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Extensions of the standard model of particle physics with new Abelian gauge groups allow for kinetic
mixing between the new gauge bosons and the hypercharge gauge boson, resulting in mixing with the
photon. In many models, the mixing with the hypercharge gauge boson captures only part of the kinetic
mixing term with the photon, since the new gauge bosons can also mix with the neutral component of the
SUð2ÞL gauge bosons. We take these contributions into account and present a consistent description of
kinetic mixing for general Abelian gauge groups both in the electroweak symmetric and the broken phase.
We identify an effective operator that captures the kinetic mixing with SUð2ÞL and demonstrate how
renormalizable contributions arise if the charged fields only obtain their masses from electroweak
symmetry breaking. For the first time, a low-energy theorem for the couplings of novel Abelian gauge
bosons with the standard model Higgs boson is derived from the one-loop kinetic mixing amplitudes.
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Introduction.—Extensions of the standard model (SM)
with an additional Abelian gauge group allow for a unique
interaction with SM particles by kinetic mixing with the
photon. The operator

L ⊃ −
ϵA
2
FμνXμν ð1Þ

mediates the mixing between the field strength tensors Fμν

and Xμν of the electromagnetic gauge group Uð1Þem and the
additional gauge group Uð1ÞX, respectively [1,2]. For two
massive gauge bosons there is an additional operator that
can mediate mass mixing, e.g., for the Uð1ÞX gauge boson
X and the Z boson,

L ⊃ m2
ZXZμXμ: ð2Þ

The presence of these operators in the broken phase of the
electroweak theory have implications for the Uð1ÞX charges
of SM fields in the unbroken phase. For mass mixing to be
present, the SM Higgs field needs to be charged under
Uð1ÞX or an additional scalar needs to carry charges of the
SM gauge group and Uð1ÞX. Kinetic mixing requires either
a tree-level mixing between the hypercharge and the Uð1ÞX
gauge boson or the presence of fields charged under both
Uð1ÞY and Uð1ÞX such that the operator

L ⊃ −
ϵB
2
BμνXμν ð3Þ

is generated at loop level [3,4]. In this Letter,we focus on one
important exception to the latter argument. Mixing between
the photon and the X boson can also be generated if fields
carry Uð1ÞX charges and are SUð2ÞL multiplets. In this
situation, no renormalizable kinetic mixing operator is
present in the symmetric phase, but loop effects induce
kinetic mixing between the neutral component W3 of
SUð2ÞL and the X boson that generate the operator (1). In
particular, extensions of the SM in which SM fermion
doublets carry Uð1ÞX charges inevitably give rise to this
contribution. This class of models is of great phenomeno-
logical interest and includes extensions of the SM with a
gauged baryon lepton number difference Uð1ÞB−L and
gauged lepton family number differences Uð1ÞLμ−Le

,
Uð1ÞLe−Lτ

, and Uð1ÞLμ−Lτ
[5–23], as well as combinations

thereof [24–27]. In this Letter, we calculate the contributions
from mixing between the X and the neutral SUð2ÞL gauge
boson in a general form, which apart from few exceptions
[28–30] have been neglected or omitted in the literature,
and derive consistent expressions at the tree and loop level.
We further use these expressions to provide the first
formulation of low-energy theorems for Higgs couplings
with the X boson that are relevant for Higgs decays in any
theory involving kinetic mixing. We point out important
differenceswith the low-energy theorems for the SMmixing
between the photon and the Z boson [31–33].
Tree-level mixing.—In the special class of purely

secluded hidden photon models, in which the SM gauge
group is extended by an Abelian group Uð1ÞX under which
no fields are charged, it is sufficient to consider the mixing
term (3) between the new Uð1ÞX boson and the SM
hypercharge field.
However, if there are either new fields charged under

both Uð1ÞX and the SM SUð2ÞL or any of the SM fermion

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 129, 171801 (2022)

