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A B S T R A C T 

The total mass of the Local Group and the masses of its primary constituents, the Milky Way (MW) and M31, are important 
anchors for several cosmological questions. Recent independent measurements have consistently yielded halo masses close 
to 10 

12 M � for the MW, and 1–2 × 10 

12 M � for M31, while estimates derived from the pair’s kinematics via the ‘timing 

argument’ have yielded a combined mass of around 5 × 10 

12 M �. We analyse the extremely large UCHUU simulation to 

constrain the mass of the Local Group and its two most massive members. First, we demonstrate the importance of selecting 

pairs whose kinematics reflect their mutual interactions. Adopting the observed separation and radial velocity, we obtain a 
weighted posterior of 75 

+ 65 
−40 km s −1 for the uncertain transv erse v elocity. Via Gaussian process regression, we infer a total mass 

of 3 . 2 

+ 1 . 2 
−0 . 9 × 10 

12 M �, significantly below the timing argument value. Importantly, the remaining uncertainty is not rooted in 

the analysis or observational errors, but in the irreducible scatter in the kinematics–mass relation. We further find a mass for 
the less massive halo of 0 . 9 

+ 0 . 6 
−0 . 3 × 10 

12 M � and for the more massive halo of 2 . 3 

+ 1 . 0 
−0 . 9 × 10 

12 M �, consistent with independent 
measurements of the masses of MW and M31, respectively. Incorporating the MW mass as an additional prior let us constrain 

all measurements further and determine that the MW is very likely less massive than M31. 

Key words: methods: numerical – methods: statistical – Galaxy: kinematics and dynamics – Local Group – dark matter. 
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 I N T RO D U C T I O N  

he total mass of our own Milky Way (MW), the neighbouring 
ndromeda galaxy (M31), and the Local Group (LG) are key to the

nterpretations of many observations. For example, the abundance 
f massive MW satellites is consistent with Lambda cold dark 
atter ( � CDM) predictions only if its virial mass is not significantly

igher than ∼10 12 M � (Boylan-Kolchin, Bullock & Kaplinghat 2012 ; 
awala et al. 2015 ). More generally, through the predicted amount of
ubstructure, the mass of the MW also places constraints on the dark
atter particle mass (Kennedy et al. 2014 ; Lo v ell et al. 2014 ). If the
ass of the MW or M31 is much lower than ∼10 12 M �, abundance
atching would imply that they are clear outliers in the galaxy–

alo relation (Guo et al. 2011 ). The MW also contains the best-
tudied ‘plane of satellite’ (P a wlowski 2018 ), whose significance as
 challenge to the dark matter paradigm and its nature as a possibly
ong-lived disc may depend both on the LG’s mass assembly history
Libeskind et al. 2010 ) and the depth of the potential in which the
atellites evolve (Sawala et al. 2022 ). Beyond satellite galaxies, the 
warf galaxies in the LG and their comparison to galaxies in other
nvironments have also received attention, and the total mass of the 
G is important for understanding the environment in which they 

orm (e.g. Font et al. 2022 ). 
Much attention has therefore been devoted in recent years to 
easuring the mass of the MW, M31, and the LG using different

echniques. Ho we ver, while measurements of each individual galaxy, 
nd of the MW in particular, have found masses of the order of
10 12 M �, dynamical measurements of the total mass typically yield 
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asses of ∼5 × 10 12 M �, significantly higher than the sum of both
ndividual masses. 

In this work, we use kinematics and masses of LG analogues
rom the UCHUU simulation (Ishiyama et al. 2021 ), the largest N -
ody simulation of sufficient resolution, to determine the relationship 
etween the observable kinematics and the total mass. We show how
he estimates can be further constrained assuming independent mea- 
urements for either the MW or M31, and how individual constraints,
ombined with the kinematics and the mass ratio distribution, can 
e used to infer that the mass of the MW is below that of M31. We
lso revisit the ‘Timing Argument’, and explore whether there is, in
act, a discrepancy between the kinematics of the LG and the mass
stimates for individual objects. 

This paper is organized as follows. In Section 2 , we re vie w
revious measurements of the individual masses and of the total 
ass of the LG, highlighting the apparent discrepancy. In Section 3 ,
e describe the simulations and our selection of LG analogues. 

n Section 4 , we introduce ‘tidal dominance’ and ‘force ratio’
s important criteria for linking the mass to the kinematics. We
resent our results for estimating the mass of the LG using Gaussian
egression in Section 5 . In Section 6 , we compute probability
ensities for the masses of the LG, MW, M31 and the mass ratios,
ased on a probability-weighted analysis. Finally, we conclude with 
 summary in Section 7 . 

 P R E V I O U S  MEASUREMENTS  

he flurry of measurements of the MW mass o v er the past 3 yr reflect
he significance of the result, as well as the wealth of newly available
ata, particularly from Gaia DR2 and, most recently, Gaia DR3. 
is is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Excluding estimates that derive the mass of the MW from LG
inematics, recent estimates of the virial mass of the MW include
 . 17 + 0 . 21 

−0 . 15 × 10 12 M � using Gaia DR2 satellite dynamics (Callingham
t al. 2019 ), 1 . 54 + 0 . 75 

−0 . 44 × 10 12 M � using combined Gaia DR2 and HST
inematics of globular clusters (Watkins et al. 2019 ), 1 . 51 0 . 45 

−0 . 40 ×
0 12 M � using Gaia DR2 proper motions of satellite galaxies (Fritz
t al. 2020 ), and 0 . 89 + 0 . 1 

−0 . 08 × 10 12 M � derived from the kinematics
f disc and halo stars in the galkin catalogue (Karukes et al.
020 ). 
Further mass estimates for the MW include 1 . 23 + 0 . 21 

−0 . 18 × 10 12 M �
erived from Gaia DR2 satellite kinematics and a simulation-
ased distribution function (Li et al. 2020 ), 1 . 08 + 0 . 20 

−0 . 14 × 10 12 M �
rom the Gaia DR2 rotation curve (Cautun et al. 2020 ),
.822 ± 0.052 × 10 12 M � from observations of classical Cepheids
Ablimit et al. 2020 ), 1.16 ± 0.24 × 10 12 M � [including the mass of
he Large Magellanic Cloud (LMC)] from a large sample of halo stars
Deason et al. 2021 ), 1 . 19 + 0 . 49 

−0 . 32 × 10 12 M � from a Bayesian estimate
sing dwarf galaxy kinematics from multiple sources (Slizewski
t al. 2022 ), 1 . 26 + 0 . 40 

−0 . 22 × 10 12 M � from high-velocity RR-Lyrae stars
Prudil et al. 2022 ), 1 . 08 + 0 . 12 

−0 . 11 × 10 12 M � from the H3 surv e y and
aia EDR3 (Shen et al. 2022 ), and finally 1 . 1 + 0 . 1 

−0 . 1 × 10 12 M � from
aia EDR3 proper motions of satellites when compared to � CDM

imulations (Rodriguez Wimberly et al. 2022 ). We refer the reader
o Wang et al. ( 2020 ) for a comprehensi ve re vie w of earlier results.
nalyses from several different tracers, and particularly from the

atest studies using the most precise Gaia EDR3 observations,
onsistently point towards an MW virial mass that is very close
o 10 12 M �. 

