately for the current context refines with age from 

adolescence to adulthood.  

 

Introduction 

The studies described in chapters 4 and 5 demonstrated that the accuracy with which individuals 

can predict the most probable outcome of their actions via a forward model improves with age 

from childhood to adulthood. Taken together, the findings from both studies address the first goal 

of this thesis. The current chapter will then focus on the second thesis goal; how the ability to make 

appropriate modifications to current action-outcome knowledge in response to post-action 

feedback develops with age.  

 

Outcome learning refers to an individual’s ability to update their knowledge of the action-

outcome contingencies present within their environment in response to post-action feedback 

(Kawato & Wolpert, 2007). The external world is an inherently dynamic space with multiple 

entities interacting with, and thereby modifying, their surroundings simultaneously (Wolpert & 

https://www.zotero.org/google-docs/?b07CBg
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Flanagan, 2001). As a result, the exact outcome of an action can rarely be predicted with absolute 

certitude (van Beers et al., 2002). Therefore, in order to achieve desired action goals, an individual 

must maintain an up-to-date understanding of the probabilistic associations present between 

actions and their effects and use this knowledge to guide their behaviour (Wolpert & Ghahramani, 

2000). To ensure that this knowledge is maintained, it is believed that an estimate of the feedback 

observed after a self-generated action is incorporated into their prior estimate (Körding & Wolpert, 

2006). Subsequent actions are then guided by this revised prior knowledge of the probabilistic 

relationship between the performed action and the expected effect (Berniker & Körding, 2011). 

Evidently, the ability to update to one’s constructed forward model is imperative to effective goal-

directed action. 

 

Crucially, to interact appropriately with the environment, it is not sufficient to 

indiscriminately update the prior to the same extent in response each action outcome (Hohwy, 

2017). Instead, the rate at which amendments are made to learned action-outcome associations 

must be modulated according to the relative volatility of current context (Gershman, 2015). A 

stable context refers to a scenario in which the probabilistic relationships between actions and 

effects remain fixed over time. Any unexpected outcomes can then be attributed to chance within 

this context (Behrens et al., 2007). For instance, if there was a fixed 90% probability that action A 

would result in outcome A, there would be a 10% chance that the unexpected outcome B could 

occur instead. In comparison to a stable environment, the probabilistic links tying specific actions 

to particular effects are subject to frequent change within a volatile context (Browning et al., 2015). 

For instance, in a volatile environment where action A was first predominantly associated with 

outcome A, an abrupt alteration to this probabilistic relationship could occur such that, action A 

would be more strongly related to outcome B rather than outcome A. Therefore, an unexpected 

outcome observed within a volatile context should be interpreted as evidence that the underlying 

action-outcome contingencies have changed and a behaviour change is required.  

 

The extent to which the prior estimate is modified in response to an observed outcome is 

determined by the individual’s current learning rate (Eckstein et al., 2022). From a Bayesian 

perspective, the learning rate refers to the time scale for which past outcomes are integrated to 

form the prior and thereby, used to determine the individual’s next action (Hohwy, 2017). Learning 

https://www.zotero.org/google-docs/?b07CBg
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rates can vary between 0 and 1. The closer the learning rate is to 1, the greater the extent to which 

the prior was constructed from only the most recent outcomes, as opposed to a wider history of 

observed feedback. Whereas, a comparably lower learning rate indicates that the opposite is true 

(Eckstein et al., 2019).  

 

When a low learning rate is employed within a stable context, each new outcome is 

incorporated into the prior incrementally over time. As a result, the prior gradually becomes a more 

reliable estimate of the stable action-outcome mappings (Jacobs & Kruschke, 2011). Hence, the 

ability of surprising, yet rare, outcomes to cause substantial changes in current action-outcome 

knowledge and subsequent choice behaviour decreases over time (Berniker & Körding, 2011). In 

other words, the effect of a detected discrepancy between the expected and observed outcome on 

current action-outcome knowledge diminishes as the volume of past feedback accumulated 

increases. Moreover, using a relatively low learning rate is advantageous within a stable context 

as successive priors, i.e., conceptualisations of the fixed action-outcome structure, will become 

more veridical over time, leading to more optimal choice behaviour (Browning et al., 2015).  

 

Whilst it has been argued that incorporating a range of past outcomes into one’s prior is 

beneficial within a stable context, it has also been suggested that this practice can be detrimental 

to performance within a volatile context (Behrens et al., 2007). This is because recent outcomes 

are more informative of the dynamic action-outcome contingencies active within the volatile 

context compared to outcomes that occurred further in the past (Browning et al., 2015). Therefore, 

updating the prior incrementally via a low learning rate can impair an individual’s ability to 

correctly perceive these rapid-changing action-outcome pairings. Whereas, possessing a high 

learning rate decreases the amount of past outcome evidence integrated within the prior (Hohwy, 

2017). This then enables unexpected outcomes observed in a volatile context to trigger larger, and 

more prompt, updates to learned action-outcome mappings than those seen in a stable context. 

Ergo, this suggests that a high learning rate is more beneficial than a low learning rate within a 

volatile environment (Browning et al., 2015). Moreover, an individual’s ability to appropriately 

update their forward model can be determined by examining the degree to which their learning 

rate alters according to the volatility of current context. 
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Evidently, the ability to tailor the rate at which surprising outcomes shape behaviour in 

accordance with the volatility of the current context is crucial for daily life (Hohwy, 2017). Despite 

this, a paucity of studies have examined how this ability develops from adolescence to adulthood 

(DePasque & Galván 2017). In addition, of the studies which have explored how this ability 

develops, all have focused exclusively on determining how behaviour is modified either within a 

stable context (e.g., van den Bos et al., 2012) or within a volatile context (e.g., Hauser et al., 2015) 

alone. Thus far, no studies have compared the degree to which individuals of varying ages are able 

to adjust their learning rate in stable contexts relative to volatile contexts. It is crucial to examine 

how outcome learning develops differently between the two contexts, as this goes beyond merely 

demonstrating that the individual can inflate or reduce the volume of past outcomes used to 

construct the prior, but instead compares the degree to which they can adaptively modulate their 

learning rate appropriately for each context.  

 

In comparison to adults, it has been argued that adolescents are less able to appropriately 

update their behaviour in response to the action-feedback observed within stable contexts (Decker 

et al., 2016; Xia et al., 2021). This assertion has been made on the basis that adolescents have 

previously been shown overestimate contextual volatility on probabilistic learning tasks with 

stable action-outcome contingencies, resulting in both elevated learning rates and poorer choice 

accuracy relative to adults (van den Bos et al., 2012; Jepma et al., 2020). This suggests that, within 

a stable context, adults update their action-outcome knowledge at a more gradual pace than 

adolescents, thus resulting in superior performance. Consistent with this idea, it has also been 

shown that unexpected outcomes observed in a stable context have a greater influence on 

adolescents’ choice behaviour than that of adults (Barash et al., 2019; Hartley & Somerville, 2015; 

van Duijvenvoorde et al. 2013). Therefore, these findings suggest that the ability to maintain an 

accurate understanding of the action-outcome contingencies present within a stable context and 

adjust choice behaviour accordingly improves with age from adolescence to adulthood.  

 

Although adolescents’ reported tendency to overestimate contextual validity may not be 

ideal for a stable environment, a tendency to employ a high learning rate would be beneficial for 

a volatile environment (Behrens et al., 2007). Consequently, it has been argued that adolescents’ 

outcome learning skills surpass those of adults in volatile contexts (Gopnik et al., 2017). 
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Adolescence has previously been characterised as a developmental period uniquely equipped to 

tolerate action-outcome uncertainty (Lourenco & Casey, 2013) due to heightened plasticity in the 

brain (Larsen and Luna, 2018) and more frequent exposure to novel contexts (Somerville et al., 

2017) compared to adults. In line with this idea, Hauser et al. (2015) administered a probabilistic 

reversal learning task to adolescents aged 12-16 and adults. During the task, action-outcome 

contingencies covertly switched each time a target number of correct choices had been made. It 

was found that adolescents tended to have a higher learning rate than adults, meaning that they 

learned from unexpected outcomes at a faster rate. This suggests that adolescents’ ability to 

appropriately adapt their behaviour for a volatile context declines with age as they transition to 

adulthood.  

 

When directly compared, the results of past research, such as van den Bos et al. (2012) and 

Hauser et al. (2015), imply that adolescents and adults do not alter their approach to updating the 

prior between contexts of varying levels of volatility. In both stable and volatile contexts, 

adolescents appear to show a tendency to integrate only the most recent outcomes into their prior. 

Whereas, adults appear to gradually integrate a wider range of past outcomes into their prior over 

a longer timeframe, irrespective of contextual volatility. Evidently, this suggests that an age-related 

dissociation in outcome learning exists between the different contexts. Adults appear to be better 

than adolescents at updating their forward model within stable contexts, where a lower learning 

rate is optimal. Whereas, adolescents are better able to update their internal model within volatile 

contexts, where a higher learning rate is more beneficial.  

 

Contrary to the argument that adolescents employ a higher learning rate than adults in 

volatile contexts, more recent research has argued that the ability to respond to sudden changes in 

action-outcome contingencies actually improves with age from adolescence to adulthood (Eckstein 

et al., 2022). In contrast to the findings of Hauser et al. (2015), Eckstein et al. (2022) reported that 

learning rate increased from adolescence to adulthood on a probabilistic learning task with 

dynamic action-outcome mappings.  This suggests that the degree to which individuals can reduce 

the volume of past outcomes integrated into the prior in response to frequent action-outcome 

association changes improves across adolescence. Furthermore, when combined with the results 

from other learning studies (e.g., van den Bos et al., 2012), this suggests that the ability to both 
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lower one’s learning rate in stable contexts and inflate one’s learning rate in volatile contexts 

improves as adolescents age to adulthood. Hence, when comparing learning rate between the two 

contexts, one would expect the difference in learning rate to increase with age.  

 

The Current Study  

The purpose of the current study was to establish the impact of age on participants’ ability to adapt 

the extent to which their decisions are guided by past action-outcomes according to the volatility 

of the current context. To fulfil this aim, participants aged 14-24 completed a rewarded learning 

task, based on the task administered by Browning et al. (2015). On each trial of the task, 

participants were presented with two boxes and were instructed to select the box that they believed 

to contain a reward. In the stable condition, the relative probability that each choice would lead to 

a reward outcome was fixed. Whereas, in the volatile condition, these probabilities shifted between 

the two boxes over time. Participants’ learning rate was calculated for each condition to quantify 

the extent to which their choice behaviour was modified in response to the most recent trial 

outcomes. Subsequently, the difference in learning rate between the two conditions demonstrates 

the degree to which participants could adapt their learning in response to fluctuations in the 

contextual volatility. Based previous literature, three hypotheses were formed, as outlined below. 

 

1) To test adults’ proposed superiority over adolescents in adapting their behaviour to stable 

action-outcome contingencies (e.g., van den Bos et al., 2012; Jepma et al., 2020), it was 

hypothesised that learning rate would be predicted by age within the stable condition, with 

greater age associated with a lower learning rate.  

 

2) To test the findings of Eckstein et al. (2022) against the contradictory results of Hauser et 

al. (2015), it was hypothesised that learning rate would be predicted by age within the 

volatile condition, with greater age associated with a higher learning rate.  

 

3) To test the idea that adults are better able to adjust their behaviour in response to changes 

in environmental volatility than adolescents (van den Bos et al., 2012; Eckstein et al., 

2022), it was hypothesised that the difference in learning rate would be predicted by age, 

with greater age associated with a larger difference in learning rate between conditions.  
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Method 

Design 

A mixed factorial design was used in the current study. The independent variables were age, sex 

and impulsivity. The within-subject independent variable was the relative volatility of the two 

outcome probabilities presented on each condition of the outcome learning task. For both the stable 

and volatile conditions, four dependent variables were obtained: the learning rate, the variability 

in the learning rate, the inverse decision temperature, and the variability in the inverse decision 

temperature. Additionally, the difference in the each of these four dependent variables between the 

two conditions was also calculated. To clarify, this resulted in 12 dependent variables in total. The 

learning rate demonstrates the extent to which the participant’s choices were influenced by more 

recent action outcomes compared to the outcomes of actions made further in the past. Thus, the 

learning rate provided an indication of the extent to which the most recent trial outcome caused a 

substantial change in the current prior estimate.  

 

In comparison to the learning rate, the inverse decision temperature indicated the extent to 

which a participant’s choices were guided by an understanding of the relative advantage of 

selecting one choice option over its alternative. Hence, the inverse decision temperature 

demonstrated participants’ ability to maintain an up-to-date forward model regarding the 

probabilistic relationships linking each option to each outcome and apply this knowledge when 

forming decisions on which option to select. A relatively low inverse decision temperature 

indicated that a participant’s actions were more akin a series of random choices rather than 

considered selections based on the knowledge learned from past outcomes. Moreover, the findings 

gained in regard to the impact of age on the inverse decision temperature will attempt to replicate 

the results gained from the previous empirical chapters presented in the current thesis, i.e., the 

extent to which the ability to use and sustain a forward model improves with age. In contrast, the 

results obtained in regard to age-related changes in the learning rate will move a step beyond this 

by revealing the extent to which participants correctly modified the weight attributed to recent over 

past action outcomes when formulating their choice decisions.  
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Participants 

339 participants were initially recruited (49 male, 290 female). The age of participants ranged from 

14 to 24 years (M=18.4, SD=1.04).  

 

● 285 participants were right-handed, 20 were left-handed and 34 were ambidextrous, as 

measured by the EHI-SF (see appendix A for a full outline of this measure). 

● 273 participants were White, 34 were Asian, 12 were Black, 17 had mixed/multiple ethnic 

identities, and 3 had another ethnic identity that was not listed. 

 

Thirty six participants were recruited from two high schools in the Nottinghamshire and 

Derbyshire areas between January 18th 2022 - 16th March 2022. The rest of the sample were 

recruited either through RPS or through recruitment posters published on social media from the 

26th April 2021 - November 17th 2021. For more detailed information on how participants were 

recruited from each of these sources and how informed consent was obtained, please see chapter 

2. In exchange for volunteering to take part in the experiment, participants had the opportunity to 

be entered into a prize draw to win an Amazon voucher. In addition, in order to motivate 

participants to fully engage with the task goals, participants were informed that an additional 

Amazon voucher would be awarded to the participants who scored the highest, second highest and 

third highest number of points during the outcome learning task. The full experimental procedure 

of the current study was approved by the School of Psychology ethics committee at the University 

of Nottingham.  

 

Eighteen participants were excluded because they self-reported a diagnosis of either ASD, 

ADHD or OCD. The rationale for removing participants with ASD or ADHD was outlined in 

chapter 3, and the rationale for excluding those with OCD was detailed in chapter 5. All remaining 

participants were neurotypical. One further participant was also excluded for failing to make a 

response on over 50% of the trials on the outcome learning task. The demographics of the adjusted 

sample can be viewed in table 6.1.  
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Table 6.1. The demographic characteristics of the adjusted sample. 

 Age (years) Gender Ethnicity Handedness 

Full sample 

(n=320) 

Range= 

14 to 24 

M= 18.4 

SD= 1.02 

48 Male 

272 Female 

258 White 

32 Asian 

11 Black 

16 Mixed/multiple ethnic identities 

3 Any other ethnic identity 

270 right-handed 

19 left-handed 

31 ambidextrous 
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Materials  

The Outcome Learning Task. The outcome learning task was used to measure participants’ 

ability to update their forward model in response to observed trial outcomes. The task was designed 

using PsychoPy and ran online via Pavlovia (Peirce, 2019). Stimuli consisted of a 300x300 pixel 

image of a red prize box and a 300x300 pixel image of a blue prize box. 

 

The UPPS-P Short-Form. The UPPS-P short-form was used to measure self-reported 

impulsivity. Please see chapter 2 for a full outline of this measure. 

 

Procedure 

Participants provided their demographic information and completed the UPPS-P short-form via a 

survey hosted on Qualtrics. Following this, participants were redirected to the outcome learning 

task. Upon opening the task, participants saw a black instructions screen with details on how to 

complete the task. Participants were also instructed to complete the task using the same hand 

throughout. Written instructions were also accompanied by a voiceover which read the instructions 

aloud for the participant.  On the next screen, participants viewed a demonstration of the task and 

listened to a voiceover which explained each stage of the demonstration. Each screen of the 

instructions and the demonstration contained a red square which changed to green after the 

voiceover audio clip had ended. Only after pressing the green squares would the task progress to 

the next screen. This ensured that participants could not skip the instructions or the demonstration. 

Participants then completed 5 practice trials to familiarise themselves with the task, before 

progressing to the main experiment trials. 

  

On each trial, a red prize box and a blue prize box were presented on the left and right of 

the screen (see figure 6.1). The probability that each coloured box would appear on the left or right 

of the screen was equal and randomised across the trials. Each box also had a number of points 

displayed directly beneath it. On each trial, one of the two coloured boxes was the correct box to 

choose. In exchange for selecting the correct box, participants received the number of points that 

was displayed below that box. However, if the incorrect box was chosen, then participants were 

awarded zero points on that trial. The number of points below each box were equal on each trial 

and were selected randomly with replacement from an array of values ranging from 1-99. 
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At the beginning of each trial, a white fixation cross was visible in the centre of the screen 

for a jittered time period (M= 2s, SD= 0.2s). The fixation cross was then replaced by a white 

question mark, which signified that the participant could now respond. The question mark 

remained onscreen until either the participant had made a response or 4s had passed. Participants 

responded by clicking on one of the two prize boxes as quickly as possible. Participants’ responses 

were recorded as either correct or incorrect accordingly. Participants were encouraged to score as 

many points as possible in order to promote participants’ attention throughout the task. If 

participants failed to respond within 4s of the question mark cue’s onset, text was displayed which 

reminded participants of the task instructions. After the question mark had disappeared, a white 

box appeared around the prize box that the participant had selected and the question mark was 

replaced by a fixation cross. After a jittered time period (M= 1s, SD= 0.2s), the correct prize box 

was displayed for 2s alongside its corresponding points value. During this time, an image of a star 

moved upwards from the correct prize box to create the illusion that the star had been contained 

within the box. An inter-trial interval was then presented for a jittered time period (M= 2s, SD= 

0.2s), during which two white capital Xs and the white fixation cross were displayed. Each trial 

lasted for approximately 7s. Break screens were shown every 60 trials for an unlimited amount of 

time. Participants could end the break and continue with the task at any time by clicking a green 

square displayed onscreen. The break screens included encouraging text to promote participants’ 

attention and information about how far they had progressed through the task. 
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Figure 6.1. 

Image of the trial structure for the outcome learning task. 

 

Note. An image showing the trial structure for the outcome learning task. Each black box depicts 

a specific moment of the trial. The diagonal arrow represents the order in which each moment was 

experienced, i.e., beginning with 6.1A and ending with 6.1E. 6.1A. The red and blue prize boxes 

are presented to the left and right of the screen. Points values are positioned below each box. The 

white fixation cross shown in the centre of the screen indicates that no responses can be made. 

6.1B. The question mark shown in the centre of the screen indicates that responses can now be 

made. 6.1C. A white square outline surround the box that was selected by the participant. 6.1D. 

The correct box is shown in the centre of the screen. Text at the bottom of the screen informs the 

participant of the trial outcome. 6.1E. Two masks are shown to the left and right of the screen, 

alongside the fixation cross. 

 

The task contained two conditions, a stable condition and a volatile condition. In the stable 

condition, the probability that one of the two coloured prize boxes would be the correct box 

remained constant at 75%. For instance, there may have been a 75% chance of the red prize box 

being the correct box and a 25% chance of the blue prize box being the correct box throughout the 

condition. Whereas, in the volatile condition, the probability that one of the two coloured prize 

boxes would be the correct box shifted from 80% to 20% every 20 trials. For example, there may 
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have been an 80% chance of the red prize box being the correct box and a 20% chance of the blue 

prize box being the correct box for the first 20 trials. For the next 20 trials, this would then switch 

such that selecting the blue prize box had an 80% chance of resulting in a correct response and 

selecting the red prize box had an 20% chance of resulting in a correct response. The order in 

which the conditions were presented was counterbalanced between participants. There were 180 

trials in total, 90 per condition. The full procedure lasted approximately 30 minutes. 

 

Data Analysis 

All data pre-processing procedures were conducted in MATLAB. All participants’ ages were 

converted to natural logarithmic age, as described in chapter 2. Any trials for which no response 

was made were removed from the analysis. On average, 2.19% of trials were removed per 

participant (SD= 3.44, range = 0 - 29.44).  

 

Self-Report Scales. All self-report scales were summed and averaged to create an index for each 

of the variables of interest.  

 

The Combined Rescorla-Wagner and Softmax Action Selector Model. To evaluate the 

frequency at which participants updated their forward model in response to each new trial outcome, 

an estimated learning rate (𝛼) was calculated for both the stable and volatile conditions. In order 

to change the learned association between selecting a particular box and it’s most probable 

outcome, an individual must first recognise a disparity between the expected outcome and the 

observed consequence; that is, the observed consequence must be perceived as surprising by the 

individual. Subsequently, the individual must then decide that, in order to ensure that their 

comprehension of the world is accurate, it is necessary to adjust their understanding of the 

relationship between the action and its outcome in response to this new, surprising outcome 

(Browning et al., 2015). Hence, an 𝛼 represents the extent to which a participant’s choices were 

reliant on the outcomes of recent actions relative to the outcomes of actions that occurred further 

in the past. High 𝛼s indicate that the individual’s choices were largely guided by the outcomes of 

their most recent actions compared to those of actions committed on more antecedent trials. That 

is to say, the discrepancy between an expected and actual outcome on a given trial had a substantial 

effect on the modification of any subsequent outcome predictions and choices made. Whereas, a 
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lower 𝛼 demonstrates that unexpected outcomes caused only minimal changes to successive 

outcome predictions and choice behaviour.  

 

To calculate an 𝛼 for the stable and volatile conditions, the choices made by the participant 

in each of the conditions were fitted to a Rescorla-Wagner model, which was in turn, attached to 

a softmax action selector, in keeping with the data analysis procedure used in research by 

Browning et al. (2015). The process used to fit participants’ choice data to the combined Rescorla-

Wagner and softmax action selector model was as follows: first, forty potential 𝛼 values were 

generated, in keeping with Browning et al. (2015). These values were spaced equally from 

log(0.01) to log(1). Using the Rescorla-Wagner model (see equation 6.1), the outcome probability, 

i.e., the probability of the red box being the correct choice, was calculated for each possible 𝛼 

value. In equation 6.1, the notation, 𝑟(𝑖+1) , indicates the estimated outcome probability on the next 

trial, i.e., the probability that selecting the red box will lead to a reward outcome. 𝑟(𝑖) denotes the 

estimated outcome probability on the current trial. 𝛼 refers to the learning rate, and 𝜀(𝑖) represents 

the error in the participant’s prediction of the outcome on the current trial.  

 

𝑟(𝑖∓1)  = 𝑟(𝑖)  +  𝛼𝜀(𝑖)  

(6.1) 

 

Next, the estimated value of each colour choice was calculated for each trial by multiplying 

the outcome probability values and the actual reward magnitude of each colour option. This was 

achieved using equation 6.2 and 6.3, modified from Browning et al. (2015). In equations 6.2 and 

6.3, 𝑔 𝑟𝑒𝑑(𝑖+1) and 𝑔 𝑏𝑙𝑢𝑒(𝑖+1) signify the estimated values of the red and blue stimuli.  Whereas, 

𝑓 𝒓𝒆𝒅(𝒊+𝟏) and 𝑓 𝑏𝑙𝑢𝑒(𝑖+1) represent the actual reward magnitudes for the two stimuli. 𝑟(𝑖+1) refers 

to the probability that the red box was the correct choice and 1 − 𝑟(𝑖+1) shows the probability that 

the blue box was the correct choice. As the points values did not differ between the two colour 

options on each trial, this calculation essentially weighted each points value presented to 

participants by the underlying outcome probabilities. For instance, in the event that the red box 

had an 80% chance of leading to a reward outcome, whereas the blue box had a 20% chance of 
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leading to a reward, and both choices were worth 10 points, then the value of selecting the red box 

would be 8 (0.8 x 10) and the value of selecting the blue box would be 2 (0.2 x 10).  