0031-9007=22=129(17)=171801(6) 171801-1 Published by the American Physical Society

https://orcid.org/0000-0003-4334-4228
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.171801&domain=pdf&date_stamp=2022-10-18
https://doi.org/10.1103/PhysRevLett.129.171801
https://doi.org/10.1103/PhysRevLett.129.171801
https://doi.org/10.1103/PhysRevLett.129.171801
https://doi.org/10.1103/PhysRevLett.129.171801
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


doublets are charged under Uð1ÞX, there will be an effective
operator

OWX ¼ cWX

Λ2
H†σiHWi

μνXμν; ð4Þ

in which H denotes the Higgs doublet and Wi
μν is the

SUð2ÞL field strength tensor [34].
The scale Λ will be identified with the mass of the heavy

states and the operator vanishes in the limitΛ → ∞. If these
states obtain their masses solely through the Higgs mecha-
nism, the scale Λ is identified with the vacuum expectation
value of the Higgs field, resulting in a dimensionless
coefficient of the W3 − X mixing operator OWX [37].
We can make this explicit by replacing the Higgs doublet
in (4) byH ¼ 1=

ffiffiffi
2

p ð0; vþ hÞT, so that mixing between the
neutral SUð2ÞL gauge boson and the hidden photon

L ⊃ −
ϵW
2
W3

μνXμν ð5Þ

is generated with a coefficient ϵW ¼ cWXv2=Λ2.
Including both (3) and (5), we can write the relevant part

of the SM and Uð1ÞX Lagrangian as

L ¼ −
1

4
ðBμν;W3

μν; XμνÞ

0
B@

1 0 ϵB

0 1 ϵW

ϵB ϵW 1

1
CA
0
B@

Bμν

W3μν

Xμν

1
CA

− g0jYνBν − gj3νW3ν − gxjxνXν; ð6Þ

where g0jYν , gjWν , and gxjxν denote the gauge couplings and
currents of the hypercharge Uð1ÞY , the weak SUð2ÞL, and
Uð1ÞX, respectively. It is straightforward to write the
Lagrangian in the broken electroweak phase [19]

LemþZ ¼ −
1

4
ðFμν; Zμν; XμνÞ

0
B@

1 0 ϵA

0 1 ϵZ

ϵA ϵZ 1

1
CA
0
B@

Fμν

Zμν

Xμν

1
CA

− ejemν Aν −
g
cw

jZνZν − gxjxνXν; ð7Þ

where Zμν is the field strength tensor of the Z boson, sw and
cw are the sine and cosine of the Weinberg angle θW , and
the currents and mixing parameters are related by

jemν ¼ g0cwjYν þ gswj3ν; ϵA ¼ cwϵB þ swϵW; ð8Þ

jZν ¼ −g0swjYν þ gcwj3ν; ϵZ ¼ −swϵB þ cwϵW: ð9Þ

If we want to enforce the absence of any SUð2ÞL-breaking
mixing term between the W3 and the X boson, we have to
require that ϵW ¼ 0 (at tree level) and [38–40]

ϵZ ¼ −
sw
cw

ϵA: ð10Þ

In this Letter, we focus on Uð1ÞX extensions under which
(some of) the SM fermions are charged, while the SM
Higgs remains uncharged. In the next section, we will show
explicitly how the operator OWX is generated at the one-
loop level in these models.
Loop mixing.—In the absence of tree-level mixing, the

coefficients ϵB and ϵW can be generated at loop level. We
consider the contribution of fermions f charged under
Uð1ÞX, Uð1ÞY , and SUð2ÞL. Although U(1) gauge bosons
couple to conserved vector currents, for the sake of
generality, we give the result for vector vfi ¼ Qf

Li þQf
Ri

and axial-vector couplings afi ¼ Qf
Li −Qf

Ri for both hyper-
charge i ¼ B and the hidden photon i ¼ X in terms of the
charges of the left- and right-handed fermions Qf

L and Qf
R

[41]. The relevant vacuum polarization amplitudes are
given in d ¼ 4 − 2ε dimensions by

