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In this paper we consider a minimal classically conformal U(1) model of fermionic dark matter. We
calculate the one loop effective potential which generates the mass scale quantum mechanically via
dimensional transmutation in the spirit of Gildener and Weinberg, and examine the effects of the new
dark sector on the Standard Model Higgs as well as how the dark fermions receive a mass and can
produce the observed relic abundance. We then consider constraints on the model coming from collider
and direct detection experiments before calculating the thermal effects on the potential in the early
Universe. We examine the nature and conditions for a strongly first-order phase transition in our model
and calculate the associated gravitational wave signal and compare to the sensitivities of current and
proposed experiments.
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I. INTRODUCTION

After the discovery of the Higgs boson in 2012 by the
ATLAS and CMS experiments [1,2], the Standard Model
was complete and potentially valid all the way up to the
Planck scale. However it is known that there are problems
with the Standard Model and it cannot be a complete
description of reality. One of these problems is the so-called
hierarchy problem, the fact that the Higgs mass is unstable
against quantum corrections; there is also the issue that we
require dark matter in order to explain the observed density
of the Universe and new physics is also needed to explain
the baryon asymmetry of the Universe. The model pro-
posed in this paper goes some way to addressing each of
these concerns and would also have experimentally observ-
able consequences.
In the Standard Model, the Higgs vev is introduced at

tree level, but in the 1970s Coleman and Weinberg showed
that it was possible for the tree-level potential to have its
minimum at the origin and still develop a minimum away
from the origin at loop level [3]. This idea was known as
dimensional transmutation as we trade the dimensionful
parameter of the Higgs quadratic term for the dimension-
less parameter of the scalar coupling. As this also removes
the dimension-2 operator in the Standard Model, it removes
the source of corrections which depend quadratically on the

UV cutoff and hence is believed by many, including the
present authors, to solve the hierarchy problem1 [5,6].
However due to the relationship induced between couplings
in the dimensional transmutation, it has been known since
the 1990s that the Standard Model Higgs is too heavy to
come from a Coleman-Weinberg theory and one then
applies the Coleman-Weinberg mechanism in a hidden
sector [6–10] coupled to the Standard Model for example
via a Higgs portal interaction.
It has also been known for many years that some

additional matter to that observed in the Universe is needed
to explain many observations. The first piece of evidence
was seen in galactic rotation curves [11] and there have
since been many other pieces of evidence, such as obser-
vations of galactic collisions [12] and data from the CMB
experiment [13], which support the hypothesis of particle
dark matter [14]. A popular model of dark matter is that the
dark matter particle is charged under some new gauge
group while being a singlet under the Standard Model
gauge group and conversely all Standard Model particles
are singlets under the dark gauge group. The number of
particles in the dark sector (those charged under the new
gauge group) varies heavily from model to model, some are
very minimal including only one particle, while some
contain multiple vectors, scalars, and fermions. The dark
sectors then “communicate” with the Standard Model
through either a Higgs portal or kinetic gauge mixing.
See [15–36] for examples.
Finally, it was demonstrated by Sakharov that in order to

generate the required baryon asymmetry of the Universe,
thermal equilibrium must be violated in the early Universe
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1Though this point is still open for debate and is far from being
settled, see e.g. [4].
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(amongst other requirements) [37]. This requirement
can be satisfied if there is a first-order phase transition
in the early Universe. However it is known that in the
Standard Model the electroweak phase transition is second
order/crossover, but this can be modified with the addition
of new physics to create a first-order phase transition and
go some way to generating the baryon asymmetry of the
Universe e.g. [38–40]. It is also well known that a first-
order phase transition can lead to the production of
gravitational waves. There were several papers in the late
1980s to early 1990s which first calculated this possibility
[41–44] and it is now a common consideration in dark
matter models [45–59].
In this paper, we attempt to simultaneously alleviate

these various shortcomings by augmenting the Standard
Model with a dark sector and imposing classical scale
invariance. In this way we can generate the required dark
matter abundance while simultaneously solving the hier-
archy problem through the demand of conformal sym-
metry at the classical level (see footnote 1). With this new
model it will also be possible to generate a strongly first-
order electroweak phase transition, thus aiding in the
generation of the baryon asymmetry (although it should
be noted that we will not seek to satisfy all of Sakharov’s
conditions).
The structure of the paper is as follows: in Sec. II we

introduce the model and derive the symmetry breaking. In
Sec. III we calculate the relic abundance of the model and
examine in which areas of parameter space we can
reproduce the observed relic abundance as well as imposing
constraints arising from collider searches for new particles
and direct detection experiments looking for dark matter. In
Sec. IV we examine the theoretical constraints on the
model, such as ensuring that the vacuum is stable, and we
respect perturbative unitarity and that the model is pertur-
bative. Finally, in Sec. V we calculate the potential in the
early Universe before looking at which areas of phase space
give rise to a strongly first-order phase transition and the
associated gravitational wave signal before we conclude
in Sec. VI.