 

𝑔 𝑟𝑒𝑑(𝑖+1)  =  𝑟(𝑖+1)   ×  𝑓 𝒓𝒆𝒅(𝒊+𝟏) 

(6.2) 

𝑔 𝑏𝑙𝑢𝑒(𝑖+1)  =  1 − 𝑟(𝑖+1)  ×  𝑓 𝒃𝒍𝒖𝒆(𝒊+𝟏) 

(6.3) 

 

The relative advantage of selecting the red box rather than the blue box on each trial was 

then obtained by subtracting the estimated value of the blue box from the estimated value of the 

red box. For instance, in the above example, the relative advantage of selecting the red box over 

the blue box would be 6 (8 - 2). Evidently, positive advantage values indicated that it was better 

to have chosen red compared to blue box on the current trial. Whereas, negative advantage values 

signified that the opposite was true.  

 

Following this, the probability that a participant would choose either the red or blue box 

on each trial was calculated using equation 6.4, as outlined in Browning et al. (2015). Again, 

𝑔 (𝑟𝑒𝑑) and 𝑔 (𝑏𝑙𝑢𝑒) refer to the estimated value of the red and blue boxes, respectfully. Hence, the 

notation, 𝑔 (𝑟𝑒𝑑)  −  𝑔 (𝑏𝑙𝑢𝑒), denotes the relative advantage of choosing the red box over the blue 

box. 𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑟𝑒𝑑) represents the probability that the participant would choose the red box on 

a given trial. The probability of the blue box being chosen on a trial was given by 1-𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 =

𝑟𝑒𝑑). Finally, 𝛽 denotes the inverse decision temperature.  

 

 

𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑟𝑒𝑑) =
1

1 + 𝑒𝑥𝑝(−𝛽(𝑔 (𝑟𝑒𝑑) − 𝑔 (𝑏𝑙𝑢𝑒))
 

(6.4) 

 

The 𝛽 was an estimate of the extent to which knowledge of the relative advantage of 

selecting red over blue, and hence, an understanding of the relative outcome probabilities of each 

option, had an impact on a participant’s choice behaviour. The higher the 𝛽 value, the greater the 
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extent to which the participant’s choices were guided by an understanding of the relative advantage 

of selecting one box over the other. Comparatively, the lower the 𝛽 value the greater the extent to 

which the participant’s choices appeared to be made at random, irrespective of the relative 

advantage offered by either box. Thirty 𝛽 values were generated, each equally-spaced between 

log(1) to log(100). The probability that the participant selected each box was then computed for 

each of the 30 possible 𝛽 values.  

 

To clarify, the combined Rescorla-Wagner and softmax action selector model contained 

two free parameters: the learning rate (𝛼) and the inverse decision temperature (𝛽). For each 

participant, the two parameters were estimated separately for the stable and volatile conditions. A 

joint posterior probability density function was created for both parameters based on the likelihood 

that each potential parameter value fit to the participant’s actual choice behaviour. Estimates of 

the two parameters, and the corresponding SD of those estimates (𝜎𝛼 and 𝜎𝛽) were then calculated 

as the anticipated value and SD of a marginal probability density function over each potential 

parameter value, calculated through direct integration. Given that the two free parameters were 

used to multiply other values in the equations described above, all statistical analyses were 

conducted on the logarithms of the parameter estimates, in keeping with Browning et al. (2015). 

 

The difference in learning rate and inverse decision temperature between conditions 

As the learning rate and inverse decision temperature parameters were multiplicative, the 

difference in these parameters between the two conditions was calculated as the difference of their 

log values, consistent with Browning et al. (2015). More specifically, the difference in learning 

rate (𝛥𝛼) between the two conditions was calculated by subtracting the log value for the stable 

condition 𝛼 from the log value for the volatile condition 𝛼. This revealed the extent to which 

participant’s choice behaviour was more strongly influenced by recent trial outcomes than more 

antecedent trial outcomes on the volatile condition relative to the stable condition. In the volatile 

condition, only the 20 most recent trials provide outcome probability information useful to the 

current choice decision. Hence, participants will achieve better performance in the volatile 

condition if they base their choice decisions on the outcomes of more recent trials compared to the 

outcomes of trials that occurred further in the past. Consequently, if the participant was able to 

adaptively base their decisions on recent trial outcomes more so in the volatile condition than in 
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the stable condition, then their learning rate would be higher in the volatile than the stable 

condition, resulting in a positive 𝛥𝛼 value. Ergo, the more positive a participant’s 𝛥𝛼 value, the 

greater their ability to regulate the extent to which their forward model was updated in light of new 

outcome information in accordance with the relative volatility of the current context.  

 

In addition to the 𝛥𝛼, the difference in the variability of the learning rate (𝛥𝜎𝛼)  between 

the two conditions was also calculated by subtracting the log value for the stable condition 𝜎𝛼 from 

the log value for the volatile condition 𝜎𝛼. This demonstrated the impact of the contextual volatility 

on the consistency with which participants’ based their decision on more recent trials relative to 

more anterior trials. A more positive 𝛥𝜎𝛼 suggests that a participant’s 𝛼 was more consistent in 

the volatile condition relative to the stable condition. In contrast, a more negative 𝛥𝜎𝛼 would 

indicate that the opposite was true, with greater 𝛼 consistency in the stable condition over the 

volatile condition.  

 

The difference in inverse temperature (𝛥𝛽) and the the difference in the variability of the 

inverse temperature (𝛥𝜎𝛽) were also calculated in the same manner as the 𝛥𝛼 and the 𝛥𝜎𝛼 by 

subtracting the stable condition log values from the volatile condition log values. The 𝛥𝛽 shows 

the extent to which participants’ choice behaviour was guided by an understanding of the outcome 

probabilities to a greater degree in one condition than the other. A more positive 𝛥𝛽 indicates that 

advantage knowledge had a greater impact on the participant’s choices in the volatile condition 

than in the stable condition. Whereas, a more negative 𝛥𝛽 is reflective of the opposite. Finally, the 

𝛥𝜎𝛽 shows the impact of  contextual volatility on the consistency with which participants made 

choices informed by advantage knowledge, as opposed to merely random selections. Once again, 

a more positive 𝛥𝜎𝛽 suggests that the participant’s 𝛽 was more consistent in the volatile condition 

relative to the stable condition, whereas, a more negative 𝛥𝜎𝛽 indicates that the reverse was true.  

 

Outlier Detection. To exclude any potentially confounding anomalous data, the Tukey’s fences 

method for outlier detection was applied to the log values for each DV. For the stable condition, 

12 𝜎𝛼, 3 𝛽, and 11 𝜎𝛽 datapoints were found to be more than 1.5 interquartile ranges away from 

the nearest quartile. Whereas, for the volatile condition, 24 𝜎𝛼, 1 𝛽, and 17 𝜎𝛽 datapoints were 



 156 

more than 1.5 interquartile ranges away from the nearest quartile. Finally, 16 𝛥𝛼, 48 𝛥𝜎𝛼, 15 𝛥𝛽, 

9 𝛥𝜎𝛽 datapoints were more than 1.5 interquartile ranges away from the nearest quartile.  

 

Upon comparison, it was found that the removal of the anomalous data points did not affect 

the direction or significance of the results regarding the influence of age, impulsivity and sex on 

the 𝜎𝛼 or  𝛽 for either condition, nor on the 𝛥𝜎𝛼, 𝛥𝛽, or the 𝛥𝜎𝛽. Hence, the identified data points 

for these variables were not removed in order to ensure the completeness of the data. However, 

excluding the extraneous data points for the 𝜎𝛽 in both conditions and the 𝛥𝛼 did have an effect 

on the findings. Prior to outlier removal, the 𝜎𝛽 in both conditions and the 𝛥𝛼 were not predicted 

by any predictor variable. Whereas, the 𝜎𝛽 was significantly predicted by impulsivity in both the 

stable (𝛽 = .13, t= 2.26, p= .02) and volatile (𝛽 = .12, t= 2, p= .046) conditions and no other 

predictor variable (all p>.05) after outlier removal. Similarly, 𝛥𝛼 was significantly predicted by 

age (𝛽 = .13, t= 2.29, p= .02) and no other predictor variable (all p>.05) after the outlier data points 

were excluded. As a result of these changes, the 44 data points identified as outliers for these three 

variables were removed from the data so as not to statistically bias the results. 

 

Statistical Analyses. All statistical analyses were run in SPSS. As a brief reminder, due the fact 

that the learning rate and inverse decision parameters were multiplicative, all statistical analyses 

were conducted on the logarithms of each parameter estimate. For the reasons outlined in chapter 

2, impulsivity and sex were included as nuisance variables in the current study. In further support 

of the inclusion of sex as a nuisance variable, past research has argued that males demonstrate a 

superior ability to adapt their choice behaviour to sudden changes in learned action-outcome 

contingencies compared to females (Evans & Hampson, 2015; Overman, 2004; although, see 

Chowdhury et al., 2019 for an alternative account). It has been suggested that this may be due to 

sex differences in the rate at which regions of the brain implicated in cognitive control 

(Vijayakumar et al., 2014) and reward learning (Chahal et al., 2021) develop, particularly during 

adolescence. Therefore, sex was included as a nuisance variable in the statistical analyses. 

 

Twelve stepwise multiple linear regressions were performed to investigate whether any of 

the 12 DVs could be predicted by age, impulsivity or sex. In each regression analysis, impulsivity 

and sex were entered in an initial block as nuisance variables, and age was entered alone in a 
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second block. The purpose of the statistical tests performed on the learning rate variables (𝛼, 𝜎𝛼, 

𝛥𝛼, 𝛥𝜎𝛼) was to reveal the extent to which age influenced participants’ ability to adapt their actions 

in response to past trial outcomes in each condition when the respective influences of impulsivity 

and sex are taken into account. Whereas, the purpose of the tests conducted on the inverse decision 

temperature variables  (𝛽, 𝜎𝛽, 𝛥𝛽, 𝛥𝜎𝛽) was to determine the impact of age on the extent to which 

participants’ choice behaviour was guided by knowledge of the relative outcome probabilities in 

each condition when impulsivity and sex are controlled for. G*Power analysis revealed that 77 

participants were required to obtain a medium sized-effect (f2=.15) in a multiple linear regression 

with three predictor variables, 80% power, and a 5% alpha level (Faul et al., 2009). As the sample 

contained 320 participants, the analyses were sufficiently powered. 

Results  

In the current study, participants completed 180 trials of an outcome learning task. To briefly 

reiterate, participants were asked to select one of two prize boxes on each trial. The chance that 

selecting each box would result in points earned varied per condition. In the stable condition, there 

was a fixed 75% chance that selecting one of the boxes (i.e., the red box) would lead to a reward. 

The alternative box then had a fixed 25% chance of giving a reward if selected. Whereas, in the 

volatile condition, the two boxes had an 80% and 20% chance of leading to a reward if chosen. 

Every 20 trials, the 80% and 20% reward probabilities swapped between the two boxes. The 

choices made by participants on each trial were then recorded.  

 

Task Performance 

On average, participants selected the correct box on 58% of trials across the task (SD= 5.96, range= 

42.33-71.67). This performance level was significantly different from chance, t(319)= 26.43, 

p<.001, d=5.96. When each condition was examined in isolation, participants selected the correct 

box on 60% of trials (SD= 7.53, range= 35.29-76.4) on average in the stable condition, and on 

57% of occasions (SD= 7.61, range= 27.78-74.7) on average in the volatile condition. Performance 

level was significantly different from chance in both the stable (t(319) = 24.43, p<.001, d=7.53) 

and the volatile (t(319) = 17.19, p<.001, d= 7.61) conditions. This suggests that participants 

understood the goal of the task.  
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The Influence of Age on the Learning Rate in the Stable and Volatile Conditions 

To explore the extent to which participants’ choice behaviour was informed by the outcomes of 

recent actions relative to the outcomes of actions that occurred further in the past, an estimate of 

their 𝛼 and 𝜎𝛼 were obtained for each condition. The higher a participant’s 𝛼, the greater the extent 

to which their choices were guided by the outcomes of their most recent actions compared to those 

of actions committed on more antecedent trials. Whereas, the higher a participant’s 𝜎𝛼, the greater 

the variability in the extent to which participants’ choices were directed by more recent trial 

outcomes compared to more prior outcomes.  

 

Initially, four one-sample t-tests were conducted to ensure that a sufficient level of learning, and 

variability in learning, occurred on each condition to warrant further analysis. It was revealed that 

the stable condition 𝛼 (M= -2.11, SD = 1.03; t(319)= -36.46, p<.001, d= 1.04), the stable condition 

𝜎𝛼  (M= .19, SD = .17; t(319)= 17.09, p<.001, d= .57), the volatile condition 𝛼 (M= -1.92, SD = 

1.13; t(319)= -30.22, p<.001, d= 1.13), and the volatile condition 𝜎𝛼  (M= .24, SD = .19; t(319)= 

13.94, p<.001, d= .57) all significantly differed from zero. This suggests that sufficient learning 

occurred to facilitate further analysis regarding the impact of age on participants’ rate of learning 

within both conditions.  

 

To investigate the influence of age on participants’ 𝛼 and 𝜎𝛼 in each condition, four 

separate stepwise multiple linear regressions were conducted on the stable condition 𝛼 and 𝜎𝛼 and 

the volatile condition 𝛼 and 𝜎𝛼. In each regression, impulsivity and sex were entered in an initial 

block as nuisance variables, and age was entered alone in a second block. For both conditions, it 

was revealed that the 𝛼 was not significantly predicted by any of the predictor variables (all p>.05). 

Similarly, it was also revealed that the 𝜎𝛼 was not significantly predicted by any of the predictor 

variables in either condition (all p>.05). For visualisation purposes, see figure 6.2 for the 𝛼 and 𝜎𝛼 

for each condition plotted against participants’ unlogged age in years. 
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Figure 6.2. 

The 𝛼 and 𝜎𝛼 as a function of participants’ unlogged age in years and condition 

 

Note. 6.2A. A figure showing learning rate in the stable condition plotted against participants’ 

unlogged age in years. Error bars represent +/- 1 standard deviation. 6.2B. A figure showing the 

variability in learning rate within the stable condition plotted against participants’ unlogged age in 

years. Error bars represent +/- 1 standard deviation. 6.2C. A figure showing learning rate in the 

volatile condition plotted against participants’ unlogged age in years. Error bars represent +/- 1 

standard deviation. 6.2D. A figure showing the variability in learning rate within the volatile 

condition plotted against participants’ unlogged age in years. Error bars represent +/- 1 standard 

deviation. 

 

The Influence of Age on the Inverse Decision Temperature in the Stable and Volatile Conditions 

To explore the extent to which participants’ choice behaviour was guided by an understanding of 

the relative advantage of choosing one box over the alternative option, an estimate of their inverse 

decision temperature (𝛽) and an estimate of the variability in their inverse decision temperature 

(𝜎𝛽) were obtained for each condition. The higher a participant’s 𝛽, the greater the extent to which 
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their choices were informed by an understanding of the relative outcome probabilities associated 

with each colour option. Whereas, the higher a participant’s 𝜎𝛽, the greater the variability in the 

extent to which participants’ choices were guided by this understanding of the underlying outcome 

probabilities.  

 

To ensure that the recorded 𝛽 and 𝜎𝛽 were of a sufficient magnitude to facilitate the planned 

regression analyses, four one-sample t-tests were conducted on the 𝛽 and 𝜎𝛽 for each condition. 

Indeed, it was revealed that the stable condition 𝛽 (M= 1.55, SD= .97; t(319)= 28.51 p<.001, d= 

.97), the stable condition 𝜎𝛽 (M= .12, SD= .05; t(308)= 38.23, p<.001, d= .05), the volatile 

condition 𝛽 (M= 1.54, SD= .89; t(319)= 30.75, p<.001, d= .89, and the volatile condition 𝜎𝛽 (M= 

.16, SD= .11; t(302)= 26.39, p<.001, d= .11) all significantly differed from zero. This suggests that 

these parameters are sufficient in magnitude to warrant further analysis.  

 

To establish the influence of age on participants’ 𝛽 and 𝜎𝛽 in each condition, four separate 

stepwise multiple linear regressions were conducted on the stable condition 𝛽 and 𝜎𝛽 and the 

volatile condition 𝛽 and 𝜎𝛽. In each regression, impulsivity and sex were entered in an initial block 

as nuisance variables, and age was entered alone in a second block. For both conditions, it was 

revealed that 𝛽 was not significantly predicted by any of the predictor variables (all p>.05).  

 

In terms of the 𝜎𝛽, a significant model was revealed for the stable condition, F(1,307)= 

5.12, p= .02. It was revealed that the 𝜎𝛽 was significantly predicted by impulsivity (𝛽 = .13, t= 

2.26, p= .02) and was not predicted by age (𝛽 = .07, t= 1.18, p= .24) or sex (𝛽 = .03, t= 53, p= .6). 

This suggests that as impulsivity increased, the variance in the inverse decision temperature 

increased within the stable condition. The overall model fit was R2 = .02 (SE= .05). Likewise, a 

significant model was also revealed for the volatile condition, F(1,301)= 4.02, p= .046. It was 

found that the 𝜎𝛽 was significantly predicted by impulsivity (𝛽 = .12, t= 2, p= .046) and was not 

predicted by age (𝛽 = .003, t= .05, p= .96) or sex (𝛽 = -.04, t= -.69, p= .49). This suggests that, 

much like the stable condition, as impulsivity increased, the variance in the inverse decision 

temperature also increased within the volatile condition. The overall model fit was R2 = .01 (SE= 

.11).  Figure 6.3 shows the 𝜎𝛽 plotted against a model of age, impulsivity and sex for each 
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condition. To further visualise the relationships between age and the 𝛽 and 𝜎𝛽 in each condition, 

see the scatterplots presented in figure 6.4. 

 

Figure 6.3. 

The variance in the inverse decision temperature plotted against a model of age, impulsivity and 

sex for the stable and volatile conditions. 

 

Note. A figure showing the variance in the inverse decision temperature for both the stable 

condition and volatile condition plotted against a model of age, impulsivity and sex. The stable 

condition is represented in black. Whereas, the volatile condition is depicted in blue. Error bars on 

both models represent +/- 1 confidence interval.  
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Figure 6.4. 

The 𝛽 and 𝜎𝛽 as a function of participants’ unlogged age in years and condition 

 

Note. 6.4A. A figure showing inverse decision temperature in the stable condition plotted against 

participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 6.4B. A figure 

showing the variability in the inverse decision temperature within the stable condition plotted 

against participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 6.4C. A 

figure showing inverse decision temperature in the volatile condition plotted against participants’ 

unlogged age in years. Error bars represent +/- 1 standard deviation. 6.4D. A figure showing the 

variability in the inverse decision temperature within the volatile condition plotted against 

participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 

 

The Influence of Age on the Difference in Learning Rate and Inverse Decision Temperature 

Between the Two Conditions 

To determine the extent to which participants’ 𝛼, 𝜎𝛼, 𝛽, or 𝜎𝛽 differed between the stable and 

volatile conditions, the difference in learning rate (𝛥𝛼), the difference in the variability in learning 

rate (𝛥𝜎𝛼), the difference in inverse decision temperature (𝛥𝛽), and the difference in the variability 

in their inverse decision temperature (𝛥𝜎𝛽) were calculated. In the case of the 𝛥𝛼 and the 𝛥𝛽, 
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higher values indicated that a participant showed a higher 𝛼 or 𝛽 in the volatile condition than in 

the stable condition. Whereas, a higher 𝛥𝜎𝛼 or 𝛥𝜎𝛽 demonstrate that the participant showed greater 

variability in their 𝛼 or 𝛽 in the volatile condition relative to the stable condition.  

 

To verify that the difference in 𝛼, 𝜎𝛼, 𝛽, and 𝜎𝛽 was of a sufficient magnitude to warrant 

the planned regression analyses, four one-sample t-tests were conducted on the 𝛥𝛼 (M= .2, SD= 

.99), 𝛥𝜎𝛼 (M= -.01, SD= .67), 𝛥𝛽 (M= -.01, SD= .8), and 𝛥𝜎𝛽 (M= .04, SD= .11) values. It was 

revealed that the 𝛥𝛼 (t(303)= 3.57, p<.001, d= .97), the 𝛥𝜎𝛼(t(319)= -2.67, p= .01, d= .67), and 

the volatile condition 𝛥𝜎𝛽 (t(319)= 6.44, p<.001, d= .11) all significantly differed from zero. 

Whereas, the 𝛥𝛽, (t(319)= -.33, p= .74, d= .8) did not significantly differ from zero. For this reason, 

the planned regression for the 𝛥𝛽 will not be performed. In addition, as the 𝛥𝛼 is positive, it can 

be interpreted that participants tended to have a higher learning rate in the volatile condition 

relative to the stable condition. This provides further indication that the task was completed as 

intended.  

 

To investigate the influence of age on the 𝛥𝛼, the 𝛥𝜎𝛼, and the 𝛥𝜎𝛽, three separate stepwise 

multiple linear regressions were conducted. In each regression, impulsivity and sex were entered 

in an initial block as nuisance variables, and age was entered alone in a second block. It was 

revealed that none of the predictor variables explained a significant proportion of the variation in 

the 𝛥𝜎𝛼 or the 𝛥𝜎𝛽  (all p>.05). Whereas, a significant model was found for 𝛥𝛼, F(1,302)= 5.23, 

p= .02. It was revealed that 𝛥𝛼 was significantly predicted by age (𝛽= .13 , t= 2.29, p= .02), and 

was not significantly predicted by impulsivity (𝛽= -.06, t= -.1.08, p= .28). or sex (𝛽= -.01, t= -.23, 

p= .82). This suggests that as age increased, the difference in learning rate also increased. The 

overall model fit was R2 = .02 (SE= .96). Figure 6.5 shows the 𝛥𝛼 plotted against a model of age, 

impulsivity and sex. For visualisation purposes, see figure 6.6 for the 𝛥𝛼, 𝛥𝜎𝛼, 𝛥𝜎𝛽 plotted against 

participants’ unlogged age in years. 
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Figure 6.5. 

The difference in learning rate between conditions plotted against a model of age, impulsivity and 

sex. 

 

Note. A figure showing the difference in learning rate between conditions plotted against a model 

of age, impulsivity and sex. Error bars represent +/- 1 confidence interval.  
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Figure 6.6. 

The 𝛥𝛼, 𝛥𝜎𝛼, 𝛥𝜎𝛽 as a function of participants’ unlogged age in years 

 

Note. 6.6A. A figure showing difference in learning rate between the two conditions plotted against 

participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 6.6B. A figure 

showing the difference in the variability in learning rate between the two conditions plotted against 

participants’ unlogged age in years. Error bars represent +/- 1 standard deviation. 6.6C. A figure 

showing the difference in the variability in the inverse decision temperature between the conditions 

plotted against participants’ unlogged age in years. Error bars represent +/- 1 standard deviation.  
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Discussion 

The purpose of the present study was to determine the influence of age on young people’s ability 

to update their forward model to an appropriate degree with respect to the volatility of the current 

context. To achieve this goal, participants aged 14-24 completed 180 trials of an outcome learning 

task. To briefly recap, participants selected between two prize boxes on each trial with the goal of 

obtaining a points-based reward. In a stable condition, the probabilistic action-outcome 

relationships remained fixed; one box always had a higher chance of delivering a reward. Whereas, 

in a volatile condition, these action-outcome associations shifted between the two boxes every 20 

trials. The extent to which a participant’s choices were guided more so by recent trial outcomes as 

opposed to more antecedent outcomes was indexed separately for each condition via a learning 

rate. The better the participant’s capacity to modify their behaviour according to the relative 

volatility of the active action-outcome relationships, the greater the distance between their two 

learning rates should be, with a higher learning rate employed in the volatile context relative to the 

stable context (Browning et al., 2015).  