Πμν
BX ¼ g0gx

8π2
X
f

Z
1

0

dx½afBafXm2
fg

μν

− ðvfBvfX þ afBa
f
XÞxð1 − xÞ½gμνq2 − qμqν��Cϵ; ð11Þ

Πμν
W3X ¼ ggx

8π2
X
f

Z
1

0

dx Tf
3 ½afXm2

fg
μν

− ðvfX þ afXÞxð1 − xÞ½gμνq2 − qμqν��Cϵ; ð12Þ

where

Cϵ ¼
2

ε
− γE þ log

�
μ2

m2
f − xð1 − xÞq2

�
þOðϵÞ: ð13Þ

The sum in the expression (12) runs over the degrees of
freedom of complete SUð2ÞL multiplets. First we focus on
the kinetic mixing terms in the second lines of (11) and
(12). Since all degrees of freedom of each multiplet carry
the same Uð1ÞX charges, the divergence in (12) automati-
cally cancels within each multiplet,

X
f

ðvfX þ afXÞTf
3 ¼ 0: ð14Þ

For kinetic mixing between two U(1) gauge bosons, the
divergence in (11) only cancels for charges with

X
f

ðvfBvfX þ afBa
f
XÞ ¼ 0: ð15Þ

In this special case, the tree-level counterterm is not needed
and the Uð1ÞX can be embedded in a direct product
SUð3ÞC × SUð2ÞL × Uð1ÞY ×GX with a non-Abelian
gauge group GX and a spontaneous symmetry breaking
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GX → Uð1ÞX [19]. This is the case for the gauged lepton
family number differences Lμ − Le, Le − Lτ, or Lμ − Lτ,

but not for B − L. Note that in the case afx ¼ 0 and denoting
the SM hypercharge for the fermion multiplet f by Yf,

condition (15) can be written as
P

f Yfv
f
x ¼ 0, as discussed

in [4,42–44].
Contributions to mass mixing, like the ones in the first

lines of (11) and (12), only arise if the fermions are chiral
with respect to Uð1ÞX and the hidden photon has axial-
vector couplings. In order to construct renormalizable
Yukawa couplings in any model with two U(1) gauge
groups with different charges for left- and right-handed
fermions, one needs to introduce a symmetry-breaking
scalar field charged under both gauge groups. This scalar
gives rise to a tree-level mass mixing between the two
gauge bosons, providing a counterterm for the divergence
in (11). The contribution to mass mixing with the neutral
SUð2ÞL gauge boson is always finite.
Matching the amplitudes (11) and (12) to the kinetic

mixing operators in (3) and (5), and defining the integral

Lf ¼
Z

1

0

dx xð1 − xÞ log
�

μ2

m2
f − xð1 − xÞq2

�
; ð16Þ

we find for the kinetic mixing coefficients (taking vfX ¼
2Qf

X and afX ¼ 0)

ϵB ¼ g0gx
8π2

X
f

½Yf
L þ Yf

R�Qf
XLf; ð17Þ

ϵW ¼ ggx
4π2

X
f

Tf
3Q

f
XLf: ð18Þ

The μ2 dependence cancels between the contributions from
all charged fermions. In the broken basis, the coefficients
for the mixing between the hidden photon and the photon
or Z boson read

ϵA ¼ egx
8π2

X
f

½2Tf
3 þ Yf

L þ Yf
R�Qf

XLf; ð19Þ

ϵZ ¼ gZgx
8π2

X
f

½2Tf
3 − s2wð2Tf

3 þ Yf
L þ Yf

RÞ�Qf
XLf: ð20Þ

We illustrate the importance of the operator OWX for the
correct matching with the example of a vectorlike SUð2ÞL
fermion doublet N ¼ ðNu; NdÞ with hypercharge YN ¼ 0
and two vectorlike singlets χ and η with hypercharge Yχ ¼
þ1 and Yη ¼ −1. All fields carry Uð1ÞX charges QX ¼ 1
and have mass terms

L ⊃ MðN̄N þ χ̄χ þ η̄ηÞ þ yuN̄ H̃ χ þ ydN̄Hη; ð21Þ

where the choice of equal vectorlike fermion masses for the
doublet and singlets simplifies the calculation but does not
change the conclusions. Upon electroweak symmetry
breaking, the mass eigenstates can be written as N1;2 ¼
1=

ffiffiffi
2

p ðNu � χÞ and N3;4 ¼ 1=
ffiffiffi
2

p ðNd � χÞ with masses
m1;2 ¼ M � yuv and m3;4 ¼ M � ydv, respectively.
There are now four diagrams contributing to ϵW with
N1, N2, N3, and N4 running in the loop. Adding up the
different contributions for q2 → 0, one obtains the finite
expression