II. MODEL AND THE RADIATIVE
GENERATION OF SCALE

We introduce a classically scale-invariant model with a
dark sector charged under a new Uð1Þ symmetry and
coupled to the Standard Model through a Higgs portal
coupling. Our model is similar to that considered in [60],
although we extend their model by allowing our fermions
to have different masses (as well as in later sections looking
at the model in the early Universe by investigating the
phase transition and a production of gravitational waves).
The model is given by

L ¼ LSM þ Lkin þ LY − V0ðH; SÞ ð2:1Þ

where LSM is the Standard Model Lagrangian without the
Higgs potential, and Lkin is the kinetic terms for the new
fields2:

Lkin ¼ jDμSj2 −
1

4
F0
μνF0μν þ χ̄aL=DχaL þ χ̄aR=Dμχ

a
R: ð2:2Þ

All new particles, S; χ; A0
μ are singlets under the Standard

Model gauge group, GSM ¼ SUð3ÞC × SUð2ÞL ×Uð1ÞY
and all SM particles are singlets under the new gauge
group. The charges of the new particles are given in Table I.
F0
μν is the field strength tensor associated with the gauge

boson of the newUð1Þ and there is implied summation over
repeated indices.
LY is the Yukawa coupling of the dark sector:

LY ¼ y1;Dχ̄1LSχ
1
R þ y2;Dχ̄2LSχ

2
R þ H:c: ð2:3Þ

The tree-level potential for scalar fields of the new theory is
given by

V0ðH; SÞ ¼ λHðH†HÞ2 þ λSðS�SÞ2 − λPðH†HÞðS�SÞ:
ð2:4Þ

Note that we require λP > 0 to create a true minimum away
from the origin. Working in the unitary gauge we can write

H ¼ 1ffiffiffi
2

p
�
0

h

�
; S ¼ sffiffiffi

2
p ð2:5Þ

where h and s are real; then the classical scalar potential
may be written as

V0ðh; sÞ ¼
λH
4
h4 þ λS

4
s4 −

λP
4
h2s2: ð2:6Þ

This potential is classically scale invariant in the sense
that it does not contain any dimensionful parameters at tree
level, and all scales have to be generated radiatively by
taking into account quantum effects. Symmetry breaking
in a classically scale-invariant model was first considered

TABLE I. The charges of the dark sector particles under the
new Uð1ÞD symmetry. Note that this assignment of charges
renders the theory anomaly free.

Field S χ1L χ1R χ2L χ2R

Uð1ÞD 1 1
2

− 1
2

− 1
2

1
2

2Note that the term ϵFμνF0μν, where Fμν is the Uð1ÞY field
strength tensor, is also allowed by gauge invariance but we
neglect this term in light of strong collider constraints [61,62] and
leave it for future work.
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in [3]. In models such as ours many authors consider λP to
be small so that the backreaction of the Standard Model on
the dark sector is negligible and one can treat the dark
sector in the original Coleman-Weinberg formalism (see
e.g. [6,10,63]); however, a more general formalism was
later developed by Gildener and Weinberg in [64] to deal
with theories of multiple scalars and it is this formalism we
shall follow here in order to not be restricted in our choice
of parameters.

A. The Coleman-Weinberg approach

The seminal Coleman-Weinberg paper [3] considered a
simple model of a single classically massless scalar field ϕ
interacting with gauge fields. The effective potential for ϕ
at one-loop level is given by [for the case where ϕ is
coupled to SUð2Þ gauge fields with the gauge coupling g,
see e.g. [28]]

VCWðϕÞ ¼
λϕðμÞ
4

ϕ4 þ 9

1024π2
g4ðμÞϕ4

�
log

ϕ2

μ2
−
25

6

�
:

ð2:7Þ

Here μ is the renormalization group (RG) scale and we are
keeping one-loop corrections arising from interactions of ϕ
with the SU(2) gauge bosons in the hidden sector, but
neglecting the loops of ϕ. To justify this, the scalar self-
coupling λϕϕ4=4 at the relevant scale μ ¼ hϕi is assumed to
be small, λϕ ∼ g4 ≪ 1 relative to the one-loop gauge fields
contributions to VCWðϕÞ. This can be achieved as follows:
in a theory where λϕ has a positive slope, we start at a
relatively high scale where λϕ is positive and move toward
the infrared until we approach the value of μ where λϕðμÞ
becomes small and is about to cross zero. This is the
Coleman-Weinberg scale where the potential (2.7) develops
a nontrivial minimum and ϕ generates a nonvanishing vev.
Minimizing VCWðϕÞ at μ ¼ hϕi gives

λϕ ¼ 33

256π2
g4 at μ ¼ hϕi; ð2:8Þ

which is consistent with neglecting the scalar loop con-
tributions to (2.7) in the first place.
This approach can be generalized to scale-invariant

models with multiple scalar fields if one assumes that
the portal couplings of additional scalars to the CW scalar
field ϕ are small. In this case one uses a two-step process,
where one first generates the vev for the CW scalar hϕi and
then transmits this vev via portal couplings to the remaining
scalars as explained in [6,10].
In this paper we will follow instead a more general

formalism of Gildener and Weinberg in [64] where no
assumptions need to be made about the size of the portal
couplings to additional scalars to minimize their back-
reaction to the CW scalar vev.