While M31 does not enjoy the benefit of Gaia proper motions,
here exist nevertheless a number of studies of its mass. Again,
xcluding measurements that use LG kinematics, previous results
nclude 1.4 ± 0.4 × 10 12 M � derived from satellite kinematics
Watkins, Evans & An 2010 ), 1 . 2 + 0 . 9 

−0 . 7 × 10 12 M � derived from
inematics of M31 dwarf spheroidals (Tollerud et al. 2012 ), ∼
 . 05 + 0 . 15 

−0 . 15 × 10 12 M � (combining the DM and stellar mass) from
ED fitting together with the rotation curve and the kinematics of
uter globular clusters and satellite galaxies (Tamm et al. 2012 ),
 . 0 + 0 . 4 

−0 . 3 × 10 12 M � from kinematics of the Giant southern stream
Fardal et al. 2013 ), 1 . 35 + 0 . 15 

−0 . 15 × 10 12 M � (Veljanoski et al. 2013 )
nd 1 . 4 + 0 . 2 

−0 . 2 × 10 12 M � (Veljanoski et al. 2014 ), both derived from
uter halo globular clusters, and 0.8 ± 0.1 × 10 12 M � estimated from
igh-velocity planetary nebulae (Kafle et al. 2018 ). Compared to the
W, the scatter in mass estimates is larger, but most estimates are in

he range of 1–2 × 10 12 M �. 
Combining the best individual estimates for the masses of the
W and M31 thus leads to a total combined mass in the range of

–3 × 10 12 M �. These estimates also suggest a mass ratio which
s close to unity, and a scenario where the mass of M31 is lower
han that of the MW is certainly not ruled out. Given the difference
n stellar mass, it is still commonly assumed that the mass of

31 is larger than that of the MW. Ho we ver, it is worth noting
hat abundance matching implies higher masses for both haloes
Guo et al. 2010 ), which also implies considerable scatter in the
tellar–halo mass relation in order to be consistent with these mass
stimates. 

Meanwhile, estimates for the combined mass using the timing
rgument in � CDM yield significantly higher results. Examples of
irect timing argument measurements using only the radial velocity
re 5.27 × 10 12 M � (Li & White 2008 ), 5 . 58 + 0 . 85 

−0 . 72 × 10 12 M � (van
er Marel & Guhathakurta 2008 ), and 4 . 27 + 0 . 45 

−0 . 45 × 10 12 M � (van der
arel et al. 2012 ). Accounting also for cosmic bias, van der Marel

t al. ( 2012 ) measure 4.93 ± 1.6 × 10 12 M �. Meanwhile Partridge,
NRAS 521, 4863–4877 (2023) 
ahav & Hoffman ( 2013 ) found 4.73 ± 1.03 × 10 12 M � incorporating
ark Energy into the timing argument. Benisty et al. ( 2022 ) measure
 . 6 + 1 . 6 

−1 . 2 × 10 12 M � accounting for the presence of the LMC, and
artl & Strigari ( 2022 ) measure 4 . 75 + 2 . 22 

−2 . 41 × 10 12 M �. Accounting for
he velocity of the MW within the LG system (Petersen & Pe ̃ narrubia
020 ), Chamberlain et al. ( 2023 ) obtain 4 . 5 + 0 . 8 

−0 . 8 × 10 12 M � using
epheid and Gaia data. 
McLeod et al. ( 2017 ) used artificial Neural Networks to infer

he mass of the LG based on LG analogues from a cosmological
imulation with a volume of ∼0.2 Gpc 3 and found a total mass
f 4 . 9 1 . 3 −1 . 4 × 10 12 M � when assuming a low transverse velocity of
7 ± 17 km s −1 (van der Marel et al. 2012 ). 
On the whole, these results are significantly higher, and also appear

nconsistent with the masses of the MW and M31 measured from
nternal kinematic tracers, including neutral H I gas, the stellar disc,
r the motions of halo stars, globular clusters, or satellite galaxies. 
Fig. 1 gives an overview of these measurements. It is worth

oting that some previous results that are not limited to pair
inematics appear to bridge the gap. Benisty et al. ( 2022 ) report
hat the Timing Argument mass reduces to 3.4 × 10 12 M � when
ccounting for cosmic bias, i.e. taking into account the halo mass
unction. Pe ̃ narrubia et al. ( 2014 ) obtain an e ven lo wer v alue of
.3 ± 0.7 × 10 12 M � from a Bayesian model of galaxies extending
ut to a distance of 3 Mpc. 

 SI MULATI ONS  

his work is based entirely on publicly available data from the
CHUU collisionless cosmological simulation (Ishiyama et al. 2021 ),
hich samples a volume of nearly 26 Gpc 3 with 12 800 3 particles.

n total, at z = 0, the UCHUU simulation contains ∼250 million
aloes in the mass range of 0.5–5 × 10 12 M �, and a particle mass of
.83 × 10 8 M � implies that the lowest mass haloes we consider are
esolved with more than 1000 particles. UCHUU uses cosmological
arameters corresponding to the Planck 2018 results, namely, �0 =
.3089, �b = 0.0486, �� 

= 0.6911, h = 0.6774, n s = 0.9667, and
8 = 0.8159. The simulation outputs have been processed using the
OCKSTAR phase-space structure finder. All results reported in this
aper are expressed in terms of physical coordinates, distances in
pc, masses in solar masses (M �), and velocities in km s −1 . For the
alo mass, we use the most common definition M 200, c , i.e. the mass
ontained within a sphere enclosing a mean density of 200 times the
ritical density. 

.1 Definition of LG analogues 

bservations accurately measure the distance between the centres of
he MW and Andromeda as r = 765 ± 11 kpc (Chamberlain et al.
023 ), and the radial velocity as v r = 109.3 ± 4.4 km s −1 (van der
arel et al. 2012 ). The transverse velocity is less certainly known,

nd some measurements strongly differ. Using only HST proper
otions, van der Marel et al. ( 2012 ) found v t = 17 ± 17 km s −1 ,
hich would imply an extremely radial orbit. Later combining
ST and Gaia DR2 proper motions, van der Marel et al. ( 2019 )
nd a somewhat higher value and measure v t = 57 + 35 

−31 km s −1 .
his measurement constitutes a weighted average of an HST -only
alue of 36 + 39 

−26 km s −1 , and a Gaia -only value of 133 + 70 
−68 km s −1 .

alomon et al. ( 2016 ) derived an even greater transv erse v elocity of
 t = 164.4 ± 61.8 km s −1 by studying the projected line-of-sight
elocities of M31 satellites, and comparing the results to those found
n simulations. Salomon et al. ( 2021 ) measure v t = 82.4 ± 31.2
m s −1 using Gaia DR3 proper motions of blue main sequence
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Figure 1. Recent direct estimates for the virial mass of the MW (top), M31 
(centre), and estimates using LG kinematics for the combined mass (bottom). 
Each literature estimate is represented by a (skewed) normal distribution. 
The grey bands on the top two panels denote M MW 

= 1 . 1 + 0 . 2 −0 . 2 × 10 12 M �
and M M31 = 1 . 5 + 0 . 5 −0 . 5 × 10 12 M �, respectively, which we use as additional 
constraints in some measurements. The estimates for the mass of the LG, 
shown in the bottom panel, are significantly higher than the sum of the 
masses of the two constituents. 
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tars in M31. We adopt here v t = 57 ± 35 km s −1 , very similar
o the combined result of van der Marel et al. ( 2019 ). Whenever
e Monte-Carlo sample the uncertainties, or construct probability- 
eighted estimates, we assume that the probability distributions for 

he true values of r , v r , and v t are Gaussian, subject to the additional
onstraints r > 0 and v t > 0. 

Our broadest category of LG analogues is defined as a pair of
aloes that satisfy all of the following criteria: 

(i) each M 200 mass within [0.5. . . 5] × 10 12 M �
(ii) separation, r , within [500. . . 1000] kpc 
(iii) radial velocity, v r , within [ −250. . . 0] km s −1 

(iv) transv erse v elocity, v t , within [0. . . 250] km s −1 

(v) no further halo more massive than 0.5 × 10 12 M � within 2 Mpc

It is worth noting that the kinematics constrain primarily the total 
ass of the LG. The kinematics also allow, for example, a high
ass halo paired with a halo below the defined mass range, so we
ust consider the lower limit of 0.5 × 10 12 M � for each halo as an

dditional, fixed prior. As we will discuss, this has implications for
he inferred mass ratio, but is, ho we ver, well-moti v ated from other
bservations. 
In total, the UCHUU simulation contains ∼1.4 million systems 

efined using the criteria abo v e. In Fig. 2 , we show the distribution
f these LG analogues within the volume. The panel on the left
hows the entire volume of nearly 26 Gpc 3 . The uniquely large
olume of the UCHUU simulation at this resolution allows us to retain
ufficiently large sample sizes, even when additional constraints are 
mposed. 