 

The present study found that the degree to which individuals updated their forward model 

in response to an observed action-outcome did not vary with age in either the stable or the volatile 

context. This finding is inconsistent with both the first and second hypotheses of the current study 

and the results of past literature (e.g., van den Bos et al., 2012; Eckstein et al., 2022; Jepma et al., 

2020), as it contradicts the idea that the tendency to employ a low learning rate within a stable 

context and a high learning rate in a volatile context increases with age.  Likewise, this also 

contradicts the alternative notion proposed by Hauser et al. (2015) that adolescents are better 

equipped to respond to unexpected action-outcomes than adults, resulting in a decline in the 

volatile learning rate with age. Arguably, the current results could imply that the capacity to update 

one’s forward model to the correct degree in response to an unexpected outcome is already present 

from age 14. However, this notion is largely speculative given that the results were null and only 

a linear change model was tested (see chapter 7 for a discussion on the limitations of fitting the 

data to only one type of model). 

 

The precise reason for the disparity between the current findings and those of past research 

is unclear. This is particularly true, given that the two-forced choice probabilistic learning task 
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employed in the current task was near identical to the tasks used in the majority past studies, with 

similar stimuli, trial structure and task length (e.g., van den Bos et al., 2012; Hauser et al., 2015; 

Eckstein et al., 2020). One potential explanation for the lack of significant effects in the current 

study is that only 10% of the current sample were aged <18. In contrast, past studies have tended 

to recruit an approximately equivalent number of adolescent and adult participants (e.g., van den 

Bos et al., 2012; Hauser et al., 2015; Jepma et al., 2020). Therefore, the role of age as a determinant 

in young people’s outcome learning skills may have been obscured by the homogeneity of the 

current sample. In further support of this suggestion, the only other study to report no difference 

in learning rate between adolescents and adults on a probabilistic learning task, also attributed their 

results to a lack of age diversity amongst their participants (Javadi et al., 2014). Ergo, future 

research with greater variation in participants’ ages is needed to verify the legitimacy of the current 

results. 

 

Whilst the current findings appear to suggest that adolescents and adults do not differ in 

their ability to modify their learning rate to align with both stable and volatile contexts, the relative 

magnitude to which they adapted their learning rate differently for each context was found to 

increase with age. This finding aligns with the third hypothesis of the current study, as it implies 

that the magnitude to which individuals can flexibly optimise their learning rate to each context 

refines with age. Therefore, this suggests that, from adolescence to adulthood, subtle refinements 

occur in individuals’ capacity to flexibly modify their forward model according to the current 

environmental volatility. However, it should be noted that only a low proportion of the variance in 

the difference in learning rate was explained by the final model (R2 = .02). Hence, the current 

results should be interpreted with caution.   

 

In addition to the learning rate, participants’ inverse decision temperature was also 

calculated for each condition in order to quantify their ability to maintain and utilise an accurate 

conceptualisation of the current action-outcome associations. It was found that this did not vary 

with age for either condition, nor between conditions. This finding is at least partially consistent 

with past literature. For instance, Decker et al. (2016) argued that children tended to rely solely on 

a simplistic stimulus-response strategy to guide their choices on a probabilistic learning task. 

Whereas, from early adolescence, individuals tended to use knowledge of the underlying action-
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outcome structure to inform their decisions. This tendency was reported to then improve with age 

from adolescence to adulthood. In agreement with the results of Decker et al. (2016), the current 

findings appear to show that adolescents from age 14 onwards do possess the capacity to 

understand the active action-outcome associations and use this to drive their choices. However, 

given that these are null results, they should be interpreted with caution. Furthermore, in contrast 

to the study reported by Decker et al. (2016), no age-related refinement was found. Speculatively, 

it may be argued that this discrepancy may have occurred due to the noted lack of diversity in 

participants’ ages, which may have obscured these subtle age-related changes.  

 

Moving forward, future research should modify the combined Rescorla-Wagner and 

softmax action selector model to account for age-related differences in the rate at which the 

perceived reward probabilities for chosen and unchosen options are updated (Fischer & Ullsperger, 

2013). The learning model used in the current study functioned under the assumption that all 

participants use a counterfactual learning strategy. This means that their understanding of the 

reward probabilities for both the chosen and unchosen boxes were updated simultaneously after 

each trial (Boorman et al., 2011). However, past research has shown that, whilst adults do tend to 

use this counterfactual learning strategy, adolescents’ choice behaviour is better explained by a 

more basic model where only the reward probability of the chosen option is updated (Palminteri 

et al., 2016). This would suggest that adults are better able to update all relevant action-outcome 

associations in a given context than adolescents, and thereby, will possess a more accurate forward 

model. Therefore, future research should test multiple potential learning models, in order to best 

capture the true influence of age on individuals’ capacity to adapt their understanding of the causal 

structure of their environment in light of new information.  

 

Similarly, the combined Rescorla-Wagner and softmax action selector model should also 

be modified to account for the idea that age has a differential effect on the rate at which individuals 

learn from positive outcomes and negative outcomes (Ferdinand et al., 2016). Notably, the 

evidence regarding the precise manner in which age and outcome valence interact remains mixed. 

For instance, some learning studies have reported a shift towards greater emphasis on positive over 

negative feedback to inform choice behaviour from adolescence to adulthood (e.g., van der Schaaf 

et al., 2011; Hartley & Somerville, 2015), whilst others have argued the reverse to be true (e.g., 
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van Duijvenvoorde et al., 2008). This suggests that the precise manner in which age interacts with 

outcome valence to influence the rate at which individuals can learn from past outcomes is unclear. 

Unfortunately, learning model used in the current research did not differentiate between rewarded 

and unrewarded outcomes. Ergo, future research is needed to elucidate the impact of outcome 

valence on the ability to learn from past action experience at different ages.  

 

To conclude, the purpose of the present study was to determine how young people’s ability 

to update their forward model to an appropriate degree with respect to the volatility of the current 

context changes with age. Although the ability to appropriately modify one’s learning rate to align 

with both stable and volatile contexts was found to be age-invariant, the relative magnitude to 

which one can adapt their learning rate differently for each context was found to improve with age. 

This suggests that the capacity to update the forward model appropriately is present from early 

adolescence, and refines with age. Notably, the lack of heterogeneity in participants’ ages and the 

lack of differentiation between learning rates for chosen and unchosen, as well as reward and 

unrewarded, outcomes should be acknowledged as potential confounds. Consequently, future 

research should initially be concerned with evaluating whether the current findings can be 

replicated once the current design has been amended to remove the influence of these factors.  
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Chapter 7: General Discussion 

 

Chapter Summary 

Chapter 7 provides a general discussion of the current research, beginning with a brief reiteration 

of previous knowledge and the aims of the thesis. The major findings from the current studies will 

then be outlined, in addition to their implications for the forward model development literature. 

Next, the significance of the current findings to previous knowledge on the developmental 

trajectory of SoA will be discussed. Following this, the general strengths and weaknesses of the 

thesis will be explored. Avenues for future research will then be examined, before ending with the 

final conclusion of the thesis.  

Aims of the Thesis and Brief Reiteration of Previous Knowledge 

The purpose of this thesis was to amend the noted absence of adolescents from prior SoA 

development literature, and thus, determine the full trajectory at which the capacity to experience 

a veridical SoA develops from childhood to adulthood. To recap, a SoA refers to an individual’s 

awareness of their control over their voluntary actions and the sensory consequences of those 

actions (Haggard & Chambon, 2012). It has been argued that a consensus regarding the manner in 

which SoA matures from childhood to adulthood remains absent from prior literature (Choudhury 

et al., 2007). Whilst some prior research has concluded that children demonstrate a reduced SoA 

compared to adults (e.g., Cavazzana et al., 2014, 2017), these studies have tended to ignore 

adolescents’ experience of agency. Indeed, only two prior studies have included adolescents within 

their investigation of how SoA reaches an adult-like level of precision (Aytemür et al., 2021; 

Aytemür & Levita, 2021). When taken together, these two studies reported that adolescents have 

a less precise SoA compared to both children (Aytemür & Levita, 2021) and adults (Aytemür et 

al., 2021; Aytemür & Levita, 2021). However, the fact that both studies employed a version of the 

intentional binding effect to measure SoA (Aytemür et al., 2021; Aytemür & Levita, 2021) raises 

concern over the legitimacy of their findings. This may be said as the legitimacy of this effect as a 

pure SoA measure has been criticised within past literature (Suzuki et al., 2019). Hence, the precise 

manner through which SoA matures from childhood to adulthood warranted further investigation. 
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A SoA is believed to be produced via an internal computation through which the predicted and 

observed consequences of self-authored actions are compared within a forward model (Haggard 

& Chambon, 2012). On that basis, the proficiency of the forward model system was examined as 

a proxy measure of agency in the current research. More specifically, the functionality of an 

individual’s forward model system was interrogated via their ability to i) accurately predict the 

outcome of their action, and ii) update learned action-outcome knowledge in response to post-

action feedback; two skills indicative of a precise forward model. Similar to previous SoA 

literature (e.g., Cavazzana et al., 2014, 2017), the majority of past studies have focused on 

understanding how children and adults differ in their ability to predict action consequences (e.g., 

Franchak, 2019; Perchet & Garcia-Larrea, 2005) and adapt behaviour in response to sensory 

feedback (e.g., Tahej et al., 2012; Scheerer et al., 2016). Conversely, few studies have directly 

examined the manner in which the forward model system develops across adolescence (Quatman-

Yates et al., 2012; Barlaam et al. 2012; Dahl et al. 2018). Hence, the primary aims of the current 

thesis were twofold: 

 

1. Based on past literature (e.g., Van Gerven et al., 2016), the first goal of this thesis was to 

test the idea that the ability to form accurate action-outcome predictions improves with age 

from childhood to adulthood.  

 

2. In addition, the second goal of this thesis was to evaluate the suggestion that the ability to 

appropriately update learned action-outcome associations in light of post-action feedback 

improves with age from childhood to adulthood, as suggested by past research (e.g., Master 

et al., 2020).  

 

By accomplishing these two initial goals, it was reasoned that the ultimate thesis aim could be 

achieved: 

 

3. To assess the assertion that SoA matures at a linear rate from childhood to adulthood, as 

suggested by past child studies (e.g., Cavazzana et al., 2014; 2017) and neuroimaging 

research (e.g., Blakemore et al., 2012), in light of the contradictory evidence presented by 

Aytemür and Levita (2021).  
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Summary of Major Findings and Their Implications for the Forward Model Development 

Literature 

Attention will now turn to discussing how the primary aims of the thesis were investigated within 

each empirical chapter, the key findings that were obtained, and how these findings extend our 

knowledge on how the functionality of the forward model system changes with age from childhood 

to adulthood.  

 

Summary of Chapter 3 

Beginning with chapter 3, this chapter aimed to determine how sensorimotor continuation changes 

with age across childhood, adolescence, and young adulthood. Sensorimotor continuation refers 

to an individual’s ability to maintain a specified inter-response-interval when producing a series 

of isochronous motor responses (McPherson et al., 2018). Sensorimotor continuation was 

measured using a synchronisation-continuation task. Participants aged 4-25 years first made 

keypresses in time with a series of isochronous tones played at either a high, medium or low 

frequency. They then continued making keypresses at the same pace after the tones were removed. 

To accurately and consistently replicate the set response pace, participants had to use their forward 

model to predict the precise time at which to make their next response and correct any disparities 

between their produced inter-response-interval and the target inter-response-interval (Maes, 2016). 

Therefore, the greater the accuracy and consistency with which participants could maintain the 

target response pace, the better their ability to both form veridical forward model predictions and 

make appropriate updates to their forward model in light of tactile feedback from their keypress. 

Hence, the results of this study answer both of the two primary aims of this thesis.  

 

It has been argued that evidence on how sensorimotor continuation changes with age from 

childhood to adulthood is limited within past literature. Only two prior studies have investigated 

how this ability reaches adult-like maturity, both of which failed to reach a consensus. One study 

argued that sensorimotor continuation improves with age from childhood to adulthood (McAuley 

et al., 2006), whilst the other concluded that adolescents and adults do not differ in their 

sensorimotor continuation skills (Witt & Stevens, 2013). Hence, the purpose of chapter 3 was to 

resolve this discrepancy, and thereby, advance our current understanding of how sensorimotor 

continuation develops with age from childhood to adulthood. In agreement with the conclusion 
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drawn by McAuley et al. (2006), the current research found that the accuracy and consistency of 

participants’ sensorimotor continuation improved with age from childhood to young adulthood. 

Furthermore, this suggests that the accuracy and consistency of participants’ forward model 

predictions and their ability to appropriately amend their action-outcome knowledge both refine 

with age. However, it should be noted that the findings may have been confounded by interactions 

between age and participants’ working memory capacity (Gomes et al., 1999), time perception 

(Droit-Volet et al., 2007), and experience of music training (Thompson et al., 2015). Hence, future 

research is needed to verify whether the current findings can be replicated after the impact of these 

potential confounds upon the results has been controlled.  

 

Summary of Chapter 4 

Building on the results of chapter 3, the aim of chapter 4 was to examine, in isolation, how the 

tendency to form forward model predictions changes with age from childhood to adulthood. This 

was achieved by interrogating the influence of age on predictive motor timing in children, 

adolescents and young adults. Predictive motor timing refers to the ability to manipulate the timing 

of an intended action such that its occurrence aligns with the predicted onset of an imminent 

stimulus (Tanaka et al., 2021). This ability was measured using a cued reaction time task. 

Participants aged 4-25-years were first presented with an amber cue stimulus, followed by a target 

green stimulus after a variable interval. Participants’ objective was to respond as soon as the target 

stimulus became visible.  

 

Crucially, participants could achieve the task objective by either making an anticipatory 

response or a reactive response (Braver, 2012). Anticipatory responses required participants to use 

their forward model to predict when to respond in order for their keypress to temporally align with 

the onset time of the target stimulus. Whereas, reactive responses were triggered by the onset of 

the target stimulus, and thus, required no internal action preparation via the forward model in 

advance of the target stimulus’ arrival (Burnett Heyes et al., 2012). Notably, an anticipatory 

response would achieve a faster reaction time relative to a reactive response, meaning that 

anticipatory responses were more advantageous for the task objective. Hence, the higher the ratio 

of anticipatory to reactive responses, and the faster and more consistent the rate of rise in 
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participants’ anticipatory decision process, the greater their tendency to form forward model 

predictions.  

 

Previous literature has tended to focus on comparing the performance of children and 

young adults on cued RT tasks (Iselin & DeCoster, 2009), often reporting that the latter 

demonstrate greater anticipatory response behaviour than the former (Brown, 2019; Perchet & 

Garcia-Larrea, 2005). Whilst these findings appear to suggest that predictive motor timing skills 

improve from childhood to adulthood, it has been argued that further empirical investigation is 

needed to verify this assertion (Debrabant et al., 2012). To that end, the current research found that 

the tendency to make anticipatory responses over reactive responses increased with age from 

childhood to adulthood. Greater age was also associated with a faster and more consistent rate of 

rise in the anticipatory decision process towards the threshold required for action execution. These 

results extend the findings of previous research (Brown, 2019; Perchet & Garcia-Larrea, 2005), as 

they suggest that predictive motor timing refines with age from childhood to adulthood. These 

findings are consistent with the results of both behavioural (Van Gerven et al., 2016) and 

neuroimaging studies (Killikelly & Szűcs, 2013), which have also reported that the ability to 

prepare responses in advance of anticipated stimuli improves with age from childhood to 

adulthood. Subsequently, in congruence with the results of chapter 3, the current findings suggest 

that the ability to conceptualise the outcome of a planned action using a forward model refines 

with age. 

 

Although, it should be noted that, less than a third of the responses made were anticipatory 

across participants, which is lower than documented in previous research (e.g., Brown, 2019). This 

jeopardises the legitimacy of the results, as it suggests that an aspect of the current task artificially 

deterred some participants from preparing anticipatory responses. The precise factor that caused 

this low average rate of anticipatory response behaviour to occur is difficult to identify 

retrospectively. Hence, future research is required to determine why this transpired and verify 

whether the results of the current study can be replicated in scenarios where a higher average rate 

of anticipatory responding is observed across participants.  
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Summary of Chapter 5 

To further extend the findings of chapter 4, the goal of chapter 5 was to establish how the ability 

to use appropriate prior knowledge to guide forward model predictions changes with age from 

childhood to adulthood. There are numerous instances in daily life where individuals must shift 

flexibly between different tasks, each with their own relevant action-outcome associations. To 

facilitate this, relevant prior knowledge must be combined with available context cues so that the 

most appropriate action can be selected for the current task (Berniker & Körding, 2011). Switch 

costs are often recorded as an indicator of an individual’s ability to switch between action-outcome 

pairings as the contextual information changes between trials. Whereas, mixing costs provide an 

index of an individual’s ability to maintain, and select between, different action-outcome 

associations (Kray et al., 2008). In both instances, lower costs indicate a lower frequency of errors 

made when switching or selecting between different action-outcome associations, and hence, 

greater accuracy in one’s forward model predictions.  

 

Thus far, past research has failed to achieve a consensus on how the ability to maintain, 

and switch between, different action-outcome pairings changes from childhood to adulthood. 

Previous studies have predominantly found that children demonstrate higher switch costs and 

mixing costs than young adults on task-switching paradigms (e.g., Davidson et al., 2006; Kray et 

al., 2004; Kray et al., 2008). However, only two previous studies have included adolescents within 

their sample, both of which failed to find conclusive evidence to support the existence of an age-

related decline in either switch costs or mixing costs (Manzi et al., 2011; Reimers & Maylor, 2005). 

To rectify this issue, the current research measured the switch costs and mixing costs accrued by 

individuals aged 5-21 on a goal-switching task. During the task, participants switched between 

two objectives: when green stimuli appeared, participants made pro-saccade responses; whereas, 

red stimuli warranted anti-saccades.  

 

In agreement with some previous studies (e.g., Davidson et al., 2006), it was found that 

older age was associated with lower switch costs. Therefore, this suggests that the ability to 

flexibly switch between relevant action-outcome associations develops with age from childhood 

to adulthood. This result is also consistent with the idea that the ability to inhibit previously 

relevant action-outcome associations improves with age from childhood through to adulthood 
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(Diamond, 2013), in line with the maturation of the frontoparietal network (Marek & Dosenbach, 

2022). Unfortunately, the impact of age on the ability to maintain, and select between, different 

action-outcome mappings could not be examined due to the fact that low mixing costs were 

obtained across participants. Additionally, confidence in the reliability of the current findings was 

undermined by concerns regarding the spatial acuity of the eye-tracking software used to measure 

saccades and the lack of age-diversity in the recruited sample. Therefore, future research is needed 

to verify whether the similar findings can be obtained once these issues have been resolved.  

 

Summary of Chapter 6 

Complementary to chapters 4 and 5, the aim of chapter 6 was to investigate, in isolation, how the 

ability to make appropriate updates to learned action-outcome knowledge in light of post-action 

feedback changes with age from adolescence to adulthood. In order to maintain an up-to-date 

understanding of the probabilistic associations between actions and their effects, the feedback 

observed after an action must be incorporated into the individual’s prior estimate (Berniker & 

Körding, 2011). Crucially, the rate at which these amendments are made to learned action-outcome 

associations must be modulated according to the volatility of the current context (Gershman, 

2015). To recap, the extent to which the prior is modified in response to an observed outcome can 

be expressed as a learning rate (Hohwy, 2017). The higher the learning rate, the greater the 

influence of recent outcomes on the prior, relative to the wider history of observed feedback 

(Eckstein et al., 2022). In a relatively stable context, where probabilistic action-outcome 

relationships remain fixed over time, it is optimal to possess a low learning rate (Behrens et al., 

2007). Whereas, in a more volatile context, where action-outcome associations are subject to 

frequent change, a high learning rate is favourable (Browning et al., 2015). By examining an 

individual’s ability to optimally modify their learning rate according to the volatility of current 

context, it is possible to measure their capacity to make appropriate updates to their forward model.  

 

Few past studies have investigated how the ability to adapt one’s learning rate to the 

volatility of the current context develops from adolescence to adulthood (DePasque & Galván 

2017). Furthermore, whilst some studies have reported that adults tend to successfully employ a 

lower learning rate than adolescents within stable contexts (van den Bos et al., 2012; Jepma et al., 

2020), the evidence in regard to the learning rates employed within volatile contexts appear to be 
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more mixed. Some studies have argued that adolescents use a higher learning rate than adults 

within volatile contexts (Hauser et al., 2015). This suggests that observed outcomes trigger a larger 

update in adolescents’ prior compared to that of adults, regardless of the current contextual 

volatility. Opposingly, other studies have argued the converse to be true; adults were shown to 

utilise a higher learning rate than adolescents (Eckstein et al., 2020). This suggests that the ability 

to correctly deflate one’s learning rate in a stable context, and inflate one’s learning rate in a 

volatile context improves with age across adolescence.  

 

In order to resolve the noted discrepancies between the findings of past studies, current 

research measured adolescents’ and young adults’ ability to update action-outcome knowledge via 

an outcome learning task. In both a stable context and a volatile context, participants aged 14-24-

years selected between two boxes with the goal of finding a reward. In conflict with the results of 

past literature (e.g., van den Bos et al., 2012; Eckstein et al., 2020; Hauser et al., 2015; Jepma et 

al., 2020), it was found that learning rate did not vary with age in either the stable or the volatile 

context. Whereas, the degree to which individuals adjusted their learning rate differently for the 

stable context relative to the volatile context increased with age. On the one hand, when taken 

together with the findings of chapter 3, the results appear to suggest that the capacity to flexibly 

modify action-outcome knowledge largely develops from childhood to adolescence, with minor 

refinements in this ability occurring from adolescence to adulthood. On the other hand, given that 

only 10% of the current sample were aged less than 18-years-old, the null results obtained from 

this study could indicate that the true impact of age on the variation in participants’ learning rate 

in each context was obscured. Hence, future research is required to verify whether these results 

can be replicated with a more age-diverse sample.  

 

Conclusions Drawn Across the Empirical Chapters 

Drawing across the four empirical chapters, the results from chapters 3, 4 and 5 demonstrate that 

the ability to generate accurate action-outcome predictions improves with age from childhood to 

young adulthood. More specifically, the findings show that both the rate at which individuals 

engage in action-outcome prediction to guide their actions (chapter 4) and the quality of those 

predictions (chapters 3 and 5) improves with age across this developmental period. Ergo, the 

results obtained from all three chapters successfully address the first aim of the current thesis. 
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Furthermore, these findings are consistent with past studies which have suggested that, as 

individuals move from childhood to adulthood, they shift from responding reactively to perceived 

stimuli to preparing responses proactively in anticipation of expected stimuli (Braver, 2012; Van 

Gerven et al., 2016) as a result of maturation in the brain (Smith et al., 2011; Vijayakumar et al., 

2014). Moreover, the current findings support the idea that the efficiency at which individuals can 

predict the consequences of planned actions via a forward model develops with age from childhood 

through to adulthood.  

 

Whilst the results from chapters 3, 4 and 5 were effective in addressing the first aim of this 

thesis, the findings from chapters 3 and 6 were successful in responding to the second thesis goal. 

This may be said as, collectively, the results demonstrate that the ability to appropriately update 

learned action-outcome associations in light of post-action feedback improves with age from 

childhood to young adulthood. More precisely, the findings indicate that the accuracy (chapter 3) 

and magnitude (chapter 6) to which individuals can update action-outcome knowledge in response 

to sensory feedback refines with age from childhood to adulthood. These findings are congruous 

with previous learning studies which have shown that the proficiency with which individuals can 

incorporate past outcome evidence into their prior estimate and use this knowledge to guide current 

action improves from childhood to adulthood (Barash et al., 2019; Chambers et al., 2018; Master 

et al., 2020). Overall, the current findings reinforce the notion that the ability to alter one’s 

constructed forward model in light of new outcome evidence continues to develop from childhood 

through to young adulthood.  