B. The Gildener-Weinberg method

In this approach we do not need to choose which of the
available scalar fields plays the role of the CW scalar that
develops the vev first. Here all available scalars are treated
democratically. To apply the method [64] to our two-scalar
field model (2.6) we write the scalars h and s in the form

h ¼ n1ϕ; s ¼ n2ϕ; ð2:9Þ
where n ¼ ðn1; n2Þ is a certain 2D unit vector that will be
determined below, and ϕ is the analog of the CW scalar
field whose vev is arbitrary at the classical level but fixed by
the inclusion of quantum effects in the effective potential.
The classical potential (2.6) then reads

V0ðh; sÞ ¼ ϕ4

�
λH
4
n41 þ

λS
4
n42 −

λP
4
n21n

2
2

�
: ð2:10Þ

The main idea of the Gildener-Weinberg approach is that,
as in the Coleman-Weinberg approach, there is a single
classically flat direction in the scalar fields space, given by
the ray ðh; sÞ ¼ nϕ, wheren is the unit vector specifying this
ray, and hϕi is arbitrary at tree level. Specifically, this means
that the tree-level ϕ4 vertex in (2.10) is set to zero, or more
preciselymade parametrically smaller than the leading-order
one-loop effects, in complete analogy with (2.8),

λH
4
n41 þ

λS
4
n42 −

λP
4
n21n

2
2 ≪ 1: ð2:11Þ

The remaining directions in the scalar fields space are lifted
already by the classical potential. Thus we search for the
minimum (or more precisely the classical flat direction) of
V0 by solving

∂V0

∂ni
¼ 0 along with setting the right-hand side

of (2.11) to zero. This leads to the constraints

λHn21 −
λP
2
n22 ¼ 0; ð2:12Þ

λSn22 −
λP
2
n21 ¼ 0; ð2:13Þ

λH
4
n41 þ

λS
4
n42 −

λP
4
n21n

2
2 ¼ 0: ð2:14Þ

In quantum theory, these equations are supposed to be
satisfied at a certainvalue of theRG scaleμ ¼ ΛGW,which is
the dimensional transmutation scale responsible for the
generation of the vev of the scalar field ϕ.3

3In general, there is no guarantee that in every scalar theory one
can find a point where these linear combinations of the couplings
can be simultaneously set to zero, just like in the simple Coleman-
Weinbergmodel there was no automatic guarantee that there was a
scale at which the quartic coupling λϕ was ≪1. However for the
families of the theories where the RG running allows these
conditions to be satisfied, the value of the RG scale where it
happens serves as the definition of the GW scale ΛGW.
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The solution of the above equations determines the unit
vector n in terms of the couplings of the model,

n21 ¼
λP

λP þ 2λH
; ð2:15Þ

n22 ¼
2λH

λP þ 2λH
: ð2:16Þ

We now expand the fields about their minima, writing
h ¼ wn1 þ h̃, s ¼ wn2 þ s̃ where w ¼ hϕi is a classically
flat direction.4 This leads to the mass matrix

M2 ¼ w2

�
2λHn21 −λPn1n2

−λPn1n2 2λsn22

�
ð2:17Þ

after using the relations in (2.12). By standard results of
linear algebra, this matrix can be diagonalized by a rotation
matrix of the form

O ¼
�
cos θ − sin θ

sin θ cos θ

�
ð2:18Þ

where

tan ð2θÞ ¼ λPn1n2
λsn22 − λHn21

: ð2:19Þ

We can now write the mass eigenstates as

�
h1
h2

�
¼ O

�
h

s

�
ð2:20Þ

where we identify h1 with the SM Higgs. The mass
eigenvalues are given by

M2
h1;h2

¼w2
�
λHn21þ λsn22�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλHn21−λsn22Þ2þλ2Pn

2
1n

2
2

q �
:

ð2:21Þ

After using the relations in (2.15) to simplify this we obtain

M2
h1
¼ λPw2; ð2:22Þ

M2
h2

¼ 0: ð2:23Þ

We recall that w is a classically flat direction that will be
stabilized in (2.29) and also note that (2.23) is true only at
tree level [cf. (2.30) below]. We shall take the tree-level
mass for h1 but although h2 is massless at tree level it

receives sizeable corrections at the one-loop level which we
shall calculate at the end of this section.
To find the minimum in the quantum theory and lift the

classically flat direction w, we should now calculate the
one-loop effective potential for the scalar fields (2.9). A
standard calculation in the MS scheme leads to the result
(see e.g. [65] for a review)

V1ðϕÞ¼
1

64π2

�X
bosons

niM4
i ðϕÞ

�
log

�
M2

i ðϕÞ
Λ2
GW

�
−
3

2

�

− X
fermions

niM4
i ðϕÞ

�
log

�
M2

i ðϕÞ
Λ2
GW

�
−
3

2

��
; ð2:24Þ

where we have set the RG scale μ at which the effective
potential is computed to be equal to ΛGW. This allowed us
to drop the tree-level ϕ4 contribution (2.10) to the expres-
sion for V1ðϕÞ.
We also note that since h2 is massless at tree level it does

not contribute to the effective potential at one loop so the
summation runs over h1;W; Z; Z0; t; χ1; χ2 with degrees of
freedom ni ¼ 1; 6; 3; 3; 12; 4; 4 respectively. Furthermore,
while in principle all SM fermions contribute to the
potential, we, as is standard in the literature, account only
for the contribution of the top quark (with a factor of 3 due
to color) as this is the most significant. Since we are
working in a theory with no intrinsic masses we can write

for all particles M2ðϕÞ ¼ M2ϕ2

w2 where M2 is the observed
mass matrix evaluated at ϕ ¼ w, so we may rewrite the
above equation as