It should also be noted that the LG, whether in the real Universe
r in cosmological simulations, is not a true two-body system. It
ncludes mass beyond the respective r 200 of its two main haloes, 
o which different tracers may be sensitive to different degrees 
Pe ̃ narrubia & Fattahi 2017 ). Throughout this paper, we adopt the
onvention of defining the mass of the LG as the sum of the two
alo masses, or M LG = M 1 + M 2 . We distinguish between the more
assive halo whose mass we label M 1 and the less massive halo of
ass M 2 . We do not generally associate them with the MW or M31

pecifically, except where we additionally constrain the MW halo 
ass in Section 6.3 , where we label the mass of the MW as M MW 

nd that of M31 as M 31 . 

 T RU E  LG  A NA L O G U E S  

he degree to which the mass of the LG is related to the kinematics
f the MW-M31 orbit depends on the degree to which the motion
f each object is affected by their common gravitational field, 
r by other haloes. For example, the ‘Timing argument’ assumes 
hat the system evolves in complete isolation. Previous works (e.g. 
i & White 2008 ; Carlesi et al. 2016 ; Fattahi et al. 2016 ) that
elected LG analogues from cosmological simulations have typically 
xcluded systems that contain a third object within some radius, 
ither abo v e the lower limit of the range of halo masses considered
r, less restricti vely, more massi ve than the less massive of the
air. 
Ho we ver, we find that this is not sufficient to ensure that the

ynamics of the simulated LG analogues are free of undue outside 
nfluences, i.e. greater than assumed to be the case for the real LG.
n this section, we introduce two new criteria, tidal dominance , and
he external-to-internal force ratio . We use them together to identify 
rue LG pairs, i.e. those pairs go v erned by internal kinematics to a
imilar extent as the real LG. 
MNRAS 521, 4863–4877 (2023) 
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M

Figure 2. Position of LG analogues in the UCHUU simulation. The blue and red dots denote the positions of the MW and M31 analogues, respectively. Each 
panel shows a cubic volume; the scale bar corresponds to one-third of the side length. The total volume of UCHUU , shown in the far left panel, is 25.7 Gpc 3 and 
contains ∼1.4 million LG analogues. For comparison, the remaining panels show zoom-ins of the full volume, with the second panel from the left comprising a 1 
Gpc 3 v olume, equal in v olume to the P-Millennium simulation; the third panel from the left depicts a volume of 0.027 Gpc 3 equal in volume to Illustris-TNG-300, 
and the final panel shows a volume of 0.001 Gpc 3 , equal in volume to DOVE/Eagle-100. 
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.1 Tidal dominance 

he UCHUU halo catalogues contain information about the hierarchy
f tidal forces. For each halo, we can identify a more massive halo
hat e x erts the greatest tidal force. This allows us to identify LG
nalogues in which the tidal field of one LG member is dominated
y the other, as opposed to those for which the tidal fields of both
aloes are dominated by other objects. We refer to LG analogues in
he first category as ‘tidally dominant’ and the remainder as ‘tidally
ubdominant’. 

It is expected that the relations between kinematics and mass only
old for tidally dominant systems. Indeed, this is the case. In Fig.
 , we plot distributions of UCHUU LG analogue masses as functions
f the three kinematic parameters. The left panel shows total mass,
 LG , as a function of r and v r , while the right panel shows M LG as

 function of r and v t . For tidally dominant systems, shown on top,
here are clear correlations, as also shown in previous studies (e.g.
attahi et al. 2016 ): at fixed separation, LG analogues with more
e gativ e radial v elocity or higher transv erse v elocity tend to hav e
igher masses, although some scatter is also apparent. 
For tidally subdominant systems, shown on the bottom and

omprising ∼ 8 per cent of the total sample, the kinematics are
rimarily go v erned by forces outside the system itself. Consequently,
he mass of the system is largely uncorrelated with the kinematics. In
articular, we find a large number of low-mass tidally subdominant
ystems with kinematics similar to the LG not due to internal
rocesses, but due to random, external perturbations. 
We refer to the subsets of tidally dominant and subdom-

nant LG analogues as T dom 

and T sub , respectively, and re-
o v e the subdominant systems from most of our subsequent

nalysis. 

.2 Force ratio 

e also consider the gravitational forces e x erted by the two LG
embers on each other, and compare them to the forces e x erted on

ach member by every other halo abo v e 2 × 10 11 M � within 5 Mpc
f the LG centre. We parametrize the ratio between the maximum
orce e x erted on to either LG member by any of these haloes, and
he force e x erted by the other member, as the force ratio: 

 = max 

( 

max ( M i /r 
2 
1 i ) 

M 2 /r 2 
, 

max ( M k /r 
2 
2 j ) 

M 1 /r 2 

) 

, (1) 
NRAS 521, 4863–4877 (2023) 
here M i and r 1 i are the mass and distance of a halo from one member
f the pair, and M j and r 2 j are the mass and distance of a halo from
he other member. A low value of F means that the forces which
he two LG members e x ert on each other dominate the gravitational
nteractions of both haloes, while a high value of F means that, for
t least one of the two LG members, at least one other halo e x erts a
ignificant force. 

The kinematics of systems with low force ratios are determined
y the LG itself, while the kinematics of systems with high force
atios are strongly affected by haloes outside the pair. We classify
ur LG analogues according to F as either ‘internally dominated’,
ith F < 0 . 5 comprising approximately two-thirds of all systems,

nd ‘significantly externally affected’ with F ≥ 0 . 5, comprising the
emaining approximately one-third of the sample. 

In Fig. 4 , we show the correlations of mass and kinematics
or LG analogues in the three categories. We find that there is a
lear separation: halo pairs with low force ratios have the strongest
orrelation with the least amount of scatter, while halo pairs with high
orce ratios show a weaker correlation between mass and kinematics,
nd significantly more scatter. The real LG most likely contains no
alo with a mass abo v e 2 × 10 11 M �. With a distance to Centaurus A
f 3.4 Mpc, approximately five times the distance between the MW
nd M31, and its mass approximately 10 × greater than that of the
W or M31, we estimate F LG 

∼ 0 . 4. 
Throughout the rest of this paper, we will refer to the set of LG

nalogues that are both ‘tidally dominant’ and have force ratios
 < 0 . 5, as true pairs. 

.3 Distributions of kinematic variables 

n Fig. 5 , we show the distributions of the three kinematic variables,
 , v r , and v t . On all panels, the grey bands indicate the assumed 1 σ
nd 2 σ observational errors, as discussed in Section 3.1 . The pink
olid lines show the distributions for the full set of LG analogues,
nd the thick blue solid lines show the distributions for the ‘true’ LG
nalogues. The grey lines show the distributions for the LG analogues
ot included in the true sample: dotted for tidally subdominant
ystems and dashed for those with F ≥ 0 . 5. 

It can be seen that all three variables are distributed differently for
he different subsets. True LG analogues have, on average, smaller
eparation than those in the F ≥ 0 . 5 or T sub subsets, and smaller
han the full sample, where these two subsets are included. This
s expected because, all else being equal, the internal forces are

art/stad883_f2.eps
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Figure 3. The LG mass as a function of r and v r (left column), and as a function of r and v t (right column). The top row shows results for tidally dominant 
LG analogues. There is a clear correlation between mass and the kinematic parameters: at fixed separation, a greater magnitude of v r or v t both correlate with 
greater mass. At fixed v r , a greater separation, r , correlates with greater mass, but at fixed v t , the mass is not strongly dependent on separation. The bottom row 

shows results for tidally subdominant LG analogues, that is, where a third object either inside or outside the LG e x erts the greatest tidal force on the lower mass 
halo. The number of these systems increases with separation, the masses are o v erall lower, and largely uncorrelated with the kinematics of the pair. 