ϵW ¼ ggx
192π2

log
�
m2

3m
2
4

m2
1m

2
2

�
: ð22Þ

In the limit v ≪ M, this expression reduces to

ϵW ¼ ggx
96π2

�
ðy2u − y2dÞ

v2

M2
þO

�
v4

M4

��
; ð23Þ

as expected from the operator (4) with Λ ¼ M. There is no
logarithm in the expansion (23), because the operator (5) is
a measure of SUð2ÞL breaking and for multiplets with
degenerate masses the mixing term ϵW ∝ Tr½T3� ¼ 0 van-
ishes independent of the representation. In the opposite
limit v ≫ M, only a logarithm is present,

ϵW ¼ ggx
96π2

log

�
yd
yu

�
: ð24Þ

The dimension-six operator OWX captures the SUð2ÞL
contributions to kinetic mixing of the X boson with W3,
and together with the contribution from X mixing with the
hypercharge gauge boson this reproduces the mixing with
the photon (and the Z boson) in the effective theory with
only Uð1Þem (and using the Z boson couplings). Examples
of theories in which the contribution to (5) arises at the
renormalizable level are gauge groups that are anomaly-
free with charged SM fields alone. For example, in the case
of Uð1ÞLμ−Lτ

, one has in the limit q2 → 0

ϵB ¼ g0gμ−τ
24π2

�
3 log

�
mμ

mτ

�
þ log

�
mνμ

mντ

��
; ð25Þ

ϵW ¼ ggμ−τ
24π2

�
log

�
mμ

mνμ

�
− log

�
mτ

mντ

��
: ð26Þ

The fact that loops of fermions that obtain their mass
from the electroweak scale can generate contributions to
operators that are effectively of dimension d − 2, while the
same diagrams generate contributions to dimension-d
operators if the fermions have vector masses M ≫ v is
not unique to kinetic mixing. It has been discussed for the
case of di-Higgs production gg → hh [37], the decay of
heavy pseudoscalar resonances into Higgs and Z bosons
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[45,46], and for exotic Higgs decays into Z bosons and
axions [47,48].
Low-energy theorems.—Using our general result for the

contribution to the vacuum polarization of two vector
bosons due to charged fermions in (11), we can formulate
a low-energy theorem for Higgs couplings to SM photons,
the Z and the X boson of a new Uð1ÞX. (The corresponding
contributions from charged scalars are straightforward to
derive.) We work in a low-energy theory where we keep the
Z boson, the photon, and the X boson as the relevant
degrees of freedom. All loop contributions are evaluated at
zero momentum transfer q2 ¼ 0, such that the full vacuum
polarization amplitude can be defined as

Πμν
ij ¼ Πij½gμνp1 · p2 − pμ

1p
ν
2� þ Δijgμν; ð27Þ

with all Πij ≡ Πijð0Þ and Δij ≡ Δijð0Þ, and

Πij ¼ −
gigj
8π2

1

6

X
f

Nf
cðvfi vfj þ afi a

f
j Þ log

�
μ2

m2
f

�
; ð28Þ

Δij ¼
gigj
8π2

X
f

Nf
ca

f
i a

f
jm

2
f log

�
μ2

m2
f

�
: ð29Þ

Note that there are also contributions to Πγγ , ΠγZ, ΠZZ, and
ΔZZ from charged SM bosons in the loop that are not
captured by (28) and (29). For fermions with both vector
masses and masses from Yukawa couplings, the axial-
vector couplings afi and a

f
j are defined in the fermion mass

eigenbasis here. The vector couplings vfi and vfj are the
same in the interaction and mass eigenbasis since they
commute with the rotation matrices. The different mixing
contributions can then be written as

L ¼ −
1

4
ðFμν; Zμν; XμνÞ

2
64
0
B@

1 0 ϵA

0 1 ϵZ

ϵA ϵZ 1

1
CAþΠ

3
75
0
B@

Fμν

Zμν

Xμν

1
CA

þ 1

2
ðAμ; Zμ; XμÞ½Mþ Δ�

0
B@

Aμ

Zμ

Xμ

1
CA: ð30Þ

Here, ϵA and ϵZ denote the tree-level contributions to
kinetic mixing, and the mass and mixing matrices are given
by M ¼ diagð0; m2