V1ðϕÞ ¼ Aϕ4 þ Bϕ4 log

�
ϕ2

Λ2
GW

�
ð2:25Þ

where

A ¼ 1

64π2w4

�X
bosons

niM4
i

�
log

�
M2

i

w2

�
−
3

2

�

−
X

fermions

niM4
i

�
log

�
M2

i

w2

�
−
3

2

��
ð2:26Þ

B ¼ 1

64π2w4

�X
bosons

niM4
i −

X
fermions

niM4
i

�
: ð2:27Þ

Using the expression for the effective potential (2.25) we
can now determine the value of the ϕ vev w, by solving
ðdV1=dϕÞjϕ¼w ¼ 0. Doing this we obtain the relationship

log

�
w

ΛGW

�
¼ −

1

4
−

A
2B

; ð2:28Þ

which determines w in terms of the dimensional trans-
mutation scale ΛGW [which we recall is the scale where the

4The value of w will be stabilised below by the inclusion of
quantum effects.
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Gildener-Weinberg relations between the scalar couplings
(2.12)–(2.14) were satisfied].
Using the relation (2.28) allows us to simplify the

formula for our potential by removing the dependence
on ΛGW in favor of the now determined vev w,

V1ðϕÞ ¼ Bϕ4

�
log

�
ϕ2

w2

�
−
1

2

�
: ð2:29Þ

At the one-loop level the mass of h2 is given by5

M2
h2
¼ ∂

2V
∂ϕ2

				
ϕ¼w

¼ 8Bw2: ð2:30Þ

The value and the sign of constant B is determined by the
matter content of the theory (largely by interactions of ϕ
with the Standard Model fields) via (2.26). In what follows,
we will only consider the models for which B ≥ 0 so
that M2

h2
≥ 0.

Finally we end this section with a summary of which
parameters are free and which others are determined by the
constraints previously listed. Firstly vh ¼ 246 GeV and
Mh1 ¼ 125 GeV are known from experiment. λh has a
certain value within the Standard Model but it has not been
experimentally measured so we shall regard this as unde-
termined. We have only one remaining degree of freedom
in the scalar sector, once we have picked a value of e.g. w
then λP is determined by (2.22) and once λP is determined
then the remaining scalar couplings must take their values
to satisfy (2.12) (with n1 and n2 already being determined
by the vevs). For our purposes it shall be more convenient
to take sin θ, the mixing angle as our free parameter and
determine the scalar couplings and vevs from here.

We shall also take Mh2 as a free parameter and then MZ0

is determined by (2.30), which in turn determines gD as
MZ0 ¼ gDvS. Finally we have complete freedom in choos-
ing the mass of our fermions, Mχ1 , Mχ2 and these in turn
shall determine the Yukawa couplings yD;1=2. For later
convenience we also define ΔMχ as the mass splitting
between the two fermions and without loss of generality we
shall always take χ1 to be the lighter of the two.
In summary, the free parameters of our model are sin θ,

Mh2 , Mχ1 , and Mχ2 .

III. RELIC DENSITY AND EXPERIMENTAL
CONSTRAINTS

We can consider our model as a model of dark matter,
with χ1 and χ2 serving as the dark matter candidates. To
calculate the relic density provided by our mode we use
micrOMEGAs [66] with FeynRules [67] being used to generate
the model file. At the same time we also use micrOMEGAs to
implement several experimental constraints on our model.
One of the primary constraints on dark sector models

comes from direct detection experiments where dark sector
particles can scatter off Standard Model nuclei. This
happens in our model due to the mixing between the two
scalars. This constraint can be done within micrOMEGAs.
We also have constraints on the scalar sector of our model.

There have been many searches at the LHC for additional
light and heavy scalars. So far all such searches have
produced null results and so these analyses constrain the
valid parameter space of our model. We implement these
constraints using theHiggsBounds andHiggsSignals codes [68,69].
Below we plot the relic density as a function of some

of our free parameters and also show some of the
constraints coming from direct detection and collider
searches. The relic density of the Universe has been
measured as ΩDMh2 ¼ 0.1200� 0.0020 [70]. As can be
seen in Fig. 1(a), in order to obtain the correct relic density,

FIG. 1. Areas of our parameter space which do not produce an overabundance of dark matter. (a) The points which correctly produce
an acceptable relic abundance for sin θ ¼ 0.25, ΔMχ ¼ 0 GeV. (b) The points which produce an acceptable relic abundance for
sin θ ¼ 0.30, ΔMχ ¼ 100 GeV.

5By examining previous relations one can show that h2 and ϕ
turn out to be the same field.
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we need the mass of our dark fermions to lie in the region
around a resonance i.e. Mχ1;2 ≈Mh1;2=2, although it should
be noted that the allowed region is not particularly narrow.
This near-resonance regime is necessary in order for the
dark matter to annihilate sufficiently quickly to not produce
an overabundance. An alternative is to have the dark matter
sufficiently heavy that the annihilation rate is enhanced by
the phase space, as shown in Fig. 1(b). Note that the smaller
the value of sin θ the narrower the resonance, or the larger
the mass of the dark fermions should be as the annihilation
rate is additionally suppressed. Here ΔMχ ¼ jMχ1 −Mχ2 j
and we always choose χ1 to be the lighter fermion.
Hence nonobservation of dark matter at the LHC

corresponds to an upper bound on the value of sin θ.
Experimental evidence coming from the observed Higgs
signal rates requires sin θ < 0.44 independently of the mass
of h2. There is also a mass-dependent constraint, which
requires sin θ ≲ 0.32 for Mh2 ≳ 200 GeV and sin θ ≲ 0.2
for Mh2 ≳ 400 GeV, mostly coming from restrictions on
the NLO corrections to the mass of the W boson (obviously
other constraints exist but none as severe as those coming
from the W boson mass in our considered parameter range)
[71]. We also in general require Mh2 > Mh1=2 to respect
bounds coming from the decays of the SM Higgs to
invisibles. We show an example plot of the allowed region
of parameter space in Fig. 2(a). The constraints are largely
independent of the fermion mass splitting (although there is
some effect).
There are also constraints on the masses of our dark

fermions coming from direct detection experiments.
Although the fermions do not interact directly with SM
quarks/hadrons, they can still interact through the exchange
of a mixed scalar, although such diagrams are suppressed
by a factor of sin θ. Such interactions are proportional to
1