Figure 4. The LG mass as a function of r and v r (left column), and as a function of r and v t (right column), similar to Fig. 3 . The top row shows results for low 

force ratio systems ( F < 0 . 5), while the bottom row shows high force ratio systems ( F > 0 . 5). In low force ratio systems, the gravitational fields of the two 
haloes dominate their o v erall gravitational interactions, resulting in a clear correlation between kinematics and mass. In high force ratio systems, other haloes 
cause significant perturbations to the gravitational field, blurring this correlation. The increased scatter with increased F also means that regions only sparsely 
populated in the top panels, such as very low v r or very high v t , contain significantly more systems in the bottom panels. 
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Figure 5. Distributions of observables, r (left), v r (centre), and v t (right) in our LG analogues. On all panels, the shaded vertical bands indicate ±1 σ and ±2 σ
of the observations. The pink lines show the full sample of LG analogues that match the kinematic criteria. The grey lines show LG analogues we exclude 
from our analysis: for T sub (dotted lines), none of the LG members dominate the other’s tidal force, while for F > 0 . 5 (dashed lines), a third halo e x erts a 
gravitational force on one of the LG members which is larger than 0.5 of the force e x erted by the other member. Both of these subsets contain haloes with very 
high or low radial, and high transverse velocities, which are not related to the internal kinematics. When haloes in either of these two subsets are remo v ed, the 
remainder (‘true pairs’, thick blue lines) is more likely to match each of the observed values, and shows a stronger correlation between mass and kinematics. 
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elatively stronger for lower separation systems. The fraction of
ystems that match the observations for r is nearly identical in all
ubsets. 

The differences in radial and transverse velocity are more pro-
ounced: the set of true LG analogues contain significantly more
bjects with either v ery ne gativ e 

(
v r < −150 kms −1 

)
or v ery small

v r > −50 kms −1 
)

radial velocities, or with high 
(
v t > 100 kms −1 

)
ransv erse v elocities, compared to the F ≥ 0 . 5 and T sub subsets. In
act, the majority of the full sample of LG analogues that meet our
election criteria, and that have either very negative radial velocities
r very high transverse velocities, are not ‘true’ LG analogues
o v erned by mutual interactions, but are systems whose kinematics
re caused by other objects. It is worth noting that removing these
bjects causes the ‘true’ LG analogues to have a significantly higher
raction of objects within the observational uncertainties. 

.4 The transverse velocity 

nterestingly, Forero-Romero & Sierra-Porta ( 2022 ) recently re-
orted that the average transverse velocity of LG analogues is
igher in simulations with large box sizes, pointing to a limitation
f studying LG analogues in relatively small volume simulations.
he largest simulation they consider, ABACUS SUMMIT , has a box
ize almost identical to UCHUU , albeit at eight times lower mass
esolution. Interestingly, they find a transverse velocity with a median
nd 1 σ -equi v alent uncertainty of 105 + 94 

−59 km s −1 , significantly higher
han our results: v t = 81 + 74 

−46 km s −1 for all LG analogues, and
 t = 72 + 65 

−40 km s −1 for true pairs. If we further incorporate the
bserved values and uncertainties on r and v r as priors, we obtain a
early identical weighted posterior of v t = 75 + 65 

−40 km s −1 for the LG
ransv erse v elocity, consistent with the value of v t = 57 + 35 

−31 km s −1 

f van der Marel et al. ( 2019 ). 
The difference between our result and those of Forero-Romero &

ierra-Porta ( 2022 ) could be partly due to the fact that their selection
f haloes with v max = 200. . . 260 km s −1 led them to consider more
assive LG analogues which, as we will discuss in Section 6.4 , tend

o have higher transverse velocities. Perhaps more significantly, due
NRAS 521, 4863–4877 (2023) 
o the fact that they include pairs with separations up to 1.5 Mpc, their
ample almost certainly contains a large fraction of unbound pairs,
r pairs whose kinematics are not determined internally, but through
nteractions with other haloes. For example, we find v t = 118 + 82 

−68 

m s −1 for tidally subdominant pairs, and v t = 107 + 78 
−59 km s −1 for

airs with high force ratios. Both of these are close to the value
btained by Forero-Romero & Sierra-Porta ( 2022 ). Ho we v er, the y
ay not be a good prior for the transverse velocity of the LG. 

 T H E  LG  MASS  V I A  GAUSSI AN  PROCESS  

EGRESSI ON  

e estimate the mass of the LG, M LG = M MW 

+ M M31 , using
aussian process regression (GPR), a machine learning algorithm

hat provides an estimate of both the most likely value, and the
ncertainty (standard deviation) of the estimate. Specifically, we
nfer the relationship between the inputs (kinematics) and the target
LG mass), i.e. the conditional mass distribution given the observed
inematics. 
GPR is a type of supervised machine learning, meaning that it first

learns’ the connection between the input and the target variables
rom a given dataset where both are known. In our case, the regressor
earns the correlation between the kinematics (input) and the LG mass
target) from sets of ‘true’ LG analogues from the UCHUU simulation.
fterwards, the trained regressor can predict the LG mass from a
i ven ne w set of kinematics. During the training, functions are fitted
o the training data, whose coefficients are optimized iteratively.

ithout further constraints, there is an infinite number of possible
unctions that can fit a given set of data. This sets GPR, as a form of
on-parametric regression, apart from parametric regression models,
here the functional form is fixed, and only function parameters are
ptimized. 
The goal of the regression is to find a probability distribution of

ll functions that fit the data, and from that, predict both the mean
nd variance of the mass for a given set of kinematics, over the
ntire range of possible input values. In our case, we construct the
ossible functions as the dot products (inner product) of a radial basis
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Figure 6. LG mass measured in the simulation (symbol edges) and mean predicted mass using Gaussian regression (symbol centres) as a function of the 
observed kinematics, for a random subset of T dom , F < 0 . 5 LG analogues. Similar colours for the centre and edge mean that the regression predicted a mass 
similar to that in the simulation. The regression correctly captures both the o v erall mass gradients detectable by eye, as well as, in many cases, the masses of 
apparent outliers. 
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Figure 7. Individual predicted median values of M LG from independent 
Gaussian process regressors trained on N s data points, after Monte-Carlo 
sampling the observational uncertainty. The black horizontal lines indicate 
the median of the values plotted for each sample size, and upwards and 
downwards triangles indicate ±1 σ scatter. As the number of points in the 
sample increases, the scatter in the predictions is reduced. At N s = 3200, we 
obtain an expectation value for the median of M LG = 3.18 ± 0.06 × 10 12 M �. 
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unction, a constant, and a white noise term. The re gression be gins
ith a uniform prior on the probabilities of all possible functions. 
ubsequently, the probability distribution is successively updated 
ased on new information in the form of training data. The posterior
istribution of the possible function is then used to predict both 
he mean and the variance (or standard deviation) (Wang 2020 ). 
n this work, we use the SCIKIT-LEARN (Pedregosa et al. 2011 )
mplementation of GPR, GAUSSIANPROCESSREGRESSOR . 

Fig. 6 shows the mean prediction of the LG mass obtained via
PR (symbol centres) in the r − v r plane (left panel), and in the r −
 t plane (right panel), compared to the values measured for the same
ystems in the simulation (symbol edges). It can be seen that the GPR
redicts the gradients in mass identifiable by eye, but also, in many
ases, correctly predicts the masses of points that appear as outliers
n each individual 2D plane, due to the fact that it uses the full, 3D
inematic information in its estimate. Ho we ver, as demonstrated by 
he data points with differing edge- and centre colours, the regression
s not perfect. 