Z;m
2
XÞ, and

Π¼

0
B@

Πγγ ΠγZ ΠγX

ΠγZ ΠZZ ΠZX

ΠγX ΠZX ΠXX

1
CA; Δ¼

0
B@
0 0 0

0 ΔZZ ΔZX

0 ΔZX ΔXX

1
CA: ð31Þ

The tree-level kinetic terms in (30) are diagonalized by the
nonunitary transformation

G ¼

0
BBB@

1 0 − ϵAffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵ2A−ϵ

2
Z

p

0 1 − ϵZffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵ2A−ϵ

2
Z

p

0 0 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϵ2A−ϵ

2
Z

p

1
CCCA: ð32Þ

The matrices in (31) have to be rotated as well, and to linear
order in ϵA and ϵZ one finds

GTΠG ¼ Π −

0
B@

0 0 ϵAΠγγ þ ϵZΠγZ

· 0 ϵAΠγZ þ ϵZΠZZ

· · 2ϵAΠγX þ 2ϵZΠZX

1
CA; ð33Þ

GT ½M þ Δ�G ¼ ½M þ Δ� −

0
B@

0 0 0

· 0 ϵZðm2
Z þ ΔZZÞ

· · 2ϵZΔZX

1
CA;

ð34Þ

where the dots represent the entries obtained from mirror-
ing the matrices at their main diagonal.
Our goal is to derive the amplitudes for the Higgs decays

h → ViVj with Vi;j ¼ γ, Z, X from the vacuum polariza-
tion amplitudes via the low-energy theorem [32,49–51]

lim
ph→0

Mðh → ViVjÞ →
∂

∂v
MðVi → VjÞ: ð35Þ

Factoring out the gauge boson polarization vectors from the
decay amplitude,

Mh→ViVj
¼ Mμν

h→ViVj
ϵ�μ;λðp1Þϵ�ν;λ0 ðp2Þ; ð36Þ

the general Higgs decay amplitudes at low energy are

Mμν
h→ViVj

¼ ∂v½GTΠG�ij½pμ
2p

ν
1 − p1 · p2gμν�

þ ∂v½GT ½M þ Δ�G�ijgμν: ð37Þ

For n ¼ 1;…; N multiplets of fermions, which carry the
same charge under both gauge groups, one has for the nth
multiplet [33]

∂vΠn
ij ¼

gigj
48π2

Nn
cðvni vnj þani a

n
j Þ∂v log

�
detM†

nMn

μ2

�
; ð38Þ

∂vΔn
ij¼−

gigj
8π2

Nn
cani a

n
j∂vTr

�
M†

nMn log
�
M†

nMn

μ2

��
: ð39Þ

For illustration, we consider again the example of a
vectorlike doublet and two singlets charged under
SUð2ÞL and Uð1ÞX given in (21). In this case, the fermion
mass matrices read
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Mu ¼
�

M yuv

yuv M

�
; Md ¼

�
M ydv

ydv M

�
; ð40Þ

and the one-loop coefficients for the decay h → ViVj are

∂vΠij ¼
gigj
12π2

X
k¼u;d

ðvki vkj þ aki a
k
jÞ

−y2kv
M2 − ðykvÞ2

; ð41Þ

∂vΔij ¼ −
gigj
2π2

X
k¼u;d

aki a
k
jy

2
kv

�
1þ log

�
M2 − y2kv

2

μ2

�

þ M
ykv

log

�
M þ ykv
M − ykv

��
; ð42Þ

assuming all states are color singlets, Nk
c ¼ 1.