 

Imperatively, as evident across the empirical chapters, the majority of past studies which 

have contributed to our understanding of forward model development have tended to compare the 

capabilities of children and adults (e.g., Perchet & Garcia-Larrea, 2005; Davidson et al., 2006). 

Whereas, few prior studies have explicitly sought to establish a consensus regarding the trajectory 

at which the functional efficiency of the forward model system progresses across childhood, 

adolescence and young adulthood (Quatman-Yates et al., 2012; Barlaam et al. 2012; Dahl et al. 

2018). In addition, prior studies which have included adolescents within their sample have tended 

to report contradictory conclusions on how the ability to maintain and/or operationalise action-

outcome knowledge changes with age (e.g., Hauser et al., 2015 and Eckstein et al., 2020, as 
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discussed in chapter 6). To that end, the findings presented within this thesis provide a crucial 

contribution to the forward model development literature, as they advance our understanding of 

the trajectory at which the forward model develops as individuals progress from childhood to 

adolescence to young adulthood.  

Implications of the Current Findings for SoA Development Literature  

To briefly recap, a SoA is believed to emerge as the result of an internal computation occurring 

within a forward model where the level of concordance between expected and observed action-

outcomes is evaluated (Haggard & Chambon, 2012). Subsequently, the accuracy with which an 

individual can experience a SoA over an observed sensory event is believed to be dependent on 

the precision of their forward model predictions (Asai, 2017). In turn, the veridicality of those 

predictions is thought to be reliant on the individual’s ability to maintain an up-to-date 

conceptualisation of the action-outcome contingencies relevant to the current context (Berniker & 

Körding, 2011). Therefore, the quality of one’s SoA experience is underpinned by the functional 

efficiency of their forward model. For this reason, the implications of the present results for current 

knowledge of how a SoA develops from childhood to adulthood will now be discussed.  

 

Overall, the findings presented throughout this thesis suggest that the precision of the 

forward model improves with age as individuals move through childhood, adolescence, and young 

adulthood. This implies that the accuracy with which an individual can experience a SoA over an 

observed sensory event also improves with age across this period, thus fulfilling the ultimate goal 

of the current thesis. These findings extend our current knowledge on how SoA matures from 

childhood to adulthood. As noted previously, whilst there has been past evidence to suggest that 

children experience a reduced SoA compared to adults (e.g., Cavazzana et al., 2014, 2017), these 

studies failed to consider how the precision of one’s SoA might alter across adolescence. Only two 

prior studies included adolescents within their investigation of how the quality of one’s agency 

experience matures with age (Aytemür et al., 2021; Aytemür & Levita, 2021). Thus, the studies 

presented in this thesis are successful in extending our past SoA development knowledge. 

 

When compared directly with prior literature, it can be said that the current findings are 

consistent with the results of Cavazzana et al. (2014, 2017), as they support the idea that adults 
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demonstrate a more precise SoA over the consequences of their actions compared to children. The 

current results also partially align with the findings reported by Aytemür et al. (2021). In research 

conducted by Aytemür et al. (2021), it was concluded that mid-adolescents (13-14) had a less 

precise SoA compared to adults (25-28), as they demonstrated a larger outcome binding effect, 

and hence, were more likely to subconsciously attribute the occurrence of a tone delivered 450ms 

after their keypress to themselves than adults. To recap, the outcome binding effect refers to a 

phenomenon in which an individual judges a sensory event to have shifted temporally towards 

their action. This effect is believed to only occur when the individual believes that their action 

caused the event to transpire (Render & Jansen, 2021). Hence, the larger the outcome binding 

effect, the greater the individual’s SoA over the observed event (Borhani et al., 2017). Therefore, 

the result reported by Aytemür et al. (2021) is congruent with the overall conclusion of the current 

research.  

 

The current findings are also partly consistent with the results reported by Aytemür and 

Levita (2021). Consistent with the current results, Aytemür and Levita (2021) concluded that 

adults demonstrate a greater SoA over self-produced sensory events than late-adolescents. This 

suggests that SoA improves from late adolescence to adulthood. However, Aytemür and Levita 

(2021) also reported that the magnitude of agency experienced declines from childhood to late-

adolescence, with children actually experiencing a SoA comparable to that of adults. Taken 

together, both findings contradict the conclusion of the current thesis, as they suggest that, instead 

of maturing in a linear fashion from childhood to adulthood, SoA follows a U-shaped 

developmental trajectory, with a marked decrement in adolescence.  

 

The noted discrepancy between the results acquired by Aytemür and Levita (2021) and 

those obtained from the current research can be explained by differences in the way in which 

participants’ capacity to experience a SoA was indexed. Aytemür and Levita (2021) proposed that 

children in their study failed to achieve an initial feeling of control over the tone due to a lack of 

precision in their ability to predict the outcome of their action. Consequently, they argued that 

children formed a retrospective JoA regarding the causal association between their keypress and 

the tone. As a brief reminder, a JoA refers to a higher-order, introspective belief regarding the most 

likely cause of an observed outcome that is produced through a process of conscious reasoning 
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(Desantis et al., 2011; Weiss et al., 2014). This JoA was then believed to have inflated the outcome 

binding effect demonstrated by children relative to late adolescents (Aytemür & Levita, 2021). As 

prediction skills improve with age, Aytemür and Levita (2021) argued that child participants’ 

reliance on retrospective JoA cues when attributing causality over the tone diminished. This is 

reported to have caused the decline in the outcome binding effect from childhood to late-

adolescence. Adults’ heightened outcome binding effect relative to adolescents’ levels of outcome 

binding was then said to be indicative of adults’ superior accuracy in predicting the outcome of 

their action.  

 

In support of the explanation posited by Aytemür and Levita (2021) to account for their 

results, it has previously been shown that, when an action is performed involuntarily, and thus, no 

prediction of the most probable action outcome is available, the magnitude of the outcome binding 

effect can be modulated by participants’ retrospective beliefs regarding their control over the tone 

(Dogge et al., 2012). This suggests that the outcome binding effect can be driven by a JoA made 

post-action when pre-action prediction cues are either unreliable or unavailable. In addition, it has 

been argued that children tend to attribute observed events to their own actions when the true cause 

of the event is ambiguous or probabilistic (Kushnir et al., 2009). Therefore, it is plausible that the 

finding of an increased outcome binding effect in children relative to late adolescents resulted from 

a greater tendency to rely on a retrospective JoA within childhood, in absence of the prediction 

skills required to compute a reliable FoA.  

 

The outcome binding measure used in research by Aytemür and Levita (2021) assessed the 

extent to which participants attributed the occurrence of the tone to their own keypress. In contrast, 

as the current research used the functional efficiency of the forward model system as a proxy 

measure of agency, the degree to which participants felt control over their action-outcomes was 

not directly interrogated. This suggests that, unlike the results obtained by Aytemür and Levita 

(2021), the current findings could not be directly affected by participants’ retrospective agency 

beliefs, as they were unrelated to the goal of each task. This explains the disparity between the 

conclusions of this thesis and those reported in research by Aytemür and Levita (2021). 

Furthermore, both the results of research by Aytemür and Levita (2021) and the current findings 

suggest that an individual’s ability to predict the consequences of their actions improves from 
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childhood to adulthood. Moreover, the current results make vital contribution to the SoA literature, 

as they advance our understanding of how the precision at which a SoA can be experienced 

develops with age across childhood, adolescence, and young adulthood.  

General Strengths and Limitations of the Current Research 

The current research possessed a number of strengths and limitations, each of which will now be 

discussed.  

 

General Strengths of the Current Research 

To begin with the strengths, it may be argued that the tasks employed within the current research 

demonstrate an effective means of assessing the capacity to compute a reliable FoA, in absence of 

any contamination from one’s JoA. Prior to the current research, a FoA had predominantly been 

indexed using the intentional binding effect in past studies (e.g., Haggard & Clark, 2003). To recap, 

the intentional binding effect refers to a temporal compression which occurs between the perceived 

timing of an action and its sensory effect when the effect is thought to be self-authored (Haggard, 

2017). As noted previously within this chapter, it has been argued that the intentional binding 

effect can also reflect an individual’s JoA over a sensory event in situations where outcome 

predictions are unavailable (Aytemür & Levita, 2021; Dogge et al., 2012; Synofzik et al., 2008). 

Therefore, this suggests that the intentional binding effect does not necessarily provide a reliable 

means through which to record the FoA exclusively. Conversely, as the current tasks examine the 

functionality of the cognitive model underlying the FoA, it may be argued that they offer a more 

direct route to assess the quality with which an individual can experience a FoA. Future research 

can then use any of the current tasks in tandem with a JoA measure to track how the FoA and JoA 

are utilised differently throughout development to achieve one’s action goals.  

 

Aside from establishing an effective method of assessing an individual’s capacity to 

experience a veridical FoA, the current research was also successful in contributing to current 

knowledge regarding the feasibility of online behavioural experiments. For instance, as discussed 

in chapter 5 and consistent with prior literature (e.g., Papoutsaki et al., 2018; Semmelmann & 

Weigelt, 2018; Slim & Hartsuiker, 2022), the current research noted that WebGazer software 

lacked the spatial and temporal acuity required to reliably record peak velocity and saccade 
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duration online. This implies that the breadth of eye-tracking data that can be collected online is 

narrower compared to lab-based studies where it is possible to measure these variables with higher 

precision (Semmelmann & Weigelt, 2018). Similarly, it was also found that younger participants 

were worse at maintaining their position in view of the webcam and holding their gaze at the centre 

of the screen at the start of each trial than older participants. This suggests that the online eye-

tracking tasks do not provide a suitable means through which to collect saccade data from children. 

Ergo, the current results provide a valuable insight into the viability of utilising online studies to 

collect behavioural data. 

 

General Limitations of the Current Research 

Attention will now turn to exploring the limitations of the current research. Admittedly, although 

the tasks described within this thesis were selected with the intention of exclusively measuring 

either individuals’ ability to predict action-outcomes or their capacity to update action-outcome 

knowledge, these processes do not operate independently of one another (Wolpert & Flanagan, 

2001). Forward model predictions are believed to be produced by combining prior knowledge with 

current contextual information via Bayes’ theorem (Faisal et al., 2008). Consequently, an 

individual’s ability to generate accurate predictions is dependent on their capacity to maintain an 

up-to-date conceptualisation of relevant action-outcome contingencies (Wolpert & Ghahramani, 

2000). For instance, one could argue that, in order to form effective predictions regarding the most 

likely onset of the green light within the cued RT task (chapter 4), participants needed to 

incorporate the amber durations observed on past trials into their prior estimate (Burke & 

Roodenrys, 2000; although see appendix C for evidence contrary to this idea). This would then 

maximise the informativeness of the prior estimate, and thus, lead to the construction of an accurate 

prediction. Therefore, this suggests that the success with which participants could execute an 

anticipatory response was directly determined by their ability to learn from past action experience. 

Ergo, it can be argued that the current findings cannot, definitively, be attributed to the 

development of either the prediction or the updating process in isolation.  

 

In the real world, action decisions are seldom made without reference to the relative 

valence of the outcomes associated with each option (Zheng et al., 2015). Indeed, the win-stay and 

lose-shift choice strategy has been well-documented in past literature (e.g., Worthy & Maddox, 
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2014). Previous research has reported mixed evidence on how the ability to learn from positive 

and negative outcomes changes with age. For instance, some studies have reported a shift towards 

a greater influence of positive over negative feedback on subsequent choice behaviour from 

childhood to adulthood (e.g., van der Schaaf et al., 2011; Hartley & Somerville, 2015), whilst 

others have argued the reverse to be true (van Duijvenvoorde et al., 2008). This suggests that  the 

degree to which an individual can learn from an observed outcome is modulated by the interaction 

between their age and the valence of the observed outcome. Unfortunately, the majority of the 

present studies either failed to investigate the relative influence of past win or loss outcomes on 

participants’ subsequent predictions (chapters 4-6) or failed to offer any feedback on participants’ 

prediction accuracy (chapter 3). Therefore, future research should evaluate the comparative effects 

of positive and negative action-outcomes on participants’ forward model predictions and how they 

might vary with age in order to achieve results with higher ecological validity. 

 

The lack of variability in participants’ age across all four empirical studies must also be 

acknowledged as a limitation of the current research. For instance, only 28% of the final sample 

reported in chapter 3 were aged less than 18-years-old, with similar numbers seen for the other 

three chapters (chapter 4: 40%; chapter 5: 18%; chapter 6: 10%). This consistent lack of younger 

participants can, at least partly, be attributed to the government-imposed restrictions on face-to-

face teaching introduced in response to the Covid-19 pandemic. As all face-to-face teaching was 

suspended for many months during 2020 (Brown & Kirk-Wade, 2021), this decreased the number 

of opportunities available for recruiting child and adolescent participants via schools. Arguably, 

this lack of variance in age suggests that the current results are unlikely to be representative of the 

full developmental timecourse from early childhood to young adulthood. Thus, future research is 

needed in order to identify whether these findings can be replicated using samples with greater age 

variance.  

 

Throughout this thesis, participants’ data was fit exclusively to linear regression models. 

However, it is important to acknowledge that a linear pattern is only one of the possible trajectories 

that forward model development might follow. By taking a solely linear approach to fitting the 

data, the current research ignored the possibility that an alternative growth pattern, such as a 

quadratic model as suggested by Aytemür and Levita (2021), might have been a more suitable fit 
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for the data. Furthermore, to conclusively assess whether the forward model does develop at a 

linear rate, future research should compare how well participants’ data fit to a linear model relative 

to alternative types of development models, such as quadratic (follow a U-shaped trajectory), 

phase-change (progress through a series of categorical stages), and sigmoid (undergo a period of 

rapid growth prior to reaching a plateau). From this, it will then be possible to draw more concrete 

conclusions on the true trajectory at which the forward model develops throughout childhood, 

adolescence and young adulthood. 

Avenues for Future Research 

In addition to the calls for further research that have made throughout this chapter, there are further 

avenues through which future studies could build upon the findings presented within this thesis, 

some examples of which will now be outlined.  

 

Evidently, the findings of this thesis revealed the causal impact of an individual’s age on 

the precision of their forward model. Arguably, this age-related change can, in part, be attributed 

to the maturational alterations that occur within the brain from childhood to young adulthood 

(Blakemore et al., 2012; Zito et al., 2017). However, the role of motor experience on the precision 

of the forward model should also be acknowledged. For example, as discussed in chapter 3, past 

research has shown that years of music training was positively associated with participants’ ability 

to synchronise their finger-taps with a series of tones (Thompson et al., 2015). Experience of 

learning to play a musical instrument is believed to offer individuals with the opportunity to 

practice predicting when beats will occur (Slater et al., 2018) and adjusting the timing of 

movements according to auditory cues (Krause et al., 2010). This suggests that greater experience 

in performing a specific action, or activity, can result in a more precise forward model that is 

specific to that context.  

 

Indeed, the relevance of motor experience to the accuracy of the forward model is also 

evident outside of music training. Research by Kretch and Adolph (2012) showed that infants who 

were experienced walkers were more likely to avoid crossing over a 90-degree cliff edge compared 

to infants who had only recently begun to walk. This reinforces the idea that, the greater the extent 

to which participants’ possess prior knowledge relevant to the situation (e.g.., walking), the more 
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reliable their prior estimate, and hence, the more precise their outcome predictions (Hohwy, 2017). 

Intuitively, older individuals will have had a greater timescale in which to practice performing 

specific actions and activities compared to younger individuals. Hence, it seems plausible that the 

observed age-related improvement in forward model precision was, in part, due to greater motor 

experience amongst older participants. Therefore, future studies should aim to untangle the relative 

influences of age and motor experience on forward model development. Doing so would provide 

a more comprehensive account of how the forward model, and thereby one’s capacity for agency, 

becomes more sophisticated from childhood to adulthood.  

 

Alongside exploring the unique influences of age and motor experience on forward model 

development, future research can also expand upon the current results by examining how the 

forward model differs between neurotypical individuals and those with neurological conditions 

that have been shown to struggle with agency. For instance, past studies have shown that adults 

with Tourette Syndrome demonstrate a diminished SoA compared to neurotypical controls 

(Zapparoli et al., 2020). Therefore, it can be reasoned that individuals with this condition also have 

a less accurate forward model. In support of this idea, Kim et al. (2019b) reported that, when 

making a series of reach-and-return movements, adults with Tourette Syndrome were less accurate 

in adjusting the direction of their return movement to account for discrepancies between the 

expected and actual endpoints of their initial reaching action in comparison to neurotypical 

controls. This suggests that adults with Tourette Syndrome lack the ability to maintain an accurate 

forward model. The current results then provide a crucial comparison point which future studies 

can use to identify how the developmental trajectory of the forward model differs in individuals 

with Tourette Syndrome relative to neurotypical individuals.  

Final Conclusion 

To conclude, the purpose of the current thesis was to rectify the noted absence of adolescents 

within prior SoA development literature (e.g., Cavazzana et al., 2017), and thereby, determine the 

full trajectory at which the capacity to experience a veridical SoA develops from childhood to 

young adulthood. Given the relevance of the forward model system to the construction of a SoA 

(Haggard & Chambon, 2012), this aim was achieved by evaluating the impact of age on the 

functional efficiency of the forward model using four online behavioural tasks. Taken together, 
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the current findings suggest that the precision of the forward model improves with age from 

childhood to young adulthood. More specifically, the ability to form accurate action-outcome 

predictions and the capacity to update learned action-outcome associations appropriately were both 

found to mature with age. This implies that the extent to which an individual can experience a SoA 

over a self-authored event improves with age across childhood, adolescence, and young adulthood. 

In order to solidify these conclusions, future research is needed to identify whether these findings 

can be replicated using samples with greater age variance. 

 

Overall, the findings presented within this thesis make four key contributions to current 

knowledge. First, the current results extend our understanding of the trajectory at which SoA 

matures from childhood to adulthood, which has been understudied in past literature (Choudhury 

et al., 2007). Second, the current findings improve our knowledge of how the precision of the 

forward model changes with across this period, which has also been predominantly neglected in 

past research (Dahl et al. 2018). Thirdly, the tasks presented in this thesis each provide a novel 

alternative to intentional binding studies (e.g. Haggard & Clark, 2003) as a means through which 

to assess an individual’s capacity to compute a reliable FoA. Finally, the current research provides 

a valuable insight into the viability of utilising online studies to collect behavioural data. Future 

research can build upon the findings presented within this thesis by exploring the relative 

influences of age and motor experience to forward model development. 

 

 

 

 

  



 188 

References 

Aagaard, J. (2019). Multitasking as distraction: A conceptual analysis of media multitasking 

research. Theory & Psychology, 29(1), 87-99. https://doi.org/10.1177/0959354318815766 

 

Adam, R., Bays, P. M., & Husain, M. (2012). Rapid decision-making under risk. Cognitive 

Neuroscience, 3(1), 52-61. https://doi.org/10.1080/17588928.2011.613988 

 

Adjerid, I., & Kelley, K. (2018). Big data in psychology: A framework for research 

advancement. American Psychologist, 73(7), 899. https://doi.org/10.1037/amp0000190 

 

Adolph, K. E., & Franchak, J. M. (2017). The development of motor behavior. Wiley 

Interdisciplinary Reviews: Cognitive Science, 8(1-2), e1430. https://doi.org/10.1002/wcs.1430 

 

Alahyane, N., Brien, D. C., Coe, B. C., Stroman, P. W., & Munoz, D. P. (2014). Developmental 

improvements in voluntary control of behavior: Effect of preparation in the fronto-parietal 

network? NeuroImage, 98, 103-117. https://doi.org/10.1016/j.neuroimage.2014.03.008 

 

Alibali, M. W., & Nathan, M. J. (2010). Conducting research in schools: A practical guide. Journal 

of Cognition and Development, 11(4), 397-407. 

https://doi.org/10.1080/15248372.2010.516417 

 

Anwyl-Irvine, A. L., Massonnié, J., Flitton, A., Kirkham, N., & Evershed, J. K. (2020). Gorilla in 

our midst: An online behavioral experiment builder. Behavior Research Methods, 52, 388-407. 

https://doi.org/10.3758/s13428-019-01237-x 

 

Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, N., & Evershed, J. K. (2021). Realistic precision and 

accuracy of online experiment platforms, web browsers, and devices. Behavior Research 

Methods, 53, 1407-1425. https://doi.org/10.3758/s13428-020-01501-5 

 



 189 

 Armitage, J., & Eerola, T. (2020). Reaction time data in music cognition: Comparison of pilot 

data from lab, crowdsourced, and convenience web samples. Frontiers in Psychology, 10, 2883. 

https://doi.org/10.3389/fpsyg.2019.02883 

 

Armstrong, R. A., & Hilton, A. C. (2010). Stepwise multiple regression. Statistical Analysis in 

Microbiology: Statnotes, 135-138. https://doi.org/10.1002/9780470905173.ch26 

 

Asai, T. (2017). Know thy agency in predictive coding: Meta-monitoring over forward 

modeling. Consciousness and Cognition, 51, 82-99. 

https://doi.org/10.1016/j.concog.2017.03.001 

 

Assaiante, C. (2012). Action and representation of action during childhood and adolescence: A 

functional approach. Neurophysiologie Clinique/Clinical Neurophysiology, 42(1-2), 43-51. 

https://doi.org/10.1016/j.neucli.2011.09.002 

 

Aytemür, A., & Levita, L. (2021). A reduction in the implicit sense of agency during adolescence 

compared to childhood and adulthood. Consciousness and Cognition, 87, 103060. 

https://doi.org/10.1016/j.concog.2020.103060 

 

Aytemür, A., Lee, K. H., & Levita, L. (2021). Neural correlates of implicit agency during the 

transition from adolescence to adulthood: An ERP study. Neuropsychologia, 158, 107908. 

https://doi.org/10.1016/j.neuropsychologia.2021.107908 

 

Bakhshani, N. M. (2014). Impulsivity: A predisposition toward risky behaviors. International 

Journal of High Risk Behaviors & Addiction, 3(2). https://doi.org/10.5812/ijhrba.20428 

 

Bandura, A. (1989). Human agency in social cognitive theory. American Psychologist, 44(9), 

1175. https://doi.org/10.1037/0003-066X.44.9.1175 

 



 190 

Barash, J., Brocas, I., Carrillo, J. D., & Kodaverdian, N. (2019). Heuristic to Bayesian: The 

evolution of reasoning from childhood to adulthood. Journal of Economic Behavior & 

Organization, 159, 305-322. https://doi.org/10.1016/j.jebo.2018.05.008 

 

Barcelo, F., Escera, C., Corral, M. J., & Periánez, J. A. (2006). Task switching and novelty 

processing activate a common neural network for cognitive control. Journal of Cognitive 

Neuroscience, 18(10), 1734-1748. https://doi.org/10.1162/jocn.2006.18.10.1734 

 

Barchard, K. A., & Williams, J. (2008). Practical advice for conducting ethical online experiments 

and questionnaires for United States psychologists. Behavior Research Methods, 40, 1111-

1128. https://doi.org/10.3758/BRM.40.4.1111 

 

Barlaam, F., Fortin, C., Vaugoyeau, M., Schmitz, C., & Assaiante, C. (2012). Development of 

action representation during adolescence as assessed from anticipatory control in a bimanual 

load-lifting task. Neuroscience, 221, 56-68. 

https://doi.org/10.1016/j.neuroscience.2012.06.062 

 

Barnhoorn, J. S., Haasnoot, E., Bocanegra, B. R., & van Steenbergen, H. (2015). QRTEngine: An 

easy solution for running online reaction time experiments using Qualtrics. Behavior Research 

Methods, 47, 918-929. https://doi.org/10.3758/s13428-014-0530-7 

 

Barratt, E. S., Patton, J., Greger Olsson, N., & Zuker, G. (1981). Impulsivity and paced 

tapping. Journal of Motor Behavior, 13(4), 286-300. 

https://doi.org/10.1080/00222895.1981.10735254 

 

Bartlett, R., Wright, T., Olarinde, T., Holmes, T., Beamon, E. R., & Wallace, D. (2017). Schools 

as sites for recruiting participants and implementing research. Journal of Community Health 

Nursing, 34(2), 80-88. https://doi.org/10.1080/07370016.2017.1304146 

 



 191 

Baruch, C., Panissal-Vieu, N., & Drake, C. (2004). Preferred perceptual tempo for sound 

sequences: comparison of adults, children, and infants. Perceptual and Motor Skills, 98(1), 

325-339. https://doi.org/10.2466/pms.98.1.325-339 

 

Beames, J. R., Christensen, H., & Werner-Seidler, A. (2021). School teachers: The forgotten 

frontline workers of COVID-19. Australasian Psychiatry, 29(4), 420-422. 

https://doi.org/10.1177/10398562211006145 

 

Bechara, A., Tranel, D., Damasio, H., & Damasio, A. R. (1996). Failure to respond autonomically 

to anticipated future outcomes following damage to prefrontal cortex. Cerebral Cortex, 6(2), 

215-225. https://doi.org/10.1093/cercor/6.2.215 

 

Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. (2007). Learning the value 

of information in an uncertain world. Nature Neuroscience, 10(9), 1214-1221. 

https://doi.org/10.1038/nn1954 

 

 Behrens, T. E., Hunt, L. T., Woolrich, M. W., & Rushworth, M. F. (2008). Associative learning 

of social value. Nature, 456(7219), 245-249. https://doi.org/10.1038/nature07538 

 

Bejjanki, V. R., Randrup, E. R., & Aslin, R. N. (2020). Young children combine sensory cues with 

learned information in a statistically efficient manner: But task complexity 

matters. Developmental Science, 23(3), e12912. https://doi.org/10.1111/desc.12912 

 

Bender, S., Weisbrod, M., Bornfleth, H., Resch, F., & Oelkers-Ax, R. (2005). How do children 

prepare to react? Imaging maturation of motor preparation and stimulus anticipation by late 

contingent negative variation. NeuroImage, 27(4), 737-752. 

https://doi.org/10.1016/j.neuroimage.2005.05.020 

 

Berinsky, A. J., Huber, G. A., & Lenz, G. S. (2012). Evaluating online labor markets for 

experimental research: Amazon.com's Mechanical Turk. Political Analysis, 20(3), 351-368. 

https://doi.org/10.1093/pan/mpr057 



 192 

 

Berniker, M., & Körding, K. (2011). Bayesian approaches to sensory integration for motor 

control. Wiley Interdisciplinary Reviews: Cognitive Science, 2(4), 419-428. 

https://doi.org/10.1002/wcs.125 

 

Bethlehem, R. A., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., ... & 

Schaare, H. L. (2022). Brain charts for the human lifespan. Nature, 604(7906), 525-533. 

https://doi.org/10.1038/s41586-022-04554-y  

 

Bianco, V., Berchicci, M., Quinzi, F., Perri, R. L., Spinelli, D., & Di Russo, F. (2020). Females 

are more proactive, males are more reactive: neural basis of the gender-related speed/accuracy 

trade-off in visuo-motor tasks. Brain Structure and Function, 225, 187-201. 

https://doi.org/10.1007/s00429-019-01998-3 

 

Birnbaum, M. H. (2004). Methodological and Ethical Issues in Conducting Social Psychology 

Research via the Internet. In C. Sansone, C. C. Morf, & A. T. Panter (Eds.), The Sage Handbook 

of Methods in Social Psychology (pp. 359–382). Sage Publications, Inc. 