.1 Predicted uncertainty 

he algorithmic complexity of GPR of O( N 

3 ) prohibits us from
sing the full data for training. Ho we ver, GPR is quite ef ficient e ven
or small sample sizes. In Fig. 7 , we show the convergence behaviour
f the regression. We train the regressor multiple times on N s data
oints, and for each instance, we obtain an independent estimate of
he LG mass via Monte-Carlo sampling of the observations (see 
ection 5.2 ). The precision of the regression increases with the 
umber of data points: for a sample size of N s = 100, we find
 LG = 3.14 ± 0.27 × 10 12 M �, while for a sample size of N s =

200, we find a median value of M LG = 3.18 ± 0.06 × 10 12 M �.
he uncertainty of ±0.06 × 10 12 M � represents the uncertainty of 
ur prediction of the median value of the LG mass distribution. As
e explain belo w, ho we ver, it is quite different from the uncertainty
f our prediction of the mass of the LG. 
In Fig. 8 , we plot the predicted mass as a function of mass in

he simulation, with symbols coloured, as in Fig. 9 , according to the
ass in the simulation in the symbol centres, and according to the
ean prediction at the symbol edges. It can be seen that the range

f mean predictions is narrower than the range in the simulations:
he ensemble of mean predictions lacks both the high- and low-mass
utliers found in the simulation. The mean prediction underpredicts 
he mass of the most massiv e objects, and o v erpredicts the masses for
he least massive ones. This behaviour is not unexpected: indeed, if
he connection between kinematics and mass contains some amount 
f random scatter, the extremely low- and high-mass points are 
ikely to fall, respectively, on the low- and high-mass side of the
catter. While the mean regression cannot, by definition, reproduce 
he random behaviour for individual objects, we can account for the
resence of scatter by including a white noise term in the kernel
unction. 

One key advantage of the Gaussian regression over some other 
egression models (such as decision trees or neural networks) is that
t automatically provides an estimate of the uncertainty, or error, of
ach estimate along with the mean estimate. We show the predicted
MNRAS 521, 4863–4877 (2023) 
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Figure 8. The LG mass predicted using Gaussian regression ( y -axis) 
compared to the mass measured in the simulation ( x -axis). As in Fig. 6 , 
symbol centres are coloured according to the mean prediction; symbol 
edges are coloured according to the mass in the simulation. Error bars 
extend to ±1 σ of the uncertainty of each prediction. There is a clear 
correlation between predicted and measured mass, with no apparent bias. 
Some amount of regression-to-the-mean is also apparent: for low masses, the 
Gaussian regression tends to o v erpredict the mass, while for high masses, it 
underpredicts it. Consequently, the range of mean predictions is narrower than 
the full range of masses in the simulations. Ho we ver, this apparent shortfall 
can be rectified when the uncertainty of the prediction is taken into account. 

1  

r  

s  

a  

i  

w
 

d  

G  

f  

t  

‘  

m  

t  

p  

n  

a  

O  

o  

v  

b  

o  

o  

M  

A  

M  

s

5

T  

u  

t  

p  

Figure 9. Distribution of LG masses in the simulation (black open his- 
tograms), predicted means of the GPR (red histograms), and after the pre- 
dicted means are convolved with the respective predicted uncertainties (blue 
histograms). The top panel shows the results for all LG analogues in the tidally 
dominant, F < 0 . 5 sample. The bottom panel shows the results for only those 
LG analogues that are within ±3 σ for each of the kinematic variables on 
which the prediction is based, r , v r , and v t . It can be seen that the distributions 
of mean predictions are more concentrated than those of the simulation data, 
lacking both high- and low-mass outliers. By contrast, after convolving the 
predicted means with the predicted uncertainties, the distribution of the data 
is reproduced well. This effect is particularly pronounced when, as shown 
in the bottom panel, the range of input variables is narrowed, in this case to 
±3 σ , where σ is the default observational uncertainty. 
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 σ -uncertainties for each data points as vertical lines in Fig. 8 . The
ange of values within the uncertainties around the mean predictions
hown in Fig. 8 extends beyond that of the mean values alone. For
 full prediction that encapsulates both the predicted trend and the
rreducible uncertainty, we therefore convolve each predicted mean
ith a normal distribution of the predicted standard deviations. 
In Fig. 9 , we compare the distribution of LG masses measured

irectly in the simulation with those obtained by applying the
aussian regression to the kinematics measured in the simulations

or the same objects. On the top panel, the open histogram shows
he full data in the tidally dominant, F < 0 . 5 sample, i.e. the
true’ LG analogues. The red histogram shows the distribution of
ean predictions of the regression, while the blue histogram shows

he distribution after convolution of the predicted means with the
redicted uncertainties. As discussed abo v e, the mean predictions do
ot fully account for the scatter, but after the uncertainty is taken into
ccount, the resulting distribution reproduces the shape of the data.
n the bottom panel, the data are reduced to the subset for which each
bservable, r , v r , and v t , is limited to ±3 σ around the observational
alue, where σ is the quoted observational error. Here, the difference
etween the distribution of masses in the data and in the distribution
f mean predictions is even more pronounced: while the distribution
f the mean predictions has M LG = 3 . 4 + 0 . 3 

−0 . 2 × 10 12 M �, the data have
 LG = 3 . 5 + 1 . 2 

−1 . 1 × 10 12 , a similar median, but much greater scatter.
fter convolution with the predicted uncertainty, the prediction has
 LG = 3 . 4 + 1 . 3 

−0 . 9 × 10 12 M �, reproducing well both the median and the
catter in the data. 

.2 A prediction of the LG mass 

o predict the mass of the actual LG based on our regression, we
se the observed values of r , v r , and v t as inputs to the regressor
rained on the simulation data. In Fig. 10 , we show the resulting
robability density for the LG mass. To account for the observational
NRAS 521, 4863–4877 (2023) 
ncertainty, we create Monte-Carlo samples for 10 6 combinations of
he observables, each following a normal distribution with mean and
tandard deviations inferred from the observations, as described in
ection 3.1 . We truncate the Monte Carlo samples to exclude non-
ensical values, i.e. r < 0 or v t < 0, but this has only a minor effect
n the results. 
The thick red line in Fig. 10 shows the resulting mass distribution

sing the mean values of the regressor with the quoted observational
ncertainties. The predicted mass is 3 . 43 + 0 . 1 

−0 . 2 × 10 12 M � – an appar-
ntly impressively precise result. As indicated by the dashed and
otted red lines, the precision is limited only by the observational
rrors: the uncertainty increases to ±0.3 × 10 12 M � when the
bservational errors are assumed to be twice as high (dashed red
ine) and becomes infinitesimally small when the assumed errors go
o zero (dotted vertical line). Notably, as we will show in Section 6 ,
his behaviour is similar to an analysis based on the classical ‘timing
rgument’. Ho we ver, it is not a true reflection of the uncertainty of
he estimate of the mass based on the kinematics. 