M2
h1

− 1
M2

h2

[72] and so we require Mh1 ≈Mh2 to avoid direct

detection constraints. Alternatively we can suppress these

diagrams by taking the Yukawa coupling of the dark
fermions to the scalars to be small i.e. our dark fermions
will be light. As one would expect, these constraints
become more relaxed for smaller values of sin θ. These
constraints are shown in Fig. 2(b) and as for the scalar
sector, the constraints are mostly independent of ΔMχ .

IV. THEORETICAL CONSTRAINTS

We shall now examine constraints on the coupling
constants coming from vacuum stability, perturbativity,
and unitarity. From (2.29), we see that the potential is
bounded from below and hence the vacuum is stable if and
only if B ≥ 0. As pointed out at the end of Sec. II, we only
consider the models which satisfy this condition and as a
result we have a positive value ofM2

h2
which we treat as one

of our free parameters. We also require that the vacuum be
stable (bounded from below) at tree level which implies

λ2P < 4λSλH; λH > 0: ð4:1Þ

The requirement of perturbativity simply implies that we
have jgij < const for all couplings gi, i.e. gi ¼ λP; λH; yD…
[71]. We choose a constant of 2π in agreement with [73] for
the gauge and Yukawa couplings. Due to the difference in
loop corrections for scalar couplings we impose the bound
jλij < 4π2 for the three scalar couplings. We derive and
numerically solve the RG equations using SARAH [74]
and list them in Appendix A.
Checking the resulting constraints involves evolving the

various coupling constants up to high scales using numeri-
cal solutions to the RG equations. Rather than doing it for
the entire parameter space we will check these constraints
for a selection of benchmark points which we define in the
next section. Also it is not necessary for these conditions to
hold at arbitrarily high scales (perturbativity and vacuum
stability are not absolute requirements in any case) as there

FIG. 2. Constraints from collider and direct detection experiments. (a) Scatter plot ofMχ1 againstMh2 for sin θ ¼ 0.30,ΔMχ ¼ 5 GeV
with points allowed by constraints from the scalar sector in green and forbidden points in red. (b) Scatter plot of Mh2 against Mχ1 for
sin θ ¼ 0.20, ΔMχ ¼ 0 GeV with points allowed by constraints from the direct detection experiments in green and forbidden
points in red.
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may be new physics which arises at some higher scale
which then contributes in such a way to e.g. stabilize the
vacuum. Hence when we numerically check these con-
straints we only require them to hold up to ΛGW [defined by
Eq. (2.28)] and then give the higher scale at which they are
violated; see Table II.
We now consider constraints from perturbative unitarity

for our theory. A partial wave expansion for a scattering
amplitude gives

Mðs; θÞ ¼ 16π
X∞
J¼0

ð2J þ 1ÞAJðsÞPKðcos θÞ ð4:2Þ

where PJ are the Legendre polynomials and AJ are the
partial wave amplitudes. Unitarity then imposes the bound
that jReA0j < 1

2
. We consider the tree-level amplitudes for

the processes Z0
LZ

0
L → Z0

LZ
0
L; h1h1 → h1h1; h2h2 → h2h2.

We use FeynArts [75] and FeynCalc [76] to aid in the
computation of the amplitudes. For the scalar process,
the only relevant diagram at high energy is the four-point
interaction (all others are suppressed by ∼ 1

s due to internal
propagators) and so the demand for perturbative unitarity
simply imposes

6

16π
ðλHcos4θ − λPsin2θcos2θ þ λSsin4θÞ <

1

2
; ð4:3Þ

6

16π
ðλHsin4θ − λPsin2θcos2θ þ λScos4θÞ <

1

2
: ð4:4Þ

For the vector boson scattering we obtain

M ¼ −4
g2Dv

2
ssin2θ
M4

Z0

�ðs − 2M2
Z0 Þ2

s −M2
h1

þ ðt − 2M2
Z0 Þ2

t −M2
h1

þ ðu − 2M2
Z0 Þ2

u −M2
h1

�
− ð4:5Þ

4
g2Dv

2
s

M4
Z0
cos2θ

�ðs−2M2
Z0 Þ2

s−M2
h2

þðt−2M2
Z0 Þ2

t−M2
h2

þðu−2M2
Z0 Þ2

u−M2
h2

�

ð4:6Þ

≈ −4
sin2θ
M2

Z0
ðsþ tþ uþ 3M2

h1
Þ

− 4
cos2θ
M2

Z0
ðsþ tþ uþ 3M2

h2
Þ ð4:7Þ

≈ − 4sin2θ

�
4þ 3

M2
h1

M2
Z0

�
− 4cos2θ

�
4þ 3

M2
h2

M2
Z0

�
: ð4:8Þ

Hence we require

4sin2 θ

�
4þ3

M2
h1

M2
Z0

�
þ4cos2 θ

�
4þ3

M2
h2

M2
Z0

�
< 8π: ð4:9Þ

Equations (4.3), (4.4), and (4.9) summarize the unitarity
constraints that we require to hold for our model.