 

Bishop, D. V., Hardiman, M. J., & Barry, J. G. (2011). Is auditory discrimination mature by middle 

childhood? A study using time‐frequency analysis of mismatch responses from 7 years to 

adulthood. Developmental Science, 14(2), 402-416. https://doi.org/10.1111/j.1467-

7687.2010.00990.x 

 

Blakemore, S. J. (2012). Imaging brain development: The adolescent brain. NeuroImage, 61(2), 

397-406. https://doi.org/10.1016/j.neuroimage.2011.11.080 

 

Bolger, L. E., Bolger, L. A., O’Neill, C., Coughlan, E., O’Brien, W., Lacey, S., ... & Bardid, F. 

(2021). Global levels of fundamental motor skills in children: A systematic review. Journal of 

Sports Sciences, 39(7), 717-753. https://doi.org/10.1080/02640414.2020.1841405 

 



 193 

Boorman, E. D., Behrens, T. E., & Rushworth, M. F. (2011). Counterfactual choice and learning 

in a neural network centered on human lateral frontopolar cortex. PLoS Biology, 9(6), 

e1001093. https://doi.org/10.1371/journal.pbio.1001093 

 

Borhani, K., Beck, B., & Haggard, P. (2017). Choosing, doing, and controlling: Implicit sense of 

agency over somatosensory events. Psychological Science, 28(7), 882-893. 

https://doi.org/10.1177/0956797617697693 

 

Braun Janzen, T., Thompson, W. F., & Ranvaud, R. (2014). A developmental study of the effect 

of music training on timed movements. Frontiers in Human Neuroscience, 8, 801. 

https://doi.org/10.3389/fnhum.2014.00801 

 

Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms 

framework. Trends in Cognitive Sciences, 16(2), 106-113. 

https://doi.org/10.1016/j.tics.2011.12.010 

 

Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The timing mega-study: 

Comparing a range of experiment generators, both lab-based and online. PeerJ, 8, e9414. 

https://doi.org/10.7717/peerj.9414 

 

Brocki, K. C., & Bohlin, G. (2004). Executive functions in children aged 6 to 13: A dimensional 

and developmental study. Developmental Neuropsychology, 26(2), 571-593. 

https://doi.org/10.1207/s15326942dn2602_3 

 

Brown, B. J. (2019). The neural and social correlates of automatic behaviours. [Doctoral thesis, 

University of Nottingham]. Nottingham eTheses. 

https://eprints.nottingham.ac.uk/id/eprint/55830 

 

Brown, J., & Kirk-Wade, E. (2021). Coronavirus: A history of ‘lockdown laws’ in England. House 

of Commons Library. https://researchbriefings.files.parliament.uk/documents/CBP-9068/CBP-

9068.pdf 



 194 

 

Browning, M., Behrens, T. E., Jocham, G., O'reilly, J. X., & Bishop, S. J. (2015). Anxious 

individuals have difficulty learning the causal statistics of aversive environments. Nature 

Neuroscience, 18(4), 590-596. https://doi.org/10.1038/nn.3961 

 

Burke, D., & Roodenrys, S. (2000). Implicit learning in a simple cued reaction-time task. Learning 

and Motivation, 31(4), 364-380. https://doi.org/10.1006/lmot.2000.1062 

 

Burnett Heyes, S., Adam, R. J., Urner, M., van der Leer, L., Bahrami, B., Bays, P. M., & Husain, 

M. (2012). Impulsivity and rapid decision-making for reward. Frontiers in Psychology, 3, 153. 

https://doi.org/10.3389/fpsyg.2012.00153 

 

Cáceres, P., & San Martín, R. (2017). Low cognitive impulsivity is associated with better gain and 

loss learning in a probabilistic decision-making task. Frontiers in Psychology, 8, 204. 

https://doi.org/10.3389/fpsyg.2017.00204 

 

Carpenter, R. H. S., Reddi, B. A. J., & Anderson, A. J. (2009). A simple two‐stage model predicts 

response time distributions. The Journal of Physiology, 587(16), 4051-4062. 

https://doi.org/10.1113/jphysiol.2009.173955 

 

Carruthers, G. (2012). The case for the comparator model as an explanation of the sense of agency 

and its breakdowns. Consciousness and Cognition, 21(1), 30-45. 

https://doi.org/10.1016/j.concog.2010.08.005 

  

Casler, K., Bickel, L., & Hackett, E. (2013). Separate but equal? A comparison of participants and 

data gathered via Amazon’s MTurk, social media, and face-to-face behavioral 

testing. Computers in Human Behavior, 29(6), 2156-2160. 

https://doi.org/10.1016/j.chb.2013.05.009 

 



 195 

Cavanna, A. E., Servo, S., Monaco, F., & Robertson, M. M. (2009). The behavioral spectrum of 

Gilles de la Tourette syndrome. The Journal of Neuropsychiatry and Clinical 

Neurosciences, 21(1), 13-23. 

  

Cavazzana, A., Begliomini, C., & Bisiacchi, P. S. (2014). Intentional binding effect in children: 

Insights from a new paradigm. Frontiers in Human Neuroscience, 8, 651. 

https://doi.org/10.3389/fnhum.2014.00651 

 

Cavazzana, A., Begliomini, C., & Bisiacchi, P. S. (2017). Intentional binding as a marker of agency 

across the lifespan. Consciousness and Cognition, 52, 104-114. 

https://doi.org/10.1016/j.concog.2017.04.016 

 

Cepeda, N. J., Kramer, A. F., & Gonzalez de Sather, J. (2001). Changes in executive control across 

the life span: Examination of task-switching performance. Developmental Psychology, 37(5), 

715. https://doi.org/10.1037/0012-1649.37.5.715 

  

Chahal, R., Delevich, K., Kirshenbaum, J. S., Borchers, L. R., Ho, T. C., & Gotlib, I. H. (2021). 

Sex differences in pubertal associations with fronto-accumbal white matter morphometry: 

Implications for understanding sensitivity to reward and punishment. NeuroImage, 226, 

117598. https://doi.org/10.1016/j.neuroimage.2020.117598 

 

Chambers, C., Sokhey, T., Gaebler-Spira, D., & Körding, K. P. (2018). The development of 

Bayesian integration in sensorimotor estimation. Journal of Vision, 18(12), 8-8. 

  

Chambon, V., Sidarus, N., & Haggard, P. (2014). From action intentions to action effects: How 

does the sense of agency come about? Frontiers in Human Neuroscience, 8, 320. 

https://doi.org/10.3389/fnhum.2014.00320 

 

Chatham, C. H., Frank, M. J., & Munakata, Y. (2009). Pupillometric and behavioral markers of a 

developmental shift in the temporal dynamics of cognitive control. Proceedings of the National 

Academy of Sciences, 106(14), 5529-5533. https://doi.org/10.1073/pnas.0810002106 



 196 

 

Choudhury, S., Charman, T., Bird, V., & Blakemore, S. J. (2007). Development of action 

representation during adolescence. Neuropsychologia, 45(2), 255-262. 

https://doi.org/10.1016/j.neuropsychologia.2006.07.010 

 

Chowdhury, T. G., Wallin-Miller, K. G., Rear, A. A., Park, J., Diaz, V., Simon, N. W., & 

Moghaddam, B. (2019). Sex differences in reward-and punishment-guided actions. Cognitive, 

Affective, & Behavioral Neuroscience, 19, 1404-1417. https://doi.org/10.3758/s13415-019-

00736-w 

 

Christakou, A., Halari, R., Smith, A. B., Ifkovits, E., Brammer, M., & Rubia, K. (2009). Sex-

dependent age modulation of frontostriatal and temporo-parietal activation during cognitive 

control. NeuroImage, 48(1), 223-236. https://doi.org/10.1016/j.neuroimage.2009.06.070 

 

Claassen, D. O., Jones, C. R., Yu, M., Dirnberger, G., Malone, T., Parkinson, M., ... & Jahanshahi, 

M. (2013). Deciphering the impact of cerebellar and basal ganglia dysfunction in accuracy and 

variability of motor timing. Neuropsychologia, 51(2), 267-274. 

https://doi.org/10.1016/j.neuropsychologia.2012.09.018 

 

Commodari, E., & La Rosa, V. L. (2021). Adolescents and distance learning during the first wave 

of the COVID-19 pandemic in Italy: What impact on students’ well-being and learning 

processes and what future prospects? European Journal of Investigation in Health, Psychology 

and Education, 11(3), 726-735. https://doi.org/10.3390/ejihpe11030052 

 

Cooper, P. S., Wong, A. S., Fulham, W. R., Thienel, R., Mansfield, E., Michie, P. T., & 

Karayanidis, F. (2015). Theta frontoparietal connectivity associated with proactive and reactive 

cognitive control processes. NeuroImage, 108, 354-363. 

https://doi.org/10.1016/j.neuroimage.2014.12.028 

 



 197 

Crump, M. J., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon's Mechanical Turk 

as a tool for experimental behavioral research. PloS One, 8(3), e57410. 

https://doi.org/10.1371/journal.pone.0057410 

 

Cyders, M. A., & Smith, G. T. (2008). Emotion-based dispositions to rash action: Positive and 

negative urgency. Psychological Bulletin, 134(6), 807. https://doi.org/10.1037/a0013341 

  

Cyders, M. A., Littlefield, A. K., Coffey, S., & Karyadi, K. A. (2014). Examination of a short 

English version of the UPPS-P Impulsive Behavior Scale. Addictive Behaviors, 39(9), 1372-

1376. https://doi.org/10.1016/j.addbeh.2014.02.013 

 

Dahl, R. E., Allen, N. B., Wilbrecht, L., & Suleiman, A. B. (2018). Importance of investing in 

adolescence from a developmental science perspective. Nature, 554(7693), 441-450. 

https://doi.org/10.1038/nature25770 

  

David, N., Stenzel, A., Schneider, T. R., & Engel, A. K. (2011). The feeling of agency: Empirical 

indicators for a pre-reflective level of action awareness. Frontiers in Psychology, 2, 149. 

https://doi.org/10.3389/fpsyg.2011.00149 

 

Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive 

control and executive functions from 4 to 13 years: Evidence from manipulations of memory, 

inhibition, and task switching. Neuropsychologia, 44(11), 2037-2078. 

https://doi.org/10.1016/j.neuropsychologia.2006.02.006 

 

De Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., Masalehdan, A., ... & Boring, 

A. M. (2001). Sex differences in brain maturation during childhood and adolescence. Cerebral 

Cortex, 11(6), 552-557. https://doi.org/10.1093/cercor/11.6.552 

 

De Guio, F., Jacobson, S. W., Molteno, C. D., Jacobson, J. L., & Meintjes, E. M. (2012). Functional 

magnetic resonance imaging study comparing rhythmic finger tapping in children and 



 198 

adults. Pediatric Neurology, 46(2), 94-100. 

https://doi.org/10.1016/j.pediatrneurol.2011.11.019 

 

De Leeuw, J. R., & Motz, B. A. (2016). Psychophysics in a web browser? Comparing response 

times collected with JavaScript and Psychophysics Toolbox in a visual search task. Behavior 

Research Methods, 48, 1-12. https://doi.org/10.3758/s13428-015-0567-2 

 

Debrabant, J., Gheysen, F., Vingerhoets, G., & Van Waelvelde, H. (2012). Age-related differences 

in predictive response timing in children: Evidence from regularly relative to irregularly paced 

reaction time performance. Human Movement Science, 31(4), 801-810. 

https://doi.org/10.1016/j.humov.2011.09.006 

 

Decker, J. H., Otto, A. R., Daw, N. D., & Hartley, C. A. (2016). From creatures of habit to goal-

directed learners: Tracking the developmental emergence of model-based reinforcement 

learning. Psychological Science, 27(6), 848-858. https://doi.org/10.1177/0956797616639301 

 

DePasque, S., & Galván, A. (2017). Frontostriatal development and probabilistic reinforcement 

learning during adolescence. Neurobiology of Learning and Memory, 143, 1-7. 

https://doi.org/10.1016/j.nlm.2017.04.009 

 

Desantis, A., Roussel, C., & Waszak, F. (2011). On the influence of causal beliefs on the feeling 

of agency. Consciousness and Cognition, 20(4), 1211-1220. 

https://doi.org/10.1016/j.concog.2011.02.012 

 

Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching 

movements. Trends in Cognitive Sciences, 4(11), 423-431. https://doi.org/10.1016/S1364-

6613(00)01537-0 

  

Di Luca, M., & Rhodes, D. (2016). Optimal perceived timing: Integrating sensory information 

with dynamically updated expectations. Scientific Reports, 6(1), 28563. 

https://doi.org/10.1038/srep28563 



 199 

  

Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. 

https://doi.org/10.1146/annurev-psych-113011-143750 

 

 Dogge, M., Schaap, M., Custers, R., Wegner, D. M., & Aarts, H. (2012). When moving without 

volition: Implied self-causation enhances binding strength between involuntary actions and 

effects. Consciousness and Cognition, 21(1), 501-506. 

https://doi.org/10.1016/j.concog.2011.10.014 

 

Donati, M. A., Beccari, C., Bacherini, A., Capitanucci, D., & Primi, C. (2021). Psychometric 

properties of the short UPPS-P scale in adolescents: gender, age invariance, and validity among 

italian youth. Addictive Behaviors, 120, 106987. https://doi.org/10.1016/j.addbeh.2021.106987 

 

Drewing, K., Aschersleben, G., & Li, S. C. (2006). Sensorimotor synchronization across the life 

span. International Journal of Behavioral Development, 30(3), 280-287. 

https://doi.org/10.1177/0165025406066764 

 

Drody, A. C., Pereira, E. J., & Smilek, D. (2023). A desire for distraction: uncovering the rates of 

media multitasking during online research studies. Scientific Reports, 13(1), 781. 

https://doi.org/10.1038/s41598-023-27606-3 

 

Droit-Volet, S., Delgado, M., & Rattat, A. C. (2006). The development of the ability to judge time 

in children. In Marrrow, J. R. (Ed.), Focus on Child Psychology Research, (pp. 81-104). Nova 

Science Publishers, Inc. 

  

Droit-Volet, S., Meck, W. H., & Penney, T. B. (2007). Sensory modality and time perception in 

children and adults. Behavioural Processes, 74(2), 244-250. 

https://doi.org/10.1016/j.beproc.2006.09.012 

 

Dugré, J. R., Giguére, C. É., Percie du Sert, O., Potvin, S., Dumais, A., & Consortium Signature. 

(2019). The psychometric properties of a short UPPS-P impulsive behavior scale among 



 200 

psychiatric patients evaluated in an emergency setting. Frontiers in Psychiatry, 10, 139. 

https://doi.org/10.3389/fpsyt.2019.00139 

  

Dworkin, J., Hessel, H., Gliske, K., & Rudi, J. H. (2016). A comparison of three online recruitment 

strategies for engaging parents. Family Relations, 65(4), 550-561. 

https://doi.org/10.1111/fare.12206 

 

Dykiert, D., Der, G., Starr, J. M., & Deary, I. J. (2012). Age differences in intra-individual 

variability in simple and choice reaction time: Systematic review and meta-analysis. 

https://doi.org/10.1371/journal.pone.0045759 

 

Eckstein, M. K., Master, S. L., Dahl, R., Wilbrecht13, L., & Collins, A. G. (2019). Modeling the 

development of decision making in volatile environments using strategies, reinforcement 

learning, and Bayesian inference. In Conference on Cognitive Computational Neuroscience 

(CCN 2019) (pp. 48-51). https://ccneuro.org/2019/proceedings/0000048.pdf 

 

Eckstein, M. K., Master, S. L., Dahl, R. E., Wilbrecht, L., & Collins, A. G. (2022). Reinforcement 

learning and Bayesian inference provide complementary models for the unique advantage of 

adolescents in stochastic reversal. Developmental Cognitive Neuroscience, 55, 101106. 

https://doi.org/10.1016/j.dcn.2022.101106 

 

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a 

statistically optimal fashion. Nature, 415(6870), 429-433. https://doi.org/10.1038/415429a 

 

Evans, K. L., & Hampson, E. (2015). Sex differences on prefrontally-dependent cognitive 

tasks. Brain and Cognition, 93, 42-53. https://doi.org/10.1016/j.bandc.2014.11.006 

 

Faisal, A. A., Selen, L. P., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews 

Neuroscience, 9(4), 292-303. https://doi.org/10.1038/nrn2258 

  



 201 

Faria, I., Diniz, A., & Barreiros, J. (2017). Manual asymmetries in bimanual isochronous tapping 

tasks in children. Acta Psychologica, 172, 41-48. https://doi.org/10.1016/j.actpsy.2016.11.005 

 

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* 

Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 

1149-1160. https://doi.org/10.3758/BRM.41.4.1149 

 

Ferdinand, N. K., Becker, A. M., Kray, J., & Gehring, W. J. (2016). Feedback processing in 

children and adolescents: Is there a sensitivity for processing rewarding 

feedback? Neuropsychologia, 82, 31-38. 

https://doi.org/10.1016/j.neuropsychologia.2016.01.007 

 

Figueroa-Varela, M., Rodríguez-Ruiz, S., Muñoz, M. A., Santaella, F., Vila, J., & Anllo-Vento, L. 

(2010). Subjective and behavioral dimensions of impulsivity and their relation to a self-report 

adaptation of the SWAN in a sample of Spanish adolescents. European Child & Adolescent 

Psychiatry, 19, pS21-S22.  

 

Fischer, A. G., & Ullsperger, M. (2013). Real and fictive outcomes are processed differently but 

converge on a common adaptive mechanism. Neuron, 79(6), 1243-1255. 

https://doi.org/10.1016/j.neuron.2013.07.006 

 

Forrest, W., Hay, C., Widdowson, A. O., & Rocque, M. (2019). Development of impulsivity and 

risk‐seeking: Implications for the dimensionality and stability of self‐

control. Criminology, 57(3), 512-543. https://doi.org/10.1111/1745-9125.12214 

 

Forsberg, A., Guitard, D., Adams, E. J., Pattanakul, D., & Cowan, N. (2022). Children's long‐term 

retention is directly constrained by their working memory capacity limitations. Developmental 

Science, 25(2), e13164. https://doi.org/10.1111/desc.13164 

 



 202 

Fradkin, I., Adams, R. A., Parr, T., Roiser, J. P., & Huppert, J. D. (2020). Searching for an anchor 

in an unpredictable world: A computational model of obsessive compulsive 

disorder. Psychological Review, 127(5), 672. https://doi.org/10.1037/rev0000188 

 

Franchak, J. M. (2019). Development of affordance perception and recalibration in children and 

adults. Journal of Experimental Child Psychology, 183, 100-114. 

https://doi.org/10.1016/j.jecp.2019.01.016 

 

Franken, I. H., van Strien, J. W., Nijs, I., & Muris, P. (2008). Impulsivity is associated with 

behavioral decision-making deficits. Psychiatry Research, 158(2), 155-163. 

https://doi.org/10.1016/j.psychres.2007.06.002 

  

Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor 

control. Neuron, 72(3), 425-442. https://doi.org/10.1016/j.neuron.2011.10.006 

 

Friedman, M. S., Chiu, C. J., Croft, C., Guadamuz, T. E., Stall, R., & Marshal, M. P. (2016). Ethics 

of online assent: Comparing strategies to ensure informed assent among youth. Journal of 

Empirical Research on Human Research Ethics, 11(1), 15-20. 

https://doi.org/10.1177/1556264615624 

 

Fuhrmann, D., Knoll, L. J., & Blakemore, S. J. (2015). Adolescence as a sensitive period of brain 

development. Trends in Cognitive Sciences, 19(10), 558-566. 

https://doi.org/10.1016/j.tics.2015.07.008 

 

Gabitov, E., Lungu, O., Albouy, G., & Doyon, J. (2020). Movement errors during skilled motor 

performance engage distinct prediction error mechanisms. Communications Biology, 3(1), 763. 

https://doi.org/10.1038/s42003-020-01465-4 

 

Galesic, M. (2006). Dropouts on the web: Effects of interest and burden experienced during an 

online survey. Journal of Official Statistics, 22(2), 313. 