The blue lines in Fig. 10 show, for the same Monte Carlo
amples with the same assumed observational uncertainties, the
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Figure 10. LG mass predicted by the Gaussian regression, when using Monte 
Carlo samples of the observed kinematics within the stated uncertainties as 
inputs. The red lines show the distribution of the mean predictions, and the 
blue lines show the distribution after convolving each mean prediction with 
its associated uncertainty. It can be seen that the mean prediction appears to 
be very precise, but this belies the true uncertainty in the LG mass–kinematics 
relation. Only after convolving with the uncertainties, we get a realistic 
estimate, and find a mass of 3 . 2 + 1 . 2 −0 . 9 × 10 12 M � when assuming standard ±1 σ
observational errors. While the uncertainty of the mean prediction depends 
strongly on the assumed observational errors (dotted lines: zero error, solid 
lines: the default errors, dashed lines: twice the default errors), the uncertainty 
of the convolved prediction is dominated by the uncertainty in the kinematics–
mass relation. 
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G mass distribution after the predicted means are convolved with 
he predicted uncertainties. These estimates account both for the 
bservational errors and for the uncertainty in the relation between 
inematics and mass. With the standard, ±1 σ observational errors, 
e obtain a mass of M LG = 3 . 2 + 1 . 2 

−0 . 9 × 10 12 M � – a similar mass with
 larger, but more realistic estimated uncertainty. Comparing this 
igure 11. LG analogues, coloured by mass, as a function of r and v r (left column
alpha value) is computed proportional to the probability that it represents the obse
equation 3 ) in the ( r , v r , v t )-space based on the observed values and their uncertai
 < 0 . 5 in our probability weighted estimate, for clarity, the axis ranges only ext
 σ , 2 σ , and 3 σ in the two 2D-spaces ( r , v r ) and ( r , v t ) are o v erplotted. 
esult to the one shown by the red lines, and discussed abo v e, it is
lear that the precision of estimating the LG mass is not limited by
he current observational error, but by the fundamental scatter in the
elation between the kinematics and mass. Indeed, when we bring 
he assumed observational error to zero, as shown by the dotted blue
ine, the mass estimate hardly changes. 

 D I R E C T  PR  O B  ABILITY  W E I G H T E D  

STIMATES  

he uniquely large sample of LG analogues in UCHUU , including
any whose kinematics closely match the observations, also allows 

s to directly estimate the most likely mass of the LG and its members
long with the associated uncertainties. For this purpose, we consider 
ach LG analogue as a measurement of the observed LG, weighted
ccording to a Gaussian kernel which describes the likelihood that it
epresents the observations. 

For each LG analogue, i , we compute the distance to the observed
inematics as 

i = 

√ 

σ 2 
r,i + σ 2 

v r ,i 
+ σ 2 

v t ,i 
, (2) 

here σ x , i = ( x i − x obs )/ σ x , obs , with x obs the mean observed value,
nd σ x , obs the associated error, respectively, for each x in r , v r , v t . 

We then compute the relative probability that an LG analogue, i ,
epresents the observations as 

 i = 

1 

(2 π ) n/ 2 
e −σ 2 

i 
/ 2 , (3) 

here n is the number of independent observables and σ i is as
efined in equation ( 2 ). We use these probabilities as weights in
omputing the probability distributions of the posteriors given by the 
bservables. 
When we include additional constraints, such as the observed 
ass of the MW or M31, we include these as additional observables,
 , and compute the associated distances, σ i , and probabilities, P i ,
ccordingly. 

In Fig. 11 , we show the distributions of the kinematic properties
 v r and r on the left, v t and r on the right) of LG analogues, with
he colour hue according to the LG mass (as in Figs 3 and 4 , and the
MNRAS 521, 4863–4877 (2023) 

), and as a function of r and v t (right column). The opacity of each data point 
rved values of r , v r , and v t , computed using a 3D Gaussian kernel function 
nties. Although we include the full sample of tidally dominant systems with 
end out to ±3 σ for each variable. For illustration, ellipses corresponding to 

uest on 02 January 2024
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Figure 12. Distributions of the kinematic variables r , v r , and v t measured in the simulation with each LG analogue weighed according to its probability to 
represent the observed LG. On all panels, the purple lines show the weighted estimate for the full set of LG analogues, blue lines show the weighted estimate for 
the ‘true’ LG analogues (tidally dominant and low force ratio). The grey lines indicate the assumed observational uncertainty of each variable. The distributions 
of r and v r , weighted by the o v erall probability, closely match the distributions assumed for the observations for each variable individually. The distributions of 
v t , weighted by the o v erall probability, are less likely to contain values close to zero than the pure observational uncertainty would predict. 
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lpha-value, or opacity, according to the Gaussian kernel estimate of
he relative probability that they represent the observed LG. In total,
here are 2921 LG analogues with σ ( i ) < 1, 7129 with σ ( i ) < 2 and
1 537 with σ ( i ) < 3, allowing us to make robust estimates of the
istributions, not limited by sample size. 
In Fig. 12 , we show the histograms of the distributions of kinematic

ariables of LG analogues, weighed using the Gaussian distance in
erms of r , v r , and v t . It can be seen that, for r and v r , both the median
alues and the standard deviations of the distributions are very close
o the assumed observational values. This reflects the fact that the
elati ve observ ational errors are so small that the distributions of v r 
nd r among the simulated LG analogues o v er these intervals are
lose to uniform. As discussed abo v e, the observational uncertainty
f v t is considerably larger, and given that v t is bounded from below
y zero, the resulting distribution is asymmetric and skewed slightly
owards higher values. 

.1 Kinematically deri v ed probability distributions 

n Fig. 13 , we show the distributions of all four covariants, obtained
sing a probability weighted average: the total mass (top left), the
ass ratio (top right), the lower of the two masses (bottom left),

nd the greater of the two masses (bottom right). On each panel, we
how both the distribution for the full set of LG analogues, and for
he subset of analogues that are both tidally dominant and with a low
orce ratio (true pairs). 

For these ‘true pairs’, we find a total mass of M LG = 3 . 45 + 1 . 09 
−1 . 12 ×

0 12 M �. Both the centre of the distribution and the uncertainty are
ery similar to the result obtained in Section 5 using GPR. We find
 mass of M 2 = 0 . 9 + 0 . 58 

−0 . 30 × 10 12 M � for the lower mass halo, and
 1 = 2 . 33 + 1 . 00 

−0 . 85 × 10 12 M � for the higher mass halo. 
The median total mass is considerably lower than most of

he estimates using the timing argument. Notably, both individ-
al masses and their uncertainties are consistent with the inde-
endent mass estimates for the MW and M31 listed discussed
n Section 2 , at least if the MW is the less massive of the
air. We explore the mass-order in more detail in the next
ection. 
NRAS 521, 4863–4877 (2023) 
It is also worth noting that the most likely (modal) mass of the
ower mass halo, M 2 , is near the lower limit of the mass range,
.5 × 10 12 M �. This is a consequence of the steep mass function
n � CDM, and the fact that the kinematics constrain only the total

ass, on which the lower mass halo has a comparatively small effect.
s mentioned in Section 3.1 , the lower limit on M 1 that we selected
ust be considered as an additional prior. 

.2 Comparison to the timing argument 

n Fig. 14 , we show the probability distribution function for the
robability-weighted estimate of M LG , the mass of the LG. The
ark blue solid line shows the result we obtain using the ±1 σ
ncertainties described in Section 3.1 , r = 765 ± 11 kpc, v r =
09.3 ± 4.4 km s −1 , and v t = 57 ± 35 km s −1 . The light blue dashed
ine shows the result if we instead increase all observational errors
y a factor of 2: r = 765 ± 22 kpc, v r = 109.3 ± 8.8 km s −1 , and
 t = 57 ± 70 km s −1 . Confirming the results obtained through GPR
iscussed in Section 5 , the distribution function for the LG mass is
lmost unchanged. The true uncertainty in the mass of the LG is not
imited by the observational errors in r , v r , or v t , but by the scatter in
he kinematics–mass relation, i.e. the scatter in mass of objects with
dentical kinematics. 

The other four lines in Fig. 14 show the results of applying the
iming argument, either to the kinematics of the probability weighted
G analogues in the simulation (red lines), or to Monte Carlo samples
f the observations (grey lines). We compute timing argument masses
y numerically solving the following four equations (Marel &
uhathakurta 2008 ), where a is the semimajor axis of the MW-M31
rbit, e is the eccentricity, and η is the eccentric anomaly (which
arametrizes the orbital phase). The parameters r , v r , and v t are the
eparation, radial, and transverse velocities, respectively, and t 0 is
he age of the Universe. 

