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ABSTRACT
Parr and Ghosh [Phys. Rev. A. 51 3564 (1995)] demonstrated that when near-exact electron densities and potentials are used, the
exchange–correlation energies of first- and second-row atoms are well-described by a combination of the Fermi–Amaldi functional with
a functional that is homogeneous of degree one under density scaling. Insight into this observation is provided by considering their work
from the perspective of the effective homogeneity of the overall exchange–correlation functional. By considering a general form that com-
bines the Fermi–Amaldi functional with a functional that is homogeneous of degree k, it is shown that for these atoms, the functional of
Parr and Ghosh (k = 1) exhibits essentially optimal effective homogeneities on the electron-deficient side of the integer. Percentage errors in
effective homogeneities are close to percentage errors in exchange–correlation energies.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0179111

I. INTRODUCTION

Scaling relationships provide key insight into the energy com-
ponents in density functional theory (DFT). The most commonly
encountered scaling is coordinate scaling,1 where the electronic
coordinate is scaled while preserving the electron number. The
present study instead focuses on density scaling,2–5 where the elec-
tron density ρ is scaled and the electron number is not preserved.
Specifically, a functional, F[ρ], is said to be homogeneous of degree
k under density scaling if it satisfies

F[λρ] = λkF[ρ], (1)

which implies that (for k ≠ 0)

k =
∫

δF[ρ]
δρ(r) ρ(r)dr

F[ρ]
. (2)

For example, the Dirac exchange and Thomas–Fermi kinetic energy
functionals are homogeneous of degree 4/3 and 5/3, respectively.
The density scaling behavior of kinetic energy functionals has
attracted particular interest.6–10

Evaluation of the quantity k in Eq. (2) can be used to quan-
tify the behavior of any density functional under density scaling.
If k is system-independent, then the functional is homogeneous of
degree k. If k is system-dependent, then the functional is inhomo-
geneous and the degree of system dependence provides a measure
of the degree of inhomogeneity; in this case, k is usually termed as
an effective homogeneity2 and we shall follow this convention. A
knowledge of effective homogeneities can, therefore, provide new
insight into density functionals, which can be used in the devel-
opment of new approximations. For example, we have calculated9

near-exact effective homogeneities for the exchange–correlation
and non-interacting kinetic energy functionals and used them to
determine new functionals11–13 and a new approach for estimating
negative electron affinities.14 We have also used homogeneity con-
siderations to derive new approximations15,16 for use in direct energy
Kohn–Sham theory,17 where the electronic energy equals the sum of
the orbital energies.

Homogeneity under density scaling also played a key role in the
work of Parr and Ghosh in Ref. 18. They used the Zhao–Morrison–
Parr (ZMP)2 procedure to determine near-exact exchange–
correlation potentials from near-exact configuration interaction
densities, ρ0, for the atoms He–Ar, partitioning them as
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vxc(r) = −
vJ(r)

N
+ vC(r). (3)

Here, the first term is the Fermi–Amaldi19 potential of the density
ρ0, which is the ratio of its Hartree potential and the electron num-
ber, and it provides a simple mechanism for ensuring the correct
asymptotic potential and exchange–correlation hole normalization.
The second term, vC(r), was termed as the constraint potential. Parr
and Ghosh wrote the exchange–correlation energy functional as

Exc[ρ] = −
J[ρ]
N
+Gxc[ρ], (4)

where the first term is the Fermi–Amaldi functional, involv-
ing the Hartree functional, J[ρ]; the functional derivative of this
Fermi–Amaldi functional (treating N as a parameter rather than a
functional20), evaluated using ρ0, is the first term in Eq. (3). The
quantity Gxc[ρ] in Eq. (4) is an unknown functional whose func-
tional derivative, evaluated using ρ0, is the constraint potential in
Eq. (3),

δGxc[ρ]
δρ(r)

∣

ρ=ρ0

= vC(r). (5)

The problem is that there are many Gxc[ρ] that satisfy Eq. (5). Parr
and Ghosh made the approximation that Gxc[ρ] is homogeneous of
degree one under density scaling, from which Eqs. (2) and (5) yield

Gxc[ρ0] = ∫ vC(r)ρ0(r)dr. (6)

It also follows that the total electronic energy reduces to the sum
of the orbital energies minus the Hartree/Fermi–Amaldi energy,
meaning that it can be evaluated directly from a knowledge of
the density and external potential, which was an objective of Parr
and Ghosh. See Refs. 21 and 22 for related work. See also Ref. 23
for a recent derivation and reinterpretation of the Fermi–Amaldi
functional.