  



 203 

Garaizar, P., Cubillas, C. P., & Matute, H. (2016). A HTML5 open source tool to conduct studies 

based on Libet’s clock paradigm. Scientific Reports, 6(1), 32689. 

https://doi.org/10.1038/srep32689 

 

Gentsch, A., Schütz-Bosbach, S., Endrass, T., & Kathmann, N. (2012). Dysfunctional forward 

model mechanisms and aberrant sense of agency in obsessive-compulsive disorder. Biological 

Psychiatry, 71(7), 652-659. https://doi.org/10.1016/j.biopsych.2011.12.022 

 

George, W. K. (2016). Could time be logarithmic? Journal of Cosmology, 26(6), 14118-14134. 

https://thejournalofcosmology.com/WKGfinalRev.pdf 

 

Gershman, S. J. (2015). A unifying probabilistic view of associative learning. PLoS 

Computational Biology, 11(11), e1004567. https://doi.org/10.1371/journal.pcbi.1004567 

 

Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., ... & Thompson, 

P. M. (2004). Dynamic mapping of human cortical development during childhood through early 

adulthood. Proceedings of the National Academy of Sciences, 101(21), 8174-8179. 

https://doi.org/10.1073/pnas.0402680101 

 

Gomes, H., Sussman, E., Ritter, W., Kurtzberg, D., Cowan, N., & Vaughan Jr, H. G. (1999). 

Electrophysiological evidence of developmental changes in the duration of auditory sensory 

memory. Developmental Psychology, 35(1), 294. https://doi.org/10.1037/0012-1649.35.1.294 

 

Gonzalez-Gadea, M. L., Chennu, S., Bekinschtein, T. A., Rattazzi, A., Beraudi, A., Tripicchio, P., 

... & Ibanez, A. (2015). Predictive coding in autism spectrum disorder and attention deficit 

hyperactivity disorder. Journal of Neurophysiology. https://doi.org/10.1152/jn.00543.2015 

 

Gooch, C. M., Wiener, M., Wencil, E. B., & Coslett, H. B. (2010). Interval timing disruptions in 

subjects with cerebellar lesions. Neuropsychologia, 48(4), 1022-1031. 

https://doi.org/10.1016/j.neuropsychologia.2009.11.028 

 



 204 

Gopnik, A., & Bonawitz, E. (2015). Bayesian models of child development. Wiley 

Interdisciplinary Reviews: Cognitive Science, 6(2), 75-86. https://doi.org/10.1002/wcs.1330 

 

Gopnik, A., O’Grady, S., Lucas, C. G., Griffiths, T. L., Wente, A., Bridgers, S., ... & Dahl, R. E. 

(2017). Changes in cognitive flexibility and hypothesis search across human life history from 

childhood to adolescence to adulthood. Proceedings of the National Academy of 

Sciences, 114(30), 7892-7899. https://doi.org/10.1073/pnas.1700811114 

 

Gould, S. J., Cox, A. L., Brumby, D. P., & Wiseman, S. (2015). Home is where the lab is: A 

comparison of online and lab data from a time-sensitive study of interruption. Human 

Computation, 2(1), 45-67. 

  

Graziola, F., Pellorca, C., Di Criscio, L., Vigevano, F., Curatolo, P., & Capuano, A. (2020). 

Impaired motor timing in Tourette Syndrome: Results from a case–control study in 

children. Frontiers in Neurology, 1331. https://doi.org/10.3389/fneur.2020.552701 

  

Gredebäck, G., Lindskog, M., Juvrud, J. C., Green, D., & Marciszko, C. (2018). Action prediction 

allows hypothesis testing via internal forward models at 6 months of age. Frontiers in 

Psychology, 9, 290. https://doi.org/10.3389/fpsyg.2018.00290 

 

Griffiths, T. L., Sobel, D. M., Tenenbaum, J. B., & Gopnik, A. (2011). Bayes and blickets: Effects 

of knowledge on causal induction in children and adults. Cognitive Science, 35(8), 1407-1455. 

https://doi.org/10.1111/j.1551-6709.2011.01203.x 

 

Grootswagers, T. (2020). A primer on running human behavioural experiments online. Behavior 

Research Methods, 52, 2283-2286. https://doi.org/10.3758/s13428-020-01395-3 

 

Gu, L. L., Skierkowski, D., Florin, P., Friend, K., & Ye, Y. (2016). Facebook, Twitter, & QR 

codes: An exploratory trial examining the feasibility of social media mechanisms for sample 

recruitment. Computers in Human Behavior, 60, 86-96. 

https://doi.org/10.1016/j.chb.2016.02.006 



 205 

 

Gvirts Probolovski, H. Z., & Dahan, A. (2021). The potential role of dopamine in mediating motor 

function and interpersonal synchrony. Biomedicines, 9(4), 382. 

https://doi.org/10.3390/biomedicines9040382 

 

Haggard, P., & Chambon, V. (2012). Sense of agency. Current Biology, 22(10), R390-R392. 

  

Haggard, P., & Clark, S. (2003). Intentional action: Conscious experience and neural 

prediction. Consciousness and Cognition, 12(4), 695-707. https://doi.org/10.1016/S1053-

8100(03)00052-7 

 

Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature 

Neuroscience, 5(4), 382-385. https://doi.org/10.1038/nn827 

 

Haggard, P. (2017). Sense of agency in the human brain. Nature Reviews Neuroscience, 18(4), 

196-207. https://doi.org/10.1038/nrn.2017.14 

 

Hallez, Q., Damsma, A., Rhodes, D., Van Rijn, H., & Droit-Volet, S. (2019). The dynamic effect 

of context on interval timing in children and adults. Acta Psychologica, 192, 87-93. 

https://doi.org/10.1016/j.actpsy.2018.10.004 

 

Hammerschmidt, D., Frieler, K., & Wöllner, C. (2021). Spontaneous motor tempo: Investigating 

psychological, chronobiological, and demographic factors in a large-scale online tapping 

experiment. Frontiers in Psychology, 12, 677201. https://doi.org/10.3389/fpsyg.2021.677201 

 

Harden, K. P., & Tucker-Drob, E. M. (2011). Individual differences in the development of 

sensation seeking and impulsivity during adolescence: Further evidence for a dual systems 

model. Developmental Psychology, 47(3), 739. https://doi.org/10.1037/a0023279 

 



 206 

Hartley, C. A., & Somerville, L. H. (2015). The neuroscience of adolescent decision-

making. Current Opinion in Behavioral Sciences, 5, 108-115. 

https://doi.org/10.1016/j.cobeha.2015.09.004 

 

Haswell, C. C., Izawa, J., Dowell, L. R., Mostofsky, S. H., & Shadmehr, R. (2009). Representation 

of internal models of action in the autistic brain. Nature Neuroscience, 12(8), 970-972. 

https://doi.org/10.1038/nn.2356 

 

Hauger, D., Paramythis, A., & Weibelzahl, S. (2011). Using browser interaction data to determine  

page reading behavior. In Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (Eds.), User 

Modeling, Adaption and Personalization: 19th International Conference 2011 (pp. 147-158). 

Springer. https://doi.org/10.1007/978-3-642-22362-4_13 

 

 

Hauser, T. U., Iannaccone, R., Walitza, S., Brandeis, D., & Brem, S. (2015). Cognitive flexibility 

in adolescence: Neural and behavioral mechanisms of reward prediction error processing in 

adaptive decision making during development. NeuroImage, 104, 347-354. 

https://doi.org/10.1016/j.neuroimage.2014.09.018 

 

Hermann, R. P., Novak, C. B., & Mackinnon, S. E. (1996). Establishing normal values of moving 

two‐point discrimination in children and adolescents. Developmental Medicine & Child 

Neurology, 38(3), 255-261. https://doi.org/10.1111/j.1469-8749.1996.tb15087.x 

 

Hilbig, B. E. (2016). Reaction time effects in lab-versus Web-based research: Experimental 

evidence. Behavior Research Methods, 48, 1718-1724. https://doi.org/10.3758/s13428-015-

0678-9 

 

Hillock‐Dunn, A., & Wallace, M. T. (2012). Developmental changes in the multisensory temporal 

binding window persist into adolescence. Developmental Science, 15(5), 688-696. 

https://doi.org/10.1111/j.1467-7687.2012.01171.x 

 



 207 

Hoerger, M. (2010). Participant dropout as a function of survey length in Internet-mediated 

university studies: Implications for study design and voluntary participation in psychological 

research. Cyberpsychology, Behavior, and Social Networking, 13(6), 697-700. 

https://doi.org/10.1089/cyber.2009.0445 

 

Hogarth, L., Chase, H. W., & Baess, K. (2012). Impaired goal-directed behavioural control in 

human impulsivity. Quarterly Journal of Experimental Psychology, 65(2), 305-316. 

http://dx.doi.org/10.1080/17470218.2010.518242 

  

Hohwy, J. (2017). Priors in perception: Top-down modulation, Bayesian perceptual learning rate, 

and prediction error minimization. Consciousness and Cognition, 47, 75-85. 

https://doi.org/10.1016/j.concog.2016.09.004 

 

Hove, M. J., Gravel, N., Spencer, R. M., & Valera, E. M. (2017). Finger tapping and pre-attentive 

sensorimotor timing in adults with ADHD. Experimental Brain Research, 235, 3663-3672. 

https://doi.org/10.1007/s00221-017-5089-y 

  

Howlett, M. (2022). Looking at the ‘field’ through a Zoom lens: Methodological reflections on 

conducting online research during a global pandemic. Qualitative Research, 22(3), 387-402. 

https://doi.org/10.1177/146879412098569 

 

Iselin, A. M. R., & DeCoster, J. (2009). Reactive and proactive control in incarcerated and 

community adolescents and young adults. Cognitive Development, 24(2), 192-206. 

https://doi.org/10.1016/j.cogdev.2008.07.001 

 

Jacobs, R. A., & Kruschke, J. K. (2011). Bayesian learning theory applied to human 

cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2(1), 8-21. 

https://doi.org/10.1002/wcs.80 

 



 208 

Jaime, M., Longard, J., & Moore, C. (2014). Developmental changes in the visual–proprioceptive 

integration threshold of children. Journal of Experimental Child Psychology, 125, 1-12. 

https://doi.org/10.1016/j.jecp.2013.11.004 

 

Jamadar, S., Hughes, M., Fulham, W. R., Michie, P. T., & Karayanidis, F. (2010). The spatial and 

temporal dynamics of anticipatory preparation and response inhibition in task-

switching. NeuroImage, 51(1), 432-449. https://doi.org/10.1016/j.neuroimage.2010.01.090 

 

Javadi, A. H., Schmidt, D. H., & Smolka, M. N. (2014). Adolescents adapt more slowly than adults 

to varying reward contingencies. Journal of Cognitive Neuroscience, 26(12), 2670-2681. 

https://doi.org/10.1162/jocn_a_00677 

 

Jaworska, N., & MacQueen, G. (2015). Adolescence as a unique developmental period. Journal 

of Psychiatry & Neuroscience: JPN, 40(5), 291. https://doi.org/10.1503/jpn.150268 

 

Jensen, J. K., & Neff, D. L. (1993). Development of basic auditory discrimination in preschool 

children. Psychological Science, 4(2), 104-107. https://doi.org/10.1111/j.1467-

9280.1993.tb00469.x 

 

Jepma, M., Schaaf, J. V., Visser, I., & Huizenga, H. M. (2020). Uncertainty-driven regulation of 

learning and exploration in adolescents: A computational account. PLoS Computational 

Biology, 16(9), e1008276. https://doi.org/10.1371/journal.pcbi.1008276 

 

Jia, R., Guo, H., Wang, Y., & Zhang, J. (2018). Analysis and test of sound delay on web audio 

under different situations. In 2018 13th IEEE Conference on Industrial Electronics and 

Applications (ICIEA) (pp. 1515-1519). IEEE https://doi.org/10.1109/ICIEA.2018.8397949 

 

Jung, J., Jackson, S. R., Nam, K., Hollis, C., & Jackson, G. M. (2015). Enhanced saccadic control 

in young people with Tourette syndrome despite slowed pro‐saccades. Journal of 

Neuropsychology, 9(2), 172-183. https://doi.org/10.1111/jnp.12044 

 



 209 

Karaminis, T., Cicchini, G. M., Neil, L., Cappagli, G., Aagten-Murphy, D., Burr, D., & Pellicano, 

E. (2016). Central tendency effects in time interval reproduction in autism. Scientific 

Reports, 6(1), 1-13. https://doi.org/10.1038/srep28570 

 

Karayanidis, F., & McKewen, M. (2021). More than “just a test”—Task-switching paradigms offer 

an early warning system for cognitive decline. In Federmeier, K. D. (Ed.), Psychology of 

learning and motivation. (pp. 141-193). Academic Press. 

https://doi.org/10.1016/bs.plm.2021.02.006 

  

Kawato, M., & Wolpert, D. (2007). Internal models for motor control. In Bock, G. R., & Goode, 

J. A., Novartis Foundation Symposium 218‐Sensory Guidance of Movement: Sensory Guidance 

of Movement: Novartis Foundation Symposium 218 (pp. 291-307). John Wiley & Sons, Ltd. 

https://doi.org/10.1002/9780470515563.ch16 

 

Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. 

(2010). Control and interference in task switching—A review. Psychological Bulletin, 136(5), 

849. https://doi.org/10.1037/a0019842 

 

Kim, L. E., Oxley, L., & Asbury, K. (2022). “My brain feels like a browser with 100 tabs open”: 

A longitudinal study of teachers’ mental health and well‐being during the COVID‐19 

pandemic. British Journal of Educational Psychology, 92(1), 299-318. 

https://doi.org/10.1111/bjep.12450 

 

Kim, J., Gabriel, U., & Gygax, P. (2019a). Testing the effectiveness of the Internet-based 

instrument PsyToolkit: A comparison between web-based (PsyToolkit) and lab-based (E-Prime 

3.0) measurements of response choice and response time in a complex psycholinguistic 

task. PloS One, 14(9), e0221802. https://doi.org/10.1371/journal.pone.0221802 

 

Kim, S., Jackson, G. M., Dyke, K., & Jackson, S. R. (2019b). Impaired forward model updating 

in young adults with Tourette Syndrome. Brain, 142(1), 209-219. 

https://doi.org/10.1093/brain/awy306 



 210 

 

Kirsch, W., Pfister, R., & Kunde, W. (2016). Spatial action-effect binding. Attention, Perception, 

& Psychophysics, 78, 133-142. https://doi.org/10.3758/s13414-015-0997-z 

 

Kirsch, W., Kunde, W., & Herbort, O. (2019). Intentional binding is unrelated to action 

intention. Journal of Experimental Psychology: Human Perception and Performance, 45(3), 

378. https://doi.org/10.1037/xhp0000612 

 

Kleiner, M., Brainard, D., & Pelli, D. (2007). What's new in Psychtoolbox-3? Pion Ltd. 

https://pure.mpg.de/rest/items/item_1790332/component/file_3136265/content 

  

Klevberg, G. L., & Anderson, D. I. (2002). Visual and haptic perception of postural affordances 

in children and adults. Human Movement Science, 21(2), 169-186. 

https://doi.org/10.1016/S0167-9457(02)00100-8 

 

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and 

computation. Trends in Neurosciences, 27(12), 712-719. 

https://doi.org/10.1016/j.tins.2004.10.007 

 

Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: 

A review. Psychonomic Bulletin & Review, 17(1), 1-14. https://doi.org/10.3758/PBR.17.1.1 

  

Kochari, A. R. (2019). Conducting web-based experiments for numerical cognition 

research. Journal of Cognition, 2(1). https://doi.org/10.5334/joc.85 

 

Kononowicz, T. W., & Penney, T. B. (2016). The contingent negative variation (CNV): Timing 

isn’t everything. Current Opinion in Behavioral Sciences, 8, 231-237. 

https://doi.org/10.1016/j.cobeha.2016.02.022 

 



 211 

Koolschijn, P. C. M., & Crone, E. A. (2013). Sex differences and structural brain maturation from 

childhood to early adulthood. Developmental Cognitive Neuroscience, 5, 106-118. 

https://doi.org/10.1016/j.dcn.2013.02.003 

 

Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor 

control. Trends in Cognitive Sciences, 10(7), 319-326. 

https://doi.org/10.1016/j.tics.2006.05.003 

  

Krause, V., Pollok, B., & Schnitzler, A. (2010). Perception in action: The impact of sensory 

information on sensorimotor synchronization in musicians and non-musicians. Acta 

Psychologica, 133(1), 28-37. https://doi.org/10.1016/j.actpsy.2009.08.003 

 

Kray, J., Eber, J., & Lindenberger, U. (2004). Age differences in executive functioning across the 

lifespan: The role of verbalization in task preparation. Acta Psychologica, 115(2-3), 143-165. 

https://doi.org/10.1016/j.actpsy.2003.12.001 

 

Kray, J., Eber, J., & Karbach, J. (2008). Verbal self‐instructions in task switching: A compensatory 

tool for action‐control deficits in childhood and old age?. Developmental Science, 11(2), 223-

236. https://doi.org/10.1111/j.1467-7687.2008.00673.x 

 

Kretch, K. S., & Adolph, K. E. (2013). Cliff or step? Posture‐specific learning at the edge of a 

drop‐off. Child Development, 84(1), 226-240. https://doi.org/10.1111/j.1467-

8624.2012.01842.x 

 

Kühn, S., Brass, M., & Haggard, P. (2013). Feeling in control: Neural correlates of experience of 

agency. Cortex, 49(7), 1935-1942. https://doi.org/10.1016/j.cortex.2012.09.002 

 

Kushnir, T., Wellman, H. M., & Gelman, S. A. (2009). A self-agency bias in preschoolers' causal 

inferences. Developmental Psychology, 45(2), 597. https://doi.org/10.1037/a0014727 

 



 212 

Lacey, N. (2016). Responsibility without consciousness. Oxford Journal of Legal Studies, 36(2), 

219-241. https://doi.org/10.1093/ojls/gqv032 

 

Ladouceur, C. D., Dahl, R. E., & Carter, C. S. (2007). Development of action monitoring through 

adolescence into adulthood: ERP and source localization. Developmental Science, 10(6), 874-

891. https://doi.org/10.1111/j.1467-7687.2007.00639.x 

 

Lakes, K. D., Swanson, J. M., & Riggs, M. (2012). The reliability and validity of the English and 

Spanish strengths and weaknesses of ADHD and normal behavior rating scales in a preschool 

sample: Continuum measures of hyperactivity and inattention. Journal of Attention 

Disorders, 16(6), 510-516. https://doi.org/10.1177/1087054711413550 

 

Larsen, B., & Luna, B. (2018). Adolescence as a neurobiological critical period for the 

development of higher-order cognition. Neuroscience & Biobehavioral Reviews, 94, 179-195. 

https://doi.org/10.1016/j.neubiorev.2018.09.005 

 

Leech, N. L., Gliner, J. A., Morgan, G. A., & Harmon, R. J. (2003). Use and interpretation of 

multiple regression. Journal of the American Academy of Child & Adolescent 

Psychiatry, 42(6), 738-740. https://doi.org/10.1097/01.CHI.0000046845.56865.22 

 

Legaspi, R., & Toyoizumi, T. (2019). A Bayesian psychophysics model of sense of agency. Nature 

Communications, 10(1), 4250. https://doi.org/10.1038/s41467-019-12170-0 

 

Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights 

from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30(6), 

718-729. https://doi.org/10.1016/j.neubiorev.2006.06.001 

 

Leshem, R., & Yefet, M. (2019). Does impulsivity converge distinctively with inhibitory control? 

Disentangling the cold and hot aspects of inhibitory control. Personality and Individual 

Differences, 145, 44-51. https://doi.org/10.1016/j.paid.2019.03.003 

 



 213 

Lewis, P. A., Wing, A. M., Pope, P. A., Praamstra, P., & Miall, R. C. (2004). Brain activity 

correlates differentially with increasing temporal complexity of rhythms during initialisation, 

synchronisation, and continuation phases of paced finger tapping. Neuropsychologia, 42(10), 

1301-1312. https://doi.org/10.1016/j.neuropsychologia.2004.03.001 

  

Liljeholm, M. (2021). Agency and goal-directed choice. Current Opinion in Behavioral 

Sciences, 41, 78-84. https://doi.org/10.1016/j.cobeha.2021.04.004 

 

Lim, M. S., Jocham, G., Hunt, L. T., Behrens, T. E., & Rogers, R. D. (2015). Impulsivity and 

predictive control are associated with suboptimal action-selection and action-value learning in 

regular gamblers. International Gambling Studies, 15(3), 489-505. 

https://doi.org/10.1080/14459795.2015.1078835 

 

Looyestyn, J., Kernot, J., Boshoff, K., Ryan, J., Edney, S., & Maher, C. (2017). Does gamification 

increase engagement with online programs? A systematic review. PloS One, 12(3), e0173403. 

https://doi.org/10.1371/journal.pone.0173403 

 

Lorimer, S., McCormack, T., Blakey, E., Lagnado, D. A., Hoerl, C., Tecwyn, E. C., & Buehner, 

M. J. (2020). The developmental profile of temporal binding: From childhood to 

adulthood. Quarterly Journal of Experimental Psychology, 73(10), 1575-1586. 

https://doi.org/10.1177/1747021820925075 

 

Lourenco, F., & Casey, B. J. (2013). Adjusting behavior to changing environmental demands with 

development. Neuroscience & Biobehavioral Reviews, 37(9), 2233-2242. 

https://doi.org/10.1016/j.neubiorev.2013.03.003 

 

Lozano, Ó. M., Díaz-Batanero, C., Rojas, A. J., Pilatti, A., & Fernández-Calderón, F. (2018). 

Concordance between the original and short version of the Impulsive Behaviour Scale UPPS-P 

using an IRT model. PLoS One, 13(3), e0194390. 

https://doi.org/10.1371/journal.pone.0194390 

 



 214 

Lucenet, J., & Blaye, A. (2014). Age-related changes in the temporal dynamics of executive 

control: A study in 5-and 6-year-old children. Frontiers in Psychology, 5, 831. 

https://doi.org/10.3389/fpsyg.2014.00831 

 

Mackenzie, E., Berger, N., Holmes, K., & Walker, M. (2021). Online educational research with 

middle adolescent populations: Ethical considerations and recommendations. Research 

Ethics, 17(2), 217-227. https://doi.org/10.1177/1747016120963160 

 

Maes, P. J., Leman, M., Palmer, C., & Wanderley, M. M. (2014). Action-based effects on music 

perception. Frontiers in Psychology, 4, 1008. https://doi.org/10.3389/fpsyg.2013.01008 

 

Maes, P. J. (2016). Sensorimotor grounding of musical embodiment and the role of prediction: A 

review. Frontiers in Psychology, 7, 308. https://doi.org/10.3389/fpsyg.2016.00308 

 

Manzi, A., Nessler, D., Czernochowski, D., & Friedman, D. (2011). The development of 

anticipatory cognitive control processes in task‐switching: An ERP study in children, 

adolescents, and young adults. Psychophysiology, 48(9), 1258-1275. 

https://doi.org/10.1111/j.1469-8986.2011.01192.x 

 

Marek, S., & Dosenbach, N. U. (2022). The frontoparietal network: Function, electrophysiology, 

and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2). 

https://doi.org/10.31887/DCNS.2018.20.2/smarek 

 

Marzinzik, F., Wahl, M., Krüger, D., Gentschow, L., Colla, M., & Klostermann, F. (2012). 

Abnormal distracter processing in adults with attention-deficit-hyperactivity disorder. PLoS 

One, 7(3), e33691. https://doi.org/10.1371/journal.pone.0033691 

 

Mason, W., & Suri, S. (2012). Conducting behavioral research on Amazon’s Mechanical 

Turk. Behavior Research Methods, 44(1), 1-23. https://doi.org/10.3758/s13428-011-0124-6 

 



 215 

Master, S. L., Eckstein, M. K., Gotlieb, N., Dahl, R., Wilbrecht, L., & Collins, A. G. (2020). 