 = a ( 1 − e cos η) , (4) 

 0 = 

(
a 3 

GM 

)1 / 2 

( η − e sin η) , (5) 
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Figure 13. Clockwise from the top left: posterior distributions of the total mass (M LG , top left), mass of the more massive halo (M 1 , top right), mass of the less 
massive halo (M 2 , bottom right), and mass ratio (M M31 /M MW 

, bottom left), when each LG analogue either from the full sample (purple lines) or the sample 
fulfilling the tidal dominance and force ratio criteria (dark blue lines) is weighted according to its likelihood to represent the observed LG, and assuming that 
M31 is the more massive of the pair. The shaded areas indicate the ranges between the 16th and 84th percentiles. Using this weighted sample, we obtain a median 
total mass of 3.43 × 10 12 M �, and a median MW mass of 0.90 × 10 12 M �, in line with the observations. We also obtain a median M31 mass of 2.33 × 10 12 M �
and a median mass ratio of 2.28. 
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 r = 

(
GM 

a 

)1 / 2 
e sin η

1 − e cos η
, (6) 

 t = 

(
GM 

a 

)1 / 2 (1 − e 2 ) 1 / 2 

1 − e cos η
. (7) 

Note that the timing argument only applies to bound LG analogues 
nd assumes that the LG is on its first approach. Both for the Monte
arlo samples and for the probability weighted kinematics, we also 
ompute the distributions using either the quoted ±1 σ uncertainty 
solid lines), or increasing all assumed observational errors by a 
actor of 2 (dashed lines). By comparing the grey and red lines, we see
hat the probability weighted kinematics of the LG analogues in the 
imulations closely match the Monte Carlo samples, resulting in very 
imilar distributions for the timing argument mass. By comparing 
he solid and dashed lines, we see that the precision of the timing
rgument estimate increases for smaller assumed errors. Indeed, if 
he observed errors tend to zero, the timing argument yields a unique
olution. Ho we ver, this does not reflect the true uncertainty in the
elation between mass and kinematics measured in the simulations, 
s shown by the blue lines. We also note that the timing argument
asses are offset from those measured directly in the simulations, 
uggesting that the timing argument is biassed. 

.3 The MW mass as an additional prior 

iven the spate of recent measurements of the MW mass, we also
nvestigate the dependence of LG properties when the MW mass 
s imposed as an additional constraint. The results are not purely
G kinematic estimates, and cannot be used directly to reveal (or
lleviate) tensions between individual estimates and those obtained 
sing pure kinematics. Ho we v er, the y may pro vide more accurate
ass estimates, and a comparison to the purely kinematic results can

lso illuminate whether the different mass estimates are compatible. 
As discussed in the introduction, the mass of the MW is very well

onstrained to be close to 10 12 M � using Gaia DR3 observations,
mong others. Assuming a value of 1 . 1 + 0 . 2 

−0 . 2 × 10 12 M � as a fourth
bservable in equations ( 2 ) and 3 , we obtain new distributions for
he masses of the individual objects, and for the mass of the LG, as
hown in Fig. 15 . 

We consider both the case where the MW, at this mass, is the
ess massive or more massive halo of the pair. The first scenario,
regular mass order’, is shown by the dark blue lines in Fig. 15 . As-
MNRAS 521, 4863–4877 (2023) 
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M

Figure 14. Probability distribution of the LG mass. Blue, as measured in 
the simulation, weighted by the probability of representing the observations 
according to the assumed uncertainty. Red: as inferred from the timing 
argument for the same sample in the simulation with the same weights. 
Grey: as inferred from the timing argument, drawing Monte-Carlo samples 
with the same assumed means and uncertainties. The solid lines show the 
quoted ±1 σ observational errors, and the dashed lines show the effect of 
increasing the assumed observational errors to 2 σ . The precision of the timing 
argument estimate is limited only by the observational errors. By contrast, in 
the simulations, the uncertainty is dominated by the underlying scatter in the 
relation between mass and kinematics, imposing a fundamental limit on the 
precision. 
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uming M MW 

= 1 . 1 + 0 . 2 
−0 . 2 × 10 12 M � leads to an MW mass of M MW 

=
 . 05 + 0 . 19 

−0 . 21 × 10 12 M �, an M31 mass of M M31 2 . 28 −0 . 78 
+ 0 . 97 × 10 12 M �, a

otal mass of 3 . 36 + 0 . 93 
−0 . 81 × 10 12 M �, and a mass ratio of 2 . 18 + 1 . 17 

−0 . 78 .
eassuringly, all values are consistent with the values obtained purely

rom kinematics, showing that the kinematic analysis yields values
ompatible with the individual measurements of the MW mass. Using
he measured MW mass as an additional observational constraint has
ncreased the accuracy of the predictions for all three components.
nder the assumption that the MW is the less massive of the pair, an
W mass of 1 . 1 + 0 . 2 

−0 . 2 × 10 12 is not in conflict with the LG kinematics.
o the contrary, the MW mass is slightly abo v e the median value

nferred purely from kinematics. 
When the MW is assumed to be the more massive of the two haloes

orange lines in Fig. 15 ), the three other results change significantly.
he total mass of the LG is reduced to 1 . 90 + 0 . 39 

−0 . 31 × 10 12 M �, while
he mass of M31 is now 0 . 73 + 0 . 28 

−0 . 16 × 10 12 M �, and the mass ra-
io is M MW 

/ M M31 = 1 . 48 + 0 . 48 
−0 . 34 ( M M31 / M MW 

= 0 . 68 + 0 . 2 
−0 . 17 ). All these

re outside the range predicted from the kinematics alone. The
trong preference for an M31 mass below 10 12 M � and a total
ass below 2 × 10 12 M � despite the kinematics in this ‘inverted
ass ordering’ stem from the fact that mass ratios very close to

:1 are rare. 
The probability density functions shown in Fig. 15 show the

stimated values of the masses and mass ratio given the assumed
inematics, and under the assumptions that an MW of 1 . 1 + 0 . 2 

−0 . 2 × 10 12 

s either the less or more massive halo of the pair. They do not,
y themselves, predict which assumption for the mass ordering is
ore likely to be correct. To estimate the relative probability for a

re gular’ or ‘inv erted’ mass order giv en the observ ed kinematics and
NRAS 521, 4863–4877 (2023) 
heir associated uncertainties, we compare the sum of the weighted
robability densities for both scenarios, which also accounts for the
ass function and mass ratio distribution in the simulations. We
nd a ratio of 3.6, implying a 78 per cent chance that an MW of
 . 1 + 0 . 2 

−0 . 2 × 10 12 is less massive than M31. 

.4 The inverse problem: possible kinematics for a given mass 

he kinematics strongly constrain the mass of the LG, but among the
.4 million LG analogues, we find examples of LGs with any mass
n the range 1–10 × 10 12 M � for nearly every combination of the
inematics. Part of the preference for a low-mass system is simply
ue to the fact that in � CDM, low-mass haloes and by extension
alo pairs, are far more pre v alent than high-mass haloes. It may
herefore be illuminating to also consider the inverse question: given
n assumed LG mass, what is the range of plausible kinematics? 