A key finding of Parr and Ghosh was that the evaluation
of Eq. (4), using ρ0, together with Eq. (6), led to good-quality
exchange–correlation and total electronic energies for the atoms
considered. The aim of the present study is to provide insight into
their observations by considering their work from the perspective of
the effective homogeneity of the overall exchange–correlation func-
tional in Eq. (4). Specifically, we consider a more general approx-
imation where Gxc[ρ] is homogeneous of some arbitrary degree,
k, and quantify how the accuracy of the effective homogeneity of the
exchange–correlation functional depends on k. We also consider the
relationship between the accuracy of the effective homogeneity and
the accuracy of the exchange–correlation energy.

II. METHODOLOGY AND RESULTS
We start by defining the near-exact exchange–correlation

potential in the same manner as Parr and Ghosh, namely in Eq. (3).
Next, we define the exchange–correlation energy functional in the
same manner as Eq. (4) but with an additional superscript, k, because

we now approximate the unknown Gxc[ρ] to be homogenous of
degree k under density scaling,

Ek
xc[ρ] = −

J[ρ]
N
+Gk

xc[ρ], (7)

where, as before,

δGk
xc[ρ]

δρ(r)
∣

ρ=ρ0

= vC(r). (8)

Given that Gk
xc[ρ] is homogeneous of degree k, it follows from Eq. (2)

that

Gk
xc[ρ0] =

1
k ∫

vC(r)ρ0(r)dr. (9)

From Eq. (2), we now introduce the central quantity of this study,
namely the effective homogeneity (Ref. 2) of Ek

xc[ρ], evaluated
using ρ0,

kk
xc =
∫vxc(r)ρ0(r)dr

Ek
xc[ρ0]

, (10)

where we have used the fact that the functional derivative of Ek
xc[ρ],

evaluated using ρ0, is the near-exact potential in Eq. (3), for all val-
ues of k. Using Eqs. (3), (7), and (9), together with the fact that
the Hartree functional is homogeneous of degree two under density
scaling, Eq. (10) reduces to

kk
xc =
−

2J[ρ0]

N + kGk
xc[ρ0]

Ek
xc[ρ0]

=
−

2J[ρ0]

N + kGk
xc[ρ0]

−
J[ρ0]

N +Gk
xc[ρ0]

. (11)

We have evaluated kk
xc in Eq. (11) for the atoms He–Ar using

the near-exact Hartree energies of Ref. 24. The evaluation of kk
xc also

requires the values of Gk
xc[ρ0]. Given that Parr and Ghosh tabulated

values of G1
xc[ρ0] [i.e., Eq. (9) with k = 1] for these atoms, it is trivial

to evaluate Gk
xc[ρ0] from those data,

Gk
xc[ρ0] =

1
k

G1
xc[ρ0]. (12)

We shall compare kk
xc determined using Eq. (11) with near-

exact values, denoted kxc,0, from Ref. 9, which provide our best
estimates for the effective homogeneity of the exact exchange–
correlation functional. These were determined in Ref. 9 by
evaluating

kxc,0 =
∫vxc(r)ρ0(r)dr

Exc,0[ρ0]
(13)

using near-exact ZMP exchange–correlation potentials, electron
densities, and exchange–correlation energies. Reference 9 did not
consider He, Ne, or Ar, but the kxc,0 values for these atoms are eas-
ily calculated using the data in Ref. 24. Following Refs. 9 and 25, we
omit the Si atom.

As noted in Ref. 9, the effective homogeneity is affected by the
integer discontinuity26 in the exact exchange–correlation potential.
Given that Eqs. (10) and (13) are both evaluated using the asymptot-
ically vanishing ZMP potential [Eq. (3)], which is appropriate for the
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FIG. 1. Percentage errors in kk
xc, as a function of k, for the atoms listed.

electron deficient side of the integer, it follows that kk
xc and kxc,0 are

effective homogeneities on the electron-deficient side of the integer.
For further details, see Ref. 9.