In the case of SM fermions in the loop, the expression in
(38) for the Higgs decays into photons, Z and X bosons
read

∂vΠγXð0Þ ¼
X
f

Nf
c

egx
12π2v

Qfv
f
X; ð43Þ

∂vΠZXð0Þ ¼
X
f

Nf
c

egx
24π2v

Tf
3 − 2s2wQf

swcw
vfX; ð44Þ

∂vΠXXð0Þ ¼
X
f

Nf
c

g2x
24π2v

vf2X : ð45Þ

In these expressions, the sum runs over all heavy fermions
in the loop with mf ≫ mh (i.e., the top quark) and the

vector charge is given by vfem ¼ 2Qf for the SM photon,

and by vfZ ¼ Tf
3 − 2s2wQf for the Z boson. To the best of

our knowledge, the low-energy theorem for the decays
h → γX, h → ZX, and h → XX have been derived for the
first time in this Letter. In particular, it should be noted that
the h → XX decay amplitude is generated purely from the
transverse component (i.e., ΠXX) of the vacuum polariza-
tion, since Abelian gauge bosons couple purely vectorially.
This is in stark contrast to the low-energy theorem for the
SM h → ZZ� amplitude, which is entirely dominated by
the axial coupling of the Z boson and hence is generated
from the longitudinal component of the vacuum polariza-
tion [31,52].

As an application of the low-energy theorems, we give
the branching fractions for the processes h → γX and h →
XX in a gauged Uð1ÞB−L model for subweak scale
mediators (mX ≪ mh). The different diagrams contributing
to the amplitude for h → γX are shown in Fig. 1. Under the
assumption of the simple tree-level mixing relation (10),
these can be expressed by

BRh→γX ≃ ð0.92g2x þ 6.36gxϵA þ 11.01ϵ2AÞ × 10−3; ð46Þ

BRh→XX ≃ g2xð2.5g2x − 5.7gxϵA þ 3.2ϵ2AÞ × 10−3 ð47Þ

to leading order in the gauge coupling gx and the tree-
level kinetic mixing parameter ϵA. Similar expressions
can be derived for the branching ratios BRðh → ZXÞ,
BRðX → hγÞ, and BRðX → hZÞ, depending on the mass
of the Uð1ÞX boson. Since in the low-energy limit only the
top quark contributes to the fermionic one-loop expressions
in (43)–(45), as all other SM fermions are much lighter than
the Higgs, the branching ratios in (46) and (47) are universal
for all Uð1ÞX groups that gauge baryon number B. We have
taken into account further important contributions toΠγγ and
ΠγZ from SM W boson loops, which can be found, e.g., in
[31,51,53–55]. We have explicitly checked that including
the exact W boson one-loop amplitude amounts to a
correction of ∼12% compared to the low-energy amplitude.
For values of gx ∼ 10−4 and ϵA ∼ 10−3, we find BRh→γX ∼
10−8 and BRh→XX ∼ 10−17. The former branching ratio is 4
orders of magnitude smaller than the SM process h → μμ
[56], which has been recently observed at the LHC for the
first time [57]. Thus, the process h → γX might be testable
at a future collider like the future circular hadron collider
(FCC-hh), aiming at collecting up to Oð1010Þ Higgs
bosons [58].
Conclusions.—We have derived consistent expressions

for kinetic mixing between the gauge boson of a Uð1ÞX
extension of the SM with the neutral component W3 of
SUð2ÞL that have generally been omitted in the literature.
These contributions to kinetic mixing exist only if the SM
SUð2ÞL is broken and are renormalizable if induced by SM
fields in the loop. For new, heavy states charged under
Uð1ÞX and SUð2ÞL, these contributions are suppressed by
the heavy scale. Therefore, mixing between the Uð1ÞX and
SUð2ÞL is most relevant for gauged anomaly-free global
symmetries of the SM, such as Uð1ÞB−L, Uð1ÞLμ−Le

,
Uð1ÞLe−Lτ

, Uð1ÞLμ−Lτ
, and combinations thereof. We have

FIG. 1. Diagrammatic representation of the different contributions from fermion loops to the amplitude Mðh → γXÞ up to quadratic
order in the mixing parameters ϵ ≈ ϵA ≈ ϵZ.
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further formulated a low-energy theorem expressing the
couplings of the Higgs boson to photons, Z and X bosons
through the vacuum polarization amplitudes responsible for
kinetic mixing. The result differs significantly from the
corresponding low-energy amplitudes for Higgs decays
into Z bosons. We use the low-energy theorem to obtain the
branching ratios for exotic Higgs decays relevant for all
models with charged baryon number.
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