In Fig. 16 , we show the distributions of the kinematics for LG
nalogues with masses of ∼2, 3, 4, 5, and 6 × 10 12 M �. Each
ass range is limited to ±0.2 × 10 12 M �, small enough to clearly

eparate different mass ranges, and large enough to include at least
0 4 systems in each mass range. 
Also shown are ellipses centred on the observed values and

xtending to the ±1 σ observational uncertainty. We find that the
ombination of separation, r , and transv erse v elocity, v t , does not
ufficiently discriminate between different masses o v er this interval.
nterestingly, this is not only due to the large observational error,
ut also due to the fact that the 1 σ scatter in v t ranges from
20–90 km s −1 at M = 2 × 10 12 M � to ∼40–150 km s −1 at M =
 × 10 12 M �. Each mass range includes a significant o v erlap with
he observed value and uncertainty, and v t values as high as 125
m s −1 are not uncommon for LG masses of up to 4 × 10 12 M �.
igher mass pairs tend to have greater v t values, which in addition

o the effects mentioned in Section 4.3 may partly explain the higher
alue reported by Forero-Romero & Sierra-Porta ( 2022 ), and values
s high as 110 km s −1 can certainly not be ruled out. Only a value
f v t as high as 164 km s −1 , as suggested by Salomon et al. ( 2016 ),
s disfa v oured (under 5 per cent probability in combination with
he observations of r and v r ) if the LG mass is not in excess of
 × 10 12 M �. 
By contrast, the combination of separation, r , and radial velocity

 r , strongly depends on the mass. For LG analogues analogues with
asses of 2 × 10 12 M � and a separation of ∼770 kpc, the magnitude

f the observed radial velocity is 2 σ above the median, while for
G analogues of 6 × 10 12 M �, it is 1.2 σ below the median. The
bserved kinematics are most likely to occur for LG analogues of
ust under 4 × 10 12 M �. Ho we ver, the fact that low-mass LGs are
ore common (and, to a smaller e xtent, the relativ ely low transverse

elocity) pushes the most likely LG mass down to ∼3.3 × 10 12 M �. 

 C O N C L U S I O N  

e have inferred the halo masses of the MW and M31, their
ombined mass, and mass ratio, by analysing kinematically selected
G analogues from the UCHUU cosmological simulation. To establish

he relation between mass and kinematics, we distinguish between
true pairs’ in which the interactions between the MW and M31
ominate the gravitational force, and those whose kinematics are
trongly affected by external influences. We find that this distinction
ignificantly changes the distributions of kinematic variables. 

Assuming � CDM, limiting the range of halo masses to 0.5–
 × 10 12 M �, and considering only true pairs where the gravita-
ional field and tidal field are primarily due to the MW and M31

art/stad883_f14.eps
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Figure 15. Distributions of the total mass, mass of M31, mass of the MW, and the mass ratio, measured in the simulation with each LG analogue weighed 
according to its likelihood to represent the observed LG, either assuming only the observed kinematics (grey, as the dark blue lines in Fig. 13 ), or also assuming 
1 . 1 + 0 . 2 −0 . 2 × 10 12 M � for the mass of the MW, as either the less massive of the pair (‘regular mass order’, in blue), or the more massive of the pair (‘inverted mass 
order’, in orange). The shaded areas show the regions between the 16th and 84th percentiles. Assuming that an MW of ∼1.1 × 10 12 M � is the less massive 
galaxy yields very similar results for the total mass, mass ratio, and mass of M31, with slightly reduced errors. By contrast, assuming an MW of ∼1.1 × 10 12 M �
to be the more massive galaxy results in a much lower total mass, a much lower M31 mass, and a mass ratio much closer to unity. 

Figure 16. Distributions of kinematic parameters for LG analogues with masses of 2 ± 0.2 × 10 12 M �, 3 ± 0.2 × 10 12 M �, 4 ± 0.2 × 10 12 M �, 5 ± 0.2 × 10 12 M �, 
and 6 ± 0.2 × 10 12 M �. On both panels, contour lines correspond to ±1 σ around the peak density, with the upper limits in v r and v t denoted on the left side, 
and the lower limits denoted on the right side of each panel. The ellipses on both panels show the observational uncertainty. In terms of v r and r , as shown on 
the left panel, the observed kinematics are typical for LG analogues with a mass of ∼4 × 10 12 M �, and lie just outside the 1 σ range for LG analogues with a 
mass of 3 × 10 12 M � or 6 × 10 12 M �. The scatter in v t is larger than that in v r in every mass range, and all masses are compatible with the measured v t value. 
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hemselves, our analysis using GPR results in a total mass of
 LG = 3 . 2 + 0 . 9 

−1 . 2 × 10 12 M �. We obtain a nearly identical result using
 probability weighted estimate. 

Our result for the mass of the LG is significantly lower than most
revious results which apply the timing argument to the kinematics,
ut in agreement with Benisty et al. ( 2022 ), who obtain a total
ass of 3.4 × 10 12 M � when correcting the timing argument for

osmic bias. As discussed in Section 6.4 , accounting for cosmic
ias (the fact that there are more low-mass than high-mass haloes),
hich is folded into our analysis, is certainly important for de-

ermining the most likely mass. Ho we ver, it is not clear that our
greement with Benisty et al. ( 2022 ) is more than incidental, and
e leave a more detailed analysis of the timing argument to future
ork. 
We find that the kinematics most strongly constrain the total mass

f the pair, leaving the mass of the two haloes and their mass ratio
ess well constrained. But importantly, the kinematics are not in
onflict with the individual measurements. In particular, contrary to
revious claims, they do not point towards a mass of the MW abo v e
0 12 M �. In fact, a purely kinematic analysis gives a mass for the
ess massive halo of 0 . 9 + 0 . 59 

−0 . 31 × 10 12 M �. When we assume an MW
ass of 1.1 ± 0.2 × 10 12 M � as an additional prior, we also obtain

ssentially the same posteriors for the total mass, M31 mass, and
ass ratio, assuming that the MW is the less massive of the pair.
ending strong support for the ‘regular’ mass order, if we assume

hat the MW is more massive, all the distributions shift significantly,
howing strong tensions with the observations. 

We also find that LG analogues with close to equal masses are quite
nlikely, and find a mass ratio of 2 . 28 + 2 . 02 

−0 . 96 using only kinematics. It
s worth noting that value and its distribution are quite sensitive to the
ower bound of 5 × 10 11 M � for each halo: allowing lower mass LG

embers is bound to shift the mass ratio distribution towards even
igher values, while assuming a mass of ∼1.1 ± 0.2 × 10 12 M � for
he less massive halo gives a mass ratio of 2 . 18 + 1 . 17 

−0 . 78 M �. For the mass
f the more massive halo, we find 2 . 33 + 1 . 00 

−0 . 85 × 10 12 M � based only
n pair kinematics, and we find 2 . 28 + 0 . 97 

−0 . 78 × 10 12 M � for the mass of
31, assuming it is the more massive halo in an LG with an MW of

.1 ± 0.2 × 10 12 M �. 
It is worth noting that the pair kinematics only give a probability

istribution for the mass of the LG. Both the GPR and our probability
eighted estimate show significant tails towards higher and lower
asses. To further constrain the mass (albeit forgoing the potential to

eveal possible tensions), and reduce the residual scatter, additional
ndependent tracers will need to be considered, which further set
he LG apart from the systems we consider here, and which may
ontain additional information about its mass. This may include the
bserved stellar masses of the galaxies obtained through abundance
atching (e.g. Guo et al. 2011 ), the presence and orbits of (massive)

atellites (Tepper-Garc ́ıa, Bland-Hawthorn & Li 2020 ; Wang et al.
020 ; Benisty et al. 2022 ; Chamberlain et al. 2023 ), the assembly
istories of the MW and M31, the properties of the local Hubble
ow (e.g. Fattahi et al. 2016 ), and finally possibly the peculiar local

opology surrounding the LG (e.g. Neuzil, Mansfield & Kravtsov
020 ; Aragon-Calvo, Silk & Neyrinck 2023 ). 
Importantly, the precision of our mass estimate is neither limited

y statistics, nor by observational uncertainty. Instead, we find a
undamental and irreducible scatter in the relation between mass
nd kinematics of ∼±10 12 M �. This leads us to conclude that
revious works which reported a smaller uncertainty purely based
n the parameters of the MW–Andromeda orbit, either through the
iming argument or machine learning, did not fully account for this
catter. On the other hand, in order to obtain a more accurate mass
NRAS 521, 4863–4877 (2023) 
stimate, future work will need to include additional information in
he analysis. 
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