Figure 1 presents the percentage errors in kk
xc, relative to kxc,0, as

a function of k in the range 0.1 ≤ k ≤ 2, with an interval of 0.1. (The
percentage error is defined as 100 × (kk

xc − kxc,0)/kxc,0.) Each curve
represents a different atom. The curves for He and Li are outliers.
All the others exhibit a similar shape, shifting smoothly from large
negative to large positive percentage errors, with increasing k. There-
fore, for all but He and Li, a mid-range value of k yields the smallest
percentage error. Figure 2 presents the mean percentage and mean
absolute percentage errors, averaged over all the atoms. The key
observation is that the mean absolute percentage error minimizes at
k = 1. (We have verified that the errors continue to increase for val-

FIG. 2. Mean and mean absolute percentage errors in kk
xc, as a function of k, for

the atoms in Fig. 1.

FIG. 3. Values of kxc,0 and k1
xc (Parr–Ghosh) for the atoms in Fig. 1.

ues of k > 2; the actual minimizing k is just marginally greater than
unity.) The approximation made by Parr and Ghosh—that Gxc[ρ]
is homogeneous of degree one under density scaling—therefore
leads to essentially optimal (in the mean absolute percentage sense)
effective homogeneities of the overall exchange–correlation func-
tional, from all functionals of the form of Eq. (7), for the atoms
considered.

Figure 3 presents the near-exact kxc,0 values. They are system-
dependent, varying between 1.4 and 1.9, indicating that for these
atoms, a functional that yields accurate exchange–correlation ener-
gies and the ZMP potential is not approximately homogeneous
under density scaling. At first sight, this appears to be at odds
with the success of universal local functionals, such as general-
ized gradient approximations, which are approximately homoge-
neous of degree 4/3 under density scaling due to their dominant
Dirac exchange component. However, local functionals do not yield
potentials that resemble the ZMP potential but, instead, yield poten-
tials that approximately average over the integer discontinuity, i.e.,
they are shifted from the ZMP potential. There is, therefore, no
requirement that their effective homogeneities should resemble the
system-dependent kxc,0 values. See Refs. 9, 25, and 27 for further dis-
cussion. By contrast, the functional in Eq. (7) does yield the ZMP
potential, and so its effective homogeneities should resemble kxc,0.
Figure 3 shows that the optimal values, k1

xc, are reasonably close to
kxc,0, although there is room for improvement. Some periodic struc-
ture is evident in the figure, e.g., the behavior of the data for N→ O
→ F→ Ne closely resembles that for P→ S→ Cl→ Ar, with a good
agreement between k1

xc and kxc,0 for all those atoms. The agreement
is less good for Li, Be, and B and for Na, Mg, and Al.

Finally, we consider the relationship between errors in the
effective homogeneity of the exchange–correlation functional and
errors in the exchange–correlation energy. Equations (10) and (13)
have the same numerator on the right-hand side, and so

kk
xcEk

xc[ρ0] = kxc,0Exc,0[ρ0], (14)
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FIG. 4. Scatter plot of percentage errors in kk
xc and percentage errors in Ek

xc[ρ0]
for the atoms in Fig. 1.

which yields the result

(
kk

xc − kxc,0

kxc,0
) = (

Exc,0[ρ0] − Ek
xc[ρ0]

Ek
xc[ρ0]

). (15)

The left-hand side of Eq. (15), multiplied by 100, is the percent-
age error in kk

xc, plotted in Figs. 1 and 2. The right-hand side of
Eq. (15), multiplied by 100, is not, however, the percentage error in
Ek

xc[ρ0]; that would instead require the denominator to be replaced
by Exc,0[ρ0]. (Note that the order of the terms in the numerator is
reversed compared to the left-hand side because the energy is nega-
tive.) It follows that for values of k where the exchange–correlation
energy errors are small (Ek

xc[ρ0] ≈ Exc,0[ρ0]), the percentage error
in kk

xc will be close to the percentage error in Ek
xc[ρ0]. This is demon-

strated in Fig. 4, which plots these percentage errors for Parr and
Ghosh’s k = 1 functional using the exchange–correlation energy data
from Refs. 18 and 24.

III. CONCLUSIONS
We have revisited the work of Parr and Ghosh,18 viewing it

from the perspective of the effective homogeneity of the overall
exchange–correlation functional. We demonstrated that their key
approximation—that Gxc[ρ] is homogeneous of degree one under
density scaling—leads to essentially optimal effective homogeneities
on the electron-deficient side of the integer, from all functionals of
the form of Eq. (7), for the atoms considered. We also demonstrated
that percentage errors in effective homogeneities are close to per-
centage errors in exchange–correlation energies. The study provides
further evidence for the utility of effective homogeneities in DFT. It
also suggests that further investigation of the Parr–Ghosh form may
be warranted. We are currently investigating the extent to which
these atomic findings are valid for molecular systems.
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