Disentangling the systems contributing to changes in learning during 

adolescence. Developmental Cognitive Neuroscience, 41, 100732. 

https://doi.org/10.1016/j.dcn.2019.100732 

 

Matin, E., Shao, K. C., & Boff, K. R. (1993). Saccadic overhead: Information-processing time 

with and without saccades. Perception & Psychophysics, 53, 372-380. 

https://doi.org/10.3758/BF03206780 

 

McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., & Miller, N. S. (2006). The time of our 

lives: life span development of timing and event tracking. Journal of Experimental Psychology: 

General, 135(3), 348. https://doi.org/10.1037/0096-3445.135.3.348 

 

McCabe, S. E. (2004). Comparison of web and mail surveys in collecting illicit drug use data: A 

randomized experiment. Journal of Drug Education, 34(1), 61-72. 

https://doi.org/10.2190/4hey-vwxl-dvr3-hakv 

 

McPherson, T., Berger, D., Alagapan, S., & Fröhlich, F. (2018). Intrinsic rhythmicity predicts 

synchronization-continuation entrainment performance. Scientific Reports, 8(1), 11782. 

https://doi.org/10.1038/s41598-018-29267-z 

 

Metcalfe, J., Eich, T. S., & Castel, A. D. (2010). Metacognition of agency across the 

lifespan. Cognition, 116(2), 267-282. https://doi.org/10.1016/j.cognition.2010.05.009 

  

Miller, R., Schmidt, K., Kirschbaum, C., & Enge, S. (2018). Comparability, stability, and 

reliability of internet-based mental chronometry in domestic and laboratory settings. Behavior 

Research Methods, 50, 1345-1358. https://doi.org/10.3758/s13428-018-1036-5 

 

Mills, P. F., van der Steen, M. M., Schultz, B. G., & Keller, P. E. (2015). Individual differences in 

temporal anticipation and adaptation during sensorimotor synchronization. Timing & Time 

Perception, 3(1-2), 13-31. https://doi.org/10.1163/22134468-03002040  



 216 

 

Molenberghs, P., Johnson, H., Henry, J. D., & Mattingley, J. B. (2016). Understanding the minds 

of others: A neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 65, 276-

291. https://doi.org/10.1016/j.neubiorev.2016.03.020 

 

Monier, F., & Droit-Volet, S. (2019). Development of sensorimotor synchronization abilities: 

Motor and cognitive components. Child Neuropsychology, 25(8), 1043-1062. 

https://doi.org/10.1080/09297049.2019.1569607 

 

Moore, J. W., & Fletcher, P. C. (2012). Sense of agency in health and disease: A review of cue 

integration approaches. Consciousness and Cognition, 21(1), 59-68. 

https://doi.org/10.1016/j.concog.2011.08.010 

 

Moore, J. W., & Obhi, S. S. (2012). Intentional binding and the sense of agency: A 

review. Consciousness and Cognition, 21(1), 546-561. 

https://doi.org/10.1016/j.concog.2011.12.002 

 

Mu, Y., Huang, Y., Ji, C., Gu, L., & Wu, X. (2018). Auditory over visual advantage of 

sensorimotor synchronization in 6-to 7-year-old children but not in 12-to 15-year-old children 

and adults. Journal of Experimental Psychology: Human Perception and Performance, 44(5), 

818. https://doi.org/10.1037/xhp0000500 

 

Narain, D., Remington, E. D., Zeeuw, C. I. D., & Jazayeri, M. (2018). A cerebellar mechanism for 

learning prior distributions of time intervals. Nature Communications, 9(1), 469. 

https://doi.org/10.1038/s41467-017-02516-x 

 

Neri, P. (2010). How inherently noisy is human sensory processing? Psychonomic Bulletin & 

Review, 17(6), 802-808. https://doi.org/10.3758/PBR.17.6.802 

 



 217 

Nobusako, S., Sakai, A., Tsujimoto, T., Shuto, T., Nishi, Y., Asano, D., ... & Nakai, A. (2018). 

Manual dexterity is a strong predictor of visuo-motor temporal integration in 

children. Frontiers in Psychology, 9, 948. https://doi.org/10.3389/fpsyg.2018.00948 

 

Nobusako, S., Tsujimoto, T., Sakai, A., Shuto, T., Hashimoto, Y., Furukawa, E., ... & Morioka, S. 

(2020). The time window for sense of agency in school-age children is different from that in 

young adults. Cognitive Development, 54, 100891. 

https://doi.org/10.1016/j.cogdev.2020.100891 

 

Nobusako, S., Wen, W., Nagakura, Y., Tatsumi, M., Kataoka, S., Tsujimoto, T., ... & Morioka, S. 

(2022). Developmental changes in action-outcome regularity perceptual sensitivity and its 

relationship to hand motor function in 5–16-year-old children. Scientific Reports, 12(1), 17606. 

https://doi.org/10.1038/s41598-022-21827-8 

 

Noreika, V., Falter, C. M., & Rubia, K. (2013). Timing deficits in attention-deficit/hyperactivity 

disorder (ADHD): Evidence from neurocognitive and neuroimaging 

studies. Neuropsychologia, 51(2), 235-266. 

https://doi.org/10.1016/j.neuropsychologia.2012.09.036 

 

Overman, W. H. (2004). Sex differences in early childhood, adolescence, and adulthood on 

cognitive tasks that rely on orbital prefrontal cortex. Brain and Cognition, 55(1), 134-147. 

https://doi.org/10.1016/S0278-2626(03)00279-3 

 

Padilla, M. L., Pfefferbaum, A., Sullivan, E. V., Baker, F. C., & Colrain, I. M. (2014). Dissociation 

of preparatory attention and response monitoring maturation during adolescence. Clinical 

Neurophysiology, 125(5), 962-970. https://doi.org/10.1016/j.clinph.2013.10.012 

 

Palminteri, S., Kilford, E. J., Coricelli, G., & Blakemore, S. J. (2016). The computational 

development of reinforcement learning during adolescence. PLoS Computational 

Biology, 12(6), e1004953. https://doi.org/10.1371/journal.pcbi.1004953 

 



 218 

Papoutsaki, A., Laskey, J., & Huang, J. (2017). Searchgazer: Webcam eye tracking for remote 

studies of web search. In Proceedings of the 2017 Conference on Human Information 

Interaction and Retrieval (pp. 17-26). Association for Computing Machinery. 

https://doi.org/10.1145/3020165.3020170 

 

Papoutsaki, A., Gokaslan, A., Tompkin, J., He, Y., & Huang, J. (2018). The eye of the typer: A 

benchmark and analysis of gaze behavior during typing. In Proceedings of the 2018 ACM 

Symposium on Eye Tracking Research & Applications (pp. 1-9). Association for Computing 

Machinery. https://doi.org/10.1145/3204493.3204552 

 

Paulus, M., Hunnius, S., Van Elk, M., & Bekkering, H. (2012). How learning to shake a rattle 

affects 8-month-old infants’ perception of the rattle's sound: Electrophysiological evidence for 

action-effect binding in infancy. Developmental Cognitive Neuroscience, 2(1), 90-96. 

https://doi.org/10.1016/j.dcn.2011.05.006 

 

Peer, E., Rothschild, D., Gordon, A., Evernden, Z., & Damer, E. (2022). Data quality of platforms 

and panels for online behavioral research. Behavior Research Methods, 1-20. 

https://doi.org/10.3758/s13428-021-01694-3 

 

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., ... & Lindeløv, J. 

K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51, 

195-203. https://doi.org/10.3758/s13428-018-01193-y 

 

Peirce, J., Hirst, R., & MacAskill, M. (2022). Building experiments in PsychoPy. Sage. 

  

Perchet, C., & Garcia-Larrea, L. (2005). Learning to react: Anticipatory mechanisms in children 

and adults during a visuospatial attention task. Clinical Neurophysiology, 116(8), 1906-1917. 

https://doi.org/10.1016/j.clinph.2005.03.022 

  



 219 

Plumert, J. M. (1995). Relations between children's overestimation of their physical abilities and 

accident proneness. Developmental Psychology, 31(5), 866. https://doi.org/10.1037/0012-

1649.31.5.866 

 

Provasi, J., & Bobin-Bègue, A. (2003). Spontaneous motor tempo and rhythmical synchronisation 

in 2½-and 4-year-old children. International Journal of Behavioral Development, 27(3), 220-

231. https://doi.org/10.1080/01650250244000290 

 

Pulkkinen, M. L., & Aaltonen, J. (2003). Sense of agency in narrative processes of repeatedly 

convicted drunk drivers. Counselling Psychology Quarterly, 16(2), 145-159. 

https://doi.org/10.1080/0951507031000151525 

 

Quatman-Yates, C. C., Quatman, C. E., Meszaros, A. J., Paterno, M. V., & Hewett, T. E. (2012). 

A systematic review of sensorimotor function during adolescence: a developmental stage of 

increased motor awkwardness?. British Journal of Sports Medicine, 46(9), 649-655. 

http://dx.doi.org/10.1136/bjsm.2010.079616 

 

Rait, M. A., Prochaska, J. J., & Rubinstein, M. L. (2015). Recruitment of adolescents for a smoking 

study: use of traditional strategies and social media. Translational Behavioral Medicine, 5(3), 

254-259. https://doi.org/10.1007/s13142-015-0312-5 

 

Reimers, S., & Maylor, E. A. (2005). Task switching across the life span: Effects of age on general 

and specific switch costs. Developmental Psychology, 41(4), 661. 

https://doi.org/10.1037/0012-1649.41.4.661 

 

Render, A., & Jansen, P. (2021). Influence of arousal on intentional binding: Impaired action 

binding, intact outcome binding. Attention, Perception, & Psychophysics, 83, 103-113. 

https://doi.org/10.3758/s13414-020-02105-z 

 



 220 

Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: A review of recent research 

(2006–2012). Psychonomic Bulletin & Review, 20, 403-452. https://doi.org/10.3758/s13423-

012-0371-2 

 

Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping 

literature. Psychonomic Bulletin & Review, 12, 969-992. https://doi.org/10.3758/BF03206433 

 

Rhodes, M., Rizzo, M. T., Foster-Hanson, E., Moty, K., Leshin, R. A., Wang, M., ... & Ocampo, 

J. D. (2020). Advancing developmental science via unmoderated remote research with 

children. Journal of Cognition and Development, 21(4), 477-493. 

https://doi.org/10.1080/15248372.2020.1797751 

 

Ruess, M., Thomaschke, R., & Kiesel, A. (2018). Intentional binding of visual effects. Attention, 

Perception, & Psychophysics, 80, 713-722. https://doi.org/10.3758/s13414-017-1479-2 

  

Saarikallio, S. H., Randall, W. M., & Baltazar, M. (2020). Music listening for supporting 

adolescents’ sense of agency in daily life. Frontiers in Psychology, 10, 2911. 

https://doi.org/10.3389/fpsyg.2019.02911 

 

Saito, N., Takahata, K., Murai, T., & Takahashi, H. (2015). Discrepancy between explicit 

judgement of agency and implicit feeling of agency: Implications for sense of agency and its 

disorders. Consciousness and Cognition, 37, 1-7. https://doi.org/10.1016/j.concog.2015.07.011 

 

Sato, A., & Yasuda, A. (2005). Illusion of sense of self-agency: Discrepancy between the predicted 

and actual sensory consequences of actions modulates the sense of self-agency, but not the 

sense of self-ownership. Cognition, 94(3), 241-255. 

https://doi.org/10.1016/j.cognition.2004.04.003 

 

Sauter, M., Draschkow, D., & Mack, W. (2020). Building, hosting and recruiting: A brief 

introduction to running behavioral experiments online. Brain Sciences, 10(4), 251. 

https://doi.org/10.3390/brainsci10040251 



 221 

 

Scheerer, N. E., Jacobson, D. S., & Jones, J. A. (2016). Sensorimotor learning in children and 

adults: Exposure to frequency-altered auditory feedback during speech 

production. Neuroscience, 314, 106-115. https://doi.org/10.1016/j.neuroscience.2015.11.037 

 

Schultchen, D., Zaudig, M., Krauseneck, T., Berberich, G., & Pollatos, O. (2019). Interoceptive 

deficits in patients with Obsessive-Compulsive Disorder in the time course of cognitive-

behavioral therapy. PLoS One, 14(5), e0217237. https://doi.org/10.1371/journal.pone.0217237 

 

Schwartze, M., Keller, P. E., Patel, A. D., & Kotz, S. A. (2011). The impact of basal ganglia lesions 

on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo 

changes. Behavioural Brain Research, 216(2), 685-691. 

https://doi.org/10.1016/j.bbr.2010.09.015 

 

Schwertman, N. C., Owens, M. A., & Adnan, R. (2004). A simple more general boxplot method 

for identifying outliers. Computational Statistics & Data Analysis, 47(1), 165-174. 

https://doi.org/10.1016/j.csda.2003.10.012 

 

Scott, K., & Schulz, L. (2017). Lookit (part 1): A new online platform for developmental 

research. Open Mind, 1(1), 4-14. https://doi.org/10.1162/OPMI_a_00002 

 

Seghezzi, S., & Zapparoli, L. (2020). Predicting the sensory consequences of self-generated 

actions: Pre-supplementary motor area as supra-modal hub in the sense of agency 

experience. Brain Sciences, 10(11), 825. https://doi.org/10.3390/brainsci10110825 

 

Seghezzi, S., Zirone, E., Paulesu, E., & Zapparoli, L. (2019). The brain in (willed) action: A meta-

analytical comparison of imaging studies on motor intentionality and sense of agency. Frontiers 

in Psychology, 10, 804. https://doi.org/10.3389/fpsyg.2019.00804 

 



 222 

Semmelmann, K., Hönekopp, A., & Weigelt, S. (2017). Looking tasks online: Utilizing webcams 

to collect video data from home. Frontiers in Psychology, 8, 1582. 

https://doi.org/10.3389/fpsyg.2017.01582 

 

Semmelmann, K., & Weigelt, S. (2018). Online webcam-based eye tracking in cognitive science: 

A first look. Behavior Research Methods, 50, 451-465. https://doi.org/10.3758/s13428-017-

0913-7 

 

Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., ... & Wise, S. P. 

(2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of 

Neuroscience, 28(14), 3586-3594. https://doi.org/10.1523/JNEUROSCI.5309-07.2008 

 

Shi, Z., Church, R. M., & Meck, W. H. (2013). Bayesian optimization of time perception. Trends 

in Cognitive Sciences, 17(11), 556-564. https://doi.org/10.1016/j.tics.2013.09.009 

  

Sidarus, N., Travers, E., Haggard, P., & Beyer, F. (2020). How social contexts affect cognition: 

Mentalizing interferes with sense of agency during voluntary action. Journal of Experimental 

Social Psychology, 89, 103994. https://doi.org/10.1016/j.jesp.2020.103994 

 

Siegel, L. S. (1993). Amazing new discovery: Piaget was wrong! Canadian Psychology/ 

Psychologie Canadienne, 34(3), 239–245. https://doi.org/10.1037/h0078835 

 

Sisk, L. M., & Gee, D. G. (2022). Stress and adolescence: Vulnerability and opportunity during a 

sensitive window of development. Current Opinion in Psychology, 44, 286-292. 

https://doi.org/10.1016/j.copsyc.2021.10.005 

 

Slater, J., Ashley, R., Tierney, A., & Kraus, N. (2018). Got rhythm? Better inhibitory control is 

linked with more consistent drumming and enhanced neural tracking of the musical beat in adult 

percussionists and nonpercussionists. Journal of Cognitive Neuroscience, 30(1), 14-24. 

https://doi.org/10.1162/jocn_a_01189 

 



 223 

Slim, M. S., & Hartsuiker, R. J. (2022). Moving visual world experiments online? A web-based 

replication of Dijkgraaf, Hartsuiker, and Duyck (2017) using PCIbex and 

WebGazer.js. Behavior Research Methods, 1-19. https://doi.org/10.3758/s13428-022-01989-z 

 

Smith, A. B., Giampietro, V., Brammer, M., Halari, R., Simmons, A., & Rubia, K. (2011). 

Functional development of fronto-striato-parietal networks associated with time 

perception. Frontiers in Human Neuroscience, 5, 136. 

https://doi.org/10.3389/fnhum.2011.00136 

  

Smittenaar, P., Rutledge, R. B., Zeidman, P., Adams, R. A., Brown, H., Lewis, G., & Dolan, R. J. 

(2015). Proactive and reactive response inhibition across the lifespan. PLoS One, 10(10), 

e0140383. https://doi.org/10.1371/journal.pone.0140383 

 

Snyder, A. C., Byron, M. Y., & Smith, M. A. (2021). A stable population code for attention in 

prefrontal cortex leads a dynamic attention code in visual cortex. Journal of 

Neuroscience, 41(44), 9163-9176. https://doi.org/10.1523/JNEUROSCI.0608-21.2021 

 

Sobel, D. M., & Munro, S. (2006. When Mr. Blicket wants it, children are Bayesian. 

In Proceedings of the Annual Meeting of the Cognitive Science Society. (pp. 810-816). 

https://escholarship.org/uc/item/7fk9h80q 

 

Somerville, L. H., Sasse, S. F., Garrad, M. C., Drysdale, A. T., Abi Akar, N., Insel, C., & Wilson, 

R. C. (2017). Charting the expansion of strategic exploratory behavior during 

adolescence. Journal of Experimental Psychology: General, 146(2), 155. 

https://doi.org/10.1037/xge0000250 

 

Sowell, E. R., Thompson, P. M., Holmes, C. J., Batth, R., Jernigan, T. L., & Toga, A. W. (1999). 

Localizing age-related changes in brain structure between childhood and adolescence using 

statistical parametric mapping. NeuroImage, 9(6), 587-597. 

https://doi.org/10.1006/nimg.1999.0436 

 



 224 

Sperduti, M., Delaveau, P., Fossati, P., & Nadel, J. (2011). Different brain structures related to 

self-and external-agency attribution: A brief review and meta-analysis. Brain Structure and 

Function, 216, 151-157. https://doi.org/10.1007/s00429-010-0298-1 

 

Subramaniam, K. (2021). The role of the medial prefontal cortex in self-agency in 

Schizophrenia. Journal of Psychiatry and Brain Science, 6. 

https://doi.org/10.20900/jpbs.20210017 

 

Sumich, A. L., Sarkar, S., Hermens, D. F., Ibrahimovic, A., Kelesidi, K., Wilson, D., & Rubia, K. 

(2012). Sex differences in brain maturation as measured using event-related 

potentials. Developmental Neuropsychology, 37(5), 415-433. 

https://doi.org/10.1080/87565641.2011.653461 

 

Suzuki, K., Lush, P., Seth, A. K., & Roseboom, W. (2019). Intentional binding without intentional 

action. Psychological Science, 30(6), 842-853. https://doi.org/10.1177/0956797619842191 

 

Swanson, J., Deutsch, C., Cantwell, D., Posner, M., Kennedy, J. L., Barr, C. L., ... & Wasdell, M. 

(2001). Genes and Attention-Deficit Hyperactivity Disorder. Clinical Neuroscience 

Research, 1(3), 207-216. https://doi.org/10.1016/S1566-2772(01)00007-X 

 

Synofzik, M., Vosgerau, G., & Newen, A. (2008). Beyond the comparator model: A multifactorial 

two-step account of agency. Consciousness and Cognition, 17(1), 219-239. 

https://doi.org/10.1016/j.concog.2007.03.010 

 

Synofzik, M., Vosgerau, G., & Voss, M. (2013). The experience of agency: An interplay between 

prediction and postdiction. Frontiers in Psychology, 4, 127. 

https://doi.org/10.3389/fpsyg.2013.00127 

 

Tahej, P. K., Ferrel-Chapus, C., Olivier, I., Ginhac, D., & Rolland, J. P. (2012). Multiple 

representations and mechanisms for visuomotor adaptation in young children. Human 

Movement Science, 31(6), 1425-1435. https://doi.org/10.1016/j.humov.2012.02.016 



 225 

 

Tanaka, M., Kunimatsu, J., Suzuki, T. W., Kameda, M., Ohmae, S., Uematsu, A., & Takeya, R. 

(2021). Roles of the cerebellum in motor preparation and prediction of 

timing. Neuroscience, 462, 220-234. https://doi.org/10.1016/j.neuroscience.2020.04.039 

 

Tanaka, H., Ishikawa, T., Lee, J., & Kakei, S. (2020). The cerebro-cerebellum as a locus of forward 

model: A review. Frontiers in Systems Neuroscience, 14, 19. 

https://doi.org/10.3389/fnsys.2020.00019 

 

Thillay, A., Roux, S., Gissot, V., Carteau-Martin, I., Knight, R. T., Bonnet-Brilhault, F., & Bidet-

Caulet, A. (2015). Sustained attention and prediction: Distinct brain maturation trajectories 

during adolescence. Frontiers in Human Neuroscience, 9, 519. 

https://doi.org/10.3389/fnhum.2015.00519 

 

Thompson, E. C., White-Schwoch, T., Tierney, A., & Kraus, N. (2015). Beat synchronization 

across the lifespan: Intersection of development and musical experience. PLoS One, 10(6), 

e0128839. https://doi.org/10.1371/journal.pone.0128839 

 

Tukey, J. W. (1977). Exploratory data analysis. Addison Wesley Publishing Company.  

 

Valera, E. M., Spencer, R. M., Zeffiro, T. A., Makris, N., Spencer, T. J., Faraone, S. V., ... & 

Seidman, L. J. (2010). Neural substrates of impaired sensorimotor timing in adult Attention-

Deficit/Hyperactivity Disorder. Biological Psychiatry, 68(4), 359-367. 

https://doi.org/10.1016/j.biopsych.2010.05.012 

 

van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than 

seeing in sensorimotor adaptation. Current Biology, 12(10), 834-837. 

https://doi.org/10.1016/S0960-9822(02)00836-9 

 



 226 

Van de Cruys, S., Evers, K., Van der Hallen, R., Van Eylen, L., Boets, B., De-Wit, L., & 

Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in 

autism. Psychological Review, 121(4), 649. https://doi.org/10.1037/a0037665 

  

Van den Bos, W., Cohen, M. X., Kahnt, T., & Crone, E. A. (2012). Striatum–medial prefrontal 

cortex connectivity predicts developmental changes in reinforcement learning. Cerebral 

Cortex, 22(6), 1247-1255. https://doi.org/10.1093/cercor/bhr198 

 

van der Schaaf, M. E., Warmerdam, E., Crone, E. A., & Cools, R. (2011). Distinct linear and non-

linear trajectories of reward and punishment reversal learning during development: Relevance 

for dopamine's role in adolescent decision making. Developmental Cognitive 

Neuroscience, 1(4), 578-590. https://doi.org/10.1016/j.dcn.2011.06.007 

 

Van Duijvenvoorde, A. C., Jansen, B. R., Griffioen, E. S., Van der Molen, M. W., & Huizenga, H. 

M. (2013). Decomposing developmental differences in probabilistic feedback learning: A 

combined performance and heart-rate analysis. Biological Psychology, 93(1), 175-183. 

https://doi.org/10.1016/j.biopsycho.2013.01.006 

 

van Duijvenvoorde, A. C., Zanolie, K., Rombouts, S. A., Raijmakers, M. E., & Crone, E. A. 

(2008). Evaluating the negative or valuing the positive? Neural mechanisms supporting 

feedback-based learning across development. Journal of Neuroscience, 28(38), 9495-9503. 

https://doi.org/10.1523/JNEUROSCI.1485-08.2008 

 

van Elk, M., Rutjens, B. T., & van der Pligt, J. (2015). The development of the illusion of control 

and sense of agency in 7-to-12-year old children and adults. Cognition, 145, 1-12. 

https://doi.org/10.1016/j.cognition.2015.08.004 

 

Van Gerven, P. W., Hurks, P. P., Bovend'Eerdt, T. J., & Adam, J. J. (2016). Switch hands! 

Mapping proactive and reactive cognitive control across the life span. Developmental 

Psychology, 52(6), 960. https://doi.org/10.1037/dev0000116 

 



 227 

van Kemenade, B. M., Arikan, B. E., Podranski, K., Steinsträter, O., Kircher, T., & Straube, B. 