V. PHASE TRANSITION AND GRAVITATIONAL
WAVE SIGNAL

To discuss the phase transition and gravitational waves
we must first compute the one-loop effective potential at
finite temperature. It is known that at one-loop level, the
potential factorizes into the zero temperature potential
(which we have already calculated) plus thermal correc-
tions. The thermal corrections are given by6

VT ¼ T4

2π2

�X
bosons

niJB

�
M2

i ðϕÞ
T2

�
−
X

fermions

niJF

�
M2

i ðϕÞ
T2

��

ð5:1Þ

where the functions JB=F are defined by

JB=Fðx2Þ ¼
Z

∞

0

dyy2 log ð1 ∓ e−
ffiffiffiffiffiffiffiffiffi
x2þy2

p
Þ: ð5:2Þ

Finally to go beyond the simple one-loop expressions
for the effective potential we were using until now, we now

TABLE II. Our selection of benchmark points. The Λ show the scale at which we violate perturbativity, perturbative unitarity, and
vacuum stability, respectively. All chosen points also obey the experimental constraints coming from collider searches and direct
detection experiments. Note that due to numerical issues in the software we were unable to determine the exact scale at which
perturbativity is violated for most of our benchmark points and so we indicate the maximum scale we were able to check.

sin θ Mh2 Mχ1 Mχ2 Ωh2 Λunit Λperturbativity Λstablity

BP1 0.30 151 GeV 59.5 GeV 59.5 GeV 0.070 2.2 × 109 GeV >1016 GeV 9.3 × 104 GeV
BP2 0.10 320 GeV 150 GeV 155 GeV 0.078 3.0 × 1015 GeV >1019 GeV 3.2 × 105 GeV
BP3 0.40 121 GeV 591 GeV 592 GeV 0.118 6.3 × 108 GeV >1010 GeV 8.9 × 104 GeV
BP4 0.20 331 GeV 61 GeV 161 GeV 0.077 1.8 × 106 GeV >1012 GeV 2.0 × 105 GeV
BP5 0.30 120 GeV 901 GeV 1001 GeV 0.118 5.8 × 106 GeV >109 GeV 1.2 × 105 GeV

6This can be calculated using exactly the same diagrams as the
zero-temperature potential but now using the Feynman rules for a
theory at finite temperature, see [65] for a review.
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add the resummed contributions of the so-called “daisy
diagrams” (shown in Fig. 3) to improve the validity of
perturbation theory. This was first done for the Standard
Model in [77,78], and for our model we have

Vdaisy ¼
T
12π

X
bosons

niðM3
i ðϕÞ − ðM2

i þ Πiðϕ; TÞÞ32Þ ð5:3Þ

where Πiðϕ; TÞ is the thermal mass correction. Note that,
to leading order, fermions do not receive a thermal mass
and so do not contribute to the daisy potential (5.3) and also
that it is only the longitudinal mode of the gauge bosons
which receives a thermal mass, so the relevant degrees of
freedom should be divided by three. The thermal masses
are given by

Πh=s ¼

2
6664
T2

�
λH
4
þ λP
24

þg02

16
þ3g2W

16
þy2t

4

�
0

0 T2

�
λS
4
þ λP
24

þg2D
4
þy2χ1
12

þy2χ2
12

�
3
7775; ð5:4Þ

ΠZ0 ¼ g2DT
2

3
; ð5:5Þ

ΠW ¼ 11

6
g2WT

2; ð5:6Þ

ΠZ ¼ 11

6
g2WT

2; ð5:7Þ

where the results for the W and Z bosons were taken
from [77]. Hence the full one-loop effective potential is
given by

Vðϕ; TÞ ¼ V1ðϕÞ þ VTðϕ; TÞ þ Vdaisyðϕ; TÞ: ð5:8Þ

Note that to determine the mass of the scalars at finite
temperature one must add Eqs. (2.17) and (5.4) before
finding the eigenvalues. It is known that in order to generate
matter-antimatter asymmetry we must have a strongly first-
order electroweak phase transition. The order parameter for
these transitions is given by the ratio ϕc=Tc, where the
critical temperature, Tc, and the critical field strength, ϕc
are defined by

Vðϕc; TcÞ ¼ 0; ð5:9Þ

∂ϕVðϕc; TcÞ ¼ 0; ð5:10Þ

i.e. ϕc is a local minimum of the potential that is degenerate
with the minimum at the origin at Tc. To have a strongly
first-order phase transition we then require ϕc=Tc ≳ 1. The
numerical calculation of the order parameters and of
various parameters associated with the gravitational wave
signal becomes quite slow and so in this section rather than
completing a full exploration of the phase space we choose
several benchmark points consistent with the constraints
from Secs. III and IVand compute the order parameters and
gravitational wave signal. Our benchmark points are listed
in Table II.
It is well known that a strongly first-order phase

transition will produce a gravitational wave signal. Here we
calculate this signal and examine the possibility of detec-
tion at both present detectors (LIGO, VIRGO, etc.) and
future detectors (LISA, DECIGO, etc.).
A first-order phase transition occurs when there is a

potential barrier between a false minimum (usually at
ϕ ¼ 0) and a true minimum. When this occurs the
transition happens as bubbles of true vacuum nucleate in
the false vacuum. A gravitational wave signal is produced
by three different mechanisms, as reviewed in [79]:
collisions between bubbles, sound waves in the plasma,
and magnetohydrodynamic turbulence.
Before going on to calculate the signal we briefly outline

some bubble nucleation theory necessary for our calcu-
lation. The vacuum at ϕ ¼ 0 only becomes metastable at
temperatures T < Tc; however, if the barrier is sufficiently
high then the tunneling rate may remain very small even for
temperatures much below the critical temperature. Hence it
is conventional to also define the nucleation temperature at
which the probability of one bubble nucleating in one
horizon volume is approximately one. The theory of such
transitions and bubble nucleation was first addressed in
[80,81] where it was shown that the decay rate was given by