(2019). Distinct roles for the cerebellum, angular gyrus, and middle temporal gyrus in action–

feedback monitoring. Cerebral Cortex, 29(4), 1520-1531. 

https://doi.org/10.1093/cercor/bhy048 

 

van Laarhoven, T., Stekelenburg, J. J., Eussen, M. L., & Vroomen, J. (2019). Electrophysiological 

alterations in motor‐auditory predictive coding in Autism Spectrum Disorder. Autism 

Research, 12(4), 589-599. https://doi.org/10.1002/aur.2087 

 

Veale, J. F. (2014). Edinburgh handedness inventory–short form: A revised version based on 

confirmatory factor analysis. Laterality: Asymmetries of Body, Brain and Cognition, 19(2), 

164-177. https://doi.org/10.1080/1357650X.2013.783045 

 

Vijayakumar, N., Whittle, S., Yücel, M., Dennison, M., Simmons, J., & Allen, N. B. (2014). 

Prefrontal structural correlates of cognitive control during adolescent development: A 4-year 

longitudinal study. Journal of Cognitive Neuroscience, 26(5), 1118-1130. 

https://doi.org/10.1162/jocn_a_00549 

 

Vilares, I., & Körding, K. (2011). Bayesian models: the structure of the world, uncertainty, 

behavior, and the brain. Annals of the New York Academy of Sciences, 1224(1), 22-39. 

https://doi.org/10.1111/j.1749-6632.2011.05965.x 

 

Vilaza, G. N., Haselager, W. F. F., Campos, A. M., & Vuurpijl, L. (2014). Using games to 

investigate sense of agency and attribution of responsibility. Proceedings of the 2014 SBGames. 

(pp. 393 - 399). SBGames. 

http://www.sbgames.org/sbgames2014/papers/culture/full/Cult_Full_Using%20games%20to

%20investigate.pdf 

  

Wallace, M. T., & Stevenson, R. A. (2014). The construct of the multisensory temporal binding 

window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105-123. 

https://doi.org/10.1016/j.neuropsychologia.2014.08.005 



 228 

 

Watanabe, H., & Taga, G. (2006). General to specific development of movement patterns and 

memory for contingency between actions and events in young infants. Infant Behavior and 

Development, 29(3), 402-422. https://doi.org/10.1016/j.infbeh.2006.02.001 

 

Weijs, M. L., Macartney, E., Daum, M. M., & Lenggenhager, B. (2021). Development of the 

bodily self: Effects of visuomotor synchrony and visual appearance on virtual embodiment in 

children and adults. Journal of Experimental Child Psychology, 210, 105200. 

https://doi.org/10.1016/j.jecp.2021.105200 

 

Weiss, C., Tsakiris, M., Haggard, P., & Schütz-Bosbach, S. (2014). Agency in the sensorimotor 

system and its relation to explicit action awareness. Neuropsychologia, 52, 82-92. 

https://doi.org/10.1016/j.neuropsychologia.2013.09.034 

  

Welniarz, Q., Worbe, Y., & Gallea, C. (2021). The forward model: A unifying theory for the role 

of the cerebellum in motor control and sense of agency. Frontiers in Systems Neuroscience, 15, 

644059. https://doi.org/10.3389/fnsys.2021.644059 

 

Wen, W. (2019). Does delay in feedback diminish sense of agency? A review. Consciousness and 

Cognition, 73, 102759. https://doi.org/10.1016/j.concog.2019.05.007 

 

Whitford, T. J., Rennie, C. J., Grieve, S. M., Clark, C. R., Gordon, E., & Williams, L. M. (2007). 

Brain maturation in adolescence: Concurrent changes in neuroanatomy and 

neurophysiology. Human Brain Mapping, 28(3), 228-237. https://doi.org/10.1002/hbm.20273 

 

Wierenga, L., Langen, M., Ambrosino, S., van Dijk, S., Oranje, B., & Durston, S. (2014). Typical 

development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 

24. NeuroImage, 96, 67-72. https://doi.org/10.1016/j.neuroimage.2014.03.072 

 



 229 

Wilson, P. H., & Hyde, C. (2013). The development of rapid online control in children aged 6–12 

years: Reaching performance. Human Movement Science, 32(5), 1138-1150. 

https://doi.org/10.1016/j.humov.2013.02.008 

 

Witt, S. T., & Stevens, M. C. (2013). The role of top-down control in different phases of a 

sensorimotor timing task: A DCM study of adults and adolescents. Brain Imaging and 

Behavior, 7, 260-273. https://doi.org/10.1007/s11682-013-9224-5 

 

Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729-R732. 

  

Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement 

neuroscience. Nature Neuroscience, 3(11), 1212-1217. https://doi.org/10.1038/81497 

  

Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor 

integration. Science, 269(5232), 1880-1882. https://doi.org/10.1126/science.7569931 

 

Worthy, D. A., & Maddox, W. T. (2014). A comparison model of reinforcement-learning and win-

stay-lose-shift decision-making processes: A tribute to W.K. Estes. Journal of Mathematical 

Psychology, 59, 41-49. https://doi.org/10.1016/j.jmp.2013.10.001 

 

Xia, L., Master, S. L., Eckstein, M. K., Baribault, B., Dahl, R. E., Wilbrecht, L., & Collins, A. G. 

E. (2021). Modeling changes in probabilistic reinforcement learning during adolescence. PLoS 

Computational Biology, 17(7), e1008524. https://doi.org/10.1371/journal.pcbi.1008524 

 

 Xue, Z. X., Hu, Y. J., Wang, J., Huang, L. J., Liu, W., & Sun, F. D. (2017). Reliability and validity 

of the short version of UPPS-P Impulsive Behavior Scale in college students. Chinese Journal 

of Clinical Psychology, 25(4), 662–666.  

  

Yin, S., Bi, T., Chen, A., & Egner, T. (2021). Ventromedial prefrontal cortex drives the 

prioritization of self-associated stimuli in working memory. Journal of Neuroscience, 41(9), 

2012-2023. https://doi.org/10.1523/JNEUROSCI.1783-20.2020 



 230 

 

Yon, D., & Frith, C. D. (2021). Precision and the Bayesian brain. Current Biology, 31(17), R1026-

R1032. https://doi.org/10.1016/j.cub.2021.07.044 

 

Yon, D., Heyes, C., & Press, C. (2020). Beliefs and desires in the predictive brain. Nature 

Communications, 11(1), 4404. https://doi.org/10.1038/s41467-020-18332-9 

 

Yu, A. J., & Dayan, P. (2004). Inference, attention, and decision in a Bayesian neural architecture. 

In Saul, L., Weiss, Y., & Bottou, L. (Eds.), Advances in Neural Information Processing Systems 

17. (pp. 1577–1584). MIT Press. 

https://proceedings.neurips.cc/paper/2004/file/0e4a2c65bdaddd66a53422d93daebe68-

Paper.pdf  

  

Yücel, M., Fornito, A., Youssef, G., Dwyer, D., Whittle, S., Wood, S. J., ... & Allen, N. B. (2012). 

Inhibitory control in young adolescents: The role of sex, intelligence, and 

temperament. Neuropsychology, 26(3), 347. https://doi.org/10.1037/a0027693 

 

Zapparoli, L., Seghezzi, S., Devoto, F., Mariano, M., Banfi, G., Porta, M., & Paulesu, E. (2020). 

Altered sense of agency in Gilles de la Tourette syndrome: Behavioural, clinical and functional 

magnetic resonance imaging findings. Brain Communications, 2(2), fcaa204. 

https://doi.org/10.1093/braincomms/fcaa204 

 

Zélanti, P. S., & Droit-Volet, S. (2012). Auditory and visual differences in time perception? An 

investigation from a developmental perspective with neuropsychological tests. Journal of 

Experimental Child Psychology, 112(3), 296-311. https://doi.org/10.1016/j.jecp.2012.01.003 

 

Zheng, Y., Li, Q., Wang, K., Wu, H., & Liu, X. (2015). Contextual valence modulates the neural 

dynamics of risk processing. Psychophysiology, 52(7), 895-904. 

https://doi.org/10.1111/psyp.12415 

 



 231 

Zito, G. A., Wiest, R., & Aybek, S. (2020). Neural correlates of sense of agency in motor control: 

A neuroimaging meta-analysis. PLoS One, 15(6), e0234321. 

https://doi.org/10.1371/journal.pone.0234321 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 232 

Appendices 

Appendix A. 

Edinburgh Handedness Inventory – Short Form (EHI-SF) 

The Edinburgh Handedness Inventory – Short Form (EHI-SF) is a 4-item self-report scale used to 

measure participants’ hand preference (Veale, 2014). Participants respond by indicating on a 5-

point Likert scale which hand they most often use when performing various daily activities. 

Example items include, “using a spoon” and “throwing a ball”. Participants recruited through a 

high school, RPS, or social media completed the EHI-SF when providing their demographic 

information via a survey hosted on Qualtrics. Whereas, participants recruited through SSM 

completed the EHI-SF during the left-hand vs right-hand task (see appendix B). Hand preference 

was recorded to provide additional detail about the demographics of the current sample.  
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Appendix B. 

The Left-Hand vs Right-Hand Task 

The left-hand vs right-hand task was used to measure hand preference in participants aged 4-12 

recruited via SSM. The task was designed using PsychoPy (Peirce, 2019) and ran online via 

Pavlovia (Peirce, 2022). Stimuli consisted of five 340x340 pixel white circles. Each circle 

contained one Likert scale response option from the EHI-SF, such as “usually left” and “usually 

right”. At the beginning of the left-hand vs right-hand task, participants first saw a black 

instructions screen with details about how to complete the task. On each trial, participants saw a 

black screen with an item from the EHI-SF presented at the top of the screen. In the centre of the 

screen, five circles were shown. Each circle contained one Likert scale response option from the 

EHI-SF, such as “usually left” and “usually right”. To respond, participants clicked on the circle 

that best reflected their experience. There was no time limit for responses. The left-hand vs right-

hand task took approximately 1-minute to complete. 
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Appendix C. 

Chapter 4b: Determining How the Ability to Learn From Past Action Experience Changes 

With Age From Childhood to Adulthood 

 

Chapter Summary  

The aim of the present chapter was to determine how the ability to acquire goal-related information 

from past action experience and use this to inform future actions changes with age from childhood 

to adulthood. To achieve this aim, a Bayesian learning model was fitted to the data obtained via 

the experiment outlined in chapter 4. This revealed the weight that participants’ tended to attribute 

to an average estimate of all past amber light durations (i.e., the prior) relative to the amber light 

duration shown on the most recent trial (i.e., the likelihood) when predicting the most probable 

time at which the green light would onset, and therefore, when best to respond (i.e., the posterior). 

In accordance with typical learning tasks (Jacobs & Kruschke, 2011; Yu & Dayan, 2004), it was 

expected that the weight on prior would increase over time as a greater number of amber durations 

were observed. Unfortunately, it was found that all participants failed to construct a reliable 

representation of the prior. This suggests that either the cued RT task was not suitable for this type 

of analysis, or the Bayesian learning model used was incorrect. Hence, the influence of age on the 

weight attributed to the prior and the likelihood was not examined. Suggestions for why this may 

have occurred are discussed.  

 

Introduction 

Chapter 4 demonstrated that the extent to which individuals’ ability to form predictions about the 

most likely outcome of their intended action develops from childhood to adulthood. The aim of 

the current chapter was to extend the findings of chapter 4 by examining the extent to which 

sensory information gained from past iterations of a target action are used to inform subsequent 

forward model predictions. As a brief reminder of the cued RT task described in chapter 4, 

participants were instructed to click the screen in response to the onset of a green target stimulus. 

The target stimulus was preceded by an amber cue stimulus, which remained onscreen for a 

variable interval. Participants’ objective during the task was to minimise the temporal discrepancy 

between the target stimulus’ onset and their response time.  
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Evidently, in order to determine when best to respond on a given trial, the individual had 

to estimate the most probable duration of the current amber cue. From a Bayesian perspective, this 

prediction is formed by weighting an average estimate of all past cue durations (i.e., the prior) 

against the cue duration observed on the most recent trial (i.e., the likelihood; Vilares & Körding, 

2011). Given that the cue duration was drawn from a Gaussian distribution, the prior estimate will 

be more informative of the most probable cue duration on the next trial than the likelihood. 

Subsequently, this suggests that on average, it is more advantageous to attribute greater weight to 

the prior than to the likelihood on the cued RT task. Ergo, by estimating the average weight to 

which the participant attributed to the prior and to the likelihood, it is possible to determine the 

extent to which they updated their prior knowledge in response to past action experience. 

 

As noted in chapter 1, past research has argued that the acuity with which children can 

perceive the duration of sensory stimuli is inferior compared to that of adults (Zélanti & Droit-

Volet, 2012). Consequently, in order to resolve the uncertainty introduced by these noisy sensory 

estimates, it has been suggested that children place greater weight on the prior relative to the 

likelihood in comparison to adults (Hallez et al., 2019). Interval reproduction tasks are often cited 

in support of this idea. For example, Karaminis et al. (2016) presented children aged 6-14 and 

adults with a series of visual stimuli, each presented for a varying duration of time. In response to 

each stimulus, participants were instructed to reproduce the duration of the stimulus by holding 

down a computer key. The task was administered to both autistic and neurotypical participants. 

However, when focusing purely on the results obtained for the neurotypical participants, it was 

found that the extent to which produced durations regressed towards the average presented 

duration decreased with age. This suggests that the tendency to overweight prior observations 

relative to the most recent sensory information when estimating the temporal duration of a target 

stimulus declines from childhood to adulthood.  

 

In opposition to the idea that the weight attributed to the prior decreases with age, it may 

be argued that this finding is dependent on the objective of the task. Crucially, in an interval 

reproduction task, the participant’s goal is to produce a response duration equivalent to the duration 

of the target stimulus (e.g., Gooch et al., 2010). Arguably, unless the target durations presented on 

each trial are drawn from a Gaussian distribution, the average stimuli duration observed across 



 236 

past trials will not be informative of the target duration. Therefore, biasing one’s duration estimate 

more towards the prior than the likelihood will result in worse performance. Notably, the stimuli 

durations presented by Karaminis et al. (2016) were not drawn from a Gaussian distribution. 

Hence, it may be argued that the results obtained by Karaminis et al. (2016) do not indicate that 

children bias their posterior towards the prior to a greater extent than adults. Instead, the results 

merely demonstrate that adults are better than children at reducing the weight on the prior in 

situations for which it is advantageous to do so. In contrast, to perform well on a learning task 

where past observations are informative of the target stimulus, such as the cued RT task described 

in chapter 4, participants need to bias their posterior estimates more towards the prior than the 

likelihood (Jacobs & Kruschke, 2011; Yu & Dayan, 2004).  

 

Given that children have been suggested to lack precision in their sensory perception 

relative to adults (Droit-Volet et al., 2007; Jensen & Neff, 1993; Zélanti & Droit-Volet, 2012), it 

may be argued that the quality of the outcome information that they are able to incorporate into 

their prior after executing an action will be poorer than that of adults. This suggests that the 

reliability of the prior, and thereby, the weight attributed to the prior over the likelihood, should 

increase with age from childhood to adulthood. Indeed, past literature has shown that children rely 

more heavily on the most recently observed trial outcomes than adults on learning tasks (Barash 

et al., 2019). For instance, Barash et al. (2019) instructed children, adolescents and adults to 

complete a probabilistic learning task with two alternative choice options. It was found that the 

extent to which participants’ made optimal Bayesian decisions, where the full history of past 

outcomes were used to guide choice behaviour increased from childhood to adulthood. This 

supports the idea of an age-related increase in the weight attributed to the prior relative to the 

likelihood from childhood to adulthood.  

 

In criticism of the results obtained by Barash et al. (2019), it should be noted that age was 

indexed by separating child and adolescent participants into four categorical bins based on their 

current year of education. Notably, progression through the school system does not necessarily 

coincide with motor and cognitive development. Therefore, this may have obscured the true 

manner at which the ability to learn from past actions changes with age. Hence, further 

investigation is needed in order to evaluate the conclusion drawn by Barash et al. (2019). 
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The Current Study  

The purpose of the current study was to determine how the ability to integrate past action feedback 

into the prior changes with age from childhood to adulthood. This would indicate how the capacity 

to update the forward model after action execution matures across this period. To achieve this aim, 

a Bayesian learning model was fitted to the data obtained via the experiment outlined in chapter 

4. For each trial, the fitted model parameters revealed the weight that participants attributed to an 

average estimate of all past cue durations (i.e., the prior) relative to the cue duration on the most 

recent trial (i.e., the likelihood) when predicting the most probable time at which the target stimulus 

would onset (i.e., the posterior). From this, the average weight on the prior and average weight on 

the likelihood across trials were calculated. To test the findings of Barash et al. (2019) against the 

contradictory results obtained by Karaminis et al. (2016), two hypotheses were formed: 

 

1. It was hypothesised that the average weight on the prior would be predicted by age, with 

older age associated with greater average weight on the prior.  

 

2. It was also hypothesised that the average weight on the likelihood would be predicted by 

age, with older age associated with lower average weight on the likelihood.  

 

Method 

  

Design 

An independent measures design was used in the current study. The independent variables were 

age, sex and impulsivity. The dependent variables were the average weights attributed to the prior 

and the likelihood across trials. Both dependent variables provided an indication of participants’ 

ability to learn from visual cues presented across previous trials and use this knowledge to enhance 

the timing of their next action. 

  

Participants, Materials and Procedure 

In the current study, data presented in chapter 4 was re-analysed from a Bayesian learning 

perspective. Hence, details about the sample, materials, and procedure used to collect this data can 

be viewed in chapter 4. 
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Data Analysis 

To determine the estimated weight that a participant placed on the prior evidence in comparison 

to the likelihood evidence on each trial of the cued RT task, their RTA data was fitted to a Bayesian 

learning model, as outlined by Shi et al. (2013; see equation C1). The notation,  �̅�1:𝑥−2 in equation 

C1 refers to the prior evidence available to the participant on a given trial of the task. To clarify, x 

indicates the current trial number. Hence, the prior evidence consists of the mean amber duration 

across trials ranging from the first trial to the trial that occurred two trials before the current trial. 

Furthermore, wp denotes the weight placed upon the prior evidence by the participant. Whereas, 

wl refers to the weight that the participant placed upon on the likelihood evidence. When 

combined, wp and wl must equal 1, as this signifies the participant’s full capacity for weighting 

evidence when forming a decision on how best to respond. Therefore, the value of wl may be given 

through 1-wp. The notation, 𝑎𝑥−1, represents the likelihood evidence, which was the amber 

duration on the previous trial. Finally,  y represents the RTA value that is produced by the model. 

Note, all amber duration values inputted into the model were first converted into logarithmic form, 

in keeping with Shi et al. (2013).   

 

 

  

𝑦 =  𝑤𝑝 ∗ �̅�1:𝑥−2  + 𝑤𝑙 ∗ 𝑎𝑥−1 

(C1) 

  

 

The model outlined in equation C1 computed RTA values as the weighted combination of 

the prior evidence and likelihood evidence available to the participant on the current trial. The 

likelihood evidence referred to the amber duration observed on the previous trial. Past studies 

which have applied similar Bayesian learning models have often used information available to the 

participant on the current trial as the likelihood evidence (e.g., Chambers et al., 2018). This 

information is usually available to the participant before they are prompted to respond. However, 

on the cued RT task, the amber light is likely to still be present whilst the participant is actively 

forming their decision of when to respond. Therefore, knowledge on the current trial’s amber light 

duration is not necessarily available to the participant when a decision to respond is made. For this 
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reason, the amber duration observed on the previous trial was used as the likelihood evidence in 

this task, as this was the most recent amber light duration information available to the participant. 

In contrast, prior evidence consisted of the mean amber duration across trials ranging from the first 

trial to the trial that occurred two trials before the current trial. For instance, on trial 10, the 

likelihood evidence would be the amber light duration observed on trial 9. Whereas, the prior 

evidence would be an average of the amber light durations observed on trials 1 to 8. Both the prior 

evidence and likelihood evidence are then multiplied by a weight, and summed to produce a 

simulated RTA value. 

 

Initially, the weight on the prior evidence was given an arbitrary value of 0.2 and the weight 

on the likelihood evidence was set at 0.8. A simulated RTA value was then produced for each trial 

via the model using these initial weight values. Beginning at the third trial, the participant’s 

observed RTA values were then entered into the model one trial at a time. It was necessary to begin 

at the third trial as there was insufficient prior evidence available to the participant before this 

point in the task. For each trial, maximum likelihood estimation was used to adjust the weights on 

the prior and the likelihood such that the sum of squared error between the observed and simulated 

RTA values was minimised. Through this process, it was possible to obtain an estimate of the 

weight that the participant placed on the prior evidence and the likelihood evidence on each trial 

of the task (see figure C1 for an example). Following this, the mean weight on the prior and the 

mean weight on the likelihood across trials were calculated in order to capture whether participants 

tended to base their decisions more heavily on knowledge accumulated throughout the task or on 

recently observed information.  
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 Figure C1. 

An example of the weight on the prior plotted across trials 

 

Note. A figure showing the estimated weight on the prior plotted across all 100 trials for 

participant 148. An estimated weight closer to 1 indicates that a greater proportion of the decision 

weight was attributed to the prior than the likelihood. Whereas, an estimated weight closer to 0 

demonstrates that the opposite is true; greater weight was awarded to the likelihood information 

over the prior evidence.  

 

In a learning task, one would expect the weight on the prior to increase at a variable rate as 

the trials progress and a greater volume of prior evidence is accumulated (Yu & Dayan, 2004). 

Contrary to this idea, the weight on the prior tended to oscillate between 0 (no weight on the prior) 

and 1 (maximum weight on the prior) for all participants in the current study, as illustrated in figure 

C1. This suggests that participants failed to construct a reliable representation of the prior whilst 

completing the cued RT task. Hence, participants did not make consistent use of their prior across 

trials. This suggests that the Bayesian learning model outlined in equation C1 was not suitable for 
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the data obtained from the cued RT task. For this reason, the influence of age on the weight 

attributed to the prior and the likelihood cannot be examined.  

 

On the one hand, it can be argued that participants’ failure to construct a strong prior 

indicates that learning about the average amber duration was simply not necessary in order to 

perform well on the cued RT task; accurate predictions could be made using the likelihood 

evidence alone. On the other hand, it may be the case that it was incorrect to define the  likelihood 

evidence as the amber duration presented on the most recent trial. Bayesian learning studies have 

tended to conceptualise the most recent sensory information as part of the distribution of prior 

evidence (Körding & Wolpert, 2006). This suggests that the model used in the current study failed 

to capture the true prior and likelihood estimates used by participants. Moreover, both suggested 

reasons for the current results are speculative and warrant further research.  

 

Additionally, it may be queried as to whether participants’ assumptions regarding the speed 

at which stimuli can be presented online contributed to the lack of reliability in their prior. Garaizar 

et al. (2016) argued that individuals tend to expect larger delays in the presentation of expected 

stimuli when a behavioural task is presented online as opposed to offline. Crucially, the task 

instructions used in the current study did not explicitly state that the amber light duration was 

variable. This suggests that participants may have discounted some of the longer amber light 

durations as merely unintended delays in the time taken for their internet browser to present the 

green light. This would have then depleted the reliability of their constructed prior as a genuine 

estimate of the most probable amber light duration on the next trial. Future research is needed to 

evaluate the proposed influence of participants’ beliefs about the precision of stimuli timing online 

on their performance in online relative to offline learning tasks.  

 

To briefly conclude, the aim of the current study was to establish how the ability to update 

prior action knowledge in light of the sensory evidence gained from past experience changes with 

age from childhood to adulthood. Unfortunately, it was not possible to achieve this aim as all 

participants, regardless of age, failed to make consistent use of the information learned from past 

experience. Therefore, future research is required to determine how the ability to update prior 

action-outcome knowledge develops with age using an alternative learning task. 
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Appendix D 

Participant Frequency as a Function of Age (Chapter 5) 

 

 

Note. A figure showing the frequency of participants as a function of age in years. 
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