FIG. 3. An example of a daisy diagram [65] with a scalar field
appearing in the outside bubbles. This is then resummed to all
orders (the outside series of bubbles) to obtain the thermal mass
correction.

VALENTIN V. KHOZE and DANIEL L. MILNE PHYS. REV. D 107, 095012 (2023)

095012-8



Γ
V
¼ Ae−S4 ð5:11Þ

where the left-hand side is the decay rate per unit volume
and on the right-hand side we have A which is a ratio of
determinants of quadratic fluctuation operators around the
bubble solution. S4 is the action computed on the field
profile, ϕ, satisfying the differential equation

d2ϕ
dρ2

þ 3

ρ

dϕ
dρ

¼ V 0ðϕÞ ð5:12Þ

which is the Euler-Lagrange equation for a field in four
dimensions with an Oð4Þ symmetry, ϕðx; tÞ ¼ ϕðρÞ, and
the boundary conditions,

lim
ρ→∞

ϕðρÞ ¼ 0; ∂ρϕð0Þ ¼ 0: ð5:13Þ

The solution to this classical problem corresponds to the
four-dimensional bubble or bounce configuration.
It was shown in [82] that when working in a theory at

finite temperature this four-dimensional approach should
be modified to the effectively three-dimensional setup,

Γ
V
¼ Ae−S3=T ð5:14Þ

and the field profile ϕ should satisfy

d2ϕ
dρ2

þ 2

ρ

dϕ
dρ

¼ V 0ðϕÞ ð5:15Þ

with the same boundary conditions (5.13). At finite
temperature, due to the periodicity of the imaginary
time-dimension 0 ≤ τ ≤ 1=T in the Matsubara formalism,
we essentially work in a three-dimensional theory.7 Note
that it is not possible, in general, to analytically calculate
the value of the prefactor A; instead it is common practice in
the literature to take it as OðT4Þ on dimensional grounds.
It was shown in [83] that the nucleation temperature, TN ,

is given by solving the equation S3ðTNÞ=TN ≈ 140. To
describe the gravitational wave spectrum resulting from the
first-order phase transition detailed above, it is conventional
to define two more parameters α and β, in addition to the
nucleation temperature TN , that characterize the phase
transition:

α ¼ 1

ρradðTNÞ
�
ΔVðTNÞ − TN

dΔV
dT

				
T¼TN

�
ð5:16Þ

β

H�
¼ TN

dðS3=TÞ
dT

				
T¼TN

ð5:17Þ

where H� is the Hubble constant at the time of nucleation,
ρrad is the radiation energy density,

8 andΔVðTÞ¼Vð0;TÞ−
VðvðTÞ;TÞ where vðTÞ is the global minimum of the
potential at temperature T. The gravitational wave energy
density,ΩGW, as a function of frequency, f, is then given by
the sum of the three production modes [79]

ΩCollh2 ¼ 1.67 × 10−5
�
H�
β

�
2
�

κα

1þ α

�
2
�
100

g�

�1
3

×

�
0.11v3w

0.42þ v2w

�
SCollðfÞ; ð5:18Þ

ΩSWh2¼ 2.65×10−6
�
H�
β

��
κvα

1þα

�
2
�
100

g�

�1
3

vwSSWðfÞ;

ð5:19Þ

ΩMHDh2 ¼ 3.35 × 10−4
�
H�
β

��
κMHDα

1þ α

�3
2

×

�
100

g�

�1
3

vwSMHDðfÞ; ð5:20Þ

where SðfÞ are the known functions parametrizing the
dependence on frequency (i.e. determining the shape of
the curve as a function of frequency), vw is the velocity of
the bubble walls, and the κ parameters denote the fraction
of latent heat that is transformed into sources relevant to
each production mode. The precise contribution of the
different sources of gravitational waves and formulas for κ
depend on the dynamics of the bubble walls; see [79] for
more details. To determine which regime we lie in we must
determine whether the bubble walls are relativistic and
whether they “runaway” (γ → ∞).
We do not expect runaway walls as our Z0 bosons

become massive during the transition and it is known that
one should not expect runaway bubbles for a transition
where gauge bosons gain a mass [50,84]. A strongly first-
order phase transition is expected to give highly relativ-
istic bubble walls and so we take vw ¼ 1. The exact
formulas for the SðfÞ and κ (for our regime) are given in
Appendix B. In this regime the contribution from collision
of bubble walls is negligible so we do not include this in
our calculations.
It should be noted that these formulae are intended to

give only a first approximation to the gravitational wave
7The D-dimensional action is given by SD ¼R
dρdΩDρ

D−1½ðdϕdρÞ2 þ VðϕÞ� where ΩD is an integral over the
surface of a D-dimensional sphere.

8ρradðTNÞ ¼ g�π2T4
N=30 where g�ð¼ 117.75 for our modelÞ is

the number of relativistic degrees in the plasma at TN .
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signal. For more precise calculations and recent work on
computing gravitational wave spectra we refer the reader to
e.g. [57,85–87].
We calculate the bubble profile and the action on

the profile using BubbleProfiler [88]. The nucleation temper-
atures and parameters α, β are shown in Table III for the
benchmark points. The gravitational wave profiles are then
plotted in Fig. 4 along with the sensitivities of current and
planned gravitational wave detectors.
As can be seen from the figure, the gravitational waves

produced by our model have too low a frequency to be
probed by aLIGO but would be probed by the next
generation of space-based gravitational wave detectors
such as LISA, DECIGO, and BBO.

VI. CONCLUSION

We have shown in this paper that a classically scale-
invariant model can evade all current theoretical and
experimental constraints and still account for some or all
of the observed dark matter abundance of the Universe.
Such a model is quite an attractive prospect as it is a
relatively minimal model which can solve several problems
of the Standard model, primarily dark matter and the
hierarchy problem (see footnote 1), while also producing
a gravitational wave signal which would be observable at
the next generation of detectors.
In the context of a minimal model presented here, we

have not addressed the question of matter-antimatter
asymmetry. One scenario considered in the literature in
classically scale-invariant settings [28,89] is to use a
version of leptogenesis via sterile neutrino oscillations
[90,91], though this would require an extension of our
minimal model.
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APPENDIX A: RG EQUATIONS

We present the RG equations here:

βð1ÞgD ¼ g3D; ðA1Þ

βð1ÞλH
¼ þ 27

200
g04 þ 9

20
g02g2W þ 9

8
g4W −

9

5
g02λH − 9g2WλH

þ 24λ2H þ λ2P þ 12λHTrðYdY
†
dÞ þ 4λHTrðYeY

†
eÞ

þ 12λHTrðYuY
†
uÞ − 6TrðYdY

†
dYdY

†
dÞ

− 2TrðYeY
†
eYeY

†
eÞ − 6TrðYuY

†
uYuY

†
uÞ; ðA2Þ

βð1ÞλP
¼ 1

10
λPð−9g02 − 45g2W − 60g2D þ 120λH − 40λP

þ 80λS þ 20jy2;Dj2 þ 20jy1;Dj2 þ 60TrðYdY
†
dÞ

þ 20TrðYeY
†
eÞ þ 60TrðYuY

†
uÞÞ; ðA3Þ

βð1ÞλS
¼ 2ð10λ2S þ 2λSjy2;Dj2 þ 2λSjy1;Dj2 þ 3g4D − 6g2DλS

− jy2;Dj4 − jy1;Dj4 þ λ2PÞ; ðA4Þ

βð1Þy1;D ¼ 1

2
y1;Dð2jy2;Dj2 − 3g2D þ 4jy1;Dj2Þ; ðA5Þ

βð1Þy2;D ¼ 1

2
y2;Dð2jy1;Dj2 − 3g2D þ 4jy2;Dj2Þ: ðA6Þ

FIG. 4. Energy density of gravitational waves for the first four
benchmark points. The dashed lines represent the sensitivities of
current and future gravitational wave detectors: LISA (blue),
eLISA (red), BBO (green), DECIGO (black), Einstein Telescope
(pink), and aLIGO (brown).

TABLE III. Value of various parameters which are relevant to
gravitational waves for our benchmark points. As can be seen
from our values of ϕc, Tc, all of our benchmark points lead to a
strongly first-order phase transition. Note that for the fifth
benchmark point the nucleation temperature is very low and
our software encounters problems in this area. Hence we were
unable to determine the exact nucleation temperature (it may be
that the model does not nucleate in this region of parameter space)
and so we do not determine the gravitational wave spectrum for
this point.

Tc ϕc TN α
β
H�

BP1 221 GeV 750 GeV 84.2 GeV 0.547 129
BP2 622 GeV 2313 GeV 115.2 GeV 5.70 63.5
BP3 129 GeV 586 GeV 30.8 GeV 10.1 85.4
BP4 449 GeV 1150 GeV 273.9 GeV 0.0698 290
BP5 152 GeV 802 GeV <10 GeV � � � � � �
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APPENDIX B: GRAVITATIONAL WAVE
FORMULAS

All formulas here are taken from [79]. The remaining
parameters required for calculation of the gravitational
wave spectrum are given below. First, we begin with the
frequency dependence of the sound wave production,

SSWðfÞ ¼
�

f
fSW

�
3
 

7

4þ 3
�

f
fSW

�
2

!7
2

ðB1Þ

where

fSW¼ 1.9×10−2 mHz

�
1

vw

��
β

H�

��
T�

100GeV

��
g�
100

�1
6

:

ðB2Þ

The frequency dependence of the gravitational wave
production by turbulence is given by

SturbðfÞ ¼
�

f
fturb

�
3

�
1þ f

fturb

�11
3

�
1þ 8πf

h�

� ðB3Þ

where

fturb ¼ 2.7 × 10−2 mHz

�
1

vw

��
β

H�

��
T�

100 GeV

��
g�
100

�1
6

ðB4Þ

h� ¼ 16.5 × 10−3 mHz

�
T�

100 GeV

��
g�
100

�1
6

: ðB5Þ

The efficiencies of the two processes are given by

κv ¼
α

0.73þ 0.083
ffiffiffi
α

p þ α
; ðB6Þ

κturb ¼ 0.05κv: ðB7Þ
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